
An SDN-based firewall shunt for data-intensive science
applications

Simeon Miteff

A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand,

Johannesburg, in fulfilment of the requirements for the degree of Master of Science in

Engineering.

Johannesburg, May 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/188771766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Juanita

iii

Abstract

Data-intensive research computing requires the capability to transfer files over

long distances at high throughput. Stateful firewalls introduce sufficient packet loss

to prevent researchers from fully exploiting high bandwidth-delay network links [25].

To work around this challenge, the science DMZ design [19] trades off stateful packet

filtering capability for loss-free forwarding via an ordinary Ethernet switch. We pro-

pose a novel extension to the science DMZ design, which uses an SDN-based firewall.

This report introduces NFShunt, a firewall based on Linux’s Netfilter combined

with OpenFlow switching. Implemented as an OpenFlow 1.0 controller coupled to

Netfilter’s connection tracking, NFShunt allows the bypass-switching policy to be

expressed as part of an iptables firewall rule-set. Our implementation is described

in detail, and latency of the control-plane mechanism is reported. TCP through-

put and packet loss is shown at various round-trip latencies, with comparisons to

pure switching, as well as to a high-end Cisco firewall. Cost, as well as operations

and maintenance aspects, are compared and analysed. The results support reported

observations regarding firewall introduced packet-loss, and indicate that the SDN

design of NFShunt is a technically viable and cost-effective approach to enhancing

a traditional firewall to meet the performance needs of data-intensive researchers.

iv

Declaration

I declare that this MSc dissertation is my own, unaided work. It is being submitted for

the degree of Master of Science in the University of Witwatersrand, Johannesburg. It

has not been submitted for any degree or examination in any other University.

Simeon Miteff

Wednesday 4th May, 2016

v

vi

Acknowledgements

Thank you to: my wife Juanita, for her patience and encouragement, listening and proof

reading; Professor Hazelhurst, for his invaluable guidance through my first research

project; the SANReN team, CHPC, the CSIR and the South African Department of

Science and Technology for funding my studies and purchasing lab equipment, as well

as for allowing me to work on this project as part of my day-job. Finally, thank you to

my friends, family and colleagues who supported me and showed interest in this work.

vii

viii

Contents

1 Introduction 1

1.1 Importance of data-intensive science . 1

1.2 State of the art . 2

1.2.1 Hardware acceleration . 2

1.2.2 FDT-optimized tools . 3

1.2.3 Simplified filtering . 3

1.2.4 Intrusion prevention with shunting 4

1.3 Limitations of the state of the art . 4

1.3.1 Load balancing . 4

1.3.2 Specialised protocols . 4

1.3.3 Simplified filtering . 5

1.3.4 Shunting . 5

1.4 A new approach . 6

1.5 Overview of the thesis . 7

2 Background 9

2.1 Introduction . 9

2.2 Fast data transfer . 9

2.2.1 TCP performance challenges . 10

2.2.2 Alternative protocols for FDT . 11

2.3 High speed packet switching . 12

2.3.1 Software switching . 12

2.3.2 Hardware switching . 13

2.4 Traditional firewall designs . 14

2.4.1 CPU-software firewalls . 16

2.4.2 Network processors . 18

2.5 OpenFlow . 18

ix

x CONTENTS

2.6 open vSwitch . 20

2.6.1 Architecture . 20

2.6.2 OVS utilities . 21

2.6.3 OVS usage . 21

2.7 Hybrid forwarding . 21

2.7.1 Multi-layer virtual switches . 22

2.7.2 Co-processor fast-path . 22

2.7.3 Co-processor slow-path . 23

2.7.4 Control plane advanced packet processing 23

2.7.5 Forwarding plane advanced packet processing 24

2.8 OpenFlow-based firewalls . 24

2.8.1 OpenFlow controller firewalls . 24

2.8.2 OpenFlow hybrid firewalls . 25

2.9 Netfilter - the Linux firewall . 26

2.9.1 Netfilter’s design . 26

2.9.2 iptables configuration . 29

2.9.3 Netfilter connection tracking . 29

2.10 Traffic generation and testing . 30

2.10.1 Test standards . 30

2.10.2 Generating network traffic . 31

2.10.3 Sampling real traffic . 31

2.10.4 Simulating the network layer . 32

2.10.5 Simulating the application layer 32

2.11 Conclusion . 32

3 An SDN-based shunting firewall 35

3.1 Research question . 35

3.2 Research approach . 36

3.3 Prototype architecture . 36

3.4 Design choices . 38

3.4.1 The toolkit approach . 38

3.4.2 Transparent firewall . 39

3.4.3 Linux Ethernet bridge and Netfilter 39

3.4.4 Integrated firewall and shunting policy 39

3.5 Low-level design . 39

3.5.1 Fast path configuration . 40

CONTENTS xi

3.5.2 Slow path configuration . 41

3.6 Prototype controller implementation . 46

3.6.1 Slow path interface . 46

3.6.2 Fast path interface . 47

3.6.3 Controller core logic . 48

3.6.4 Configuration module . 49

3.6.5 Logging module . 50

3.7 Conclusion . 51

4 Experimentation 53

4.1 Experimental methodology . 55

4.1.1 Experimental design choices . 55

4.1.2 Lab equipment . 56

4.1.3 Lab test configurations . 56

4.2 Factors and levels . 57

4.2.1 Measurements . 58

4.2.2 Validation of test procedure . 58

4.3 Experimental results . 59

4.3.1 Shunting mechanism . 59

4.3.2 Forwarding performance . 60

4.3.3 Network performance comparison 61

5 Discussion 65

5.1 Analysis of the prototype implementation 65

5.2 Experimental performance analysis . 66

5.3 Operations and maintenance analysis . 68

5.3.1 Fault management . 68

5.3.2 Configuration management . 68

5.3.3 Account management . 69

5.3.4 Performance management . 69

5.3.5 Security management . 69

5.4 Price-performance comparison . 69

5.4.1 Capital cost . 70

5.4.2 Operational cost . 70

5.4.3 Analysing cost performance . 71

5.5 Limitations of the research . 71

xii CONTENTS

6 Conclusion and future work 73

6.1 Research conclusions . 73

6.2 Future work . 74

Appendices 76

A openVSwitch usage 78

B Source code listing 83

List of Figures

1.1 Example science DMZ network diagram 3

2.1 TCP connection state diagram (from Sergiodc2, M. Pauley, and Scil100 [73]) 15

2.2 Hardware architecture of the Cisco ASA 5585 17

2.3 Architecture of a Software Defined Network 19

2.4 OVS agent architecture . 21

2.5 Linux Netfilter packet flow diagram (from J. Engelhardt [27]) 27

2.6 Linux Netfilter components (from J. Engelhardt [26]) 28

3.1 NFShunt architecture . 37

3.2 Connection mark bit fields used by NFShunt 42

3.3 NFShunt Netfilter rule flow diagram . 44

3.4 Per-connection state machine of the forwarding path 48

4.1 Comparison of congestion window and throughput for three independent

test runs at 200ms RTT. 62

A.1 Mininet’s minimal topology . 78

xiii

xiv LIST OF FIGURES

List of Tables

1.1 Comparison of Science DMZ protection mechanims 6

4.1 Research approach: mapping questions to method and analysis 54

4.2 Host tuning for test servers . 59

4.3 Shunting event performance . 60

4.4 Single flow forwarding performance . 60

4.5 Cisco - multiple flow forwarding performance 61

4.6 Tests of the hypothesis that direct switching and prototype performance

differ . 63

4.7 Tests of the hypothesis that prototype and Cisco ASA 5585 performance

differ . 63

5.1 Capital cost comparison . 70

xv

xvi LIST OF TABLES

Glossary

ACL Access Control List (ACL) is a stateless packet filter typically provided by hard-

ware switches and routers. 4, 14, 24, 25

API Application Program Interface (API) is a set of functions that form the interface

to a software component. 25

ARP Address Resolution Protocol (ARP) is a protocol for resolving network layer ad-

dresses to link layer addresses. 80, 81

ASIC Application-Specific Integrated Circuit (ASIC) is a fixed-function integrated cir-

cuit designed for a specific application. 13, 16, 18, 19, 22–24, 39

COTS Commercial Off-The-Shelf (COTS) is a complete component that is commer-

cially available. 38, 66, 70

DMZ demilitarised zone (DMZ) (in the context of computer networks) is a sub-network

isolated by security measures designed to protect the hosts from threats originating

on other networks, as well as protecting other networks from threats if the hosts

in the DMZ are compromised. 3–6, 25, 35, 38, 53–56

DPDK Data Plane Development Kit (DPDK) is a library of packet processing software

and associated hardware drivers intended for user-space switching. 17, 39

ECN Explicit Congestion Notification (ECN) is used to signal buffer utilisation between

routers and end-hosts. 10, 11

FCAPS Fault, Configuration, AAA, Performance and Security management (FCAPS)

is the ITU-T Recommendation M.3400, TMN Management Functions [38]. 68

xvii

xviii GLOSSARY

FDT Fast Data Transfer (FDT) is the use of systems and tools optimised for the transfer

of large data sets, often over large distances. 2, 5, 6, 9–12, 17, 26, 30, 31, 36, 53–55,

66, 67, 71

FOSS Free and Open Source Software (FOSS) is free software available under an Open

Source copyright license. 20, 26, 38, 70, 73

FPGA Field Programmable Gate Array (FPGA) is an integrated circuit technology in

which the electrical logical functions are configured and re-configured by software.

6, 22

FTP File Transfer Protocol (FTP) is an application layer protocol for transferring files

between hosts on the Internet. 3, 11, 30

HPC High Performance Computing (HPC) is the use of super-computers and comput-

ing clusters to execute computationally intensive work-loads. 1, 2, 10, 25, 74

HTTP Hypertext Transfer Protocol (HTTP) is the application-layer protocol of the

World Wide Web. 25, 32

ICMP Internet Control Message Protocol (ICMP) is an Internet transport-layer pro-

tocol responsible for error messages and testing. 80, 81

IP Internet Protocol (IP) refers to a version of the network layer protocol common to

the Internet. 2, 29, 56, 58

IPS Intrusion Prevention System (IPS) is a system that scans network traffic for intru-

sions and actively destroys offending connections. 4

JSON JavaScript Object Notation (JSON) is a light-weight encoding for documents

which is both human and machine readable. 49

LAN Local Area Network (LAN) is a computer network local to a physical building or

campus of buildings. 4, 14, 16

LHC Large Hadron Collider (LHC) is the world’s largest particle accelerator - housed

at CERN. 1

MAC Media Access Control (MAC) is a sub-layer of the data-link layer (layer 2) which

is concerned with functions such as addressing, media access control and error

detection. 25, 60, 80

GLOSSARY xix

MTU Maximum Transmission Unit (MTU) of a protocol layer is the maximum size of

a data unit for that layer. 56, 59, 71

NIC Network Interface Controller (NIC) is the compute hardware component that pro-

vides an interface to a network. 13, 56–60

NPU Network Processing Unit (NPU) is a multi-core processor providing parallelism

intended specifically for a hardware network forwarding plane. 6, 13, 18, 22, 24

OPN Optical Private Network (OPN) is the high-speed data network between CERN

and the LHC’s tier-one processing centres. 1

OVS open vSwitch (OVS) is an Open Source virtual switch that implements OpenFlow.

20–22, 39–41, 66, 75, 78–81

REST Representational State Transfer (REST) is a stateless architecture for building

remote procedure calls on top of HTTP. 25

RISC Reduced Instruction Set Computing (RISC) is a microprocessor architecture

based on a simple instruction set and optimised for high speed code execution.

18

RTT Round-Trip Time (RTT) is the bi-directional delay in a network path between

two nodes. 10, 57, 58, 60, 61, 63, 67

SDN Software Defined Networking (SDN) is a network architecture where “the con-

trol and data planes are decoupled, network intelligence and state are logically

centralised, and the underlying network infrastructure is abstracted from the ap-

plications” [30]. 6, 16, 18, 20, 22, 24, 36, 54, 73–75

SKA Square Kilometre Array (SKA) will be the world’s largest radio-obsevatory, with

radio-telescopes planned to be built in South Africa and Australia. 1, 57

SNMP Simple Network Management Protocol (SNMP) is a datagram-based protocol

for monitoring an managing network elements. 25, 68

TCAM Ternary Content-Addressable Memory (TCAM) is a type of memory specialised

for rapid table lookups based on addresses, including the option for wild-card bits.

24

xx GLOSSARY

TCP Transmission Control Protocol (TCP) is the reliable connection-oriented network

transport protocol used by the majority of Internet applications. 2–6, 9–11, 14,

16, 22, 23, 25, 29, 32, 40, 41, 45, 47, 49, 54–61, 66, 67, 71, 73, 74

TLS Transport Layer Security (TLS) is a session layer protocol that provides encryption

and authentication for transport layer connections. 69

XML Extensible Markup Language (XML) is an encoding for documents which is in-

tended to be both human and machine readable. 47

Publications

Parts of this dissertation appeared in a conference paper entitled NFShunt: a Linux

firewall with OpenFlow-enabled hardware bypass, at the IEEE Conference on Network

Function Virtualization and Software Defined Networks 2015 [55].

xxi

Chapter 1

Introduction

1.1 Importance of data-intensive science

Gordon Bell argues that data-intensive computing is the basis for a new paradigm of

science [36]. The idea of e-Science is that data-exploration is a new scientific method

that unifies theory, experimentation and simulation. Cyber-infrastructure is therefore

critical to modern science, and the network is the central component that moves data

between computing resources (and indirectly to the researchers).

The Large Hadron Collider (LHC) [14] serves as an example of a scientific instrument

and its associated experiments with data-intensive infrastructure requirements. The dis-

tributed manner in which data produced at the LHC is analysed led to new architectures

for network provisioning and security, for example, the LHC Optical Private Network

(OPN) [8]. The distributed processing strategy itself was developed to cope with un-

precedented volumes of scientific data, where network transfers were measured in tens

of gigabits per second [75].

Early work to understand the network needs of the Square Kilometre Array (SKA)

[21] radio-telescope has identified a new large-data frontier, this time in the order of

hundreds of gigabits per second [39]. Just as a novel approach was applied for the needs

of the LHC, so will each successive data-intensive experiment need to find efficient ways

to distribute, store and analyse data.

Gorton et al. list astronomy and cyber-security as applications that exhibit the char-

acteristics of being both data and computationally intensive. Since High Performance

Computing (HPC) facilities are themselves exposed to cyber-security threats [32], the

need to apply cyber-security measures to HPC compounds the total complexity of data-

intensive applications.

1

2 CHAPTER 1. INTRODUCTION

McMahon and Hutchison [52] suggest that standard security measures (such as a

firewall) can be applied to protect HPC infrastructure, and propose a security archi-

tecture based on such standard components. Quite contrary to this work, ESNet [25]

reports that packet loss in high speed networking is often caused by standard firewalls.

According to ESNet [25], firewalls are supposed to behave transparently for legitimate

traffic but, due to scalability constraints in the special case of large network transfers,

they do not do so. When high latency transfers are attempted through such firewalls, the

Transmission Control Protocol (TCP) stack throttles a connection’s window size because

packet loss is interpreted as network congestion and, as a result the data throughput

achieved is much less than the nominal network capacity. Given the high cost of inter-

national connectivity, this is a practical and important efficiency problem for globally

distributed data-intensive research infrastructures.

Since network latency is bound by the speed of light, the solution is either to mitigate

the effect of packet loss on applications by adapting their use of the network, or to

eliminate the cause of the loss itself.

If the critical role of high speed networks in data-intensive computing is at odds with

deployed network security measures, then it is important to study this apparent conflict,

and propose solutions.

1.2 State of the art

High performance network security and Fast Data Transfer (FDT) are both subjects of

active research. This section describes the relevant state of the art.

1.2.1 Hardware acceleration

According to ESNet [22], hardware firewalls are capable of stateful filtering (see sec-

tion 2.4) of Internet Protocol (IP) packets at line rate when employing parallelised

architecture, which spreads individual network flows (unique connections between two

network endpoints) over a number of specialised network processor cores.

In a typical hardware firewall, each network processor’s peak performance is less than

the total throughput of the firewall [25]. Normally individual flow throughput is limited

elsewhere (often at one of the endpoints) to the extent that this architecture scales well

for traffic composed of many small flows (such as typical Internet traffic).

1.2. STATE OF THE ART 3

Figure 1.1: Example science DMZ network diagram

1.2.2 FDT-optimized tools

One way to work around poor TCP performance is to spread data transfers over a

number of (lower rate) parallel connections (striping). This technique was developed

to compensate for end-host TCP window size tuning problems, but could also allow for

higher total throughput in high latency transfers exposed to packet loss.

GridFTP [2] is an extension of the File Transfer Protocol (FTP) that employs parallel

TCP connections to improve throughput.

1.2.3 Simplified filtering

Another solution is to engineer networks to be suitable for high performance TCP by

eliminating the firewall itself (and therefore the lossy component). ESNet proposes a

network design called the science demilitarised zone (DMZ) [19].

The idea of a science DMZ is to create a small, fast subnetwork at the edge of the

network at each institution (e.g., universities, research labs, etc.), which is devoid of

middle-boxes (in other words, it is connected before the firewall). High latency transfers

(originating from distant endpoints) are therefore not subjected to the performance-

degrading effect of packet loss caused by middle-boxes, while transfers from inside the

institutional network (and therefore beyond the border firewall) are low latency – there-

fore not subject to the same effect.

Figure 1.1 illustrates an example of this design: network traffic represented by the

green arrow traverses the “clean” network, while the orange line represents local (low-

latency) traffic.

It is argued that computing resources in the science DMZ can be adequately protected

4 CHAPTER 1. INTRODUCTION

from intruders by making use of simplistic (but scalable) router interface Access Control

Lists (ACLs), combined with host security measures [19].

As side benefits, this architecture also alleviates operational conflicts resulting from

attempts to shoehorn a firewall security policy designed for protecting enterprise Local

Area Networks (LANs) to serve the unusual networking needs of scientific computing

applications, and encourages efficient scaling of network elements for the specific needs of

each class of network end-host (enterprise LAN versus science computing infrastructure).

1.2.4 Intrusion prevention with shunting

A third alternative is to separate the network traffic belonging to data-intensive sci-

ence applications from other flows, and only apply security measures to the remainder.

This approach makes use of a custom hardware switch called a shunt [31], which is pro-

grammed to either bypass or forward traffic via an Intrusion Prevention System (IPS).

An analysis of packet traces from institutions typically running data-intensive appli-

cations shows that shunting (the mechanism of hardware bypass-switching of network

traffic otherwise processed in software) can reduce the amount of network traffic for-

warded via the “slow path” significantly, allowing the system to run at the full speed of

the institution’s network connection.

More recently, SciPass enhanced shunting to take advantage of OpenFlow-based

hardware switching [5]. While the original shunt work aimed to address the problem

of IPS scalability, SciPass leveraged bypass switching for the enhancement of science

DMZs.

1.3 Limitations of the state of the art

1.3.1 Load balancing

According to ESNet [25], in data-intensive science applications where endpoints are

optimised to allow transfers at speeds close to the limit of the underlying network,

a hardware firewall architecture which relies on load-balancing (increasing aggregate

capacity through parallel processing) over multiple network processors drops packets,

resulting in poor TCP performance with high-latency flows.

1.3.2 Specialised protocols

Specialised applications, employing the parallel-TCP connections strategy to improve

throughput, suffer from operational and adoption problems:

1.3. LIMITATIONS OF THE STATE OF THE ART 5

• Ports and protocols used by non-standard applications are often blocked by the

standard policy configured on the same firewall - the limitations of which they are

designed to work around [44].

• We speculate that applications using existing (albeit lower performance) proto-

cols are more convenient for some end-users. For example, Secure Copy Protocol

(SCP) (a single-flow TCP based file transfer application) is installed by default

on most servers, and is integrated with the operating system’s authentication and

authorisation mechanism [17].

1.3.3 Simplified filtering

A firewall is described as an insurance policy for the manager or executive at an institu-

tion accountable for cyber-security [18]. It is understandable then that some institutions

are reluctant to adopt the simplified design of the science DMZ (which does not make

use of a firewall in the usual sense).

Since no network security measure is absolutely effective, in the case of a breach, it

could be difficult for the responsible officer to explain to the board (or relevant authority)

why there was no firewall in place.

Given this human bias against simplified filtering, making use of a firewall that de-

livers suitable performance for FDT is perhaps the path of least institutional resistance.

1.3.4 Shunting

The use of a custom hardware platform for shunting allows for flexibility in the exact

operation of the shunt itself, but limits the practicality of wide-spread deployment.

Using standardised off-the-shelf hardware for the shunting component would permit

convenient substitutions, and take advantage of the economy of scale available due to

mass production of such components. SciPass [5] enhances shunting by employing a

standard hardware fast-path.

Shunting and SciPass both address scalability of intrusion detection. SciPass includes

the capability to shunt trusted connections around a traditional firewall based on IDS

signatures, but neither system attempts to implement standard firewall interfaces or

semantics with a single policy for both slow and fast path switching.

6 CHAPTER 1. INTRODUCTION

1.4 A new approach

Previous work with OpenFlow in the FDT context has applied it to the management

of (stateless) access control lists [72], and the implementations of shunting focused on

intrusion detection applications [5,31]. Similarly, previous work to add hardware-offload

acceleration for the Linux Netfilter firewall (see section 2.9) has relied on a custom kernel

module communicating with specialised hardware, such as a Field Programmable Gate

Array (FPGA) [15] or a Network Processing Unit (NPU) [1].

We research a shunting strategy for firewalls, which on the forwarding plane is similar

to the science DMZ, but the addition of a control plane driven by a stateful firewall ruleset

results in functionality very similar to a traditional firewall. The contribution of our

research is the hybrid shunting firewall design, a prototype implementation (NFShunt)

and an analysis of the prototype’s performance.

Our hybrid approach has an advantage of both the science DMZ and stateful firewall

solutions, in that it would eliminate some of the trade-off between security and per-

formance, and be implementable in real-world applications by making use of existing,

well-understood and tested off-the-shelf components. We use OpenFlow to decouple the

control logic of the firewall from switch hardware — the central principle of Software

Defined Networking (SDN) (see section 2.5).

It is important to note that stateless bypass switching inevitably compromises the

ability of the system to check the validity of packet headers against expected protocol

state, as well as other packet filtering capabilities (such as application-layer inspection),

subsequent to shifting the traffic to the fast-path. This limitation is common to our

prototype hybrid firewall and similar designs, such as SciPass. Table 1.1 summarises the

performance and security trade-offs offered by the hybrid approach and its alternatives.

We only consider a use-case involving single or small numbers of TCP connections.

The research does not address a comprehensive threat-model for science DMZs, cater

for non-TCP applications, or examine connection-rate performance.

Approach Performance Security

Access Control Lists High Low

Traditional firewall Low High

Hybrid (shunting) firewall High Medium

Table 1.1: Comparison of Science DMZ protection mechanims

1.5. OVERVIEW OF THE THESIS 7

1.5 Overview of the thesis

This report is structured as follows:

Chapter 2 provides the background to our research: we review relevant technologies

and critically analyse related work in the literature. Chapter 3 describes the research

problem, and our prototype firewall’s design and implementation. Chapter 4 covers our

research method for experimental evaluation, and reports the results of our experiments.

Chapter 5 presents our analysis of the prototype implementation and evaluation. Finally,

in chapter 6, we draw conclusions from our study and explore future work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Introduction

The performance of network applications in the presence of network packet filtering is a

function of interrelated effects: the transport layer protocol implementation (e.g., Trans-

mission Control Protocol (TCP)) reacts to network conditions, that are in turn affected

by the architecture of the network packet filter. It is, therefore, necessary to understand

the theoretical background and practical implementation of packet forwarding and fil-

tering, in addition to the network traffic profile of the applications of relevance to the

research.

When examining different implementations of packet forwarding and filtering de-

vices, it is important to consider the separation between the following: the mechanisms

that handle individual packets, namely the forwarding plane (or data path); and the

control mechanisms that maintain data structures used by the forwarding plane to make

decisions about how to handle packets, namely the control plane.

Our hybrid firewall combines a bypass switching (shunting) strategy with the use

of a standard software interface for controlling the hardware component. Each of these

technologies (as well as existing work to combine them in similar architectures) are

explored in the sections that follow.

2.2 Fast data transfer

Network use-cases for data intensive science require Fast Data Transfer (FDT). More

specifically:

1. Large (sometimes Peta-byte-sized) data sets are moved between different locations

9

10 CHAPTER 2. BACKGROUND

on the network [36]. For example, raw experimental data may be collected by

sensors or instruments at one location, processed at a second location (on a super-

computer), and the output then analysed by scientists at a third location.

2. Unlike commodity Internet traffic, which is typically comprised of many simultane-

ous (relatively low speed) TCP flows, the data is often transferred between single

endpoint systems, and maximum throughput is required for single TCP sessions.

The distribution of connection data volumes for various types of network traffic

follows a heavy-tailed distribution [41], meaning that a small number of connections

account for a large proportion of the total data transferred, while the majority of the

connections transfer a small amount of data. Gonzales et al. [31] apply their shunting

technique to large connections in six different network traffic data sets gathered from

universities, research labs and a super computing centre. They find that the heavy

tail flow effect is even more prevalent where the use of the network tends towards the

specialised applications of High Performance Computing (HPC).

2.2.1 TCP performance challenges

The TCP protocol interprets packet loss as congestion on the network path between

end-points, resulting in packets being dropped from router interface queues, and uses

this information to adjust the rate at which data is transmitted to match the capacity

available.

Unfortunately, queue drops resulting from link congestion are not necessarily the only

causes of loss. Using the model for TCP performance developed by Mathis et al. [49], it

can be seen that the combination of modest packet loss rates on high bandwidth-latency

product links results in pathological inefficiency on links that are not fully utilised.

Among the variants of TCP, some implementations are adapted for high speed (for

example: HighSpeed TCP [29], Scalable TCP [40] and FAST TCP [81]). Difficulties

in the design of TCP congestion control algorithms are: achieving high throughput in

diverse (and variable) network conditions while also maintaining fairness (the equal

sharing of bottleneck link capacity among all TCP connections), and avoiding biases

among connections according to Round-Trip Time (RTT).

Explicit Congestion Notification (ECN) extends TCP to distinguish between error

drops and queue drops [70], which is promising for supporting FDT with non-congestive

packet loss. While ECN is now commonly supported in both end-host operating systems,

as well as network equipment, it must be enabled both on the hosts and on the underlying

network to be effective. This constraint has been problematic for the use of ECN in long

2.2. FAST DATA TRANSFER 11

distance inter-domain network applications: a recent study by Kühlewind et al. [42]

showed that the majority of TCP connections on the Internet still cannot use ECN.

In addition to the bootstrapping problem between host and router support, the

adoption of ECN has been further hampered by the interference of poorly considered

firewall policies [79]. This is incongruous with the fact that ECN might otherwise permit

the use of firewalls for FDT.

The latency constraint is often an unavoidable physical constraint that is a conse-

quence of the global nature of modern collaborative big science projects. Clearly loss-free

networks are critical for the use of single TCP connections in high-bandwidth applica-

tions.

2.2.2 Alternative protocols for FDT

Proposals exist for new protocols that perform well despite packet loss in high bandwidth-

delay product networks.

One example of an application-layer protocol is GridFTP [2], which extends the File

Transfer Protocol (FTP) to suit the needs of FDT. One GridFTP feature is the ability to

establish multiple parallel TCP connections between a pair of servers. A pool of servers

containing the same data can also be used in parallel (in striping mode), futher improving

the scalability of GridFTP-based systems by accessing the independent storage back-

ends simultaneously. GridFTP protocol is also used in the Globus Toolkit and the

Globus Online service [3]. Parallel TCP connections can be effective at working around

throughput limitations (due to packet loss and poor host tuning) because individual

congestion windows are smaller while the aggregate throughput is increased.

Alternatives to TCP for large file transfers include various UDP-based protocols,

such as UDT, and commercial products such as Aspera’s FAST; MTP/IP from Data

Expedition; and TIXEL’s RWTP. Dart notes [17] that these protocols deal well with

congestive packet loss, but their performance in high latency un-congested links (typical

research network) is less clear.

Despite their advantages, alternative protocols face adoption challenges (similar to

ECN). GridFTP has been successful in the grid computing community but is not without

its own challenges, one being the need to allow non-standard ports on firewalls [44].

UDP-based protocols have been successful for commercial applications but have seen

limited deployment in research networks.

We also note that proposals for alternative protocols and applications, compete for

adoption, which suggests that no general solution exists. The efforts to propose and

then promote alternative protocols are important and valid in their approach, but it is

12 CHAPTER 2. BACKGROUND

also important to explore other solutions to the broader FDT problem.

Rather than adapting network applications to suit the network, the science DMZ

architecture aims to engineer the network to support all (including non-optimised) ap-

plications. Our research focuses on the network-based approach to FDT.

2.3 High speed packet switching

Expansion of the Internet has required the evolution of network technologies to deliver

higher speed networks. In this section we explore the state of the art in electronic

network packet switching.

2.3.1 Software switching

Forwarding or switching of Internet Protocol packets is performed by a router (or gate-

way). In addition to making switching decisions (choosing an output interface for each

packet), a router must also be able to translate between different network media. There-

fore its functions must extend from the physical to the network layer. The basic steps

common to all IP routing are:

1. Next-hop (route) lookup,

2. Decrementing the Time To Live (TTL) counter,

3. Recalculating the checksum,

4. Layer 2 header re-writing.

In addition to packet forwarding, a router itself must be able to act end-node to

enable it to interact with other nodes for the purposes of administration and monitor-

ing, building routing tables, error handling and so on. The functions of a router can,

therefore, be divided into two areas: the forwarding plane and the control plane.

The complexity of control plane functions require software running on a general

purpose microprocessor. Early routers also implemented the control and forwarding

plane function as subroutines of the same software, as the processing power available

was sufficient to support the data rates required. Network protocols were also rapidly

evolving, making a software implementation well suited to updates and improvement.

Consequently, the hardware architecture of IP routers were similar to that of general

purpose computers, utilising a centralised memory and a shared peripheral bus [4].

2.3. HIGH SPEED PACKET SWITCHING 13

As data rates on inter-networks increased, optimisations were made to the IP for-

warding process, for example: commonly used routes were cached for faster routing

decisions, and the actual packet forwarding process could be moved into an interrupt

handler to avoid packets being delayed by process scheduling in the router operating

system.

2.3.2 Hardware switching

When attempting to scale software IP forwarding to hundreds or even thousands of

megabits per second, it becomes apparent that bus and memory bandwidths must be

twice the total port capacity of the router, as each packet is copied twice during the

routing process [4].

While it is now possible to achieve small-packet 10Gbps line-rate L2 and L3 switching

with a small number of interfaces in software [83], we note that the bar for switching

performance has been raised to 100Gbps.1 The calibrated model developed by Meyer

et al. [54] predicts that future single-flow performance of software packet processing will

remain constrained by single-core performance. To overcome this, modern multi-gigabit

networks rely on specialised packet forwarding hardware.

One of the simplest hardware optimisations is to off-load some of the processing

tasks to fixed-function circuitry, such as verifying a packet checksum to the receiving

network interface controller. Moving beyond this initially proved problematic because

the Internet protocol was not designed with a hardware forwarding plane in mind. This

led to the development of label switching as a simpler alternative to IP routing, and a

means to encapsulate IP and other network and data-link layer protocols in transport

networks [61].

Eventually, advances in integrated circuit technology permitted pure hardware for-

warding to be implemented, including dedicated longest-prefix route look-up state ma-

chines. Most high speed routers now employ Application-Specific Integrated Circuits

(ASICs) or occasionally Network Processing Units (NPUs) in the forwarding plane.

In order to keep ASICs simple enough to allow line-rate forwarding in practical

implementations, certain features are not catered for in the hardware path, for example:

IP options change the length of the header itself and are, therefore, “punted” to a

software router implementation running on a general-purpose microprocessor (often the

same processor running the router’s control plane software). This hybrid fast/slow path

1100Gbps Ethernet Network Interface Controllers (NICs) as well as 32-port 100Gbps 1-RU switches

were available as of early 2015.

14 CHAPTER 2. BACKGROUND

approach is reminiscent of route caching and re-appears in contemporary network designs

(sometimes in combination with route caching).

One of the key advantages afforded by the stateless nature of the Internet protocol

is that routing is an embarrassingly parallel workload. In a single router, multiple

(distributed) copies of routing tables can, therefore, be used by more than one forwarding

engine in parallel, thereby eliminating the need for shared access to memory.

2.4 Traditional firewall designs

Blocking certain connections and allowing others has become a popular measure to pro-

tect end-hosts (and consequently the users and organisations) connected to the Internet.

This function is performed by a firewall [77].

The state machine used for route lookup (matching a header field against a data

structure of values and masks) can be used to implement a simple packet filter (also

known as an Access Control List (ACL)), with actions that specify whether a matching

packet should be dropped or forwarded. Strictly speaking, a router with ACL capability

is then also a firewall, however the capabilities of firewalls have surpassed simplistic

packet filtering.

Stateful (or state-aware) firewalls take into account the state of the transport protocol

connection, thereby protecting against a class of network attacks that cannot be blocked

using (stateless) packet filters. We focus on TCP which, being connection-oriented, is

inherently stateful. Figure 2.1 describes the connection states of a TCP session. Other

state information associated with a TCP connection includes the congestion control

algorithm (not usually a security concern) and sequence numbers, which could be checked

in a firewall to defend against spoofing attacks [34]. A simple example of the advantage

of stateful firewalling is a typical scenario for firewall configuration, namely the TCP

diode. Suppose an organisation wishes to implement the following policy:

1. Hosts on the Local Area Network (LAN) (clients) can initiate TCP connections to

web servers on the Internet (on port 80).

2. TCP connections from the Internet to the LAN are blocked.

In practice, the above policy would be translated into a firewall rule set. For a

stateless packet filter, the following rules could be used (evaluated sequentially):

1. Forward packets where the protocol is TCP, direction is to the Internet, and the

TCP destination port is 80.

2.4. TRADITIONAL FIREWALL DESIGNS 15

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK

(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

Figure 2.1: TCP connection state diagram (from Sergiodc2, M. Pauley, and Scil100 [73])

16 CHAPTER 2. BACKGROUND

2. Forward packets where the protocol is TCP, direction is to the LAN, and the TCP

destination port is ephemeral.2

3. Drop any packet.

The second rule is necessary to allow the client-to-server direction of the TCP stream,

but mapping this rule-set back to the policy reveals that TCP connections from the

Internet to the LAN are not blocked if the source port is 80 and the destination port

is ephemeral. An attacker’s client application (bound to port 80) could connect to a

malware server on the LAN.

The second rule would be superfluous with stateful TCP tracking, as return packets

would be associated with the connection permitted by the first rule. By removing the

second rule, stateful tracking can protect against the attack described above.

While it is useful to examine hybrid and Software Defined Networking (SDN)-based

stateless firewalls in our critical analysis of related work, we limit our study of firewall

performance to the stateful (state-of-the-art) type.

Stateful packet filtering requires forwarding plane support for functions that are not

easily handled at high speeds. For example: IP fragments (which may not contain the

original packet’s transport layer headers) require re-assembly; an operation that adds

extra buffering, lookups and time-out proceeding for each affected packet; whereas an

IP router could simply forward fragments without re-assembly. Keeping track of a TCP

connection’s state requires a connection table update for each packet, therefore, stateful

firewalling is not an embarrassingly parallel task if distributed on a per-packet basis.

It follows that state-of-the-art firewalls have more processing to do (per-packet) than

IP routers. Given access to the same basic technology (silicon process density and

power budget), the increased complexity of a firewall would result in fewer packets being

processed in the same time compared to an IP router. We support this argument by

first noting that common switch ASICs (so-called merchant silicon) are not capable

of supporting sophisticated packet processing [57], and then examining the suitability

of the hardware architectures typically used to implement stateful firewalls in the two

subsections that follow:

2.4.1 CPU-software firewalls

Modern server operating systems integrate mature host firewall functionality. Host fire-

walls typically process packets to and from the transport layer on the host itself, however,

2dynamically allocated by the client from a range of port numbers not requiring super-user privileges.

2.4. TRADITIONAL FIREWALL DESIGNS 17

Figure 2.2: Hardware architecture of the Cisco ASA 5585

the operating system network stack can usually also bridge and route packets (switching

on layer 2 and layer 3, respectively). Netfilter (the Linux kernel packet filter) is capable

of stateful firewalling of both host-terminated as well as routed and bridged connections.

We describe Netfilter in detail in section 2.9.

Despite the single-core small-packet-rate limitations of pure software routers and

firewalls, which we introduced in section 2.3.2, modern software firewall implementations

can scale to high aggregate throughputs for medium to large packet sizes.

While our investigation begins with the observation that this architecture is not

well suited for FDT [25], we acknowledge that software firewalls could adequately serve

many, or perhaps most, other network applications. Some high-end commercial firewalls

(including the Cisco ASA tested in our experiments) are implemented on commodity

server components in a customised chassis. Based on a Cisco presentation [64] and logs

from the system tested, we inferred the internal architecture of the Cisco ASA 5585,

illustrated in figure 2.2.

High performance packet processing on general-purpose hardware relies on directing

packets of each transport flow to the same core of one or more multi-core CPUs. A

thread for each core is configured to service a different packet queue on a multi-queue

network interface. Drivers and network stacks employ polling (instead of interrupts),

and eliminate copying of buffers to improve throughput and reduce latency. Most re-

cently, user-space forwarding plane implementations such as Data Plane Development

Kit (DPDK) [20] eliminated processing bottlenecks in the operating system to achieve

even higher throughput.

The primary advantage of CPU-based packet processing is the highest flexibility

18 CHAPTER 2. BACKGROUND

available for implementing complex functions such as stateful packet filtering or payload

inspection [68].

2.4.2 Network processors

Multi-core processors providing parallelism intended specifically for hardware network

forwarding planes are known as Network Processing Units (NPU). NPUs typically com-

prise a large number of simplified Reduced Instruction Set Computing (RISC) cores

designed for executing event-driven code that performs tasks typical in network equip-

ment. Marketing material for commercial hardware firewalls from ForiNet and Juniper

claim to employ NPU-based designs.

The advantage of an NPU over an ASIC is flexibility better suited to complex tasks

[33], similar to CPUs but with greater forwarding performance, at the cost of constraints

of per-core resources and a more complex programming model.

Casado et al. [13] observed that NPU vendors initially struggled to strike a complexity-

flexibility trade-off which was attractive to the market, while more recently Pongrácz et

al. [68] (authors from Ericsson – also an NPU vendor) state that, measured in perfor-

mance per Watt, recent NPUs outperform CPUs even for complex tasks (unfortunately

without elaborating on how they reached this conclusion – for example, which tasks were

tested).

The literature is lacking in rigorous performance comparisons between NPUs and

other architectures for the application of stateful firewalls, but there is consensus on the

general (and intuitive) principle that each hardware platform lies on a curve that relates

forwarding performance and processing flexibility. McKeown estimates the successive

increases in speed between CPUs, NPUs and ASICs to be one order of magnitude [50].

This supports our earlier argument that a hardware firewall would need to trade off

between these two attributes of the underlying technology.

2.5 OpenFlow

OpenFlow is a standard that implements the idea of SDN [51]. The control plane

functions of network elements can be centralised (to a so-called controller) by providing

a remotely programmable interface for the control plane functions, in order to manipulate

forwarding plane configuration. While some definitions of SDN extend far beyond fine-

grained programmability of packet forwarding behaviour, we focus on OpenFlow as a

realisation of SDN.

2.5. OPENFLOW 19

Figure 2.3: Architecture of a Software Defined Network

In an OpenFlow switch, forwarding plane actions are encoded in a series of switch-

ing hardware memory tables [63]. Except for wild-card protocol field matching (which

was not supported in earlier generation switch ASICs), OpenFlow does not define new

forwarding plane behaviour, instead it makes use of the existing functions used by embed-

ded control plane software found in common switching and routing hardware. OpenFlow

controllers can manipulate the switching tables inside any OpenFlow-capable switch by

managing so-called flow entries. Flow entries can be specified in multiple tables that form

a packet processing pipeline. The component responsible for implementing OpenFlow

functions in a switch is called the agent.

A flow entry specifies matching rules, counters and actions to be applied to network

traffic traversing the OpenFlow switch. This match-action abstraction is the central

contribution of OpenFlow. Using the OpenFlow protocol, it is possible for software to

remotely control packet switching with a high degree of granularity.

20 CHAPTER 2. BACKGROUND

Figure 2.3 shows the interfaces between network devices, controllers and applications.

The components and interfaces indicated in red represent the addition of OpenFlow as

the basic technology to enable Software Defined Networking.

The pragmatic re-use of existing technology allowed an evolution toward SDN. Much

progress has been made, first by the network research community and then by industry,

in creating software platforms for OpenFlow controllers. Multiple network equipment

manufacturers are now providing OpenFlow capability in their switches and routers.

2.6 open vSwitch

open vSwitch (OVS) is an implementation of OpenFlow which is typically used as a

virtual switch.

Virtual switches are deployed in conjunction with server virtualisation technology (so-

called hypervisors) to provide network connectivity to virtual machines. OVS is Free and

Open Source Software (FOSS), and gained popularity with the rise of hypervisors such

as Xen and KVM. While the goal of OVS is to provide a flexible, performant platform

for overlay networking and packet classification for virtual machines, it is also both an

OpenFlow switch and OpenFlow agent [66].

OVS’s multi-layer architecture separates the control plane from the software forward-

ing path, which in turn has a fast exact-match cache and a slow path that handles cache

misses (performing more complex wildcard or longest-prefix matching). The systems

design of loosely coupled components has proven useful for switching implementations

with different data paths, including both user and kernel-space, as well as hardware

offloading (described in section 2.7.2).

The OpenFlow switch that we used in the implementation of our prototype firewall

includes OVS as its OpenFlow agent. Consequently, OVS is used extensively in our

research, and we therefore describe OVS’s architecture and configuration in further detail

below.

2.6.1 Architecture

The architecture of the OVS OpenFlow agent component is composed of two user-space

server processes, some command-line utilities and a configuration database (illustrated

in figure 2.4).

Connections to the OpenFlow controller and interfacing with the forwarding plane

(or data-path in OVS terminology) is handled by ovs-vswitchd.

2.7. HYBRID FORWARDING 21

Figure 2.4: OVS agent architecture

2.6.2 OVS utilities

The ovs-ofctl utility allows the user to manually manipulate the flow tables of the

switch without a controller.

While ovs-appctl and ovs-dpctl query and modify some run-time state of

ovs-vswitchd, the configuration of the OpenFlow switch instances are instead obtained

from a separate server process: ovsdb-server. Persistent configuration created by the

ovs-vsctl utility is stored in the ovsdb file, and applied to ovs-vswitchd via ovsdb-

server. The stored configuration can either be retrieved with the ovsdb-client utility,

or the ovsdb file can be manipulated directly with ovsdb-tool.

2.6.3 OVS usage

A detailed example of OVS usage is provided in appedix A.

2.7 Hybrid forwarding

Beginning with flow caching in software-only routers, the designers of switching plat-

forms have often employed the optimisation of switching the forwarding path of packets

22 CHAPTER 2. BACKGROUND

between sophisticated-but-slow and simple-but-fast mechanisms, as an optimisation and

a work-around to the inherent trade-offs we observed in the preceding sections.

This re-occuring hybrid design pattern of acceleration or bypass switching is applied

in the prototype firewall we developed in our research. We explore related work on

hybrid forwarding in this section.

2.7.1 Multi-layer virtual switches

Mekky et al. extend OVS, adding so-called application tables to enable application-

layer processing of flows in the vSwitch without having to send packets to the control

plane [53]. Similarly FAST [56] and OpenState [7] add capability for flow state tracking

to the virtual switch. By leveraging the TCP options field match type in OVS, FAST

can be used to implement a stateful firewall. At the time of writing, hardware switches

supporting OpenFlow 1.5 (which includes the TCP options match type) were not yet

commercially available.

2.7.2 Co-processor fast-path

Some hybrid architectures partially offload packet processing to NPUs or fixed-function

hardware pipelines (co-processors):

Yang and Yonggang [82] demonstrate a hybrid Netfilter-based firewall leveraging a

tightly coupled Field Programmable Gate Array (FPGA)-CPU forwarding plane. Their

implementation modified the Linux kernel with Netfilter hooks that examine packet

headers in the CPU, while the complete packet remains queued in the forwarding plane.

Similarly, Chen et al. [15] add hardware-offload acceleration for Netfilter, with a custom

kernel module communicating with a data path implemented on NetFPGA [45], and

Accardi et al. [1] implement the same scheme on an NPU. In the broad sense, both

of these systems are SDN firewalls, but tight coupling to the hardware limits their

suitability for vendor-agnostic deployments.

Split SDN Data Plane (SSDP) [57] is another hybrid approach that off-loads com-

plex processing to an NPU subsystem in an ASIC-based hardware switch. The authors

demonstrate deep packet inspection as an application. SSDP differs from the above

hybrid designs in that it defines an interface for the NPU subsystem to be configured

by a single SDN controller, an approach that has the potential for standardised and

widespread deployment.

Finally, some ASIC based switches integrate OVS in the control plane, and employ

the multi-layer flow-cache approach to accelerate traffic after the initial packets of a flow

2.7. HYBRID FORWARDING 23

are punted to the control plane.

2.7.3 Co-processor slow-path

The inverse approach of hardware off-loading of packet forwarding in a software system,

is the off-loading of complex packet processing to software in a hardware switch. While

this approach is commonly used for handling packet processing exceptions (punting)

without specific concern for the performance impact (as highlighted in section 2.3.2),

some designs include software co-processing to add state tracking and application layer

processing features to otherwise hardware-only forwarding.

Lu et al. [47] use this approach to enable large routing tables, and packet buffering

with a server platform, combined with ServerSwitch [46] – a switch ASIC on a plug-in

card. It is not clear what the advantage of ServerSwitch is, compared to leveraging an

open control plane interface for ASIC programming and out-of-band forwarding plane

connections between the switch and the server (the approach used for our prototype).

2.7.4 Control plane advanced packet processing

One configurable OpenFlow action is for the switch to tunnel packets to and from the

controller via so-called packet-in and packet-out messages [63]. It is then possible for the

controller to inspect packets directly and perform forwarding decisions in the traditional

punt-and-switch architecture employed by many hardware routers.

OpenFlow can simplify the local functions of a switch because certain tasks are han-

dled by the controller, reducing the need, for example, to compute an optimal forwarding

table when routing changes occur. This affords equipment vendors the cost savings of

using low performance system-on-chip processors to run the OpenFlow agent. Unfortu-

nately, such processors limit the performance of packet-in/packet-out forwarding via the

OpenFlow controller.

The second problem with packet-in/packet-out tunnelling is that OpenFlow mes-

sages are typically transported over TCP, and when the packets within the tunnel are

themselves transporting TCP traffic, interaction of TCP retransmission timers can lead

to poor performance [78].

Collings and Liu [16] note scalability constraints when relying on OpenFlow con-

trollers to process forwarding plane traffic. Nevertheless, we note existing proposals for

advanced packet processing (such as stateful connection tracking) continue to rely on

packet-in/packet-out tunnelling.

24 CHAPTER 2. BACKGROUND

2.7.5 Forwarding plane advanced packet processing

For the most part, the evolution of OpenFlow sees the inclusion of new match and

action types with each subsequent version of the specification. The state-of-the-art in

SDN seeks to extend the capability of the forwarding plane beyond the constraints of

OpenFlow in two dimensions: protocol independence and stateful processing.

Protocol independence would allow the structure of packet headers to be defined

independently of the hardware structure of the data-plane. P4 [9] proposes the use of

a compiler to transform a logical definition of protocols, and the associated processing

that can be performed, into configuration for flexible packet switching hardware. A P4

switch is therefore truly software defined (or re-defined at run-time), and can then be

controlled by a protocol like OpenFlow during operation. It remains to be seen whether

protocol independence can be delivered by a generation of more flexible switch ASICs,

or if it will be realised by widespread deployment of NPUs in general-purpose switches.

The implication of protocol independence on the design of firewalls is significant.

Once the structure of packets is software defined, the enforcement of network security

policies must also be equally flexible and independent of hardware platforms. This would

apply even to stateless packet filtering (ACLs).

While stateful packet processing can currently be performed in software (on general

purpose CPUs or NPUs), future software defined networks may see the inclusion of simple

state machines in switch ASICs, leveraging an open standard to define them (along the

lines of OpenState or FAST). These developments are promising for the implementation

of high performance firewalls, but we believe careful consideration should be given to

the mapping between network flows and expensive hardware resources (such as Ternary

Content-Addressable Memory (TCAM) entries) if and when this capability is realised.

2.8 OpenFlow-based firewalls

The OpenFlow specification not only allows flexible control over how packets are for-

warded by hardware, but also whether they are switched at all. This enables packet

filtering in the switch based on flows programmed by a controller designed to implement

a specific security policy. We now explore existing work in this area:

2.8.1 OpenFlow controller firewalls

Some OpenFlow controller frameworks include some firewall functionality. One exam-

ple is the Floodlight OpenFlow controller [69], which has a component currently under

2.8. OPENFLOW-BASED FIREWALLS 25

development that implements ACL functionality and exposes a Representational State

Transfer (REST) Application Program Interface (API) for applications to configure fil-

tering policy on an OpenFlow switch. In effect, this work performs translation from

firewall-like rules into flow specifications. This follows a trend which has the traditional

interfaces for network management and configuration (such as Simple Network Man-

agement Protocol (SNMP)) being substituted with popular and light-weight Hypertext

Transfer Protocol (HTTP)-based APIs.

Thimble [72] is an OpenFlow controller that improves the management of ACLs

specifically for implementations of the science demilitarised zone (DMZ) architecture. A

web-based interface is presented to IT support staff to conveniently and systematically

add and remove rules that protect the HPC infrastructure located within the DMZ

network. Russell [72] also proposes the application of a “default flow” rule that directs

traffic not specifically permitted to be switched into the science DMZ to an existing

enterprise firewall. Prasad et al. [12] extend the stateless bypass switching in a science

DMZ with a policy controlled by application layer gatekeeper middleware.

Due to the lack of stateful connection tracking, neither of these approaches are com-

parable with the state-of-the-art stateful firewalls.

Shieha [74] modified the layer-2 Media Access Control (MAC) learning switch in-

cluded in POX, adding a stateful firewall module capable of blocking connections on a

five-tuple protocol/address/port basis, or application identification by means of simplis-

tic3 string matching. Firewall policy is loaded into the controller’s memory from a text

file and evaluated as new flows are established. Flow tracking is performed as packet-

in messages are received. The performance limitation of this approach is described in

section 2.7.4.

2.8.2 OpenFlow hybrid firewalls

We make a distinction between the use of the controller to track connection states

directly (as described in the preceding section) and an OpenFlow controller managing

the flow of packets between distinct slow and fast paths. The primary difference in these

strategies is that the individual components of the latter (hybrid) approach are known

to have specific performance strengths, whereas the literature raises scalability concerns

with the former.

SciPass [5] implements a secure science DMZ using OpenFlow switching controlled by

an intrusion detection system. This approach allows for the use of a traditional firewall

as the default traffic path, with the ability to accelerate connections identified by the

3Each packet is searched individually, without TCP stream reassembly.

26 CHAPTER 2. BACKGROUND

IDS (based on traffic mirrored by the switch) as known-good or trusted connections.

The use of OpenFlow instead of custom hardware, and the option of firewall bypass,

differentiates SciPass from the original shunting work [31].

The separation of the firewall from the shunting policy is natural in SciPass, since

IDS signatures are conceptually different from a packet filter set. We expect this design

to be well suited to environments already familiar with, and capable of operating and

maintaining, intrusion detection systems.

SciPass also has a particularly useful scalability feature: the intrusion detection traffic

can be load-balanced among nodes of an IDS cluster. This load-balancing is performed

by the OpenFlow switch.

Narisetty [58] describes vArmour, a Floodlight-based OpenFlow controller applica-

tion offering distributed firewall capability. vArmour appears to implement the shunting

approach (described as steering). Unfortunately, with the focus of the study being the

timing of session off-loading, the details of the vArmour firewall design and the mecha-

nism of its interaction with the controller are not provided. We note that vArmour is

proprietary technology, whereas SciPass is FOSS.

In the chapters that follow, we study our own approach to the design of a hybrid

OpenFlow firewall. Our prototype shares some similarities with SciPass (apart from

the shared objective to enable FDT), but differs in the way that the firewall policy and

shunting decisions interact.

2.9 Netfilter - the Linux firewall

Netfilter is Linux’s software firewall and is used in our research as the slow-path compo-

nent of a hybrid system. In this section we describe the structure and function, as well

as configuration, of Netfilter.

2.9.1 Netfilter’s design

Figure 2.5 indicates the logical flow of Linux packet processing, including Netfilter com-

ponents. Architecturally, Netfilter is composed of user-space utilities, common compo-

nents in the Linux kernel, and loadable kernel modules that implement specific firewall

functions. Figure 2.6 shows the structure of Netfilter.

2.9
.

N
E
T
F
IL
T
E
R

-
T
H
E

L
IN

U
X

F
IR

E
W
A
L
L

27

Figure 2.5: Linux Netfilter packet flow diagram (from J. Engelhardt [27])

2
8

C
H
A
P
T
E
R

2.
B
A
C
K
G
R
O
U
N
D

arptables

filter

arptables

ebtables

nat/filterbroute

ebtables

ip6tables

ip6tables

iptables

iptables

nat
NAT

engine

L3
/4

 tr
ac

ke
rs

L7
 h

el
pe

rs

conntrack

Connection
tracking

Xtables

Netfilter hook API

Userspace tools

Netfilter kernel components

from and to to network stack; hardware

NAT Logging
via nf_log

ulogd2

Queueing
via nf_queue

(custom)

raw/mangle/filter raw/mangle/filter

B
rid

gi
ng

other networking components

nf_tables

nftiptables-
nftables

Figure 2.6: Linux Netfilter components (from J. Engelhardt [26])

2.9. NETFILTER - THE LINUX FIREWALL 29

2.9.2 iptables configuration

For Internet Protocol (IP) version 4, the iptables utility is primarily used to config-

ure Netfilter firewall rules. Our prototype firewall also uses the conntrack command

to interface with Netfilter’s connection tracking system (described at the end of this

section).

Netfilter rules must belong to a chain and a table. Conceptually, the chain evaluated

is determined by the path of a packet through the network stack (shown in figure 2.5).

The sequence of Netfilter chains and rules applied to each packet is called traversal.

Any packet (whether bridged or routed) is first checked against the PREROUTING

chain. Once a routing or bridging decision determines whether to send the packet to the

host’s transport layer, or to forward the packet, it is either checked against INPUT chain

or FORWARD chain rules. Packets originating from the host’s transport layer are checked

by OUTPUT chain rules, and forwarded packets are finally checked by POSTROUTING

chain rules, prior to being sent to the output network interface.

In each Netfilter chain, rules belong to tables according to the function (or action)

of the rule. The PREROUTING chain has raw, mangle and nat tables; FORWARD has

mangle and filter; and POSTROUTING has mangle and nat tables.

Similar to OpenFlow flow specifications, iptables rules contain matches and ac-

tions. Netfilter includes a myriad of match types, ranging from the input or output

interface, to full application layer inspection. Actions (specified with the -J parame-

ter) can accept or discard a packet, or perform some other state-altering action (such as

marking the packet, re-writing a header, or jumping to a different set of rules to continue

evaluation).

2.9.3 Netfilter connection tracking

Conntrack enables stateful packet inspection in Netfilter. It does this by first identifying

the establishment of connections, and then allocating data structures used to track the

expected state of each connection, matching each packet against this state and (when

appropriate) updating those states based on already validated packet headers.

States associated with each transport layer connection tracked by Conntrack are:

• NEW: initial packets have been received but the firewall has not yet seen bi-directional

communication (for example, by completion of a 3-way TCP handshake).

• ESTABLISHED: the connection is established and the application-layer payload is

now transported in the packets.

30 CHAPTER 2. BACKGROUND

• RELATED: state applied to packets of a connection that have been determined to be

related to another connection through application-layer inspection (for example:

the data connection of an FTP session is related to its control connection).

• INVALID: applied to any packet that Netfilter cannot otherwise track (including

via the NEW state).

• UNTRACKED: a state given to packets for which connection tracking is disabled by

instruction of a firewall rule.

2.10 Traffic generation and testing

With the performance focus of FDT and our objective to improve on the performance

of existing firewall architectures, the ability to evaluate network performance is central

to the research. In this section we review approaches to network performance testing.

2.10.1 Test standards

Techniques for benchmarking network elements are of interest to both suppliers who

wish to market their products and end-users who wish to evaluate the performance of

products against their own requirements, as well as for comparison amongst competitors.

For this reason, a number of standards and methodologies exist:

1. IETF (RFC) standards for benchmarking of “Network Interconnect Devices”:

RFC1242 [10] and RFC2544 [11].

2. IETF (RFC) standards specific to the benchmarking of firewalls: RFC2647 [60]

and RFC3511 [37].

3. Test methodologies developed by network test equipment manufacturers: e.g.,

BreakingPoint firewall testing methodology.

4. Test methodologies developed by independent test houses: e.g., NSS Labs firewall

testing methodology [62].

These standards and methodologies define aspects such as terminology for the com-

ponents in test setups, but also of particular interest to our research, the profile of test

traffic generated for the purpose of evaluating performance.

One important factor during testing is the distribution of packet sizes, as this has

a direct impact on the packet rate for a given data rate. As described in section 2.3,

processor-based forwarding performance may suffer at high packet rates.

2.10. TRAFFIC GENERATION AND TESTING 31

Another aspect of performance of specific relevance to devices that track connection

state is the composition of the test traffic grouped by transport layer header values.

Firewall test methodologies are designed to demonstrate the scalability of the device

under test in this dimension, and therefore seek to discover the maximum number of

concurrent connections supported, as well as the maximum rate at which the firewall

can track the establishment of new connections.

When measuring the absolute throughput supported (in bits per second), careful

attention is given to ensuring traffic used in this test consists of a large number of

concurrent connections (often tens or hundreds of thousands), presumably because this

reflects a worst-case scenario for flow state tracking. Unfortunately, none of the standards

and methodologies included above specify a test designed to determine the maximum

throughput achievable for a single or a small number of connections (typical of FDT

applications).

2.10.2 Generating network traffic

Standards for benchmarking network equipment listed in section 2.10.1 require the prop-

erties of network traffic used during testing to be reported, but avoid dictating the

method to be used for generating traffic. This section examines some test traffic gener-

ation techniques that have been employed:

2.10.3 Sampling real traffic

The simplest approach to network traffic generation is to capture traffic in a real network

environment that the test is meant to replicate, and then to replay that traffic during

experimental runs. Alternatively, live network traffic can be safely copied (mirrored)

and used as an input into the system to be evaluated. An example of this technique

specifically relevant to our work is found in the evaluation of shunting [31], where the

classification of flows is demonstrated.

An advantage of this approach is the accuracy obtained by the use of real traffic,

which might otherwise be very difficult to synthesise due to the complexity of behaviour

of different implementations of protocols and applications, as well as the challenge of

simulating the human (end-user) influence on traffic patterns [28].

While it is possible (given sufficient hardware resources) for bi-directional network

traffic to be captured and replayed with accurate timing and without packet loss [28],

the scope of the testing possible is limited to passive applications that do not influence

the traffic flow. For example, if the device under test was to prevent forwarding of a

32 CHAPTER 2. BACKGROUND

packet in the original captured traffic, this would invalidate the state of transport and

application layer processes associated with that packet.

2.10.4 Simulating the network layer

If the objective of network testing is to measure the performance of a device functioning

at the network layer (such as a router), then the task of generating test traffic need only

take into account those attributes relevant to layer three functions (e.g., packet size,

protocol, addresses, etc.). In this case, replaying captured traffic is a valid (albeit not

very flexible) approach.

Many traffic generation tools (hardware and software) exist. One such tool is Har-

poon [76], which is capable of synthesising UDP and TCP flows with a specified set of

attributes (including protocol, timing, length and data attributes).

2.10.5 Simulating the application layer

In order to generate test network traffic in an experiment that aims to measure the

influence of the network on applications, it is necessary to reproduce (or simulate) the

data transmission and reception behaviour of both the application and transport layers.

The need to test the performance of network applications specifically has led to

the development of many different load-testing applications. One such tool, SURGE

[6], attempts to generate representative Web workloads in order to test HTTP proxies,

servers and the underlying layers (such as the network itself).

2.11 Conclusion

The simplifying principle of Internet routing is that intermediate nodes can forward

packets independently of the applications using the network. To control packet routing

(the network layer) based on transport layer state violates the design principle of sepa-

rating network protocols into independent layers, but this is precisely what is required

to perform flexible, connection state-dependent network filtering.

In this chapter, we have seen how the complexity of routing and filtering influences the

speed at which it can be done given state of the art hardware. Previous work has shown

how the shunting strategy can be an effective means to improve overall performance, if

network flows can be classified into those that require filtering and those that don’t.

The emergence of standardised software interfaces to control the forwarding plane

of high performance hardware routers (such as OpenFlow) presents an opportunity to

2.11. CONCLUSION 33

address complex security requirements with a system composed of simpler components.

The chapters that follow explore this opportunity.

34 CHAPTER 2. BACKGROUND

Chapter 3

An SDN-based shunting firewall

In this chapter we define our research objectives, and document the methodology we

used to construct and evaluate our prototype SDN-based shunting firewall. We justify

high level design choices, and then describe the design and implementation of NFShunt

in detail.

3.1 Research question

In order to leverage the investment in high capacity networks, researchers must be able

to use existing, convenient tools and work-flows to move large quantities of data quickly.

The designers of network security measures at institutions (connected to research net-

works) that must deliver on this requirement, should not need to accept a radical depar-

ture from currently accepted best-practice designs used in other domains of networking.

Previous work with OpenFlow in this context has applied it to the management of

(stateless) access control lists, and the implementations of shunting used intrusion detec-

tion for stateful bypass in the science demilitarised zone (DMZ) design (see section 2.8).

In our research, we studied the use of OpenFlow to implement a shunting firewall

that provides loss-free network paths for permitted large data transfers (similar to the

science DMZ), but allows the use of stateful firewalling for all other traffic by default.

Application of this configuration of technologies to stateful firewalls is novel.

The primary problem is to develop a firewall architecture that meets the

performance requirements of data-intensive science.

Additional goals of the research were to explore the following questions:

1. How can generic and standardised off-the-shelf components be composed to create

a high performance (hybrid) firewall?

35

36 CHAPTER 3. AN SDN-BASED SHUNTING FIREWALL

2. What is the packet-loss performance of a hybrid firewall (is it equivalent to a “clean

network path”)?

3. How would a hybrid Software Defined Networking (SDN)-based shunting firewall

compare to a traditional firewall in terms of price-performance ratio?

4. What are the operational and maintenance benefits and drawbacks of a hybrid

firewall?

3.2 Research approach

The following approach was used in the research:

1. An SDN-based hybrid (shunting) firewall was designed. This design was required to

be practical to implement and offer significant improvements over existing designs.

2. A prototype firewall (NFShunt) was constructed based on the SDN hybrid design

to demonstrate its feasibility.

3. The performance of NFShunt was compared to that of a representative traditional

hardware firewall, and both systems were evaluated for their suitability in Fast

Data Transfer (FDT) scenarios. The experiment described in section 4.1 was

designed to perform this evaluation.

4. An analysis of the experimental results, as well as other performance metrics such

as cost, complexity and flexibility, was performed and documented in sufficient

detail to allow the conclusions of the research to inform decision making in real-

world applications.

3.3 Prototype architecture

NFShunt is a layer 2 (transparent) firewall composed of two interconnected components,

as illustrated in figure 3.1.

The shunting controller and the slow-path are co-located on the same physical server,

while the OpenFlow switch provides external interfaces and performs hardware bypass-

switching. The slow-path is based on the Linux kernel’s built-in Ethernet bridging

function, combined with Netfilter (the standard Linux firewall).

Each Linux Ethernet bridge port is physically connected to a corresponding “slow”

port on the OpenFlow switch. One-to-one mapping between external (network) facing

3.3. PROTOTYPE ARCHITECTURE 37

Figure 3.1: NFShunt architecture

38 CHAPTER 3. AN SDN-BASED SHUNTING FIREWALL

ports and “slow” ports is statically configured during the installation of the firewall.

Communication between the shunting controller and the OpenFlow agent is also config-

ured during the prototype’s setup.

No packets are forwarded by the OpenFlow switch until it receives programming from

the shunting controller at run-time. When the controller starts, it installs low priority

flow specifications that direct all non-shunted packets via the Linux Ethernet bridge.

These flow table entries remain for the execution of the prototype.

Per-connection flow entries are installed dynamically during run-time to implement

the firewall’s bypass shunting according to iptables firewall policy. These entries are

removed by the switch, a configurable number of seconds after the last packet matching

the flow specification for the connection is switched.

3.4 Design choices

The hybrid design, based on bypass switching combined with a flexible software firewall,

was chosen to address the primary research problem of enabling loss-free stateful for-

warding suited to the performance requirements of data intensive research. In chapter

two, we explored the strengths and weaknesses of both pure-software and ACL-based

packet filters. Our design finds a compromise between the two, and consequently inherits

at least some of their weaknesses. Once trusted connections are bypass-switched, the

prototype is no longer able to detect security policy violations (e.g., through application

layer inspection) due to the stateless packet forwarding performed in hardware. We note

that, unlike ACL filters in science DMZs, the hybrid design allows for stateful tracking

of connection establishment. Similar to ACLs and the original shunting work, the argu-

ment applies that packets that comprise the data-transfer portion of the connection are

often encrypted, and therefore inspecting them offers limited value.

3.4.1 The toolkit approach

Unlike previous work that built hybrid firewalls with custom or proprietary compo-

nents, our research followed a toolkit approach: NFShunt is (and is based on) Free and

Open Source Software (FOSS) combined with standardised Commercial Off-The-Shelf

(COTS) hardware components. The primary enabler of this is the adoption of OpenFlow

by switch manufacturers. While this implies that some assembly is required, thereby in-

creasing the initial complexity of installing and configuring multiple components, we

hypothesise that it could offer cost savings and other operational benefits.

3.5. LOW-LEVEL DESIGN 39

3.4.2 Transparent firewall

We chose to implement a transparent (bump-in-the-wire) firewall. This simplified the

work significantly by avoiding re-implementation of layer 3 routing semantics in the fast-

path. While this choice limits the flexibility of NFShunt’s deployment in diverse network

environments, a transparent firewall is much easier to add into an existing network design

since it requires no layer 3 changes.

3.4.3 Linux Ethernet bridge and Netfilter

The lack of integration with Netfilter excluded alternatives to the built-in Linux ker-

nel bridge function (such as open vSwitch (OVS) and Data Plane Development Kit

(DPDK)). Due to its mature implementation and widespread use, the Linux bridge is a

simple and reasonably performant choice for the slow forwarding path. The ability to

monitor and manipulate Netfilter’s connection tracking directly makes it the ideal choice

for a hybrid firewall design.

3.4.4 Integrated firewall and shunting policy

The objective of designing a firewall required the mechanism for expressing shunting

policy to be coherent with the traditional firewall ruleset. We explored mechanisms

to annotate Netfilter Conntrack objects with shunting policy expressed through iptables

rules. While this adds complexity in the design, it is closer to what firewall administrators

would expect from a traditional firewall.

3.5 Low-level design

NFShunt was implemented in Python based on the POX OpenFlow controller library.

The slow-path forwarding plane is a Linux 3.2.0 kernel bridge, while the fast-path (an

OpenFlow Ethernet switch) is used for all external connections.

The prototype makes use of a Pica8 P-3290 top-of-rack Ethernet switch (based on a

Broadcom switch Application-Specific Integrated Circuit (ASIC) and customised OVS

as the OpenFlow agent). The switch is equipped with 48 1000Base-T and four 10GBase

SFP+ ports. For the prototype firewall slow-path, we used a fit-PC3 Pro with four Intel

82574L-based 1000Base-T Ethernet NICs connected to the switch.

NFShunt’s implementation is structured in five modules:

1. The controller core logic triggers by-passing of flows based on input from the

configuration and slow-path interface.

40 CHAPTER 3. AN SDN-BASED SHUNTING FIREWALL

2. The slow-path interface processes Netfilter connection tracking events.

3. The fast-path interface communicates with the OpenFlow switch.

4. The configuration interface adapts NFshunt to the instance-specific details of

the network and firewall policy.

5. The logging interface caters for troubleshooting and performance monitoring of

the prototype.

The remainder of this chapter describes manual configuration required for the pro-

totype to function, as well as the design and implementation of each module. We start

with the interface modules and conclude with a description of the core logic, which ties

together all the functions of NFShunt.

3.5.1 Fast path configuration

Some basic configuration of the OpenFlow switch (the fast path) is required for the

shunting prototype. In addition to the OpenFlow protocol itself, the Open Networking

Foundation has defined a standard protocol (OF-CONFIG) to allow remote (and poten-

tially automated) configuration of OpenFlow switches. It is therefore possible for the

prototype to add the necessary configuration to the switch based on the information al-

ready available from the configuration module. Unfortunately, the firmware of the Pica8

switch available during development of the prototype did not support OF-CONFIG.

Manual configuration of the Pica8 switch was therefore necessary, and OVS com-

mands were used for this purpose.

Configuring the prototype with OVS commands

The first step is to create an OVS bridge instance with an associated controller (192.0.2.1:6633

is the Transmission Control Protocol (TCP) endpoint of the shunting controller):

ovs-vsctl add-br br0 -- set bridge br0 datapath_type=pica8

ovs-vsctl set-controller br0 tcp:192.0.2.1:6633

The intent of the prototype is for all forwarding to be under the control of the slow

path. When the control connection fails, the OVS bridge instance should not revert

to any default behaviour (such layer 2 switching), since this would not be secure. The

3.5. LOW-LEVEL DESIGN 41

bridge is therefore configured not to forward frames unless explicitly programmed to do

so by the controller:

ovs-vsctl set-fail-mode br0 secure

Next, two slow path ports and two fast path ports are added into the bridge. The

slow and fast path ports are matched by the slow path configuration, as described in the

next section. In this example, two 1000Base-Ethernet ports (10 and 11) are used for the

slow path, and two 10GBase-Ethernet ports (49 and 50) are used for the fast path:

ovs-vsctl add-port br0 ge-1/1/10 -- set Interface ge-1/1/10 type=pica8

ovs-vsctl add-port br0 ge-1/1/11 -- set Interface ge-1/1/11 type=pica8

ovs-vsctl add-port br0 te-1/1/49 -- set Interface te-1/1/49 type=pica8

ovs-vsctl add-port br0 te-1/1/50 -- set Interface te-1/1/50 type=pica8

With the above configuration, the switch will attempt periodically to establish a

connection to the shunting controller and, when it does, it will receive flow configuration

to switch frames between the fast path ports via the slow path. This configuration is

persistently stored in the OVS configuration database of the switch’s OpenFlow agent,

therefore the fast path configuration only needs to be performed once (during installation

of the firewall).

3.5.2 Slow path configuration

The controller communicates with Netfilter via the user-space interface (Netlink) of

Netfilter’s connection-tracking module (Conntrack).

The operation of the prototype requires specific configuration of Netfilter using the

iptables command line utility. These configurations ensure that information about

TCP flows present in the Linux kernel (due to the fact that packets associated with those

TCP flows are seen by the slow path in the kernel) are made available to the shunting

controller.

iptables configuration for NFShunt

Transport layer connections are automatically tracked by Netfilter once the Conntrack

kernel module is loaded:

42 CHAPTER 3. AN SDN-BASED SHUNTING FIREWALL

(u
nus

ed
)

ha
s

fl
ow

m
ar

k

pd
-i
n

is
se

t

pd
-o

ut
is

se
t

012345678910111213141516171819202122232425262728293031

flags pd-in pd-out flowmark user-defined connection mark

Figure 3.2: Connection mark bit fields used by NFShunt

modprobe ip_conntrack

Since NFShunt functions as a transparent (layer 2) firewall, it is also necessary to

ensure that Netfilter is configured to inspect bridged packets (in addition to routed

packets) passing through the Linux kernel. This is the default configuration on most

Linux systems, but it can be explicitly configured as follows:

sysctl -w net.bridge.bridge-nf-call-iptables=1

Since the system administrator is expected to configure the default slow-path firewall

policy as a set of Netfilter rules, NFShunt was designed to integrate the expression of

shunting policy into the same rule-set. This is achieved through the use of Netfilter’s

packet mark and connection mark modules.

The mark extensions define both matching extensions and rule targets. The packet

mark extension permits the administrator to assign any 32-bit value to a special field in

the data structure associated with each packet processed by the Linux kernel (using the

mark target). This value can be read by other rules using the packet match extension,

and can also be accessed by the connection mark extension, which enables marking of

connections identified by the Conntrack module.

In order to permit the administrator to continue using the mark extensions for other

purposes, the prototype uses only the 16 most significant bits of the mark value, and

masks each operation to leave the lower 16 bits unmodified.

The prototype uses mark bits to store the required shunting action (in the flowmark

field), as well as flags and information about the flow’s ingress and egress kernel bridge

physical ports (in the pd-in and pd-out fields). Figure 3.2 documents the layout of

the 32-bit mark field.

Only the packet marking target is required for the rules that express shunting policy:

3.5. LOW-LEVEL DESIGN 43

Three configurable values are defined to express the various supported shunting ac-

tions: ignore (to do nothing with the connection), shunt (to bypass the connection via

the fast path), and block (to install a rule to drop the connection in the fast path). This

value must be encoded into the 4 bits from bit 16 to bit 19 (allowing for expansion of

the prototype’s actions to 16).

While the generic (logical) flow of matching on, and applying actions to, packets in

the slow-path is described in section 2.9, the logic employed for the prototype is further

described as a flow diagram in figure 3.3. The dotted lines indicate the link between

actions encoding information in PREROUTING which is later matched in POSTROUTING.

4
4

C
H
A
P
T
E
R

3.
A
N

S
D
N
-B

A
S
E
D

S
H
U
N
T
IN

G
F
IR

E
W
A
L
L

Yes
No

No

PRERO
UTING Is physdev_in a

slow path interface?
Restore

connmark
Physdev in is

interface1
Is physdev_in

encoded in mark?
Physdev in is

interfaceN
...

Encode interface1
in mark

Encode interfaceN
in mark

Yes

Yes

Yes

No

NoIngress

POSTR
OUTING Is packet bridged?

Is physdev_in
encoded in mark?

physdev_out is
interface1

Is physdev_out
encoded in mark?

physdev_out is
interfaceN

...

Encode interface1
in mark

Encode interfaceN
in mark

Save connmark

Encode mark for shunt,
Ignore or block

...

Yes

Yes Yes

Yes

Arbitrary matchN?
No

Arbitrary match1?

Yes

No
Is a flow flag set?

Yes

No

No

No

No

No

Bridging
decision is
made

Egress

No

.
Start Yes

Start

Yes

Figure 3.3: NFShunt Netfilter rule flow diagram

3.5. LOW-LEVEL DESIGN 45

NFShunt makes use of the mangle table in the PREROUTING and POSTROUTING

chains to mark both packets and connections for the purpose of shunting. In order

to simplify integration with an existing iptables rule-set, a dedicated chain is used

for shunting policy rules (NFSHUNT POLICY), which is indirectly evaluated from the

POSTROUTING chain. An example rule follows:

iptables -t mangle -A NFSHUNT_POLICY -p tcp --dport 5000

-m conntrack --ctstate RELATED,ESTABLISHED -j MARK

--set-xmark 0x10010000/0x100f0000

The above rule sets a value of 1 (defined in the default controller configuration to

trigger a shunt) when a TCP flow is matched with destination port 5000.

We now describe the rules necessary for the functioning of the prototype (in addition

to shunting policy):

Netfilter’s rule traversal is directed from the built-in PREROUTING chain of the man-

gle table to a chain defined for the prototype’s pre-routing rules: NFSHUNT PRE:

iptables -t mangle -A PREROUTING -j NFSHUNT_PRE

The first rule in NFSHUNT PRE copies the connection mark from the connection

tracking object associated with the packet being inspected (if one exists) to the packet

mark (the restore operation):

iptables -t mangle -A NFSHUNT_PRE -j CONNMARK --restore-mark

In order to match the correct fast-path ports to the slow-path ports on which the

connection enters and exits the prototype prior to shunting, it is also necessary to encode

the slow path bridge input and output interfaces into the mark. This is done in two

stages (before and after the kernel’s bridging decision).

A rule checks bit 30 of the mark value (part of the flag field), to determine whether the

input interface has already been recorded in the mark. If not, it directs rule traversal

to the NFSHUNT PRE PD IN chain, which has one rule to match every possible input

interface. These rules alter the mark value at bits 24 to 27 to a value unique to that

interface (also configured in the shunting controller), as well as setting the flag checked

46 CHAPTER 3. AN SDN-BASED SHUNTING FIREWALL

by the previous rule. In the example rules below, the interface p1p1 corresponds to a

mark of 1, and p1p2 to a mark of 2:

iptables -t mangle -A NFSHUNT_PRE_PD_IN -m physdev --physdev-in p1p1

-j MARK --set-xmark 0x41000000/0x4f000000

iptables -t mangle -A NFSHUNT_PRE_PD_IN -m physdev --physdev-in p1p2

-j MARK --set-xmark 0x42000000/0x4f000000

Rule traversal then returns to the default Netfilter tables and chains, in which the

administrator may have defined any other firewall configuration. Once this reaches the

POSTROUTING chain for the mangle table, another rule again directs traversal to a chain

defined for prototype’s use, NFSHUNT POST, which contains three rules. The first again

checks a flag at bit 29 of the mark value to test whether the output interface is recorded,

and if not, directs traversal to the NFSHUNT POST PD OUT chain which marks bits 20

to 23:

iptables -t mangle -A NFSHUNT_POST_PD_OUT -m physdev

--physdev-is-bridged --physdev-out p1p1 -j MARK

--set-xmark 0x20100000/0x20f00000

iptables -t mangle -A NFSHUNT_POST_PD_OUT -m physdev

--physdev-is-bridged --physdev-out p1p2 -j MARK

--set-xmark 0x20200000/0x20f00000

In this case, it is necessary to include a check to discriminate bridged from routed

packets, due to the design of Netfilter’s logic (hence the use of --physdev-is-bridged).

Next, NFSHUNT POST directs evaluation to the NFSHUNT POLICY chain described

above, and finally it copies the mark from the packet back to the connection tracking

mark (the save operation):

iptables -t mangle -A NFSHUNT_POST -j CONNMARK --save-mark

3.6 Prototype controller implementation

3.6.1 Slow path interface

Interaction with Conntrack is via the conntrack user-space utility. The shunting

controller starts an instance of conntrack with the -E parameter inside a thread, and

3.6. PROTOTYPE CONTROLLER IMPLEMENTATION 47

then reads a sequence of connection tracking events from the standard output stream in

Extensible Markup Language (XML) format.

Connection tracking events describe the creation, destruction or modification of con-

nection tracking objects in the kernel. When an event includes the mark attribute (ob-

tained from the iptables connection mark), the controller examines it in further detail.

Certain events are ignored as they cannot be used to trigger shunting. These include de-

struction or modification events where the state of the TCP flow changes to FIN WAIT,

LAST ACK or TIME WAIT. If the flow is not ignored, and it contains the necessary layer

4 header information (TCP ports), the controller checks for the presence of a matching

action in the flow mark.

The flags, flow mark and information about the slow path physical input and output

interfaces are used by the controller’s core logic to make shunting decisions.

In addition to monitoring connection tracking events, the controller core must also

be able to delete connection tracking objects for flows that have been shunted or blocked.

This is achieved by executing the conntrack utility with the -D parameter and speci-

fying the 5-tuple describing the TCP connection.

3.6.2 Fast path interface

Interaction with the fast path is via the POX OpenFlow controller framework. The

prototype itself is implemented as a module within the framework; so while, from the

point of view of the design, OpenFlow is a module, the implementation calls POX

functions directly from the core logic of the prototype.

Upon start-up, POX listens for connections from OpenFlow switches on the default

TCP port for this protocol. The fast-path switch is configured with the IP address of

the out-of-band connection to the slow path server (where the controller runs). When

the switch connects to the controller, a connection handler runs which performs the

following actions:

1. If the controller is configured to delete existing flow entries, it does so by sending

a flow modification to the switch. This allows the prototype to begin managing

the fast path with a known state.

2. If the default packet flow is configured via the slow path (default no shunting),

then the controller iterates through the port groups specified in the configuration

file, and sends two flow modifications to add flows between the slow and fast path

ports (one flow per direction). This is equivalent to logical patching between the

slow and fast path ports.

48 CHAPTER 3. AN SDN-BASED SHUNTING FIREWALL

Bridgestart

ShuntController adds flow entry

Flow entry times out

Figure 3.4: Per-connection state machine of the forwarding path

3. A thread handling the slow-path interface is started.

Additional event handlers generate logging entries for flow statistics, flow removal

events and connection tear-down.

The core logic of the controller calls POX functions directly to add flow-entries for

shunting and blocking.

3.6.3 Controller core logic

The core of the shunting controller receives events from the slow-path module, which

have been validated to contain the meta-data added by the Netfilter rules configured for

the functioning of the prototype.

If the action indicated by the flow mark is to shunt, the controller will add two flow

specifications (one for each direction of the flow) via the fast-path interface to by-pass

the slow-path. These flow specifications include layer 2, 3 and 4 header match fields, an

action to output via the corresponding fast path ports, and the configured idle time-out.

For blocking actions, the only difference in the specification is that the output action is

omitted (which leads to an implicit packet drop).

Finally, the controller includes the instruction for the switch to inform the controller

when flows are deleted (for informational purposes), and each flow is annotated (in the

switch) with a cookie value that corresponds to the connection tracking object ID from

the slow path that triggered the shunting action.

The state of the fast path, therefore, transitions between shunting or blocking and

forwarding packets via the slow-path. Figure 3.4 illustrates how flow entry programming

and time-out transition between the two states on a per-connection basis.

After a shunt or block is installed, the connection tracking object is deleted via the

slow-path interface. The reason for this is three-fold:

1. Since the slow-path will no longer forward packets for the flow, the connection

tracking object serves no purpose for Netfilter, hence deleting it frees up valuable

3.6. PROTOTYPE CONTROLLER IMPLEMENTATION 49

kernel memory.

2. If a flow stalls for longer than the idle-timeout of the flow specifications imple-

menting the shunt, and then resumes, subsequent packets will re-appear on the

slow path. At this point, it is necessary for the controller to re-install the shunt,

but the state of the connection tracking will not necessarily change in a manner

that will trigger an event visible via the slow-path interface. Deleting the entry

forces the slow-path to re-create the entry, which is guaranteed to be visible to the

controller.

3. If the Linux kernel is configured to be strict in the stateful tracking of TCP sequence

numbers, the shunting action will result in the connection tracking object’s state

being invalid once the connection proceeds via the fast path. In this scenario, if

a connection-resumption is attempted (as described above), then Netfilter could

terminate the connection.

3.6.4 Configuration module

Installation-specific information is provided by the configuration module. This func-

tionality is implemented by reading a single text configuration file at start-up of the

controller. The location of the configuration file can be specified as a command-line

parameter during start-up of the controller:

sudo ./pox.py nfshunt --configurationfile /path/to/file.json

If not specified, the controller will attempt to open a file named nfshunt.json

in the current directory when the controller is started. Note that the shunting con-

troller must run with root privileges to access and modify Netfilter connection tracking

information (thus the use of the sudo command).

JavaScript Object Notation (JSON) was chosen as the configuration file syntax, as

it is both simple for administrators to read and write, and it supports nested structures.

The standard Python library’s built in-support for JSON parsing simplifies the code and

reduces dependencies.

The following general configuration parameters are available:

• delete flows on startup (default is true): causes the controller to clear the

fast path flow table on start-up.

50 CHAPTER 3. AN SDN-BASED SHUNTING FIREWALL

• delete flows on shutdown (default is true): same as above, but runs at shut-

down.

• default shunt timeout (default is 10 seconds): sets the idle timeout for shunt

flow entries. Making this longer increases the flow table contention, but reduces

the load on the controller for connections that stall.

• default block timeout (default is 10 seconds): same as above, but specifically

for block actions (as opposed to shunt actions).

• default no shunting (default is true): if this is true, then the controller will

configure flows to send traffic via the slow path by default (at start-up), and the

ignore action does nothing (hence ignored flows will continue via the slow path).

Setting this to false only makes sense if delete flows on startup is false, and

the fast path is pre-programmed for some useful forwarding action.

Two nested sections must exist in the configuration file:

1. ports defines a list of groups that tie together three parameters:

(a) The fast port on the OpenFlow switch: the port that connects to the net-

work.

(b) The slow port on the OpenFlow switch connecting to the bridge interface

on the slow path to be used for traffic to and from the fast port.

(c) physdevin is the unique number configured in the iptables rules for marking

of traffic entering via the bridge interface on the slow path, to be used for

traffic to and from the fast port.

2. mark actions maps numbers configured in the iptables rules for marking flows

for the corresponding actions of shunting, blocking and ignoring.

3.6.5 Logging module

Logging information generated by the shunting controller is intended to be used in one of

two modes: by default, the logging level provides messages that would be of interest to

an administrator. If the log level is set to DEBUG for the NFShunt POX component (by

appending log.level --nfshunt=DEBUG to the command line parameters), extra

messages will be emitted:

3.7. CONCLUSION 51

• Information about flow events from Netfilter Conntrack that are ignored as they

are deemed irrelevant.

• Flow statistics dumped from the fast-path after each flow programming action.

In addition to troubleshooting, the intent of the DEBUG logging mode is to output

information about the functioning of the controller that will be recorded for the purpose

of evaluating its performance as part of the research.

Additional logging behaviour can be configured by making use of POX’s built in

capabilities. Examples of this would be to change the logging prefix format by appending

additional command line parameters:

log --format="[%(asctime)s] %(module)s %(levelname)s %(message)s"

Or redirection of log messages to a file:

log --file=nfshunt-pox.log

3.7 Conclusion

In this chapter, we defined research questions and a research approach that required

the construction of a prototype hybrid firewall. The design, implementation and con-

figuration of our prototype was described in detail. In the next chapter, we proceed to

evaluate our design through experimentation.

52 CHAPTER 3. AN SDN-BASED SHUNTING FIREWALL

Chapter 4

Experimentation

In the previous chapter, we outlined our research approach and described the construc-

tion of the NFshunt. However, this alone does not answer the research questions posed

in section 3.1. In this chapter, we describe our experimental methodology and report

the results of the experiments.

We proceeded to evaluate our prototype’s performance, firstly to determine if the

implementation works correctly (validating the design’s feasibility), and whether it is

suitable for the Fast Data Transfer (FDT) use-cases normally catered for by science

demilitarised zone (DMZ)s.

Experiments were designed to compare the prototype’s network performance to that

of a high speed firewall employing a traditional design. We ensured that our experiments

would produce the data required for our analysis (which, in turn, addresses our research

questions), by mapping out our research approach in Table 4.1.

53

5
4

C
H
A
P
T
E
R

4.
E
X
P
E
R
IM

E
N
T
A
T
IO

N

Research question Data required Experimental method Analysis

1 How can generic and stan-
dardised off-the-shelf compo-
nents be composed to create
a high performance (hybrid)
firewall?

Evidence that the
shunting mechanism
works in an implemen-
tation of the design.

Implement the prototype
and test the shunting
mechanism with generated
network connections.

If Transmission Control
Protocol (TCP) connec-
tions can be tracked by
Netfilter during establish-
ment, and then be off-
loaded to the OpenFlow
switch, the design is vali-
dated.

2 What is the packet-loss per-
formance of a hybrid firewall
(is it equivalent to a clean net-
work path?)

Packet loss rates for
both the prototype and
an environment similar
to the science DMZ.

Generate FDT-like load,
and measure packet loss for
both the prototype and a
direct-switching configura-
tion.

Test the hypothesis that
the packet loss of the
prototype is equivalent to
direct-switching.

3
How would a hybrid
Software Defined
Networking
(SDN)-based shunting
firewall compare to a
traditional firewall in
terms of
price-performance
ratio?

Packet loss rates for
both the prototype and
a firewall representative
of its class.

Generate FDT-like load
and measure packet loss for
both the traditional fire-
wall and a direct-switching
configuration.

Test the hypothesis that
throughput performance of
the prototype is greater
than the traditional fire-
wall.

Estimates of cost for all
equipment components.

Implement the prototype,
then estimate total cost
based on the bill of mate-
rials.

Compare the hardware
costs, consider price/per-
formance.

4 What are the operational
and maintenance benefits and
drawbacks of a hybrid fire-
wall?

Insight into the require-
ments on an operator of
the prototype.

Document the configura-
tion, troubleshooting and
securing of the prototype
during the experiments
above.

Compare the aspects of the
prototype’s operations to
traditional firewall opera-
tions.

5 Have we developed a firewall
architecture that meets the
performance requirements of
data-intensive science?

Outcome of the analysis
for research questions 1,
2 and 3 above.

If the analysis of 1, 2 and
3 favour NFShunt, we con-
clude that the overall re-
search objective has been
met.

Table 4.1: Research approach: mapping questions to method and analysis

4.1. EXPERIMENTAL METHODOLOGY 55

4.1 Experimental methodology

The objective of the science DMZ design is to create a loss-free network path based on the

observation [22] that a firewall cannot perform loss-free forwarding for permitted TCP

connections in FDT scenarios. In our performance evaluation, we focused our attention

on the TCP performance so that we could relate the results back to the science DMZ

use-case. Replaying of captured traffic or network layer simulation were not suitable

methods for test traffic generation when evaluating TCP performance. We therefore

chose application-layer load generation, which indirectly produces network test traffic.

4.1.1 Experimental design choices

Our experiments were designed to emulate a typical data-intensive science infrastructure

scenario. Due to established best common practices for maximising network performance

with high bandwidth-delay products, the experiments evaluate approximate best-case

performance with moderately difficult circumstances. Our objective for the experiments

was an unbiased comparison, which required an upper bound to the performance tuning

that was done. We sought to achieve this balance through specific experimental design

choices:

• Focus on TCP: TCP was selected as the transport protocol for test traffic, since

the congestion control mechanism would be affected by the packet-loss performance

of the tested firewalls. TCP is also the most widely used transport protocol,

therefore the choice reflects realistic applications.

• Large packets: Jumbo frames are commonly used to reduce the packet processing

rate, and tuning this parameter in our experiment was a sensible optimisation. We

expect that smaller frames will magnify the effect that any difference in packet-loss

performance will have on the results of the comparison.

• Limited hardware tuning: the traditional firewall was tuned for single-flow

performance according to the advice of the equipment vendor (described in sub-

section 4.1.3). Since NFShunt aims to utilise generic hardware, no model-specific

tuning was performed on the slow and fast path components.

• Minimal firewall rule-set: Both firewalls were tested with the default policy.

Specifically excluding the complexity of the rule-set from the factors in the ex-

periments created a best-case scenario for both, and established a performance

baseline. While this is not realistic, we expect that a complex rule-set will favour

56 CHAPTER 4. EXPERIMENTATION

the shunting design and magnify the performance difference we hypothesised (be-

cause it would increase the utilisation of CPU and bandwidth required for state

tracking – a problem that shunting avoids).

The traffic-generating servers used in the experimental setup were also tuned to

emulate a typical end-host in a science DMZ (described in sub-section 4.2.2).

These choices support the research objective of exploring the limitations of traditional

firewalls and our hybrid firewall design.

4.1.2 Lab equipment

Traffic generation (including synthetic delay) relied on two Dell Poweredge servers run-

ning Linux, each equipped with Intel 82599-based dual-port 10GBase-Ethernet Network

Interface Controllers (NICs). We used a Cisco ASA 5585 firewall for comparison to

the prototype firewall. Interface counter values on the Cisco were recorded by a script

accessing the system via the serial console instead of in-band management via the test

network (which would have complicated packet loss measurements).

4.1.3 Lab test configurations

With advice from Cisco technical support engineers, some changes were made to the

factory default configuration of the Cisco:

• ASA firewall software was upgraded to version 8.47.

• The firewalling mode was set to transparent.

• The Maximum Transmission Unit (MTU) for interfaces was increased to 9216

bytes.

• “jumbo-frame reservation” was enabled.

• TCP Maximum Segment Size (MSS) clamping was disabled.

Four test configurations were used for experiments:

• Configuration one connected the test servers directly, and served to establish the

best-case throughput achievable using the experimental hardware. Our experiment

required endpoints with sufficient CPU capacity, as well as peripheral bus and

memory bus bandwidth, to support near-line rate TCP transfers. During these test

runs, Internet Protocol (IP) stack tuning was done to optimise TCP throughput

with or without synthetic delay.

4.2. FACTORS AND LEVELS 57

• Configuration two inserted the Cisco firewall in-line between the test servers via

one set of 10Gbase-Ethernet NIC interfaces.

• Configuration three connected the Pica8 switch via another set of 10Gbase-

Ethernet NICs, and the switch was manually configured for direct forwarding of

frames between the test servers without the slow-path interface (no shunting mech-

anism).

• Configuration four allowed the Pica8 switch to be controlled by NFShunt.

The duration of individual TCP throughout tests was 60s, which was sufficient for

TCP to reach maximum throughput even at 400ms simulated Round-Trip Time (RTT).

Configurations two through four were used for performance evaluation, which is

described in the remainder of this chapter.

4.2 Factors and levels

Round trip delay is an important factor in TCP performance. Many science applications

require a small number of high volume, long distance data transfers. For example, the

Square Kilometre Array (SKA) will require data transport from a number of African

countries to South Africa, and from Australia and South Africa to Europe and North

America. For our experiments, synthetic delay values were chosen to represent typical

round-trip times for intra-African (100ms), European-South African (200ms) and North

American-South African (400ms) connections. These are realistic for the distribution

of data from the SKA mid-frequency radio telescope to be constructed in South Africa.

Factors (and their respective levels) tested during experiment runs were:

• Selected middle-box: three configurations exist to allow the performance com-

parison objective of the experiment: direct switch, the prototype firewall (NF-

Shunt) and the traditional firewall (Cisco ASA 5585).

• Synthetic delay: since the performance reducing effect of packet loss is dramatic

in the presence of delay, it is varied (from no delay to long-distance network delays

of 100ms, 200ms and 400ms round-trip-times) to observe this effect in the test

configurations. The Linux netem [35] queue discipline was used to emulate half of

the transmit delay on each of the two test servers.

Tests for each combination of factors and levels was repeated 100 times.

58 CHAPTER 4. EXPERIMENTATION

4.2.1 Measurements

The following observable performance characteristics were measured in each experiment

run:

• Absolute TCP throughput: individual as well as aggregate TCP throughput

was measured using the iperf3 network throughput testing utility [24].

• Dropped packets: packets dropped between the test endpoints were measured

by comparing NIC frame counters on the servers to the frame counters of the device

under test. This also allowed for locating the cause of the loss.

• TCP stack behaviour: Web100 [48] instrumented Linux kernels were used, and

a custom application logged snapshots of the Web100 variables associated with the

test connection every 100ms, to allow analysis of the TCP stack behaviour during

transfers.

The above measurements were annotated with events relevant to the shunting be-

haviour of the prototype firewall, in particular, the point in time when a shunting instruc-

tion is sent, and the last packet is switched on the slow-path. Network Time Protocol

was used to synchronise the system clocks of the two test servers and the slow path

server.

4.2.2 Validation of test procedure

Performance tuning was performed on the end-hosts with direct network switching con-

figured via the OpenFlow switch (in order to validate the test procedure prior to the ex-

periments). Host IP stack tuning followed conservative guidelines applicable for modern

Linux kernels (optimised to allow for round-trip delays greater than 400ms at 10 Gbit s−1

link capacities). Parameters used are listed in Table 4.2. No hardware or driver-specific

parameters were changed, as this would deviate from typical data transfer scenarios that

the experiments were intended to simulate.

The netem Linux QoS module was configured on the respective network interfaces to

introduce fixed transmit delays, which together amounted to the total desired synthetic

round-trip delay for each experimental run. It was also necessary to adjust the default

QoS buffer of 1,000 to 100,000 packets, in order to prevent packets being dropped in the

kernel transmit path.

With this configuration, the testbed was capable of consistent TCP transfers at

throughputs in excess of 9 Gbit s−1 for 0ms, 100ms and 200ms RTT (included as the direct

4.3. EXPERIMENTAL RESULTS 59

Tuning parameter Value

NIC transmit queue length (txqueuelen) 10,000 packets

TCP socket buffer size auto-tuning maximum

(tcp wmem/tcp rmem)

500 MB

Network interface MTU 9,000 B

Table 4.2: Host tuning for test servers

series of performance tests in the next section). These results provided a performance

baseline and context for the experiments that followed.

4.3 Experimental results

In this subsection we report the results of our performance experiments. Mean connec-

tion shunt timing, TCP throughput and packet loss values were calculated, and then

used to test hypotheses that the performance of the systems we compared differ. We

also report the magnitude of performance differences (all of which were found to be

statistically significant).

We considered both the speed with which the prototype moves packet forwarding

between the slow and fast paths (the shunting mechanism), and the externally observable

packet forwarding performance during each test.

4.3.1 Shunting mechanism

The shunting mechanism of the prototype was profiled to determine how quickly flows

can be shunted. The timing of events were recorded for shunted TCP connections (mea-

sured in seconds elapsed since the originating test server sent the SYN packet establishing

the connection). Table 4.3 summarises the results of 100 tests for each combination of

factors. Two of the events are timestamps recorded in the shunting controller logs: the

time when the controller receives a the connection tracking event from the kernel (via

the conntrack utility) and the time when all the POX library calls to install shunting

flow specifications are executed. The third event is the time at which the last packet is

slow-switched, as recorded by a packet capture on the show path server.

60 CHAPTER 4. EXPERIMENTATION

Event description Time from SYN (ms) Standard deviation (ms)

Controller detected flow mark 3.3 0.30

End of flow programming 58.0 0.69

Last packet slow-switched 75.8 0.04

Table 4.3: Shunting event performance

Synthetic RTT Test Mean data rate Gbit s−1 Mean packet loss %

None

Direct switching 9.944 –

Shunting 9.923 0.00

Cisco ASA5585 9.838 0.05

100 ms

Direct switching 9.678 –

Shunting 9.690 –

Cisco ASA5585 5.337 0.10

200 ms

Direct switching 9.332 –

Shunting 9.334 –

Cisco ASA5585 4.197 0.21

400 ms

Direct switching 5.978 –

Shunting 5.957 –

Cisco ASA5585 3.094 0.21

Table 4.4: Single flow forwarding performance

4.3.2 Forwarding performance

The results of the single-connection TCP performance tests are summarised in Table 4.4.

Throughput as measured by the iperf3 utility is reported, while the packet loss rate

is calculated by comparing transmit and receive Ethernet NIC Media Access Control

(MAC) frame counters on the test servers.

No packets were dropped in the direct series of tests, confirming that the OpenFlow

switch is capable of non-blocking line-rate switching. In tests of the prototype and the

traditional firewall (where packet loss was observed), the NIC MAC frame counters were

compared to the frame counters of the device under test to locate the cause of the loss.

Both firewalls were found to be receiving but not forwarding all frames (in other words,

unlike direct switching, both firewalls dropped some packets).

4.3. EXPERIMENTAL RESULTS 61

Throughput tests on the Cisco firewall were repeated with two and four simultaneous

connections, in order to study the effects of TCP window scaling and internal load-

balancing beyond a single flow. These results are shown in Table 4.5.

Figure 4.1 shows the congestion window and TCP throughput during the first 400

milliseconds of three individual (and independent) experiment runs at 200ms RTT, for

the Cisco ASA 5585, NFShunt and direct switching tests. The circles in the congestion

window plot indicate retransmissions (each circle’s area is scaled to the log of the number

of packets retransmitted during a 100ms sample). While this figure does not summarise

the results, it provides a visual illustration of the effect packet loss has on the TCP

performance of the traditional firewall, compared to direct switching and the prototype

firewall. Shunting occurs before the first data point on the graph. We do not directly

indicate the timing of packet loss on this graph, as the data was not available from

Web100. Peaks in the sawtooth shape of the congestion window plot (for the Cisco test)

correspond to short bursts of retransmissions.

Mean data rate Gbit s−1

Flows No delay 100 ms synthetic RTT 200 ms synthetic RTT

One 9.838 5.337 4.197

Two 9.975 9.471 8.724

Four 10.011 9.866 9.430

Table 4.5: Cisco - multiple flow forwarding performance

4.3.3 Network performance comparison

We tested the hypothesis that the direct switching performance differs from the pro-

totype’s performance, and that the prototype’s performance is different to the Cisco

firewall’s performance. The Wilcoxon rank-sum test was applied to mean throughput

and packet loss measurements of the respective devices at different RTT values. We

interpret that tests with p > 0.05 indicate no significant difference while those with

p < 0.05 do. Table 4.6 and Table 4.7 summarise the results.

62 CHAPTER 4. EXPERIMENTATION

Figure 4.1: Comparison of congestion window and throughput for three independent

test runs at 200ms RTT.

4.3. EXPERIMENTAL RESULTS 63

RTT Difference in mean data rate Gbit s−1 Difference in mean packet loss %

None significant difference of 0.021 Gbit s−1 no significant difference

100 ms no significant difference identical (no loss)

200 ms no significant difference identical (no loss)

400 ms no significant difference identical (no loss)

Table 4.6: Tests of the hypothesis that direct switching and prototype performance differ

RTT Difference in mean data rate Gbit s−1 Difference in mean packet loss %

None significant difference of 0.084 Gbit s−1 significant difference of 0.051%

100 ms significant difference of 4.353 Gbit s−1 significant difference of 0.096%

200 ms significant difference of 5.137 Gbit s−1 significant difference of 0.207%

400 ms significant difference of 2.863 Gbit s−1 significant difference of 0.209%

Table 4.7: Tests of the hypothesis that prototype and Cisco ASA 5585 performance differ

64 CHAPTER 4. EXPERIMENTATION

Chapter 5

Discussion

In this chapter, we analyse our prototype implementation and experimental evaluation

results, with the purpose of answering the research questions posed in section 3.1 and

mapped to our research methodology in table 4.1.

5.1 Analysis of the prototype implementation

We consider the feasibility of the implementation in order to provide the analysis required

to answer research question one in table 4.1:

Our experimental results show that controlling a shunting mechanism using the Net-

filter firewall rule-set works, but we identified some shortcomings of this approach.

The use of connection marking to specify actions makes for a complicated iptables

rule-set, and imposes structure that may require existing firewall policy to be re-written

by the administrator. A more elegant implementation would add a new iptables action

type to Netfilter, allowing rules to be written in the following style (a rule to trigger

hardware bypass SSH connections once they are established):

iptables -F FORWARD -m conntrack --ctstate RELATED,ESTABLISHED -m tcp

--dport 22 -j HARDWARE --hardware-action=bypass

This would require the development of a kernel module – a non-trivial undertaking for

a user-interface improvement!

We found attempting to integrate the POX controller with connection tracking via

the user-space Netlink libraries difficult, due to poor Python bindings for the Netlink

connection tracking protocol. Instead, our implementation spawns the conntrack

65

66 CHAPTER 5. DISCUSSION

userspace tool as a subprocess of the controller.

The use of OpenFlow for the fast-path interface greatly simplified implementation

of the prototype. While only OpenFlow 1.0 capability is required for the trivial actions

of selecting output ports based on 4-tuple matches, this would have been difficult or im-

possible to achieve on Commercial Off-The-Shelf (COTS) hardware without OpenFlow.

The prototype was also tested successfully with Mininet [43], demonstrating that it is

compatible with multiple OpenFlow dataplanes.

Until very recently,1 OpenFlow lacked a match type for TCP flags [80]. While support

for TCP flag matching is available in open vSwitch (OVS), hardware is not yet available

with OpenFlow 1.5 support. This prevents the prototype from detecting TCP connection

tear-down in the forwarding plane, and necessitates the use of idle-timeouts for flow rules

to clean up the fast-path when connections complete. The disadvantage of the idle-

timeout approach is that stalled connections will be routed via the slow-path briefly, if

and when they resume.

Despite some minor obstacles detailed above, our implementation demonstrates the

feasibility of key aspects of NFShunt’s design: hardware acceleration, integration into

iptables, and the COTS toolkit approach.

5.2 Experimental performance analysis

Research question two in table 4.1 requires the outcome of our hypothesis tests to be

analysed to support conclusions about the performance merits of our prototype for Fast

Data Transfer (FDT) applications.

Our experiments found that the delay of the slow-path interface (detecting new

connections as tracked by the kernel) is small (approximately 3ms). Sending shunting

flow specifications to the switch makes up the majority of the delay between the first and

the last packet being slow-switched (approximately 60ms out of 75ms).2 These results are

provided in table 4.3. Based on examination of Web100 traces for individual connections

(sampled on one of the test servers every 100ms), we conclude that no congestion events

are caused by the shunting mechanism, because no such events are reported in the first

sample (which would include all the slow-switched packets). These results show that our

design can respond fast enough to the establishment of individual connections.

1OpenFlow 1.5, published in December 2014 includes a Transmission Control Protocol (TCP) flags

match type.
2Flow specification programming delay can be attributed the controller itself, the control network,

the OpenFlow agent and the switch ASIC, as well as the respective operating systems. The relative

contributions of each component was not investigated.

5.2. EXPERIMENTAL PERFORMANCE ANALYSIS 67

The Pica8 OpenFlow switch used for our experiments was able to forward all con-

nections without packet loss (table 4.4). Despite the host tuning performed, a notable

TCP performance drop-off was observed at 400ms. This suggested that TCP through-

put would not be the best (albeit direct) measurement of firewall performance in our

experiments.3 We therefore ensured that packet loss could be accurately measured and

located to specific network elements.

An explanation offered by ESNet [22] for the tendency of traditional firewalls to drop

packets in FDT applications, as well as one of our initial assumptions (section 1.2.1),

predicted that the total throughput would be approximately quantised by the maximum

per-connection throughput (the quantum being less than the speed of the fastest firewall

interface).

When there was no synthetic delay, the Cisco ASA consistently dropped a small

percentage of packets (table 4.4), but was able to firewall a single connection at nearly

the maximum speed achievable with the test setup (near 10Gbps). From this we infer

that the Cisco firewall we tested is not relying on load-balancing multiple connections

over processing elements in the forwarding plane to reach aggregate 10Gbps throughput.

Transferring data over simultaneous TCP connections was quite effective at overcom-

ing the high latency TCP slow-down due to loss introduced by the firewall (table 4.5),

and thus utilising nearly the full link bandwidth at moderate Round-Trip Time (RTT).

This supports ESNet’s alternative suggestion [23] that the packet loss we found is due

to traditional firewall input buffers not being optimised for large flows. This insight

also reveals a limitation of our study: the experimental design choice to focus on TCP

did not allow more extensive exploration of the FDT problem space (for example, by

studying transport protocols that circumvent TCP’s limitations).

A very small amount of packet loss was observed in the tests of the prototype with

no synthetic delay (table 4.4). While this is not a statistically significant difference

from the direct switching tests (according to our interpretation of p-values), a 21Mbps

difference in throughput was found to be statistically significant. At 100ms, 200ms and

400ms, there were no differences between the measurements of the prototype and direct

switching (table 4.6 and table 4.7). These results are consistent with a model where the

slow-path phase of the connection has little effect on performance (with TCP, this phase

covers the connection setup, and at worst the slow-start phase of data transfer) because

the packet-rate is low enough to software switched without packet loss.

Under load, the difference in packet loss, combined with moderate RTT, results in

3As an end-to-end performance measure, TCP throughput could be influenced by factors not con-

trolled in our experments.

68 CHAPTER 5. DISCUSSION

a significant degradation of throughput performance of the tested Cisco firewall model

to other approaches (such as our NFShunt prototype or that of a science DMZ). This

result allows us to answer the research questions: our hybrid design achieves high

performance and exhibits the loss-free forwarding behaviour required for

data-intensive science applications.

5.3 Operations and maintenance analysis

Now we examine technical aspects of the prototype and traditional firewall designs,

studied in the context of operations and maintenance. This analysis supports conclusions

to research question four (table 4.1). The Fault, Configuration, AAA, Performance and

Security management (FCAPS) framework [38] is used to consider the different activities

involved in operating firewalls.

5.3.1 Fault management

NFShunt’s open architecture allows for more in-depth troubleshooting of the individual

components compared to a traditional firewall. Open source software can be audited,

and bugs in NFShunt’s code can be found and fixed by the end-users. The downside of

this tool-kit approach is that administrators would require knowledge to troubleshoot

Netfilter, Linux bridging and the OpenFlow agent to locate faults in the firewall itself.

A traditional firewall typically offers a unified interface, which aids troubleshooting of

simple problems, but could obscure low-level details that only vendor technical support

may be able to access and interpret. Compared to pure software firewalling, the shunting

approach is more complex: it introduces additional components to the forwarding path,

more configuration and another software component. We expect that this additional

complexity would result in a less reliable system.

5.3.2 Configuration management

NFShunt does not offer standard interfaces and protocols for network configuration man-

agement, like Simple Network Management Protocol (SNMP), or more recently Netconf.

Netfilter is, however, very widely used, and many tools and interfaces exist to manage

iptables rule-sets. The design that integrates shunting policy in the iptables rules, rather

than maintaining a separate configuration, reduces the complexity of managing its con-

figuration. For configuration of the controller – the design has chosen a format that is

concise and easy for administrators to both read and write.

5.4. PRICE-PERFORMANCE COMPARISON 69

5.3.3 Account management

The shunting design implicitly requires network traffic to be accounted separately on

the slow and fast paths. While shunted packets are no longer visible to tools that might

normally be used on Netfilter firewalls, NFShunt exposes flow statistics via the logging

module. It is possible to integrate these statistics into existing reporting and accounting

tools to achieve feature parity with a traditional firewall design.

5.3.4 Performance management

Other than allowing the usual process of measurement, planning and provisioning of

resources to meet the demands on the network (common with traditional firewalls),

NFShunt has the advantage of being able to selectively scale up throughput via shunt-

ing. This additional capability is the primary contribution of the prototype, and is the

advantage of NFShunt over alternative approaches.

5.3.5 Security management

NFShunt’s advantages contribute to the network’s resources to implement security with-

out compromising on performance. The security of NFShunt itself is composed of Linux

and the OpenFlow agent’s security measures.

The NFShunt controller requires administrator level rights to the Linux system for

access to the connection tracking module. While not implemented in our prototype,

it is possible to compartmentalise functions of the controller to reduce privileges of all

components but the slow path interface. Configuration of Netfilter via the iptables

utility is performed by a user with administrative rights.

The prototype implementation did not make use of OpenFlow protocol security be-

yond static address configuration. The controller could be enhanced to use Transport

Layer Security (TLS) encrypted and authenticated connections for agents that support

this capability, however, the Pica8 switch used in our research did not include secure

control channel support.

5.4 Price-performance comparison

Finally, consider both the up-front equipment cost, as well as the ongoing costs of oper-

ating a firewall, in order to answer research question three as per table 4.1:

70 CHAPTER 5. DISCUSSION

5.4.1 Capital cost

Cost of infrastructure is important as high-throughput science expands from the preserve

of the few to that of the many.

The capital cost4 of the Cisco ASA5585-X SSP-60 firewall used for testing varies

between R1M and R2M, depending on configuration, licensing and discounts applied.

Since this particular firewall’s features and capabilities far exceed the requirements of our

tested scenario, a smaller configuration was chosen for the purpose of pricing comparison

with the prototype. The Cisco ASA5580-20 configured with two 10G interfaces matches

the prototype firewall more closely. Table 5.1 shows the capital cost of our prototype

compared to the specified traditional firewall.

NFShunt Prototype Traditional Firewall

Component Cost Component Cost

FitPC R7291 Cisco ASA5580-20 R720 000

Pica8 P3290 R32 005

Total R38 296 Total R720 000

Table 5.1: Capital cost comparison

5.4.2 Operational cost

Real world implementations of NFShunt would allow the operational costs to be quanti-

fied and compared, but this is not within the scope of our research. Instead, we analyse

the technical aspects of our design that would impact operations and maintenance. As

such, our research methodology for studying the operational costs is qualitative.

In general, it is expected that the additional complexity of the NFShunt prototype

(described in section 3.5) is likely to increase its operational costs relative to operating

traditional firewalls (though the absolute cost could still be lower). Some traditional

firewall vendors generate additional revenue from their products by charging license fees

as the customer requires additional software features or artificially limited capacity. From

the customer’s perspective, these are operational costs that would not necessarily apply

to a hybrid firewall composed of COTS hardware and Free and Open Source Software

(FOSS).

4ZAR prices at various exchange rates from 12 to 14 ZAR/USD

5.5. LIMITATIONS OF THE RESEARCH 71

5.4.3 Analysing cost performance

The above analysis of the costs associated with our toolkit-like design support an an-

swer to the research question: the prototype is clearly low-cost compared to the class-

representitive traditional firewall we studied. With higher performance, NFShunt would

deliver a lower price-performance ratio. The total cost of ownership is unknown (and

will vary, even amongst deployments of traditional firewalls). Based on our analysis in

section 5.3, we argue that the cost of operating NFShunt in production would be similar

to a traditional firewall, as the benefit of its flexibility comes at the cost of increased

complexity.

5.5 Limitations of the research

Some convenient experimental design choices resulted in minor shortcomings of the re-

search:

• If we assume that traditional firewalls optimise buffers for the distribution of packet

sizes typical to Internet traffic, then varying the Maximum Transmission Unit

(MTU) value in our TCP experiments may have revealed whether the best-practice

of using jumbo frames in FDT applications has a detrimental effect on firewall

performance.

• Connection-rate testing would likely have shown up processing delay limits of the

shunting mechanism which could severely limit the suitability of our design for

applications where off-loaded connections are numerous (unlike the FDT scenario).

We expect traditional firewalls would out-perform our prototype in such cases, but

since we did not study this dimension of scalability, this remains speculation.

The major shortcomings of our research, however, were due to the deliberately re-

stricted scope:

• The lack of a real-world NFShunt deployment case-study restricted our investiga-

tion of operational aspects to arguments based on the theoretical implications of

our prototype’s design. Rich performance data from production application traf-

fic may also have provided further insights and strengthened the reliability of our

results.

• Testing high-performance traditional firewalls from a range of models and manufac-

turers would have allowed general conclusions to be drawn about the performance

of firewalls used in data-intensive research infrastructure.

72 CHAPTER 5. DISCUSSION

• Finally, broadening the scope of the research to study multiple file transfer tools

and transport protocols, as well as to consider the information security threat

model of science DMZs, may have generated knowledge useful to end-users and

operators.

Chapter 6

Conclusion and future work

In this chapter we provide a conclusion to our research, and explore possible directions

for future work.

6.1 Research conclusions

Our test of the Cisco firewall suggests that there is merit in engineering networks for

loss-free paths to serve the narrow use-cases addressed by science DMZs (single or small

numbers of high bandwidth-delay product connections between research infrastructures).

Due to the limited design of the experiments we performed, we cannot generalise this

conclusion to all traditional firewalls. We speculate that some firewalls are, or with

advances in technology will be, capable of stateful packet filtering of single connections

at very high speeds, without introducing packet loss.

We conclude that, as an interim measure or an alternative to static separation of end-

points into classes protected by stateful and stateless (ACL) packet filters, it is possible to

build a hybrid firewall that off-loads trusted connections to stateless hardware switching.

Our prototype demonstrates the feasibility of an Software Defined Networking (SDN)-

based design, making use of widely used Free and Open Source Software (FOSS) for

the stateful slow-path, and vendor-agnostic OpenFlow forwarding for the fast-path. Our

experiments verify that the performance of dynamically off-loaded Transmission Control

Protocol (TCP) connections benefit from science DMZ-like loss-free forwarding. These

results address the research problem, and answer the research questions one and two

(posed in 3.1).

Analysing the capital costs of implementing our prototype shows potential for sub-

stantial savings over the cost of traditional firewalls with similar performance charac-

73

74 CHAPTER 6. CONCLUSION AND FUTURE WORK

teristics (by our estimate, at least an order of magnitude less). The operational ben-

efits of composing OpenFlow switching with Linux’s Netfilter are difficult to quantify

and may be outweighed by increased complexity. Due to network latency, the science

use-case requires loss-free forwarding in countries that are geographically distant from

collaborators in Europe and North America. This work is particularly important due

to cost-constraints where those countries are also developing or newly industrialised na-

tions. This answers research question three and, to the extent possible within the scope

of the study, it suggests possible answers to question four.

Finally, the parallel-flow performance results via a non-ideal network path suggests

that improving TCP, or adopting better file transfer tools, should be seriously considered

as an alternative to building loss-free networks. Our experimental design did not pro-

duce data that allowed us to evaluate and compare firewall performance with non-TCP

connections.

6.2 Future work

Considering the problem of Science DMZ security, two avenues for future research are

immediately evident:

• Our focus on an SDN-based hybrid firewall implementation makes some assump-

tions about the information security threat model and application design. A study

focused on data-intensive research network use-cases that examines real-world ap-

plications, and considers a comprehensive threat model, is called for.

• An investigation into the real-world performance of SDN-enhanced science DMZs

(especially operations and maintenance aspects) would be valuable to operators of

High Performance Computing (HPC) infrastructure. IDS-driven alternatives such

as SciPass offer unique advantages over NFShunt’s design, and we hope to see both

systems deployed and evaluated in production networks.

The introduction of a Linux driver framework for switch-like devices (switchdev [67])

provides a mechanism to manipulate hardware off-loaded forwarding using standard

Linux IP routing and Ethernet bridging utilities. While this functionality appears to be

intended for tight integration with local hardware, it may be possible to extend switchdev

to support remote forwarding planes via OpenFlow. If Netfilter offloading could then be

added to switchdev, it might be possible to re-implement NFShunt in the Linux kernel.

Alternatively, an NFShunt-specific Netfilter target would improve the integration with

the Linux kernel and allow for the user-interface enhancement suggested in section 5.1.

6.2. FUTURE WORK 75

Similarly, integration between open vSwitch (OVS) and Netfilter connection tracking

[65] (expected to be available at the end of 2015) could enable hardware acceleration

directly in the OpenFlow agent.

More generally, future work could explore using hybrid SDN designs in different

applications, for example:

• Adding a shunting mechanism to routing (as opposed to transparent) firewalls may

be useful in certain network designs. Initial work on chaining NFShunt into the

forwarding path of larger SDN-enabled systems such as Vandervecken [71] (a fork

of RouteFlow [59]) shows promise.

• The use of NFShunt’s block action (which allows the slow path firewall rules to

off-load packets to be dropped to hardware) was briefly tested, but not explored

in our research. This function could form part of a denial-of-service mitigation

system with applications beyond the science DMZ use-case.

A new field, related to SDN is Network Function Virtualisation (NFV). This is

an architecture that replaces dedicated hardware appliances performing fixed network

functions (such as firewalls, proxies, etc.) with virtualised servers performing the same

functions. Since NFV is based on software implementations running on normal CPUs, it

would be subject to similar scalability constraints to traditional firewalls. As with other

cloud-based computing architectures, NFV typically relies on a scalability strategy of

parallel processing (scaling-out). NFShunt could be enhanced to provide a standard

interface for a virtualised slow path to off-load forwarding of specific connections to

hardware. An implementation of hybrid-NFV such as this could provide a mechanism

to scale-up the performance of virtual network functions.

Finally, some cutting-edge, SDN-enabled hardware platforms support the tracking of

transport layer states in the forwarding plane. Open standards to take advantage of this

capability could enhance NFShunt-like designs, if not eliminate the need for state-less

packet filtering (and hence science DMZs) entirely.

Appendices

76

Appendix A

openVSwitch usage

Mininet [43] is a network prototyping tool that uses OS-level virtualisation to allow

the creation of logically independent host, router and switch nodes, interconnected by

virtual network links.

To demonstrate the use of open vSwitch (OVS) commands, we show the simplest

Mininet example (the minimal topology illustrated in figure A.1) by running sudo mn

-x. This creates four terminal windows, one for each node.

Figure A.1: Mininet’s minimal topology

Accessing the switch, we can query the OVS configuration database:

78

79

switch s1 # ovs-vsctl show

0b8ed0aa-67ac-4405-af13-70249a7e8a96

Bridge "s1"

Controller "tcp:127.0.0.1:6633"

is_connected: true

Controller "ptcp:6634"

fail_mode: secure

Port "s1-eth1"

Interface "s1-eth1"

Port "s1-eth2"

Interface "s1-eth2"

Port "s1"

Interface "s1"

type: internal

ovs_version: "2.0.2"

In addition to the two ports connecting host h1 and h2, each OVS bridge (switch

instance) has an internal port with the same name as the bridge. This port is logically

connected to the host IP stack and can be used by the host system to communicate via

the bridge.

Since ovs-vswitchd applies this configuration to the data-path, we can obtain similar

information by querying the data-path directly using ovs-dpctl:

switch s1 # ovs-dpctl show

system@ovs-system:

lookups: hit:3 missed:21 lost:0

flows: 0

port 0: ovs-system (internal)

port 1: s1-eth1

port 2: s1-eth2

port 3: s1 (internal)

While OVS data-paths require the features to implement OpenFlow forwarding be-

haviour, OVS abstracts away all the OpenFlow-specific semantics. Note that informa-

tion regarding the OpenFlow controller and controller-failure mode are absent from the

ovs-dpctl output.

With ovs-ofctl, we can use the OpenFlow protocol to query the capability of the

switch:

80 APPENDIX A. OPENVSWITCH USAGE

switch s1 # ovs-ofctl show s1

OFPT_FEATURES_REPLY (xid=0x2): dpid:0000000000000001

n_tables:254, n_buffers:256

capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP

actions: OUTPUT SET_VLAN_VID SET_VLAN_PCP STRIP_VLAN SET_DL_SRC SET_DL_DST

SET_NW_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE

1(s1-eth1): addr:4a:15:3a:ad:7f:98

config: 0

state: 0

current: 10GB-FD COPPER

speed: 10000 Mbps now, 0 Mbps max

2(s1-eth2): addr:ba:0f:c6:93:44:f5

config: 0

state: 0

current: 10GB-FD COPPER

speed: 10000 Mbps now, 0 Mbps max

LOCAL(s1): addr:3a:ce:8d:ef:b6:48

config: 0

state: 0

speed: 0 Mbps now, 0 Mbps max

OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_send_len=0

Notable in the output is support for multiple OpenFlow tables (n tables:254), as

well as the switch capabilities and supported actions.

Querying the switch’s OpenFlow table at this point shows that no flow entries have

been programmed:

switch s1 # ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

The minimal topology Mininet example configures a reference OpenFlow controller

included in OVS for the switch to connect to. This implements a basic layer-2 Media

Access Control (MAC)-address learning Ethernet switch that maintains state in the

controller and reactively populates the switch with micro-flows.1 If we generate traffic

between h1 and h2 by executing ping, and then query the table again, we can see flow

entries added for Address Resolution Protocol (ARP) and Internet Control Message

Protocol (ICMP) between the two switch ports:

1flow specifications that map to individual transport layer connections (by specifying a 5-tuple of

matches.

81

host h1 # ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=5.51 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.623 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.050 ms

...output truncated.

switch s1 # ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=307.399s, table=0, n_packets=9, n_bytes=378,

idle_timeout=60, idle_age=15, priority=65535,arp,in_port=2,

vlan_tci=0x0000,dl_src=96:0f:63:93:27:73,dl_dst=06:49:6b:f9:de:08,

arp_spa=10.0.0.2,arp_tpa=10.0.0.1,arp_op=1 actions=output:1
cookie=0x0, duration=307.398s, table=0, n_packets=9, n_bytes=378,

idle_timeout=60, idle_age=15, priority=65535,arp,in_port=1,

vlan_tci=0x0000,dl_src=06:49:6b:f9:de:08,dl_dst=96:0f:63:93:27:73,

arp_spa=10.0.0.1,arp_tpa=10.0.0.2,arp_op=2 actions=output:2
cookie=0x0, duration=312.4s, table=0, n_packets=313, n_bytes=30674,

idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=2,

vlan_tci=0x0000,dl_src=96:0f:63:93:27:73,dl_dst=06:49:6b:f9:de:08,

nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0,icmp_type=0,icmp_code=0

actions=output:1
cookie=0x0, duration=311.401s, table=0, n_packets=312, n_bytes=30576,

idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=1,

vlan_tci=0x0000,dl_src=06:49:6b:f9:de:08,dl_dst=96:0f:63:93:27:73,

nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,icmp_type=8,icmp_code=0

actions=output:2

In the above listing we have underlined the matches, while the action for each flow

specification is boldface. The idle age (idle age) of the first two flows that match on

the ARP packets shows that the ping command had been running for approximately

15 seconds. All the flows are configured with an idle timeout (idle timeout) of sixty

seconds. The idle ages of the two ICMP flow specifications are zero because they had

been reset by an ICMP echo-reply pair within the same second that the ovs-ofctl

command queried the switch. Stopping the ping command and waiting sixty seconds

would cause all flow specifications to time out, and would leave the flow table empty.

OVS is pre-configured by Mininet according to the given topology. For the purpose

of our research, manually creating an OVS bridge, adding ports to it and configuring a

controller for the bridge are the most important uses of the OVS command line utilities.

We use the ovs-vsctl command for all three tasks. In the example below, we create

a new bridge named s2, and add the port named eth0 to this bridge:

82 APPENDIX A. OPENVSWITCH USAGE

ovs-vsctl add-br s2

ovs-vsctl add-port s2 eth0

ovs-vsctl set-controller s2 tcp:192.0.2.1:6633

These commands accept additional parameters that may be required with non-Linux

kernel data-path implementations and to specify extra port properties. Finally, our

experiments require access to port frame counters to detect and locate packet loss. We

also obtain these counters using a ovs-vsctl command:

ovs-vsctl get Interface eth0 statistics

{collisions=0, rx_bytes=150, rx_crc_err=0, rx_dropped=0, rx_errors=0,

rx_frame_err=0, rx_over_err=0, rx_packets=2, tx_bytes=0, tx_dropped=0,

tx_errors=0, tx_packets=0}

Appendix B

Source code listing

Listing B.1: NFShunt POX controller

1 # C o p y r i g h t 2014 CSIR

2 #

3 # Licensed under t h e Apache License , Vers ion 2 . 0 (t h e ” L i c e n s e ”) ;

4 # you may not use t h i s f i l e e x c e p t in compl iance w i t h t h e L i c e n s e .

5 # You may o b t a i n a copy o f t h e L i c e n s e a t

6 #

7 # h t t p : / /www. apache . org / l i c e n s e s /LICENSE−2.0

8 #

9 # Unless r e q u i r e d by a p p l i c a b l e law or agreed t o in w r i t i n g , s o f t w a r e

10 # d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an ”AS IS ” BASIS ,

11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .

12 # See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and

13 # l i m i t a t i o n s under t h e L i c e n s e .

14

15 import os

16 import sys

17 from pox . core import core

18 import pox . openflow . l i bopen f l ow 01 as o f

19 from pox . l i b . u t i l import dpidToStr

20 import pox . l i b . packet as pkt # POX c o n v e n t i o n

21 from thread ing import Thread

22 from xml . e t r e e import ElementTree

23 from i o import BytesIO

24 from subprocess import Popen , PIPE

25 import j son

26 import re

27

28 log = core . getLogger ()

29

30 class NFShunt(object) :

31 def i n i t (s e l f , c on f i g f i l e name) :

32 s e l f . connect ion = None

33 s e l f . c on f i g = None

34 s e l f . r e ad con f i g (c on f i g f i l e name)

35 core . openflow . addLi s tener s (s e l f)

36 #core . addListenerByName (” DownEvent ” , s e l f . handle DownEvent) # WHY? !

37 core . addListenerByName (”GoingDownEvent” , s e l f . handle GoingDownEvent) # WHY? !

38 log . i n f o (”Launch complete , wa i t ing f o r OF connect ion . . . ”)

39

40 def r e ad con f i g (s e l f , c on f i g f i l e name) :

41 text = open(c on f i g f i l e name) . read ()

42 try :

43 s e l f . c on f i g = json . l oads (text)

44 s e l f . c on f i g [’ po r t s l ow ’] = {}

83

84 APPENDIX B. SOURCE CODE LISTING

45 s e l f . c on f i g [’ p o r t f a s t ’] = {}
46 s e l f . c on f i g [’ port physdev in ’] = {}
47 for port in s e l f . c on f i g [’ por t s ’] :

48 s e l f . c on f i g [’ po r t s l ow ’] [port [’ s low ’]] = port

49 s e l f . c on f i g [’ p o r t f a s t ’] [port [’ f a s t ’]] = port

50 s e l f . c on f i g [’ port physdev in ’] [port [’ physdevin ’]] = port

51 except Exception as e :

52 raise type (e) , type (e) (e . message + ’ happens with [%s] ’ % text) , sys .

e x c i n f o () [2]

53

54 def connt rack read event s (s e l f , stdout , dummy) :

55 for l i n e in i ter (stdout . r ead l ine , b ’ ’) :

56 i f l i n e . f i nd (” f low ”) !=−1: # conntrack sometimes o u t p u t non−XML l i n e s

57 try :

58 e t r e e = ElementTree . parse (BytesIO (l i n e))

59 ev = next (e t r e e . i ter ())

60 except :

61 log . e r r o r (’ Fa i l ed to parse event data : {} ’ . format (

ev xml))

62 continue

63 i f ev i s None :

64 continue

65 s e l f . t ry shunt ing (ev)

66

67 def t ry shunt ing (s e l f , f low) :

68 try :

69 i f not f low . f i n d a l l (” .//mark”) : return

70 eventtype = None

71 i f ’ type ’ in f low . a t t r i b :

72 eventtype = f low . a t t r i b [’ type ’]

73 i f eventtype in [” dest roy ”] : return

74 mark = int (f low . f i nd (’ . //meta [@di rect ion=”independent ”]/mark ’) . t ext)

75 connid = int (f low . f i nd (’ . //meta [@di rect ion=”independent ”]/ id ’) . t ext)

76 timeout = None

77 t imeouttag = f low . f i nd (’ . //meta [@di rect ion=”independent ”]/ timeout ’)

78 i f t imeouttag i s not None : t imeouttag . t ext

79 s t a t e = None

80 s t a t e t ag = f low . f i nd (’ . //meta [@di rect ion=”independent ”]/ s t a t e ’)

81 i f s t a t e t ag i s not None : s t a t e = s ta t e t ag . t ext

82 c l i e n t i p t a g = f low . f i nd (’ . //meta [@di rect ion=”o r i g i n a l ”]/ l aye r3 / s r c ’)

83 s e r v e r i p t a g = f low . f i nd (’ . //meta [@di rect ion=”o r i g i n a l ”]/ l aye r3 / dst ’)

84 c l i e n t p o r t t a g = f low . f i nd (’ . //meta [@di rec t ion=”o r i g i n a l ”]/ l aye r4 /

spor t ’)

85 s e r v e r p o r t t a g = f low . f i nd (’ . //meta [@di rect ion=”o r i g i n a l ”]/ l aye r4 /

dport ’)

86 i f c l i e n t i p t a g i s None or s e r v e r i p t a g i s None or c l i e n t p o r t t a g i s

None or s e r v e r p o r t t a g i s None :

87 log . debug (”Flow doesn ’ t have a l l L3 and L4 i n f o we need ,

i gno r ing . ”)

88 return

89 c l i e n t i p = c l i e n t i p t a g . t ext

90 s e r v e r i p = s e r v e r i p t a g . t ext

91 c l i e n t p o r t = int (c l i e n t p o r t t a g . t ext)

92 s e r v e r p o r t = int (s e r v e r p o r t t a g . t ext)

93 except Exception as e :

94 raise type (e) , type (e) (e . message + ’ happens with [%s] ’ % ElementTree .

t o s t r i n g (f low)) , sys . e x c i n f o () [2]

95 f l a g s = mark >> 28

96 f l a g s phy sdev in = (f l a g s & 0x4) >> 2

97 f l ag s physdevout = (f l a g s & 0x2) >> 1

98 i f not (f l a g s phy sdev in and f l ag s physdevout) :

99 log . debug (”Flow i s probably not v ia one o f the slow path ports ,

i gno r ing . ”)

100 return

101 f l ag s f l owmark = f l a g s & 0x1

102 physdevin = (mark & 0x0f000000) >> 24

103 physdevout = (mark & 0x00f00000) >> 20

104 flowmark = (mark & 0x000f0000) >> 16

105 o f p o r t s i n = s e l f . c on f i g [’ port physdev in ’] [physdevin] [’ f a s t ’]

106 o f p o r t s o u t = s e l f . c on f i g [’ port physdev in ’] [physdevout] [’ f a s t ’]

85

107 o f p o r t s = [o f p o r t s i n , o f p o r t s o u t]

108 log . i n f o (”Conntrack event : type=%s mark=%s [f l a g s =(pdin=%s , pdout=%s , f low=%s)]

pdin=%s , pdout=%s , flowmark=%s , connid=%s , timeout=%s , s t a t e=%s , c l i e n t=%s

:%s , s e r v e r=%s :%s” %

109 tuple (map(str , [eventtype , hex(mark) , f l ag s physdev in , f l ags physdevout

, f l ags f lowmark , physdevin , physdevout , flowmark ,

110 connid , timeout , s tate , c l i e n t i p , c l i e n t p o r t , s e r v e r i p ,

s e r v e r p o r t])))

111 i f f l ag s f l owmark :

112 i f s t a t e in [”FIN WAIT” , ”LAST ACK” , ”TIME WAIT”] :

113 log . i n f o (”Not i n s t a l l i n g shunt because connect ion s t a t e i s %s ”

% s ta t e)

114 else :

115 ac t i on = s e l f . c on f i g [’ mark act ions ’] [str (flowmark)]

116 log . i n f o (”User po l i c y flowmark o f %d detected in conntrack

entry , ac t i on i s : %s ” % (flowmark , ac t i on))

117 i f ac t i on == ” ignore ” :

118 log . i n f o (”Doing nothing , because user po l i c y asked us

to ignore t h i s f low . ”)

119 # i f d e f a u l t n o s h u n t i n g=true , t h i s i s e q u i v a l e n t t o

f o r c i n g v i a t h e s low path

120 else :

121 i f ac t i on == ”shunt” :

122 # For s h u n t i n g we add f l o w s t o match , which

send p a c k e t s v i a f a s t pa th

123 s e l f . connect ion . send (o f . ofp f low mod (ac t i on=of .

o fp ac t i on output (port=o f p o r t s [1]) , # i f

p a c k e t came from o f p o r t s [0] , send t o

o f p o r t s [1]

124 match=of . ofp match (i n po r t=o f p o r t s [0] ,

d l type=0x800 , nw dst=s e r v e r i p ,

nw src=c l i e n t i p ,

125 nw proto=pkt . ipv4 .TCP PROTOCOL, t p s r c=

c l i e n t p o r t , tp ds t=s e r v e r p o r t) ,

126 p r i o r i t y =33000 , i d l e t imeou t=s e l f . c on f i g

[’ d e f au l t shunt t imeout ’] ,

127 f l a g s=of .OFPFF SEND FLOW REM, cook ie=

connid))

128 s e l f . connect ion . send (o f . ofp f low mod (ac t i on=of .

o fp ac t i on output (port=o f p o r t s [0]) , # i f

p a c k e t came from o f p o r t s [1] , send t o

o f p o r t s [0]

129 match=of . ofp match (i n po r t=o f p o r t s [1] ,

d l type=0x800 , nw dst=c l i e n t i p ,

nw src=s e r v e r i p ,

130 nw proto=pkt . ipv4 .TCP PROTOCOL, t p s r c=

se rve r po r t , tp ds t=c l i e n t p o r t) ,

131 p r i o r i t y =33000 , i d l e t imeou t=s e l f . c on f i g

[’ d e f au l t shunt t imeout ’] ,

132 f l a g s=of .OFPFF SEND FLOW REM, cook ie=

connid))

133 log . i n f o (”Shunt i n s t a l l e d f o r s e r v e r %s :%d [v ia

port %d] −> c l i e n t %s :%d [v ia port %d] −
conntrack id %d”

134 % (s e r v e r i p , s e rv e r po r t , o f p o r t s [1] ,

c l i e n t i p , c l i e n t p o r t , o f p o r t s

[0] , connid))

135 log . i n f o (”Shunt i n s t a l l e d f o r c l i e n t %s :%d [v ia

port %d] −> s e r v e r %s :%d [v ia port %d] −
conntrack id %d”

136 % (c l i e n t i p , c l i e n t p o r t , o f p o r t s [0] ,

s e r v e r i p , s e rv e r po r t , o f p o r t s

[1] , connid))

137 s e l f . connect ion . send (o f . o f p s t a t s r e q u e s t (body=

of . o f p f l ow s t a t s r e q u e s t ()))

138 e l i f ac t i on == ”block ” :

139 # For b l o c k i n g we add f l o w s t o match , which

send p a c k e t s t o dev n u l l

140 s e l f . connect ion . send (o f . ofp f low mod (ac t i on =[] ,

empty a c t i o n l i s t == drop

86 APPENDIX B. SOURCE CODE LISTING

141 match=of . ofp match (i n po r t=o f p o r t s [0] ,

d l type=0x800 , nw dst=s e r v e r i p ,

nw src=c l i e n t i p ,

142 nw proto=pkt . ipv4 .TCP PROTOCOL, t p s r c=

c l i e n t p o r t , tp ds t=s e r v e r p o r t) ,

143 p r i o r i t y =33000 , i d l e t imeou t=s e l f . c on f i g

[’ d e f au l t b l o ck t imeou t ’] ,

144 f l a g s=of .OFPFF SEND FLOW REM, cook ie=

connid))

145 s e l f . connect ion . send (o f . ofp f low mod (ac t i on =[] ,

empty a c t i o n l i s t == drop

146 match=of . ofp match (i n po r t=o f p o r t s [1] ,

d l type=0x800 , nw dst=c l i e n t i p ,

nw src=s e r v e r i p ,

147 nw proto=pkt . ipv4 .TCP PROTOCOL, t p s r c=

se rve r po r t , tp ds t=c l i e n t p o r t) ,

148 p r i o r i t y =33000 , i d l e t imeou t=s e l f . c on f i g

[’ d e f au l t b l o ck t imeou t ’] ,

149 f l a g s=of .OFPFF SEND FLOW REM, cook ie=

connid))

150 log . i n f o (”Block i n s t a l l e d f o r s e r v e r %s :%d [v ia

port %d] −> c l i e n t %s :%d [v ia port %d] −
conntrack id %d”

151 % (s e r v e r i p , s e rv e r po r t , o f p o r t s [1] ,

c l i e n t i p , c l i e n t p o r t , o f p o r t s

[0] , connid))

152 log . i n f o (”Block i n s t a l l e d f o r c l i e n t %s :%d [v ia

port %d] −> s e r v e r %s :%d [v ia port %d] −
conntrack id %d”

153 % (c l i e n t i p , c l i e n t p o r t , o f p o r t s [0] ,

s e r v e r i p , s e rv e r po r t , o f p o r t s

[1] , connid))

154 s e l f . connect ion . send (o f . o f p s t a t s r e q u e s t (body=

of . o f p f l ow s t a t s r e q u e s t ()))

155 # Now t h a t we ’ ve i n s t a l l e d f l o w s , we must nuke t h e

connt rack e n t r y

156 s e l f . d e l e t e connt ra ck (connid , c l i e n t i p , c l i e n t p o r t ,

s e r v e r i p , s e r v e r p o r t)

157

158

159 def de l e t e connt ra ck (s e l f , connid , c l i e n t i p , c l i e n t p o r t , s e r v e r i p , s e r v e r p o r t) :

160 log . i n f o (”Running command to d e l e t e conntrack entry %d” % connid)

161 os . system (” conntrack −D −p tcp −s %s −−spor t %d −d %s −−dport %d” % (c l i e n t i p ,

c l i e n t p o r t , s e r v e r i p , s e r v e r p o r t))

162 log . i n f o (”Done d e l e t i n g . ”)

163

164 def handle ConnectionUp (s e l f , event) :

165 log . i n f o (”Switch %s i s up . ” , dpidToStr (event . dpid))

166 s e l f . connect ion = event . connect ion

167 i f s e l f . c on f i g [’ d e l e t e f l ow s on s t a r t up ’] i s True :

168 log . i n f o (”De le t ing e x i s t i n g f low e n t r i e s . ”)

169 s e l f . connect ion . send (o f . ofp f low mod (command=of .OFPFC DELETE))

170 i f s e l f . c on f i g [’ d e f au l t no shunt ing ’] i s True :

171 log . i n f o (”Adding f low e n t r i e s f o r d e f au l t slow−path swi tch ing . ”)

172 for portgroup in s e l f . c on f i g [’ por t s ’] :

173 s e l f . connect ion . send (o f . ofp f low mod (ac t i on=of .

o fp ac t i on output (port=portgroup [’ f a s t ’]) ,match=of .

ofp match (i n po r t=portgroup [’ s low ’])))

174 s e l f . connect ion . send (o f . ofp f low mod (ac t i on=of .

o fp ac t i on output (port=portgroup [’ s low ’]) ,match=of .

ofp match (i n po r t=portgroup [’ f a s t ’])))

175 log . i n f o (”Done with setup , now ready f o r conntrack events . . . ”)

176 s e l f . connect ion . send (o f . o f p s t a t s r e q u e s t (body=of . o f p f l ow s t a t s r e q u e s t ()))

177 log . i n f o (” Cont ro l l e r running , checking f o r e x i s t i n g conntrack ob j e c t s . . . ”)

178 conn t r a ck ex i s t i n g = Popen ([’ conntrack ’ , ’−L ’ , ’−o ’ , ’ xml , id ’] , s tdout=PIPE ,

bu f s i z e =1)

179 s e l f . connt rack read event s (c onn t r a ck ex i s t i n g . stdout , True)

180 log . i n f o (”Done checking e x i s t i n g ob jec t s , s t a r t i n g new conntrack events p roce s s

. . . ”)

181 connt rack proce s s = Popen ([’ conntrack ’ , ’−E ’ , ’−o ’ , ’ xml , id ’] , s tdout=PIPE ,

87

bu f s i z e =1)

182 conntrack thread = Thread (t a rg e t=s e l f . conntrack read events , args=(

connt rack proce s s . stdout , True))

183 conntrack thread . daemon = True

184 log . i n f o (” S ta r t i ng conntrack event consumer thread . . . ”)

185 conntrack thread . s t a r t ()

186

187 def handle ConnectionDown (s e l f , event) :

188 log . i n f o (”Switch %s i s down . ” , dpidToStr (event . dpid))

189 s e l f . connect ion = None

190

191 def handle FlowRemoved (s e l f , event) :

192 log . i n f o (”Switch removed f low : reason=%d cook i e=%d durat ion=%d/%d bytes=%d

packets=%d” %

193 (event . ofp . reason , event . ofp . cookie , event . ofp . durat i on sec , event . ofp .

durat ion nsec , event . ofp . byte count , event . ofp . packet count))

194 s e l f . connect ion . send (o f . o f p s t a t s r e q u e s t (body=of . o f p f l ow s t a t s r e q u e s t ()))

195

196 def handle FlowStatsRece ived (s e l f , event) :

197 log . debug (”Flow s t a t s f o l l ow : ”)

198 for s t a t in event . s t a t s :

199 log . debug (s e l f . f o rmat s t a t s (s t a t))

200

201 def f o rmat s t a t s (s e l f , s t a t) :

202 def sa f ehex (n) :

203 i f n i s None :

204 return ” (None) ”

205 else :

206 return hex(n)

207 def append (obj , f , f o rmatter=str , p r e f i x=’ ’) :

208 try :

209 v = getattr (obj , f)

210 i f v i s None : return ’ ’

211 return p r e f i x + f + ”=” + formatter (v)

212 except Attr ibuteError :

213 return ’ ’

214 ou t s t r = ’match : [’

215 ou t s t r += append (s t a t . match , ’ i n po r t ’ , p r e f i x=’ ’)

216 ou t s t r += append (s t a t . match , ’ d l s r c ’)

217 ou t s t r += append (s t a t . match , ’ d l d s t ’)

218 ou t s t r += append (s t a t . match , ’ d l v l an ’)

219 ou t s t r += append (s t a t . match , ’ d l v l an pcp ’)

220 ou t s t r += append (s t a t . match , ’ d l type ’ , sa f ehex)

221 ou t s t r += append (s t a t . match , ’ nw tos ’)

222 ou t s t r += append (s t a t . match , ’ nw proto ’)

223 ou t s t r += append (s t a t . match , ’ nw src ’)

224 ou t s t r += append (s t a t . match , ’ nw dst ’)

225 ou t s t r += append (s t a t . match , ’ t p s r c ’)

226 ou t s t r += append (s t a t . match , ’ tp ds t ’)

227 ou t s t r += ’] a c t i on s : [’

228 f i r s t = True

229 for ac t i on in s t a t . a c t i on s :

230 i f f i r s t :

231 ou t s t r += ’ [’

232 f i r s t = False

233 else :

234 ou t s t r += ’ [’

235 ou t s t r += append (act ion , ’ type ’ , p r e f i x=’ ’)

236 ou t s t r += append (act ion , ’ port ’)

237 ou t s t r += append (act ion , ’ queue id ’)

238 ou t s t r += append (act ion , ’ v l an v id ’)

239 ou t s t r += append (act ion , ’ v lan pcp ’)

240 ou t s t r += append (act ion , ’ d l addr ’)

241 ou t s t r += append (act ion , ’ nw addr ’)

242 ou t s t r += append (act ion , ’ nw tos ’)

243 ou t s t r += append (act ion , ’ tp por t ’)

244 ou t s t r += append (act ion , ’ vendor ’)

245 ou t s t r += ’] ’

246 ou t s t r += ’] ’

247 ou t s t r += ’ du ra t i on s e c=’ + str (s t a t . du ra t i on s e c)

88 APPENDIX B. SOURCE CODE LISTING

248 ou t s t r += ’ dura t i on nsec=’ + str (s t a t . dura t i on nsec)

249 ou t s t r += ’ p r i o r i t y=’ + str (s t a t . p r i o r i t y)

250 ou t s t r += ’ i d l e t imeou t=’ + str (s t a t . i d l e t imeou t)

251 ou t s t r += ’ hard t imeout=’ + str (s t a t . hard t imeout)

252 ou t s t r += ’ cook i e=’ + str (s t a t . cook i e)

253 ou t s t r += ’ packet count=’ + str (s t a t . packet count)

254 ou t s t r += ’ byte count=’ + str (s t a t . byte count)

255 return out s t r

256

257 def handle DownEvent (s e l f , event) :

258 log . debug (”Running Down event ”)

259

260 def handle GoingDownEvent (s e l f , event) :

261 log . debug (”Running GoingDown event ”)

262 i f s e l f . c on f i g [’ de l e t e f l ows on shutdown ’] i s True :

263 log . i n f o (”De le t ing f l ows be f o r e shut t ing down”)

264 s e l f . connect ion . send (o f . ofp f low mod (command=of .OFPFC DELETE))

265

266 def launch (con f i g f i l e name=”nfshunt . j son ”) :

267 core . r e g i s t e r (” nfshunt ” , NFShunt(c on f i g f i l e name))

Listing B.2: Sample configuration file

1 {
2 ” d e l e t e f l ow s on s t a r t up ” : t rue ,

3 ” de fau l t shunt t imeout ” : 10 ,

4 ” de f au l t b l o ck t imeou t ” : 10 ,

5 ” de f au l t no shunt ing ” : t rue ,

6 ” port s ” : [

7 {
8 ” f a s t ” : 49 ,

9 ” slow” : 10 ,

10 ”physdevin ” : 1

11 } ,
12 {
13 ” f a s t ” : 50 ,

14 ” slow” : 11 ,

15 ”physdevin ” : 2

16 }
17] ,

18 ”mark act ions ” : {
19 ”0” : ” i gnore ” ,

20 ”1” : ” shunt” ,

21 ”2” : ” block ”

22 }
23 }

Listing B.3: Sample iptables configuration script

1 #! / b i n / bash

2 # C o p y r i g h t 2014 CSIR

3 #

4 # Licensed under t h e Apache License , Vers ion 2 . 0 (t h e ” L i c e n s e ”) ;

5 # you may not use t h i s f i l e e x c e p t in compl iance w i t h t h e L i c e n s e .

6 # You may o b t a i n a copy o f t h e L i c e n s e a t

7 #

8 # h t t p : / /www. apache . org / l i c e n s e s /LICENSE−2.0

9 #

10 # Unless r e q u i r e d by a p p l i c a b l e law or agreed t o in w r i t i n g , s o f t w a r e

11 # d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an ”AS IS ” BASIS ,

12 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .

13 # See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and

14 # l i m i t a t i o n s under t h e L i c e n s e .

15

16 echo ”Creat ing cha ins ”

17 i p t a b l e s −t mangle −N NFSHUNT PRE

18 i p t ab l e s −t mangle −N NFSHUNT POST

89

19 i p t a b l e s −t mangle −N NFSHUNT POLICY

20 i p t ab l e s −t mangle −N NFSHUNT PRE PD IN

21 i p t ab l e s −t mangle −N NFSHUNT POST PD OUT

22

23 echo ”Adding t e s t user mark to FORWARD”

24 i p t ab l e s −t f i l t e r −A FORWARD −j MARK −−set−xmark 0x1234/0 x f f f f

25

26 echo ”Populat ing NFSHUNT PRE PD IN”

27 i p t ab l e s −t mangle −A NFSHUNT PRE PD IN −m physdev −−physdev−in p1p1 −j MARK −−set−xmark 0

x41000000 /0 x4f000000

28 i p t a b l e s −t mangle −A NFSHUNT PRE PD IN −m physdev −−physdev−in p1p2 −j MARK −−set−xmark 0

x42000000 /0 x4f000000

29 i p t a b l e s −t mangle −A NFSHUNT PRE PD IN −j RETURN

30

31 echo ”Populat ing NFSHUNT PRE”

32 i p t ab l e s −t mangle −A NFSHUNT PRE −m physdev −−physdev−in ’ ! p1+’ −j RETURN # i g n o r e p a c k e t s not

coming from t h e i n t e r f a c e s on t h e s low path

33 i p t a b l e s −t mangle −A NFSHUNT PRE −j CONNMARK −−r e s t o r e−mark # copy mark from c o n n e c t i o n s t a t e

t o p a c k e t

34 i p t a b l e s −t mangle −A NFSHUNT PRE −m mark ! −−mark 0x40000000 /0x40000000 −j NFSHUNT PRE PD IN #

i f p h y s d e v i n i s not marked , send t o cha in where we do t h i s

35 i p t a b l e s −t mangle −A NFSHUNT PRE −j RETURN

36

37 echo ”Populat ing NFSHUNT POST PD OUT”

38 i p t ab l e s −t mangle −A NFSHUNT POST PD OUT −m physdev −−physdev−out p1p1 −j MARK −−set−xmark 0

x20100000 /0 x20f00000

39 i p t a b l e s −t mangle −A NFSHUNT POST PD OUT −m physdev −−physdev−out p1p2 −j MARK −−set−xmark 0

x20200000 /0 x20f00000

40 i p t a b l e s −t mangle −A NFSHUNT POST PD OUT −j RETURN

41

42 echo ”Populat ing NFSHUNT POLICY”

43 i p t ab l e s −t mangle −A NFSHUNT POLICY −p tcp −−dport 4999 −m conntrack −−c t s t a t e RELATED,

ESTABLISHED −j MARK −−set−xmark 0x10000000 /0 x100f0000 # i g n o r e

44 i p t a b l e s −t mangle −A NFSHUNT POLICY −p tcp −−dport 5000 −m conntrack −−c t s t a t e RELATED,

ESTABLISHED −j MARK −−set−xmark 0x10010000 /0 x100f0000 # shunt

45 i p t a b l e s −t mangle −A NFSHUNT POLICY −p tcp −−dport 5001 −m conntrack −−c t s t a t e RELATED,

ESTABLISHED −j MARK −−set−xmark 0x10010000 /0 x100f0000 # shunt

46 i p t a b l e s −t mangle −A NFSHUNT POLICY −p tcp −−dport 5666 −m conntrack −−c t s t a t e RELATED,

ESTABLISHED −j MARK −−set−xmark 0x10020000 /0 x100f0000 # b l o c k

47 i p t a b l e s −t mangle −A NFSHUNT POLICY −j RETURN

48

49 echo ”Populat ing NFSHUNT POST”

50 i p t ab l e s −t mangle −A NFSHUNT POST −m physdev ! −−physdev−i s−br idged −j RETURN # don ’ t b o t h e r

w i t h non−b r i d g e d p a c k e t s

51 i p t a b l e s −t mangle −A NFSHUNT POST −m mark ! −−mark 0x40000000 /0x40000000 −j RETURN # i f we

didn ’ t mark p h y s d e v i n , then i t ’ s ano ther b r i d g e

52 i p t a b l e s −t mangle −A NFSHUNT POST −m mark ! −−mark 0x20000000 /0x20000000 −j

NFSHUNT POST PD OUT # i f p h y s d e v o u t i s not marked , send t o cha in where we do t h i s

53 i p t a b l e s −t mangle −A NFSHUNT POST −m mark ! −−mark 0x10000000 /0x10000000 −j NFSHUNT POLICY #

i f f l o w f l a g i s not se t , we need t o jump t o t h e shunt p o l i c y t a b l e

54 i p t a b l e s −t mangle −A NFSHUNT POST −j CONNMARK −−save−mark

55 i p t ab l e s −t mangle −A NFSHUNT POST −j RETURN

56

57 echo ”Adding ru l e to PREROUTING to go to NFSHUNT PRE”

58 i p t ab l e s −t mangle −A PREROUTING −j NFSHUNT PRE

59 echo ”Adding ru l e to POSTROUTING to go to NFSHUNT POST”

60 i p t ab l e s −t mangle −A POSTROUTING −j NFSHUNT POST

Bibliography

[1] K. Accardi, T. Bock, F. Hady, and J. Krueger. Network processor acceleration for a

linux* netfilter firewall. In Proceedings of the 2005 ACM symposium on Architecture

for networking and communications systems, pages 115–123. ACM, 2005.

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke.

GridFTP: Protocol extensions to FTP for the Grid. Global Grid ForumGFD-RP,

20:1–21, 2003.

[3] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and

I. Foster. The Globus striped GridFTP framework and server. In Proceedings of the

2005 ACM/IEEE conference on Supercomputing, page 54. IEEE Computer Society,

2005.

[4] J. Aweya. IP router architectures: an overview. In Journal of Systems Architecture,

1999.

[5] E. Balas and A. Ragusa. Scipass: a 100gbps capable secure science dmz using

openflow and bro. In Supercomputing 2014 conference (SC14), 2014.

[6] P. Barford and M. Crovella. Generating representative web workloads for network

and server performance evaluation. In ACM SIGMETRICS Performance Evaluation

Review, volume 26, pages 151–160. ACM, 1998.

[7] G. Bianchi, M. Bonola, A. Capone, and C. Cascone. OpenState: programming

platform-independent stateful openflow applications inside the switch. ACM SIG-

COMM Computer Communication Review, 44(2):44–51, 2014.

[8] E.-J. Bos, E. Martelli, P. Moroni, and D. Foster. LHC tier-0 to tier-1 high-level

network architecture. Technical report, CERN, Tech. Rep, 2005.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, et al. P4: Programming protocol-independent

90

BIBLIOGRAPHY 91

packet processors. ACM SIGCOMM Computer Communication Review, 44(3):87–

95, 2014.

[10] S. Bradner. Benchmarking terminology for network interconnection devices. RFC

1242, RFC Editor, 1991.

[11] S. Bradner and J. McQuaid. Benchmarking methodology for network interconnect

devices. RFC 2544, RFC Editor, 1999.

[12] P. Calyam, A. Berryman, E. Saule, H. Subramoni, P. Schopis, G. Springer,

U. Catalyurek, and D. K. Panda. Wide-area overlay networking to manage science

DMZ accelerated flows. In Computing, Networking and Communications (ICNC),

2014 International Conference on, pages 269–275. IEEE, 2014.

[13] M. Casado, T. Koponen, D. Moon, and S. Shenker. Rethinking packet forwarding

hardware. In HotNets, pages 1–6. Citeseer, 2008.

[14] CERN, the European Organization for Nuclear Research. Large hadron collider.

http://lhc.web.cern.ch/lhc/. Accessed: 26/02/2013.

[15] M.-S. Chen, M.-Y. Liao, P.-W. Tsai, M.-Y. Luo, C.-S. Yang, and C. E. Yeh. Using

NetFPGA to offload Linux Netfilter firewall. In 2nd North American NetFPGA

Developers Workshop, 2010.

[16] J. Collings and J. Liu. An OpenFlow-Based Prototype of SDN-Oriented Stateful

Hardware Firewalls. In Network Protocols (ICNP), 2014 IEEE 22nd International

Conference on, pages 525–528. IEEE, 2014.

[17] E. Dart. The Science DMZ. https://fasterdata.es.net/assets/

Uploads/20130717-dart-sciencedmz.pdf. Accessed: 6/10/2015.

[18] E. Dart. Science DMZ security. In Joint Techs, Winter 2013, Honolulu, Hawaii,

2013.

[19] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski. The Science DMZ:

A Network Design Pattern for Data-intensive Science. In Proceedings of the In-

ternational Conference on High Performance Computing, Networking, Storage and

Analysis, SC ’13, pages 85:1–85:10, New York, NY, USA, 2013. ACM.

[20] Data plane development kit. http://dpdk.org. Accessed: 29/07/2015.

http://lhc.web.cern.ch/lhc/
https://fasterdata.es.net/assets/Uploads/20130717-dart-sciencedmz.pdf
https://fasterdata.es.net/assets/Uploads/20130717-dart-sciencedmz.pdf
http://dpdk.org

92 BIBLIOGRAPHY

[21] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. Lazio. The square kilometre

array. Proceedings of the IEEE, 97(8):1482–1496, 2009.

[22] Energy Sciences Network. Fasterdata: Firewall architec-

ture. https://fasterdata.es.net/network-tuning/

firewall-performance-issues/firewall-architecture-exercise/.

Accessed: 13/08/2015.

[23] Energy Sciences Network. Fasterdata: Firewall performance

issues. https://fasterdata.es.net/network-tuning/

firewall-performance-issues/. Accessed: 13/08/2015.

[24] Energy Sciences Network. Iperf3. http://software.es.net/iperf/. Ac-

cessed: 11/03/2015.

[25] Energy Sciences Network. Science DMZ Security - Firewalls vs. Router ACLs.

http://fasterdata.es.net/science-dmz/science-dmz-security/,

2013. Accessed: 19/11/2012.

[26] J. Engelhardt. Relation of the different Netfilter components to another. http:

//inai.de/images/nf-components.svg, 2008.

[27] J. Engelhardt. Packet flow in Netfilter and General Networking. http://inai.

de/images/nf-packet-flow.svg, 2011.

[28] W.-c. Feng, A. Goel, A. Bezzaz, W.-c. Feng, and J. Walpole. TCPivo: a high-

performance packet replay engine. In Proceedings of the ACM SIGCOMM workshop

on Models, methods and tools for reproducible network research, pages 57–64. ACM,

2003.

[29] S. Floyd. HighSpeed TCP for large congestion windows. RFC 3649, RFC Editor,

2003.

[30] O. N. Fundation. Software-defined networking: The new norm for networks. ONF

White Paper, 2012.

[31] J. M. Gonzalez, V. Paxson, and N. Weaver. Shunting: a hardware/software archi-

tecture for flexible, high-performance network intrusion prevention. In Proceedings

of the 14th ACM conference on Computer and communications security, pages 139–

149. ACM, 2007.

https://fasterdata.es.net/network-tuning/firewall-performance-issues/firewall-architecture-exercise/
https://fasterdata.es.net/network-tuning/firewall-performance-issues/firewall-architecture-exercise/
https://fasterdata.es.net/network-tuning/firewall-performance-issues/
https://fasterdata.es.net/network-tuning/firewall-performance-issues/
http://software.es.net/iperf/
http://fasterdata.es.net/science-dmz/science-dmz-security/
http://inai.de/images/nf-components.svg
http://inai.de/images/nf-components.svg
http://inai.de/images/nf-packet-flow.svg
http://inai.de/images/nf-packet-flow.svg

BIBLIOGRAPHY 93

[32] I. Gorton, P. Greenfield, A. Szalay, and R. Williams. Data-intensive computing in

the 21st century. Computer, 41(4):30–32, 2008.

[33] T. Halfhill. Intel network processor targets routers. Microprocessor Report, 13(12):1,

1999.

[34] B. Harris and R. Hunt. TCP/IP security threats and attack methods. Computer

Communications, 22(10):885–897, 1999.

[35] S. Hemminger et al. Network emulation with NetEm. In LinuxConf AU, pages

18–23, 2005.

[36] A. Hey, S. Tansley, and K. Tolle. The fourth paradigm: data-intensive scientific

discovery. Microsoft Research Redmond, WA, 2009.

[37] B. Hickman, D. Newman, S. Tadjudin, and T. Martin. Benchmarking methodology

for firewall performance. RFC 3511, RFC Editor, 2003.

[38] ITU-T. Recommendation m.3400, tmn management functions, 2000.

[39] W. Johnston and R. McCool. The Square Kilometer Array, A next generation

scientific instrument and its implications for networks. TERENA Networking Con-

ference, 2012.

[40] T. Kelly. Scalable TCP: Improving performance in highspeed wide area networks.

ACM SIGCOMM computer communication Review, 33(2):83–91, 2003.

[41] I. Kennedy. Lost call theory. Lecture Notes, ELEN5007–Teletraffic Engineering,

School of Electrical and Information Engineering, University of the Witwatersrand,

2005.

[42] M. Kühlewind, S. Neuner, and B. Trammell. On the state of ECN and TCP options

on the internet. In Passive and active measurement, pages 135–144. Springer, 2013.

[43] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for

software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, page 19. ACM, 2010.

[44] W. Liu, R. Kettimuthu, B. Tieman, R. Madduri, B. Li, and I. Foster. Gridftp gui:

an easy and efficient way to transfer data in grid. http://www.mcs.anl.gov/

˜kettimut/talks/gridnets09.pdf. Accessed: 6/10/2015.

http://www.mcs.anl.gov/~kettimut/talks/gridnets09.pdf
http://www.mcs.anl.gov/~kettimut/talks/gridnets09.pdf

94 BIBLIOGRAPHY

[45] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous, R. Raghu-

raman, and J. Luo. NetFPGA–an open platform for gigabit-rate network switching

and routing. In Microelectronic Systems Education, 2007. MSE’07. IEEE Interna-

tional Conference on, pages 160–161. IEEE, 2007.

[46] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao, and Y. Zhang.

ServerSwitch: A Programmable and High Performance Platform for Data Center

Networks. In NSDI, volume 11, pages 2–2, 2011.

[47] G. Lu, R. Miao, Y. Xiong, and C. Guo. Using CPU as a traffic co-processing unit in

commodity switches. In Proceedings of the first workshop on Hot topics in software

defined networks, pages 31–36. ACM, 2012.

[48] M. Mathis, J. Heffner, and R. Reddy. Web100: extended TCP instrumentation

for research, education and diagnosis. ACM SIGCOMM Computer Communication

Review, 33(3):69–79, 2003.

[49] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of the TCP

congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev., 27(3):67–82,

July 1997.

[50] N. McKeown. How to tell your plumbing what to do: Protocol Independent

Forwarding. http://yuba.stanford.edu/˜nickm/talks/ONF%20Talk%

20Sept%2014%20v3.pptx. Accessed: 02/09/2015.

[51] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus networks.

SIGCOMM Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[52] P. McMahon and A. Hutchison. A security architecture for high performance com-

puting facilities. In Information Security South Africa, Balalaika Hotel, Sandton,

South Africa, 2006.

[53] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman. Application-aware

data plane processing in SDN. In Proceedings of the third workshop on Hot topics

in software defined networking, pages 13–18. ACM, 2014.

[54] T. Meyer, F. Wohlfart, D. Raumer, B. E. Wolfinger, and G. Carle. Measure-

ment and simulation of high-performance packet processing in software routers.

Leistungs-, Zuverlassigkeits-und Verlasslichkeitsbewertung von Kommunikationsnet-

zen und verteilten Systemen, 7, 2013.

http://yuba.stanford.edu/~nickm/talks/ONF%20Talk%20Sept%2014%20v3.pptx
http://yuba.stanford.edu/~nickm/talks/ONF%20Talk%20Sept%2014%20v3.pptx

BIBLIOGRAPHY 95

[55] S. Miteff and S. HazelHurst. NFShunt: a Linux firewall with OpenFlow-enabled

hardware bypass. In 2015 IEEE Conference on Network Function Virtualization

and Software Defined Network (NFV-SDN) (NFV-SDN’15), pages 102–108, San

Francisco, USA, Nov. 2015.

[56] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan. Flow-level state

transition as a new switch primitive for SDN. In Proceedings of the third workshop

on Hot topics in software defined networking, pages 61–66. ACM, 2014.

[57] R. Narayanan, S. Kotha, G. Lin, A. Khan, S. Rizvi, W. Javed, H. Khan, and S. A.

Khayam. Macroflows and microflows: Enabling rapid network innovation through

a split SDN data plane. In Software Defined Networking (EWSDN), 2012 European

Workshop on, pages 79–84. IEEE, 2012.

[58] R. R. Narisetty. How long does it take to offload traffic from firewall? Master’s

thesis, University of Houston, 2013.

[59] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. Corrêa, S. C. de Lucena,

and M. F. Magalhães. Virtual routers as a service: the routeflow approach leveraging

software-defined networks. In Proceedings of the 6th International Conference on

Future Internet Technologies, pages 34–37. ACM, 2011.

[60] D. Newman. Benchmarking terminology for firewall performance. RFC 2647, RFC

Editor, 1999.

[61] P. Newman, G. Minshall, T. Lyon, and L. Huston. IP switching and gigabit routers.

IEEE Communications magazine, 35(1):64–69, 1997.

[62] NSS Labs Inc. TEST METHODOLOGY: Next Generation Firewall (NGFW).

https://www.nsslabs.com/sites/default/files/public-report/

files/Next%20Generation%20Firewall%20Test%20Methodology%

20v5_4.pdf. Accessed: 02/09/2015.

[63] A. Nygren, B. Pfaff, B. Lantz, et al. OpenFlow Switch Specifica-

tion Version 1.5.0. https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-switch-v1.5.0.noipr.pdf, 2014.

[64] A. Ossipov. Maximising Firewall Performance. http://www.

alcatron.net/Cisco%20Live%202013%20Melbourne/Cisco%20Live%

https://www.nsslabs.com/sites/default/files/public-report/files/Next%20Generation%20Firewall%20Test%20Methodology%20v5_4.pdf
https://www.nsslabs.com/sites/default/files/public-report/files/Next%20Generation%20Firewall%20Test%20Methodology%20v5_4.pdf
https://www.nsslabs.com/sites/default/files/public-report/files/Next%20Generation%20Firewall%20Test%20Methodology%20v5_4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
http://www.alcatron.net/Cisco%20Live%202013%20Melbourne/Cisco%20Live%20Content/Security/BRKSEC-3021%20%20Maximising%20Firewall%20Performance.pdf
http://www.alcatron.net/Cisco%20Live%202013%20Melbourne/Cisco%20Live%20Content/Security/BRKSEC-3021%20%20Maximising%20Firewall%20Performance.pdf

96 BIBLIOGRAPHY

20Content/Security/BRKSEC-3021%20%20Maximising%20Firewall%

20Performance.pdf. Accessed: 27/11/2013.

[65] J. Pettit. Open vSwitch and the Intelligent Edge. http://openvswitch.org/

slides/OpenStack-140513.pdf. Accessed: 5/10/2015.

[66] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,

A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado. The Design and Im-

plementation of Open vSwitch. In 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 15), pages 117–130, Oakland, CA, May 2015.

USENIX Association.

[67] J. Pirko and S. Feldman. Ethernet switch device driver model (switchdev). https:

//www.kernel.org/doc/Documentation/networking/switchdev.txt.

Accessed: 5/10/2015.

[68] G. Pongrácz, L. Molnár, Z. L. Kis, and Z. Turányi. Cheap silicon: a myth or

reality? picking the right data plane hardware for software defined networking.

In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking, pages 103–108. ACM, 2013.

[69] Project Floodlight. Floodlight firewall. http://docs.projectfloodlight.

org/display/floodlightcontroller/Firewall+(Dev). Accessed:

22/05/2013.

[70] K. Ramakrishnan and S. Floyd. A proposal to add explicit congestion notification

(ECN) to IP. RFC 2481, RFC Editor, 1999.

[71] C. E. Rothenberg, R. Chua, J. Bailey, M. Winter, C. N. A. Corrêa, S. C. de Lucena,

M. R. Salvador, and T. D. Nadeau. When open source meets network control planes.

IEEE Computer, 47(11):46–54, 2014.

[72] S. Russell. Thimble. In Joint Techs, Winter 2013, Honolulu, Hawaii, 2013.

[73] Sergiodc2, M. Pauley, and Scil100. TCP state diagram. https:

//upload.wikimedia.org/wikipedia/commons/f/f6/Tcp_state_

diagram_fixed_new.svg, 2010.

[74] A. Shieha. Application Layer Firewall Using OpenFlow. Master’s thesis, University

of Colorado Boulder, 2014.

http://www.alcatron.net/Cisco%20Live%202013%20Melbourne/Cisco%20Live%20Content/Security/BRKSEC-3021%20%20Maximising%20Firewall%20Performance.pdf
http://www.alcatron.net/Cisco%20Live%202013%20Melbourne/Cisco%20Live%20Content/Security/BRKSEC-3021%20%20Maximising%20Firewall%20Performance.pdf
http://www.alcatron.net/Cisco%20Live%202013%20Melbourne/Cisco%20Live%20Content/Security/BRKSEC-3021%20%20Maximising%20Firewall%20Performance.pdf
http://openvswitch.org/slides/OpenStack-140513.pdf
http://openvswitch.org/slides/OpenStack-140513.pdf
https://www.kernel.org/doc/Documentation/networking/switchdev.txt
https://www.kernel.org/doc/Documentation/networking/switchdev.txt
http://docs.projectfloodlight.org/display/floodlightcontroller/Firewall+(Dev)
http://docs.projectfloodlight.org/display/floodlightcontroller/Firewall+(Dev)
https://upload.wikimedia.org/wikipedia/commons/f/f6/Tcp_state_diagram_fixed_new.svg
https://upload.wikimedia.org/wikipedia/commons/f/f6/Tcp_state_diagram_fixed_new.svg
https://upload.wikimedia.org/wikipedia/commons/f/f6/Tcp_state_diagram_fixed_new.svg

BIBLIOGRAPHY 97

[75] J. Shiers. The Worldwide LHC Computing Grid (worldwide LCG). Computer

Physics Communications, 177(1):219 – 223, 2007.

[76] J. Sommers, H. Kim, and P. Barford. Harpoon: a flow-level traffic generator for

router and network tests. In ACM SIGMETRICS Performance Evaluation Review,

volume 32, pages 392–392. ACM, 2004.

[77] A. S. Tanenbaum. Computer Networks, 3-rd edition, chapter 5, pages 410–412.

Prentice Hall, 1996.

[78] O. Titz. Why TCP over TCP is a bad idea. http://sites.inka.de/bigred/

devel/tcp-tcp.html. Accessed: 22/07/2015.

[79] B. Trammell, M. Kühlewind, D. Boppart, I. Learmonth, G. Fairhurst, and R. Schef-

fenegger. Enabling Internet-wide deployment of explicit congestion notification. In

Passive and Active Measurement, pages 193–205. Springer, 2015.

[80] R. Wang, D. Butnariu, J. Rexford, et al. Openflow-based server load balancing

gone wild, 2011.

[81] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP: motivation, architec-

ture, algorithms, performance. IEEE/ACM Transactions on Networking (ToN),

14(6):1246–1259, 2006.

[82] Y. Yang and W. Yonggang. A Software Implementation for a hybrid Firewall Using

Linux Netfilter. In Software Engineering (WCSE), 2010 Second World Congress

on, volume 1, pages 18–21. IEEE, 2010.

[83] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen. Scalable, high

performance ethernet forwarding with cuckooswitch. In Proceedings of the ninth

ACM conference on Emerging networking experiments and technologies, pages 97–

108. ACM, 2013.

http://sites.inka.de/bigred/devel/tcp-tcp.html
http://sites.inka.de/bigred/devel/tcp-tcp.html

	Introduction
	Importance of data-intensive science
	State of the art
	Hardware acceleration
	FDT-optimized tools
	Simplified filtering
	Intrusion prevention with shunting

	Limitations of the state of the art
	Load balancing
	Specialised protocols
	Simplified filtering
	Shunting

	A new approach
	Overview of the thesis

	Background
	Introduction
	Fast data transfer
	TCP performance challenges
	Alternative protocols for FDT

	High speed packet switching
	Software switching
	Hardware switching

	Traditional firewall designs
	CPU-software firewalls
	Network processors

	OpenFlow
	open vSwitch
	Architecture
	OVS utilities
	OVS usage

	Hybrid forwarding
	Multi-layer virtual switches
	Co-processor fast-path
	Co-processor slow-path
	Control plane advanced packet processing
	Forwarding plane advanced packet processing

	OpenFlow-based firewalls
	OpenFlow controller firewalls
	OpenFlow hybrid firewalls

	Netfilter - the Linux firewall
	Netfilter's design
	iptables configuration
	Netfilter connection tracking

	Traffic generation and testing
	Test standards
	Generating network traffic
	Sampling real traffic
	Simulating the network layer
	Simulating the application layer

	Conclusion

	An SDN-based shunting firewall
	Research question
	Research approach
	Prototype architecture
	Design choices
	The toolkit approach
	Transparent firewall
	Linux Ethernet bridge and Netfilter
	Integrated firewall and shunting policy

	Low-level design
	Fast path configuration
	Slow path configuration

	Prototype controller implementation
	Slow path interface
	Fast path interface
	Controller core logic
	Configuration module
	Logging module

	Conclusion

	Experimentation
	Experimental methodology
	Experimental design choices
	Lab equipment
	Lab test configurations

	Factors and levels
	Measurements
	Validation of test procedure

	Experimental results
	Shunting mechanism
	Forwarding performance
	Network performance comparison

	Discussion
	Analysis of the prototype implementation
	Experimental performance analysis
	Operations and maintenance analysis
	Fault management
	Configuration management
	Account management
	Performance management
	Security management

	Price-performance comparison
	Capital cost
	Operational cost
	Analysing cost performance

	Limitations of the research

	Conclusion and future work
	Research conclusions
	Future work

	Appendices
	openVSwitch usage
	Source code listing

		2016-05-08T16:46:07+0200
	Pretoria, South Africa
	Protect document integrity and authenticate authorship

