198 research outputs found

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    Fog Connectivity Clustering and MDP Modeling for Software-defined Vehicular Networks

    Get PDF
    Intelligent and networked vehicles cooperate to create a mobile Cloud through vehicular Fog computing (VFC). Such clouds rely heavily on the underlying vehicular networks, so estimating communication resilience allows to address the problems caused by intermittent vehicle connectivity for data transfers. Individually estimating the communication stability of vehicles, nevertheless, undergoes incorrect predictions due to their particular mobility patterns. Therefore, we provide a region-oriented fog management model based on the connectivity through vehicular heterogeneous network environment via V2X and C-V2X. A fog management strategy dynamically monitors nearby vehicles to determine distinct regions in urban centres. The model enables a software-defined vehicular network (\Gls{SDVN}) controller to coordinate data flows. The vehicular connectivity described by our model assesses the potential for vehicle communication and conducts dynamic vehicle clustering. From the stochasticity of the environment, our model is based on Markov Decision Process (MDP), tracking the status of vehicle clusters and their potential for provisioning services. The model for vehicular clustering is supported by 5G and DSRC heterogeneous networks. Simulated analyses have shown the capability of our proposed model to estimate cluster reliability in real-time urban scenarios and support effective vehicular fog management

    Resource sharing in vehicular cloud

    Get PDF
    Au cours des dernières années, on a observé l'intérêt croissant envers l'accessibilité à l'information et, en particulier, envers des approches innovantes utilisant les services à distance accessibles depuis les appareils mobiles à travers le monde. Parallèlement, la communication des véhicules, utilisant des capteurs embarqués et des dispositifs de communication sans fil, a été introduite pour améliorer la sécurité routière et l'expérience de conduite à travers ce qui est communément appelé réseaux véhiculaires (VANET). L'accès sans fil à l’Internet à partir des véhicules a déclenché l'émergence de nouveaux services pouvant être disponibles à partir ceux-ci. Par ailleurs, une extension du paradigme des réseaux véhiculaires a été récemment promue à un autre niveau. Le nuage véhiculaire (Vehicular Cloud) (VC) est la convergence ultime entre le concept de l’infonuagique (cloud computing) et les réseaux véhiculaires dans le but de l’approvisionnement et la gestion des services. Avec cette approche, les véhicules peuvent être connectés au nuage, où une multitude de services sont disponibles, ou ils peuvent aussi être des fournisseurs de services. Cela est possible en raison de la variété des ressources disponibles dans les véhicules: informatique, bande passante, stockage et capteurs. Dans cette thèse, on propose des méthodes innovantes et efficaces pour permettre la délivrance de services par des véhicules dans le VC. Plusieurs schémas, notamment la formation de grappes ou nuages de véhicules, la planification de transmission, l'annulation des interférences et l'affectation des fréquences à l'aide de réseaux définis par logiciel (SDN), ont été développés et leurs performances ont été analysées. Les schémas de formation de grappes proposés sont DHCV (un algorithme de clustering D-hop distribué pour VANET) et DCEV (une formation de grappes distribuée pour VANET basée sur la mobilité relative de bout en bout). Ces schémas de regroupement sont utilisés pour former dynamiquement des nuages de véhicules. Les systèmes regroupent les véhicules dans des nuages qui ne se chevauchent pas et qui ont des tailles adaptées à leurs mobilités. Les VC sont créés de telle sorte que chaque véhicule soit au plus D sauts plus loin d'un coordonnateur de nuage. La planification de transmission proposée implémente un contrôle d'accès moyen basé sur la contention où les conditions physiques du canal sont entièrement analysées. Le système d'annulation d'interférence permet d'éliminer les interférences les plus importantes; cela améliore les performances de planification d’utilisation de la bande passante et le partage des ressources dans les nuages construits. Enfin, on a proposé une solution à l'aide de réseaux définis par logiciel, SDN, où différentes bandes de fréquences sont affectées aux différentes liens de transmission de chaque VC afin d’améliorer les performances du réseau.Abstract : In recent years, we have observed a growing interest in information accessibility and especially innovative approaches for making distant services accessible from mobile devices across the world. In tandem with this growth of interest, there was the introduction of vehicular communication, also known as vehicular ad hoc networks (VANET), leveraging onboard sensors and wireless communication devices to enhance road safety and driving experience. Vehicles wireless accessibility to the internet has triggered the emergence of service packages that can be available to or from vehicles. Recently, an extension of the vehicular networks paradigm has been promoted to a new level. Vehicular cloud (VC) is the ultimate convergence between the cloud computing concept and vehicular networks for the purpose of service provisioning and management. Vehicles can get connected to the cloud, where a multitude of services are available to them. Also vehicles can offer services and act as service providers rather than service consumers. This is possible because of the variety of resources available in vehicles: computing, bandwidth, storage and sensors. In this thesis, we propose novel and efficient methods to enable vehicle service delivery in VC. Several schemes including cluster/cloud formation, transmission scheduling, interference cancellation, and frequency assignment using software defined networking (SDN) have been developed and their performances have been analysed. The proposed cluster formation schemes are DHCV (a distributed D-hop clustering algorithm for VANET) and DCEV (a distributed cluster formation for VANET based on end-to-end relative mobility). These clustering schemes are used to dynamically form vehicle clouds. The schemes group vehicles into non-overlapping clouds, which have adaptive sizes according to their mobility. VCs are created in such a way that each vehicle is at most D-hops away from a cloud coordinator. The proposed transmission scheduling implements a contention-free-based medium access control where physical conditions of the channel are fully analyzed. The interference cancellation scheme makes it possible to remove the strongest interferences; this improves the scheduling performance and resource sharing inside the constructed clouds. Finally, we proposed an SDN based vehicular cloud solution where different frequency bands are assigned to different transmission links to improve the network performance

    Quality of service aware data dissemination in vehicular Ad Hoc networks

    Full text link
    Des systèmes de transport intelligents (STI) seront éventuellement fournis dans un proche avenir pour la sécurité et le confort des personnes lors de leurs déplacements sur les routes. Les réseaux ad-hoc véhiculaires (VANETs) représentent l'élément clé des STI. Les VANETs sont formés par des véhicules qui communiquent entre eux et avec l'infrastructure. En effet, les véhicules pourront échanger des messages qui comprennent, par exemple, des informations sur la circulation routière, les situations d'urgence et les divertissements. En particulier, les messages d'urgence sont diffusés par des véhicules en cas d'urgence (p.ex. un accident de voiture); afin de permettre aux conducteurs de réagir à temps (p.ex., ralentir), les messages d'urgence doivent être diffusés de manière fiable dans un délai très court. Dans les VANETs, il existe plusieurs facteurs, tels que le canal à pertes, les terminaux cachés, les interférences et la bande passante limitée, qui compliquent énormément la satisfaction des exigences de fiabilité et de délai des messages d'urgence. Dans cette thèse, en guise de première contribution, nous proposons un schéma de diffusion efficace à plusieurs sauts, appelé Dynamic Partitioning Scheme (DPS), pour diffuser les messages d'urgence. DPS calcule les tailles de partitions dynamiques et le calendrier de transmission pour chaque partition; à l'intérieur de la zone arrière de l'expéditeur, les partitions sont calculées de sorte qu'en moyenne chaque partition contient au moins un seul véhicule; l'objectif est de s'assurer que seul un véhicule dans la partition la plus éloignée (de l'expéditeur) est utilisé pour diffuser le message, jusqu'au saut suivant; ceci donne lieu à un délai d'un saut plus court. DPS assure une diffusion rapide des messages d'urgence. En outre, un nouveau mécanisme d'établissement de liaison, qui utilise des tonalités occupées, est proposé pour résoudre le problème du problème de terminal caché. Dans les VANETs, la Multidiffusion, c'est-à-dire la transmission d'un message d'une source à un nombre limité de véhicules connus en tant que destinations, est très importante. Par rapport à la diffusion unique, avec Multidiffusion, la source peut simultanément prendre en charge plusieurs destinations, via une arborescence de multidiffusion, ce qui permet d'économiser de la bande passante et de réduire la congestion du réseau. Cependant, puisque les VANETs ont une topologie dynamique, le maintien de la connectivité de l'arbre de multidiffusion est un problème majeur. Comme deuxième contribution, nous proposons deux approches pour modéliser l'utilisation totale de bande passante d'une arborescence de multidiffusion: (i) la première approche considère le nombre de segments de route impliqués dans l'arbre de multidiffusion et (ii) la seconde approche considère le nombre d'intersections relais dans l'arbre de multidiffusion. Une heuristique est proposée pour chaque approche. Pour assurer la qualité de service de l'arbre de multidiffusion, des procédures efficaces sont proposées pour le suivi des destinations et la surveillance de la qualité de service des segments de route. Comme troisième contribution, nous étudions le problème de la congestion causée par le routage du trafic de données dans les VANETs. Nous proposons (1) une approche de routage basée sur l’infonuagique qui, contrairement aux approches existantes, prend en compte les chemins de routage existants qui relaient déjà les données dans les VANETs. Les nouvelles demandes de routage sont traitées de sorte qu'aucun segment de route ne soit surchargé par plusieurs chemins de routage croisés. Au lieu d'acheminer les données en utilisant des chemins de routage sur un nombre limité de segments de route, notre approche équilibre la charge des données en utilisant des chemins de routage sur l'ensemble des tronçons routiers urbains, dans le but d'empêcher, dans la mesure du possible, les congestions locales dans les VANETs; et (2) une approche basée sur le réseau défini par logiciel (SDN) pour surveiller la connectivité VANET en temps réel et les délais de transmission sur chaque segment de route. Les données de surveillance sont utilisées en entrée de l'approche de routage.Intelligent Transportation Systems (ITS) will be eventually provided in the near future for both safety and comfort of people during their travel on the roads. Vehicular ad-hoc Networks (VANETs), represent the key component of ITS. VANETs consist of vehicles that communicate with each other and with the infrastructure. Indeed, vehicles will be able to exchange messages that include, for example, information about road traffic, emergency situations, and entertainment. Particularly, emergency messages are broadcasted by vehicles in case of an emergency (e.g., car accident); in order to allow drivers to react in time (e.g., slow down), emergency messages must be reliably disseminated with very short delay. In VANETs, there are several factors, such as lossy channel, hidden terminals, interferences and scarce bandwidth, which make satisfying reliability and delay requirements of emergency messages very challenging. In this thesis, as the first contribution, we propose a reliable time-efficient and multi-hop broadcasting scheme, called Dynamic Partitioning Scheme (DPS), to disseminate emergency messages. DPS computes dynamic partition sizes and the transmission schedule for each partition; inside the back area of the sender, the partitions are computed such that in average each partition contains at least a single vehicle; the objective is to ensure that only a vehicle in the farthest partition (from the sender) is used to disseminate the message, to next hop, resulting in shorter one hop delay. DPS ensures fast dissemination of emergency messages. Moreover, a new handshaking mechanism, that uses busy tones, is proposed to solve the problem of hidden terminal problem. In VANETs, Multicasting, i.e. delivering a message from a source to a limited known number of vehicles as destinations, is very important. Compared to Unicasting, with Multicasting, the source can simultaneously support multiple destinations, via a multicast tree, saving bandwidth and reducing overall communication congestion. However, since VANETs have a dynamic topology, maintaining the connectivity of the multicast tree is a major issue. As the second contribution, we propose two approaches to model total bandwidth usage of a multicast tree: (i) the first approach considers the number of road segments involved in the multicast tree and (ii) the second approach considers the number of relaying intersections involved in the multicast tree. A heuristic is proposed for each approach. To ensure QoS of the multicasting tree, efficient procedures are proposed for tracking destinations and monitoring QoS of road segments. As the third contribution, we study the problem of network congestion in routing data traffic in VANETs. We propose (1) a Cloud-based routing approach that, in opposition to existing approaches, takes into account existing routing paths which are already relaying data in VANETs. New routing requests are processed such that no road segment gets overloaded by multiple crossing routing paths. Instead of routing over a limited set of road segments, our approach balances the load of communication paths over the whole urban road segments, with the objective to prevent, whenever possible, local congestions in VANETs; and (2) a Software Defined Networking (SDN) based approach to monitor real-time VANETs connectivity and transmission delays on each road segment. The monitoring data is used as input to the routing approach

    Optimization of vehicular networks in smart cities: from agile optimization to learnheuristics and simheuristics

    Get PDF
    Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly enhance citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.Peer ReviewedPostprint (published version

    SECURITY, PRIVACY AND APPLICATIONS IN VEHICULAR AD HOC NETWORKS

    Get PDF
    With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs

    Vehicular Ad Hoc Networks: Growth and Survey for Three Layers

    Get PDF
    A vehicular ad hoc network (VANET) is a mobile ad hoc network that allows wireless communication between vehicles, as well as between vehicles and roadside equipment. Communication between vehicles promotes safety and reliability, and can be a source of entertainment. We investigated the historical development, characteristics, and application fields of VANET and briefly introduced them in this study. Advantages and disadvantages were discussed based on our analysis and comparison of various classes of MAC and routing protocols applied to VANET. Ideas and breakthrough directions for inter-vehicle communication designs were proposed based on the characteristics of VANET. This article also illustrates physical, MAC, and network layer in details which represent the three layers of VANET. The main works of the active research institute on VANET were introduced to help researchers track related advanced research achievements on the subject
    corecore