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Abstract 
With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) 

enable numerous applications to enhance traffic safety, traffic efficiency, and driving 

experience. However, VANETs also impose severe security and privacy challenges 

which need to be thoroughly investigated. In this dissertation, we enhance the security, 

privacy, and applications of VANETs, by 1) designing application-driven security and 

privacy solutions for VANETs, and 2) designing appealing VANET applications with 

proper security and privacy assurance.  

First, the security and privacy challenges of VANETs with most application 

significance are identified and thoroughly investigated. With both theoretical novelty and 

realistic considerations, these security and privacy schemes are especially appealing to 

VANETs. Specifically, multi-hop communications in VANETs suffer from packet 

dropping, packet tampering, and communication failures which have not been 

satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet 

relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop 

communications by enhancing the cooperation of neighboring nodes. Message 

verification, including both content and signature verification, generally is computation-

extensive and incurs severe scalability issues to each node. The resource-aware message 

verification (RAMV) scheme is proposed to ensure resource-aware, secure, and 

application-friendly message verification in VANETs.  

On the other hand, to make VANETs acceptable to the privacy-sensitive users, the 

identity and location privacy of each node should be properly protected. To this end, a 

joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically 

support privacy protection and reputation management by reconciling their inherent 

conflicting requirements. Besides, the privacy implications of short-time certificates are 

thoroughly investigated in a short-time certificates-based privacy protection (STCP2) 

scheme, to make privacy protection in VANETs feasible with short-time certificates.  

Secondly, three novel solutions, namely VANET-based ambient ad dissemination 

(VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to 

support the appealing value-added applications based on VANETs. These solutions all 
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follow practical application models, and an incentive-centered architecture is proposed 

for each solution to balance the conflicting requirements of the involved entities. Besides, 

the critical security and privacy challenges of these applications are investigated and 

addressed with novel solutions. Thus, with proper security and privacy assurance, these 

solutions show great application significance and economic potentials to VANETs.  

Thus, by enhancing the security, privacy, and applications of VANETs, this 

dissertation fills the gap between the existing theoretic research and the realistic 

implementation of VANETs, facilitating the realistic deployment of VANETs.   
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Chapter 1 Introduction 
This chapter introduces the background and the state-of-the-art of VANET-related 

research, based on which the research motivations and major contributions of this 

dissertation are presented.  

1.1 VANETs 

Transportation has huge impacts on the economic and human assets in modern 

societies. For instance, in the USA, in 2009 alone traffic accidents resulted in totally 

30,797 deaths [1], and traffic congestion caused an economic cost of about $115 billion 

[2]. Thus, it is meaningful to enhance transportation safety and efficiency. One especially 

promising approach to this end is to integrate transportation systems with information 

technology in intelligent transportation systems (ITS) [3], where vehicular ad hoc 

networks (VANETs) have been envisioned as an indispensible component.  

VANETs are special mobile ad hoc networks (MANETs) formed by smart vehicles. It 

is envisioned that in the future vehicles will become smart, in the sense that each vehicle 

will be equipped with information processing devices (on-board CPU), information 

collection devices (on-board sensors), on-board display devices as well as wireless 

communication devices [4]. Based on the nature of involved communications, VANETs 

generally consist of two domains [5]-[7] as shown in Figure 1.1: an ad hoc domain and 

an infrastructure domain. 

The ad hoc domain is formed by smart vehicles which wirelessly communicate with 

one another (V2V) via dedicated short range communication (DSRC) [8] and wireless 

access in vehicular environments (WAVE) [9] technologies. Each vehicle (also called 

vehicular node, or simply node) will periodically (with a period between 100ms and 

500ms) broadcast beacons containing its driving state, such as its current location, speed, 

and heading direction, to support road safety applications [10]. To provide security, each 

node will carry one or more certificates issued by a certificate authority (CA) in VANETs. 

A Tamper-proof device (TPD) [11] exists in each node to keep its cryptographic elements, 

for example private keys, secure and confidential.  
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Figure 1.1 Exemplary VANET architecture 

The infrastructure domain contains the managerial entities in charge of certification, 

registration, ID management, registration, and so on. Here, for brevity, all these entities 

are abstracted as the VANET Authority. The infrastructure domain also includes service 

providers for various applications, such as traffic management, traffic analysis, and 

location-based services (LBS) which are not shown in Figure 1.1 for brevity. Roadside 

units (RSUs) are deployed along road sides as vehicular nodes’ access points to the 

infrastructure domain. Due to cost considerations, RSUs may be only sparsely deployed 

in VANETs, usually in road intersections or important downtown areas. Vehicle-to-

roadside (V2R) communications are also based on DSRC [8] and WAVE [9]. The 

communications between RSUs and the infrastructure domain and within the 

infrastructure domain may adopt the existing mature communication technologies, such 

as WiMax, 3G, 4G, ATM and so on, which are out of the context of this dissertation.  

With V2V and V2R communications, VANETs can greatly enhance traffic safety with 

applications such as collision avoidance, lane merge assistance, and so on  [10]. Besides, 

VANETs provide an efficient approach to collect real-time traffic data from individual 

nodes [12], based on which traffic analysis and management can be further optimized. 

For instance, autonomous traffic control [13], [14] based on the real-time traffic data can 

be readily supported by V2R communications in VANETs. Eventually, VANETs provide 

a handy platform for information sharing among vehicles, based on which driving 

experience can be enhanced with applications such as ad dissemination [15], Internet on-

the-wheel, on-road video game playing [16], and so on. Thus, VANETs open the door to 

numerous promising applications.  
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Due to VANET’s application potentials, the Federal Communications Commission 

(FCC) specifically allocated 5,850 MHz to 5,925 MHz radio band to DSRC 

communications [17] in the USA, and in Europe the 5,725 MHz to 5,875 MHz Industrial, 

Scientific and Medical (ISM) band is allocated for DSRC communications [8]. Recently, 

US Department of Transportation (DoT), with various state DoTs, has been researching 

the technical and policy issues of VANETs in Vehicle-Infrastructure Integration (VII) [18] 

and later IntelliDrive [19]. The European Union also funds many research projects for 

VANETs, such as Secure Vehicular Communication (SeVeCom) [20], Cooperative 

Vehicle Infrastructure System (CVIS) [21], Adaptive Integrated Driver-vehicle InterfacE 

(AIDE) [22], E-safety Vehicle Intrusion Protected Applications (EVITA) [23], and Co-

operative systems for intelligent road safety (COOPERs) [24], to name only a few. 

Among them, SeVeCom [20] aims to derive a threat model and a security architecture for 

VANETs; CVIS [21] aims to propose a universal communication module for VANETs 

based on Continuous Air Interface for Long and Medium Interface (CALM) [25], and 

propose realistic traffic safety applications. Japanese research mainly is focused on V2R 

communications [26]. Due to the relatively smaller area of European countries and Japan, 

their projects generally assume that V2R communications are pervasive in VANETs. 

However, in the USA RSUs may only be available in hot spots, such as downtown areas. 

Thus, the research projects in the USA generally are focused on V2V communications 

and only assume sparse V2R communications.  

Recently, there is a trend of integrating various communication technologies in 

VANETs, as envisioned by CALM [25] and heterogeneous vehicular communications 

[27]. However, DSRC [8] and WAVE [9] are still commonly assumed to be the 

dominating technologies for V2V and V2R communications in VANETs. Thus, this 

dissertation only considers DSRC [8] and WAVE [9] in VANET communications.       

1.2 Security and Privacy in VANETs 

As distributed systems, VANETs also impose severe security and privacy challenges. 

Specifically, to fully realize the application potentials of VANETs, especially those of the 

traffic safety applications, security provisioning is necessary to ensure the proper 

functioning of VANETs. Otherwise, VANETs might become a handy tool to harm traffic 
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safety and traffic management [28]. For instance, by broadcasting false warnings about 

its emergent braking, one misbehaving vehicle may cause the vehicles behind itself to 

collide. Besides, the unique characteristics of VANETs, such as infrequent access to 

infrastructure, high node mobility, and precious assets at risk, to name only a few, make 

security provisioning more challenging than that of the general ad hoc networks [5].  

Currently, many security schemes have been proposed for VANETs, among which the 

representative ones have been reviewed in our book chapter [5], as well as several 

existing surveys [4], [6], [7], [29]-[39]. Here, the existing security schemes are 

categorized and summarized according to their design goals. Detailed reviews on each 

individual scheme will be given later in the context of our proposed schemes.   

Identity Management: In VANETs, to ensure message integrity, message authenticity, 

node authentication and node non-repudiation, identity management schemes are 

necessary to securely represent the identities of both vehicular nodes and RSUs. Briefly 

speaking, to prove its identity and its eligibility of participating in VANET 

communications, an entity needs a certificate issued by the VANET Authority. Besides 

the common public key cryptography techniques, several special digital signature 

techniques, such as group signature [40], ring signature [41], and identity-based signature 

[42], [43], can also be adopted in VANETs for identity management. For instance, [44] 

proposes an identity management framework for VANETs based on group signature. Still, 

many existing schemes [45]-[56] adopt a PKI-like approach to manage certificates, with 

various techniques to adapt to the unique characteristics of VANETs. In these schemes, 

certificate revocation list (CRL) distribution is necessary to evict the misbehaving nodes 

due to the relatively long lifetime of each certificate, which may incur heavy 

communication overhead. Thus, free of CRL distribution, short-time certificate schemes 

[57]-[60] are gaining popularity in VANETs. To ensure privacy-preserving node 

authentication, several anonymous authentication protocols [61], [62] have been 

proposed for VANETs. To detect the nodes which assume the identity of other nodes by 

launching the Sybil attack, several existing schemes [63], [64], [65] can be adopted.  

Message Verification: To ensure message integrity and authenticity in VANETs, each 

node needs to verify the content [66]-[69] and digital signature of each received message. 

However, due to the numerous messages each node can receive, message verification 
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must be efficient and scalable. Among existing schemes, several schemes [45], [70], [71] 

attempt to reduce the resource required for verifying each message, while others [72]-[74] 

attempt to reduce the number of messages to be verified by each vehicle. So far, these 

schemes fail to ensure efficiency, security, and application-friendliness at the same time.  

Cooperation Enhancement and Misbehavior Detection: In VANETs, it is necessary 

to detect the misbehaviors of any node to ensure reliable traffic safety applications and 

robust communications. Thus, several existing schemes [66]-[68], [75], [76] verify the 

content, for instance the location information, broadcasted by vehicular nodes; [77]-[81] 

rely on the watchdog mechanism to detect the routing and packet relaying behaviors in ad 

hoc networks, which may be adopted in VANETs. Besides, various incentives are 

adopted to encourage the cooperation of nodes in VANETs or general ad hoc networks, 

such as credit [82]-[84] and reputation [80], [85]-[88]. Several schemes [89]-[91] have 

been proposed to evict the misbehaving nodes from VANETs, usually with the 

cooperation of neighbors. So far, these schemes still fail to ensure reliable and faithful 

multi-hop communication in VANETs: watchdog-based schemes [77]-[81] generally 

perform badly in face of communication issues, while reputation or credit-based schemes 

[80], [85]-[88] cannot react fast enough to prevent the dissemination of invalid messages 

in VAENTs. Thus, a comprehensive solution to ensure reliable and faithful multi-hop 

communications is still needed to support various VANET applications.   

Trust & Reputation: In VANETs and general networks, trust and reputation are a 

powerful tool to encourage node cooperation and punish node misbehaviors [92]. 

Currently, various trust model and metrics based on information theory [93]-[95], 

Bayesian theory [96]-[98], graph theory [99]-[101] and abstract algebra [102] have been 

proposed for general ad hoc networks and VANETs. The representative reputation 

schemes have been reviewed in [103], and in [104] the optimization of parameters in trust 

evaluation is discussed. Several trust schemes [105]-[107] for VANETs evaluate not only 

the cooperation of nodes but also the trustworthiness of the data itself, due to the 

importance of authentic data to VANETs.  

In this direction, one remaining issue is to efficiently and reliably maintain the 

reputation history of vehicular nodes in the face of high node mobility and, potentially, 
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frequent pseudonym changes for privacy protection as discussed next. So far, only [108] 

begins to address this issue, with many issues still open.     

Privacy Protection: The pervasive wireless vehicular communications and periodic 

beacons impose severe privacy issues [109]. By overhearing VANET communications, 

one powerful adversary may figure out the real identities of its interested nodes and 

profile them in terms of application accessing and personal information. Thus, several 

schemes [61], [62], [110] have been proposed to enable privacy-preserving node 

authentication in VANETs. Still, by overhearing the periodic beacons one adversary may 

collect the location history of any node. Thus, to protect the identity privacy of each node, 

each node may use pseudonyms instead of its real identity in VANET communications, 

as in [111]-[115]. Here, a pseudonym of one node is a temporary identifier without any 

obvious connection to its real identity, and a pseudonym usually consists of a certificate, 

a MAC address and an IP address. However, by collecting personal information and 

movement trajectory related to one pseudonym, an adversary may still derive the real 

identity of one node. Thus, frequent pseudonym change has been adopted in many 

schemes [116]-[127] to protect the location privacy of vehicular nodes and reduce the 

personal information revealed by any pseudonym. Briefly speaking, the major differences 

among these schemes [116]-[127] lie in the strategies of pseudonym changing. Especially, 

several schemes [128], [129] adopt the concept of mix [130], [131], so that vehicular 

nodes will change their pseudonyms to form mix zones for VANETs.  

Besides pseudonym change, several special approaches for privacy protection exist in 

VANETs. For instance, [132] proposes that in contention-based forwarding each node 

should contend with a dummy distance to the destination, instead of its true locations, to 

protect location privacy. However, [132] ignores the periodic beacons in VANETs which 

will reveal the true location of each node anyway. [133] proposes that each node only 

sends out a fuzzy location in its beacons to protect its privacy, which may not be practical 

due to the safety risks. [134] proposes a pseudonym-less beaconing scheme for VANETs, 

based on secret keys shared by node groups. However, this scheme ignores the fact that 

the IP and MAC addresses of each node also form the pseudonym for this node.  

Overall, the privacy protection for VANETs has been extensively studied. However, it 

is still necessary to investigate the interactions between privacy protection and other 
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security schemes, for instance reputation management. The conflicting requirements 

imposed by such schemes may make it challenging, if not impossible, for such schemes 

to coexist in VANETs. Besides, the existing privacy protection schemes mostly assume 

that each node has multiple pseudonyms at any time and can change them at will. 

However, privacy protection with other assumptions is still meaningful, since short-time 

certificates may still be implemented in VANETs in the future. Thus, it is meaningful to 

investigate privacy protection with short-time certificates.   

General Security Topics: Besides the topics discussed above, several general security 

topics are still meaningful. For instance, [135] investigates the impact of VANET 

security on traffic safety, and [136] investigates geocast in VANETs and proposes a 

secure geocast protocol. [137] evaluates the performance of a basic VANET model 

implementing representative security schemes to identify new design issues for VANETs.  

In summary, from the above reviews and discussions, several major open research 

issues for VANETs can be identified: reliable and trustworthy multi-hop communication, 

resource-aware and application-friendly message verification, as well as synergistic 

coexistence of multiple security schemes in VANETs. These open issues need to be 

investigated and properly solved to enable the imminent implementation of VAENTs, so 

they are the major concerns of this dissertation. Besides, existing security schemes and 

privacy protection schemes generally lack careful considerations of the realistic 

constraints imposed by VANETs. Thus, in this dissertation, special care will be taken to 

make our proposed schemes readily applicable to the realistic VANETs.    

1.3 Envisioned Applications for VANETs 

To exploit the pervasive vehicular communications, numerous applications have been 

proposed or envisioned for VANETs, including traffic safety applications, traffic 

management applications and value-added (commercial) applications.  

Traffic safety applications are the primary justification for VANETs. Many traffic 

safety applications such as collision avoidance, lane change assistance, traffic light 

violation warning, and so on [10] have been proposed for VANETs. To support such 

applications, each node needs to periodically (with a period from 100ms to 500ms) 

broadcast beacons to indicate its driving states, including location, speed, driving 
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direction and so on, to its neighboring nodes [10]. Besides, warnings about traffic 

incidents should be disseminated to the vehicles which may be influenced by such 

incidents. Traffic safety applications and the incurred communications should be 

assigned the highest priority in VANETs.  

Relying on V2V and V2R communications, real-time traffic statistics may be collected 

from vehicular nodes, based on which traffic monitoring and traffic management could 

be enhanced. For instance, autonomous traffic control [13], [14] can be cost-effectively 

supported with VANETs. The application of float car data collection [12] can also be 

cost-effectively supported with VANETs, where cellular communication from each 

vehicle to a central data center is not necessary. Smart traffic routing is envisioned in 

CVIS [21] based on V2V and V2R communications to improve traffic efficiency in 

downtown areas. Besides traffic statistics, VANETs provide a ready platform to collect 

environmental and weather information about the roads. For instance, Clarus [138] is a 

road weather management system proposed to this end.  

Value-added (commercial) applications are gaining popularity in VANETs due to two 

reasons. First, such applications can attract more users to VANETs. Secondly, VANETs 

with V2V and V2R communications may enable more cost-effective solutions for such 

applications. For instance, in [139] a parking lot management system based on VANETs 

is proposed. On-road entertainment [16], [140], [141] is another promising value-added 

application for VANETs. With numerous nodes in VANETs, ad dissemination in 

VANETs [15] may be especially efficient and cost-effective.  

In summary, VANETs show great application potentials, which will be further realized 

with new value-added applications in this dissertation.  

1.4 Motivations and Contributions 

As previously discussed, the open research issues form a great gap between the 

existing research and the realistic implementation of VANETs. Thus, the major research 

motivation of this dissertation is to fill this gap with 1) application-driven security and 

privacy solutions and 2) applications with security and privacy assurance. Driven by the 

realistic constraints of various VANET applications, we propose theoretically novel 

security and privacy solutions which are readily applicable to VANETs. On the other 
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hand, we propose new value-added applications for VANETs, which feature satisfying 

security provisioning and privacy protection. Thus, this dissertation greatly enhances the 

security, privacy and applications of VANETs.  

Specifically, by identifying the root cause of unreliable multi-hop communications, we 

propose a lightweight reliable and faithful data packet relaying framework (LEAPER) 

[142] for VANETs. With LEAPER, reliable and faithful multi-hop communications, the 

basis of many VANET applications, can be ensured in various network scenarios. 

Additionally, by differentiating various messages, we propose a resource-aware message 

verification scheme (RAMV) [143], [144] to ensure secure and scalable message 

verification in VANETs which underlies the traffic safety applications.  

To make privacy protection practical and compatible to other security schemes, we 

propose a joint privacy reputation assurance scheme (JPRA) [145], [146] to enable the 

efficient and synergistic coexistence of privacy protection and reputation management in 

VANETs. Besides, a short-time certificate-based privacy protection scheme (STCP2) 

[147] is proposed to protect the location privacy of vehicular nodes with short-time 

certificates. With JPRA and STCP2, privacy protection becomes both feasible and cost-

effective in various VANET scenarios. 

Three appealing solutions, namely general purpose automatic survey (GPAS) [148], 

[149], VANET-based ambient ad dissemination (VAAD) [150] and VANET-based 

vehicle performance monitoring and analysis (VehicleView) [151], [152] are proposed to 

support various value-added applications based on VANETs. Besides being efficient and 

cost-effective, these solutions all feature proper security and privacy assurance for the 

involved entities. Thus, being cost-effective, secure and privacy-preserving, these 

solutions can be readily implemented in VANETs.  

Thus, by enhancing the security, privacy and applications of VANETs with both 

theoretic novelty and realistic solutions, this dissertation fills the gap between research 

and implementation, pushing VANETs further to the stage of massive deployment. 
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Chapter 2 Reliable and Trustworthy Multi-hop 
Communications1 

In VANETs, reliable and trustworthy multi-hop communications are critical to many 

important applications. In this chapter, the root causes of unreliable and tampered multi-

hop communications are identified, based on which a novel Adaptive Role Playing (ARP) 

strategy is proposed to tackle these issues with the cooperation of neighboring nodes. A 

Lightweight Reliable Faithful Data Packet Relaying Framework (LEAPER) [142] is 

proposed to implement the ARP strategy in each hop and ensure reliable and faithful 

multi-hop communications. In each hop the required security strength is configurable, 

making LEAPER flexible and adaptive to various application scenarios. Theoretical 

analysis and simulation studies show that LEAPER outperforms existing schemes in 

terms of communication overhead and security strength.  

2.1 Introduction 

Many VANET applications designed to enhance driving safety and convenience [10], 

[153], such as Accident Warning, Event Reporting, Car-to-Home Synchronization, and so 

on, rely on reliable and trustworthy multi-hop communications. However, in VANETs 

multi-hop communications (packet relaying) often suffer from various node misbehaviors 

and malfunctions such as packet tampering and packet dropping. For instance, the loss or 

tampering of a warning message about an accident may render the approaching vehicles 

unprepared for the potential dangers. Besides, tampered packets, once propagated 

throughout VANETs, are also a waste of the network resource.  

Thus, reliable and faithful data packet relaying is vital to VANETs. Here, reliable 

relaying of a data packet means that this packet will be relayed by each intermediate 

relaying node; faithful relaying requires that the data packet will not be tampered. 

However, to our best knowledge, the existing schemes fail to meet both requirements as 

discussed in detail in section 2.2.  

                                                 
1 The material contained in this chapter was previously published in the journal of Ad 

Hoc Networks. © 2011 Elsevier. See Appendix A for documentation of the permission to 
republish this material.  
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In this chapter a novel Adaptive Role Playing (ARP) strategy is proposed to allow the 

nodes in each hop to adaptively play the roles of a relaying node or watchdog monitoring 

the relaying node, based on their capabilities for such roles and their neighbors’ behaviors. 

Thus, if one current role is not played honestly by a misbehaving or malfunctioning node, 

it will be taken over by the other honest nodes, so that the data packet will be faithfully 

relayed in each hop. As such, in principle ARP can prevent the malfunctioning and 

misbehaving nodes from directly affecting packet relaying in each hop, which is its major 

advantage over existing schemes. A Lightweight REliable and FAithful Packet RElaying 

FRamework (LEAPER) is proposed to securely implement the ARP strategy, organizing 

the nodes in each hop into a trust group where each node’s behaviors are monitored by its 

neighbors. Thus, reliable and faithful data packet relaying can be ensured in each trust 

group, based on which end-to-end reliable and faithful packet relaying can be achieved.  

Besides, a configurable security threshold k is adopted in LEAPER to determine the 

number of required watchdogs in each hop, tuning the tradeoff between the security 

strength and performance requirements in various application scenarios. Theoretic 

analysis and simulation studies prove LEAPER’s salient merits compared to the existing 

schemes in face of misbehaving and malfunctioning VANET nodes.  

2.2 Background & Related Work 

2.2.1 Background 

Here the problem of ensuring reliable and faithful packet relaying is considered in 

multi-hop communication scenarios where simplistic flooding [154] is not feasible due to 

the communication overhead involved. If one node needs to determine whether the 

received data packet is authentic or not, it has to depend on the information from its 

previous hop. Such a scenario is common in either urban areas or highways, so in this 

chapter the traffic models are not differentiated. Indeed, as we will show in section 2.5, 

the procedures of LEAPER in each hop will end within 100ms so that the network 

topology can be considered as being fixed during the concerned period. Thus, the merges 

and departures in the urban traffic model have no direct impact on the procedures of 

LEAPER and do not need to be considered. 
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Figure 2.1 Exemplary relayers and watchdogs in VANETs 

For brevity, following the conventions of [77], [155], in each hop the relaying node is 

called a Relayer. Due to the nature of wireless communications, the nodes within the 

communication range of the Relayer can overhear the data packet. Thus, as shown in 

Figure 2.1, the nodes within the communication ranges of both Relayers in hop i and hop 

(i+1) can verify whether the data packet sent by hop (i+1) is the same as that sent by hop 

i, functioning as the watchdogs for hop (i+1). These watchdogs can in turn inform the 

next hop of hop (i+1), namely hop (i+2), of their opinion about the data packet, so that 

hop (i+2) is able to know whether the data packet from hop (i+1) is authentic or not.  

Thus, four basic functions critical to reliable and faithful data packet relaying can be 

abstracted in each hop: data reception, data verification, data transmission and proof 

presenting, as shown in Figure 2.2. In data reception, the nodes in one hop (say hop i) 

receive or overhear the data packet (Di 1) from the previous hop. These nodes need to 

verify the authenticity of Di 1 based on the proof presented by the previous hop with the 

data verification function. Di 1, if regarded as authentic, will be transmitted to hop (i+1) 

in the form of Di by the Relayer in hop i. Similarly, in proof presenting the nodes in hop i 

need to present the proof of the authenticity of Di, usually constructed and vouched for by 

the watchdogs of hop i, to hop (i+1). As such, these four basic functions can establish the 

trust of the data packet’s authenticity between any two consequential hops. Thus, these 

basic functions are all indispensible, and the failure of any one may result in either data 

tampering or packet dropping in VANETs.  

However, multiple node misbehaviors (attacks) may result in the failure of these basic 

functions, as shown in Figure 2.2. These common attacks have been thoroughly 

investigated in [155], with their impacts summarized in Table 2.1. VANET nodes may 

also fail to perform these basic functions due to malfunctions such as collision, 

interference and random errors in packet transmissions, as shown in Figure 2.2.  
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Figure 2.2 Basic functions, failures and attacks in each hop 

Thus, in order to ensure reliable and faithful data packet relaying, the negative impacts 

of the individual node’s misbehaviors and malfunctions on the four basic functions need 

to be prevented. To this end, a novel Adaptive Role Playing (ARP) strategy is proposed 

here. The core idea of ARP is to allow the nodes in each hop to contend to perform the 

four basic functions, adaptively playing the role of either Relayer or watchdog according 

to their capability and their neighbors’ roles. Thus, if the current Relayer or watchdog 

fails to properly function, its role will be taken over by the other honest nodes in the same 

hop and the basic functions associated to this role will be successfully performed. As 

such, all basic functions in this hop will be successfully performed.  

 
ARP will ensure more reliable and faithful data packet relaying than the commonly 

adopted strategy [77], [155]-[157] where the roles of Relayer and watchdog are rigidly 

assigned to specific nodes, as further discussed next. 

2.2.2 Related Work 

The routing protocols initially designed for general ad hoc networks, such as DSR [158] 

and AODV [159], are prone to performance degradation in VANETs due to the high 

node mobility. GPSR [156] selects the node nearest to the destination as the Relayer in 

Table 2.1 
Common attacks to data packet relaying 

Attacks Impacts 
Packet Dropping The Relayer simply refuses to relay the data packet. 
Packet Tampering The Relayer tampers the data packet before relaying it. 
Relaying Invalid Data The Relayer intentionally relays data packets tampered by its previous 

hop. 
Badmouthing Watchdog either gives positive evaluation to tampered data packets or 

negative evaluation to authentic data packets. 
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each hop, so any malfunction or misbehavior of the Relayer will result in packet loss or 

packet tampering. Thus, in GPSR neither reliability nor faithfulness is ensured.  

Several routing schemes specifically proposed for VANETs, including PBF [157], 

CBF [160], [161], OPERA [162], and REAR [163], all ignore node misbehaviors, so 

faithful data packet relaying cannot be ensured in such schemes. Moreover, PBF [157], 

similar to GPSR [156], in each hop selects the node nearest to the destination as the 

specific Relayer, so it cannot ensure reliable data packet relaying either. CBF [160], [161] 

allows each node that overhear the data packet to set up a timer based on its distance to 

the destination, and the node with the shortest timeout period will serve as a Relayer. 

Thus, CBF could handle the packet dropping and nodes’ malfunctions, ensuring reliable 

packet relaying. Similarly, in REAR [163] the nodes also contend to relay the data 

packets according to each node’s reception probability, so reliable data packet relaying 

can also be achieved. OPERA [162] is focused on carrying data packets across network 

segmentations, without considering reliable and faithful data packet relaying in each hop.  

Besides, several security schemes [77]-[80], [155] proposed to handle misbehaviors in 

data packet relaying generally fail to ensure reliable data packet relaying, relying on a 

specific Relayer in each hop. Specifically, the reputation schemes [78]-[80] update the 

reputation of each node based on its data packet relaying and routing behaviors with the 

help of watchdogs. These schemes may not be effective in VANETs, since 1) in 

VANETs nodes’ reputation history is difficult to maintain, and 2) the tampered data 

packets can still get propagated during the reputation update periods. DTT [77] uses the 

previous hop of the Relayer as the watchdog to monitor the Relayer and detect data 

tampering. In each hop only one pre-selected watchdog exists, so DTT is prone to 

badmouthing attack, as discussed in [155]. To enhance DTT [77], AWF-NA [155] 

autonomously organizes several nodes around the Relayer as the watchdogs. It thus is 

resistant to the badmouthing attack. However, in AWF-NA [155] each node has to 

maintain the information of all neighbors within its 2 hops, which incurs heavy control 

overhead. Additionally, AWF-NA relies on the special connectivity model provided by 

RPB-MAC [164], which has not been commonly adopted in VANETs.  

In summary, the existing schemes cannot ensure both reliable and faithful data packet 

relaying in VANETs, and LEAPER will achieve both goals with the ARP strategy. 
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2.3 LEAPER 

2.3.1 Overview of LEAPER 

LEAPER is proposed to enable the nodes in each hop to securely follow the ARP 

strategy to ensure reliable and faithful data packet relaying. To this end, LEAPER 

organizes the nodes in each hop into a trust group (TG), as shown in Figure 2.3. Each 

trust group (say TGi) receives the data packet (Di 1) and the total trust token (Ti 1) from 

its previous trust group (TGi 1). Here Ti 1 is the proof of the authenticity of Di 1 presented 

by TGi 1. Thus, each node in TGi knows both Di 1 and Ti 1, as shown in the bracket above 

TGi in Figure 2.3. All nodes in TGi can thus follow the ARP strategy to relay the data 

packet (denoted as Di) and the associated total trust token (Ti) to the next hop. During this 

process, each node in TGi is able to detect any malfunction or misbehavior of its 

neighbors, so that together the nodes in TGi will ensure that only the authentic Di and Ti 

will be sent out. Eventually, after Di and Ti are received by the nodes in the next hop, 

such nodes can form a new trust group TGi+1 to further relay the data packet.   

In the above process, the nodes in TGi not only know that the Relayer in TGi has 

already faithfully relayed the packet by comparing Di 1 with Di, but also know in the first 

place that Di 1 itself is authentic with the help of Ti 1. Thus, by following the ARP 

strategy, each trust group can reliably and faithfully relay the data packet to the next hop. 

The relations between the four basic functions and the trust groups are self-evident: by 

relaying Di to TGi+1, TGi is performing the data transmission function, and TGi+1 is 

performing the data reception function; while by relaying Ti to TGi+1, TGi is performing 

the proof presenting function, and TGi+1 is performing data verification.  

Before introducing LEAPER in detail, the assumptions of this chapter will be clarified.  

 
Figure 2.3 The relation of trust groups and ARP procedures 
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 The routing information is present in the data packet, as in geographic routing 

protocols and the source routing protocols, such as DSR [158].  

 Each node is able to verify the IDs and the corresponding public keys of its 

neighbors, with the help of IBS [165] or any PKI-based key management schemes.  

 From the source to the destination the node density is sufficient to support 

LEAPER. Network segmentations could be handled by adopting the robust 

message dissemination schemes, for example [162] and [166], into LEAPER. 

2.3.2 Detailed Procedures 

The detailed procedures of LEAPER are designed for the nodes in each trust group to 

collectively follow the ARP strategy. For clarity, the procedures in any trust group i are 

divided into three phases: data packet relaying, single token collecting and total token 

relaying. In these phases, tS and tE are used to indicate the start and end time, respectively. 

Each node will set up three distance-sensitive timers, namely Data Contention Timer 

(T_DCT), Single Token Timer (T_STT) and Total Token Timer (T_TTT), in these three 

phases respectively, to coordinate its interactions with the neighbors. The timing 

algorithms of these timers will be discussed in details in subsection 2.4.1.  

Phase I: Data Packet Relaying.  

In this phase the nodes contend to perform the data transmission function. As shown in 

tS of Figure 2.4, nodes in TGi have all received Di 1 and Ti 1 from TGi 1 at the beginning 

of this phase. Each node in TGi will set up its T_DCT timer with timeout period inversely 

proportional to its distance to the Relayer in TGi 1. The timeout period of each timer is 

figuratively indicated by the length of the shadowed bar beside each node in Figure 2.4, 

Figure 2.5 and Figure 2.6. The node (say ni) whose T_DCT expires first will send out the 

data packet (Di) to next hop. Other nodes in TGi can overhear Di, and check Di against 

Di 1, as shown in tE of Figure 2.4. If Di is authentic, the role of Relayer has been 

faithfully played by ni and the other nodes in TGi will move on to contend to play the role 

of watchdogs. Specifically, the other nodes in TGi will cancel their T_DCT timers and set 

up T_STT timers for Phase II. Otherwise, Di will simply be discarded and Phase I will 

continue until one node finally relays an authentic data packet to the next hop.  
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Figure 2.4 The procedures of Phase I (data packet relaying) 

In Phase I, all the different copies of Di from TGi have been overheard by the nodes in 

the potential TGi+1, as shown in tE of Figure 2.4.  

Phase II: Single Token Collecting.  

In this phase, each node in TGi will contend to send out its own proof of the 

authenticity of Di, called single trust token here, based on which a total trust token Ti can 

be constructed by TGi. At the beginning, each node in TGi has already set up its own 

T_STT timer with timeout period proportional to its distance to the Relayer in TGi, as 

shown in tS of Figure 2.5. Whenever the T_STT timer of a node nj expires, it will play the 

role of a watchdog and send its single token packet TSj to the current Relayer, as shown 

in tE. On the other hand, TSj will be overheard and recorded by all the nodes in TGi. After 

k such single token packets are thus generated, the still running T_STT timers will be 

cancelled and Phase II will come to an end.  

Here k is the security threshold used to define the number of required watchdogs in 

each trust group, to handle the badmouthing attacks of individual watchdogs. The 

configuration of k will be discussed in detail in subsection 2.4.3.  

 
Figure 2.5 The procedures of Phase II (single token collection) 
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Figure 2.6 The procedures of Phase III (total token relaying) 

Phase III: Total Token Relaying.  

In this phase TGi as a whole presents its total trust token Ti, as a combination of k 

single trust tokens, to the potential TGi+1. At the beginning, each node in TGi has 

overheard k single trust tokens, and each node will set up its own T_TTT timers with 

timeout periods proportional to its distances to the Relayer in TGi, as shown in Figure 2.6 

(with similar legends as Figure 2.5). Thus, the Relayer itself will set up a T_TTT timer 

with period 0, and it is supposed to send Ti to next hop immediately. If the Relayer fails 

to send out Ti when the T_TTT timer of another node expires, this node will send out Ti. 

Once Ti is sent out, Phase III in TGi comes to an end. Meanwhile, TGi+1 is automatically 

formed by the nodes in the next hop which have overheard both Di and Ti.  

Thus, in Phase I TGi performs the data transmission function and TGi+1 performs the 

data reception function; in Phase II and Phase III TGi completes the proof presenting 

function and TGi+1 completes the data verification function. As such, by the cooperation 

of the neighboring node, reliable and faithful data packet relaying is ensured in each trust 

group. The packet dropping attack is effectively handled, and the tampered data packet 

will be stopped from being further propagated in VANETs.  

2.4 Enabling Techniques 

Several enabling techniques of LEAPER, including the distance-sensitive timers, the 

secure packet format and the security threshold k, will be described in detail here. 

2.4.1 Distance-Sensitive Timers 

As shown in subsection 2.3.2, the distance-sensitive timers T_DCT, T_STT and 

T_TTT serve to control the contention of the nodes in each trust group to relay data 

packet, generate single trust token and total trust token, respectively. Here the timing 

algorithms of these timers will be designed so that in each phase of LEAPER the 

desirable node interaction can be ensured.  
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Let R be the communication range of VANET nodes. For a node (ni) in trust group i 

(TGi), let d1 and d2 be the distances of ni to the Relayers in TGi 1 and TGi, respectively.  

T_DCT Timer: In Phase I it is desirable that the node farthest from the Relayer in 

TGi 1 will relay the data packet, so that the data packet could geographically go as far as 

possible in one hop. With this consideration, the timeout period (TDCT) of the T_DCT 

timer of ni will be:  

 
0 1

1 0 1

1 0 1

2 (2) / 2
2 / (1) / 2 (3 ) / 4

/ (1) (3 ) / 4
DCT

uni d R
T d R R uni R d R

d R R uni d R

. (2.1) 

Here uni(x) is a uniform random function over [0, x], and 0 is the basic timeout period 

which should be set based on application requirements. Nodes with different d1 are 

differentiated by three cases in (2.1), so that their timeout periods will be significantly 

different to avoid collisions in transmission. Thus, with (2.1) the node farthest to the 

Relayer in TGi 1 will be most likely to get the smallest TDCT and relay the data packet first. 

T_STT and T_TTT Timers: As shown in Phase II and Phase III, these timers should 

favor the nodes nearest to the Relayer in TGi, so that in TGi+1 the nodes overhearing Di 

will also overhear Ti and the size of TGi+1 can thus be maximized. Let TTT be the timeout 

period of the T_STT or T_TTT timer of node ni, and it could be determined as follows:  

 2 0/ (0.5)TTT d r uni  (2.2) 

Equation (2.2) indicates that the nearer ni is to the Relayer in TGi, the smaller TTT tends 

to be. uni(0.5) is used to randomize the TTT of the nodes with similar d2. Thus, with (2.2) 

T_STT and T_TTT timers will ensure that the nodes nearer to the Relayer in TGi are 

more likely to win the contentions in Phase II and Phase III of LEAPER.  

VANET nodes may have different communication ranges, but even in such a case a 

Relayer and k watchdogs can still be adaptively selected in any trust group. Two nodes 

might have similar timeout periods for one timer, which may lead to duplicate packets or 

packet collision. However, the probability of this scenario is quite small and LEAPER 

could tolerate duplicate or lost data (token) packets. Besides, such a scenario could be 

ameliorated by the joint-layer design [167] of MAC and network layers. 



36 

 

2.4.2 Secure Packet Format 

To prevent packet forging and packet replay in LEAPER, secure packet formats are 

proposed here for the data packet, single trust token and total trust token.  

Data Packet: {Payload = {R_ID, Type, TSP, S_ID, P_ID, M}, {Hash(Payload)}PRR_ID, 

CertR_ID}. 

Here, R_ID is the ID of the Relayer and Type indicates the packet type. S_ID is the ID 

of the source node of this data packet, and P_ID is the packet ID assigned by the source 

node. TSP is the timestamp generated by the Relayer, and M is the application-specific 

message contained in this data packet. {Hash(Payload)}PRR_ID is the digital signature of 

the hash value of Payload generated with the Relayer’s private key PRR_ID. Here, Hash() 

is a standard hash function, such as SHA-2 [168]. CertR_ID is the certificate of the Relayer.  

Single Trust Token: {Payload = {G_ID, Type, TSP, DP_ID}, {Hash(Payload)}PRG_ID,  

CertG_ID)}. 

Here, G_ ID is the ID of the generator of this single trust token. DP_ID={Rel_id, S_id, 

P_id} of the data packet to be vouched for. The other items have similar meanings as 

those in the data packet. Thus, after receiving a single trust token any node can figure out 

its generator and the associated data packet. 

Total Trust Token: {Payload = {T_ID, Type, Tsp, K, ST1, …, STk}, 

{Hash(Payload)}PRT_ID, CertT_ID)}. 

Here, T_ID is the ID of the generator of this total trust token. STi is the ith single trust 

token embedded in this packet. Thus, after receiving this packet, any node can easily 

figure out for which data packet this total trust token is generated and whether it contains 

enough single trust tokens.  

The verification of the certificate and signature in these packets can be performed 

following the standard procedures in any common PKI schemes. Exemplary procedures 

can also be found in [77], [155], so for brevity they will not be discussed in detail here. 

Note here the pseudonyms, instead of real node IDs, of vehicular nodes can be used in 

these packets. Thus, LEAPER is also compatible to the common privacy protection 

schemes where each node usually uses a pseudonym in VANET communications and 

changes its pseudonym from time to time, as introduced in Chapter 1.  
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2.4.3 Security Threshold 

The security threshold k mandates the number of required watchdogs in each trust 

group, so it has significant impact on the security strength and performance of LEAPER. 

Specifically, bigger k will make each trust group more resistant to the misbehaving 

watchdogs and meanwhile incur higher communication overhead with more single trust 

tokens collected. Thus, it is critical to set a proper k in LEAPER to achieve desirable 

tradeoff between the security strength and communication overhead.  

Here we investigate the feasible range of k determined by the application requirements 

and VANET environments. Specifically, per-hop latency (Td) and per-hop successful 

delivery ratio (SDR) PS as application requirements, and the average node density ( ) as 

VANET parameter are carefully investigated here. The constraints of these factors on the 

feasible values of k are summarized in Table 2.2.   

First, k must be fewer than the number of nodes in a typical trust group, which is 

determined by node density ( ), the length of the trust group (L) and number of lanes (nl). 

For any specific application targeted at one specific area, , L and nl all can be estimated 

and the feasible range of k can thus be obtained.  

Secondly, each single packet will incur a certain latency, including average MAC 

access time ( m), signature creation time ( s) and signature verification time ( v). The 

total delay caused by 1 data packet ( m+ v+ s), k single trust tokens (k m+k v+ s) and 1 

total trust token ( m+(k+1) v+ s) must be shorter than Td. Thirdly, more than k+1 

misbehaving nodes in a trust group could collude to relay a tampered data packet to the 

next hop. Thus, k must be big enough to make it practically impossible to have k+1 

misbehaving nodes in a trust group. 

 

Table 2.2 
Constraints on security threshold k 

Factors Constraints 
#. Neighbors k L nl 

Delay per Hop 
(Td) 

(k+2) m + (2k+2) v+3 s  Td 

Per-hop SDR(Ps) Pr{less than k+1 misbehaving nodes in a hop} Ps 
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Within the feasible range as determined above, the value of k has significant impacts 

on the tradeoff of the security strength and performance of LEAPER, as will be 

investigated in detail in section 2.5. 

2.5 Performance Analysis and Evaluation 

Here the salient security properties of LEAPER will be identified and justified, and the 

performance of LEAPER will be evaluated both analytically and based on simulation. 

2.5.1 Trust Group Size 

LEAPER requires that at least k+1 nodes (one Relayer and k watchdogs) exist in any 

trust group, so the trust group size has direct impacts on the performance of LEAPER. 

Here the trust group length will be estimated, since the trust group size is proportional to 

the trust group length given a node density. Additionally, the trust group length can also 

show geographically how far a data packet can be relayed in each hop.  

As shown in Figure 2.7, let Li 1 and Li be the lengths of two adjacent trust groups TGi 1 

and TGi, respectively. Then the Relayer (A) and the node (B) relaying the total trust token 

in TGi 1 must lie within aLi 1 from the joint point of TGi 1 and TGi, where a [0,1]. Thus 

from the procedures of LEAPER we know that Li 1 and Li have the following relation:  

 aLi 1 + Li = R. (2.3) 

The expectations of both Li 1 and Li should be equal, so it follows from (2.3) that 

 E[Li] = R 1/(1+a).                             (2.4) 

Ideally, with the help of the distance-sensitive timers a can be 0, and E[Li] = R from 

(2.4). Even in the worst scenario where R and T are exactly at the opposite sides of TGi 1 

(a=1), E[Li] is still R/2 from (2.4). Thus, E[Li] is between R/2 and R, ensuring at least the 

data packet geographically be relayed over a distance of R/2 in each hop. According to 

WAVE [9], R typically is 300m-1000m, which indicates the lower bound of E[Li] can 

allow each trust group to contain enough nodes given a reasonable node density.  

 
Figure 2.7 Estimation of the expected length of a trust group  
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2.5.2 Security Properties of LEAPER 

With adequate nodes in each trust group, LEAPER shows salient security properties 

against the misbehaving or malfunctioning nodes. With the ARP strategy the nodes in 

each trust group contend to be the Relayer and watchdogs, so that the malfunctioning 

nodes have no direct impact on data packet relaying. Meanwhile, the common node 

misbehaviors in Table 2.1 can also be effectively handled by LEAPER.  

In case of packet dropping by any node in a trust group (TGi), the other honest nodes 

in TGi can still relay the data packet to next hop, as discussed in Phase I of LEAPER. 

Similarly, if any node relays a tampered data packet in TGi, this tampered packet can be 

detected and discarded by the honest nodes in TGi. Thus, both packet tampering and 

intentionally relaying tampered packet can be effectively handled in each trust group.   

In case of the badmouthing attack, the misbehaving watchdogs can generate single 

trust tokens for a tampered data packet. However, to convince the next hop, there must be 

k+1 misbehaving nodes (one Relayer and k watchdogs) in this trust group (TGi), which 

will be quite unlikely with k > 0. Even if k+1 misbehaving nodes do exist in TGi, the 

remaining honest nodes in TGi can still relay the authentic data packet and the associated 

total trust token to the next hop. Besides, by monitoring the network environments, the 

applications could adaptively increase k in case of more misbehaving nodes, to make the 

badmouthing attack practically impossible.  

Additionally, LEAPER is also effective in ensuring data validity in the source node, 

which is in trust group 0 (TG0). In case of personal communications, it is sufficient for 

LEAPER to ensure reliable and faithful packet relaying in the intermediate hops. 

However, in case of data packets with public information, such as warnings about traffic 

jams or accidents, LEAPER can also ensure that TG0 will only generate and send out data 

packets with valid content. Specifically, to send out invalid data packets and convince the 

next hop, the number of misbehaving nodes in TG0 must be bigger than k+1 (one node to 

generate the data packet and k nodes to generate single trust tokens), which will be 

unlikely due to high node mobility in VANETs.  

Even if a set of misbehaving nodes do succeed in sending out false warnings, the 

secure packet formats of LEAPER (as given in subsection 2.4.2) will ensure that the IDs 
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of the colluders (with their signatures present in the invalid data packets and tokens) can 

be verified with non-repudiation in the court. This court trial is also suitable to the 

badmouthing attacks as the ultimate aftermath countermeasure. 

In summary, reliable and faithful data packet relaying can be ensured in LEAPER, 

with the misbehaving nodes and malfunctioning nodes effectively handled by the ARP 

strategy. Comparatively, the existing schemes, at best, can only ensure either reliability or 

faithfulness in data packet relaying, as discussed in subsection 2.2.2. The advantages of 

LEAPER over the existing schemes also include its flexibility and adaptability: by 

configuring k to different values, LEAPER can actually outperform, or at least perform as 

well as, the existing schemes in different application scenarios. For instance, when only 

malfunctioning nodes are of concern, LEAPER with k=0 can ensure reliable data packet 

relaying similar to CBF [160], [161] and REAR [163]. When misbehaving nodes exist, 

LEAPER with k 1 can ensure faithful packet relaying as DTT [77] and AWF-NA [155], 

additionally ensuring reliable packet relaying. 

2.5.3 Analytical Performance Estimation 

Here, the per-hop performance of LEAPER will be analyzed with comparisons to a 

baseline protocol (BSL), namely GPSR [156]. As discussed before, GPSR [156] selects 

one specific Relayer and has no watchdog in each hop. 

Per-hop SDR: Per-hop SDR (successful delivery ratio) is the probability that a data 

packet can be faithfully relayed in a certain hop, in face of misbehaving nodes and 

malfunctioning nodes. Thus, per-hop SDR actually is a comprehensive metric for both 

reliability and faithfulness in each hop. 

In LEAPER, let Ni be the total number of nodes in trust group i (TGi) and na be the 

number of active nodes. The other (Ni  na) malfunctioning nodes cannot take any active 

communication action. Let pd and pm be the probability of any node malfunctioning and 

misbehaving, respectively.  

Thus, in hop i the average number of active nodes is na = Ni  (1  pd). Let P(j) be the 

probability that j (j 0) misbehaving nodes exist in trust group i. Thus,  

 ( ) (1 ) aa n jj
m m

n
P j p p

j
.                       (2.5) 



41 

 

Then the probability that more than k misbehaving nodes exist in TGi is  

 
1

0
Pr{ } 1 ( )k

l
j k P l .                        (2.6) 

Let SDRLP be the per-hop SDR of LEAPER, and SDRBSL be the per-hop SDR of BSL. 

For LEAPER to ensure that the data packet can be faithfully relayed, there must be less 

than (k+1) misbehaving nodes in this trust group. Thus,  

 SDRLP = 1  Pr{j k+1}.                          (2.7) 

Comparatively, in BSL the data packet can be faithfully relayed only if the selected 

Relayer is not malfunctioning and there is no misbehaving node in this hop. Thus,  

 SDRBSL = pd  Pr{j 1}.                        (2.8) 

As shown in (2.5)-(2.7), in LEAPER pd has no direct impact on SDRLP. And with k > 0 

the negative impact of misbehaving nodes on SDRLP will be much smaller than that on 

SDRBSL, as shown in (2.5), (2.6) and (2.8). Thus, given the same pd and pm, LEAPER can 

achieve much higher per-hop SDR than BSL. 

Per-hop Latency: As already discussed in section 2.4.3, generally the per-hop latency 

of LEAPER is  

 TD, LP = (k+2) m + (2k+2) v+3 s.                   (2.9) 

Let nm be the number of misbehaving nodes in a trust group. In the worst case, these 

misbehaving nodes will all send out tampered data packet or invalid single trust tokens, 

and the per-hop latency of LEAPER becomes 

 TD, LP = (k+2) m + (2k+2) v+3 s + (nm m + nm v).      (2.10) 

Even in the worst case, TD, LP is acceptable for reasonable values of k. As defined in 

DSRC [8] and WAVE [9], the allowable latency for safety messages is 100ms. In this 

case, plug in the parameters from [155] ( m=5ms, s=1.42ms, v=0.07ms) and let nm=k, 

we can get that k  7 from (2.10). Meanwhile, with efficient message authentication 

schemes such [144], v could be further reduced, and LEAPER can achieve smaller TD, LP. 

Tradeoff: To comprehensively compare the per-hop performance of BSL and 

LEAPER, the tradeoff between SDR and latency will be considered here. In BSL, in each 

hop there are only one signature generation, signature verification and MAC access for 

the data packet. Thus the per-hop latency of BSL is  
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Figure 2.8 Difference between overall per-hop SDR of BSL and LEAPER 

 TD, BS = m+ v+ s.                               (2.11) 

From (2.9) and (2.11), TD, LP is approximately k+2 times of TD, BS, given that m 

generally is much larger than v and s. Thus, if SDRLP is (k+2) times higher than SDRBSL, 

LEAPER will have a lower per-hop latency for each successful delivery than BSL, as 

shown in Figure 2.8. In Figure 2.8, Diff is defined as Diff = SDRLP/SDRBSL  (k+2). Thus, 

when Diff is larger than 0, the overall performance of LEAPER is better than that of BSL. 

In this comparison pm=0.1, pd=0.2, and the time parameters for (2.10) are adopted.  

As shown in Figure 2.8, Diff is above 0 when k is between 0 and 4. However, when k 

becomes larger than 2, the increase in k will bring down the overall performance of 

LEAPER. This is because SDRLP is almost 100% when k is 2, and further increase in k 

can only bring additional latency without obvious increase in SDRLP.  

Thus, by tuning k carefully, LEAPER can achieve much better overall per-hop 

performance than BSL, which justifies the high per-hop latency of LEAPER to achieve 

higher per-hop SDR. Since with large k fewer tampered data packet will reach the 

destination, LEAPER will perform much better than BSL when security is taken into 

consideration. Actually, this reasoning is also meaningful for the end-to-end performance 

comparison between LEAPER and other schemes, as shown in our simulation studies. 

2.5.4 Simulation Studies 

To study LEAPER’s performance, extensive NS2 [169] based simulations are 

conducted with vehicle mobility traces generated by MOVE [170]. The common 

simulation parameters are summarized in Table 2.3. The time required for signature 

generation and verification (RSA1024), and Hash function (SHA512) are adopted from 

one cryptographic benchmark [171].  
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In these simulations, the source node and the destination node are placed at either end 

of a 3km road segment. The malfunctioning nodes will participate in neither data packet 

relaying nor token generation. The misbehaving nodes will tamper every data packet as 

Relayers. As watchdogs the misbehaving nodes will either refuse to generate token, or 

choose to collude with the misbehaving Relayer with a probability of 0.1, which is to 

reflect the fact that in VANETs collusions among misbehaving nodes are quite rare. For 

comparison, LEAPER, BSL and DTT [77] are implemented in the simulations. 

Individual Metrics: Here three metrics are evaluated: end-to-end SDR (SDRE), end-to-

end latency (TE) and ratio of tampered packets at the destination (Rb). Six protocols are 

implemented for comparison: BSL, DTT, LEAPER0 (k=0), LEAPER1 (k=1), LEAPER2 

(k=2) and LEAPER3 (k=3). The performance differences among these protocols with 

different ratios of malfunctioning nodes (pd) and misbehaving nodes (pm) will be studied. 

Here, pd is fixed to 0.1, and pm changes from 0.0 to 0.1 with a step size of 0.01. The 

simulation is run 10 times and the metrics are averaged to reduce randomness effects.  

As shown in Figure 2.9, LEAPER1 achieves the highest SDRE with increasing pm, 

which is almost stable as pm increases. LEAPER2 and LEAPER3 also achieve stable 

SDRE with increasing pm, but their SDRE are obviously lower than that of LEAPER1. In 

LEAPER2 and LEAPER3 more watchdogs are required in each trust group, so that they 

will face more network segmentations given the same mobility traces. This can also 

explain the fact that SDRE of LEAPER2 is always higher than that of LEAPER3. The 

SDRE of LEAPER0 is quite high when pm is 0 but it decreases sharply with the increase 

of pm, since LEAPER0 does not configure any watchdog and the packet authenticity 

cannot be ensured in each hop.  

Table 2.3 
Simulation parameters of LEAPER 

Parameters Values Parameters Values 
# of Nodes 142 Beacon Interval 200 ms  
Road Length 3 Km Communication Range 300 m 
MAC Protocol 802.11 Node Velocity 40m/s 
Bit Rate 6 Mbps Simulation Time 900 seconds 

0 10 ms   
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Figure 2.9 The end-to-end SDR statistics of BSL, DTT and LEAPER 
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Figure 2.10 The ratios of tampered packets of BSL, DTT and LEAPER 
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Figure 2.11 The end-to-end delays of BSL, DTT and LEAPER 

Thus, in LEAPER0, with the increase of pm more tampered data packets will arrive at 

the destination, as shown in Figure 2.10. Due to the impact of malfunctioning nodes, 

DTT and BSL only achieve very low SDRE with any pm values, which is consistent to our 

previous analysis. Meanwhile, BSL allows more tampered data packets at the destination 

than DTT, as shown in Figure 2.10. Comparatively, LEAPER0 allows most tampered 

data packets at the destination, as shown in Figure 2.10, since it ensures reliable packet 

relaying without detecting the tampered data packets. LEAPER1, LEAPER2, and 

LEAPER3 can actually achieves Rb=0 for increasing pm. 
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In summary, LEAPER1 can ensure reliable and faithful packet relaying in face of 

malfunctioning nodes and misbehaving nodes, achieving the highest SDRE and low Rb. 

Thus, LEAPER1 shows the merits and overcomes the disadvantages of both LEAPER0 

(similar to REAR and CBF as discussed in subsection 2.5.2) and DTT. Though 

LEAPER2 and LEAPER3 show lower SDRE than LEAPER1 in this simulation, their 

performance could potentially be enhanced once the network partitions can be handled by 

integrating the existing robust message dissemination schemes into LEAPER.    

Figure 2.11 shows the end-to-end latency (TE) of these various protocols. BSL and 

LEAPER0 have similar TE, since they only transmit data packets in each hop. DTT, 

LEAPER1, LEAPER2, and LEAPER3 require the collection and relaying of trust tokens 

in each hop, so they incur higher latency in each hop. Figure 2.11 shows that bigger 

values of k (more tokens required in each hop) result in larger end-to-end latency, which 

is consistent to our previous analysis. However, the increased latency is still acceptable: 

the average hop number is 11, and TE of LEAPER3 is still less than 400ms. Thus, the 

average per-hop latency of LEAPER3 is still less than 40ms in this simulation setting.  

Thus it is arguable that the overall performance of LEAPER1, despite its higher TE, 

can be better than that of LEAPER0, DTT and BSL due to its much higher SDRE. The 

performance of these protocols will be comprehensively compared next. Note that 

LEAPER2 and LEAPER3 have lower SDRE than LEAPER1 due to network 

segmentations, so they are not considered in the comprehensive comparisons. 

Comprehensive Metrics: Here, a TCP-like end-to-end control protocol is implemented, 

where the source node will wait for an ACK from the destination node before it transmits 

the next data packet. If no ACK comes for 300ms, the source node will retransmit the 

data packet. Two metrics are designed here to indicate the comprehensive performance of 

LEAPER, DTT and BSL: expected overhead (OE) and expected latency (TL). OE is the 

average communication overhead (including data packets, single trust tokens and total 

trust tokens) for each successfully received data packet at the destination; TL is the 

averaged latency for each successfully received data packet. Here, pd is set to 0.1 and pm 

changes from 0.0 to 0.15 with step size 0.01. Again, the simulation is run 10 times and 

the metrics are averaged over all the simulation runs.  
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Figure 2.12 The overhead per successful delivery of DTT, BSL and LEAPER 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

2000

4000

6000

Pm

T L: m
s

 

 
BSL DTT LEAPER0 LEAPER1

 
Figure 2.13 The latency per successful delivery of DTT, BSL and LEAPER 

In Figure 2.12 the expected overhead is shown. LEAPER1 will outperform BSL and 

LEAPER0 when pm is bigger than 0.04 and 0.1, respectively. LEAPER0 can always 

outperform BSL and DTT. Here, DTT has the highest OE because it has SDRE similar to 

BSL but has to generate tokens in each hop as LEAPER1 does.  

The TL statistics are shown in Figure 2.13. Due to the high SDRE of LEAPER1, it can 

outperform BSL and DTT for any pm, and can outperform LEAPER0 when pm is larger 

than 0.04. LEAPER0 can always outperform BSL and DTT. This indicates that generally 

in face of misbehaving nodes LEAPER1 enables the destination to wait shorter for each 

authentic data packet. Meanwhile, the comprehensive performance of LEAPER1 is 

almost constant with the increase of pm, as shown in Figure 2.12 and Figure 2.13, which 

shows the robustness of LEAPER in face of misbehaving nodes.  

Moreover, LEAPER allows flexible configuration of k based on the specific 

application scenarios and desired tradeoff between security strength and performance. 

When there is no misbehaving node and only malfunctioning nodes in VANETs, k=0 is 

the best option. However, when misbehaving nodes exist k must at least be 1. When any 

tampered data packets cannot be tolerated by the destination, k can be set to 2 or higher in 

order to preclude any possibility of node collusions, at the cost of lower end-to-end SDR. 
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2.6 Summaries 

In this chapter, insightful investigation into data packet relaying in VANETs identifies 

four basic functions. A novel Adaptive Role Playing (ARP) strategy is then proposed to 

enable the nodes in each hop to contend to perform the basic functions, so that reliable 

and faithful data packet relaying is still achievable in face of malfunctioning and 

misbehaving nodes. LEAPER enables the nodes in each hop to securely and efficiently 

follow the ARP strategy. With each honest node in each hop contending to relay the 

authentic data packet and to vouch for it with tokens, the misbehaving and 

malfunctioning nodes are effectively detected and handled. Thus, LEAPER achieves both 

reliable and faithful data packet relaying in each hop, which is its major advantage over 

existing schemes. Ensuring both reliable and faithful data packet relaying, LEAPER is 

appealing to VANETs, where many applications rely on trustworthy multi-hop 

communications. Especially, the configurable security threshold k makes LEAPER 

flexible and adaptive to various network environments and applications requirements.  

In the future, the dynamic adjustment of k will be studied, so that LEAPER can 

achieve optimal tradeoff between security and performance in varying VANET 

environments. Another future work is to adopt the existing robust message dissemination 

schemes [162], [166] into LEAPER, so that LEAPER can effectively handle the network 

segmentations to achieve better end-to-end successful delivery ratio with k 2.  
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Chapter 3 Resource-Aware Message 
Verification in VANETs2 

Driven by various applications, verification of messages’ content integrity and 

authenticity is indispensable for VANETs. However, due to the numerous message 

exchanges in VANETs, message verification often leads to excessive resource 

consumption and even resource depletion in vehicular nodes. To tackle this scalability 

issue, a novel Resource-Aware Message Verification (RAMV) [143], [144] scheme is 

proposed in this chapter. With application-specific differentiation of messages to better 

support traffic safety applications, RAMV streamlines existing message verification 

schemes to keep their resource consumption within the preset resource budget. Besides, 

the common security requirements for message verification are properly met by RAMV. 

Enabling resource-aware, application-friendly and secure message verification, RAMV is 

especially appealing to VANETs. 

3.1 Introduction 

It is critical to ensure message authenticity and integrity in various VANET 

applications, especially the traffic safety applications. Thus, content verification and 

source verification are critical to VANETs to ensure message authenticity and message 

integrity, respectively. Regardless of the implementation details, message verification, 

especially source verification which relies on digital signature verification, is resource 

demanding.  

Thus, message verification may incur varying and excessive resource consumption in 

face of the massive message exchanges in VANETs. Such massive message exchanges 

result from the periodic messages broadcasted by each node to support traffic safety 

applications (Beacons) and various other applications (neighbor information for proactive 

routing [172], information abstract in epidemic routing [173], or message flooding [174]). 

Each node thus needs to verify numerous messages per second, the exact number of 

                                                 
2  The material contained in this chapter was previously published in the Journal of 
Security and Communication Networks. © 2011 Wiley-Blackwell. See Appendix B for a 
copy of the copyright transfer agreement.   
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which changes linearly with the node density in the neighborhood. The resource 

consumed by message verification, given any algorithm adopted, tends to be huge and 

will make message verification non-scalable. Moreover, the variances in resource 

consumption will also negatively affect the resource available to other applications.   

Thus, it is desirable to make message verification in each node resource-aware, in that 

its resource consumption in any circumstance will be bounded by the actual resource 

available to message verification, in form of a resource budget. For brevity, this chapter 

only explicitly considers the verification of Beacons, which, periodically broadcasted by 

each node to signal the driving status, may be the most prevalent messages in VANETs. 

However, as discussed throughout this chapter, the proposed scheme is also applicable to 

the verification of any kind of messages in VANETs.  

In this chapter, a Resource-Aware Message Verification (RAMV) scheme is proposed 

to streamline the existing message verification algorithms to make them both resource-

aware and application-friendly. Specifically, RAMV differentiates the Beacons based on 

their application relevance and latency requirements. Each node will mainly spend its 

resource budget in verifying the more important Beacons from the near-by neighbors or 

with safety-critical information, which are crucial to the traffic safety applications. This 

way, RAMV is also application-friendly by better supporting traffic safety applications 

given a limited resource budget. The less important Beacons generally will only be 

indirectly verified by the receiver with the help of its neighbors, at essentially no 

computation cost. Thus, even with a limited resource budget, RAMV still keeps the 

critical security strengths of message verification, in that 1) each Beacon will be verified 

by at least one receiver to timely disclose the misbehavior of data forging; and 2) each 

node is able to learn to validity/invalidity of each received Beacon to properly evaluate its 

neighbors, as in the reputation schemes [80], [86].  

In short, by properly differentiating received Beacons, RAMV ensures resource-aware, 

application-friendly and secure message verification, which underlies many important 

applications in VANETs. Thus, RAMV is especially appealing to the approaching 

massive deployment of VANETs.  
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3.2 Background and Related Work 

Here we will show the necessity of considering resource budget in message 

verification, as well as the drawbacks of the existing schemes in this light.  

3.2.1 Resource Budget 

A vehicular node is essentially a real-time system with limited (though abundant) 

resource in terms of memory, CPU time, I/O capabilities, and so on, to be shared by 

numerous applications. Here, we focus on the CPU time. The resource sharing usually is 

controlled by the resource allocation (scheduling) algorithms [175] which, simply put, 

provide each application with a certain resource in form of x CPU time out of y time units 

[175], [176]. Generally a resource budget is desirable to define the maximal resource 

consumption of each application and ensure reasonable resource sharing. Indeed, the 

traditional static priority scheduling [177] works well only when each task has a 

predictable workload, whereas the rate-based algorithms [175], [176], [178] actually 

enforce a resource budget for each application.  

In the context of message verification, the resource consumption/requirement will be 

measured by the number of messages verified given a certain cryptographic technique 

and content verification algorithm. Thus, our algorithm and analysis will be generic and 

independent of the concrete message verification algorithms adopted in VANETs. 

In VANETs, the resource requirement of message verification may vary greatly due to 

the wide range of the number of Beacons (nm) received per second. It is commonly 

suggested in the VANET community, for example by DSRC [10], that the common 

beaconing period (T) is 100ms, and the common communication range (R) is 300m. Thus,  

 nm= R/T=10 R.                                (3.1) 

Here,  is the node density of the concerned neighborhood, in unit of node per meter. 

One node has R 1-hop neighbors within its communication range, each of which will 

broadcast 10 (1/T) Beacons per second. Thus, (3.1) follows. In urban scenarios it is 

common for one node to have tens of 1-hop neighbors and thus to receive hundreds of 

Beacons per second, resulting in the excessive resource consumption by message 

verification. Besides,  generally changes significantly in different geographic locations 

and time periods. The variances in nm, and the variances in resource consumption thus 
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caused, will negatively affect the resource allocation algorithms as discussed in [175], 

and potentially harm other VANET applications in this way.  

Thus, it is critical to ensure that message verification follows its resource budget, 

which can be expressed in the number of Beacons (NM) one node is allowed to verify per 

second. It also can equivalently be expressed as the number of neighbors (NB) one node 

can maintain if it verifies all Beacons from its neighbors. Thus,   

 NM = NB  1/T.                                 (3.2) 

Equation (3.2) follows, since each neighbor will broadcast 1/T Beacons every second.  

Two dimensions of resource budget will be investigated here: hard vs. soft and static 

vs. dynamic. The hard budget needs to be strictly met in any statistic period to prevent 

any application from violating its resource budget in a resource stringent environment. 

The soft one only needs to be statistically followed, serving as the application design 

guideline [179], [180]. The resource budget may remain static over a long period. Or it 

can be dynamically determined by the scheduler of the operation system [178] based on 

the runtime resource requirements of all applications. Hereafter, the types of resource 

budget will always be clarified whenever necessary. 

3.2.2 Related Work 

So far, the resource issue has been only insufficiently addressed in the existing 

schemes for message verification. First, the existing source verification and content 

verification algorithms generally focus on the functionalities, without systematically 

considering the overall resource consumption.  

The well-known cryptographic techniques for message verification include ECDSA 

[181], RSA [182], group signature [40], etc. RSA and group signature may not be 

suitable for VANETs due to their excessively long signatures compared to ECDSA. 

ECDSA is recommended in WAVE [9] for VANETs, but it is computationally 

demanding as shown in various performance evaluations [171], [183]-[186]. For instance, 

an evaluation of ECDSA on a Pentium platform [185] shows that one signature 

verification requires 31ms and 47ms for ECDSA P224 and P256, respectively. Thus, one 

node with the same configuration can only verify 32 (in case of P224) and 21 (in case of 

P256) Beacons every second. Additionally, the computation platform installed in vehicles 
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is unlikely to be cutting-edge for cost considerations. Thus, if ECDSA is to be 

implemented in VANETs, its resource requirement must be brought under the control of 

resource budget. Exemplary content verification schemes include [66]-[68], which, 

though not so computation extensive as the cryptographic algorithms, still will incur 

significant resource consumption in face of massive message exchanges. 

Besides, many schemes [45], [71], [187]-[191] have been proposed specifically for 

efficient message verification in VANETs. However, as we will show shortly, these 

schemes fail to be resource-aware, application-friendly and secure at the same time, and 

thus can be further improved by RAMV.  

In both TESLA [187] and TDAS [188], each message contains a hashed value hash(v), 

and v will be revealed in the next message from the same sender. The receiver can thus 

verify the received message by performing the relatively lightweight hash function. 

However, the receiver needs to wait for the next message to verify the current message, 

which will lead to high communication overhead and latency. Besides, any message loss 

will make its previous message unverifiable. The on-demand verification scheme [189] 

only verifies those messages which can raise an alert or warning to the applications, to 

reduce resource consumption. This, however, will leave most messages unverified so that 

the data forging attack cannot be detected in time. The batch verification schemes [190], 

[191] allow the receiver nodes to verify multiple messages in a batch. Their common 

drawback lies in the latency incurred by the accumulation of received messages, which is 

undesirable to the messages with high application significance.  

[45] proposes group signature-based self-signing certificates to reduce the size of 

certificates, and further proposes only attaching certificate to every 1 out of  messages. 

Thus, the resource consumption of verifying certificate is significantly reduced. However, 

as stated in [45], the signature part of each message still needs to be verified. Thus, 

excessive resource consumption can still occur in [45]. Similarly, [71] proposes several 

approaches to reduce the resource consumption of beaconing in VANETs, including only 

attaching certificates and signature to 1 out of n messages at the sender’s side, as well as 

only verifying 1 out of m messages at the receiver’s side. So far, [71] is the most relevant 

scheme to RAMV. However, [71] does not investigate the impacts of these approaches 
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on the safety implications and security strengths of message verification, nor presents a 

systematic way to configure the relevant parameters.   

In [192], the authors propose to solve the scalability issues in VANET communications 

with relevance-based message transmission. Each node estimates the application 

relevance of its messages and schedules the transmission of its messages accordingly. 

Thus, with limited bandwidth the messages with greater application relevance will be 

broadcasted first, ensuring maximal application benefits to the whole VANETs. Though 

the focus of this work is orthogonal to RAMV, the concept of application relevance is 

indeed useful to our work.  

Thus, it is necessary for RAMV to ensure resource-aware, application-friendly and 

secure message verification in VANETs, which has not been satisfactorily addressed yet. 

3.3 RAMV Overview 

RAMV differentiates the received Beacons based on their application significance to 

meet the stringent resource and security requirements. As shown in Figure 3.1, this 

differentiation is performed by three modules: Distance-Based Resource-aware 

Verification (DBRV), Event Triggered Verification (ETV) and Piggybacked Invalid 

Message Notification (PIMN).  

In DBRV, the application significance of each received Beacon will be ranked based 

on the distance between the receiver and the sender, since the Beacons from the near-by 

neighbors are more important to the driving safety of the receiver. DBRV will provide a 

strategy for message verification based on the current resource budget, with which the 

specific message verification algorithms such as ECDSA [181] will selectively verify the 

received Beacons. DBRV ensures that the more important Beacons will be directly 

verified with a higher probability, better supporting the traffic safety applications. The 

verification results will be adopted by the relevant reputation schemes or misbehavior 

detection schemes to update the evaluations on the corresponding senders. Among all 

received Beacons, the valid ones and the unchecked ones will be processed by the traffic 

safety applications.  
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Figure 3.1 The overview of RAMV with message flows 

If one traffic safety application regards one unchecked Beacon (BC) as critical, the 

ETV module will signal the verification algorithms to immediately verify BC. Thus, any 

critical Beacons, no matter how far their senders are, will be verified before they affect 

the traffic safety applications.  

Whenever an invalid Beacon (BI) is identified in DBRV, the PIMN module will 

construct a notification of BI to broadcast the verification result of BI by piggybacking it 

to the next outgoing Beacon. On the other hand, the notifications piggybacked in the 

received Beacons will be processed by PIMN to infer the properties of the previously 

unchecked Beacons. These indirect verification results will also be adopted by the 

reputation schemes.  

Thus, by enabling each node to focus its resource on Beacons important to traffic 

safety, DBRV and ETV ensure reliable traffic safety applications while following the 

resource budget. PIMN enables each node to learn the property of each received Beacon 

either by direct verification or from the piggybacked notifications, ensuring security 

strengths. As such, RAMV streamlines the existing message verification algorithms to 

enable resource-aware, application-friendly and secure message verification in VANETs. 

3.4 DBRV 

As previously discussed, DBRV enables each node to spend its resource budget in 

verifying the Beacons with high application significance. A novel concept, relevance 

rank, is proposed in the first place to model the Beacons’ application significance.  
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Figure 3.2 The exemplary relevance ranks in the single lane model 
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Figure 3.3 The exemplary relevance ranks in the multi-lane model 

3.4.1 Distance-Based Relevance Rank 

In the context of traffic safety applications, the Beacons from the nearby neighbors are 

more relevant to the receiver, since the driving states of such neighbors will potentially 

have bigger impact on the receiver. Thus, the concept of relevance rank is proposed 

based on the distances between the neighboring nodes.   

Single-lane Model: In the single-lane scenario, node A’s relevance rank to node B, 

denoted as RBA, can be calculated by node B as:   

 : ( ), / 2BAR X X Nei B XZ AB .             (3.3) 

In (3.3), Nei(B) is the set of B’s 1-hop neighbors, and Z is the middle point of line 

segment AB . The operator | | either calculates the set cardinality or the line segment 

length, as defined by the context. Hence, RBA is equal to the number of nodes between A 

and B, and indicates how relevant A is to B compared to B’s other neighbors. In single-

lane scenarios, the relevance ranks of node B’s neighbors are shown in Figure 3.2.  

Multi-lane Model: If node B is in a road junction or a road with multiple lanes, RBA 

will be    

 : ( ) & & / 2BAR X X Nei B BX AB .        (3.4) 

In (3.4), RBA is now determined by the absolute distance ranks of node B’s neighbors. 

(3.4) ensures that B will have exactly two neighbors with the same relevance rank, as 

shown in Figure 3.3. Similar to the single-lane model, this multi-lane model also 

considers the spatial symmetries of the neighborhood.  

Both absolute distances and relative positions among the neighboring nodes are 

considered in relevance rank to comprehensively reflect the application relevance of 
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different senders’ Beacons. Generally, only the sender and the receiver in the same 

driving direction are considered for relevance rank, except for the road junctions.  

It is feasible for each node to calculate the relevance rank of each of its neighbors. In 

VANETs, each node can figure out its surrounding road layouts with the help of GPS, so 

it can choose the proper relevance rank model correspondingly. According to DSRC [10], 

Beacons contain the positions of the senders, with which each node can learn the current 

positions of all its 1-hop neighbors. Thus, each node can calculate the relevance ranks of 

its neighbors with (3.3) and (3.4). In case of other messages, relevance rank can be 

similarly defined based on their application-specific properties, as indicated by the 

application relevance concept in [192]. As another example, the messages for epidemic 

information broadcast may define the relevance rank based on the information 

similarities of such messages. That is, one receiver may assign the relevance rank 0 to the 

message with the most new information, assign the relevance rank 1 to the message with 

the second most new information, and so on.  

With each received Beacon differentiated, the receiver can schedule its verification 

operations accordingly based on its current resource budget, either soft or hard. 

3.4.2 Probabilistic Message Verification based on Soft Budget 

A probabilistic message verification algorithm is proposed here to enable each node to 

schedule its message verification to meet its soft resource budget. If the receiver has 

fewer 1-hop neighbors than its resource budget NB, it will verify all received Beacons 

without violating NB. Otherwise, Beacons with relevance rank 0 will always be verified to 

ensure driving safety and other Beacons will be probabilistically verified to meet the 

resource budget.  

This algorithm is performed with the help of a filtering probability p, which is decided 

based on NB as we will discuss shortly. A node, say node A, will verify the Beacon from 

X Nei(A), with a probability PAX determined by the relevance rank RAX and p as  

 AXR
AXP p .                                   (3.5) 

Specifically, as shown in Figure 3.4, when a Beacon is received its verification 

probability (Thres) is calculated based on p and the sender’s relevance rank with (3.5). A 

random test will be performed to decide whether to verify it or not based on Thres. 
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/*This function probabilistically verify received Beacons.*/
1 Probabilistic_Authen(msg)
2     R = Find_Rank(msg);      //get the relevance rank  
3     Thres = p^R;                    //probability threshold
4     Coin = uniform();            //random number in [0, 1]
5     Flag = 0;                         //indicator initialization
6     If Coin < Thres               //will verify msg
7         Flag = Authenticate(msg);         
8     Else                                  //will not verify
9         Set Flag to Unchecked ;    //regard msg as authentic
10     EndIf
11     If Flag is Valid or Unchecked          
12         Update_Rank(msg);  //Update the relevance rank
13     Endif
14 EndofFunction

 
Figure 3.4 The detailed probabilistic verification algorithm 

Here, for brevity the receivers verifying one Beacon are called the active receivers of 

this Beacon, while the receivers choosing not to verify it are called idle receivers. If one 

Beacon is detected to be invalid, it will be discarded. Otherwise, the sender’s position 

will be updated, and the relevance ranks of all neighbors will be updated accordingly 

based on (3.3) or (3.4).  

The filtering probability p is determined based on the resource budget NB (or 

equivalently, NM). The feasible values of RAX are 0, 0, 1, 1, 2, 2, etc. as shown in Figure 

3.2 and Figure 3.3. Therefore, on average the resource consumption of A is:  

 nc = 2(1 + p + p2 + p3 + …)  2/(1 p).               (3.6) 

The resource consumption nc should be smaller than the resource budget, so  

 nc  NB.                                      (3.7) 

To give the resource budget a margin, let the equation hold in (3.6). Thus, it follows: 

 p  (NB 2)/NB.                                 (3.8) 

Thus, (3.8) can be used to derive p based on NB. For instance, if NB is 4, p can be set to 

any value no bigger than 1/2. With p derived as such, any node could perform 

probabilistic message verification without violating the soft resource budget (NB). 

3.4.3 Probabilistic Message Verification based on Hard Budget 

To ensure that in any statistic period, say 10 seconds, each node’s resource 

consumption nc is strictly less than its resource budget NB, the procedures shown in 

Figure 3.4 will be modified so that the probability in (3.5) will be strictly followed. Here, 
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each node maintains a counter vector CV, the rth element of which is [ ] 1/ rCV r p . 

Thus, CV indicates how frequently the messages with different relevance ranks should be 

verified. Each node keeps track of how many messages with relevance rank r are 

unchecked with another vector RV.  

The procedures in Figure 3.4 will be updated as follows. Once a Beacon with relevance 

rank r is received, RV[r] will be increased by 1. If RV[r] is equal to CV[r], this Beacon 

will be verified, and RV[r] is reset to 0. Otherwise, this Beacon will not be verified. In 

this process, the probability of the messages with relevance rank r being verified is 

strictly less than that indicated by (3.5). Thus, the resource consumption of each node 

will be strictly less than NB as indicated by (3.6). 

3.4.4 Simplistic Resource-Aware Message Verification 

A simplistic algorithm for scheduling message verification according to the resource 

budget is proposed here. With this algorithm, each node will only verify the Beacons with 

a relevance rank less than or equal to / 2 1BN . Here, the hard (soft) resource budget 

can be met by any node, which will always have resource consumption of 

2 / 2B BN N . Intuitive and simple to implement, this algorithm can serve as an 

alternative to the probabilistic algorithms. 

3.5 PIMN 

In DBRV, except when NB and p are big enough or the node density is extremely low, 

idle receivers generally will exist for each Beacon. To enable such idle receivers to learn 

the validity/invalidity of each Beacon, a novel PIMN module is proposed here. 

3.5.1 Detailed Procedures 

The main procedures of PIMN consist of three parts, as shown in Figure 3.5.  

Beacon Processing: The active receiver verifies the received Beacon with the help of 

DBRV, as shown in Figure 3.5. If one invalid Beacon (BI) is detected, one notification to 

accuse BI is constructed and added to the notification pool, which contains the pending 

notifications of all previously identified invalid Beacons.  
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Figure 3.5 The detailed procedures of PIMN 

Notification Processing: Upon receiving a Beacon (Bi), the receiver will process the 

notifications piggybacked, if any, in Bi as follows.  

Case I: If one notification accuses a Beacon which has already been verified by this 

node, or has not been received yet, this notification will be disregarded.  

Case II: If Bi has been (either directly or indirectly) verified as a valid Beacon, these 

piggybacked notifications are regarded as acceptable, and will be processed by the 

following approaches. Otherwise, if Bi has been verified (either directly or indirectly) as 

invalid, the notifications will simply be discarded.  

For the acceptable notifications, the following approaches can be applied to determine 

the property of the accused Beacons, i.e. to indirectly verify the accused Beacons.     

Approach I: The receiver evaluates the accused Beacon (Ba) based on all notifications 

about Ba. Ba is regarded as invalid if multiple (more than 2) notifications accuse it. 

Otherwise Ba is regarded as valid due to the lack of evidence.      

Approach II: The receiver starts to verify the accused Beacon (Ba) even if only one 

acceptable notification about Ba is received. The property of Ba can thus be immediately 

figured out at the cost of one more message verification operation.  

Both approaches allow the idle receivers to learn the invalid Beacons based on the 

received notifications. Their performance and security implications will be analyzed in 

details in section 3.7.  
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Beacon Transmission: When it is time to broadcast a new Beacon (Bn) based on the 

periodic beaconing timer, the node will first construct Bn based on its driving status. Then 

all the notifications in the notification pool will be piggybacked in Bn. The piggybacking 

approach is adopted here to reduce the bandwidth requirement. 

3.5.2 Evaluation of Beacons and Notifications 

The following strategies for evaluating Beacons and notifications are given to strictly 

define the terms of valid/invalid Beacons and acceptable notifications. 

Without being directly verified by one receiver ni, a Beacon Bi is regarded as valid by 

ni if, 1) ni has waited for a Beaconing period T without receiving any piggybacked 

notification about Bi, or 2) ni receives one or more acceptable notifications IN(Bi) but still 

confirms the validity of Bi with either Approach I or Approach II as discussed above.  

Similarly, a Beacon Bi is indirectly verified as being invalid if ni receives one or more 

acceptable notifications IN(Bi) and confirms the invalidity of Bi with Approach I or 

Approach II as discussed above.  

One notification IN(Bi) is regarded as acceptable only if its bearer Beacon (Bj), the 

Beacon to which IN(Bi) is piggybacked, is directly or indirectly verified to be valid.  

Thus, any unchecked Beacon can be indirectly verified based on only acceptable 

notifications with a bounded latency. Given that in VANETs most Beacons are valid and 

most nodes are honest in sending out notifications, most unchecked Beacons will be 

regarded as being valid after T due to the absence of any notification. Only very few 

unchecked Beacons are invalid, which can be indirectly verified as being invalid after 2T: 

the receiver only needs to wait for T to get the piggybacked notification, and at most 

another T to verify that the notification is acceptable. This latency is acceptable, since the 

unchecked Beacons are not quite relevant to the receiver as determined in DBRV. 

3.5.3 Adaptive Organization of Notifications 

A normal Beacon has the following packet format: {NID, PID, Data, Signature, 

Cert(NID)}. Here, NID is the sender’s real identity, or pseudonym if privacy is concerned 

here. Adopted in privacy protection schemes [113], [125], a pseudonym is a temporary 

identifier without any obvious connection to the real identity of a node. If pseudonym is 

adopted here, RAMV can still successfully update the relevance ranks of the neighbors 
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without knowing their real identities. Actually, mainly concerning the locations of the 

neighbors, RAMV is oblivious to whether NID is a real identity or a pseudonym. Thus, 

RAMV is compatible to the common privacy protection schemes [113], [125] for 

VANETs, and will not pose any hurdles to privacy protection. PID is the packet ID of the 

Beacon, locally assigned by the sender. Data is the application specific data structure 

containing driving states. Signature is the sender’s digital signature of the hash of the 

NID, PID and Data to ensure message integrity. The piggybacked notifications will also 

be included in this signature to ensure message integrity. Cert(NID) is the certificate of 

the NID, which may not be present in every Beacon according to [45], [71].  

As shown in Figure 3.5, each notification of one Beacon (Bi) has the format 

{NID||PID}, since NID and PID concatenated together can uniquely identify Bi. The 

content of Bi is not needed in the notification, since the interested receivers of the 

notification are supposed to have received Bi. Each notification needs several bytes in the 

Beacon, and without loss of generality here both NID and PID are assumed to be 4 bytes. 

The number of pending notifications in each node may change greatly with the 

environments, so the space required for the piggybacked notifications will also change. 

This uncertainty in space requirement is undesirable for Beacon construction, so here an 

adaptive notification organization technique is proposed as shown in Figure 3.6 to ensure 

a relatively constant space requirement in various scenarios.  

Beacon Flag NID||PID BFCNID||PID

Notifications

NID||PID NID||PID

Figure 3.6 The format of piggybacked notifications 

As shown in Figure 3.6, the 1-byte Flag field is used to indicate the format of the 

piggybacked notifications. If there are no more than 2 notifications, the attached 

notifications will be in the plain format. Here the piggybacked part will be no longer than 

17 bytes long. If there are more notifications to attach, the bloom filter [193] coefficients 

(BFC) can be used instead to indicate the Beacons in this notification. The main idea is to 

hash the {NID||PID} of each notification, resulting in a value v. Each bit in v with value 

‘1’ will be used to set the corresponding bit in the BFC. On the receiver side, each 

{NID||PID} of the previously received Beacons will be hashed similarly, and the resulted 
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value v* will be checked against BFC. If each ‘1’ bit of v* has a corresponding ‘1’ bit in 

BFC, this Beacon is included in the notification. Thus, BFC with a specific size can 

indicate various numbers of Beacons. Here we set the filter (BFC) size m=128 bits and 

the hash round k=6, which is sufficient to indicate dozens of Beacons. The total length of 

the notification will also be 17 bytes in this case. 

3.6 ETV 

As previously discussed, DBRV ensures that the Beacons with high relevance ranks 

will be directly verified, while PIMN enables other Beacons to be indirectly verified with 

a bounded latency. This differentiation is proper to the routine Beacons containing 

normal driving states. However, the safety-critical Beacons, which may contain warning 

of abrupt braking or mechanical malfunctions of the sender, need to be verified by all 

receivers immediately to ensure driving safety. To this end, the Event-Triggered 

Verification (ETV) module is proposed.  

As shown in Figure 3.1, ETV serves as a bridge between the safety applications and 

the message verification algorithms. Once the safety applications detect an unchecked 

Beacon (Bi) as safety-critical, ETV will pass Bi back to the message verification 

algorithms for immediate verification. Afterward, the safety applications will process Bi 

according to the verification result. In ETV, the detection of safety-critical Beacons can 

and only can be performed by the specific safety applications. With simple internal 

message buffer operation ETV can pass the safety critical Beacon to the message 

verification algorithms. The technical details may be too platform-specific to be 

elaborated on here. However, the feasibility of ETV is evident from the above reasoning, 

and also justified by the existing on-demand verification scheme [189].  

Though the main idea of ETV is similar to that of the on-demand verification [189], 

ETV is actually more effective and powerful with the help of DBRV and PIMN. In [189] 

only the critical Beacons will ever be verified, thus the misbehaving nodes broadcasting 

invalid Beacons will not be detected in time if such Beacons are not regarded as critical 

by the receivers. Moreover, [189] actually has a security loophole. Suppose an adversary 

A broadcasts a sequence of invalid routine Beacons iB , each with incrementally invalid 

data about its driving states, so they will not be verified by any receivers. As a result, A’s 
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neighbors will use iB to build an invalid model of A, ( )A iM B .  In the end, if A sends 

out a safety-critical Beacon 1iB , which is invalid but seems consistent with the preceding 

iB , 1iB will not be detected by [189] as being invalid due to the invalid model 

( )A iM B . Comparatively, in RAMV with the help of DBRV and PIMN each node 

practically verifies both the signature and the content of each received Beacon, either 

directly or indirectly. The invalid Beacons iB  will be identified and discarded once 

received, and the reputation of node A will be significantly decreased. Eventually, the 

false critical Beacon 1iB will not be trusted by any receivers with ETV.   

Regarding resource consumption, generally most Beacons are not critical Beacons and 

contain only routine information. Thus, no significant overhead will be incurred by ETV 

for additionally verifying the unchecked critical Beacons. Besides, the resource budget 

margin provided in DBRV will cover the overhead of ETV, if any. If in any case critical 

Beacons become prevalent, ETV can simply override the scheduling of DBRV and spend 

the resource budget mainly on the safety critical Beacons, so that the safety-critical 

Beacons will be always verified. 

3.7 Analysis of RAMV 

In subsections 3.4.2, 3.4.3 and 3.4.4, three algorithms have been proposed for DBRV: 

probabilistic message verification based on soft budget, probabilistic message verification 

based on hard budget, and simplistic resource-aware message verification. Hereafter, 

RAMV-S, RAMV-H and RAMV-SIM are used to denote RAMV adopting these 

algorithms, respectively. Whenever proper, RAMV will be compared to two alternative 

baseline schemes: BSL1 and BSL2. BSL1 represents the simplest best-effort message 

verification schemes, where each node attempts to verify all received Beacon. BSL2 

adopts the main idea of [71], making each node verify 1 Beacon out of every nt received 

Beacons. In both BSL1 and BSL2, in case of insufficient resource, after a period TP the 

buffered Beacons will be simply discarded. 

3.7.1 Quantitative Properties 

Here we analyze RAMV’s quantitative properties by comparison with BSL1 and BSL2. 
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3.7.1.1 Resource Consumption 

Let ncb1, ncb2, nch, ncs and ncsim denote the resource consumption per second of BSL1, 

BSL2, RAMV-H, RAMV-S and RAMV-SIM, respectively. Suppose one node has Ni 1-

hop neighbors at time i. Further suppose this node has a total resource of NA. 

In case of BSL1, ncb1=Ni if Ni  NA; ncb1=NA if Ni > NA. Thus, BSL1 results in varying 

resource consumption even when the resource is sufficient. When Ni becomes larger than 

NA, resource depletion will happen to the VANET nodes.   

In case of BSL2, ncb2=Ni/nt. BSL2 only rigidly scales down the resource consumption 

with a factor of 1/nt without considering the available resource, and varying resource 

consumption can still be caused by the varying Ni. 

Comparatively, from subsection 3.4 we have ncsim NB, ncs=2/(1 p) NB, and nch<NB. 

Besides, as we will show in subsection 3.7.3 and the simulation results, the additional 

message verification caused by ETV and PIMN is negligible compared to that of DBRV. 

Thus, overall RAMV results in relatively stable resource consumption bounded by the 

resource budget (NB), which is more desirable than both BSL1 and BSL2. 

3.7.1.2 Active Receivers of One Beacon 

In RAMV, the number of active receivers (na) of a Beacon follows two theorems.  

Theorem 1: Among all receivers at least one active receiver exists for any Beacon.  

Proof: From both single-lane model and multi-lane model of relevance rank, any node 

A at least has 1 neighbor B such that RBA=0. Meanwhile, all resource-aware algorithms in 

section 3.4 ensure that B will directly verify every Beacon from A if RBA=0.    

Theorem 2: In RAMV-S and RAMV-H, E[na] also follows (3.6). In RAMV-SIM, 

na=NB. 

This theorem can easily be proven with the similar reasoning as shown in section 3.4.   

Thus, RAMV ensures that any Beacon will be verified by at least 1 active receiver. 

Comparatively, BSL1 may actually leave a bunch of Beacons unchecked at the end of Tp, 

when resource is insufficient. In BSL2, one Beacon will be verified by any of its 

receivers with probability (nt 1)/nt. Thus, the probability that this Beacon is not verified 

by any receiver is ( 1) /i iN N
t tn n , which is non-zero as long as nt is bigger than 1.  
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3.7.1.3 False Positive Ratio and False Negative Ratio 

The false positive ratio is the probability that the receiver mistakes a valid Beacon as 

being invalid, and the false negative ratio is the probability that the receiver mistakes an 

invalid Beacon as being valid. The false positive ratio and false negative ratio are denoted 

as RP and RN, respectively.  

In BSL1, the probability that one received Beacon will be verified by the receiver, 

Pr{Directly Verified}, is min(NA/Ni, 1). Thus, if the receiver has sufficient resource it will 

verify all received Beacons, with RP=RN=0. When resource is insufficient, if the receiver 

regards all unchecked Beacons as invalid (let pm denote the ratio of invalid Beacons), RP 

= (1 pm)(Ni NA)/Ni and RN=0; if the receiver regards unchecked Beacons as valid RP=0 

and  RN = pm(Ni NA)/Ni. Thus, in BSL1, either RP or RN will be positive when the 

resource is insufficient. In case of BSL2, Pr{Unchecked}=(nt 1)/nt. Thus, with similar 

reasoning, RP or RN will also be quite large as long as nt is bigger than 1, no matter 

whether the resource is sufficient or not.  

In RAMV, with PIMN each Beacon is either directly verified by the receiver, or 

indirectly verified based on the presence or absence of notifications. Thus, RP is the 

probability that one valid Beacon BV is regarded as invalid due to the false notifications 

from some misbehaving neighbors. However, as discussed in section 3.5, with Approach 

II for indirect verification, this is impossible. With Approach I, RP will be negligible, 

since the collusion among multiple misbehaving neighbors is required to successfully 

deceive the receiver.  

In RAMV, RN is the probability that one invalid Beacon BI is regarded as valid due to 

the absence of any notifications. This is actually the probability that the notifications 

from na active receiver of BI are all lost due to transmission collision or reception error, 

which generally is negligible when na is reasonably big. Thus, in RAMV, RN is negligible 

as shown in the simulation results in section 3.8.   

In summary, RAMV will result in much smaller RN and RP than both BSL1 and BSL2. 

Thus, RAMV can better support both traffic safety applications and reputation schemes 

in face of limited resource budget and high node density. 
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3.7.2 Security Properties  

Given a resource budget, RAMV enables each node to directly verify as many 

important Beacons as possible to ensure reliable traffic safety applications. With PIMN 

each node can indirectly verify the Beacons which have not been directly verified, as 

discussed in subsection 3.5.2. Besides, RAMV also ensures that any Beacon will be 

verified by at least 1 neighbor, so that any invalid Beacon can be promptly detected by 

the receivers. Thus, RAMV shows salient safety and security properties while meeting 

the resource budget, as long as its design goals will not be disrupted by any potential 

attacks, which will be thoroughly investigated next.  

In VANETs, it is reasonable to assume that most nodes will participate in RAMV 

honestly. The fact that a hardware security module (tampering-proof hardware) [36] can 

be used to protect the cryptographic materials implies that the Sybil attack will be quite 

impossible in VANETs. Even if one node somehow manages to launch the Sybil attack, 

the Sybil attack can be detected and handled by the existing schemes [64], and this node 

may be punished by the misbehaving node eviction schemes [90] or with reputation 

schemes [80], [86]. Thus, in RAMV we only consider the following attacks.  

Invalid Data: One misbehaving node may intentionally send out Beacons with false 

position data. As discussed before, several neighbors of this node will work as active 

receivers and detect the invalid data through content verification. PIMN will ensure that 

most receivers of such Beacons will learn of their invalidity. Even based on the wrong 

positions, this node’s Beacons will be verified as those of the normal nodes. Thus, it is 

impossible to allure any node into verifying more messages than its resource budget by 

broadcasting invalid positions. 

One node may also send out numerous false safety-critical Beacons, which will incur 

additional resource consumption in the ETV module of the receivers and disrupt DBRV. 

Fortunately, ETV ensures that such fake critical Beacons will all be timely verified, so 

that the reputation of this node will be decreased sharply. After a while the Beacons from 

this node will be ignored and this node may be evicted from VANETs, as in [90].   

Bad-mouthing: One node may send out a notification to wrongly accuse another node 

of broadcasting invalid Beacons in the bad-mouthing attack. As discussed in subsection 
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3.7.1, the false positive ratio of RAMV is negligible and the bad-mouthing attack can be 

effectively handled. Additionally, as discussed in PIMN, this node needs to attach its 

digital signature for the invalid notification, which can serve as proof to countermeasure 

against itself. In case of Approach II for indirect verification, one node may attempt to 

allure its neighbors into verifying more Beacons by attaching numerous invalid 

notifications to its Beacons. However, this attack can be easily detected by its neighbors, 

and its future notifications can be simply ignored. Thus, the resource consumption of any 

node will not be disrupted by the bad-mouthing attack. 

3.7.3 Computation Complexity 

To further corroborate the salient properties of RAMV in reducing resource 

consumption, the computation complexity of RAMV will be analyzed here.  

In DBRV, the relevance ranks of all the (Ni) neighbors need to be updated upon 

receiving a Beacon. Thus, DBRV requires 10Ni Ni=O(Ni
2) comparisons for relevance 

rank updating each second. In PIMN, assuming that each node will send out invalid 

Beacons with probability pm, 10Ni pm piggybacking operations will be required per 

second. In reasonable scenarios pm is small and this overhead is much smaller than the 

normal beaconing. In ETV, only 1 buffer operation will be incurred by each safety-

critical Beacon, since the verification of the safety critical Beacon can be covered by the 

resource budget in DBRV. Assuming that the safety critical beacons are quite rare, this 

overhead of ETV is still acceptable.  

Thus, DBRV incurs the biggest computation overhead among all modules of RAMV. 

However, most traffic safety applications also require regular update of the neighbor 

locations. Thus, the computation overhead of location and relevance rank update can 

actually be shared by RAMV and traffic safety applications. Even counting DBRV’s 

computation overhead as it is, the overall computation overhead of RAMV may still be 

acceptable compared to the computation extensive cryptographic and mathematic 

operations of message verification algorithms. 

3.7.4 Application Significance 

RAMV makes message verification scalable and resource-aware in VANETs in face of 

increasing node density and massive message exchanges. Though proposed explicitly for 
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Beacons, RAMV is also easily applicable to other messages by slightly modifying the 

concept of relevance rank as discussed before. In VANETs, there will be many types of 

periodic messages necessitated by numerous applications, as discussed in section 3.1. 

Thus, RAMV is especially appealing to the realistic deployment of VANETs. 

3.8 Simulations 

A NS2 [169] based simulation with realistic vehicle mobility traces generated by 

MOVE [170] is constructed to evaluate RAMV. Totally 200 nodes are simulated within a 

2000 by 3000 meters region. The simulation parameters are summarized in Table 3.1. In 

this simulation, each node on average has about 20 1-hop neighbors. Here for 

convenience, the resource consumption is measured with the unit of node as discussed in 

(3.2). RAMV will be compared with BSL1 and BSL2 in the following two scenarios. 

 

3.8.1 Limited Resource Scenarios 

In this scenario, VANET nodes do not have sufficient resource for message 

verification, either due to computation extensive cryptographic algorithms, or high node 

density. This scenario is common for realistic VANETs. Without struggling with 

technical details, we suppose that each node can only verify 120 Beacons or maintain 12 

neighbors per second (NA=12). As previously discussed, BSL1 and BSL2 will simply 

discard the Beacons pending for verification at the end of each second. In BSL2, we set nt 

to 2, so that each node will verify every other received Beacon. In RAMV, resource 

budget NB will be 2, 4, 5, 6, 7, 8, 10, 12, and filtering probability p will change 

accordingly.  

Resource Consumption (NC): In Figure 3.7, the NC statistics for RAMV, BSL1, BSL2, 

as well as NB, are shown. Figure 3.7 shows that all RAMV versions have NC curves lower 

than the NB curve and satisfyingly meet the resource Budget NB. Note here that the 

resource consumption of RAMV includes that caused by PIMN and ETV.  

Table 3.1 
Simulation parameters of RAMV 

Parameter Value Parameter Value 
# of vehicles 200 Bit-rate 6 Mbps 
Road length 10km T 100ms 
R 300m Average velocity 20m/s 
MAC 802.11 Simulation Time 200s 



69 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

p

N
C

 

 

NB BSL1 BSL2 RAMV-H RAMV-S RAMV-SIM

 
Figure 3.7 The resource consumption statistics of BSL and RAMV 

As discussed in section 3.7, generally RAMV-SIM, RAMV-S and RAMV-H follow 

their resource budget increasingly more strictly. Thus, the differences between their NC 

statistics in Figure 3.7 are reasonable. Comparatively, the resource consumption of BSL1 

basically reaches NA, so no sufficient resource is left for the other applications. BSL2, by 

only verifying one half of all received Beacons, leaves some resource for other 

applications. However, being not resource-aware, given higher node density even BSL2 

will also face resource depletion.  

In Figure 3.7, the fact that NC of BSL1 is slightly smaller than 12 is caused by the 

Beacon loss in VANETs. The Beacon loss can be caused by the reception errors at the 

receiver side due to high vehicle mobility, or by MAC layer collisions of several 

simultaneously transmitting nodes. As indicated by the recent proof of concept tests [194] 

of the VII Consortium, Beacon loss is common in realistic VANETs. Thus, any receiver 

may only receive fewer than 10 Beacons from one neighbor per second, so the actual 

resource consumption of any node will be reduced. The Beacon loss also contributes to 

the gaps between the NC curves of RAMV and the NB curve in Figure 3.7.    

Number of Active Receivers (na): As shown in Figure 3.8, the na data of all RAMV 

versions are larger than 1, and closely follow (3.6). Thus, the simulation results here 

corroborate Theorem 1 and Theorem 2 in subsection 3.7.1. In the lower sub-figure, the 

violation ratio (RO) rigorously records the ratio of the Beacons with na=0 to all Beacons. 

Thus, RO is the probability that one Beacon will not be verified by any receivers. For all 

RAMV versions, RO is practically 0 (on the order of 10 4), which is much lower than 

those of BSL1 and BSL2, as shown in Figure 3.8.   



70 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2
4
6
8

10
12

p
n a

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

p

R
O

 

 

BSL1 BSL2 RAMV-H RAMV-S RAMV-SIM nat

 
Figure 3.8 The numbers of active receivers of BSL and RAMV 

Thus, with limited resource, RAMV practically ensures that any Beacon will be 

verified by at least one receiver, better supporting VANET applications than both BSL1 

and BSL2. The theoretical na, nat, is also shown in Figure 3.8, and the difference between 

nat and the na curves of RAMV is also caused by Beacon loss in VANETs. 

Ratio of Verification (RV): In Figure 3.9, RV1 indicates the probability that one 

received Beacon will be directly verified in BSL1, BSL2 and RAMV. RV2 is the 

probability that one Beacon will be either directly or indirectly verified in RAMV. As 

shown in Figure 3.9, RV2 of RAMV-S, RAMV-H and RAMV-SIM is almost 1.0 for any 

NB, while RV1 is generally smaller than 0.5. This shows that with limited resource budget 

only a portion of all received Beacons can be directly verified in RAMV. With the help 

of PIMN, almost all the remaining Beacons will be indirectly verified. Thus, in RAMV 

the false negative ratio RN, which is equal to pm(1 RV2), is negligible, so RAMV ensures 

satisfying security strengths with limited budgets.  
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Figure 3.9 The ratios of verification of BSL and RAMV 
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Comparatively, both BSL1 and BSL2 need to rely on direct verification of the Beacons. 

When resource is not sufficient, as configured here, the RV1 curves of both BSL1 and 

BSL2 are about 70% and 50%, respectively. Thus in BSL1 and BSL2 about 30% and 

50% received Beacons of any node will not be verified and their properties remain 

unknown, which is potentially harmful to the traffic safety applications and relevant 

security applications (e.g. reputation schemes). 

3.8.2 Unlimited Resource Scenarios 

In the idealistic scenario where each node always has unlimited resource to verify all 

received Beacons, the resource consumption variances (VC) of BSL1, BSL2, and RAMV 

will be compared. Here, the resource consumption NC of each node is calculated per 10 

seconds. VC is defined as100( ) /M M
C C CN N N , where M

CN is the average of NC over all 

periods. Basically, bigger VC indicates higher variance of the resource consumption, and 

VC=0 means that the resource consumption remains constant for every 10 seconds. As 

shown in Figure 3.10, both BSL1 and BSL2 have the same variances, which are much 

larger than those of RAMV in most periods. Basically, RAMV-H, RAMV-S and RAMV-

SIM result in almost the same VC, which are within 5% most of the time. Thus, RAMV, 

as previously discussed, can reduce the resource consumption variance of the individual 

nodes and better support the resource allocation algorithms.  
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Figure 3.10 The resource consumption variances of BSL and RAMV 
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Figure 3.11 The full-fledged resource consumption statistics 

In Figure 3.11, the full-fledged resource consumption (NC) curves are shown, with NB 

set to 2, 4, 5, 6, 7, 8, 10, 12, 15, 20, 25, 35, and 1000. Figure 3.11 proves again that 

RAMV can satisfyingly meet the preset resource budget NB, resulting in configurable and 

predictable resource consumption. Although resource is assumed to be unlimited in this 

scenario, it is still meaningful to reduce the resource consumption as long as the relevant 

safety and security strengths will not suffer, as is the case with RAMV. 

3.9 Summaries 

Taking into consideration both the resource budget and the security requirements on 

message verification, RAMV is resource-aware, application-friendly and secure at the 

same time. Within RAMV, DBRV allows each node to spend its resource budget on the 

most relevant messages. ETV ensures that any critical messages which contain or raise a 

warning will be verified promptly, so that traffic safety will not suffer from DBRV and 

PIMN. The novel techniques in PIMN enable any node to learn the property of all 

received messages, so that the security of message verification is also ensured. Basically, 

RAMV allows the neighboring nodes to share the computation overhead in verifying the 

messages, and to share the message verification results. In this sense, the scalability 

issues in message verification are effectively handled.  

Though only Beacons are explicitly considered in this chapter, RAMV can be easily 

applied to other types of messages in VANETs with the necessary modifications 

proposed in this chapter.  
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In conclusion, RAMV provides an efficient and secure solution to the verification of 

the numerous messages in VANETs, which threatens excessive resource consumption. 

RAMV can work in VANETs independently of the underlying cryptographic techniques, 

controlling the resource consumption of message verification to a desired budget. Besides, 

the safety and security requirements of message verification are all properly met. Thus, 

RAMV securely and realistically tackles the scalability issues in message verification in 

VANETs, which makes RAMV especially appealing to VANETs. 
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Chapter 4 Joint Privacy and Reputation 
Assurance3 

In VANETs, privacy protection makes it challenging to maintain the reputation history 

of any node, while reputation management requires real-time reputation manifestation at 

risk of easier vehicle tracking. In this chapter, a Joint Privacy and Reputation Assurance 

(JPRA) scheme [145], [146] is proposed to reconcile these conflicts and support the 

synergistic coexistence of both schemes in VANETs. JPRA adopts a localized reputation 

management model where the behavior evaluation, reputation aggregation and reputation 

manifestation of each node are collectively performed by this node and its 1-hop 

neighbors. Within this model, a reputation relay algorithm and a neighbor-assisted 

reputation update algorithm support secure and efficient reputation management in face 

of node mobility and privacy protection. Besides, a conditional reputation discretization 

algorithm allows privacy-preserving reputation manifestation for the honest nodes. 

Theoretical analysis and simulations show that JPRA efficiently and synergistically 

supports reputation schemes and privacy schemes. Considering the necessity of both 

privacy protection and reputation management, JPRA is especially appealing to VANETs. 

4.1 Introduction 

As previously discussed, proper security provisioning is necessary [5], [20] to meet the 

critical security requirements of VANETs, such as data integrity, node authentication, 

reputation management, privacy protection, and so on. Extensive research has been 

conducted for each security requirement, as reviewed in our book chapter [5]. However, 

the conflicting requirements of different security schemes still call for thorough 

investigation to ensure their synergistic coexistence in VANETs.  

This chapter is focused on jointly supporting reputation management and privacy 

protection in VANETs. Consisting of behavior evaluation, reputation aggregation and 

reputation manifestation, reputation management [103] serves to reward the 

                                                 
3 The material contained in this chapter was submitted to IEEE Transactions on Mobile 

Computing. © 2012 IEEE. See Appendix C for a copy of the copyright permission from 
IEEE. 
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honest/complying nodes and punish the misbehaving ones in VANETs. Keeping the 

location and identity information of each node secret, usually with pseudonym changes, 

privacy protection is essential to the privacy-sensitive users [5] of VANETs. However, 

with different design goals, reputation management and privacy protection impose 

conflicting requirements to each other. Briefly speaking, reputation management requires 

that each node be continuously monitored to maintain a precise reputation history for this 

node. However, privacy protection mandates that each node, after changing its 

pseudonym, should not be recognized by its neighbors. Additionally, the manifested 

reputation of any node may provide an additional clue to the adversaries, potentially 

harming its privacy. These conflicting requirements, to be further discussed in section 4.2, 

have not been comprehensively investigated in literature. Thus, here a novel Joint Privacy 

and Reputation Assurance (JPRA) scheme is proposed to reconcile the inherent conflicts 

of these schemes and efficiently support both in VANETs.  

JPRA adopts a localized reputation management model to facilitate efficient behavior 

evaluation, reputation aggregation and reputation manifestation in VANETs. In this 

model, each node uses a neighbor-certified reputation label to reflect its reputation 

history and its 1-hop neighbors 4  hold short-term reputation opinions for its recent 

behaviors. A novel reputation relay algorithm is proposed to ensure that the complete 

reputation information of any node is always locally maintained by itself and its 

neighbors, in face of frequent network topology changes caused by high node mobility 

and pseudonym changes. A neighbor-assisted reputation label update algorithm allows 

each node to honestly update its reputation label with the aid of its neighbors, which is 

made privacy-preserving with partially blind signature [195] based procedures. Moreover, 

to make reputation manifestation privacy-preserving, a conditional reputation 

discretization algorithm allows honest nodes to manifest a same reputation.  

By comprehensively considering the unique characteristics of VANETs and the 

challenging conflicts of both schemes, JPRA supports the synergistic coexistence of both 

reputation management and privacy protection in VANETs. Extensive theoretical 

                                                 
4 In this chapter, we only consider the 1-hop (direct) neighbors of each node. Thus, in 

this chapter each neighbor is a 1-hop neighbor, unless explicitly stated otherwise.  
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analysis and realistic simulations validate the effectiveness and efficiency of JPRA. Thus, 

JPRA is especially appealing to VANETs, considering the necessity of both schemes.  

4.2 Related Work 

In VANETs, privacy protection aims to conceal the real identity of each node from the 

potential adversaries, such as its neighbors and external observers [109]. To this end, 

pseudonyms, instead of real identities, are used in VANET communications [5]. A 

pseudonym is an temporary identifier without any obvious connection to the real identity, 

usually consisting of a node’s public key certificate, IP address and MAC address [113]. 

However, by observing the location history and service accessing history of one node 

with the same pseudonym, an adversary may derive personal information to deduce its 

real identity. Thus, pseudonym change is commonly adopted [45], [62], [109], [113], 

[117], [119], [122], [124], [125], [127] to break down the location history and service 

accessing history of each node by making this node, after a pseudonym change, a totally 

new node. To this end, most privacy protection schemes enable several neighboring 

nodes to synchronize their pseudonym changes and remain silent for a random period 

afterward. This way, after resuming normal communications, these nodes become 

indistinguishable to the adversary with the location information and pseudonyms 

contained in their communications. Furthermore, when reputation is considered, it is also 

necessary to prevent the manifested reputation from uniquely identifying any node 

among its neighborhood, in order to make pseudonym change effective.   

In VANETs, reputation management evaluates how honest/complying one node is 

regarding one specific application protocol with behavior evaluation, reputation 

aggregation and reputation manifestation. Specifically, the protocol-specific behaviors of 

each node will be evaluated by its neighbors. For instance, [76], [90], [143] allow the 

neighbors of each node to evaluate its periodical beacons and [78]-[80], [115], [155] 

allow the evaluation of the routing and data relaying behaviors. Generally, each neighbor 

will form its own opinion about this node’s behaviors, called a reputation segment here.  

Reputation aggregation refers to forming an overall reputation based on all reputation 

segments and the reputation history of one node. Existing reputation schemes [93], [95], 

[97], [98], [104], [105], [107], [196] propose reputation metrics and algorithms to 
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evaluate the reputation of each node for specific application protocols. For VANETs, one 

critical question is how reputation aggregation should be performed. In general mobile ad 

hoc networks, reputation aggregation can be performed in a centralized manner where a 

central authority aggregates the reputation segments for all nodes. Or it can be performed 

in a peer-to-peer manner where each node keeps the reputation segments for all other 

nodes and aggregates the reputation segments by querying the network. However, the 

centralized approach is unsuitable to VANETs, since in VANETs each node may only 

have a sporadic access to the central authority. The peer-to-peer approach will incur 

tremendous communication and storage overhead for each node, due to the high node 

mobility and numerous nodes of VANETs. Thus, the only feasible reputation aggregation 

approach for VANETs is for each node and its 1-hop neighbors to locally aggregate its 

reputation.  

Reputation manifestation makes the reputation of each node visible and verifiable to its 

interacting parties. To make the reputation of each node trustworthy, it should be 

vouched for by a trustworthy entity, for example a central authority or a set of nodes.   

Thus, by breaking down the pseudonym history of each node, privacy protection 

makes it even more challenging to precisely evaluate the behavior history of each node. 

Similarly, it becomes difficult to aggregate the reputation segments for any node with 

changing pseudonyms. Reputation manifestation also becomes difficult, since each node 

can simply evade its reputation by changing its pseudonym. On the other hand, the 

reputation manifested by each node becomes an additional property for this node, which 

could be exploited to profile this node and harm its privacy. To support both privacy 

protection and reputation management in VANETs, such conflicting requirements and 

VANETs’ unique characteristics need to be thoroughly investigated.  

Up to now, only [108] proposes a probabilistic reputation scheme to jointly consider 

privacy and reputation in VANETs. In [108], each node aggregates its own reputation in 

its Tamper-Proof Device (TPD) [11], [197], based on the reputation segments of its 

neighbors. However, a special TPD for reputation management cannot support various 

application protocols in VANETs, while adding various TPDs to support different 

application protocols may not be acceptable due to the incurred cost. Besides, [108] 

ignores the common attacks to reputation aggregation, e.g., blocking negative reputation 
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segments. More importantly, by directly manifesting the reputation value of each node, 

the privacy of each node may be harmed. Thus, JPRA is proposed as a novel and 

comprehensive solution to such challenging issues. 

4.3 Background and Overview 

4.3.1 Network Model and Assumptions 

VANETs consist of the ad hoc domain and the infrastructure domain [5]. The ad hoc 

domain is formed by vehicles with Dedicated Short Range Communication (DSRC) [9] 

transceivers. Each node has multiple pseudonyms certified by the VANET (certificate) 

Authority and can change pseudonyms at will. A standard tamper-proof device (TPD) 

[11], [197] in each node keeps its cryptographic elements confidential and allows the 

usage of only one pseudonym at any time. Thus, the Sybil attack [63] is difficult in 

VANETs. To support traffic safety applications, each node periodically (with a period 

between 100 ms and 500 ms) broadcasts beacons containing its driving states, such as 

location, speed and driving direction [10]. It is assumed that the majority of nodes in 

VANETs are honest and complying regarding various application protocols.  

In the infrastructure domain, RSUs serve to interface vehicular nodes and the VANET 

Authority, which is in charge of all major management and security functions in 

VANETs. Due to cost considerations, RSUs are sparsely deployed in VANETs, usually 

in road intersections. It is assumed that RSUs and Authority are always trustworthy. 

4.3.2 JPRA Overview 

JPRA adopts a localized reputation management model. As shown in Figure 4.1, in 

JPRA, the complete reputation information of each node (say node A) consists of a 

reputation label (RLA) to indicate its long-term reputation and short-term reputation 

segments generated by its neighbors. Certified by K (K>0) neighbors, RLA serves to 

honestly reflect A’s long-term reputation history. Thus, to facilitate reputation 

manifestation and behavior evaluation, each neighbor of A should learn RLA in time 

(Condition 1). To facilitate local reputation aggregation, at any time the 1-hop neighbors 

of A should keep all the reputation segments for A (Condition 2). Within this localized 

reputation management model, three novel algorithms are proposed to efficiently support 

both reputation management and privacy protection.  
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Figure 4.1 The system overview of JPRA 

First, a novel reputation relay algorithm is proposed to meet both Condition 1 and 

Condition 2 in face of frequent network topology changes caused by high node mobility 

and pseudonym changes. Secure and efficient procedures are designed for A’s new 

neighbor to learn RLA in time, and for A’s leaving neighbor to delegate its reputation 

segment to A’s staying neighbors. In this way, A’s complete reputation information is 

always maintained by itself and its neighbors, which makes reputation history 

maintenance and reputation aggregation efficient in VANETs.  

Secondly, a neighbor-assisted reputation label update algorithm securely and 

efficiently updates RLA in case of the expiration of RLA, A leaving the current network 

cluster or A’s imminent pseudonym change. This way, at any time A will carry a valid 

and up-to-date reputation label. Especially, partially blind signature [195] based 

procedure is proposed to ensure that A’s new reputation label will be certified by K 

neighbors without revealing its new pseudonym in case of A’s pseudonym change.  

Thirdly, to make reputation manifestation both precise and privacy-preserving, a 

conditional reputation discretization algorithm is proposed to enable the 

honest/complying nodes to manifest a same reputation label. As such, the reputation label 

cannot be exploited to harm the privacy of such honest/complying nodes.     

With these novel algorithms, JPRA reconciles the challenging conflicts of reputation 

management and privacy protection, efficiently and synergistically supporting both.  

4.3.3 Adversary Model 

In JPRA, the most powerful adversary to the location privacy of vehicular nodes, 

namely the Global Passive Adversary (GPA) [117], [119], will be considered. A GPA can 

monitor all VANET communications to reconstruct the location history and application 
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accessing history of each node. When one node changes its pseudonym, GPA may 

attempt to link the old and new pseudonyms based on various information items, such as 

the movement trajectories, the application accessing, and the reputation values of the 

involved pseudonyms. Thus, if the manifested reputation of one node remains constant 

and unique within its neighborhood during the pseudonym change, its pseudonym change 

becomes futile. Given that the privacy protection schemes [45], [62], [109], [113], [117], 

[119], [122], [124], [125], [127] have already considered other information items, JPRA 

only needs to prevent the reputation manifestation from harming the pseudonym changes. 

Regarding reputation management, the misbehaving nodes may selectively block the 

negative reputation segments from its neighbors and only accept the positive ones in 

reputation update. The misbehaving nodes may change their pseudonyms in order to get 

rid of their low reputation values. The misbehaving nodes may also launch a bad-

mouthing attack by intentionally giving wrong reputation segments for its neighbors. 

Similarly, given that the bad-mouthing attack has been considered in the reputation 

aggregation algorithm, JPRA will be focused on the other two attacks.    

Besides, in VANETs, one node may refuse to or fail to comply with the required 

communications due to misbehaviors or MAC layer collisions. JPRA will ensure reliable 

and efficient communications in face of these misbehaviors and malfunctions. 

4.4 Localized Reputation Management 

As previously discussed, JPRA locally manages the reputation of each node so that 

reputation aggregation can be resilient to the frequent network topology changes in 

VANETs. To this end, both reputation relay and reputation label update need to be 

securely and efficiently supported.   

A network topology change may be incurred by the relative movement of nodes, as 

shown in Figure 4.2. When node A enters node B’s communication range, A needs to 

learn B’s reputation label RLB and B needs to learn RLA. To this end, a reputation label 

notification procedure is proposed. Hereafter, due to the symmetry of procedures, we will 

describe the procedures in JPRA in the light of one single node arbitrarily selected out of 

two neighboring nodes. While in B’s communication range, A will monitor B’s behaviors 

and form a reputation segment RSAB for B.  
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Figure 4.2 The message flows and interactions of an exemplary reputation relay 

Before leaving B’s communication range, A needs to delegate RSAB to one staying 

neighbor of B, so that RSAB will be aggregated in B’s future reputation label update. To 

this end, a reputation segment delegation procedure is proposed. Thus, reputation relay 

includes both reputation label notification and reputation segment delegation. 

Similarly, a pseudonym change will also result in the network topology change as 

shown in Figure 4.2. Specifically, the case where A changes its pseudonym to A’ is 

similar to, regarding network topology, the case where node A leaves B and node A’ 

comes to B’s communication range.  

On the other hand, to make its reputation label up-to-date and trustworthy, each node 

needs to update its reputation label from time to time assisted by its neighbors. It is 

critical to ensure that each node will honestly update its reputation label based on the 

reputation segments of its neighbors, without harming its own privacy. 

For clarity, the notations commonly used in the following subsections will be listed 

here. PRX and PUX indicate the private key and the public key of node X, respectively. 

PUX{Msg} is the message Msg encrypted with PUX. {Msg}PRX is the digital signature of 

Msg generated with PRX. H(Msg) is the hash value of Msg generated by a standard hash 

function, for instance SHA-2 [168]. 

4.4.1 Reputation Label Notification 

There exist three scenarios for reputation label notification: a) two nodes meeting each 

other, b) one node joining a new network cluster, and c) one node resuming its 

communications after a random silent period following a pseudonym change. To ensure 

efficient and reliable reputation label notification in face of node misbehaviors and 

communication issues, it is necessary to enable the neighboring nodes to collaboratively 

notify two newly meeting neighbors of each other’s reputation label in all these scenarios.  
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Figure 4.3 The detailed procedure of reputation label notification 

In VANETs, with received beacons each node A can learn the locations of its 

neighbors (Nei(A)) and maintain a directed graph  = < , > to model its neighborhood. 

Here, the vertex set  contains both A and Nei(A). The edge set  contains two directed 

edges (XY and YX) for two nodes X and Y, if X, Y  and their distance is no larger than R. 

Here, R is the common communication range of vehicular nodes. Based on , node A 

uses a binary value Labeled(XY) to indicate whether node X has learnt node Y’s 

reputation label or not. As shown in Figure 4.3, A will continuously check  and try to 

make each edge in  labeled, that is, to make all nodes in  learn one another’s reputation 

label. Specifically, the detailed algorithm consists of the following major procedures. 

Beacon Triggered Timer Setting: As shown in the left branch of Figure 4.3, upon 

overhearing a beacon, A will update  based on the location information in this beacon. 

Afterward, A will check the edges adjacent to A in  (XA, X Nei(A)) for the unlabeled 

edges, each of which indicates one node in need of RLA. For each such unlabeled edge, A 

will set up a timer TXA for sending (via uni-cast) RLA to node X with the duration   

 txa = I(|Mid(A,X)|)T0×dAX/R.                      (4.1) 
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Here, Mid(A,X) is the set of nodes geographically between A and X. I() is an indicator 

function which outputs 1 for non-zero inputs and outputs 0 for the input of zero. T0 is the 

unit duration for such timers, which could be configured based on network parameters of 

VANETs. dAX is the distance between A and X. Thus, (4.1) ensures that A will 

immediately send RLA to X if there is no neighbor between A and X. However, A will first 

wait for the intermediate neighbors to send RLA so that more neighbors of node X can 

also overhear RLA to increase the effective coverage of RLA.  

Then, A will check the edges without A in  (XY, X, Y Nei(A)) for the unlabeled edges 

such that A is geographically between the two nodes adjacent to each edge. For each such 

edge, say XY, if A knows RLY A will set up a timer TXY with the duration as  

 txy= T0dAX/R.                                   (4.2) 

Equation (4.2) ensures that the node nearest to X will be the first to forward Y’s 

reputation label (RLY) to X, so that most of X’s 1-hop neighbors can overhear RLY as well.  

Reputation Label Overhearing: Upon overhearing a reputation label RLX, as shown in 

the middle branch of Figure 4.3, A will first store RLX. Based on the position of the 

sender of RLX, A can figure out its neighbors which can also overhear RLX. Then, the 

associated unlabeled edges in  will be labeled and the associated timers will be canceled.  

Timer Expiration: When a timer TXY expires as shown in the right branch of Figure 4.3, 

A will send the required reputation label RLY to the desired receiver X via uni-cast.  

Afterward, A will also mark the associated edges in  as labeled by checking the nodes in 

Nei(A) which can also overhear RLY.   

The above procedures are based on uni-cast communications, so MAC layer collision 

is reduced. Thus, with this algorithm, the neighboring nodes can cooperatively perform 

efficient and reliable reputation relay when two nodes becomes new neighbors in any 

scenarios. Even if some neighbors may refuse to relay reputation labels, these two new 

neighbors can learn each other’s reputation label as long as they have one cooperative 

neighbor in common or both nodes are honest.  

The above procedure is suitable to the cases where two nodes meet each other due to 

relative mobility or node A joins a network cluster. However, when node A resumes its 

communications after its pseudonym change, none of its neighbors has any idea of its 



84

reputation label RLA. Thus, A should first broadcast RLA as soon as it resumes 

communications. On the other hand, A’s neighbors will follow the above procedures to 

notify it of the reputation labels of its neighbors.  

4.4.2 Reputation Segment Delegation 

In JPRA, when two neighbors leave each other’s communication range, each node 

needs to delegate its reputation segment for the other to one staying neighbor of that node. 

In this way, all the reputation segments of any node will be locally available for future 

reputation update.  

Within the same network cluster, two nodes (A and B) may leave each other’s 

communication range due to their relative movement. In this case, A and B will find the 

best neighbors to keep their reputation segments for each other based on the expected 

remaining connected time (CT). For instance, B will estimate the CT of each node X in 

Nei(A) Nei(B) regarding A, as  

 
( ) / ( ),
( ) / ( ),
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CT R d v v v v

v v
.              (4.3) 

In (4.3), vA and vX are the current speed of A and X, respectively. dXA is the distance 

between X and A. Thus, bigger value of CTXA indicates that X may remain as A’s neighbor 

for a longer time, which enables X to better aggregate the reputation segment for A.

Similarly, the best neighbor could be also selected based on other metrics, for instance, 

the reputations of the neighbors.  

Suppose node D has the largest CTDA, B will send (via uni-cast) its reputation segment 

for A (RSBA) to D. Upon receiving RSBA, D is expected to aggregate RSBA with its own 

reputation segment for A, RSDA. Similarly, A will also send RSAB to the node with the 

largest CT value regarding B.

C
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Figure 4.4 The example of node B leaving a network cluster 
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Node B may leave the current network cluster and entering a road segment without any 

1-hop neighbors (called network void), as shown in Figure 4.4. In this case, the reputation 

label update procedure will be triggered, as discussed in subsection 4.4.3. Additionally, B 

needs to delegate its reputation segments for all its 1-hop neighbors. To be efficient, B 

will broadcast a message containing all reputation segments to be delegated. Each 

reputation segment is encrypted with the public key of the intended receiver, as    

RS_Delegation = {Payload={Type, TSP, Y, PUY{rsBX}, X, PUX{rsBZ} …}, 

{H(Payload)}PRB}.  

Here, Type indicates the type of this message, and TSP is the timestamp generated by B. 

The certificate of node B is not contained in RS_Delegation, due to its presence in B’s 

beacons. Thus, upon overhearing this message, each node can find the reputation segment 

intended for itself. To ensure that each neighbor will receive this reputation segment, 

node B may broadcast this message for nt times, where nt is determined by the probability 

that B can receive the beacons from its neighbors, as discussed in subsection 4.4.3.  

In case that B decides to change its pseudonym, it also needs to delegate its reputation 

segments for its neighbors similarly to the scenario of leaving the current network cluster. 

4.4.3 Neighbor-Assisted Reputation Label Update 

To keep its reputation label up-to-date and trustworthy, each node A needs to update its 

reputation label (RLA) with the aid of its neighbors, if 1) (Event 1) the remaining valid 

time of RLA is smaller than a preset threshold tm; 2) (Event 2) A is leaving the current 

network cluster or 3) (Event 3) A will change its pseudonym. Overall, to update A’s 

reputation label involves two challenging procedures: a) to aggregate the reputation 

segments generated by A’s neighbors, and b) to get the new reputation label of A certified 

by K neighbors. Here, K is a security threshold to trade off the trustworthiness of the 

reputation label and the communication overhead, the configuration of which will be 

discussed in detail in subsection 4.6.3.  

Here, it is challenging to ensure that A updates RLA honestly and has only one valid 

RLA at any time. It is critical to conceal the connection between A’s pseudonyms during 

reputation label update. To address these challenges, a secure and privacy-preserving 

neighbor-assisted reputation label update algorithm is proposed with three phases.   
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4.4.3.1 Phase 1: Reputation Segments Aggregation 

To update its reputation label, node A will first broadcast an RS_Query message to 

notify its neighbors of its intention to collect the reputation segments, as shown in Figure 

4.5. Upon receiving RS_Query, each of A’s neighbors, say node X, will check whether it 

has a reputation segment for A or not. If not, RS_Query will be ignored. Otherwise, X will 

broadcast its reputation segment for A (RSXA) with a period TP for nrx times, as shown in 

Figure 4.5. Here, nrx is  

 1/rx axn p .                                 (4.4) 

In (4.4), pax is the probability that each beacon from A is successfully received by node 

X, which can be estimated by X based on the timing information in A’s beacons. Thus, 

(4.4) ensures that with a high probability at least one copy of RSXA will be successfully 

received by A. By setting TP to 100 ms, within one second A can receive all reputation 

segments from its neighbors. Then, A will broadcast the aggregated reputation segments 

so that A’s neighbors can also learn all reputation segments for A.  

To ensure data integrity and authenticity, secure message formats are designed for both 

RS_Query and RSXA, as follows.  

RS_Query={Payload={Type=Query, Event, TSPA}, {H(Payload)}PRA}. 

RSXA ={Payload={Type=RS, Target=A, rsxa, TSPX}, {H(Payload)}PRX}. 

 
Figure 4.5 The detailed message flows of reputation label update  
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Here, Type indicates the message type and Event specifies the event trigger. TSPA is 

the current timestamp generated by A. Target indicates the target of the reputation 

segment and rsxa is the reputation value generated by X for A. Similarly, for efficiency the 

sender’s certificate is not present in these messages.  

4.4.3.2 Phase 2: Reputation Label Update 

After collecting the reputation segments, A will calculate its new reputation label as 

 rla* = Update(rla, {rsxa…}).                      (4.5) 

Besides, each neighbor of A, say Y, will also calculate its version of rl(y)
a, as  

 rl(y)
a = Update(rla, {rsxa…}).                      (4.6) 

Here, the function Update() can be adopted from the existing reputation aggregation 

schemes [93], [95], [97], [98], [104], [105], [107], [196]. For instance, a simple Update() 

function will be introduced in our simulation in section 4.7. As previously discussed, in 

Phase 1 A and its neighbors have received the same set of reputation segments ({rsxa…}) 

for A, so they will form the same reputation label for A in (4.5) and (4.6). 

Based on rla*, A will construct its reputation label update request RLUA*, and 

broadcast it as shown in Figure 4.5. Upon overhearing RLUA*, each node is able to verify 

RLUA* according to the following rules. First, rla* should be consistent to the reputation 

label calculated by itself. Secondly, the starting time and ending time in this message 

should be correct. Once a node X accepts RLUA* as being valid, it will set up a timer TRX 

based on its distance to A, with the duration   

 trx = uni(dXA/R) TP.                             (4.7) 

In (4.7), uni(x) is a function to randomly select a value in the range [0, x], following 

the uniform distribution. If TRX expires, X will send its signature on RLUA* in RSPX to A 

(via unicast) as shown in Figure 4.5. Each node will keep track of the RSPs already sent 

to A. Once K RSPs are overheard, each node with a running timer will cancel its timer.  

To ensure message integrity, authenticity, and privacy protection, secure message 

formats are designed for these messages.  

RLUA* = {Payload={Type, TSP, TS, TE, A, rla*}, {H(Payload)}PRA}. 

Here, TS and TE indicate the starting and ending time for this reputation label. 

Generally, TS should be the current time and TE should be set to TS+TC, where TC is a 
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preset period for reputation label update as discussed in subsection 4.6.4. If A plans to 

change its pseudonym (Event 3), it will apply a function blind() on its new pseudonym 

(AN) in RLUA*, so that RLUA* becomes 

RLUblind(AN)*= {Payload={Type, TSP, TS, TE, blind(AN), rla*}, {H(Payload)}PRAN}.  

The blind() function can be found in any common partially blind signature scheme 

[195]. With partially blind signature, another node can sign RLUA* without any clue of 

AN. After obtaining a signature on RLUblind(AN)*, A can reverse the blind() function in the 

signature to get a correct signature for its intended message:  

RLUAN* = {Payload={Type, TSP, TS, TE, AN, RLA*}, {H(Payload)}PRAN}.  

Thus, with partially blind signature [195], A can get a correct signature of RLUAN* 

containing, without revealing its new pseudonym AN to the signers. Besides, as discussed 

in subsection 4.6.1, A is forced to generate a valid RLUblind(AN)* with its valid pseudonym 

AN, to make its new reputation label acceptable to its future neighbors.  

The message format of RSPX is RSPX={H(RLUA*)}PRX. After receiving K RSPs, A can 

construct a complete reputation label packet as RLA*={RLUA*, {RSPX…}, {CERTX…}}, 

where CERTX is the certificate of node X. Thus, with valid signatures from K nodes, RLA* 

will be accepted as being valid by A’s future neighbors. 

4.4.3.3 Phase 3: RL Revocation Notification (RRN) Broadcast 

In case of Event 2 and Event 3, if the remaining valid time (tr) of RLA is larger than the 

threshold tm, RLA needs to be revoked to ensure that at any time each node (A) only has 

one valid reputation label. In this way, even if the new RLA* is worse than RLA, A is 

forced to use RLA* in its future communications.  

To this end, each neighbor X, in sending out RSPX as discussed above, will also send 

out a revocation for the current reputation label RLA as REVX={H(RLA)}PRX. The 

reputation label revocation notification (RRN) is constructed as RRNA = {A, {REVX…}, 

{CERTX…}}. After collecting K RSP messages and K REV messages, node A is expected 

to construct and send out RRNA. To ensure reliability, each neighbor (X) of A will start a 

timer TNX with the duration as  

 tnx = uni(dXA/R) TP.                             (4.8) 
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If TNX expires, X will send out RRNA. Upon overhearing a valid RRNA, each node with 

a running timer will cancel its timer.  

To notify all relevant nodes of this revoked RLA, RRNA will be broadcasted to all nodes 

which may become the neighbors of A within the duration of tr. To this end, RPB-MD 

[166] or any controlled flooding scheme can be adopted to broadcast RRNA to all the 

nodes within a certain relative distance (L) from A.  

In highway scenarios, it suffices to make A’s future neighbors for the next tr learn 

RRNA. Thus, based on the feasible speed difference v, the relative distance L can be 

estimated as  

 L = tr v.                                    (4.9) 

Then, from (4.9) RRNA needs to be sent to all nodes within distance L from A. The 

communication overhead is L/R in idealistic broadcast scenarios.  

In downtown areas, A and its neighbors may make a turn at any road intersection. Thus, 

RRNA should be disseminated to any neighbor of A no matter how A turns at the road 

intersections. Here, to be efficient and reliable, we propose that in each road intersection 

one neighbor of A broadcasts RRNA to the vehicles in the future road segment A is about 

to turn to. In this case, the distance travelled by A within time tr is  

 L = tr×vM.                                     (4.10) 

In (4.10), vM is the speed limit in the concerned downtown area. Thus, the 

communication overhead becomes L/R revocation message relaying.  

4.5 Reputation Considerations 

To avoid reinventing the wheel, here the details of the reputation management schemes 

are omitted and only relevant considerations specific to JPRA will be discussed.  

4.5.1 Reputation Label Verification 

Considering the possibility of one misbehaving node evading its bad reputation label 

with pseudonym change, here several rules for reputation label verification are presented. 

Specifically, the reputation label RLA of a node A is regarded as valid, if all following 

conditions are met: a) the pseudonym in RLA is the same as the pseudonym currently used 

by node A; b) the TE parameter in RLA is still larger than the current system time; c) RLA 

contains K valid signatures and d) RLA is not revoked with a RL revocation notification 
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(RRN). On the other hand, a node without a valid reputation label will be treated by its 

neighbors as a node with the lowest possible reputation value in JPRA. If this node wants 

to get a valid reputation label again, its neighbors will only certify a reputation label with 

the lowest reputation value for it. Specially, when a node A joins a network cluster with 

RLA just expiring less than TC/2 ago, its neighbors will still update A’s reputation label 

based on RLA. This is to allow for the possibility that A unfortunately runs into an 

abnormally large network void.    

The above rules, together with reputation relay and reputation label update, allow each 

node to timely update its reputation label. Besides, any node trying to evading its bad 

reputation will be punished with the lowest reputation value, so that each node is 

encouraged to timely update its reputation label in VANETs.  

4.5.2 Conditional Reputation Discretization 

The reputation of each node may uniquely identify this node within its neighborhood, 

so its pseudonym change can be easily traced by the GPA. Here, we first model the 

tradeoff between privacy and reputation. Suppose a synchronized pseudonym change 

involves n nodes. Without loss of generality, suppose the reputation’s range is [0, 1], with 

0 being the smallest value. Let r be the definition (accuracy) of the manifested 

reputation, so that the each node’s reputation can only be one value out of ( r) = {0, r, 

2 r, …, 1}. For brevity, we assume that each node’s reputation at the time of the 

pseudonym change is a uniform distribution over ( r). Considering any node with a 

certain reputation, the probability that its reputation is unique among these n nodes is 
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In (4.11), | ( r)| = 1/ r+1. So, from (4.11) we have 

 1( ) 1/ (1 ) n
uniP n r .                          (4.12) 

For n 2, Puni(n) 1 as r 0; Puni(n) decreases as r increases. Thus, (4.12) formally 

shows the intrinsic tradeoff between reputation manifestation and privacy protection. 

On the other hand, the manifested reputation cannot be too ambiguous either. 

Otherwise, the design goals of reputation management may be contradicted. To achieve a 
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proper tradeoff between the precision and ambiguity of the manifested reputation, here a 

conditional reputation discretization algorithm is proposed to differentiate the honest 

nodes and the misbehaving nodes. This algorithm forces each node to manifest its 

reputation as  
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Here, rv is the exact reputation value as calculated by A and its 1-hop neighbors based 

on rla and the aggregated reputation segments in (4.5) and (4.6). The value rt is a system 

level reputation threshold, which is the reputation value of one typical honest node with 

only random errors. Thus, rt can be easily determined based on the nature of the 

concerned application and the reliability of common vehicle nodes. rt usually should be a 

value quite close to 1.0, e.g., 0.95.   

The discretization in (4.13) ensures that any node with a reputation value bigger than rt 

will manifest a common reputation value rt. Thus, the reputation manifestation will not 

harm the privacy of such nodes. Comparatively, the other nodes with a reputation value 

smaller than rt will have to display their own exact reputation value, which may harm its 

privacy. Thus, each node is encouraged to comply with the application protocols by not 

only reputation considerations but also privacy considerations.  

Formally, let pm [0, 1] be the ratio of misbehaving nodes in VANETs. Then, among 

the n nodes in a synchronized pseudonym change, the probability of one honest node 

manifesting a unique reputation label is the probability that the other n 1 nodes are all 

misbehaving. So, 

 Pr{Unique|Honest} = (pm)n 1.                     (4.14) 

In (4.14), pm commonly is close to 0, so Pr{Unique|Honest} is also close to 0. 

Comparatively, each misbehaving node has r 0, so its manifested reputation will be 

most likely to be unique.  

Besides being novel, this algorithm is also feasible in VANETs. First of all, (4.13) 

necessarily trades off the precision of the reputation value for the support of privacy 

protection. As previously discussed, by manifesting the exact reputation value each node 

may display a unique property in communications, which may make its pseudonym 
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changes futile. Thus, to make reputation manifestation compatible with privacy 

protection, the only option is to discretize the exact reputation value, as in (4.13). 

Secondly, one common philosophy adopted in many reputation aggregation algorithms 

[93], [95], [97], [98], [196] is that the reputation will be decreased sharply when one node 

with a high reputation misbehaves. Another common philosophy is to adopt a forgetting 

factor to put more weight on the current behaviors of each node in reputation aggregation. 

Thus, in JPRA any node deviating from the application protocol will find its reputation 

quickly decreasing to a value smaller than rt. Thus, our algorithm still serves to 

encourage the complying behaviors in VANETs.  

4.5.3 Feasibility of JPRA 

Generally, the common reputation schemes [93], [95], [97], [98], [104], [105], [107], 

[196] can be supported by JPRA, since they all assume a certain entity to aggregate 

reputation for each node. In JPRA, each node will serve as such an entity to aggregate its 

own reputation, assisted and monitored by its neighbors. In this sense, JPRA can support 

reputation schemes for VANETs.  

On the other hand, though JPRA assumes a partially blind signature in VANETs, 

JPRA can still work with a certificate scheme based normal public key cryptography 

algorithms. In this case, in neighbor-assisted reputation label update each node (A) can 

establish a session secret key with each of its 1-hop neighbors while broadcasting 

RS_Query, which can serve as the blind() function. Here, though A’s new pseudonym is 

known to its 1-hop neighbors, it will be still concealed from GPA, the most powerful 

privacy adversary. Due to high node mobility, A’s 1-hop neighbors keep changing, so A’s 

privacy can still be protected during its reputation label updates.  

However, the trust schemes based on the chain of recommendation or authentication 

[100], [102] cannot be supported in JPRA. Such trust schemes involve not only the close 

relation between reputation and pseudonym, but also the long latency between evaluating 

one node and reevaluating the same node. Thus, the neighbor monitoring approach in 

JPRA is not suitable for such trust schemes. The coexistence of such trust schemes and 

privacy protection will be investigated in our future work.  
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4.6 Property and Performance 

4.6.1 Security Properties 

JPRA is resilient to various attacks to privacy and reputation. First, no node can block 

the negative evaluations (reputation segments) from its neighbors, since its reputation 

aggregation is monitored by its neighbors. Thus, any node can only get a valid reputation 

label certified by its neighbors. Secondly, JPRA ensures that at any time each node can 

either manifest a valid reputation label or be treated as a node with the lowest reputation 

label. Thirdly, in case of pseudonym change, neighbor-assisted reputation label update 

ensures honest reputation label update, so no node can evade its reputation by pseudonym 

change. Lastly, with conditional reputation discretization, by observing the reputation 

labels no one can gain any additional information about one honest node.  

With the partially blind signature-based procedure in JPRA, one malicious node A may 

attempt to create a reputation label, with the correct rla and the pseudonym of another 

node B. A’s neighbors cannot detect this discrepancy in the pseudonyms. However, such 

an attack cannot work unless A and B are colluding, since it’s impossible for A to guess 

the next pseudonym of B. If A and B are colluding, which is very rare in VANETs due to 

high node mobility, by doing so A and B as a whole do not gain anything in light of 

reputation value. Thus, such an attack has no practical significance. Besides, each node A 

is forced to generate RLUblind(AN)* with valid digital signature, even though at the time of 

reputation label update its neighbors cannot verify the digital signature. Otherwise, after 

its pseudonym change, its new reputation label will be rejected by its neighbors due to the 

invalid digital signature in RLUblind(AN)*. 

Besides, in JPRA the conditional discretization of reputation value can further punish 

the misbehaving nodes by assigning to them unique reputation labels. Thus, the privacy 

concerns will drive the common nodes to comply with the specific application protocols 

to keep their reputation higher than the threshold.  

4.6.2 The High Efficiency of JPRA 

In light of communication overhead, JPRA is more efficient than any possible 

approach to implement reputation schemes for VANETs. The common reputation 

schemes imply two design principles: 1) to ensure reliability, all nodes able to monitor 
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one node should generate reputation segments for this node; 2) all reputation segments 

for one node should be aggregated to form an authentic reputation for this node. With 

these principles, the aggregation of the reputation segments from each node’s (A) 1-hop 

neighbors, the dominating part of communication overhead, will be necessary in any 

possible implementation approach. For instance, one approach is to aggregate A’s 

reputation segments in a centralized entity in VANETs, which may incur higher 

communication overhead due to multi-hop communications necessary for any node to 

access this centralized entity. Another approach is to aggregate A’s reputation segments 

into A itself, as adopted in [108] and JPRA, which only incurs 1-hop communications. 

Indeed, in JPRA the aggregation of reputation segments only occurs when made 

necessary by node mobility or pseudonym changes, as discussed in subsection 4.4.3. 

Each neighbor of A will locally aggregate its reputation segments for A first, and relay the 

aggregated reputation segment to A only when required by A. Thus, in principle JPRA is 

more efficient than any other approach to implement reputation schemes in VANETs.  

4.6.3 Communication Overhead & Latency Analysis 

Here, the communication overhead and communication latency incurred by each of the 

algorithms of JPRA are theoretically estimated.  

4.6.3.1 Reputation Label Notification 

As discussed in subsection 4.4.1, when two nodes (say A and B) enter each other’s 

communication range, two reputation label messages need to be sent to notify them of 

each other’s reputation label. Thus, the communication overhead here is constant and 

independent of the network conditions, for example the presence of misbehaving nodes.  

Regarding communication latency, the timer duration depends on the distance (d) 

between B and its nearest neighbor, or B and A if there is no neighbor in between. Thus, 

assuming the nodes between B and A are uniformly distributed for simplicity, we have  

 
1/ ,

,
Neighbors

d
R NoNeighbor

.                        (4.15) 

Here,  is the node density, with unit of node/meter. Following the norm of traffic 

modeling, we assume that the node distribution follows the Geographic Poisson 
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Distribution [198] in VANETs. Thus, the probability that there is no neighbor 

(Pr{NoNeighbor}) or there are multiple neighbors (Pr{Neighbors}) between A and B can 

be estimated as 
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Thus, without considering the misbehaving nodes, the communication latency for one 

reputation label message can be derived from (4.15)-(4.17) as   
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Here, 0 is the average latency for a successful MAC access in VANETs. Thus, (4.18) 

shows that the expected latency is smaller than ( 0+T0). Even considering the probability 

that any intermediate node may refuse to relay RLA, the largest possible latency is still 

bounded by ( 0+T0) when A needs to send RLA to B by itself.  

Besides, if a node B just joins a new network cluster or resumes communication after a 

pseudonym change, suppose there totally are na nodes within B’s communication range. 

The reputation label exchange will incur exactly na reputation label messages, including 1 

message from B and (na 1) messages from B’s neighbors. Besides, regardless of the 

misbehaving nodes, the total latency is  

  = na 0 + T0.                                  (4.19) 

Equation (4.19) holds, since the maximal timer duration is T0, and each reputation label 

message will incur 0 due to the uni-cast communications. Thus, the latency of reputation 

label notification in this case mainly depends on the node density around each node.  

4.6.3.2 Reputation Segment Delegation 

As discussed in subsection 4.4.2, when two neighbors leave each other, the total 

communication overhead is at most 2 reputation segments. Similarly, due to the lack of 

timers in this process, the communication latency is at most 2 0. 
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If a node B leaves a network cluster or stops communication for pseudonym change, 

let nt indicate the number of rebroadcasts of node B for reliable reception of the 

reputation segment message. Thus, the total communication overhead is nt reputation 

segment messages, and the latency is nt × TP, where TP is the period for rebroadcasts. 

4.6.3.3 Reputation Label Update 

Assume that there are na nodes within the neighborhood. According to the procedures 

in subsection 4.4.3, the overhead and latency incurred by each message in reputation 

label update are shown in Table 4.1.  

 
Thus, the communication overhead and latency for reputation label update are: 

 CO = nrx(na+1)+1+K.                            (4.20) 

 TL = (3nrx+1)TP+K 0.                            (4.21) 

Due to the presence of na in CO and K in TL, CO and TL are the dominating part of 

communication overhead and latency of JPRA. Thus, the selection of K has obvious 

impact on the system performance of JPRA, which will be discussed in detail next.  

4.6.4 Configuration of System Parameters 

In JPRA the system parameters, such as the security threshold K, the reputation update 

period TC and the remaining valid time threshold tm, need to be properly configured. Here 

the parameter configurations are discussed based on the regional traffic conditions and 

parameters, so that JPRA will work smoothly in any geographic region. We reasonably 

assume that each region has somewhat uniform traffic parameters such as node density 

and average speed, and the RSUs in this region can timely notify the vehicles of the 

system parameters of JPRA. In highway scenarios, the concerned region can be a 

segment of highway; in downtown scenarios, the concerned region can be a city area.  

With previous discussions, following considerations about TC and tm can be derived.   

Time Sufficiency: TC must allow sufficient time for the neighboring nodes to update 

their reputation labels one by one. Given K, the latency incurred by one reputation label 

Table 4.1 
Overhead and latency analysis of reputation label update 

 RS Query RS  Update Request Certificate 
Com. Overhead 1 nrx(na 1)+ nrx nrx K 
Com. Latency 0 nrxTP+ nrxTP nrx TP TP+K 0 
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update is TL, as shown in (4.21). In a specific region, on average each node has na=2 R 1-

hop neighbors, where  is the average node density. Due to the high node mobility, the 

remaining valid time of the reputation labels of these vehicles may follow a uniform 

distribution between 0 and TC. Thus, we have  

 TC  naTL.                                    (4.22) 

Besides, tm should be larger than the typical latency of a reputation label update (TL). 

Network Void Crossing: TC should be large enough so that a node leaving a network 

cluster should be able to reach the next network cluster with a still valid reputation label. 

Specifically, in highway scenarios, we model the road as a 1-D line segment, with the 

nodes following the Geographic Poisson Distribution (GPD) [198]. Then within a road of 

length d, the probability that there are i (i 0) nodes is  

 Pr{ } ( ) / !i dX i d e i .                        (4.23) 

In (4.23), X is the random variable indicating the number of vehicles. Thus, regarding a 

road segment of length d, the probability that there is no vehicle is  

 Pr{ 0} dX e .                              (4.24) 

Given the condition that there is a network void (NV) before a certain node, the 

expected length of a network void is  

 
0

[ | ] 1/xE d NV R xe dx R .             (4.25) 

Suppose that a node normally leaves the current network cluster with a minimal speed 

difference vm. Then,  

 TC  E[d]/ vm = R/ vm +1/( vm).                 (4.26) 

In downtown areas, the presence of network void mainly is caused by the traffic lights. 

Thus, we only need to consider the speed limit (vM) and length (dM) of the longest road 

segment in the concerned area. That is,  

 TC  dM/vM.                                   (4.27) 

Thus, given realistic traffic parameters, another lower bound of TC can be estimated 

based on either (4.26) or (4.27).  

Remaining Valid Time tr: One misbehaving node may intentionally change its 

pseudonym right after it receives a reputation label to increase the communication 
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overhead of its neighbors. In this case, tr = TC. Generally, the overhead caused by the 

dissemination of the reputation label revocation notification (RRN) should be smaller 

than that of a reputation label update. Thus, in highway scenarios, the overhead of a 

revocation broadcast is  

 OH=tr vm/R = TC vm/R.                       (4.28) 

Thus, combining (4.28) and (4.20) we have  

 OH CO TC R[nrx(na+1)+1+K vm.             (4.29) 

Similarly, for downtown areas by combining (4.10) and (4.20) we have  

 OD CO TC R[nrx(na+1)+1+K]/vM.              (4.30) 

Thus, one upper bound of TC can be estimated with (4.29) or (4.30). 

Reputation Management Requirement: TC should be smaller than the reputation 

update period as required by the specific reputation management scheme.   

On the other hand, based on regional traffic parameters and application requirements, 

the upper bounds and lower bounds of K can also be determined, as discussed below.  

Sufficient Neighbors: In reality, we need to ensure that at any time the probability that 

one node has more than K neighbors is larger than a preset value p0, as set by VANET 

administrators. In highway scenarios, the probability of any node has more than K 

neighbors is 
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Letting pK p0, we can derive one upper bound of K in highway scenarios with (4.31).   

In downtown areas, we regard one road segment as being good as long as its network 

density can support K+1 nodes within 2R distance. Thus, we can numerically figure out 

the proper value of K, so that the proportion of the good road segments is no less than p0.  

Misbehaving Nodes: K should be large enough so that the probability that there are 

more than K+1 misbehaving nodes among na nodes is smaller than a preset value p1.  

 1
Pr{ 1} ( , ) (1 )a a

n n ii
m ai K

n K C n i p p .         (4.32) 
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In (4.32), nm is the number of misbehaving nodes in the concerned neighborhood. Let 

this probability derived by (4.32) be smaller than p1, we can get one lower bound of K.   

Thus, based on regional traffic conditions the feasible ranges of the system parameters 

of JPRA can be determined. The configuration of these parameters will be performed by 

the traffic engineering staff and is out of the scope of this chapter. 

4.7 Simulation Results 

To showcase the application of JPRA in VANETs, here JPRA is adopted to support a 

simple reputation scheme in the context of privacy protection, where each node changes 

its pseudonyms with a period of 100 seconds. The reputation scheme is based on beacon 

evaluation, where each node verifies and evaluates the content of the beacons from its 

neighbors. With existing beacon verification schemes [76], [90], [143], we focus on 

reputation aggregation to reflect each node’s beaconing behaviors. For simplicity, we 

design the following reputation aggregation algorithm.  

Reputation segment: Suppose during the last period node A receives n beacons from 

node B. A period starts when A and B become neighbors, or when A updates its reputation 

label for the last time. Let nb indicate the number of invalid beacons. Then, the reputation 

segment for node B is  

 
1, 0

/ , 0
b

AB
b b

n
rs

n n n
.                           (4.33) 

Reputation aggregation: Based on the reputation segments and its current rv value, the 

reputation of node B can be updated. First, the average reputation segment rs is calculated. 

Then, the reputation change rv is calculated as   

 
(1 ) , (0,1]

, [ 1,0]
rv rs rs

rv
rv rs rs

.                    (4.34) 

The reputation is updated as rv rv rv , which implements the Update() function in 

subsection 4.4.3. Equation (4.34) ensures that the reputation of any node will be changed 

a lot when the reputation segments is inconsistent with its current reputation, which is a 

common practice in the existing reputation schemes.  
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Figure 4.6 The road layout used in the simulation of JPRA 

For brevity, only downtown scenarios are simulated as shown in Figure 4.6. Each road 

segment consists of two lanes in each direction. 250 nodes drive around with an average 

speed of 20m/s. Each node periodically sends out beacons. To simulate random errors, 

each honest node will send out invalid beacons with a probability of 0.5%. Each 

misbehaving nodes, by contrast, will send out invalid beacons with a higher preset 

probability . The number of misbehaving node, NB, is also configured in this simulation.  

IEEE 802.11a is adopted in NS2 [169] to simulate DSRC communication, due to its 

similarity to DSRC. Vehicle mobility trace is generated by MOVE [170]. The simulation 

parameters are listed in Table 4.2.

For comparison, we simulate JPRA (K=1, 2, 3, 4) as well as a baseline scheme and the 

probabilistic reputation scheme [108]. The baseline scheme, representing reputation 

schemes without considering privacy protection, enables the neighbors of each node to 

keep its reputation segments based on its behaviors. To form a reputation for one node, 

all its neighbors need to be queried for reputation segments. In face of pseudonym change,

the reputation segments of any node will be lost and this node can assume a new 

reputation value. In the probabilistic reputation scheme [108], blocking negative 

reputation segments is easy and reputation values are manifested in its real value.   

 

Table 4.2 
Simulation parameters of JPRA 

Parameter Value Parameter Value 
# of vehicles 250 Bit-rate 6 Mbps 
Road length 25 km Beacon Period 200 ms 
R 300m Simulation Time 700 s 
MAC 802.11a TP (T0) 100 ms 
TC 100 s tm 1 s 
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4.7.1 Reputation Values 

To evaluate each scheme’s capability of calculating the authentic reputation values in 

face of misbehaving nodes, the average reputation values of honest nodes and dishonest 

nodes are evaluated. Here, each misbehaving node generates invalid beacons with a 

probability , which changes from 0.1 to 0.5 with a step size of 0.05. Each misbehaving 

node may try to block 100% or 50% of the negative reputation segments, if possible. For 

brevity, we only show the simulation results for NB = 20 and K=2 for JPRA.  

The average reputation values of the misbehaving nodes in each scheme are shown in 

Figure 4.7. In the following figures, we use PR to indicate the probabilistic reputation 

scheme and use BS to indicate the baseline scheme. Figure 4.7 shows that, in the 

probabilistic reputation scheme, the reputation will always be 1.0 if each misbehaving 

node can block all negative reputation segments. Even if each misbehaving node can only 

block 50% of the negative reputation segments, its reputations will still be much higher 

than those estimated by JPRA.  

With the baseline scheme, though the misbehaving nodes cannot block the negative 

reputation segments, they can surely discard their previous low reputations by changing 

pseudonyms. We can safely predict that the misbehaving nodes will have even higher 

reputations if they can change their pseudonyms with a smaller period. 

By comparison, JPRA prevents any misbehaving nodes from blocking the negative 

reputation segments and from evading the low reputations by changing their pseudonyms. 

Thus, JPRA calculates the lowest reputations for the misbehaving nodes, which correctly 

reflect their misbehaviors.  
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Figure 4.7 Reputation values of misbehaving nodes estimated by various schemes 



102 

 

0.1 0.2 0.3 0.4 0.5
0.98

0.985

0.99

0.995

1

R
ep

ut
at

io
n

 

 
JPRA (Actual) JPRA (Disp.) BS PR

 
Figure 4.8 Reputation values of honest nodes estimated by various schemes 

Besides, the reputations of the honest nodes in cases of JPRA, BS and PR are almost 

the same, as shown in Figure 4.8. However, even for the honest nodes, the reputation 

estimated by BS is a little bit higher than those of JPRA and PR, due to the fact that by 

changing its pseudonyms each node can assume a reputation of 1.0. By setting the 

reputation threshold rt to 0.985, the manifested reputation of each honest node, 

JPRA(Actual), is the same, which is very close to its actual reputation (JPRA (Disp)).  

4.7.2 Futile Pseudonym Change Ratio 

For any node, its pseudonym change becomes futile if its manifested reputation is 

unique among its neighborhood. Here, the futile pseudonym change ratio is defined as the 

number of futile pseudonym changes over the total number of pseudonym changes. Since 

the baseline scheme is based on reputation query, it is not evaluated here.  

In Figure 4.9, the futile pseudonym change ratio of the honest nodes and misbehaving 

nodes of JPRA are labeled “JPRA Good” and “JPRA Bad”, respectively. Similarly, the 

futile pseudonym change ratio of honest and misbehaving nodes of the probabilistic 

scheme are “PR Good” and “PR Bad”, respectively. As shown in Figure 4.9, the 

probabilistic scheme makes most pseudonym changes futile for any node, since the exact 

reputation value tends to be unique. By comparison, in JPRA, with conditional reputation 

discretization the honest nodes can well preserve its privacy through pseudonym change, 

while the misbehaving nodes’ pseudonym changes are mostly futile. Thus, JPRA protects 

the privacy of honest nodes and punishes the misbehaving nodes in both privacy and 

reputation schemes. 
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Figure 4.9 The privacy violation ratios of JPRA and PR 
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Figure 4.10 The communication overheads of JPRA, BS and PR 
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Figure 4.11 The successful collusion ratio of misbehaving nodes in JPRA 

4.7.3 Overhead and Successful Collusion Ratio 

To compare the communication overhead, here the total communication packets of 

these schemes are shown in Figure 4.10. In the probabilistic reputation scheme, each 

beacon will trigger a reputation segment, as discussed in [108], so its communication 

overhead is much higher than other schemes. In the baseline scheme, to know the current 
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reputations of its neighbors, each node needs to query the reputation of each of its 

neighbors for a period Tq. Here, we assume that Tq = 10s, 50s or 100s, respectively.  

As shown in Figure 4.10, the communication overhead of JPRA with any K is 

comparable to the baseline scheme with Tq=50s and Tq =100s. In JPRA, with the 

reputation label update period (TC) set to 100s, the actual reputation label update interval 

is about 50s, considering the additional reputation label updates triggered by Event 2 and 

Event 3. Thus, the communication overhead of JPRA is smaller than that of the baseline 

scheme given the same reputation update period. Additionally, the probabilistic 

reputation scheme has the highest communication overhead.  

For different K values, the successful collusion ratios for any misbehaving nodes in 

JPRA are investigated. To allow for the most stringent scenarios, we assume that there is 

a successful collusion in reputation label update if there are currently (K+1) misbehaving 

nodes in the neighborhood. Figure 4.11 shows that the successful collusion ratio is 

generally smaller than 10% for K 2 and NB 20. Please note that there are totally 250 

nodes in the simulation, so NB = 20 indicates that 8% nodes are misbehaving nodes, 

which is untypically high for a realistic VANET. On the other hand, considering that 

many misbehaving nodes may not collude, the actual successful collusion ratio will be 

much lower than those shown in Figure 4.11. Thus, we can assume that for a realistic 

VANET, any K value no less than 2 will be proper for JPRA.  

In summary, simulation results show that JPRA can synergistically support both 

reputation management and privacy protection in VANETs, outperforming the existing 

schemes in terms of both reputation management and privacy protection. Besides, the 

communication overhead of JPRA is lower than the existing schemes. 

4.8 Summaries 

JPRA jointly supports privacy protection schemes and reputation management 

schemes by reconciling their conflicting requirements, so that both can be synergistically 

implemented in VANETs. Furthermore, JPRA enables them to enhance each other with 

additional support. Specifically, JPRA further encourages the common nodes to 

cooperate in VANETs by decreasing the privacy achieved by the misbehaving nodes. 

Additionally, the reputation label update for reputation management will not harm the 
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privacy protection schemes. Thus, considering the significance of reputation management 

and privacy protection, JPRA is essential to VANETs. Even better, JPRA incurs the 

lowest communication overhead in supporting both privacy schemes and reputation 

schemes, as discussed in subsection 4.6.2 and subsection 4.7.3. Thus, JPRA is a practical 

and novel solution for jointing supporting privacy and reputation in VANETs. 

In the future, we will continue to consider the conflicting requirements of trust 

schemes and privacy protection, and jointly support both types of schemes in VANETs. 
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Chapter 5 Short-Time Certificates-Based 
Privacy Protection5 

The short-time certificate schemes bring new constraints and implications to privacy 

protection in VANETs, especially the possible power abuse of RSUs and VANET 

authority. This chapter investigates such issues, based on which a short-time certificate-

based privacy protection (STCP2) scheme [147] is proposed. STCP2 adopts a privacy-

aware RSU deployment algorithm to optimize the deployment of RSUs with realistic cost 

and privacy constraints, properly handling the power abuse of RSUs and VANET 

authority. Furthermore, a secure and privacy-preserving pseudonym update algorithm 

allows each node to enhance its privacy by pseudonym changes at one RSU, against 

various privacy adversaries. Theoretical analysis and simulations show that STCP2 

ensures proper privacy protection in VANETs with short-time certificates.  

5.1 Introduction 

To fully realize the application potentials of VANETs it is necessary to address the 

challenging security requirements of VANETs [5]. Central to any security scheme is a 

certificate scheme for each vehicular node to securely prove its identity with a certificate 

issued by the authority of VANETs. Recently, two approaches to manage certificates in 

VANETs, long-time and short-time certificates, are commonly followed. The long-time 

schemes follow the certificate management for general networks, where the certificate 

revocation list (CRL) is necessary to revoke the certificates of the misbehaving nodes. 

Thus, such schemes usually incur heavy communication overhead by CRL distribution. 

By contrast, short-time certificate schemes assign to each node a certificate with a short 

lifetime, so that each node has to update its certificate frequently. Here, CRL distribution 

is unnecessary, since the authority can simply refuse to update the certificate to evict a 

misbehaving node. Thus, free of CRL distribution, short-time certificates are appealing to 

VANETs.  

                                                 
5  The material contained in this chapter was submitted to IEEE Transactions on 

Vehicular Technology. © 2012 IEEE. See Appendix C for a copy of the copyright 
permission. 
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Currently, most privacy protection schemes assume a long-time certificate 

management scheme, where each node is equipped with multiple certificates to form its 

pseudonyms and can change its pseudonyms at will. Frequent pseudonym change [113], 

[117]-[119], [121], [124], [127] is critical to the protection of nodes’ privacy, as 

discussed in section 5.2. However, with short-time certificates, each node has only one 

pseudonym at any time. To change its pseudonym, each node needs to get access to the 

authority via an RSU for certificate update. Thus, privacy protection faces different 

assumptions and constraints with short-time certificates. Specifically, since each RSU can 

monitor the pseudonym changes of all passing-by nodes, the possible power abuse of 

RSUs and the authority needs to be considered in privacy protection. Besides, it is 

necessary to make the certificate update procedures at each RSU both secure and 

confidential, since this is the only feasible pseudonym change opportunity for any node.  

To thoroughly address these issues, a Short-Time Certificates-based Privacy Protection 

scheme, STCP2, is proposed in this chapter. STCP2 identifies and investigates the critical 

privacy implications of short-time certificates. The deployment of RSUs in VANETs 

under the constraints of deployment cost and privacy protection is optimized with a novel 

privacy-aware RSU deployment algorithm. With this algorithm, the vehicular nodes will 

still get a minimal privacy assurance in case of the power abuse of RSUs and the 

authority. A secure and privacy-preserving pseudonym update algorithm enables each 

node to confidentially change its pseudonym with the help of the RSUs. Thus, with 

STCP2, privacy protection in VANETs becomes both cost-effective and feasible with 

short-term certificates, as shown by extensive theoretical analysis and simulations.   

5.2 Related Work 

To support traffic safety applications each node needs to broadcast beacons to 

announce its driving states such as location, speed and heading direction, with a period 

varying from 100ms to 500ms [10]. Thus, by monitoring beacons from one node, an 

adversary can obtain the exact movement trajectory of this node and breach its privacy. 

To protect the privacy of vehicular nodes, pseudonym change [113], [117]-[119], [121], 

[124], [127] is commonly adopted in VANETs to break down the movement trajectory 

(location history) and application accessing history of each node. A pseudonym is a 



108 

 

temporary communication ID which has no obvious connection to the real identity of one 

node, and a pseudonym usually is the combination of a certificate, an IP address and a 

MAC address [113]. Though several privacy protection schemes, for instance [134], 

[199], only consider the certificate in pseudonym changes, such schemes will not be 

effective without the synchronized IP and MAC address change.  

Most existing privacy protection schemes [113], [117]-[119], [121], [124], [127] for 

VANETs assume long-time certificates, so that CRL distribution is necessary to revoke 

the certificates of misbehaving nodes. In VANETs, with numerous nodes and multiple 

pseudonyms per node, the size of CRL tends to be huge. Besides, VANETs’ dynamic 

nature makes CRL distribution both challenging and bandwidth demanding [200]. 

Though several schemes [50], [54]-[56] have been proposed for efficient CRL 

distribution, they generally involve complicated control procedures for VANETs.  

Thus, short-time certificate schemes [57]-[60] for VANETs have been proposed to 

avoid CRL distribution. In such schemes, the certificate for each node has a short lifetime, 

so that to evict a misbehaving node the authority only needs to refuse to update the short-

time certificate of this node. Thus, being CRL-free, the short-time certificate schemes 

tend to be efficient and easy to manage. Indeed, WAVE [201] has listed short-time 

certificate schemes as a suitable alternative certificate management approach.   

With short-time certificates each node can only change its pseudonym assisted and 

monitored by an RSU, which brings forth new privacy implications. So far, such 

constraints have not been thoroughly investigated yet, which is one major task of STCP2. 

Specifically, with short-time certificates the possible power abuse of the RSUs and 

VANET authority needs to be considered, which has not been considered in existing RSU 

deployment schemes. For instance, [202] considers the optimization of RSU deployment 

in light of driving delay time and overhead time, without considering the possible privacy 

risks of the deployed RSUs. Besides, though [202] considers the incremental deployment 

of RSUs, it is unclear whether the additional RSUs can be optimally deployed or not. 

[128] proposes a flow-based privacy model to estimate the privacy strength of each 

intersection, and optimize the placement of mix zones in a given region. However, [128] 

relies on precise traffic flow statistics for any road intersection and ignores the possible 
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privacy risks of the RSUs. More importantly, [128] fails to consider RSU deployment in 

a progressive manner, which will be necessary in realistic VANET deployment.  

Besides, the certificate update procedure at each RSU should be both secure and 

confidential, to enhance the location privacy of the vehicular nodes. However, existing 

short-time certificate schemes [57]-[60] are mainly focused on the update of 

cryptographic materials, without considering the privacy adversary. In [129], a scheme to 

set up mix zone [131] for VANETs is proposed to enable vehicular nodes to change their 

pseudonyms without being monitored by the external adversaries. However, the IP and 

MAC addresses of each node are not considered in pseudonym change, and the more 

powerful internal privacy adversaries (as discussed in section 5.3.3) are not properly 

handled. Besides, [129] ignores the impact of encrypted beacons on traffic safety 

applications. By comparison, STCP2 will consider both internal and external adversaries 

to location privacy.    

5.3 Background and System Model 

In this section, the network model and underlying assumptions of STCP2 are presented, 

based on which the problem statement of STCP2 will be given. 

5.3.1 Network Model and Assumptions 

VANETs consist of an ad hoc domain and an infrastructure domain [4], [36], [37]. The 

ad hoc domain is comprised of smart vehicles equipped with DSRC [8] transceivers and 

GPS receivers. For traffic safety, each node will broadcast beacons every 100ms to 

500ms [10]. To securely participate in VANET communications, each node needs a valid 

short-time certificate issued by the Trust Authority (TA). Each node has a standard 

tamper-proof device (TPD) [11] to protect the cryptographic materials associated with its 

short-time certificate, especially its private key. With TPD, it is difficult for any 

unauthorized entity to access the private key of any node, and it is difficult for any 

vehicular node to intentionally reveal its own private key.  

The infrastructure domain consists of RSUs and the management entities, for instance 

Trust Authority (TA). TA is in charge of all management functions and security functions 

of VANETs, including identity management of RSUs and vehicular nodes. Equipped 

with DSRC transceivers, RSUs serve as vehicular nodes’ access points to TA. RSUs 
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usually are deployed at road intersections, probably working together with the traditional 

traffic lights. The communications between RSUs and TA are assumed to be error-free 

and instantaneous. It is assumed here that TA and RSUs are difficult to compromise.   

5.3.2 Privacy Implications and Problem Statement 

With short-time certificates, each node uses a short-time certificate issued by TA and 

its IP/MAC addresses as its pseudonym in communications. Each node needs to update 

its certificate whenever it runs into the communication range of an RSU, as shown in 

Figure 5.1. To be both secure and efficient, certificate update relies on only 1-hop 

communications. Thus, with short-time certificates each node needs to change its 

pseudonym assisted and monitored by an RSU. Thus, critical assumptions of privacy 

protection with short-time certificates can be identified and justified below.   

 The real identity of each node should be kept secret to any entities except for TA, as 

commonly assumed in the existing privacy protection schemes.  

 The pseudonym changes of any node should not be traced by any entities except for 

RSU and TA. Due to the nature of 1-hop communications, it is evitable that an RSU 

can monitor the pseudonym change of any passing-by vehicles.  

 Minimal Privacy Assurance: The exact movement trajectory of any node should not 

be figured out by any entity, including TA and RSUs. This represents the lowest 

privacy any node can achieve if, in any case, both TA and RSUs are compromised. 

Even if TA and RSUs are not compromised, the concerns about power abuses of TA 

and RSU may deter the privacy-sensitive users from participating in VANETs. Thus, 

based on common senses and the current research on privacy concerns in VANETs 

[203], such a minimal privacy assurance is desirable for VANETs.  

 
Figure 5.1 The network model of VANETs with short-time certificates 
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 Regional Considerations: We consider VANETs in a specific geographic region. In 

reality most privacy protection decisions are relevant to specific locations, such as a 

downtown area, one resident neighborhood and a hospital neighborhood [204]. 

Besides, in the initial stage of VANET deployment, RSUs may be deployed in 

certain regions by the local transportation authorities. Thus, it is more likely that 

each local area will have its own VANET deployment plan and policies. As 

discussed later, the algorithms proposed in STCP2 can be easily extended to a huge 

VANET, for instance, a network formed by all vehicles in the USA. 

Based on the realistic assumptions presented above, STCP2 addresses two critical 

problems. First, RSU deployment in VANETs should be optimized in lights of privacy 

protection, cost and application support. Secondly, the pseudonym update procedure of 

each node needs to be both secure and privacy-preserving. 

5.3.3 Adversary Model 

Similar to [113], [117]-[119], [121], [124], [127], three powerful adversaries are 

considered in STCP2, including the Global Passive Adversary (GPA), the Local Passive 

Adversary (LPA) and the Local Active Adversary (LAA). Among them, the GPA can 

overhear all communications within the whole VANETs; the LPA can only overhear the 

communications within certain local regions. The LAA, besides overhearing the 

communications within certain local regions, can also actively communicate with other 

nodes and RSUs. Thus, the LAA is able to get the cryptographic materials present in 

VANETs, as the normal vehicular nodes do. Realistically, the GPA and the LPA are 

external observers which intend to gain economic interests or to harm the common 

VANET nodes by breaching the location privacy. The LAA is the compromised nodes 

(internal observers) of VANETs.   

TA and RSUs generally are constrained by privacy related policies and legislations, so 

that they generally will not breach the location privacy of vehicular nodes. However, to 

be safe, in STCP2 the extreme cases of power abuse and compromise of TA and RSUs 

are also considered, as discussed in subsection 5.3.2. 
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5.4 Privacy-Aware RSU Deployment 

RSUs have significant impacts on the security, privacy, application, as well as the cost 

of VANETs. Specifically, many security schemes, such as reputation management and 

certificate update, benefit from the presence of RSUs as trust anchors. RSUs are also 

desirable to various traffic safety, traffic management and commercial applications, 

serving as access points to the infrastructure entities. Thus, to better support security and 

applications, RSUs should be deployed as densely as possible in VANETs. On the other 

hand, one RSU, once compromised or in case of power abuse, may also serve as a 

sampling point for one node’s movement trajectory. Besides, each RSU incurs a certain 

deployment and maintenance cost, which will limit the number of RSUs to be deployed.   

Here, RSU deployment will be investigated to achieve the desirable tradeoff among 

privacy requirements, safety requirements and cost constraints.  

5.4.1 Minimal Privacy Condition 

As discussed in subsection 5.3.2, it is necessary to provide the minimal privacy 

assurance to the vehicular nodes in VANETs. Thus, in any region =<V, E> the RSUs 

need to satisfy the minimal privacy assurance. Here, V is the vertex set, containing all the 

intersections and points of interests in this region. E contains the road segments. A 

sufficient and necessary condition of the minimal privacy assurance is stated as follows.  

Weak Minimal Privacy Condition (WMPC): Between any adjacent vertex of one 

RSU and any adjacent vertex of another RSU, there exist at least two RSU-free paths.  

Proof: Suppose the deployed RSUs in VANETs satisfy WMPC. In a typical road 

topology as shown in Figure 5.2, consider two RSUs (R1 and R2). Each RSU can figure 

out the driving direction of any passing-by node up to its adjacent vertices. When a node 

moves from R1 to R2, R1 and R2 cannot figure out the exact movement trajectory of this 

node. In terms of topology, this node could have followed the path R1-A-R2, or R1-A-B-C-

D-E-F-G-H-A-R2. Thus, WMPC is a sufficient condition of the minimal privacy 

assurance. On the other hand, suppose that between an adjacent vertex of R1, say A, and 

an adjacent vertex of R2, say B, there is only one or no RSU-free path. Then, from above 

discussions, the path R2-B-A-R1 can be completely monitored by R1and R2. Thus, this path 

violates the minimal privacy assurance. Thus, WMPC is also a necessary condition.  
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Figure 5.2 The alternative travel paths between two RSUs 

WMPC is weak in the sense that only the topology information is considered in the 

above discussions. If R1 and R2 have sufficient information about the average vehicle 

speed and the traffic light status of the nearby road intersections, they probably could 

differentiate a node following the path R1-A-R2 from a node following the path R1-A-B-C-

D-E-F-G-H-A-R2. However, WMPC is still meaningful, considering the uncertainties in 

the vehicles’ movement in reality. For instance, one vehicle may stop beside a shop or an 

office building for a period, instead of moving continuously. Besides, we can extend 

WMPC to the Strong Minimal Privacy Condition (SMPC).  

Strong Minimal Privacy Condition (SMPC): The RSUs satisfy WMPC. Besides, for 

any RSU-free path (Path1), there must exist at least another RSU-free path (Path2) such 

that |TravelTime(Path1)  TravelTime(Path2)|  .  

Here, TravelTime() estimates the average travel time of a route.  is a parameter set by 

the VANET administrator, with which these two RSU-free paths cannot be differentiated 

based on the travel time of one vehicle. Similarly, it can be proven that that SMPC is both 

sufficient and necessary for the minimal privacy assurance. Without realistic traffic 

statistics, it is difficult to adopt SMPC in the deployment of RSUs. Thus, next we use 

WMPC for privacy-aware RSU deployment.    

Indeed, WMPC provides an upper bound (NM) on the number of RSUs in a given 

region =<V, E>. Let VI  V be the set of vertices selected for RSU deployment. Then 

NM can be obtained by solving the following optimization problem.  

 /

max | |
. | ( , ) | 2, , , ( ), ( )

I

I

V i j i j I i i j j

I

V
st Path a a v v V a Nei v a Nei v

V V

.  (5.1) 
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In (5.1), Nei(vi) is the set of adjacent vertices of node vi. / ( , )
IV i jPath a a  is the set of 

paths between vertex ai and aj without any vertices in VI. If  is a perfect grid with N N 

vertices as shown in Figure 5.2, the range of NM can be estimated as follows 

 2 2( 4 ) / 4 / 4MN N N N .                     (5.2) 

Formula (5.2) can be derived by counting the RSUs in any two consequential rows or 

columns in this perfect grid. In these two rows, one row must be RSU-free, and the other 

row can have at most 1 RSU for every two consequential vertices. Thus, considering the 

edges in this perfect grid, (5.2) follows.  

A region of an arbitrary shape can be divided into smaller squares, each of which can 

be approximated with a perfect grid. For each square, (5.2) can be used to estimate its 

maximal number of RSUs. Eventually, the NM for the whole region can be estimated. To 

provide minimal privacy assurance, WMPC should be satisfied in RSU deployment, 

which has not been considered in [128], [202]. 

5.4.2 Progressive RSU Deployment Algorithm 

In reality, a cost budget may mandate that only NB RSUs can be deployed in the 

concerned region . These NB RSUs need to be deployed to maximize the support to 

security and applications, while still meeting WMPC. Besides, in the future additional 

RSUs should be deployed in a consistent and progressive way. Specifically, given that NB 

RSUs have been optimally deployed, the deployment of additional n RSUs can result in 

the optimal deployment of (NB+n) RSUs. To this end, a progressive RSU deployment 

algorithm (PRDA) is proposed to minimize the longest RSU-free shortest path (LR) in . 

Here, LR is the length of the longest pair-wise shortest paths in  which have no RSU. 

Obviously, the smaller LR is, the smaller will be the travel time for any vehicle at any 

position in  to reach the next RSU. In this sense, by minimizing LR, PRDA can 

maximize the support to security and applications. Thus, PRDA needs to solve the 

following optimization problem   

 
min | |

. | | | |, /
& | | &

R R

R X X I

I I B

L P
st P P P SPath V

V V V N WMPC
.                 (5.3) 
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In (5.3), PR is the longest shortest path in , and SPath/VI is the set of all-pair shortest 

paths in  excluding these paths containing a vertex in VI. To solve problem (5.3), PRDA 

is designed as shown in Figure 5.3.  

In PRDA, WMPC is checked for any candidate vertex for RSU deployment, so the 

resulted VI will surely meet this condition. Besides, in selecting any vertex, LR is 

minimized, so the resulted VI will be optimal in minimizing LR. Specifically, two salient 

properties hold for PRDA. PRDA is progressive in its nature, so it is especially suitable 

for the realistic RSU deployment. In the initial stage only a few RSUs can be deployed 

and more will be further deployed when the budget permits in the future. Besides, the 

optimality of PRDA in minimizing LR is obvious from Figure 5.3.  

Thus, PRDA is a progressive and optimal method of deploying RSUs with privacy 

considerations. By making sure that most vehicles traveling longer than LR within this 

region will run into at least one RSU, the safety experience of each vehicle is ensured. 

Besides, TA is able to estimate the lifetime of the short-time certificates to ensure that 

any normally travelling node will be able to run into another RSU before its certificate 

expires. In the future, PRDA can incorporate the speed limit and average traffic volume 

of each road segment to make the RSU deployment more comprehensive. We leave this 

extension work to the traffic engineers with sufficient domain knowledge in assessing 

realistic traffic statistics. 

 

Figure 5.3 The detailed algorithm of PRDA 

Inputs: , V, E, NB 
Outputs: VI, max(Path) 
Initialization: VI= , Path=  
Algorithm: 
 P=Floyd( , V, E);      //all-pair shortest paths 
 Path=QuickSort(P);            //quick sort; 
 for i=1, 2, …, NB 
  pm1=max(Path);           //current longest path 
  pm2= next_max (Path);     //second longest path 
  while((v=pm1 pm2)== 0 || VI {v} does not meet WMPC) 
   pm2 = next_max(Path); 
                        end-of-while 
  v = pm1  pm2; 
                        VI=VI {v}; 
                        Path = Path/<v>;      //remove all paths containing v 
          End-of-for 
 Return VI and max(Path); 



116 

 

5.4.3 Analysis and Simulation of PRDA 

5.4.3.1 Theoretical Analysis  

First, the computation complexity of PRDA is reasonable. For a region  with N 

vertices, there will be N(N 1)/2  N2/2 pair-wise shortest paths. Thus, the quick sort 

algorithm [205] adopted in Figure 5.3 will incur a computation complexity of O(N2lgN). 

Additionally, Floyd’s all-pair shortest path algorithm [206] in Figure 5.3 has computation 

complexity O(N3). Thus, PRDA has an overall computation complexity of O(N3), which 

allows its application to large regions with thousands of vertices.  

Secondly, we would like to show the necessity of checking WMPC in PRDA by 

estimating the road segments which are completely monitored by randomly deployed 

RSUs. Here, for brevity we model a region  with an n n perfect grid, where all road 

segments have the same length d. Thus, the total road segment length (LT) in  is 

2n(n 1)d. We model the RSU deployment in  without considering WMPC as randomly 

deploying the nb RSUs. For ease of estimation, we only consider the road segments which 

are adjacent to two RSUs at the same time.  

Suppose one vertex v has one RSU. Then, v has 4 adjacent edges. Let p0 indicate the 

probability that one adjacent vertex of v will be selected in RSU deployment. Then,  

 2
0 ( 1) / ( 1)bp n N .                          (5.4) 

Equation (5.4) holds, since there are still (N2 1) vacant vertices and (nb 1) RSUs left. 

Thus, the length of the covered edges which are adjacent to v, l1, can be approximated as  

 4 3 2 1
1 0 0 0 0

3 2 1
4 3 2

4 4 4
l p d p d p d p d .  (5.5) 

Thus, the total length of covered edges can be roughly estimated as  

 1 / 2T bl n l .                                   (5.6) 

The ratio of covered edges is  

 /T T Tr l L .                                   (5.7) 

From (5.5), (5.6) and (5.7), rT is always non-zero, which means that certain road 

segments will violate the WMPC condition. Thus, it is necessary to consider WMPC in 

RSU deployment, to prevent any road segment from being completely monitored.  



117 

 

5.4.3.2 Simulation of RSU Deployment 

To show the effectiveness of PRDA, we simulate RSU deployment in downtown 

Marquette, MI, which has 519 vertices. In this simulation, we change the number of 

available RSUs (NB) from 1 RSU to 100 RSUs.   

For comparison, we also randomly select NB vertices for RSU deployment, and 

evaluate its LR. For each given NB, the LR values of the random RSU deployment and 

PRDA are shown in Figure 5.4. Given one NB, PRDA can achieve much lower LR than 

the random RSU deployment. Besides, with any given NB, LR of PRDA is significantly 

reduced from the original value (about 16000 meters) without any RSU.  
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Figure 5.4 The LR statistics of PRDA and random RSU deployment 
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Figure 5.5 The lm and LM statistics of PRDA and random RSU deployment  
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Figure 5.6 The ratio of covered road segments of random RSU deployment  

Besides, with NB RSUs deployed, the distance (li) of each vertex to its nearest RSU is 

investigated. Specifically, LM is the maximal li of all vertices, and lm is the average li of 

all vertices. Figure 5.5 shows the LM and lm of both PRDA and random RSU deployment. 

It shows that PRDA will result in smaller LM than random RSU deployment, so that with 

PRDA each vehicular node can go to the nearest RSU sooner.   

The ratio of monitored road segments, in case of the random RSU deployment, is 

shown in Figure 5.6. In Figure 5.6, the theoretical ratio is estimated based on (5.7). The 

curve labeled with Random is the ratio of covered road segments with RSUs randomly 

deployed. Figure 5.6 shows that by randomly deploying RSUs, some road segments will 

surely be completely monitored by the RSUs. Vehicular nodes traveling on such road 

segments will not meet the minimal privacy assurance.  

In summary, PRDA optimizes the RSU deployment in VANETs with realistic budget 

constraints, ensuring the minimal privacy assurance to nodes and maximizing the support 

to security and applications. Being progressive, PRDA is especially appealing to the 

future massive deployment of VANETs. With RSUs deployed, it is necessary to 

investigate the pseudonym update procedures at each RSU, as discussed next. 

5.5 Secure and Privacy-Preserving Pseudonym Update 

As previously discussed, with short-time certificates each node can only update its 

pseudonym with the help of an RSU. Thus, it is critical to make the pseudonym change of 

each node secure and privacy-preserving against both external and internal observers. To 

this end, here a secure and privacy-preserving pseudonym update algorithm is proposed 
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with three procedures: location cloaking, synchronized pseudonym update and random 

mobility trace auditing. Among them, location cloaking conceals the mobility trace of 

vehicular nodes nearby an RSU from the external observers, namely the GPA and the 

LPA. Synchronized pseudonym update enables each node to change its pseudonym with 

the aid of an RSU and become a totally new node to any external observer. Besides, 

random mobility trace auditing can detect LAAs in STCP2. This way, the privacy of 

vehicular nodes can be properly protected against GPA, LAA and LPA. 

For clarity, the notations commonly used in the following subsections will be listed 

here. PRX and PUX indicate the private key and the public key of node X, respectively. 

PUX{Msg} is the message Msg encrypted with PUX. {Msg}PRX is the digital signature of 

Msg generated with PRX. H(Msg) is the hash value of Msg generated by a standard hash 

function, for instance SHA-2 [168].  indicates broadcast and  indicates uni-cast. * 

indicates multiple entities. 

5.5.1 Location Cloaking 

To conceal the mobility trace of each node nearby one RSU, the RSU configures a 

location Cloaking Region (CR) with a length D (D>0) in each direction, as shown in 

Figure 5.7. In CR each node encrypts its beacons with a shared secret key SKi. To avoid 

negative impacts on traffic safety, the RSU also configures a Buffering Region (BR) with 

length R outside CR, as shown in Figure 5.7. R is the communication range of vehicular 

nodes, and each node in BR will send out plaintext beacons while decrypting the received 

encrypted beacons with SKi. Thus, properly configuring D as discussed in subsection 

5.5.4, the movement trajectories of nodes in CR will be concealed from GPA and LPA. 

 
Figure 5.7 One exemplary set-up of location cloaking around an RSU 
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5.5.1.1 BR and CR Management 

The management of BR and CR can be illustrated by one node (A) running across this 

RSU, which will first enter BR, then enter CR and eventually leave CR.   

Entering BR: Upon entering BR, A will overhear encrypted beacons from the nodes in 

CR, and it will broadcast a SK_REQ message to its neighbors to query the current SKi 

used in CR.  One of its neighbors in BR, say B, will send SKi to A in SK_RSP, as follows. 

A *: SK_REQ = {Data={Type=Key_REQ, TSPA}, {Hash(Data)}PRA}. 

B A: SK_RSP = {Data={Type=Key_RSP, PUA{SK_Package}, TSPB}, 

{Hash(Data)}PRB}. 

Here, TSPA and TSPB are the timestamps of node A and B, respectively. With 

certificates in beacons, in both SK_REQ and SK_RSP the senders’ certificates are not 

included. SK_Package contains the current SKi, D as well as their activation time. In 

SK_RSP, the SK_Package is encrypted with PUA, so it is only accessible to A.  

In this process, the nodes in BR may follow a contention based approach, e.g., RPB-

MD [166] or LEAPER [142], to ensure reliable and trustworthy transmission of SK_RSP.  

Entering CR: Based on D and the position of the RSU, A can figure out the boundary 

of CR. Upon entering CR, A will encrypt its beacons as follows. 

A *:  Encrypted_Beacon = SKi{Plaintext_Beacon}. 

Here, Plaintext_Beacon is a standard beacon containing the sender’s driving states [10]. 

Thus, only the vehicular nodes in CR and BR, as well as the RSU, can get access to the 

beacons of A, so A’s movement trajectory in CR is concealed from any external observers.  

Leaving CR: When A leaves CR, it will broadcast plaintext beacons again. However, 

as long as it overhears encrypted beacons, it will still use SKi to decrypt them.  

With each node following the above procedures, BR and CR around the RSU can be 

automatically maintained. In CR, if A changes its pseudonym, the external adversaries 

can only rely on the time points of A entering CR and existing CR to connect its 

pseudonyms. Thus, location cloaking serves as the random silent period for pseudonym 

changes, which is widely adopted in privacy protection [113], [117]-[119], [121], [124], 

[127]. Unlike random silent period, location cloaking does not stop any node from 

beaconing, so it imposes no negative impact on traffic safety applications. 
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5.5.1.2 Update of the Secret Key 

It is necessary for the RSU to keep SKi both fresh and secure, so that the SKi obtained 

by any passing-by LAA will not be useful for long. To this end, the RSU may choose to 

update the secret key SKi with a new key SKi+1 at a randomly selected time point by 

broadcasting a SK_Update message.  

RSU *: SK_Update = {Data={Type = Key_Update, TSPRSU, SKT{SK_Package_New}, 

{PUX, PUX {SKT}} … }, {Hash(Data)}PRRSU}. 

Here, SK_Package_New contains the new SKi+1, D and their activation time. SKT is a 

temporary secret key to encrypt SK_Package_New. The RSU will, for each of its 1-hop 

neighbor X, encrypt SKT with the public key of X (PUX). Thus, only the nodes regarded 

by RSU as its 1-hop neighbors can access SK_Update sent by the RSU. For instance, in 

Figure 5.8, the RSU will encrypt SKT with PUA and PUB.   

Upon receiving a SK_Update message from the RSU or another node, each node 

within BR or CR will similarly construct a SK_Update message for its neighbors in BR 

or CR which are farther away from the RSU. For instance, in Figure 5.8, the SK_Update 

message sent out by node B will be encrypted in such a way that only node C and node E 

can access it. This way, the nodes out of the communication range of the RSU can also 

receive multiple SK_Update messages from different nodes, which can be verified 

against each other to ensure the authenticity of SK_Package_New. Within a limited 

latency as discussed in subsection 5.5.4, all nodes within BR and CR will receive 

SK_Package_New. At the defined activation time, SKi+1 and the new D will take effect.  

In the above procedures, for clarity we assume that all nodes will be honest and 

cooperative in sending out the SK_Update message. Actually, many existing schemes, 

e.g., LEAPER [142], can be adopted to detect the dishonest nodes tampering with 

SK_Update, and reputation schemes [93]-[95] can be adopted to punish such nodes.  

 
Figure 5.8 One exemplary secret key update procedure  
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Thus, by changing the secret key from time to time, the RSU can effectively reduce the 

potential harm of the LAAs. Actually, one LAA needs to go back to this RSU frequently 

to get the current SKi. As discussed in subsection 5.5.3, this adds much difficulty to any 

LAA in continuously monitoring the nodes nearby one RSU.  

5.5.2 Synchronized Pseudonym Change 

To confuse the external observers, the pseudonym change of any node should be 

confidential. To this end, the RSU will help the nodes update the short-time certificate 

and change IP/MAC addresses in their pseudonyms. For brevity, here the technical 

details of short-time certificate schemes are ignored, and we focus on the secure message 

exchanges to support any given short-time certificate scheme, for example ECPP [207].  

When a node A enters the cloaking region (CR), it will request a certificate update 

from the RSU as follows.  

RSU A:  CER_REQ={{Data={Type, IP_OPT, TSPA}, {Hash(Data)}PRA}}. 

RSU A: CER_RSP = {Data={Type, PUA{New_Cert}, TSPRSU}, 

{ Hash(Data)}PRRSU}. 

Here, IP_OPT indicates whether A is willing to change its IP/MAC address or not. 

New_Cert contains the necessary parameters for short-time certificate update. With 

CER_RSP formatted as above, New_Cert is only accessible to A. Upon receiving 

CER_RSP, A will store the new private/public key pair and new short-time certificate, 

and use them in its communications after the following IP/MAC exchange.  

Let SW indicate the set of nodes willing to exchange their IP/MAC addresses. The RSU 

will select the nearby nodes in SW, and randomly shuffle their IP/MAC addresses. Two 

nodes are regarded as nearby if they may be mistaken as each other after the pseudonym 

change, as discussed in subsection 5.5.4. Then, the RSU will broadcast an IP_SW 

message as follows.  

RSU *: IP_SW = {Data=SKi{Type, TSPRSU, {A, IP_MACA,} {B, IP_MACB}, …, 

{Dummy Assignment}}, {Hash(Data)}PRRSU}. 

Here, a valid IP address and MAC address will be assigned to any node in SW. For each 

node unwilling to change its IP/MAC addresses, the RSU will put a dummy assignment 

in the IP_SW message. After receiving IP_SW, the nodes in SW will assume the new 
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IP/MAC addresses. Besides, all nodes will start to use their new short-time certificate. To 

improve the effectiveness of IP/MAC exchange, the following complementary 

procedures are also proposed.  

 Each node, if it keeps its IP/MAC intact, will add a random latency t to its next 

communication activity after receiving IP_SW. This t is obtained based on the 

statistics of latency caused by resetting IP/MAC addresses [113]. Thus, by 

monitoring the communication timing of each node, the external adversaries cannot 

figure out whether any node has changed its IP/MAC addresses or not. 

 Each node will keep record of IP_SW messages for future dispute resolution. If any 

node arbitrarily usurps the IP/MAC of another node, such disputes can be resolved 

based on the IP_SW traces of the involved nodes.   

Thus, the IP/MAC exchange maximizes the anonymity set of each node (A) while still 

allowing for each node’s application considerations. Here the anonymity set of A consists 

of the nodes which seems to the adversaries likely to be node A with a new pseudonym. 

Due to the presence of the dummy assignments, an external adversary cannot 

differentiate the nodes changing IP/MAC addresses from those keeping their IP/MAC 

addresses. To an external adversary, each node entering CR becomes a totally different 

node upon exiting CR, and the adversary can only rely on the timing information to 

connect the pseudonyms of one same node, as discussed in subsection 5.5.4.   

5.5.3 Random Mobility Trace Auditing 

It is necessary to detect and evict the LAAs from VANETs, since each LAA imposes 

great harms to the privacy of vehicles. Specifically, entering BR or CR, one LAA can 

obtain the up-to-date secret key SKi issued by the RSU, and monitor the pseudonym 

changes of its neighbors. Thus, one single LAA can make the CR futile. Furthermore, one 

LAA may collude with the GPA in decrypting all communications nearby one RSU. With 

the help of sufficient LAAs, the GPA could decrypt the beacons sent by the nodes in all 

CRs within VANETs.  

Thus, here we identify the most cost-effective and harmful attack strategies of LAA 

and GPA. Depending on the number of LAAs required to obtain the up-to-date secret 

keys from all RSUs in VANETs, the feasible attack strategies are shown below.  
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 Fixing one LAA to one RSU: Each LAA may continuously monitor the 

communications of one RSU by remaining static or circling around this RSU.  

 Continuous Usage of LAAs: The GPA may organize a number of LAAs to 

continuously run from one RSU to another. At any moment, it will be ensured that at 

least one LAA is within the communication range of one RSU.  

 Advanced Usage of LAAs: To further blend the mobility pattern of LAAs with that 

of the normal nodes, the LAAs will only be active in VANETs for a given duration 

T0 within a period T.  

To detect the LAAs adopting the above strategies, here a random mobility trace 

auditing algorithm is proposed. Specifically, the RSUs in VANETs can collectively 

obtain the mobility trace of each node, including the time points, positions and directions 

of this node running into and leaving each RSU. Each day, a period T will be randomly 

selected from 24 hours, in which all the node mobility traces will be analyzed. An alarm 

will be raised if one of the following conditions is met: 1) one node stays unreasonably 

long in one intersection or repeatedly returns to one RSU; 2) one node traverses all RSUs 

or a subset of RSUs repeatedly with continuous movement; 3) one node traverses a subset 

of RSUs over a period T0. Obviously, these three alarms correspond to the above 

attacking strategies. 

If one alarm is raised, the suspicious node will be marked and its future mobility traces 

will be further monitored and analyzed. If after several periods (T) one suspicious node 

still behaves in the similar way, this issue will be reported to the TA for further 

investigations on the background of this node. Once one node is confirmed as a LAA, it 

will be evicted from VANETs, and its owner may be further punished. In the future, 

concrete parameters, such as T0, T and the alarm trigger, can be selected based on the 

traffic statistics of the concerned region, which is out of the scope of this chapter. Here, 

we will evaluate the effect of this algorithm in a theoretical setting.  

In a region , suppose that there are NR RSUs. Also suppose that the minimal 

spanning tree Tree of all RSUs in  is as shown in Figure 5.9. Then, one adversary 

adopting the first strategy as discussed above will only need Nm1 = NR LAAs to 

continuously monitor all RSUs in .  
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Figure 5.9 The minimal spanning tree of RSUs in VANETs 

If the adversary adopts the second strategy, the minimal number of LAAs (Nm2) 

required to continuously monitor all RSUs can be estimated. Since to get the shortest 

traversal route of all RSUs is a NP-hard travel salesmen problem, here we use the length 

(Length) of the minimal spanning tree (Tree) to approximate the shortest traversal route. 

Then, Nm2  2Length/R, even when all LAAs can be uniformly spaced in Tree and 

moving from one RSU to another without any overlapping. Length is on the order of NR, 

and as long as the average edge is Tree is longer than R, Nm2 is much larger than NR.  

If the adversary adopts the third strategy, the minimal number of LAAs (Nm3) required 

to monitor all RSUs will be further increased, as   

 Nm3  Nm2  T/T0.                               (5.8) 

Formula (5.8) holds, since to avoid being detected each LAA can only continuously 

run no longer than T0 out of T.  

Thus, with this algorithm, the negative impacts of LAAs can be significantly reduced. 

To continuously monitor all RSUs, at least Nm3, instead of Nm1, LAAs are required. On 

the other hand, if only k LAAs are available, the number of monitored RSUs will be 

reduced from k RSUs to kNR/Nm3 RSUs. To further increase Nm3, TA only needs to 

increase the ratio of T/T0, at cost of higher computation complexity. However, each LAA 

is a compromised node, which incurs much higher cost to the adversary. Thus, this 

algorithm can make deploying LAAs in VANETs practically infeasible for any adversary. 

5.5.4 Performance Analysis 

We theoretically analyze the performance of the privacy-preserving pseudonym update 

procedure, including the communication overhead and the expected privacy of each node.  

Communication Overhead: Here, for simplicity, we assume that the RSU will update 

its SK with an average period TSK. Let PSK_REQ, PSK_RSP, PSK_UP and PIP_SW indicate the 
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packet size of SK_REQ, SK_RSP, SK_Update and IP_SW messages, respectively. Then, 

within TSK, the overall communication overhead consists of three parts: SK notification, 

SK update and IP/MAC swap. The certificate update messages will be present even 

without STCP2, so they are not counted as the communication overhead here.  

For clarity, here we consider a typical 4-way road intersection. Let 1, 2, 3, 4 

indicate the average node arrival rate of each entry point around the RSU. Then, within 

TSK, the average new nodes are TSK( 1+ 2+ 3+ 4), each of which requires notification of 

the current SK. Thus,  

 CO1 = TSK( 1+ 2+ 3+ 4)(PSK_REQ+PSK_RSP).           (5.9) 

Let  indicate the average node density around RSU. Then, each node within (D+R) 

distance from the RSU will need to send out a SK_Update message, so that  

 CO2 = 4 (D+R)PSK_UP.                           (5.10) 

Due to the presence of the dummy IP/MAC entries, the RSU can arbitrarily configure 

its period TIP for broadcasting IP_SW messages. Thus, IP/MAC exchange causes   

 CO3 = PIP_SWTSK/TIP.                             (5.11) 

Thus, based on (5.9), (5.10) and (5.11), the average communication overhead for every 

TSK is  

 co = (CO1 + CO2 + CO3).                          (5.12) 

Once the practical traffic parameters are plugged in, the communication overhead of 

STCP2 can be estimated. This overhead can be controlled to an acceptable level by 

changing TSK and TIP. Besides, in (5.12) the overhead incurred by SK update depends on 

the node density and D, so co can be controlled by changing D.   

Average Privacy: Given D, the path length of a node A in CR is 2D. Suppose that the 

minimal and maximal average speeds of A in CR are vmin and vmax. Thus, the minimal and 

maximal time A spends in CR are tmin = 2D/vmax and tmax = 2D/vmin. Let ta be the time 

point of A’s entry, then [ta+ tmin, ta+ tmax] define the possible time range of A’s exit from 

CR. Thus, the nodes existing from CR within the time range [ta+ tmin, ta+ tmax] may be 

mistaken as A by GPA and LPA. Let SA be the set of nodes can be mistaken as A. Then,  

 | SA | = ( tmax  tmin)(e1+e2+e3+e4).                 (5.13) 
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In (5.13), ei is the departing rate of each exit point. Assuming that this intersection has 

no parking lot, then (e1+e2+e3+e4) = ( 1+ 2+ 3+ 4). So,  

 | SA | = ( tmax  tmin) ( 1+ 2+ 3+ 4).               (5.14) 

Based on (5.14), the privacy of A can be estimated as  

 PA = log|SA|.                                   (5.15) 

Equation (5.15) is based on the common entropy-based privacy definitions as in [117], 

[119]. Thus, from (5.13) to (5.15), the average privacy of each node can be controlled by 

the RSU by configuring D. Besides, the RSUs with higher traffic volumes will ensure 

higher privacy for any node. Thus, the privacy-aware RSU deployment algorithm should 

consider the traffic volume of each road intersection, which will be our future work.  

Especially, D has direct impact on both communication overhead co and privacy PA for 

any nodes. As shown in (5.12), bigger D results in higher co, while smaller D results in 

lower PA. Thus, it is up to the VANET administrators to configure a proper D for each 

RSU, trading off the desired PA and the acceptable co based on the traffic conditions 

around this RSU. For example, D should at least be bigger enough to make PA larger than 

0, so that by passing by one RSU each node will generally increase its location privacy. 

5.6 Property and Simulations 

Here, the salient properties and potential applications of STCP2 are identified with 

detailed discussions. Besides, simulation results will be presented to corroborate the 

theoretical analysis of STCP2. 

5.6.1 Privacy Protection Significance 

As previously discussed, the short-time certificate schemes are appealing to the future 

VANETs. Thus, by thoroughly investigating the privacy impacts of short-time certificate 

schemes and proposing novel algorithms to ensure privacy protection, STCP2 paves the 

way of adopting short-term certificates in VANETs.  

Specifically, the progressive RSU deployment algorithm ensures the minimal privacy 

assurance for the common vehicular nodes even against the TA and RSUs. Thus, this 

minimal privacy assurance removes the common doubts about the short-time certificate 

schemes and makes them acceptable to the real-world users of VANETs. This algorithm 
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also considers the average travel distance between the deployed RSUs, maximizing the 

support to the traffic management, traffic safety applications of a given number of RSUs.  

The privacy-preserving pseudonym update algorithm protects the location privacy of 

any nodes against the GPA, the LPA and the LAA. The secure message exchanges 

proposed in subsection 5.5.2 make certificate update confidential and secure. The 

IP/MAC exchange also ensures that the complete pseudonym of each node is changed 

nearby the RSU, so that to the GPA and the LPA this node will become a totally new 

node. The random mobility trace auditing will significantly increase the cost of LAA 

attacking to any given concerned regions. In summary, this privacy-preserving 

pseudonym update algorithm comprehensively considers the critical privacy challenges 

nearby the RSUs and ensures location privacy of vehicular nodes with novel procedures. 

With STCP2, each RSU can serve as a mix-zone [131], which is the foundation of many 

privacy protection schemes for VANETs.  

5.6.2 Application Significance 

With STCP2 implemented in VANETs, each RSU provides not only security and 

safety assurance, but also privacy enhancement to each node. Thus, the privacy strength 

of each travel route can be considered when a node selects its travel routes. 

Conventionally, travel time and travel distance are generally considered in route selection, 

as applied in GPS devices and digital map website. With STCP2, the privacy strength of 

each alternative route can be estimated based on the number of RSUs and the privacy 

strength of each RSU in each route. Then, the trade-off between privacy strength and 

travel cost can be achieved based on the preference of drivers. This potential privacy-

aware route selection further exemplifies the application significance of STCP2. 

5.6.3 Simulations 

Here we run numerical simulations to verify the salient properties of STCP2 in light of 

privacy protection. First, to show the reduction in LAAs’ negative impacts with the 

implementation of STCP2, the numbers (Nm1, Nm2 and Nm3) of required LAAs to monitor 

all RSUs following three different attacking strategies discussed in subsection 5.5.3 are 

investigated. Based on simulated RSU deployment in Downtown Marquette, MI as 

discussed in subsection 5.4.3, Nm1, Nm2 and Nm3 are shown in Figure 5.10.  
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Figure 5.10 The required numbers of LAAs of different attacking strategies 

As shown in Figure 5.10, for a given number of RSUs (NR), Nm2 is about 5 times of 

Nm1. Let T/T0 be 2, Nm3 is twice of Nm2. For instance, when there are 20 RSUs in this 

region (NR = 20), the cost of deploying LAAs is increased from 20 LAAs to about 200 

LAAs. Thus, the cost of deploying LAAs to continuously monitor all RSUs will increase 

significantly with STCP2. Additionally, STCP2 also significantly decreases the negative 

impacts of a given number of LAAs. In summary, by effectively detecting LAAs, STCP2 

ensures that the nodes in CR only need to consider GPA and LPA.    

Next, we investigate the privacy strength and communication overhead of STCP2 

against the GPA and the LPA. Due to the lack of accurate traffic data collected in real 

roads, realistic vehicle mobility trace is simulated with MOVE [170]. Constrained by 

computation and memory requirements of simulating large VANET, a simplified 

roadmap with 5 intersections and one RSU, as shown in Figure 5.11, is adopted here.  

RSU

1.5 km

1.5 km

 
Figure 5.11 The road layout in the simulation of pseudonym changes 

In this road layout, there are two road segments to both directions between any two 

adjacent intersections. The length of each road segment is 1.5 km, so the total road length 

is 36 km. The vehicles are evenly distributed to 4 flows as show with 4 red arrows, with 

the average vehicle arrival rate i (i=1, 2, 3, 4). The total number of nodes changes from 
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100 to 360, with a step size of 20 vehicles. The average speed is 15 m/s, with on average 

the maximal speed of 30 m/s and the minimal speed of 5 m/s. For brevity, here we only 

show the simulation results for D = R = 300 meters.  

The average privacy achieved by each node entering CR, as estimated in (5.15), is 

shown in Figure 5.12 and Figure 5.13. In Figure 5.12, the average privacy (PA) achieved 

by each node entering this CR is shown, together with the minimal PA and maximal PA of 

all nodes. For any given i, the minimal PA is larger than 2 bits, which means that this 

node has at least 4 nodes in its anonymity set SA. On average, each node can achieve a 

privacy of 4 bits. The occasional drops in minimal PA  and maximal PA  are caused by the 

randomness in node mobility.  
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Figure 5.12 The average privacy of each node with minimal and maximal values 
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Figure 5.13 The average privacy of each node with 95% confidence level 
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Figure 5.14 The average communication overhead per 100 seconds 
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In Figure 5.13, the average PA and its 95% confidence intervals are shown for any 

given vehicle arrival rates i. The confidence interval is quite small for any given i, 

indicating that PA can closely indicate the privacy achieved by each node entering CR.  

The average communication overhead co as estimated in (5.12) is shown in Figure 5.14 

for a given TSK = 100s. As i increases, co also increases from about 50 messages per 

100s to about 170 messages per 100s. Given that these messages can be constructed with 

reasonable sizes, the communication overhead of STCP2 is reasonable for VANETs.    

In summary, the simulations prove that STCP2 can significantly increase the cost of 

deploying LAAs in VANETs. Besides, the privacy of each node running by the RSU can 

be ensured with acceptable communication overhead. 

5.7 Summaries 

In this chapter, STCP2 is proposed to protect the location privacy of vehicular nodes 

with short-time certificates. STCP2 identifies the critical privacy implications of short-

time certificate schemes, each of which might make short-time certificates unacceptable 

to VANETs without careful investigation. Then, a progressive RSU deployment 

algorithm is proposed in STCP2 to optimize the deployment of RSUs given a cost budget. 

The minimal privacy requirement of vehicular nodes is ensured in this algorithm, and the 

support to safety and security application is maximized. Eventually, the privacy-

preserving pseudonym update algorithm makes the implementation of short-time 

certificates both secure and privacy-preserving.  

Thus, STCP2 makes privacy protection in VANETs with short-time certificates both 

cost-effective and feasible, paving the way of adopting short-time certificates in VANETs. 

The potential applications enabled by STCP2, as discussed in subsection 5.6.2, make 

STCP2 even more appealing to VANETs.  

As the future work, more realistic traffic statistics will be considered in STCP2 to 

make RSU deployment and the configuration of D more adaptive to realistic VANETs. 

Besides, more concrete cost-effect analysis of the possible attacking strategies of LAAs 

could be useful to help set the proper parameters in the random mobility trace auditing 

algorithm based on the realistic traffic statistics in any given region. 
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Chapter 6 Value-Added Applications 
To further realize the application potentials of VANETs, in this chapter three 

promising value-added applications are identified and supported with novel solutions. 

Specifically, three novel schemes to support these value-added applications, namely 

VAAD [150] for VANET-based ad dissemination, GPAS [148], [149] for location-

sensitive surveys and VehicleView [151] for vehicle sensor data collection, have been 

designed by Congyi Liu and me. My focus is on designing the architectural and security 

(privacy) solutions for these schemes, while Congyi Liu’s focus is on ensuring efficient 

message dissemination and collection in these schemes. Thus, in this chapter, besides the 

big picture of each scheme, only the novel security and privacy solutions in VAAD [150], 

GPAS [148], [149] and VehicleView [151] are presented in detail. Our publications [148] 

[151] and manuscripts [149], [150], [152] provide the complete designs of each scheme.    

6.1 Promising Value-Added Applications 

With V2V and V2R wireless communications, VANETs provide a handy platform to 

various value-added applications involving vehicles and drivers/passengers. To such 

applications, vehicular communications generally incur lower cost than other 

communication technologies, e.g., cellular communications. Indeed, value-added 

applications can get a free-ride on vehicular communications, since traffic safety 

applications more than justify the cost of VANET implementation [208]. Besides, due to 

the close relation between each vehicle and its location information, value-added 

applications relying on the vehicle location information may be better supported in 

VANETs. Thus, VANETs can enable more cost-effective solutions to such applications.  

On the other hand, value-added applications may financially benefit VANET users, 

VANET administrators and service providers. Especially, the revenue from such value-

added applications may enable the VANET administrators to further upgrade VANETs. 

The presence of appealing value-added applications may encourage more drivers 

(vehicles) to actively participate in VANETs.  

To further realize the economic potentials of VANETs, we propose secure and cost-

effective solutions to three promising value-added applications. Specifically, a VANET-
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based Ambient Ad Dissemination (VAAD) scheme [150] is proposed as a secure solution 

to VANET-based ad dissemination with practical cost and effect control. A General-

Purpose Automatic Survey (GPAS) scheme [148], [149] is proposed as a secure and cost-

effective solution to the location-sensitive surveys in VANETs. VehicleView [151], [152] 

is a secure and cost-effective solution to the large-scale and long-term collection of 

vehicular sensor data in VANETs. Actually, each of these schemes provides the first 

comprehensive solution to the corresponding application.  

Besides their distinct novelties, these schemes share two salient features. First, a 

practical application model with an incentive-centered architecture is proposed for each 

application, so that the conflicting requirements of the involved entities are properly 

traded off. Secondly, proper security and security assurance is provided to each scheme, 

so that it can be readily implemented in realistic VANETs with various adversaries, 

including misbehaving vehicular nodes and rogue service providers.   

6.2 Scheme Overview  

Here, the overview of each proposed scheme is presented, based on which the common 

performance, security and privacy challenges are identified and discussed.  

6.2.1 VANET-based Ambient Ad Dissemination (VAAD) 

Considering numerous commercial service providers (SPs) and vehicles available in 

VANETs, VANET-based ad dissemination shows great market potential. However, 

without potent cost and effect control, arbitrary ad disseminations from various SPs may 

cause unnecessary distractions to the drivers and message storms to VANETs. 

Furthermore, the conflicting requirements of the involved parties remain to be carefully 

addressed. Specifically, each SP, to achieve the best advertising effect, wants to broadcast 

its ads to as many vehicles as possible, while the drivers generally only want to be 

notified of the local services. To VANETs as a whole, ad dissemination should be 

scalable to avoid message storms in face of increasingly more ads. Yet, the security and 

privacy issues of ad dissemination also call for thorough investigation. 

As discussed in detail in [150], the existing schemes for ad dissemination in VANETs 

only, at best, partially tackle the above-mentioned challenges. Thus, VAAD [150] is 

proposed to ensure secure ad dissemination with pragmatic cost and effect control.  
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Figure 6.1 The system overview of VAAD 

To balance the conflicting requirements of the involved parties, an incentive-centered 

architecture is proposed for VAAD, as shown in Figure 6.1, where the SP needs to pay 

other entities for their services in ad dissemination. Constrained by the incurred cost, the 

SP will set a realistic advertising effect requirement in terms of the number of ad 

receivers and the ad rebroadcast frequency. The VAAD Manager (VM) is introduced to 

interface and coordinate the involving parties in VAAD. Upon receiving a dissemination 

request from SP with cost and effect specifications, VM will obtain proper authorization 

from the VANET Authority for this ad. With the authorization, VM can request one RSU, 

usually the RSU nearest to the SP, to act as the source RSU (SRSU) to disseminate the ad.

With this incentive-centered system architecture, two novel algorithms are proposed to 

support pragmatic cost and effect control for ad dissemination in VAAD.  

Distance-based Gradient Ad Dissemination: Inspired by the ad posting pattern in the 

physical world, a distance-based gradient ad dissemination algorithm is proposed in 

VAAD to maximize the ad effects given a cost budget. With this algorithm, the ads will 

be disseminated in such a way that the ad messages form a virtual ad post in VANETs. 

The key idea is to attenuate the density of a particular ad with a gradient p [0,1) as the 

distance increases by a unit road segment (L) from the source RSU (SRSU), as shown in 

Figure 6.2. When vehicles drive around, they will receive ad packets about local services 

as if they were driving by real ad posts in the physical world. That is, the closer one 

vehicle is to a SP, the more frequently it will receive the ads from this SP. As such, the 

location relevance of ads is exploited to increase the actual advertising effect given a 

realistic cost budget. 
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Figure 6.2 The ad density gradient in highway scenarios 

Cash-in: To encourage vehicular nodes to strictly follow the ad dissemination 

requirements as defined by VM and the source RSU, certain incentive will be rewarded 

to each honest ad forwarder. A novel cash-in algorithm is designed to ensure that each ad 

forwarder can securely and indisputably prove its ad forwarding services, and obtain its 

deserved incentive from CC in a privacy-preserving way. 

6.2.2 GPAS: a General-Purpose Automatic Survey System 

The framework of a general-purpose automatic survey system (GPAS) was proposed 

by us in [148] to support the location-sensitive surveys based on VANETs. Here a 

location-sensitive survey is often interested in the traffic, transportation, traveling and 

commercial information of one specific area, such as the driving experience in a 

downtown area and the possible placement of a new fast food shop nearby a road 

intersection. For a location-sensitive survey, only the survey respondents related to the 

concerned geographic location will be able to provide useful information. Thus, the 

common survey methods [209] by telephone, mail, website or email, will not be efficient 

in locating the relevant survey respondents for such surveys. Besides, such conventional 

methods generally are costly, mainly relying on human efforts in information gathering 

and processing. Comparatively, the relevance between each vehicular node and its 

location makes VANETs a handy platform for the location-sensitive surveys.  

The architecture of GPAS [148] is shown in Figure 6.3. GPAS requests each survey 

customer to pay incentives to the eligible survey respondents and the relevant entities for 

their services. Thus, constrained by the incurred cost, each survey customer will 

judiciously initiate its surveys and set reasonable quality requirements for each survey, 

which will make GPAS scalable in the face of numerous potential surveys. On the other 

hand, incited by incentives, the eligible vehicular nodes will become more willing to 

respond to the survey requests.   
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Figure 6.3 The system overview of GPAS  

A survey center (SC) is proposed in GPAS to facilitate the interactions among the 

involved entities. A survey customer will send its survey request to SC, which will get a 

proper authorization from Authority for it. To efficiently disseminate the survey request 

to the eligible vehicles within the target survey region (RT), SC will request the RSUs in 

RT to disseminate the survey request. If necessary, adRSUs may also be deployed in RT to 

facilitate survey request dissemination. Here, adRSUs are lightweight reusable devices 

with DSRC transceivers and can be temporarily deployed by SC to support the concerned 

survey. To allow the eligible nodes to efficiently and securely prove their eligibility, only 

1-hop communication is adopted in survey request dissemination.  

After receiving one survey request, the eligible nodes may decide whether to respond 

to this survey based on the incentive for this survey and the efforts required. The nodes 

agreeing to respond will construct their survey responses properly, and submit their 

survey responses to SC, via the help of (ad)RSUs both inside RT and outside RT. SC will 

verify the collected survey responses and forward the valid ones to the customer.   

The major procedures of GPAS and their respective challenges are presented below.  

Survey Request Initiation & Authorization: To initiate a survey, one customer needs 

to, based on its application requirements, minimize the expected cost while ensuring the 

desirable quality requirements of its survey. Then, the survey request needs to be 

specified as an accountable and undeniable service contract between the customer and SC. 



137 

 

To ensure security, SC needs to register the survey task at the Authority and obtain 

proper authorization for it.  

Survey Request Dissemination: With the help of (ad)RSUs, the survey request will be 

disseminated to the nodes within RT. The eligibility of any node regarding this survey 

should be securely proven and survey request dissemination should be accountable, so 

that future incentive payment can be properly supported.  

Survey Response Collection: The survey responses generated by the eligible nodes 

will be collected by (ad)RSUs and forwarded to SC. While submitting the survey 

responses, the privacy of survey respondents should not be compromised. To meet the 

quality specifications of the customer, SC will verify the survey responses to remove the 

duplicate ones, which may be difficult due to the presence of pseudonyms in VANETs.  

Cash-in: After completing a survey, the customer needs to pay incentives to CC, 

Authority, SC and each honest survey respondent for their services, in a secure and 

privacy-preserving way.  

Thus, GPAS is designed to provide customized location-sensitive survey services in a 

cost-effective, secure and privacy-preserving way. The key functional, security and 

privacy challenges are identified and carefully addressed in GPAS [148], [149]. 

6.2.3 VehicleView 

Exemplified by large-scale vehicle field testing, after-sale vehicle performance 

monitoring, remote vehicle diagnostics, fuel consumption analysis, fleet management, 

driver behavior analytics, etc., the vehicle performance monitoring and analysis (VPMA) 

applications show great economic potentials. In general, the VPMA applications rely on 

the large-scale and long-term collection of vehicular sensor data. For instance, to 

optimize the future vehicle designs, one vehicle manufacturer may need to collect the 

engine states of a particular vehicle model in practical uses over (say) 5 years. Besides, 

with numerous sensors installed in each vehicle, large-scale and long-term vehicular data 

collection becomes more necessary and challenging, as indicated by the existing 

commercial vehicular telematics solutions such as OnStar [210] and Ford SYNC [211]. 

However, these commercial solutions are proprietary systems with applications 

constrained to specific car manufacturers. Besides, relying on cellular communications 
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such solutions incur service fees from the application users and require special 

communication devices in vehicles. Last, with free access to all location and speed states 

of each vehicle, such solutions impose severe privacy risks to the vehicle drivers [212].    

Thus, VehicleView [151], [152] is proposed as a secure and cost-effective solution to 

large-scale and long-term vehicular data collection based on VANETs. Exploiting V2V 

and V2R communications, VehicleView is especially cost-effective without any special 

hardware requirements to vehicles. Moreover, the relevant security and privacy issues are 

thoroughly addressed in VehicleView with novel solutions. To our best knowledge, 

VehicleView is the first scheme to support secure and cost-effective vehicular sensor data 

collection based on VANETs. 

In general, to support a specific vehicular sensor data collection application the 

application customer, say a car manufacturer, firstly will determine its information 

requirements, for instance, the data to show the engine performance degradation curve of 

a new vehicle model. Then, the customer may select a subset of vehicles as the data 

sources (target vehicles). The data requirements and incentive information, in form of a 

task request, will be sent to the target vehicles, among which some will agree to 

participate in this task as the participants. The participants will later generate data reports 

and send them to the customer through V2V and V2R communications. Eventually, the 

customer will process the collected data in an application specific way.  

 
Figure 6.4 The VehicleView overview (© 2011 IEEE. Reprinted with permission) 
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The above functions, except for the application-specific information requirement 

determination and data processing, will be supported by VehicleView as proposed in 

Figure 6.4 [151]. In VehicleView, Authority, Clearance Center (CC), RSUs and vehicular 

nodes are pre-existing entities in VANETs. The VehicleView Manager (VM) is designed 

as an interface between the customer and VANETs. To encourage and reward the 

cooperation of relevant parties, the customer needs to pay certain incentives to Authority, 

CC, VM and each vehicular participant for their services. Thus, such entities are 

economically encouraged to participate in VehicleView, and the customer is forced to 

judiciously initiate data collection tasks in VANETs.  

Specifically, VehicleView includes the following major functional components.  

Pricing: The customer needs to determine proper incentives for its data collection task, 

to meet its information requirement with a minimal cost.   

Task Registration: Once receiving a task from a customer, VM needs to register it in 

Authority for proper authorization, which is essential to ensure undeniable and 

trustworthy interactions among the relevant parties.  

Task Dissemination: The task request needs to be securely and efficiently 

disseminated to the target vehicles, which may be challenging, since the locations of 

target vehicles may be unknown due to privacy protection.  

Data Reporting: The data reports from each participant will be sent to the customer via 

V2R and V2V communications. Here, the challenge is to protect the location privacy of 

participants and ensure efficient report submission at the same time.  

Therefore, incurring only limited software updates to the existing VANET entities, 

VehicleView is especially cost-effective. With novel algorithms to address the security, 

privacy and economy challenges, VehicleView shows great application significance and 

economic potentials for VANETs. 

6.3 Critical Challenges 

These proposed schemes face critical performance, security and privacy challenges in 

VANETs, as listed in Table 6.1. In Table 6.1, the challenges imposed by these schemes 

fall into two categories, namely common challenges and unique challenges. Both types of 

challenges will be discussed in detail here.  
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Table 6.1 
Critical challenges imposed by VAAD, GPAS and VehicleView 

 VAAD GPAS VehicleView 
Common 
Challenges 

Practical Application Model 
Efficient and Privacy-preserving Incentive Distribution 
Authorization
NA Privacy-preserving Data Collection 

Unique 
Challenges 

Efficient & Reliable Ad 
Forwarding 

Surveys Quality Model Efficient Task Request 
Dissemination 

Forming Virtual Ad Post Scalable Collection of 
Survey Request Receipts 

Sensor Data Access 
Control 

As shown in Table 6.1, to design a practical application model is challenging in 

VANETs, since it is difficult to comprehensively consider the conflicting requirements of 

the involved entities. Besides, to distribute incentives to each vehicle is challenging due 

to privacy protection in VANETs, which makes the real identity and location of each 

node unknown. Furthermore, it is critical to enable the customer of each application to 

securely and accountably interact with VANET entities, which requires a secure 

authorization procedure. Last, GPAS and VehicleView involve data collection from 

vehicular nodes, which may impose risks to the location privacy of vehicular nodes. 

These common challenges will be discussed in detail in the following sections.  

Besides, each application imposes unique challenges. Next, these unique challenges 

and the corresponding solutions will be briefly discussed. The corresponding details are 

presented in our publications [148], [151] and manuscripts [149], [150], [152]. 

Efficient & Reliable Ad Forwarding: In VAAD, it is critical to ensure that each ad 

forwarder will reliably forward the ad packet. Besides, the number of ad forwarders

required to forward the ad to the requested distance should be reduced, since each ad 

forwarder requires a certain incentive from the customer. To ensure both efficient and 

reliable ad forwarding in VAAD, two novel algorithms are proposed as discussed next. 

A B C

IACK
Ad

dBC

Figure 6.5 The exemplary ad forwarding procedure in one hop

As shown in Figure 6.5, the current ad forwarder B is forwarding the ad packet to its 

downstream ad forwarder C. Here, one novel algorithm is proposed for B to select the 
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best downstream ad forwarder based on the distance between B and its neighbors, as well 

as the average successful reception ratio of its neighbors. Thus, the downstream ad 

forwarder will result in best efficiency for this hop. Besides, an ARQ (Automatic Repeat 

reQuest) [213] based algorithm is proposed to ensure reliable ad forwarding in each hop. 

For instance, by overhearing the ad forwarded by B, A will regard this overheard ad as the 

implicit acknowledgement (IACK) to the ad sent by itself to B. If no IACK is overheard, A 

may retransmit the ad until it overhears an IACK or an explicit acknowledgement from B. 

This way, each forwarder will make sure of the behaviors of its downstream forwarder.   

Forming Virtual Ad Post: In VAAD, to form the virtual ad post as shown in Figure 

6.2, the source RSU will randomly select the requested ad dissemination distance Di for 

each rebroadcast of this ad according to a proper probability distribution as discussed in 

[150]. Once Di is selected, only the ad forwarders within distance Di from the source 

RSU will be rewarded with incentives. As such, the vehicular nodes are encouraged to 

forward the ad in such a way that a virtual ad post will be formed.  

Quality Model of Surveys: In GPAS, a novel quality model is proposed as a 3-tuple (N, 

i, ) to model the quality requirements of the survey customers. Here, N is the total 

required number of survey responses, and i is the maximal number of misbehaving 

survey respondents, each of which produces at least two survey responses.  is the 

uncertainty level of satisfying this quality requirement. Altogether, (N, i, ) means that 

totally N survey responses are required, and the probability of more than 2i duplicate 

survey responses is at most . Thus, this quality model allows the customer to control the 

bias of opinions in the collected survey responses.  

One major advantage of this quality model is that it enables the scalable verification of 

survey responses. Briefly speaking, based on a given quality requirement (N, i, ), only k 

(0<k<N) survey responses need to be verified in order to meet this quality requirement, 

where k can be theoretically selected based on (N, i, ) [148], [149]. This way, survey 

verification becomes scalable, which is most important to GPAS in face of increasingly 

more survey tasks.  
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Figure 6.6 The message flows of bipartite receipt collection with b=3 

Scalable Collection of Survey Request Receipts: In GPAS, after broadcasting a survey 

request, the RSU needs to collect a receipt from each receiver of the survey request. 

However, due to node mobility each node can only directly communicate with the RSU

for a limited duration. On the other hand, the transmission of one receipt from a node to 

the RSU may take up to seconds, depending on the network conditions. To ensure 

scalable collection of survey request receipts, a bipartite receipt collection algorithm 

(BRCA) is proposed in GPAS, as shown in Figure 6.6.  

The main idea of BRCA is to divide the 1-hop neighbors of the RSU into 2b clusters. 

Within each cluster, each node reduces its transmission power to cover only R/2b

distance, and sends its receipt to an aggregator. In this way, the aggregation within each 

cluster can be performed in parallel. Then, the aggregated receipt in each cluster is further 

aggregated to an upper-layer aggregator, until all receipts are aggregated at the RSU. In 

this process, novel algorithms are designed to ensure reliable aggregation and to 

configure a proper aggregation level b based on the current network conditions.  

Efficient Task Request Dissemination: In VehicleView, the data collection task needs 

to be sent to each eligible vehicle selected by the VehicleView customers. However, in 

VANETs, the real identity and location history of any vehicular node are unknown to the 

customers, so task request dissemination becomes challenging. To flood the whole 

VANET with task requests will incur heavy communication overhead. Thus, in 

VehicleView a regional query-based request dissemination algorithm is proposed for 

efficient and reliable task dissemination.  

Sensor Data Access Control: In VehicleView, the vehicle sensor data should not be 

accessed by any entity without the consent of the vehicle owner. In VehicleView, several 
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practical guidelines are proposed to ensure secure and privacy-preserving access control 

to vehicle sensor data.   

6.4 Incentive and Incentive Distributions 

In any value-added application two critical questions arise: 1) how to create a practical 

application model, and 2) how to direct the distribution of economic value. To answer 

these two questions, an incentive-centered architecture is proposed for VAAD, GPAS, 

and VehicleView by following two design guidelines.  

6.4.1 Design Guidelines 

The first guideline is that the VANET-based value-added application should follow the 

application model of the general value-added applications. The value-added applications, 

for instance, ad dissemination, survey or vehicular sensor data collection, have been 

present before the concept of VANETs was proposed. Thus, the existing application 

models are mature and reasonable, comprehensively considering the conflicting 

requirements of the involved entities. So, it is natural for VANET-based solutions to 

follow these application models.  

The second guideline is to use economic incentive to trade off the conflicting 

requirements of the involved entities. For any application, the entities benefit from this 

application need to pay incentives for the services obtained from this application. On the 

other hand, the entities providing services, for instance, data forwarding, to this 

application should be rewarded with incentives. In this way, the conflicting requirements 

of the involved parties are properly reconciled, and the involved parties are financially 

encouraged to participate in each application.  

For instance, in VAAD, the service provider (SP) who intends to broadcast its ads 

should pay incentives to the VANET Authority, Clearance Center, VAAD Manager and 

each honest ad forwarder for their services. The vehicular nodes are financially 

encouraged to forward ads for the SP to facilitate ad dissemination. On the other hand, 

the ad receivers should not be rewarded, since they will overhear the ads anyway due to 

the nature of wireless communications. Thus, the ad receivers do not provide any service 

to VAAD. Thus, the incentive model of VAAD is more practical than that adopted in 

[15], where the ad receivers will also be rewarded with incentives.   
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Figure 6.7 The pull model-based incentive distribution 

6.4.2 Efficient and Privacy-Preserving Incentive Distribution 

In VAAD, GPAS, and VehicleView, the customer or the Clearance Center needs to 

distribute incentives to each honest vehicular participant. However, in VANETs each 

node uses its pseudonym in communications for privacy protection [5]. The real identity 

and location history of any node should be kept secret from all entities except for the 

VANET Authority. Besides, suppose a node (Ni) uses a pseudonym A in participating in 

the application. Its pseudonym may have changed to A* when the incentive is distributed. 

For privacy protection, the connection between A and A* should not be known to the 

customer or the Clearance Center. Constrained by these privacy concerns, one incentive 

distribution approach is to flood VANETs with the incentive for Ni, which will incur 

unacceptable communication overhead considering the huge number of incentives. 

Thus, a pull model-based incentive distribution approach is proposed for these 

applications, as shown in Figure 6.7. Here, it is assumed that an E-cash scheme [214] is 

adopted in VANETs, so that incentives are represented with E-cash vouchers. The 

advantage of E-cash is that the voucher can be securely verified without revealing the 

identity of the voucher user, which is beneficial to privacy protection in VANETs. 

Besides, in these applications, each honest node Ni with a pseudonym A has already 

securely established a secret key SKA with the customer. In distributing the incentives, the 

customer will encrypt the E-cash voucher for node Ni with SKA. All encrypted vouchers 

for a certain application will be published in a public website, as shown in Figure 6.7. 

The original pseudonym of each node, such as A, B and C, will be used to indicate the 

owner of each encrypted voucher. Afterward, node Ni, with a new pseudonym A*, can 
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query the website to obtain the E-cash voucher intended for itself. In this process, the 

connection between A and A* will not be known to the customer. Besides, the E-cash 

voucher for each node is only accessible to this node alone. Furthermore, this pull model-

based approach is more efficient than to flood VANETs with incentives.    

6.5 Authorization of Customers 

In any application, the customer’s application contract, for example a survey request in 

GPAS, specifies the quality requirements and payment information of this customer. 

Thus, the application contract cannot be denied by the customer. Besides, the application 

Manager, for instance, the VAAD Manager for VAAD, needs to request RSUs in 

VANETs to disseminate application-specific messages. To this end, the Manager needs a 

proper authorization from the VANET Authority to convince the RSUs and the vehicular 

nodes of the authenticity of the messages it sends out.  

To meet these critical security requirements, a common authorization procedure as 

shown in Figure 6.8 is proposed for GPAS and VehicleView, which can also be adopted 

in VAAD. Here, it is reasonably assumed that both the customer and the Manager have 

obtained public/private key pairs and certificates from the VANET Authority. The 

generic formats of these messages are presented next, and the concrete message formats 

can be found in [149]-[151].  

Customer  Manager: Contract = {PayloadCust = {IDCust, TSPCust, 

KCust MN{Specs={QoS, Payment}, Info}, PUMN{KCust MN}}, {H(PayloadCust)}PRCust, 

CertCust}. 

Here, IDCust is the ID of the customer, and TSPCust is the timestamp. Specs contain the 

parameters of quality and cost requirements, as well as application-specific content (Info). 

KCust MN is a session secret key established between the customer and the Manager by the 

customer, which is further encrypted by PUMN, the public key of the Manager.  

 
Figure 6.8 The registration and authorization of an application request 
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H() is a standard hash function, such as SHA-512 [168]. Thus, {H(PayloadCust)}PRCust  

is the digital signature for this message, signed by the private key of the customer (PRCust). 

CertCust is the certificate of the customer issued by Authority. 

Thus, only the customer and the Manager can figure out KCust MN, so the sensitive 

contents in Contract are confidential. Besides, with digital signature the customer 

explicitly specifies its application contract the manager accountably and undeniably.  

Upon receiving Contract, the Manager will assign an ID to this application contract, 

and obtain a proper authorization from Authority with the following message exchanges.  

Manager  Authority: Registration = {PayloadMN={IDMN, IDApp, Contract, TSPMN}, 

KMN-Auth{KCust-MN}, PUAuth{KMN-Auth}, {H(PayloadMN)}PRMN, CertMN}. 

SC  Authority: Authorization = {PayloadAuth = {TSPAuth, KMN-Auth{Auth_Token}, 

{H(PayloadAuth)}PRAuth}.  

Auth_Token = {Token={IDApp, IDMN, TSPAuth, Specs2, Info}, {H(Token)}PRAuth}. 

Here, IDMN is the ID of the Manager, and IDApp is the ID of this application request as 

assigned by the Manager. Specs2 contains the application parameters which are relevant 

to the vehicular participants. Auth_Token is an authorization token generated by 

Authority, which allows the Manager to request the RSUs to broadcast application-

specific messages for the Manager.  

Thus, the survey request from the customer is accountably and undeniably registered at 

the Manager and Authority, and the Manager obtains a proper authorization from 

Authority. With this authorization, the Manager is able to request the RSUs to perform 

specific communications for this application. The above generic message exchanges 

specify the common authorization procedure in VAAD, GPAS, and VehicleView, and 

can be instantiated based on the specific application requirements.  

6.6 Privacy-Preserving Data Collection 

As discussed in section 6.4, one node may assume different pseudonyms while 

participating in each application. Especially, in both GPAS and VehicleView, one node 

may assume a pseudonym A while receiving the task request, and assume another 

pseudonym A* while generating survey response or data report. Thus, it is necessary to 

prevent the RSUs and the customers from learning the connection between two 
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pseudonyms adopted by one vehicular node, which is the underlying requirement for 

privacy protection in VANETs. To this end, a privacy-preserving data collection 

algorithm is proposed for GPAS [148], [149] and VehicleView [151], [152], with two 

novel mechanisms: randomized submission distance and per-hop re-signing.  

Randomized submission distance: To submit its data, a node Nodei will select a 

submission distance ds with a uniform distribution over (0, DS). Here, DS > R is a 

configured threshold of ds, the configuration of which has been discussed in detail in 

[149], [151]. When Nodei is ds away from the next RSU, it will send its data to the RSU.  

Per-hop re-signing: Initially, Nodei signs its data (Data(A)) with the private key 

associated to the original pseudonym (say A). In GPAS, Data(A) is the survey response 

generated by this node; in VehicleView, Data(A) is the data report generated by this node. 

In each hop from Nodei to the RSU, Data(A) will be treated as a payload, and each 

forwarder will digitally sign it with its own private key, as shown in Figure 6.9. Thus, 

once the RSU receives the payload with a digital signature, it cannot figure out the 

originator node of this payload, so the relation between A and A* is concealed.  

In this process, Data(A) will be directly sent to the RSU by Nodei, if ds < R. Otherwise, 

the data packet will be relayed by several intermediate forwarders. If one forwarder runs 

into a network partition, it will keep the survey response and send it to the RSU when 

runs into the communication range of the RSU. To ensure that each forwarder will 

reliably forward the authentic survey response, LEAPER [142] can be adopted.  

As discussed in [149], [151], this algorithm can effectively prevent the RSUs and the 

customer from connecting the different pseudonyms used by one same application 

participant. Thus, secure and privacy-preserving data collection can be ensured in both 

GPAS and VehicleView.   

 
Figure 6.9 The privacy-preserving survey responses collection 
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6.7 Summaries 

In this chapter, VAAD, GPAS and VehicleView are presented as cost-effective 

solutions to various VANET-based value-added applications. Besides their distinct 

theoretical novelties, these schemes all feature a practical application model, as well as 

proper security and privacy assurance. To our best knowledge, these schemes are the first 

comprehensive solutions to the corresponding applications, showing great application 

potentials to VANETs.  
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Chapter 7 Future Work and Conclusions  
In this chapter the major contributions of this dissertation will be summarized, and 

discussions will be provided to facilitate the implementation of the proposed schemes. 

Then, detailed discussions of the promising future work will be presented. In the end, 

high-level conclusions will be given to conclude this dissertation.   

7.1 Major Contributions 

This dissertation addresses several critical security and privacy issues of VANETs, and 

provides novel solutions to further enhance the security and privacy of VANETs. Besides, 

novel solutions to three promising value-added applications are also provided to further 

realize the application potentials of VANETs. Besides being theoretically novel, each 

proposed scheme also considers the unique properties of VANETs. Thus, these schemes 

can be readily implemented in VANETs. By addressing the critical security, privacy and 

application issues of VANETs, this dissertation facilitates the realistic implementation of 

VANETs in the near future.  

Next, the salient properties and implementation considerations of each proposed 

scheme will be provided. Afterward, the contribution of this dissertation to the traffic 

engineering community and the VANET community will be discussed.  

7.1.1 LEAPER 

As discussed in Chapter 2, LEAPER [142] ensures reliable and trustworthy multi-hop 

communications by properly handling the malfunctions and misbehaviors in data packet 

relaying. A novel adaptive role playing (ARP) strategy is proposed in LEAPER to 

enhance the cooperation of the neighboring nodes in each hop. This strategy prevents the 

malfunctions and misbehaviors of individual nodes from harming the trustworthy data 

packet relaying in any hop. In this sense, LEAPER shows great advantage over the 

existing schemes which usually suffer from such malfunctions and misbehaviors. Besides, 

by properly configuring the tradeoff between security strength and communication 

overhead, LEAPER can achieve higher performance in terms of successful packet 

delivery. Thus, LEAPER can be implemented in VANETs to better support the 

applications which rely on multi-hop communications.  
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Figure 7.1 An exemplary communication protocol stack for vehicular nodes 

LEAPER can be easily implemented in each node as a protocol component to support 

various VANET applications. LEAPER is a protocol between the transport layer and the 

routing (network) layer in the communication protocol stack, as shown in Figure 7.1. 

Taking the QoS requirements from the transport layer, the security parameter of 

LEAPER can be configured as discussed in Chapter 2. Then, LEAPER ensures reliable 

and trustworthy packet relaying in each hop, determining the next hop based on the 

routing information from the routing layer. Our publication [142] provides sufficient 

information to design the protocol procedures of LEAPER, as well as useful guidelines to 

configure the security parameter of LEAPER. Besides, to further reduce the computation 

overhead of LEAPER, RAMV can be adopted in each trust group to allow the group 

members to adaptively share the computation load of packet verification.  

7.1.2 RAMV 

In Chapter 3 RAMV ([143], [144]) addresses the scalability issues imposed by the 

computation-extensive verification of messages, especially beacons in VANETs. RAMV 

differentiates the received messages based on their application relevance, and allows each 

node to verify the messages of high application relevance with a high probability as 

allowed by its resource budget. By piggybacking the verification results, the neighboring 

nodes can efficiently exchange their message verification results, so that each node will 

learn the authenticity status of all its received messages. Thus, RAMV enables the 

neighboring nodes to share the computation load of message verification. With RAMV, 
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in any network scenario each node can verify the received messages in a resource-aware, 

application-friendly and secure way. Thus, RAMV can be adopted for each node to 

efficiently verify the received messages in the single-hop communication scenarios. In 

this sense, RAMV enables many important traffic safety, traffic management, and 

commercial applications which rely on authentic messages exchanges.  

RAMV [143], [144] is a security scheme residing in the application domain of each 

vehicular node. It can be implemented as a scheduler for the concrete message 

verification algorithms, as shown in Figure 7.2. Given a concrete VANET application 

(for example, collision avoidance) and a concrete message verification algorithm in the 

Message Verifier (for example, ECDSA [181]), RAMV can be implemented by 

following the algorithms described in Chapter 3. 

Specifically, RAMV needs to support the user’s configuration of the resource budget 

for message verification. Based on the resource budget and the number of received 

messages, RAMV will estimate the filtering probability (p) for the Message Verifier to 

probabilistically decide whether to verify each received message based on its relevance 

rank. Besides, the Message Receiver needs to route the received piggybacked notification 

to RAMV, and the Message Transmitter needs to send out the notifications generated by 

RAMV in a piggybacked manner. The concerned applications should be able to accept 

the indirect message verification results which are learned by RAMV from the 

neighboring nodes directly verifying such messages.  

 
Figure 7.2 One feasible implementation framework of RAMV 
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7.1.3 JPRA 

Chapter 4 introduces JPRA [146], a joint privacy and reputation assurance scheme to 

reconcile the inherent conflicting requirements of privacy protection and reputation

management. JPRA adopts a localized reputation management model to support efficient 

reputation management in face of frequent network topology changes incurred by node 

mobility and pseudonym changes. Besides, novel algorithms are proposed to prevent 

reputation update and reputation manifestation from helping the adversary trace the 

pseudonym changes of each node. Thus, JPRA efficiently and synergistically supports

both privacy protection and reputation management in VANETs, so JPRA is critical to 

the future implementation of VANETs. 

The implementation of JPRA involves modifications to both the privacy protection and 

the reputation management schemes, as shown in Figure 7.3. While implementing JPRA, 

the specific privacy protection scheme, reputation aggregation algorithm, and behavior 

monitoring algorithm are the given conditions.     

Specifically, the privacy protection scheme needs to notify JPRA of its pseudonym 

change in advance to give JPRA sufficient time to update the reputation label of the 

concerned node. Chapter 4 already estimates the time required for the update of 

reputation label in JPRA. Besides, the privacy protection scheme needs to consider the 

reputation label as a component in the pseudonym. If one node has a unique reputation 

label among its neighbors, the privacy protection scheme should refrain from any 

pseudonym change, since a pseudonym change would be futile. On the other hand, given 

a specific node behavior monitoring algorithm and a reputation aggregation algorithm, 

JPRA accomplishes the necessary functions of reputation management. 
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Figure 7.3 One feasible implementation framework of JPRA 
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7.1.4 STCP2 

Chapter 5 identifies and thoroughly investigates the privacy protection issues imposed 

by short-time certificates to VAENTs. STCP2 [147] optimizes RSU deployment in terms 

of privacy protection and security provisioning given a deployment cost, properly 

handling the power abuse of RSUs and VANET Authority. With the RSUs deployed, 

secure and privacy-preserving pseudonym update procedures are designed for each node 

to update its certificate and change its pseudonyms at each RSU. Thus, running by an 

RSU, each node will enhance its location privacy with confidential pseudonym changes 

against all possible adversaries. Due to the application potentials of short-time certificates, 

STCP2 is essential to privacy protection in VANETs.  

If short-time certificates are to be adopted in VANETs, the RSUs need to be deployed 

following the progressive RSU deployment algorithm in STCP2, so that a minimal 

privacy assurance will be provided to the vehicular nodes in face of the power abuse of 

VANET authorities and RSUs. Besides, the secure pseudonym update procedures need to 

be implemented in each vehicular node and each RSU. With STCP2 implemented in 

VANETs, each RSU can periodically report the average privacy achieved by the passing-

by vehicles. Such information could be used in GPS devices and digital map websites to 

provide privacy-aware travel route recommendations to the real-world users, as discussed 

in Chapter 5. 

7.1.5 Value-added Applications 

Chapter 6 introduces three promising value-added application solutions for VANETs, 

namely VAAD [150], GPAS [148], [149], and VehicleView [151], [152]. 

Table 7.1 
Implementation requirements of VAAD, GPAS and VehicleView 

Entities Requirements 
Vehicular Node To install an APP software for this application 
RSU To install an APP software for this application 
Managing Entity To be operated by a third party 
VANET Authority To support the authorization of new entities and new messages 

incurred by new applications 
Clearance Center To support the financial operations of new applications 
Customer To be able to communicate with the managing entity of each 

value-added application 
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VAAD provides a secure and privacy-preserving solution to ad dissemination in 

VANETs with practical cost and effect control. GPAS is a cost-effective solution for 

supporting location-sensitive surveys in VANETs, including commercial surveys and 

traffic surveys. VehicleView enables the large-scale and long-term collection of vehicular 

sensor data to support various vehicle performance monitoring applications. An 

incentive-centered architecture is proposed in each solution to trade off the conflicting 

requirements of the involved entities. Besides, the critical application-specific security 

and privacy issues are identified and solved with novel algorithms. To our best 

knowledge, our solutions are the first comprehensive ones to these promising applications.     

To implement each solution in VANETs, the involved entities need to be created or 

modified, as summarized in Table 7.1. From Table 7.1, the technical efforts for 

supporting such value-added applications are reasonable, with only software updates for 

vehicular nodes, RSUs, the VANET Authority, and the Clearance Center. The 

corresponding managing entity, VAAD Manager (VM) for VAAD, Survey Center (SC) 

for GPAS, and VehicleView Manager (VM) for VehicleView, can be created and 

operated by either the administrators of VANETs or by the profit-seeking companies. 

Furthermore, these applications require a business-friendly environment which is still to 

be created by the policy-makers and stakeholders of VANETs. Thus, these applications 

can serve as a proper use case for the policy-making processes in VANETs. Hopefully, 

the application potentials of these value-added applications can facilitate the set-up of a 

business-friendly environment for VANETs.  

7.1.6 Supports to Traffic Engineering 

In general, the schemes proposed in this dissertation provide valuable supports to 

traffic engineering and traffic management, which are identified and justified as follows.  

Real-time traffic statistics: With VANETs deployed, the vehicle-oriented surveys as 

supported by GPAS [148] can collect real-time traffic statistics of any given region as the 

valuable inputs to  traffic engineering and traffic management.  

Cost-effective traffic surveys: GPAS [148], [149] can support cost-effective traffic 

surveys about a certain region. The traffic survey results will be very helpful to the 

decision-makings in traffic engineering and traffic management.  
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Traffic information reporting and broadcast: By ensuring reliable and trustworthy 

multi-hop communications, LEAPER [142] provides reliable end-to-end connections 

between the local traffic authority and the nearby vehicles. Thus, LEAPER can be used 

by each vehicle to report important traffic incidents to the local traffic authority. 

Similarly, LEAPER can be used by the local traffic authority to disseminate traffic 

conditions, route recommendations, or weather information to the nearby vehicles.  

Privacy-aware RSU deployment: In STCP2 [147] a privacy-aware RSU deployment 

algorithm is proposed to optimize the deployment of RSUs in VANETs, which can be 

adopted in traffic engineering. Besides, the privacy strength of each RSU can be 

estimated, which can be used to recommend travel routes to the drivers.  

Traffic safety improvement: With RAMV [143], [144], the verification of beacons 

becomes scalable in VANETs, which makes traffic safety applications feasible.  

On the other hand, several of our proposed schemes require precise traffic statistics of 

specific regions, which can only be provided by the traffic engineering staff. For instance, 

JPRA [146] and LEAPER [142] may benefit from the precise traffic statistics, such as 

vehicle’s average speed and average vehicle density, to configure the system parameters. 

Thus, these information requirements can also help the traffic engineering staff improve 

traffic statistics collection. 

7.1.7 A Baseline VANET Model 

Overall, our proposed schemes complement the existing security and privacy schemes 

in literature to form a baseline VANET model as shown in Figure 7.4. This baseline 

VANET model represents the state-of-art of VANET research and development.  

In this model DSRC [8] provides the necessary physical layer and MAC layer 

functionalities for wireless vehicular communications. WAVE [9] provides the necessary 

management and security functionalities. For brevity, in Figure 7.4 only the major 

security and privacy functionalities are depicted. Within WAVE, our security and privacy 

schemes provide the most comprehensive solutions to the corresponding functionalities.  

Specifically, the baseline VANET model supports various traffic safety applications 

with scalable verification of beacons, as enabled by RAMV [143], [144]. With reliable 

and trustworthy multi-hop communications as enabled by LEAPER [142], this baseline 
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VANET model can support various traffic management applications and value-added 

applications such as traffic incident reporting, traffic condition broadcast, internet 

accessing, and so on. JPRA [146] protects the privacy of vehicular nodes when the PKI-

like certificates are adopted in VANETs, while STCP2 [147] protects the privacy of 

vehicular nodes with short-time certificates. Besides, VAAD [150], GPAS [148], [149], 

and VehicleView [151], [152] all add to the set of promising value-added applications.  

With the traffic safety applications satisfyingly supported with RAMV, this model is 

ready to be implemented, since the major motivation of VANETs is to enhance traffic 

safety. Meanwhile, the other applications may demand more support from the 

infrastructure domain of VANETs, which will be investigated in the future work. Thus, 

this baseline VANET model also provides a solid starting point for the future research 

work on VANETs. 
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Figure 7.4 The baseline VANET model completed by our dissertation 

7.2 Future Work 

Using the baseline VANET model as a starting point, we identify several challenging 

research and development topics which are critical to ensure the secure and cost-effective 

implementation of intelligent VANETs. Based on our previous research work, the 

promising future work topics are identified to 1) enable the cost-effective implementation 
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of VANETs (see subsections 7.2.1 and 7.2.2), 2) realize the critical technical assumptions 

in the baseline VANET model (see subsections 7.2.3, 7.2.4, and 7.2.5), and 3) design 

more intelligent and advanced applications based on VANETs (see subsections 7.2.6, 

7.2.7, and 7.2.8). With these topics thoroughly investigated in the future, the 

implementation of a secure, cost-effective and intelligent VANET will naturally follow.  

Next, the motivations and challenges of each topic will be discussed in detail, and 

initial considerations on the possible solutions will also be provided.    

7.2.1 Cost-Benefit Analysis of Security Provisioning 

As discussed in our book chapter [5], any security scheme will incur a certain cost in 

terms of communication overhead, computation overhead, and so on. Thus, a thorough 

cost-benefit analysis of security provisioning is critical to cost-effectively implement 

VANETs. Such a cost-benefit analysis needs to answer several critical questions. What 

are the essential security requirements in any certain application scenario? What is the 

most cost-effective scheme to meet a given security requirement in a given application 

scenario? What is the best security implementation plan for VANETs? 

However, considering the numerous applications and security schemes of VANETs, it 

is challenging to answer these questions. Up to now, no concrete cost-benefit analysis for 

VANET security provisioning has been presented in either industry or academia. The 

security architectures provided by the representative research projects, including 

Connected Vehicle [215], eSecurity Work Group [216], C2C Communication 

Consortium [217] and SeVeCom [20], only include all possible security requirements for 

VANETs without any consideration on these questions.  
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Figure 7.5 Steps for the cost-benefit analysis of security provisioning 
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Indeed, the Mobile Ad Hoc Network (MANET) community also lack a concrete cost-

benefit analysis of security provisioning, though individual efforts on comparing different 

security schemes [218], modeling the possible attacks to intrusion detection systems 

[219], and modeling the cost and benefit of node cooperation [220], do exist. Besides, the 

cost and benefit of any security scheme in VANETs have different emphasis than those in 

MANETs. For instance, in VANETs network bandwidth and communication latency may 

be more relevant, while in MANETs the power consumption and computation overhead 

may be more relevant. Thus, the cost-benefit analysis of security provisioning in 

VANETs is a unique research topic which deserves systematic investigation.  

To investigate this topic, a thorough understanding of the applications, security 

schemes, and their interactions in VANETs is needed. Besides, a methodology to 

categorize or partition the huge problem domain into manageable parts is also needed, 

which may be identified based on the inherent logical relations among the applications, 

security schemes and network components in VANETs. As a starting point, a feasible 

approach consisting of the necessary steps of application categorization, security 

requirement determination, and security schemes comparison, is shown in Figure 7.5.   

Application Categorization and Prioritization: The available (or envisioned) VANET 

applications should be categorized according to their communication requirements, 

application significance, and economic potentials. The representative application 

scenarios, each of which may contain several applications, need to be identified and 

prioritized with different priorities. In Figure 7.5, ASi, i=0, 1, …, indicates different 

application scenarios. Here, we assume that the priority of ASi is higher than or equal to 

ASi+1. In this process, collaboration between industry and academia is necessary to 

identify the applications and their distinguishing properties. The utility theory in 

economics may be a useful tool to evaluate the priority of each representative application 

scenario. 

Security Requirement Determination: Given an application scenario ASi, its relevant 

security requirements should be identified. To this end, a solid adversary model should be 

created for ASi by considering the potential adversaries and their possible attacks. Game 

theory may be applied to model the interactions between the adversaries and the involved 

entities in ASi, as in [219], [221]. The security requirements of ASi could be divided into 
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two subsets: the essential security requirements (ES(ASi)) and the optional security 

requirements (OS(ASi)). ES(ASi) includes the security requirements which are critical to 

ASi and will be probably breached by the possible attacks. OS(ASi) contains the security 

requirements which are either unimportant to ASi or unlikely to be breached due to the 

incurred attacking cost. Here, we use si or sj to indicate each concrete security 

requirement, for instance, message integrity.  

Security Schemes Comparison: For each security requirement si, the available security 

schemes (pk P) should be compared in terms of cost and effect. Here, P is the set of all 

available security schemes in literature, and pk is a concrete security scheme. Generally, 

the cost and benefit of pk rely on the specific application scenario ASi. Thus, a cost matrix 

[ci,k] and a benefit matrix [bi,k] can be derived for each security scheme pk in each 

application scenario ASi. In this process, the utility theory may also be used to combine 

various factors in the cost of pk, including communication overhead and computation 

overhead, into a single metric. Similarly, a single benefit metric can also be created.  

Eventually, based on the cost matrix [ci,k] and the benefit matrix [bi,k], combinatorial 

optimization may be performed to get the optimal security implementation plan in the 

form of IMP = <imp0, imp1, …>. Here, impk indicates whether the security scheme pk 

should be implemented in VANETs or not. During the optimization, the priority of the 

representative application scenarios could be treated as either absolute or relative. If the 

priority is regarded as absolute, IMP should optimize AS0 in terms of cost and effect. 

With that, IMP can go on to optimize AS1, AS2, and so on. If the priority is relative, utility 

theory may also be applied to combine the cost and benefit of all application scenarios 

into a single utility metric, based on which IMP can be selected.  

By performing a thorough cost-benefit analysis, an optimal security implementation 

plan IMP can be created. As a side product, various VANET applications will be 

categorized and prioritized based on practical considerations, which may be helpful to the 

application implementation. Besides, useful guidelines for the system design and security 

policy-making may also be derived. For instance, for each application scenario, the 

essential security requirements and optional security requirements should be 

differentiated in security scheme implementation. A security scheme for an essential 
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security requirement should be implemented and activated all the time. Comparatively, a 

security scheme for an optional security requirement may be implemented, but only 

activated when necessary, in order to be cost-effective.   

In summary, a thorough cost-benefit analysis is meaningful for VANETs and should 

be performed in the future. Specifically, this research topic is relevant to various current 

research activities in the RITA project of Connected Vehicles [215], including the 

Vehicle to Vehicle Communications Systems Engineering direction and the Policy and 

Institutional Issues direction.   

7.2.2 RSU-Assisted Secure and Scalable Communications  

As discussed in Chapter 6 and GPAS [149], the wireless communications nearby each 

RSU could be crowded as shown in Figure 7.6. Within the communication range of one 

RSU, the nodes may periodically broadcast beacons and other application-specific 

messages. Each node may communicate with its neighbors via uni-cast, resulting in V2V 

uni-cast communications. Besides, each vehicle may communicate with the RSU to 

update its certificate, report events, or access the infrastructure, resulting in V2R uni-cast 

communications. In the current WAVE operation model, each vehicular node may be 

equipped with a single-channel radio or a multiple-channel radio [222]. With a single-

channel radio, each node can only transmit and/or receive data on a single RF channel at 

any time. Even with a multiple-channel radio, each node can only transmit data on a 

single RF channel while receiving on at least one RF channel at the same time. Thus, no 

matter how the broadcasted messages and the uni-cast messages are divided into different 

channels, they will contend for the radio resource of the individual nodes. When the 

traffic density and the message exchanges increase, the network nearby the RSU may 

become saturated [223], which makes the RSU a bottleneck in VANETs.  

RSUR

     Broadcast                 V2V Uni-Cast           V2R Uni-Cast
 

Figure 7.6 All possible wireless communications nearby an RSU 
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Thus, it is necessary to make the wireless communications nearby the RSU both secure 

and scalable. To this end, the available control channels (CCH) and service channels 

(SCH) of WAVE should be properly assigned to different messages from different nodes 

and the RSU. The nodes and the RSU should transmit or receive on the correct channel at 

the correct time. Thus, a challenging scheduling problem naturally arises. In this problem, 

the RSU may serve as a centralized scheduler for all the nodes within its communication 

range. Besides, each node has a limited communication time with the RSU due to its 

mobility, which is one important constraint on this problem. To ensure RSU-assisted 

secure and scalable communications, the above scheduling problem may be tackled with 

the following steps.  

Communication Scheduling: With the broadcasted WAVE Service Announcements 

(WSAs) from the vehicular nodes, the RSU may obtain a full picture of the 

communication capability and requirement of each node, in terms of the pending 

messages, the message sizes, the deadline of each message, the destination of each 

message, the transceiver capability, and so on. Together with its own communication 

requirements, the RSU can schedule the communications of itself and the vehicular nodes 

for the next scheduling interval (T). In this process, the RSU needs to maximize the 

overall network throughput or the average throughput of all involved entities. The 

constraints to be considered may include the remaining communication time of each node, 

the communication capability of each node, and the possible interferences among the 

communications. The output will be an optimal radio resource accessing plan satisfying 

all constraints, or an indication of failure to find such a plan. Eventually, the plan can be 

broadcast to all vehicular nodes in the WSA of the RSU, or a dedicated control message 

for this end.  

To formally model this scheduling problem, the above parameters need to be identified 

and the constraints need to be enriched based on the realistic VANET scenarios. Besides, 

the maximal network throughput of the VANETs nearby the RSU needs to be 

theoretically estimated based on the current node density and communication 

requirements of the nodes. If the overall communication requirements exceed the 

maximal network throughput, the RSU will refrain from scheduling the communications 

as discussed above, and try to perform a clustering of its neighbors instead.  
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     Broadcast                 V2V Uni-Cast           V2R Uni-Cast
 

Figure 7.7 The clustering of vehicular nodes around an RSU 

Adaptive Clustering: To further improve network throughput, one promising approach 

may be the clustering of the vehicular nodes as shown in Figure 7.7. As an example, four 

clusters with the shaded vehicles as the cluster heads are shown in Figure 7.7. The nodes 

within each cluster (cluster members) will reduce its transmission power to cover only 

this cluster, and each cluster head keeps its normal transmission range. Broadcasted 

messages of the cluster members will be aggregated at the cluster head, which will 

further broadcast the aggregated messages with its full transmission power to support 

traffic safety applications. Additionally, both V2V and V2R uni-cast communications 

will also be aggregated by the cluster head, which will further route the aggregated 

messages to the RSU or other cluster heads.  

Based on current network conditions, the RSU needs to select the best clustering 

strategy in terms of reduced communication overhead and latency. The possible 

clustering strategies may include 1) forming clusters with a uniform road length, and 2) 

forming clusters with an equal number of nodes. The impacts of these clustering 

strategies need to be theoretically modeled and compared. In this process, existing 

transmission power control schemes [224]-[226] and clustering schemes [227]-[229] may 

provide useful hints.  

Within each cluster, the cluster head needs to forward the broadcast and uni-cast 

messages of each cluster member. The timing of the forwarding actions of the cluster 

head needs to increase the efficiency of message aggregation, while still meeting the 

specific latency requirement of each message. Besides, the communications within each 

cluster still need to be synchronized to reduce the interference among the cluster 

members, which may follow a scheduling approach similar to the RSU-assisted 

scheduling problem, with the cluster head as the scheduler.  
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Eventually, the aggregation and forwarding actions of each cluster head need to be 

monitored by its cluster members. Proper countermeasures must be designed to handle 

the misbehaviors of either the cluster head or cluster members. Besides, data privacy 

needs to be ensured when the cluster head forwards sensitive messages for its members.  

In summary, the RSU-assisted secure and scalable communication is a promising and 

challenging research topic which is meaningful to the implementation of VANETs.   

7.2.3 Finance Infrastructure for VANETs 

In VAAD [150], GPAS [148], [149], and VehicleView [151], [152], the financial 

transactions among the vehicular nodes and the infrastructure of VANETs need to be 

supported. For instance, in any value-added (commercial) applications the service 

consumers (say vehicular nodes) need to pay the service providers. Even in security 

provisioning, the vehicular nodes may need to pay the certificate authority to obtain new 

pseudonyms [127]. Thus, the financial transactions are prevalent in VANETs and should 

be supported with a finance infrastructure.  

So far, the financial transactions in VANETs are supported in an ad-hoc manner. For 

instance, we propose a Clearance Center (CC) to function as a virtual bank for VAAD 

[150], GPAS [148], [149], and VehicleView [151], [152]. Many value-added applications 

simply assume the presence of a perfect finance infrastructure which could support all 

necessary financial transactions. Even the currency is represented in different ways in 

VANETs, including E-cash vouchers in VAAD [150], GPAS [148], [149], and 

VehicleView [151], [152], Nuglet in [82], and credits in [84]. Thus, to consistently and 

securely support the financial transactions in various VANET applications, a financial 

infrastructure will be desirable for VANETs.  
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Figure 7.8 The overview of a finance infrastructure for VANETs 
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We propose a preliminary finance infrastructure for VANETs, as shown in Figure 7.8. 

The Clearance Center (CC) functions as the bank in VANETs, which will issue E-cash 

vouchers and support the clearance (cash-in) of E-cash vouchers. All entities in VANETs, 

including the Authority, the service providers, and vehicular nodes, can get E-cash 

vouchers by depositing a certain amount of money in CC. On the other hand, each entity 

can also get back its money by cashing in its E-cash vouchers. Basically, the financial 

transactions among these entities will be in the form of E-cash voucher exchanges. The 

advantage of an E-cash scheme [214] is that the voucher can be securely verified without 

revealing the identity of the voucher user, which is beneficial to the privacy protection in 

VANETs. In this finance infrastructure, several issues deserve further investigation.  

Adopting an E-cash scheme: It is critical to adopt a proper E-cash scheme to VANETs 

based on the relevant considerations such as the E-cash voucher size, the computation 

overhead of voucher verification, the feasibility of divisible E-cash voucher, and so on. 

With an E-cash scheme adopted, it is necessary to allow each entity to securely deposit, 

store, exchange, and cash in E-cash vouchers, which may lead to many interesting 

questions. For instance, when should one node go to CC to change its E-cash vouchers 

with small amount to a whole E-cash voucher with a larger amount? How can each node 

minimize the division of its E-cash vouchers by scheduling the usage of its E-cash 

vouchers with different amounts? All these questions need to be answered in VANETs.    

Policy making: Necessary policy should be made regarding the owner and operator of 

CC, which will involve the close coordination among traffic management authorities, car 

manufactures and drivers. Besides, a business model needs to be designed to differentiate 

the services to be charged and the free services. For instance, the road condition update 

service should be free to all VANET users to enhance road safety, while the commercial 

services should be provided to the vehicular nodes at a proper price. This business model 

will have a huge impact on the ecosystem of VANETs and should be carefully designed. 

Eventually, a pricing model should be designed to guide each service provider in 

charging its services, to reflect the communication and computation overhead. The 

administrators of VANETs may also adjust the pricing model to steer various 

applications (services) to properly share the network resource in VANETs.  
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Finance analytics: With this finance infrastructure, the financial statistics of each 

entity in VANETs may be analyzed to determine the economic potential of each 

application in VANETs, as well as to guide the design of new applications.  

7.2.4 TPD for VANETs  

In VANETs, a Tamper-Proof Device (TPD) is a critical component to many security 

and privacy schemes. A TPD is a secure hardware module which usually cannot be 

tampered or harmed by the external attacks. Seemingly, a TPD is a feasible approach to 

ensure trustworthy computing in each vehicular node. Thus, the TPD has been adopted in 

each vehicular node to securely store confidential private keys [230], [231], to 

trustworthily calculate the reputation of this node [82], [108], to perform digital signature 

generation and verification [35], [36], [231], or to manage the certificate [90], [91]. 

However, each scheme adopting a TPD usually only assumes a set of desirable functions 

for the TPD as suit itself. Indeed, if all such schemes have their ways, each vehicular 

node will be filled with tens of application-specific TPDs, which is not practical due to 

the cost and design implications incurred by so many TPDs.  

Thus, due to the severe cost and application implications of TPDs, it is meaningful to 

systematically investigate the feasible application of TPDs to VANETs. In this regard, 

the following issues deserve further investigation.  

A standard interface design for a certificate management TPD: As discussed in [35], 

[36], [231], one major motivation of adopting TPDs in vehicular nodes is to securely 

manage the certificates and associated private keys issued by the Authority. As various 

applications and security schemes have different requirements on certificate management, 

it is necessary to design a standard interface for the TPD in charge of certificate 

management in each node. Such an interface should meet the requirements of critical 

VANET applications on certificate management. For instance, it is commonly held that 

TPD should keep the privacy keys and secret keys intact and secret from all parties 

except for the VANET Authority. However, for privacy protection each node needs to 

change its pseudonym from time to time, and a pseudonym usually contains a specific 

certificate. In this case, it is challenging to define the proper level of control one node 

may exert over TPD. For instance, should each node be allowed to determine which 
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pseudonym to be used and when to be used? On one hand, each node may want to change 

its pseudonyms at will so that it can access multiple value-added applications with 

different pseudonyms. On the other hand, to prevent the Sybil attack it may be desirable 

to allow each node to use one pseudonym within a certain time period. Thus, it is critical 

to identify the important requirements of various applications on certificate management

in VANETs, based on which a standard TPD for certificate management can be designed.  

As an example, a preliminary interface design for TPD is given in Figure 7.9. This 

TPD consists of three major interfaces: signature verification, signature generation and 

certificate management. The Signature Verifier module will verify the digital signatures 

of the received packets, and return the verification results to the concerned applications. 

For any out-going data packet generated by this node, the Signature Generator module 

will attach its own timestamp (TSP) and generate a digital signature based on the current 

certificate in use. The novelty of this TPD lies in the Data Classifier module and the 

Certificate Manager module. The Data Classifier module will determine the application 

type of the out-going data packets, for instance, the beacons and other data packets. The 

Certificate Manager module will allow the node to explicitly select which pseudonym to 

be used at any time. However, the Certificate Manager will ensure that the certificate for 

beacons should not be changed with a frequency higher than a preset threshold, which 

can be configured by the VANET Authority to prevent Sybil attacks. In this way, both 

requirements from the general applications and beaconing can be supported by the TPD. 
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Figure 7.9 A preliminary functional interface of TPD in VANETs 
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An extensible TPD design for various applications: Besides certificate management, 

many applications, for instance, reputation management and event data recording, may 

also rely on a TPD to protect the specific algorithms. However, such schemes are 

application-specific and may require the TPD to protect different algorithms in various 

application scenarios. For instance, when a TPD is used to protect the reputation update 

of each node, many reputation update algorithms with different parameters may need to 

be implemented to support the aggregation of the reputation for different applications. 

Thus, for these security schemes relying on application-specific algorithms, multiple 

TPDs may be needed for different scenarios. However, it will not be cost-effective to 

replace the current TPD or to add a new TPD for any new application scenario.  

Thus, it is meaningful to design an extensible TPD which can be cost-effectively 

updated for various application scenarios. On preliminary considerations, one possible 

approach could be to design a set of cryptographic primitives around a given hardware 

TPD to form an overall extensible TPD module. The wrapping cryptographic primitives 

will be implemented in software, which will be continuously audited by the hardware 

TPD to ensure that these primitives are not tampered with. Whenever a new application 

scenario is to be supported, the VANET Authority will instruct the TPD to register the 

authentication code of a new software module or update the authentication code of an 

existing software module.  

The cost-benefit analysis of TPD: The application of a TPD will incur a certain cost to 

the vehicular node. Thus, it is necessary to perform a thorough cost-benefit analysis of 

the existing trust computing technologies [232] and identify the most cost-effective one 

for VANETs. With the cost of TPD determined as such, the newly proposed schemes will 

only make reasonable assumptions regarding the application of TPD to VANETs.  

By investigating the above open issues, the usage of TPD in VANETs will become 

economically feasible. Besides, a set of critical requirements of TPD can be identified by 

the researchers in VANETs, which may serve as valuable inputs to the trust computing 

community for designing new TPD platforms. On the other hand, the VANET 

researchers will be encouraged to make reasonable assumptions of TPD in designing new 

applications and security schemes.  
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7.2.5 Ad Hoc RSU (adRSU) Design 

In both GPAS [148], [149] and VehicleView [151], [152], ad hoc RSUs (adRSUs) are 

proposed as additional access points to such applications. An adRSU is a lightweight 

reprogrammable device which can be temporarily deployed to serve as an RSU. 

Especially in the initial stage of VANET deployment, adRSUs may be a valuable 

addition to the sparsely deployed RSUs to better support VANET applications.  

Thus, it is meaningful to propose a secure and cost-effective design for adRSUs. 

Besides better supporting VANET applications, such a design of adRSUs will provide a 

reference to the design of RSUs. To this end, the following issues need to be addressed.  

Requirement analysis: Besides GPAS and VehicleView, other value-added 

applications and traffic management applications may also benefit from adRSUs. For 

instance, an adRSU can be deployed at a road intersection to collect the real-time traffic 

volume data with V2R communications. Thus, it is necessary to identify the specific 

requirements of such applications, as necessary inputs to the design of adRSUs. 

System design: Due to its nature and targeted applications, the adRSU must be secure, 

extensible and lightweight by design. An exemplary high-level adRSU design is shown in 

Figure 7.10. This adRSU supports two communication technologies, namely DSRC and 

cellular. The adRSU can communicate with vehicular nodes via DSRC, and it can 

communicate with the infrastructure entities via the cellular technology, for instance, 3G 

or 4G. The Communication Adaption Layer (CAL) provides efficient and reliable data 

transfer services to the upper layers by shielding the details of the communication 

technologies. CAL may schedule the data transfer activities of both DSRC and cellular 

interfaces to reduce the power consumption and bandwidth requirements of the adRSU.  
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Figure 7.10 A feasible system design for an ad hoc RSU in VANETs 



169 

 

The System Management Layer (SML) maintains the security policies and security 

credentials of this adRSU. For instance, it may store the authorization from the VANET 

authority, with which to securely communicate with vehicular nodes. SML may 

continuously monitor the state of this adRSU, including its location, supported 

applications and so on, to detect any tampering and intrusion.  

Above all, the Application Layer (AL) supports various value-added applications and 

traffic management applications. AL will be implemented as an open framework where 

applications can be flexibly added, deleted, activated or deactivated in runtime.  

The above preliminary considerations serve as a starting point for the concrete design 

of adRSUs. More factors need to be considered in reality, especially with inputs from the 

requirement analysis. For instance, should solar panel, battery or power line be used to 

power the adRSU? If the power line is available in most road intersections, is it possible 

to use power line communication as the interface between the adRSU and the 

infrastructure of VANETs? All these questions need to be answered in the future.  

Business model: The cost and benefit of adRSUs in VANETs need to be analyzed to 

determine the proper business model of adRSUs. It will be meaningful to determine how 

adRSUs will be deployed and maintained in VANETs, by the individual service 

providers or by the VANET Authority. To answer this question, the cost and benefit of 

adRSUs for each application, as well as the frequency of adRSU usage of each 

application, needs to be estimated.   

The design of adRSUs will be relevant to the car manufacturers (e.g., GM, Ford and 

Chrysler), the network device manufacturers and the government transportation agencies 

(e.g., RITA [19] and NHTSA [233]). Especially, the design of adRSUs may incite and 

help the design of RSUs in VANETs. Thus, the design of adRSU needs to be performed 

with the cooperation from the above parties.  

7.2.6 Data (Information) Management 

In VANETs, each vehicular node is equipped with numerous sensors which can 

generate data about its environment. Besides, numerous applications in VANETs also 

provide each node with bountiful information. Thus, the numerous data (information) 

overwhelming each node call for the proper data (information) management in VANETs. 
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The design goals of data management in VANETs are two-fold: 1) to enable each node to 

timely and precisely present new knowledge of its environment to the drivers, probably 

through data mining, message aggregation, and knowledge representation; 2) to allow 

each node to efficiently and timely disseminate data to help other nodes in 1). Currently, 

research on data management in VANETs is still in its initial stage, as evidenced by the 

numerous call-for-papers posted each year.  

To our best understanding, the data management in each vehicular node consists of a 

context model, a message aggregator, a knowledge presenter and a message disseminator, 

as shown in Figure 7.11. Here, the context model represents the context of this vehicle 

based on the sensor data generated by the on-board sensors and the received messages 

from its neighbors. The message aggregator evaluates the received messages based on the 

current context model, and aggregates them into a consistent input to the context model. 

The knowledge presenter will display the new knowledge to the user (driver or passenger) 

based on the current context of this node and the preferences of the user. The message 

disseminator will generate and send out messages to share knowledge with its neighbors.  

Context Model: The context of a vehicular node may consist of its current driving state, 

its current geographic location, its environment and potentially the intentions of its driver. 

A comprehensive context model is critical for each node to perform context-aware 

actions. For instance, if a node is nearby a highway exit and it decelerates obviously, the 

context model may identify the driver’s intention to take the exit and request the 

knowledge presenter to display the points of interests in the area this exit leads to.  
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Figure 7.11 Critical components of data management in each vehicle 
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RSU

High-level Context                     Data Report 
 

Figure 7.12 RSU-assisted high-level context update 

The context model should consist of several sub-models for various applications and 

knowledge. Each sub-model may rely on data clustering, expert system, Bayesian 

networks or Markov chain to represent the knowledge of different types. The context 

model should also be able to figure out the typical actions (intentions) of the driver with 

pattern recognition techniques.  

Besides, to enable each node to timely learn of the high-level knowledge of its 

neighborhood, an RSU-assisted high-level context update approach may be adopted in 

VANETs. As shown in Figure 7.12, each RSU will collect data reports from the passing-

by nodes and form a high-level context about the concerned region. In areas without any 

RSU, the vehicles in a parking lot or a road intersection may cooperate to work as a hot 

spot for message aggregation [234]. This high-level context may contain the long-term 

statistics about the facilities within this region, which may not be accumulated by the 

passing-by vehicles. The RSU may periodically broadcast the high-level context to the 

nearby nodes, so that each node may complete its own context model with the received 

high-level context information. In this process, the collection of data reports, the format 

of the high-level context, and the dissemination of the high-level context all need to be 

further investigated.  

Knowledge Presenter: The knowledge presenter needs to allow the user to configure 

his/her preference of the knowledge to be displayed. Besides, the information presented 

should not intrude on the user’s attention or actions in driving. To design a proper 

knowledge presenter, the principles of user interface (UI) design may be considered.  

Message Aggregator: The message aggregator may take as inputs not only the 

received messages but also the knowledge from the context model. Thus, a 
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comprehensive model is needed here to evaluate the trust of the received message against 

the context model, based on the message content, the physical model of VANETs, and 

potentially the trust of the data sources. Afterwards, the aggregated message could be 

used to update the context model. To this end, new metrics of knowledge quality and 

reliability may be proposed to guide the update of the context model.   

Message Disseminator: The message disseminator needs to make intelligent and 

context-aware decision on when and what to disseminate. For instance, if one neighbor 

has already disseminated a message regarding an event, this node may not need to 

disseminate its own message regarding the same event to avoid duplicate messages.  

However, it is also critical to ensure the nodes in the zone-of-relevance (ZoR) of the 

concerned event will receive the message. To this end, a context-aware mobility-assisted 

message dissemination algorithm is proposed.  

In this algorithm, the context-aware property lies in the message aggregation and 

separation actions of each node. Suppose one node A receives one message Msg1 

regarding event 1 and one message Msg2 regarding event 2. Further suppose A is in the 

ZoR of both event 1 and event 2. Then, to be efficient, A may aggregate Msg1 and Msg2 

into a single message Msg3 regarding both events. On the other hand, if another node B 

on the boundary of ZoR of event 1 receives Msg3, it may choose to separate Msg2 from 

Msg3 and only disseminate Msg2. Thus, by message aggregation and separation as 

required by the context, this algorithm can ensure efficient message dissemination. 

However, special security measures may be necessary to ensure trustworthy message 

aggregation and separation in this process.  

To ensure that the message (Msg1) will cover the whole ZoR for all the valid duration 

TV of the concerned event, each node with Msg1 may decide when to disseminate Msg1 

based on the actions of its neighbors as well as the node mobility in the ZoR. Suppose 

that the node average speed in the ZoR is v, and node A has a distance d from the 

boundary of the ZoR. Let t indicate the lapsed time since A disseminates Msg1 or 

overhears Msg1 from its neighbors for the last time. Then, A will disseminate Msg1 when 

t v  d. That is, one node may have already approached A from outside the ZoR since 

the last dissemination of Msg1. If all nodes in the ZoR follow this approach, the message 
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dissemination in ZoR will be minimized while still ensuring that all nodes entering the 

ZoR will receive Msg1 in time.  

7.2.7 Interactions with Emerging Technologies 

To further exploit the application potentials of VANETs, it may be helpful to 

investigate VANETs in the context of several emerging technologies, such as cloud 

computing [235] and cyber-physical systems (CPS) [236]. New concepts in such 

technologies could help identify new features and potentials of VANETs, while the 

unique characteristics of VANETs may find their place in these new technologies.  

7.2.7.1 VANETs and Cloud Computing  

It will be rewarding to introduce the concept of cloud computing to VANETs. For 

instance, by implementing the infrastructure of VANETs with clouds, the cost of VANET 

deployment may be greatly reduced. Besides, as discussed in [237], in emergency 

scenarios, a public safety vehicle could use its neighbors in VANETs as its cloud, to 

perform certain computation extensive functions. Interesting research issues will arise in 

the interactions between VANETs and cloud, as discussed below.  

Implementing the VANET infrastructure with a cloud (or clouds): Due to the 

popularity of cloud computing, in the future the infrastructure of VANETs may be 

implemented with a cloud or several clouds, as show in Figure 7.13. In this case, each 

RSU will serve as a gateway to several clouds, which may imply severe constraints on 

the design of the RSUs. Thus, it is meaningful to model and investigate the impact of 

clouds on the RSUs and the vehicular nodes. A novel design will be desirable to shield 

the implementation details of VANET infrastructure from the RSUs and the vehicular 

nodes. On the other hand, the critical security requirements of VANETs will also impact 

the design of the clouds in the VANET infrastructure.  

Besides, to enable each vehicular node to access the services provided by the 

infrastructure clouds, it is necessary to enable each node to discover the nearest (or best) 

gateway and maintain a reliable communication connection with it. To this end, [238] 

proposes a gateway discovery protocol for each vehicular node to find the nearest 

gateway (RSU) in VANET cloud. However, in [238] the mobility of vehicular nodes or 
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the location information of the gateways is not considered. Indeed, a soft hand-over 

mechanism, similar to that in cellular communications, between two gateways may be 

proposed based on the mobility of each node as shown in Figure 7.13, so that each node 

may maintain an unbroken connection with the cloud. In this process, the potential 

network partitions in VANETs should be considered, and reliable multi-hop 

communications must be supported.  

Implementing make-shift clouds with vehicular nodes: In emergency scenarios, the 

access to the VANET infrastructure may be lost. In this case, a public safety vehicle may 

benefit from a make-shift cloud formed by its nearby nodes. Similarly, in a parking lot 

the vehicular nodes may form a make-shift cloud by sparing their computation 

capabilities, which may be exploited by the vehicle in demand of high computation 

capabilities. Thus, in VANETs it is both necessary and feasible to allow the nearby nodes 

to form clouds providing valuable services. To this end, it is critical to identify the 

services or tasks which can be divided into smaller subtasks for each individual node. 

The security and trust issues must be resolved to ensure that each node will honestly 

perform its subtasks. Besides, the geographic boundary of such a cloud must be properly 

determined, in order to minimize the impact of the node mobility on the overall 

performance of the cloud. Eventually, a pricing and payment algorithm is necessary to 

reward the vehicles participating in the cloud according to their share of computation.  
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Figure 7.13 VANET infrastructure with clouds 
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7.2.7.2 VANETs and Cyber-Physical Systems 

According to one program solicitation of the National Science Foundation (NSF), the 

term cyber-physical systems (CPS) [236] “refers to the tight conjoining of and 

coordination between computational and physical resources”. Thus, with the close 

relation among the physical environment, the on-board sensors, the on-board computation 

unit, and the human driver, VANETs are a typical cyber-physical system. Thus, it will be 

beneficial to both the VANET research and the CPS research by investigating VANETs 

in the perspective of CPS. Specifically, the following directions may be followed.  

To model and evaluate the coupling of computational and physical resources in 

VANETs: In VANETs, computational resources available to each node, such as network 

bandwidth and services, depend on the physical environment of this node. Specifically, 

network bandwidth available to one node depends on node density and node mobility of 

its neighborhood, as well as the network bandwidth requirements of its neighbors. The 

availability of services, especially the location-based services, obviously depends on the 

geographic location of this node, and the node density of its neighborhood. By modeling 

and evaluating the close coupling of the computational and physical resources, better 

estimation of one resource may be performed indirectly by estimating another type of 

resource which is easier to be estimated. In this way, adaptive service provisioning may 

become feasible based on the current available network resources or physical resources.   

To consider the human factor in VANET research: So far, the focus of VANET 

research is usually on the computation part of vehicular nodes, and the human factor is 

usually omitted. However, the human driver (passenger) is the central entity in any 

decision-making or monitoring directly related to the physical world. Currently, 

researchers begin to investigate data fusion [236] and service scheduling [239] with 

considerations on the human factor. Besides, a specification logic for vehicular cyber-

physical systems is also proposed in [240]. More serious research efforts should be put 

into this direction. For instance, Human-Machine Interface (HMI) design for on-board 

units should ensure effective information display to the human drivers (passengers), 

without causing distractions. Another potential research thrust may be to evaluate the 

feasibility of VANET applications based on their demands on human interactions.    
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To model and evaluate the impacts of VANETs on traffic safety and traffic 

management: So far, numerous traffic safety applications and traffic management 

applications have been proposed for VANETs. It will be meaningful to investigate the 

impacts of the cyber world on the physical world in VANETs, for instance, the impacts 

of security provisioning on traffic safety. In this process, the human decision making 

process needs to be modeled, in order to estimate the human reactions to various events 

reported by the on-board units. New theoretical tools and simulation tools may need to be 

designed to this end, which will serve to evaluate the effects of the proposed VANET 

applications and guide the future application implementation.  

7.2.8 Applying VANETs to Traffic Engineering  

As discussed throughout this dissertation, V2V and V2R communications in VANETs 

provide a cost-effective approach to collect real-time traffic data and to disseminate 

traffic control commands. Thus, it is meaningful to upgrade existing traffic engineering 

applications or design new ones based on VANETs. Specifically, the following traffic 

engineering applications may benefit from VANETs.  

Traffic-adaptive green waves: In traffic engineering, a green wave refers to the 

coordinated control of consequential traffic lights in such a way that any vehicle with a 

normal speed will always run into green lights. Traditionally, the green waves are formed 

based on the traffic statistics accumulated over a long period, say 1 hour, so the green 

waves cannot adapt to the real-time traffic conditions in a timely manner. With VANETs, 

real-time traffic volumes and speeds in each direction of each road intersection can be 

obtained, which can be used to construct traffic-adaptive green waves in the 

neighborhood. Not only the green waves can be reconfigured with a higher frequency 

according to the traffic conditions, but also a green wave can be configured over a more 

complicated route than a long road segment, as shown in Figure 7.14.  

In this process, the emerging dominant traffic flows within the neighborhood needs to 

be identified based on the real-time data statistics, which need to be collected with 

reliable V2V and V2R communications. Besides, various green waves need to be 

coordinated to achieve the best over-all traffic throughput in the concerned region. To 

tackle these issues, expertise from both VANETs and traffic engineering are needed.  
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Green waves

 
Figure 7.14 Exemplary green waves in a region 

Localized traffic light control based on VANETs: As discussed in [13], [14], the 

localized traffic light control based on the traffic condition of each road intersection alone 

may be as effective as the traffic control based on global traffic information. With 

VANETs, it will be easy to implement the localized traffic light control algorithms based 

on the traffic conditions collected via V2R communications. The realistic performance of 

[13], [14] can be evaluated and compared to the traditional traffic control algorithms. 

Depending on the outcome of the realistic experiments, a totally new traffic control 

strategy may become applicable in traffic engineering. In general, this issue can be 

considered together with the research issues discussed in subsection 7.2.7.2.   

Privacy and security-aware travel route selection: As discussed in Chapter 5, the 

presence of an RSU indicates an opportunity for any vehicular node to further enhance its 

privacy and security. Thus, with the deployed RSUs in a region, it is meaningful to 

enable each node to select its travel route based on not only the traditional metrics, for 

instance travel time and travel distance, but also the privacy and security strength 

provided by each alternative route. To this end, the security and privacy strength of each 

RSU should be quantitatively measured. An approach to equivalently compare the 

security and privacy strength to the traditional travel metrics should also be designed. In 

the end, an efficient algorithm is needed to select the best travel route out of numerous 

alternative ones. On the other hand, the study on privacy and security-aware route 

selection may provide useful guidelines on the deployment of RSUs in VANETs. For 

instance, if the RSUs can be deployed on the road intersections crossed by the most 

frequented travel routes in this region, the privacy and security strength of each travel 

route will be more likely to correspond to the traditional travel costs.  
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Figure 7.15 The interaction probabilities among road segments 

Real-time traffic information dissemination: The real-time traffic information about 

one region needs to be timely disseminated to the vehicular nodes in this region, so that 

such nodes may make mobility decisions accordingly. However, it will be both redundant 

and unnecessary to disseminate the traffic information about any road segment to all the 

nodes within this region. As shown in Figure 7.15, the nodes in road segment A will be 

more interested in the traffic conditions of the road segments directly adjacent to A, 

namely, B, C, D, E, F and G. Comparatively, these nodes may only be interested in the 

less detailed traffic information on the road segment H, which is farther away from A.    

To capture the different relations among different road segments, we could define an 

interaction probability p for any two road segments X and Y. This probability p will 

indicate the probability that one vehicle on X will go to Y following the shortest path, 

which indirectly indicates the impact of the traffic information of Y on the nodes on X. 

For simplicity, in Figure 7.15 a uniform p1 indicates the interaction probability between 

two directly adjacent road segments, and a uniform p2 indicates the interaction 

probability between two road segments which are connected by another road segment.  

Once properly modeled and estimated, the interaction probability can be used to realize 

efficient traffic information dissemination and encoding in VANETs. Specifically, if the 

traffic information of each road segment will be independently disseminated, the 

dissemination probability of the traffic information can be reduced as the interaction 

probabilities decreases, forming a message gradient similar to that in VAAD [150]. In the 

case that the overall traffic information of all road segments will be encoded together and 

disseminated by the RSUs in this region, each RSU may encode the information 

differently based on its location regarding the road segments in this region. Following 

this line, more interesting results may be derived.    
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7.3 High-level Conclusions 

As previously discussed, the application potential to improve traffic safety alone is 

more than enough to justify the cost incurred by the research, development and 

deployment of VANETs [208]. Thus, both traffic management applications and value-

added applications can be regarded as free-riders of VANETs. Such applications can be 

more cost-effectively supported by VANETs with V2V and V2R communications. Thus, 

VANETs show great application and economic potentials.  

This dissertation aims to fill the gap between the theoretic research and the practical 

implementation of VANETs, pushing VANETs nearer to the stage of massive 

deployment. Important security and privacy issues, each of which has great impacts on 

VANET applications, are identified and thoroughly addressed with novel schemes. 

Additionally, the value-added applications proposed for VANETs further enhance the 

application potentials of VANETs, making the future massive deployment of VANETs 

even more appealing. Thus, this dissertation makes the future implementation of 

VANETs feasible by supporting a baseline VANET model as discussed in section 7.1.7.  

Besides, this dissertation also serves as a solid foundation for the future research and 

development of VANETs. The important open research and development topics 

discussed in section 7.2 indicate the promising research thrusts for VANETs. The initial 

considerations on these open issues will incite more novel and concrete solutions in the 

future research and development efforts.   
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