27,177 research outputs found

    Automated user modeling for personalized digital libraries

    Get PDF
    Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    NEXT LEVEL: A COURSE RECOMMENDER SYSTEM BASED ON CAREER INTERESTS

    Get PDF
    Skills-based hiring is a talent management approach that empowers employers to align recruitment around business results, rather than around credentials and title. It starts with employers identifying the particular skills required for a role, and then screening and evaluating candidates’ competencies against those requirements. With the recent rise in employers adopting skills-based hiring practices, it has become integral for students to take courses that improve their marketability and support their long-term career success. A 2017 survey of over 32,000 students at 43 randomly selected institutions found that only 34% of students believe they will graduate with the skills and knowledge required to be successful in the job market. Furthermore, the study found that while 96% of chief academic officers believe that their institutions are very or somewhat effective at preparing students for the workforce, only 11% of business leaders strongly agree [11]. An implication of the misalignment is that college graduates lack the skills that companies need and value. Fortunately, the rise of skills-based hiring provides an opportunity for universities and students to establish and follow clearer classroom-to-career pathways. To this end, this paper presents a course recommender system that aims to improve students’ career readiness by suggesting relevant skills and courses based on their unique career interests

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation
    corecore