1,114 research outputs found

    Software Defined Networking Reactive Stateful Firewall

    No full text
    Part 3: Cyber InfrastructureInternational audienceNetwork security is a crucial issue of Software Defined Networking (SDN). It is probably, one of the key features for the success and the future pervasion of the SDN technology. In this perspective, we propose a SDN reactive stateful firewall. Our solution is integrated into the SDN architecture. The application filters TCP communications according to the network security policies. It records and processes the different states of connections and interprets their possible transitions into OpenFlow (OF) rules. The proposition uses a reactive behavior in order to reduce the number of OpenFlow rules in the data plane devices and to mitigate some Denial of Service (DoS) attacks like SYN Flooding. The firewall processes the Finite State Machine of network protocols so as to withdraw useless traffic not corresponding to their transitions' conditions. In terms of cost efficiency, our proposal empowers the behavior of Openflow compatible devices to make them behaving like stateful firewalls. Therefore, organizations do not need to spend money and resources on buying and maintaining conventional firewalls. Furthermore, we propose an orchestrator in order to spread and to reinforce security policies in the whole network with a fine grained strategy. It is thereupon able to secure the network by filtering the traffic related to an application , a node, a subnetwork connected to a data plane device, a sub SDN network connected to a controller, traffic between different links, etc. The deployment of rules of the firewall becomes flexible according to a holistic network view provided by the management plane. In addition, the solution enlarges the security perimeter inside the network by securing accesses between its internal nodes

    Analysis and Management of Security State for Large-Scale Data Center Networks

    Get PDF
    abstract: With the increasing complexity of computing systems and the rise in the number of risks and vulnerabilities, it is necessary to provide a scalable security situation awareness tool to assist the system administrator in protecting the critical assets, as well as managing the security state of the system. There are many methods to provide security states' analysis and management. For instance, by using a Firewall to manage the security state, and/or a graphical analysis tools such as attack graphs for analysis. Attack Graphs are powerful graphical security analysis tools as they provide a visual representation of all possible attack scenarios that an attacker may take to exploit system vulnerabilities. The attack graph's scalability, however, is a major concern for enumerating all possible attack scenarios as it is considered an NP-complete problem. There have been many research work trying to come up with a scalable solution for the attack graph. Nevertheless, non-practical attack graph based solutions have been used in practice for realtime security analysis. In this thesis, a new framework, namely 3S (Scalable Security Sates) analysis framework is proposed, which present a new approach of utilizing Software-Defined Networking (SDN)-based distributed firewall capabilities and the concept of stateful data plane to construct scalable attack graphs in near-realtime, which is a practical approach to use attack graph for realtime security decisions. The goal of the proposed work is to control reachability information between different datacenter segments to reduce the dependencies among vulnerabilities and restrict the attack graph analysis in a relative small scope. The proposed framework is based on SDN's programmable capabilities to adjust the distributed firewall policies dynamically according to security situations during the running time. It apply white-list-based security policies to limit the attacker's capability from moving or exploiting different segments by only allowing uni-directional vulnerability dependency links between segments. Specifically, several test cases will be presented with various attack scenarios and analyze how distributed firewall and stateful SDN data plan can significantly reduce the security states construction and analysis. The proposed approach proved to achieve a percentage of improvement over 61% in comparison with prior modules were SDN and distributed firewall are not in use.Dissertation/ThesisMasters Thesis Computer Engineering 201

    The medical science DMZ: a network design pattern for data-intensive medical science

    Get PDF
    Abstract: Objective We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. Materials and Methods High-end networking, packet-filter firewalls, network intrusion-detection systems. Results We describe a “Medical Science DMZ” concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs. Discussion The exponentially increasing amounts of “omics” data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research “Big Data.” The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows. Conclusion By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements

    An SDN-based firewall shunt for data-intensive science applications

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering, 2016Data-intensive research computing requires the capability to transfer les over long distances at high throughput. Stateful rewalls introduce su cient packet loss to prevent researchers from fully exploiting high bandwidth-delay network links [25]. To work around this challenge, the science DMZ design [19] trades o stateful packet ltering capability for loss-free forwarding via an ordinary Ethernet switch. We propose a novel extension to the science DMZ design, which uses an SDN-based rewall. This report introduces NFShunt, a rewall based on Linux's Net lter combined with OpenFlow switching. Implemented as an OpenFlow 1.0 controller coupled to Net lter's connection tracking, NFShunt allows the bypass-switching policy to be expressed as part of an iptables rewall rule-set. Our implementation is described in detail, and latency of the control-plane mechanism is reported. TCP throughput and packet loss is shown at various round-trip latencies, with comparisons to pure switching, as well as to a high-end Cisco rewall. Cost, as well as operations and maintenance aspects, are compared and analysed. The results support reported observations regarding rewall introduced packet-loss, and indicate that the SDN design of NFShunt is a technically viable and cost-e ective approach to enhancing a traditional rewall to meet the performance needs of data-intensive researchersGS201
    • …
    corecore