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Abstract

Intelligent and networked vehicles cooperate to create a mobile Cloud through vehicu-

lar Fog computing (VFC). Such clouds rely heavily on the underlying vehicular net-

works, so estimating communication resilience allows to address the problems caused

by intermittent vehicle connectivity for data transfers. Individually estimating the

communication stability of vehicles, nevertheless, undergoes incorrect predictions due

to their particular mobility patterns. Therefore, we provide a region-oriented fog man-

agement model based on the connectivity through vehicular heterogeneous network

environment via V2X and C-V2X. A fog management strategy dynamically monitors

nearby vehicles to determine distinct regions in urban centres. The model enables a

software-defined vehicular network (SDVN) controller to coordinate data flows. The

vehicular connectivity described by our model assesses the potential for vehicle com-

munication and conducts dynamic vehicle clustering. From the stochasticity of the

environment, our model is based on Markov Decision Process (MDP), tracking the

status of vehicle clusters and their potential for provisioning services. The model for

vehicular clustering is supported by 5G and DSRC heterogeneous networks. Simu-

lated analyses have shown the capability of our proposed model to estimate cluster

reliability in real-time urban scenarios and support effective vehicular fog manage-

ment.
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Chapter 1

Introduction

Steep technological advancements have promoted the development of intelligent and

connected vehicles. Vehicles thus have the potential to support and access smart

services and applications through data exchanges and content sharing. Vehicular

communication networks tend to have different types of data for multi-objective ana-

lysis and analyzing the information dissemination between automotive nodes [26].

Therefore, enhancing or guaranteeing minimum connectivity of vehicles impacts the

performance and reliability in the delivery of such services. Consequently, proper

modeling of vehicular communication connectivity enables us to understand issues

and design approaches to cope with the high mobility of vehicles in urban centres.

Vehicular Ad-Hoc Networks VANETS is one field of Internet of Things IoT that

uses agreed communication protocols and data exchange standards to realize in-

vehicle communications. A huge vehicular interactive network is composed of inform-

ation such as vehicle position, speed, and route. To be precise, after the core logic

that decentralization from mobile ad-hoc networks MANETs was made, VANETS is

a more accurate description of the connections between vehicles. VANETS uses its

ability to transmit data between vehicles to form the paradigm of intelligent trans-

portation systems ITS [36]. The system has made outstanding contributions to in-

telligent road management, vehicle information transmission, road hazard warning,

road rescue, and passenger or driver entertainment. For instance, video streaming

over VANETs is summarized with a particular focus on integrating video communic-

ation, caching, and computing [41]. The internet of vehicles is not only a network

that connects vehicles, Vehicle to Vehicle V2V but also includes Vehicle to Pedes-

trian (V2P), Vehicle to Road V2R, Vehicle to Infrastructure V2I, Vehicle to Network

(V2N), and Vehicle to Cloud V2C. With the continuous upgrading of the concept

of vehicle link, it was finally named Vehicle to Everything V2X. It brings people’s

1
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prospects to an appealing vision of transportation network and inter-connectivity of

everything on the road.

V2X technology’s rapid development provides robust wireless communication cap-

abilities, contributing to the ITS. The technology of the V2X concept takes advantage

of the synergy between the different technologies. The V2X technology considers the

mutual interactive communication of pedestrians, vehicles, and road infrastructure

and implements the cooperation between the three. The realization of seamless and

stable V2X communication is considered an important direction of internet of vehicles

technology. Many communication technologies can help V2X communication, such

as 5G NR, LTE, and DSRC [15, 5]. However, ensuring low latency, fast connection,

secure communication, and high coverage at the same time has become a challenge for

V2X communication. In addition, the limitation of the number of vehicles connected

has become one of the disadvantages of V2X communication.

The high mobility of nodes in VANETs results in variable network topology. The

mechanism brings many technical challenges to constructing the vehicle network com-

munication environment in VANETs [29]. Since the vehicle nodes need to move while

maintaining the connection, the network communication link is frequently handover

on vehicular nodes that re-connect to other devices or even interrupted. Therefore,

a low-stability network environment increases the probability of data packet loss and

the increase of data transmission delay. The improvement of mobility management

technology helps to provide seamless and lossless technical support during node con-

nection to promote the stability and low latency of network connection [21]. In the

heterogeneous wireless access scenario, seamless handover decisions are required to en-

sure QoS of communications and maintain continuous connectivity between vehicles.

The use of standardized protocols to develop in-vehicle technology is the result

of an in-vehicle network standardization initiative. Examples of such vehicle network

standards are DSRC and WAVE. The primary purpose of these agreements includes

the presentation of communication architecture, frequency sharing, application man-

agement, security algorithms, and messaging [16].

In recent times, a new switching mechanism based on the Multi-Path Transmission

Control Protocol (MPTCP) has been studied. The advantage of this mechanism is

that it does not change the original roadside infrastructure but only needs to configure

multiple network interfaces and IP paths for the vehicle. Multi-link switching signi-

ficantly improves network performance, promoting reliable network connection [20].

Many studies related to MPTCP have been applied to emerging networks, such as

VANETs, future long-term evolution (LTE) networks, and 5G networks.
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To promote responsiveness and connectivity for the network, network management

using SD-WAN concepts to satisfy delay requirements and traffic load of switches

was provided [27]. Although SD-WAN is a new entity on the network interface,

it has proven to be practical for cloud-based applications with upgraded business

connectivity through traffic prioritization, network agility with increased provisioning

time, higher quality data transfer, and the value of application performance.

The Hybrid Software Defined Network approach uses traditional networking and

software-defined networking SDN protocols and operates in the same environment.

DSRC or 5G communication environment in a real city environment simulation down-

grades it to data plane-only open flow to make data monitoring easier and faster. This

hybrid technology can remove the burden of the central controller by offloading the

area routing tasks from the main controller to the local controller or vehicle node

[23]. Compared with centralized SDVN, hybrid SDVN is more flexible and has less

overhead.

1.1 Thesis Statement

Fog management systems rely on internal and external region connectivity for mod-

eling the vehicular networks via vehicle nodes in the differently defined regions [4].

To ensure that the nodes in the area can connect to the Internet, the vehicles in

the regional center are defined as connecting directly with the RSU or 5G base sta-

tion. Nearby the center node, core nodes are defined to connect either the header

node and RSU simultaneously because of the reliability of the improving nodes by

the redundancy. However, the high mobility of vehicles in a heterogeneous network

environment creates data classification and computation stress on the service center,

which causes low reliability and high latency of network communication. Most models

in the vehicular network paradigm rely on individual vehicle nodes communicating

with a central controller. It provides challenges of biased behavior based on historical

data delays. Besides, the heterogeneous network environment poses challenges for

resource sharing or software application construction. For this reason, we proposed a

novel dynamic vehicle region classification model and an SDVN regional connectivity

model between the network layer and the software application layer, which is based

on the region’s connectivity status assessment for completing the required service.
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1.2 Motivation

Previous work [32] used the connectivity state to model the uncertainty of vehicle

movement. This Markov Decision Process MDP based modeling mapping on a single

vehicle caused a problem: if the vehicle switches between urban and rural scenarios,

the model relies on historical data and loses accurate evaluation. Therefore, this

work aims to propose and explore a fog model of non-relay on history data for SDVN.

This model assesses vehicular connectivity within the area, seeking available vehicle

or vehicle cluster resources to satisfy service requests. Authorized services can access

cluster data without adapting to the model’s complex underlying network protocol

constraints. This work provides dynamic vehicular cluster modeling and evaluates

and uses Fog Supervision Model to validate clustering resources to avoid existing

inaccurate situations.

1.3 Objectives

This work aims to define a model that provides accurate regional connectivity sta-

bility for SDVN based on the regional connectivity status. The model is expected

to provide regular connectivity-based communication within a region and allows in-

side and out-side clustering communications. This hybrid mobility-based clustering

and connectivity-based fog modeling are supposed to locate and evaluate resources

more reliably. This work pushes the cluster resource limitations of available data. It

validates and manages the accuracy of the resources within the area through the fog

supervision model, which furnishes the connectivity model relying on cross-regional

sites.

1.4 Contribution

A novel dynamic clustering model uses vehicle connectivity for region partitioning and

ranking. The connectivity includes vehicle density, signal strength, and vehicle mo-

bility assessments. A k-means clustering algorithm combined vehicular connectivity

to merge or split clusters over time. The fog management model uses MDP to verify

and measure node connection status in each cluster and performs service matching.

The model defines a vehicular fog according to a connectivity status that collect-

ively depends on its nodes. Based on the likelihood that statuses may change, a

value-iteration search supports estimating connectivity conditions for an entire Fog.



CHAPTER 1. INTRODUCTION 5

The estimate serves as a tool for directing the decision-making in SDVNs and the

management of vehicular fog.

1.5 Structure Overview

The remaining structure of this thesis is as follows. Section 2 and Section 3 describe

the management of VCC, VFC, and the architecture between SDVN and DSRC or 5G

towers. Section 4 outlines the problem addressed by this work. Section 5 describes

the connectivity-based dynamic clustering model. Section 6 presents the fog man-

agement model using MDP for regional connectivity verification. Section 7 describes

the experimental configuration, measurements, and evaluations, then discusses the

obtained results. Finally, Section 8 summarizes the overall work and gives directions

for future work.



Chapter 2

Background

With the rapid development of the social economy and technology, the number and

quality of vehicles are gradually increasing. Therefore, people save more time on

transportation, and efficient commuting and comfortable vehicles bring people well-

being. However, the increase in the total number of vehicles worldwide has brought

problems such as traffic congestion, traffic accident rescue, traffic management, and

environmental pollution. Intelligent transportation systems (ITS) were born under

this background to enhance control and solve the above issues. Its outstanding feature

is based on the collection, processing, release, exchange, analysis, and utilization of

information to provide diversified services for traffic participants.

Technological innovation and advancement, such as data communication techno-

logy, electronic sensor technology, cloud computing, and the Internet of Things, were

gradually integrated into intelligent transportation. Furthermore, electronic sensing

technology, satellite navigation, and positioning technology improved transportation

efficiency, safety, and energy efficiency. Many data models promote the transport-

ation system. To sum up, the modern intelligent transportation system considers

people, cars, and roads together.

2.1 Vehicular Cloud Computing

Vehicular cloud computing (VCC) is a new technology that combines traditional cloud

computing and VANETs. It has made outstanding contributions to urban traffic

management, vehicular safety warning, vehicle information interaction, autonomous

driving, and entertainment, so it has become the mainstream research direction [28].

Despite the many advantages of VCC, its technical challenges also bring many limita-

tions such as security and privacy, intermittent connections, network delay challenges

6



CHAPTER 2. BACKGROUND 7

under high vehicle mobility, frequent handovers, urban environment obstruction to

signals, and vehicle data acquisition delays.

One of the main challenges facing VCC is security and privacy issues at present.

Due to different vehicle owners, transferring information about your vehicle between

unfamiliar and untrustworthy vehicles may lead to unpredictable information leakage

or receiving unreliable information [31]. It makes offensive and defensive assumptions

about security and privacy in VCC. It defines the attacker’s attack intent and uses a

proposal called VCC-A for vehicle cloud computing layered security protocol defense

to provide defense countermeasures at different network levels.

The scenario of high mobility of vehicles causes the discontinuity of the connection

of vehicles in the VCC. These features have caused significant challenges to transmit-

ting and disseminating information in V2V, V2I, and V2X. The vehicle receives and

disseminates information through the wireless on-board unit (OBU) and conducts a

broader range of interaction and dissemination through the roadside unit (RSU). In

other words, frequent interruptions and re-connections must also be considered in

the continuous information connection and interaction between vehicles, pedestrians,

roadside units, and the central network. Furthermore, adding the concepts of multi-

hop connection and road quality prediction to the connection mode results in more

complex connection requirements. That uses a model to predict urban traffic and

proposes a multi-hop connection strategy based on the MDP model. This strategy

effectively improves the quality selections of connections and effectively reduces the

number of handovers [32]. The model can determine the best candidate vehicle. The

result has passed the simulation evaluation model, and the result gives a ranking to

indicate the connectivity condition of the vehicle.

2.2 Vehicular Fog Computing

Vehicle Fog Computing (VFC), as an extension of fog computing, combines fog com-

puting with traditional vehicular networks to provide vehicle users with fast commu-

nication services with low latency [40]. In the operation of the internet of vehicles,

devices generate a large amount of data. Processing the data between these mo-

bile nodes makes communication and interconnection possible. Still, the explosion

caused by disseminating a large number of heterogeneous data becomes a challenge

for vehicle interconnection. Although cloud computing provides an effective way to

control and broadcast this data, with the increasing demand for real-time and low-

latency tolerant systems, vehicular cloud computing still cannot provide an effective



CHAPTER 2. BACKGROUND 8

solution. Therefore, a paradigm of vehicular fog computing is proposed to improve

computing speed and storage space by offloading computation to vehicle nodes. Com-

pared with traditional networks or vehicular networks managed by cloud computing,

VFC offers huge benefits in application requirements such as latency-sensitive, het-

erogeneous data and real-time management. [33] provides a fog computing resource

allocation based on reinforcement learning and heuristic algorithms. The algorithm

collects vehicle movement and parking status information from urban environments

and minimizes service delays in the problem of allocating limited VFC resources to

vehicles [1]. Lower latency and higher resiliency data collection scheme is proposed

in a network programmable, self-configuring VFC. The SDN-based vehicle fog com-

puting data collection solution is optimized for low latency and data loss processing.

Fog nodes are located at the edge of the network, close to vehicles, and fog com-

puting improves the accuracy and efficiency of traffic road monitoring. Much work

revolves around resource allocation or the advantage of low latency in VFC [40, 42].

The excellent processing performance of VFC in a large number of device access

paradigms. We use VFC to perform traffic monitoring and vehicular connectivity

assessment in specific areas to evaluate and analyze the fog regions’ connectivity in a

more macroscopic view, calculate the connectivity changes from different regions, and

predict the connectivity performance in future areas. A novel connectivity benchmark

may contribute to regional data management in future work.

2.3 Multi-Interface

Various connection modes continuously update and provide support for the in-vehicle

network connection. Technologies such as 5G, DSRC, and cellular communication

have made continuous efforts to design and standardize in-vehicle networks. Through

research, we found that DSRC is a more mature strategy applied in vehicle intercon-

nection and vehicle-to-RSU interconnection scenarios. 5G cellular tower demonstrates

the potential advantages of low latency and high signal strength to provide compet-

itive automotive functions and services in 2020. We have considered either a 5G

connection or a DSRC connection scheme in the scenario setting. Vehicle nodes are

given multi-interface network connection adapters to deal with heterogeneous urban

network scenarios. In a simulated system, a controller manages the network request

information the vehicle receives. DSRC is the primary network for vehicle networking

and interconnection to collect and analyze interaction data. 5G’s more comprehensive

range of connectivity and more substantial signal propagation advantages are used as
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additional network interfaces for vehicle data transmission. The management system

extracts the advantages of the two. It implements a more reliable SDVN layer on the

heterogeneous network environment, which simplifies the application layer’s complex

network protocol configuration requirements.

2.3.1 5G Next Generation NodeB

Shimaa et al. [34] provide a survey of 5G-V2X standardization, architecture, use cases,

network slicing, and edge computing, and discusses the process and standards, as well

as the use case requirements for applying 5G to in-vehicle networks. Based on the

5G C-V2X system architecture, it provides a deficient latency use case solution and

is carried out on usability and reliability. In addition, network slicing is a concept

that manages different end-to-end logical networks as independent networks on shared

physical infrastructure. In terms of use cases, the limitations, design, requirements,

and solutions of 5G-V2X slicing technology are provided.

The low latency and high throughput characteristics of 5G provide a solid platform

for the internet of vehicles, making smart transportation possible [39]. A low-latency

vehicle edge computing model is proposed based on a 5G network. The algorithm uses

a QoS manager and combined agent to model and reduces the delay of end-to-end

task completion.

Frequent handovers occur in 5G application scenarios. An application of seamless

handover should be taken into consideration. Both horizontal handover and vertical

handover change the IP address. However, horizontal handover has not changed

Access Technology, Network Interface, and QoS Parameter. In contrast, vertical

handover changes Access Technology and is changeable in Network Interface and

QoS Parameter.

2.3.2 Dedicated Short Range Communications

Dedicated Short Range Communications (DSRC) technology is an efficient short-

range wireless communication technology, which can realize the identification and

two-way communication of moving targets under high-speed motion in a specific

small area, such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) data and

information are communicated bidirectionally to dynamically connect vehicles and

roads. The DSRC system is mainly composed of three parts: On-Board Unit (OBU),

Road-Side Unit (RSU), and DSRC protocol. The information exchange between

vehicles is realized through the communication between RSU and OBU, and the net-
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work connection processing is realized through 802.11p and RSU backhaul. The use

of standardized protocols to develop in-vehicle technology is the result of a vehicular

network standardization initiative. The fundamental purpose of DSRC agreements

includes the presentation of communication architecture, frequency sharing, applica-

tion management, security algorithms, and messaging [16].

2.4 Software-Defined Vehicular Network

Deploying SDN in the VANET allows for the flexibility to systematically manage

and configure the vehicular network by providing a programmable configuration of

devices and nodes in the vehicle network [19, 2, 6]. During resource management,

SDVN can allocate appropriate resources to meet different test requirements and al-

locate resources intelligently and reasonably to successfully manage vehicle network

security. Considering the characteristics of high mobility and short-term connectivity

in VANET, the shortage of high connection and disconnection frequency of devices

in the vehicular network is solved to a certain extent by the mobility management

of SDN. The SDN controller also provides network management functions. SDVN

can create a custom network based on the network layer to adapt to heterogeneous

network configuration management but cannot directly manage the underlying net-

work. The intercommunication of the entire heterogeneous network under the SDVN

controller helps to provide a unified interface for different requirements.

However, SDVN still faces challenges. In a highly mobile vehicle environment,

changes in network topology lead to unreliable networks, low packet transmission

success rates, and high latency issues that don’t remain easy [8]. Therefore, we use

DSRC technology to meet the reliable propagation and V2V, V2I, and V2R data

packet transmission problems. Fog computing is used to manage the area to reduce

vehicle communication delay.



Chapter 3

Related Works

In the past few decades, cloud computing and automotive performance have improved

by leaps and bounds. Furthermore, the concept of cloud computing has been applied

to the automotive industry, and vehicular companies have formed a consensus to

invest heavily in this technology. Efficient cloud platforms can provide massive high-

performance computing and storage services, and cloud services help the formation

of automotive-grade Internet of Things which is called VANETS.[7, 18]

Several works have observed and modelled connectivity in vehicular communic-

ations. The vehicular clustering connectivity supports vehicle network life, network

management capabilities, efficient resource utilization, and optimal decision.

In order to cope with the high mobility of vehicles, researchers have analyzed

and classified network connectivity at different levels. Nonetheless, the environ-

ment changes and signal propagation lead to uncertainty of vehicle connectivity. A

connectivity-based MDP enabled cloud management systems to identify the ”best”

candidates for high vehicle connectivity from the network layer [32]. Although the

model is decoupled from the mobility of the vehicles, it lacks accuracy in specific

scenarios where a single vehicle drives from a dense road to a sparse road. Due to

the nature of urban centres and communication infrastructure, regions and clusters

can potentially show more steady and predictable connectivity patterns.

The original intention of cloud computing was to deploy applications to the cloud

to solve problems in hardware and software. Professional cloud service providers help

solve these problems. Users pay fees on-demand to obtain stable computing, storage,

and security services, without worrying about software updates, resource expansion,

and other problems.

11
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3.1 Link-stability

In order to ensure the transmission quality of vehicle communication, stable link

connection under high mobility is an important rule in VANETS. Link-Stability-Based

Interest Forwarding (LSIF) [10] has been proposed as a strategy to guide the message

forwarding in content-centric networks CCN based on the neighbouring links around

a vehicle. It does not require either an extra Geographic location system or new data

structures; rather, it relies on the estimation of link duration among vehicles and

interest packet transfers. This strategy does not require beacon messages. Compared

with the naive-best-route strategy, this strategy comprehensively improves rewarded

data packets, interest satisfaction rate and round-trip time.

An efficient content-centric network (CCN) caching strategy [12] has been intro-

duced to efficiently enable data delivery in vehicular networks. This strategy effect-

ively reduces data retrieval latency, improves cache hit rate, and improves vehicle

cache performance. It uses the sustainability of the relative motion between vehicles

to evaluate the length of the vehicle’s stability link. Furthermore, it uses the relative

movement between the vehicle (sender and receiver) to decide whether to buffer data

packets.

3.2 VANETs vs. SDVN

Vehicle Ad Hoc Network (VANET) refers to an open mobile ad hoc network composed

of mutual communication between vehicles, fixed access points, and pedestrians in the

traffic environment. A self-organizing, easy-to-deploy, low-cost, and open-structure

inter-vehicle communication network. However, the implementation of VANET also

has some challenges, such as unbalanced traffic flow and inefficient network utilization

in multi-path topology. Distinctive features of SDN, such as flexibility and program-

mability, can help meet the performance and management requirements of VANETs.

Bringing the scalability of SDN into VANET to improve network efficiency, equip-

ment and radios can also be easily reconfigured in SDN, adding network program-

mability capabilities to the vehicle network through external applications. Therefore,

SDVN provides assistance in different parameter settings and testing in the in-vehicle

network after cooperating with the advantages of VANET and SDN. Since the 5G

vehicle network scenario includes heterogeneous networks such as VANET and LTE,

network management and resource allocation can be completed on the core network

side through SDN. [37] propose an efficient cluster head selection method for SDN in
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5G VANET applications. The stability of the cluster in VANET can be improved by

introducing an SDN controller.

3.3 Dynamic Clustering

Clustering can be considered a fundamental technique for distributed and peer-to-peer

communication problems. Several approaches have used clustering in VANETs, VFC,

and Internet-of-Vehicles (IoV). An efficient hierarchical clustering protocol (EHCP)

was presented to handle multi-hop resource utilization and network lifetime optimiz-

ation [13]. EHCP assumes that the vehicle uses RSU-gateway (RSU-G), to connect

to the Internet. Each vehicle collects information about neighbouring nodes from the

vehicles on the Internet to improve network performance and achieves a maximum

lifetime of CHs superior to previous work.

Clustering algorithms can be applied in IoV to minimize the instability of a group

of vehicles by identifying a fit number of clusters in the region, such as CAVDO [14].

The unique swarming technique of dragonflies using CAVDO and mobility-aware dy-

namic transmission range algorithm (MA-DTR) creates solutions for efficient cluster

head (CH) selection for each node or particle in the search. It enables 5G interfaces

to improve the stability of the cluster effectively.

Nature-inspired metaheuristics can support the optimization of clustering prob-

lems, such as the moth flame clustering algorithm (MFCA-IoV) [30]. In this al-

gorithm, the cluster head manages all inter-cluster or in-cluster communications and

measures network efficiency by the life cycle of the cluster and the total number of

clusters. Overall, the clustering objective of MFCA-IoV targets reduces the depend-

ency on CHs and allows them to perform robust communication in the network.

Ad hoc On-Demand Distance Vector (AODV) clustering algorithm is introduced

as an enhancement for communication for the Internet of Vehicles based on an edge

computing strategy [11]. The approach considers the vehicular velocity in the VANET

connections and aims to improve the network’s overall efficiency in vehicular scen-

arios. Furthermore, a V2R model can deal with intermittent problems by classifying

cluster communication into in-cluster and non-adjacent clusters. The probability of

uncertainty is considered for the communication of adjacent clusters; it combines com-

munication methods, such as between vehicles and roadside units RSU, and among

vehicles to reduce the risk of link disconnection.

In the application scenario of the Internet of Vehicles, the unpredictability of

vehicle movement and vehicle density is a factor. Problems such as high latency, high
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error rate, or no end-to-end connection directly affect the life and efficiency of the

network cluster. The tolerance rate of intermittent connections has become one of

the critical indicators for evaluating the in-vehicle network. [9] provides a scheme to

mitigate the effects of black-hole nodes in delay-tolerant IoV (BiRep), which enables

a certain degree of cooperation between nodes before the message is delivered to the

destination. This decentralized reputation scheme is used to avoid the possibility of

nodes silently discarding messages to improve network interruption tolerance.

Degan et al. use the V2R model to classify the communication in clustering

into in-cluster communication and communication in non-adjacent clusters to deal

with intermittent problems [11]. The probability uncertainty is considered for the

communication of adjacent clusters, and the method of combining V2R and V2V

communication methods is comprehensively considered to reduce the risk of link dis-

connection.

3.4 Summary and Remarks

The previous works contributed to efficiently selecting CHs and maintaining their

stability. Some works used 5G interfaces to promote cluster stability by improving

the vehicle network cluster’s overall connectivity. These approaches, such as MDP,

EHCP, CAVOD, and MFCA-IOV, attempted to enhance the connectivity of vehicles

in perspectives of multi-hop communication, grouping, and SDVN in Table 3.1. We

aim to explore next-generation networking infrastructures and communication re-

dundancies by defining vehicular regions in urban scenarios and thus supporting stable

and predictable connectivity patterns.

Table 3.1: Comparison of the Related Works

Works Conn Multi-hop Regional SDVN Comm Approach

[20] ✓ V2I MPTCP
[23] ✓ V2I,V2V AODV
[1] ✓ ✓ V2I,V2V Stoch
[37] ✓ V2I,V2V CH
[13] ✓ ✓ ✓ V2R,V2V EHCP
[14] ✓ ✓ V2R,V2V CAVDO
[30] ✓ ✓ V2R,V2V MFCA-IoV
[11] ✓ ✓ ✓ V2R,V2V AODV-MEC
[32] ✓ ✓ V2I,V2V,V2X MDP
Proposed ✓ ✓ ✓ ✓ V2X,C-V2X DC,MDP
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We reviewed the stability of IoV communication, vehicle cloud computing, vehicle

fog computing, Software Defined Vehicular Network, heterogeneous network, 5G,

DSRC, dynamic clustering algorithm, and MDP connectivity model. Among them,

important challenges are the simulation and topology of the real urban environment,

frequent handover under high vehicle mobility, bridging communication between SDVN

layer and vehicle and heterogeneous network, multi-hop connection model in a real-

time dynamic vehicle network environment, dealing with data loss problems of inter-

mittent connection, and the limitations of MDP model mapping on vehicles relying

on urban circular historical data.

Table 3.1 summarizes the related works. We can observe that the table classi-

fies the approaches into six standards, which are Connectivity, Multi-hop, Regional,

SDVN, Communication, and Approach algorithms. In the proposed model, we allow

vehicles to communicate with each other with V2X and C-V2X, and manage vehicle

scenarios using a dynamic clustering algorithm and MDP model.



Chapter 4

Problem Statement

Connected vehicles randomly move in an urban centre following the road-segment

topology which determines by the running condition of their mobility. Those vehicles

act as highly mobile intelligent network nodes that can exchange data. These net-

work nodes can provide computing power, data storage capacity, and transit data.

A stochastic model for vehicular network environment can define and assess vehicle

regions in SDVN. Reasonable use of vehicle nodes can form a dynamic Internet of

Vehicles structure. While considering multi-hop communication, the scope of the

vehicle network structure can be significantly improved. 5G and WAVE commu-

nication protocols supply essential support for low latency data access in vehicular

networks.

We assume SDVN supports a dynamic clustering algorithm to form vehicular Fogs

across an urban centre. Vehicles are grouped according to their connectivity into Fogs,

and a Fog controller can monitor and assess these Fogs. Due to focusing on a subset

of the large-scale urban scenario, a Fog controller can supervise vehicles’ mobility in

a microscopic view to define each vehicular and clustering connectivity. Furthermore,

we can evaluate and rank the Fogs based on a connectivity definition, as described in

Equation 4.1, where ci is the ith cluster, Max(·) is the max value from the set, R̄ is

RSSI, D̄ is the estimated distance, T̄ is estimated stay time, and n is the number of

connections.

IC(ci) = (1 +
R̄ci

Max(Rci)
− D̄ci

Max(Dci)
+

T̄ci

Max(Tci)
)× n̄ci (4.1)

Decision-making in SDVN needs classification of Fogs for coordination of data

flows and helping in balancing Fog services.

16
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Estimating and ranking clusters. We provide a connectivity-based cluster-

ing algorithm to form vehicle Fogs for SDVN. Fog controllers must efficiently access

vehicle mobility and road infrastructure data to assess vehicular Fogs in real-time

with high data throughput. Therefore, the most suitable vehicular Fog can provide

reliable computing service to applications or vehicular Cloud computing.

Roughly precise predictions. A previous MDP-based approach [32] used the

connectivity state to model the uncertainty of vehicle mobility and connectivity. How-

ever, the model relies on historical data and loses accurate evaluation because a vehicle

switches between urban and rural regions and likely does not revisit areas throughout

its trajectory. Therefore, there is a need for a stable connectivity-based Fog SDVN

management model considering dynamic regions as individual entities. A roughly

precise prediction requires connectivity assessments within the area, seeking available

vehicle-vehicle cluster resources to satisfy service requests. Service requests do not

need to adapt to the model’s complex underlying network protocol constraints. As

a result, this work explores dynamic vehicular cluster modeling and evaluates and

validates clustering resources using the envisioned MDP-based model.

Fast estimates for real-time decisions. The mobility of nodes leads to incon-

sistent connection statuses, introducing frequent handover issues compromising data

storage and service delivery. The multi-hop communication paradigm adds higher

complexity in determining proper data sharing, data dissemination upon connection

interruptions, and supporting decisions for transportation service delivery. There-

fore, vehicular networks must make time-sensitive estimations for real-time decisions,

providing reliable data services from vehicular Fogs.

These three issues have driven our model design, involving the use of the Fog

controller to rank vehicle groups based on connectivity, then predict the short future

reliability of these groups. Together, SDVN supports us in evaluating the impact of

RSU, 5G tower, and vehicle density in urban scenarios and exploring the reliability

of Fog management models in different heterogeneous network environments. As

depicted in Figure 4.1, we define the problem in the scenario with the assumptions

below:

1. The scenario consists of dense and sparse regions where vehicles move independ-

ently along road segments. Vehicular mobility and position are random while

the management assesses the Fogs.
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Figure 4.1: Hybrid Software Defined Network on City Scenario.

2. SDVN has performed connectivity-based clustering for vehicles, and connectiv-

ity is defined according to four parameters: Distance, RSU coverage time, RSSI,

and connections degree.

3. Individual vehicles can communicate with other vehicles through devices or

network base station routing (V2X and C-V2X). The vehicle thus can obtain

network or computing resources within three hops at most.

4. A value discount indicator increases exponentially with more communication

hops. Future event values thus have less impact on the present.
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4.1 MDP on Short-term Communication Predic-

tion

The current MDP-based connectivity model design presents inaccuracies originating

from the mobility patterns of vehicles. The works have shown that specific mobility

patterns potentially misinform the uncertainty-based estimation process. The model

solely relies on the connectivity history of vehicles, and it might be misled to estimate

short-term communication conditions.

Therefore, the current MDP link model is only limited to the urban Internet of

Vehicles environment due to the delay in obtaining link history information by the

vehicle OBU. Rapid road situation changes cause systematic failures of the MDP

model (historical input parameters mislead the model calculations). For example,

when a vehicle node shuttles between a city and a country, the historical connection

data of the city is used to infer the country connection. In contrast, the historical

connection data of the countryside is used for urban forecasting. The above scenarios

cause the inaccuracy of the short-term communication adjustment of the vehicle link

MDP model due to the misleading input of the parameters of the connection history.

In conclusion, it is challenging to use the MDP model based on historical con-

nection parameters for short-term communication prediction for a single-vehicle node

that shuttles between the city and the country, due to the delay and misleading

reasons of historical conditions.

Based on the scenario and assumptions above, our problem is not the type of

urban scenario. In our scenario, we have urban-rural interaction scenarios, cluster-

ing classification, and clustering rating properties. With these sets of assumptions,

our problem is providing a reliable, connected, and high-quality clustering, which is

proposed by the following solutions.

4.2 Fog Management Policy

In dynamically changing regions, we provide a fog monitor to supervise vehicle clus-

tering. Defining vehicular fog computing can accurately define the connectivity of

different regions in heterogeneous urban network simulations, and predict the future

connectivity of regions. We rely on vehicle mobility for vehicle connectivity assess-

ments and temporally dynamic clustering for tracking. Therefore, our controller

extracts vehicle mobility information in different types of network connections. The

controller allows vehicle nodes to skip complex network protocols for information dis-
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semination. SDVN reduces the storage and computing pressure of the terminal server.

In the relaxed vehicle network connection, the fog management model monitors and

records vehicle mobility, regional vehicle flow, regional connectivity, regional packet

loss rate, and signal latency. Finally, we mapped the MDP model on the defined

regions to perform an evaluation of regional connectivity predictions.

4.2.1 Fog/Region Selection

We consider vehicles defined as nodes and use the classical clustering algorithms K-

means and DB-Scan to cluster the vehicles. However, vehicle node clustering does

not rely solely on the connection distances of nodes, but requires network topology

for roads that take into account the following parameters:

• Estimated next position

• Stay in RSU time

• Received Signal Strength Indication (RSSI)

• Average vertex degree

Each vehicle records its estimated velocity, direction, and position using linear

regression and sends it to the adjacent RSU. The vehicle records its own movement

and uses linear regression to predict its short-term future speed. Since the vehicle

provides sufficient self-data to the RSU. The RSU can calculate whether the vehicle

is heading towards or out of the RSU through trigonometric functions and geometric

formulas. Also, using the least square method to estimate the position of the short-

term future vehicle to deal with the delay when the RSU communicates with the

vehicle. Besides, SUMO does calculate that for your following the topology.

The purpose is to count the time when the vehicles stay in their RSU. The exit

point describes a possible position where the vehicle goes out of an RSU’s commu-

nication range. After computing the vehicles’ mobility, we can find the relatively

accurate exit point in a tolerance range.

We get Received Signal Strength Indication (RSSI) from SUMO to measure the

signal receiving ability and wireless connection performance of vehicle nodes and

express the connection level in milliwatts in dBm. Therefore, we can determine the

connection quality and whether to increase the broadcast transmission strength.

In a cluster, each vehicle’s potential connections are regarded as an edge. The

degree of each vehicle is the maximum number of vehicles it can connect to.
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4.2.2 MDP Mapping

In previous work, mapping MDP models on individual vehicles resulted in an over-

reliance on historical data. Historical data brings a misleading summary when the

vehicle urban region changes. For example, when a vehicle travels between cities and

villages, the vehicle collects historical data of driving in the city and then applies it

to predict and evaluate the connectivity performance of the countryside. In contrast,

the data collected by the vehicle in the countryside is fed into the model to predict

the connectivity of urban driving, causing the MDP model to lose accuracy.

We address this problem by mapping MDP models to dynamic clusters. We first

used a dynamic connectivity-based clustering algorithm to partition vehicle clusters.

The original algorithm applied MDP to each individual vehicle, but now it is applied

to a cluster of vehicles. In this algorithm design, it is defined that each individual

cluster must belong to or connect to a related RSU. In addition, the central vehicle

of each cluster must be able to connect directly to this RSU to ensure efficient service

to vehicles within the cluster. Therefore, the vehicle clusters we define have good

vehicle network connectivity.

In the MDP model, we regard the vehicle cluster as an agent and the real urban

environment as the environment. The vehicle cluster runs in the city and interacts

continuously in the city. During the interaction process, the vehicle cluster selects

actions and executes them. The urban environment responds accordingly, changing

the state of the entire environment and vehicle cluster. The vehicle network environ-

ment also generates corresponding rewards to the vehicle cluster. What the vehicle

cluster has to do is to choose its own actions as much as possible to maximize the

total reward obtained.
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Connectivity-based Dynamic

Clustering for Hybrid SDVN

An SDVN network is a custom network layer built between the application layer and

the network layer [43]. If the vehicle cannot connect to the underlying network using

VANETS or 5G, or if the vehicle cannot connect to the network layer of SDVN, the

vehicular data is not selected to support the application layer.

In VANETs, the vehicle and RSU selflessly and intermittently broadcast their mo-

bility data to the surrounding networks through the WAVE signal. We assume that

the RSU and 5G are directly connected to the SDVN layer, and the vehicle tries to use

V2V, V2R, and V2I to connect to the signal base station. We assume that the vehicle

is configured with a multi-interface network to meet the 5G signal and DSRC signal

access simultaneously. However, in a heterogeneous network environment, the man-

agement and configuration of vehicles at the application layer have to meet complex

network protocols. The SDVN we proposed collects vehicle data in this environment

and feeds it to the application layer and management model. Furthermore, the man-

agement system uses the collected data to analyze vehicle connectivity. It provides

a more adaptive way to improve the traditional clustering algorithms K-means and

DBScan and a novel cluster maintenance algorithm to meet the needs of dynamic

clustering. Ultimately, our goal is to partition real vehicle scenarios based on vehicle

connectivity to obtain excellent low communication latency and potential benefits for

allocated on-demand services.

22
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5.1 Architecture of SDVN

The connection is bidirectional and non-linear, the vehicle or RSU performs data

flooding, and the surrounding vehicles connect after receiving it. The yellow connec-

tion line between the vehicle and the 5G base station is the NR signal, with a broader

connection range and faster data transmission speed than the DSRC red line. Finally,

all the data obtained by the RSUs and 5G base stations are sent to the RSU Con-

troller for analysis and data optimization. Our SDVN controller is allowed to view

all the data in the environment and work on clustering and connectivity analysis.

5.2 Definition of Connectivity

We calculate connectivity for each cluster. Our RSU controller makes a table of vehicle

data by receiving data transmitted from RSUs and 5G base stations. It records the

vehicle’s position, speed, direction, recording time, surrounding neighbour vehicles,

and the number of vehicle information acquisitions. The RSUs controller performs

preliminary optimization and analysis on the above-recorded data and derives four-

parameter indicators from evaluating the connectivity.

• Next distance predicts the position of the vehicle after a short future.

• RSU Stay Time evaluates the time that the vehicle stays in the current RSU.

• RSSI indicator represents the signal strength of the vehicle.

• Connection degree indicates how densely connected the current vehicle is.

The connectivity of each vehicle is comprehensively assessed using these four met-

rics. In cluster-making, the connectivity of vehicle clusters is limited to the con-

nectivity of individual vehicles. For example, a vehicle refusing to connect to vehicles

outside its cluster indicates cluster connection degree. In the ranking and comparison

of cluster connectivity, we add the connectivity impact factor γ to adjust the impact

of cluster connectivity on the definition of high-quality clusters.

5.2.1 Linear regression for distance prediction

Each vehicle is analyzed by linear regression. Vehicles record their estimated velocity

by linear regression and their estimated directions and positions for sending to RSU.

After the vehicle collects the distance between itself and RSU, the vehicle has the
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next X-axis for position B and uses history velocity to get the Y -axis of position B.

We continuously record the measured content data sets according to the simulation

time.

A. We provide the basic Euclidean formula for signal distance calculation to cal-

culate the vehicle-to-vehicle or vehicle-to-RSU distance between current position A

and next position B which coordinates with x1, y1, x2, y2.

Euclidean(A,B) =

√
(x1 − x2)

2 + (y1 − y2)
2 (5.1)

B. We provide a linear model to predict changes in vehicle speed. We use the

sample regression equation ŷi is the estimated value, a is the intercept, and b is the

slope of the sample regression:

ŷi = a+ bxi (5.2)

Therefore, we can get the estimated velocity by the least square method: (v is the

velocity of a vehicle)

V (vehiclei) = a+ b(x+ 1) (5.3)

For the calculation of parameter ”a” and parameter slope ”b” in the formula, we

use the following formula:

b =

∑n
i=1(x− x)(y − y)∑n

i=1(x− x)2
(5.4)

a = y − bx (5.5)

The data sets of x and y are extracted directly from the vehicle’s moving history.

As the vehicle monitors itself for more than 10 seconds, we can use the following

formula to find y and x.

x =
1

n

n∑
i=1

xi (5.6)

y =
1

n

n∑
i=1

yi (5.7)
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C. We calculate the speed of the vehicle using the linear regression formula above.

We do some geometric calculations to get the direction of the vehicle and to know if

the vehicle is heading towards the RSU or away from the RSU. We define the angle

centred on the target. The object’s right side is the starting point, 0 degrees, the

top is 90 degrees, the left is 180 degrees, and the bottom is 270 degrees. Then, we

evaluate the direction of the vehicle based on the vehicle’s driving record and compare

the angle difference between the vehicle’s direction and the RSU to know how the

vehicle is approaching or moving away from the RSU.

D. We derive from the above method getting the direction, speed, and velocity to

estimate the short-term future position of the vehicle by the following formula: (c is

a vehicle), (r is RSU), (△ is the relative deviation angle)

EstimatedDistance(c) = E(c, r)− [(V (c)× (△× π

2
))] (5.8)

5.2.2 Received Signal Strength Indication

Received signal strength indication (RSSI) represents the strength of vehicle signal

transmission. From the receiver, RSSI gets a signal that is always negative. A smaller

value means higher sensitivity. RSSI always gets a signal in the sender to be positive,

and the larger value means higher power. Although we get per vehicle RSSI (dBm)

through software (SUMO), the formula for RSSI is:

RSSI(d) = −n× log10 × (d)− C (5.9)

where d is distance, n is path loss exponent, and c is environment constant.

5.2.3 Estimated Time in Communication Range

Our RSU controller calculates the dwell time of vehicles within the signal coverage.

Relying on the vehicle direction provided by the RSU, the vehicle location, the vehicle

velocity, and the time can be evaluated that the vehicle took to hit the range circum-

ference of the RSU. First, assuming the situation that the vehicle is in an RSU,

we calculate the exit point that the vehicle is going out of this RSU from which pos-

sible position based on parameters of angular deviation and linear regression estimate

speed.

ExitPoint(px) = cx + t×
−→
Dx (5.10)
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ExitPoint(py) = cy + t×
−→
D y (5.11)

Where
−→
D is calculated by

−→
Dx = cx + sin(direct)× distance (5.12)

−→
D y = cy + cos(direct)× distance (5.13)

We calculate point x and point y on the coordinate graph, c is the current position,
−→
D is the velocity distance, and t is the time. Then we compute the shortest path

between two points through the urban road topology provide by SUMO. In another

way, we calculate the air distance between the current location of this vehicle and the

RSU, using this distance to divide the velocity to get the estimated current time of

the vehicle in RSU:

Staytime = Euclidean(cx, cy,
−→
Dx,
−→
D y)/velocity (5.14)

5.2.4 Connection Degree

Connection degree monitors the connectable devices within the communication range

of the specific vehicle. We can know how many neighbour nodes a vehicle has through

this parameter. This parameter is counted by the vehicle or RSU receiving the broad-

cast messages and how many different neighbouring devices are found in each time

segment.

5.3 Multi-interface Adaptive

In order to adapt to different network communication protocols, we add multi-interface

adapters to the network interfaces of all vehicle modules, as depicted in Figure 5.1.

Therefore, the modules allow vehicles to receive both DSRC and NR signals. The

vehicle has two NIC modules in the link layer, where the nic works in DSRC, and the

cellularNic module works in NR. The nic connection is not controlled in the network

and transport layers, and the data is directly transmitted to the application layer.

However, CellularNic conveys the signal to the network layer through the ipv4 net-

work protocol, uses the UDP method in the transport layer, and finally reaches the

application layer.
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Figure 5.1: Multi-interface network layers in each vehicle.

5.4 Clustering

Each vehicle is set as a node in the current environment, represented by a vertex

in the cluster, and the interconnections between the vertexes are regarded as edges.

Therefore, instantaneous ambient-vehicle connections can be expressed using graph

theory with weights. We use the classical clustering algorithms K-means [25] and

DBScan with weighted connectivity to initialize the clustering of vehicles. Then, a

novel clustering dynamic maintenance algorithm is designed to express the mobility of
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vehicles. Finally, we perform a connectivity-based ranking of the partitioned vehicle

regions.

5.4.1 Initialization

A connectivity-based clustering algorithm is applied to the initialization of vehicle

region partitioning. First, we create the same value of k as the number of RSUs as

the starting center point. When any point assignment result changes, we calculate

the distance and connectivity between each cluster center point and surrounding data

nodes and assign the node with the best connectivity to the cluster. Also, for each

cluster, the mean value is calculated based on the connectivity and updated as the

cluster center.

Algorithm 1 is an implementation of the connectivity-based K-means clustering.

Algorithm 1 Connectivity-based K-means

Require: k
Randomly create k points as the starting cluster center:
for vehicleNodes = 1, 2, . . . do

for clusterCenter = 1, 2, . . . do
Calculate the connectivity between cluster center and vehicle node

end for
Assign vehicle nodes to connect to the new best cluster

end for
for cluster = 1, 2, . . . do

Find the mean and update it to cluster center
end for

Algorithm 2 is an implementation of the connectivity-based DBScan clustering.

In the conclusion and analysis section, we compare these two algorithms for cluster

initialization and design a maintenance method suitable for dynamic vehicle con-

nectivity clustering with reference to them. The algorithm provides two clustering

operation algorithms, merge and split, which are discussed here.

5.4.2 Merging

Vehicular network region clustering requires a high-speed dynamic clustering main-

tenance algorithm. Our merge method merges two adjacent and small-size clusters

to improve overall vehicular network connectivity and stability.

Our RSU controller provides the algorithm with the necessary data, such as the

number of observed vehicles and the potential clusters to be merged. The input
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Algorithm 2 Connectivity-based DBScan

Require: D: dataset with n vehicles, eps: radius, MinPts: Domain Density
Threshold
Assign all vehicles are unvisited
Randomly select an unvisited vehicle p
mark p to be visited
if pϵ has at least MinPts vehicles then

Create new Cluster C, p.add(c)
Make N to vehicle cluster in pϵ
for p = 1, 2, . . . in N do

if p is unvisited then
mark p to be visited
if pϵ has at least MinPts vehicles then

add vehicles to N
end if
if p is not a member in any cluster then

add p to C
end if

end if
end for
output C

elsemake p to be noise
end if
Until no vehicles be marked as unvisited
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parameters are: the initialized clusters; Nv represents the total number of vehicles

in the simulated environment; and Pc is the extracted clusters that potentially need

to be merged. The return value of the algorithm is the merged cluster. The data

structure of the cluster is a form of a vector, the inner vector represents a cluster of

vehicles, and the outer vector represents all the clusters in the simulated environment.

If the size of a cluster is less than 5% of the total vehicles, we add that cluster to

potentially merged clusters. Next, we perform distance judgment on all clusters and

potential clusters. If they are close enough, we delete the original merged cluster,

form a new cluster, and add it to the total cluster.

Algorithm 3 Merge

Require: Clusters = initialized cluster. Nv = number of observed vehicles. Pc =
Potential Clusters to be merged.
MergedClusters = vector < vector < vehicles >>
Pc = 5%Nv > ci.size(c ∈ ∀Clusters)
for c← clusters, p← Pc do

if inRange(c,p) then
MergedClusters.erase(∀c)
MergedClusters.erase(∀p)
NewClusterselected ← c
NewClusterselected ← p
MergedClusters.add(NewCluster)

end if
end for

5.4.3 Splitting

Our splitting method splits a large and uneven-dense vehicular cluster to improve

overall vehicular network connectivity and stability. The split method is similar to

the merge algorithm. The important is that we find potentially split clusters and

split that cluster into two new clusters using K-means [3].

5.4.4 Connectivity Ranking

Whenever dynamic maintenance of clusters is done, a method for evaluating the

connectivity within the cluster is provided. The process extracts the vehicle node in

each cluster and its four data defining the connectivity parameters. In the current

situation, the four types of connectivity data are comprehensively ranked to obtain

the performance value of this parameter. Therefore, the connectivity parameter data
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Algorithm 4 Split

Require: Clusters = initialized cluster. Nv = number of observed vehicles. Pc =
Potential Clusters to be merged.
MergedClusters = vector < vector < vehicles >>
Pc = 30%Nv > ci.size(c ∈ ∀Clusters)
for c← clusters, p← Pc do

ps← kmeans(p, 2)
MergedClusters.erase(∀p)
NewClusterselected ← ps
MergedClusters.add(NewCluster)

end for

of each vehicle is encapsulated into a data storage space as parameters distance,

RSSI, time, and Cluster Centrality. Then, we balance the parameters and get the

cluster’s inner connectivity, which is based on vehicles-RSU connectivity. We rank

the cluster connectivity to get the optimal cluster when it comes to an end. Generally,

clusters with higher density exhibit better connectivity. However, a smaller cluster

with vehicles with dense connections and close to the RSU may also be the cluster

with optimal connectivity.

The vehicle cluster ranking method does not provide a specific connectivity value

for comparison when the connectivity of a cluster is based on a comparison with

other clusters. However, the model picks out the relatively best clusters when the

overall connectivity exhibits an unstable, high-latency, discrete distribution. However,

the optimal cluster has robust connectivity when all clusters show high connectivity

performance. Therefore, the worst cluster may exhibit better connectivity at different

timestamps than the best cluster at other time stamps.



Chapter 6

Fog-based MDP Modeling

6.1 Fog Controller

We propose a fog controller that computes and manages an area-based vehicle net-

work. Fogs are a group of vehicles classified by a connectivity-based clustering al-

gorithm. Vehicle fog provides management and computation closer to the source of

the data for the vehicles in the cluster. Our fog controller can report information and

request services to the cloud according to the network performance of vehicles in the

area, in which we define the central node of the fog, which can directly connect to the

cloud. The fog controller provides a cluster reliability assessment to the cloud that

explores long-term and short-term performance changes in vehicle clustering through

changes in the connectivity of internal vehicles. The method contributes to the cloud;

based on the service requests, the cloud decides which fog to fulfill the request.

6.1.1 Region Classification

Each vehicle is set as a vertex in the current environment. The interconnections

between the vertexes are set as edges. Our controller can obtain the vehicle, RSU,

and 5G base station supervision information from SDVN. Moreover, it transfers this

information to the Cloud for dynamic cluster update calculation. In the first run,

the algorithm uses traditional clustering algorithms, such as K-means and DBScan,

with weighted connectivity to initialize the clustering of vehicles. Then, the dynamic

cluster maintenance algorithm updates clusters based on vehicle mobility.

32
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6.1.2 Architecture of Fogs

The architecture is oriented to communications for vehicles, networks, and infrastruc-

ture. The network connection layer is divided into the mobility layer, communication

layer, and service layer. Different layers play corresponding responsibilities and rules

in communication. The mobility layer handles the position of nodes (cars), with

the data collector estimating where vehicles are. The communication layer considers

different interfaces such as V2V, V2I, I2I, and LET or WAVE communication. Its

main responsibility is to provide more data details about the vehicles, such as the

location of the vehicle or whether the communication signal is disturbed. The com-

munication layer considers not only the connectivity of a single node but also the

overall connectivity from one area. Finally, in the service layer, it is responsible for

using what the communication layer defined and estimated and applied to services

and applications in the fog or on the edge. Also, fog management controls the data

transformation by talking with nodes or RSUs. The applications include but are not

limited to road rescue, emergency response, data sharing, and entertainment.

Service Layer. The main responsibility of the service layer is to define the link of

the communication layer and meet the data requirements of the terminal ap-

plication, which means defining enough source clusters to do suitable work that

is both reliable and not wasted. For example, tasks depend on the length of the

service and may be able to provide an implementation of the service or not, some

things can be done, some not with the available node as well as there is net-

work ability. If according to the ability and communication things are unstable,

then the service can not happen and looking for another more suitable cluster.

For fog management to work, fog is composed of nodes and RSUs that deal

with the communication layer. The communication layer cluster these nodes

together. In addition, the system relies on the complexity of the calculation to

consider whether to execute the calculation on the fog or edge cloud or send

the calculation to the central cloud. Besides, this layering process all kinds of

data required by the integrated application and send the demand request to the

corresponding data center to meet the data demand of the terminal application.

Communication Layer. At the communication layer, the interconnection between

vehicles, RSUs, and networks is handled. Based on the region-based connectiv-

ity model, we make it using the MDP-based connectivity model. The vehicles

are connected and finally connected to the special node RSU. Some data is pro-

cessed in this layer, such as data caching and simple calculations. In addition to



CHAPTER 6. FOG-BASED MDP MODELING 34

Service Layer

Communication Layer

MobilityLayer

Figure 6.1: Region Connectivity Modeling System Architecture.

the RSU communication vehicle, the fog server is also directly connected to the

cloud. Some complex calculations such as neural networks, machine learning,

and reinforcement learning algorithms are directly transmitted to the cloud for

processing. At the same time, the data results and information is transmitted to

the central cloud to help the vehicle management system obtain enough useful

data.

Mobility Layer. In the mobile layer, the focus is mainly on vehicle information

which is collected by RSU for further calculations. The main vehicle information

parameters include vehicle position, acceleration, deceleration, signal strength,

and connection time. This information is collected by the onboard-unit OBU

and transmitted to the RSU, such as the fog server. The connection model

considers multi-hop technology, so the concept of V2V and V2I is introduced

to increase the overall dynamic connection range. The specific details are that
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the vehicle OBU receives data, then collects or provides the data, and then

transmits the data to other vehicles or RSUs.

6.2 MDP Model

MDP-based fog models rely on vehicle clustering algorithms, and the system aims

to represent and estimate the clustering performance of remaining or changing. We

have used a clustering model for connectivity-based clustering and represent the un-

certainty of cluster variation based on intra-cluster vehicle movement. Optimistically,

it provides the best possible future case scenario for vehicle clustering. This best case

can define which vehicle clusters are better suited to provide long-term stable and

efficient service demand. It combines macro and micro perspectives to extend the

traditional service matching model that only considers communication capabilities

and delays.

Vehicular networks represent vehicular clusters that include high mobility vehicles.

A connectivity-based MDP fog management system presents a solution to identify

the ”best” cluster for high reliability. The uncertainty of cluster reliability is due to

inner vehicle connectivity changing and signal propagation strength, so using MDP

to model probabilistic uncertainty situation. According to [22], the context of our

problem and work is defined as a finite discrete-time fully observable MDP which is

defined as:

Reliability = (Xi:Transmission status; Ai:Behavioral space; Pai :Transition Prob-

abilities; Rai :Rewards; γi:Policies ).

1. Bellman formula: the state value function of the state x ∈ X of the static

strategy π.

V (π)(X) = r(x, π(x)) + γ
∑

p(y|x, π(x))V (π)(y) (6.1)

2. Use a greedy search algorithm to satisfy Bellman’s optimally principle [22].

Determine the optimal strategy in subsequent decisions.

V (π)(x) = max[r(x, a) + γ
∑

p(y|x, π(x))V (π)(y)] (6.2)

The optimal strategy is given using an iterative algorithm, and each vehicle is

identified and processed by a suitable pseudo-optimal MDP strategy.
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6.2.1 State Space

We try to define the state of clustering using micro and macro perspectives. In

other words, in the micro context, the classification of the state is precise. We thus

determine many states, such as when the vehicles enter or leave the cluster. We can

define an MDP model with a dynamic and limited number of states; it is
∑

V +∑
Cv + 2 where V is the maximum number of vehicles, Cv is the current number of

vehicles in the cluster and considering the possibility of clustering merge and split.

However, this violates the life cycle of the MDP model. We made a further macro-

definition attempt to state in MDP. The clustering algorithm performs merge and split

decisions for individual clusters, and the MDP model is used to define the connectivity

of clusters. We have used four parameters to describe the connectivity of the cluster

which are RSSI, Density, RSU coverage time, and Distance. In the conjecture of

using connectivity to define the state, we try to combine these four parameters to

represent the state of the cluster. For example, a cluster has a high-ranked link

distance, signal strength, vehicle density, and a medium-ranked RSU coverage time.

The clustering is thus defined in the MDP, matching the four types of parameters in

the state. If each parameter is divided into n levels, we have n(4!)−1 states. However,

defining many states can make the model time-consuming and challenging to cope

with high mobility vehicular network scenarios. We finally decided to define mixed

vehicle connectivity in the clustering algorithm and the MDP model. Therefore only

needs to consider one parameter, connectivity. If connectivity is divided into n levels,

we only need to consider n states.

Each cluster has its own connectivity ranking through the clustering algorithm in

the current vehicle connection scenario. Since the number of clusters in the scenario

is dynamic, we perform a percentage classification based on the ranking of clusters.

For example, the top clusters may continue to have excellent connectivity or transfer

to poor connectivity in the future. In other words, the dependencies of clusters can

be shifted between different cluster connectivity rankings, which allows us to gener-

ate all possible connectivity combinations in the most optimistic case over a given

number of performance intervals NI . The number of clusters reliability can transmit

to a state-directed graph. Therefore, if NI=4, we can deduce that there are 4 states

and 64 possible transitions. The link state of the clusters can be switched to produce

the most optimistic of all possible connection combinations. We can assume that the

state graph is a fully connected directed graph.
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6.2.2 Action Space

When external vehicles enter the cluster, internal vehicles leave the cluster, or vehicles’

mobility changes, the connectivity changes stochastically. The uniqueness of the

vehicular network clustering scenario allows the transitions from one state to another

through a single action. For example, the action ”Transfer to top 25% optimal cluster

group” causes the state to be transferred from the current state to the top 25%

connected cluster group. Assuming that we defined NI states, the action space Ai

has Ni
Ni possible actions. Thus, given a state xi of clusteri, there is a set of available

actions Ai(x) ⊆ Ai leading to a single transition state of state xi ∈ Xi.

6.2.3 Transition Probabilities

The transition probability always adjusts once the performance of the vehicular cluster

is updated. Any state transition probability leads to p(X|x, a) =1. In the initial state,

the transition probability distributes equally as the Matrix 6.3. The fog controller

assesses data from previous and current clusters to evaluate transmission possibility.

Therefore, the transmission between clusters is independently updated to express the

current action value parameter.

Each Ai(x) is a stochastic model with the transmission probability x. We record

previous transmissions to evaluate as a time series analysis. We map the MDP model

on clusters to solve data delay shortages. A vehicle drives between urban and rural

areas; it classifies into different clusters. The history-based data thus does not affect

the accuracy of the MDP model.

Pxi,xj
(a) =


1/Ni

Ni · · · 1/Ni
Ni

...
. . .

...

1/Ni
Ni · · · 1/Ni

Ni

 (6.3)

6.2.4 Rewards

A reward represents the reliability quality of a cluster in the individual state. Action

a has one-step reward r(xi, ai) from state x as in Equation 6.4. Each step’s reward

is a cumulative value originating from connectivity, where the contributed four para-

meters might be projected over time. In the MDP model, rewards represent the best
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clustering reliability from vehicular connectivity.

r(s, a) =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a) (6.4)

6.2.5 Policies

We defined policy π in this MDP. The model produces a probability distribution

from p(·|xi, ai), and it follows the MDP definition that actions are stationary and

stochastic since πni
independent with nni

. According to [22], the policy indicates

transition probabilities πn(an|hn) from a n-step history Hn to A, and computing

custom iteration times n ∈ N . Besides, we can describe the policy as a transition

probability where a ∈ A acts in x ∈ X, and we have π(A(x)|x) = 1 for all x ∈ X.

The MDP model uses optimal actions based on conditional transition probabilities

to obtain the optimal policy, which optimistically estimates the connectivity transfer

metrics in the clustering algorithm.

6.2.6 Transition Discounts

Transition discount is a factor that affects the total expected reward, which describes

the falling importance in future iterations. The Equation 6.5 calculates the expected

reward, where v(N) defines the sum of rewards for all predicted future rewards; the

γ parameter is an iterate discount.

vN(x, π, γ) = Eπ
x

[
N∑

n=0

γnr(xn, an)

]
(6.5)

6.3 Fog Estimation

The reward function used in Equation 6.5 is defined as the infinite horizon, we use

Bellman Equation to define the stationary policy of the value Equation: 6.6

V π(X) = r(x, π(x)) + γ
∑
y

p(y|x, π(x))V π(y) (6.6)

We create an inductive greedy search process based on Bellman 6.6’s optimal

principle, which calculates the best strategy in subsequent decisions depending on

the initial state and decision. As a result, we utilize the definition of the optimally

principle to produce the optimal value function V ∗ = maxπ V
π, in Equation 6.7.
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Figure 6.2: Mobility and connectivity affecting fog status.

V ∗(x) = max
a∈A

[
r(x, a) + γ

∑
y

p(y|x, a)V ∗(y)

]
(6.7)

To follow a comparable equation of the optimal value function, we use an optimal

policy for a given state x, as shown in Equation 6.8.

π∗(x) = argmaxa∈A

[
r(x, a) + γ

∑
y

p(y|x, a)V ∗(y)

]
(6.8)

In Algorithm 5, we can use the Equations 6.7 and 6.8 to do a value-iteration

search. For a given reward matrix, the algorithm searches iteratively for the optimal

convergence approach. If the error ϵ is met in this algorithm, the search is complete.

When executing the method, the number of iterations and convergence of the k is
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specified as k = log(rmax/ϵ)
log(1/ γ)

for a discount γ and error ϵ. For each vehicle, the algorithm

searches for the most current and appropriate pseudo-optimal MDP strategy.

Algorithm 5 Reliability Status Estimation

Require: Xi; Pai ; R; Ai; γ; ϵ
V = 0; πi = 0
do

∆ = 0
for x ∈ X do

Av = 0
for a ∈ A do

xn = A(x)
Av[a] = Pa[x][xn] ∗ (R[xn] + γ ∗ V [xn])

end for
avbest = max(Av)
∆ = max(∆, |avbest − V [x]|)
V [x] = avbest
πi[x] = argmax(Av)

end for
while ∆ < ϵ

6.3.1 VFC Management

Vehicle fog management follows the MDP model to rank clustering reliability based

on connectivity. The rating is estimated by the quality and stability of the vehicle’s

network performance. A collection of VFC management units serves as a reference

point in this scenario, matching service requests with available vehicular clusters.

The model monitors the current connectivity of each cluster’s vehicles to generate

transition probabilities, then forms the reward matrix. The optimum strategy search

method can respond based on events or simulation time.

An event-oriented search triggers works when the matrixes are updated. The

cluster thus formed and evaluated for fog management, which assigns them a reliab-

ility classification. Finally, the service requests are based on the clusters’ ranking,

improving the requesters’ quality to contact and locate service providers.

6.3.2 Region-based Connectivity Ranking Strategy

A dynamic clustering approach that helps SDVN create vehicle fogs throughout met-

ropolitan areas. A fog controller can monitor and evaluate the fogs, which are groups
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of vehicles based on connection. A fog controller may define each vehicle and cluster

connectivity by monitoring vehicle movement in a microscopic view while focusing on

a portion of the large-scale urban situation.

We rank the cluster connectivity and define the optimal cluster. Although higher-

density clusters always have better connectivity, sparse clusters with dense inner

connections and close to the RSU may also be a cluster with close-to-optimal con-

nectivity. The vehicle cluster ranking method does not provide a specific connectivity

value for comparison when a cluster compares with others. The model defines the

best clusters by considering the relevant connectivity factors.
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Performance Analysis

We have conducted a series of simulated performance analyses using different road

facility configurations, vehicle densities, network typologies, heterogeneous network

environments, initial clustering algorithm comparisons, and communication frequen-

cies. We combine different software to provide realistic road scene simulations for

experimentation and analysis of our algorithms. We can get real-time monitoring of

vehicle clusters as well as dynamic change monitoring from our fog controller. Sim-

ulations are performed in a realistic road environment, and vehicles in intelligent

transportation will provide mobility and connectivity to support the calculation and

evaluation of algorithmic parameters. We discuss altered evaluation methods and

obtain data through many simulations to analyze the delay and packet loss rate.

7.1 Simulation Setup

We incremented Veins [35] with Simu5G [17] to set the platform for our experimental

scenarios. Through Veins, OMNet++ [38] and SUMO [24] supported the detailed

simulations of the underlying communication and mobility, respectively. OMNet++

supports the fundamentals for establishing connections through V2V, V2I, and I2I

in a DSRC protocol. A 5G NR base station in Simu5G helps vehicles communicate

in C-V2X. SUMO provides a micro way to supervise vehicle mobility in simulation

scenarios. Omnet++ makes use of an extensive library and frameworks to simulate

computer networks. These four simulation components mutually support the devel-

opment of our realistic traffic network simulation scenarios.

42
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7.1.1 Scenario

In the simulation, Omnet++ provides a connection method for the vehicle, and wire-

less performs the connection between the vehicle and the vehicle, the connection

between the vehicle and the RSU, and the connection between the RSU and the

RSU. Simu5G provides a 5G network base station that provides LTE connection

between vehicles and base stations and provides connections between base stations

and base stations. SUMO and Omnet provide detailed mobility and network con-

nectivity definitions for individual vehicle traffic simulations. Veins maintain a bridge

between these two simulators, and the application of Simu5G brings heterogeneous

network scenarios beyond this. The use of the above four software provides a real

vehicle traffic network and provides a platform for simulation modeling.

7.1.2 Components

We have added components to the internet of vehicles environment for more realistic

vehicle driving and operation simulation of road facilities. First, RSU is considered

to be added to the environment. It is an ETC system, installed on the roadside, and

uses DSRC (Dedicated Short Range Communication) technology to communicate

with the onboard unit (OBU, On Board Unit) to realize vehicle identification. Then,

we assume that the vehicle has a network multi-interface, and it can adapt to both

the 5G network protocol and the IEEE 802.11p protocol. We re-edited the code of

the vehicle in Simu5G and Veins and re-coded the vehicle node to have the ability to

adapt to the two network signals. Finally, we added the gNodeB base station, which

is an integral part of the E-UTRAN in the LTE system and an evolution of the Node

B part of the UMTS system. The device is a hardware device used to connect the

user’s mobile phone or the in-vehicle network to a mobile network.

7.1.3 Traffic Network Topology

Besides, for a more realistic vehicle environment simulation, we used the map Cologne,

which is a city in Germany. In this map, we have simulated real vehicle maneuver-

ability for vehicle movement. We added up to 7 RSUs and two 5G base stations to

the environment and 1000 moving vehicles. We can set up any vehicle, RSU, and 5G

base station for testing within the limited range. Vehicles and RSUs can propagate

signals to neighbouring nodes through multiple hops, and 5G base stations have more

comprehensive connectivity and signal strength.
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Figure 7.1: Cologne, Germany map used in simulation analysis.

We separately conduct experiments on two parts of our work, used for differ-

ent purposes and test models. The first part tests the performance management

of Connectivity-based Dynamic Clustering, which includes vehicle delay, packet loss

rate, and real-time change supervision of vehicle clusters. The second part is an exper-

iment of running the MDP model on a cluster, using a usability-tested model. Both

experiments used the same map and network city topology. Since we implement an

SDVN in our in-vehicle network, experiments are run with different parameter set-

tings and road facility configurations. In experiments, we can add any reasonable

number of network base stations, vehicle numbers, and RSUs.

7.2 Performance Analysis of Dynamic Fogs/Regions

This part runs the simulation of the vehicle network multiple times with different para-

meters and collects the resulting data to explore various performance analyses and

comprehensive classifications. We have configured our vehicle network with proper

road facilities. Accurate data results are collected for research through our Fog Man-

agement.

7.2.1 Parameter Settings

To enable vehicle network experiments and road facility configuration on a real-world

scale, we defined parameter constraints. Table 7.1 summarizes the range of paramet-
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ers that can be used in the experiments.

The simulation map consists of a region with size 5532x3869m2. In addition,

the simulator accommodates different densities of vehicles, ranging from 100 to 1000

vehicles simultaneously moving in the simulated area. Vehicle density affects vehicle-

to-vehicle or vehicle-to-network device connectivity. Sparse vehicle scenarios result in

longer connection intermittency and packet loss. Conversely, a dense vehicle environ-

ment provides a more stable network connection with more alternative web services.

The moving speed of the vehicle is 0 to 35 meters per second, which corresponds to

the normal moving speed of the vehicle in any different scenarios, including traffic

jams or the speed of the vehicle on the highway. The conversion of 35 meters per

second is 126kph. Observing the movement of the vehicle and the changes in the

vehicle cluster allows us to visualize the metric by which the vehicles are classified.

Our fog manager provides data that can collect changes in the vehicle cluster to the

application layer to help the model for further analysis.

In the experiment, we used different numbers of RSUs, each RSU has a connec-

tion range of 400 square meters, and we used the IEEE 802.11p protocol to connect

our vehicles in the city. We also set the communication range of the vehicle to 400

square meters and allowed up to three multi-hops of the signal to reach the network

connection. The strength of the signal is set to 30mW. In experiments, our dynamic

clustering algorithm help vehicles perform connectivity-based region classification in

real-time. The ultimate goal is to provide an excellent connectivity-based fragment-

ation area for a large-scale urban environment.

In addition, every time the vehicle cluster is updated by our manager, in exchange

for knowing the different performance of the regional connectivity. The RSU broad-

casts the Ack message to the surrounding vehicles, and the vehicles flood the message

three times to spread as far as possible to all vehicle nodes in the RSU. Therefore,

the RSU knows the average, optimal, and worst delay time and packet loss rate of the

area by measuring. We use the above metrics to evaluate whether the connectivity of

different clusters is trustworthy and the performance of the overall city connectivity.

7.2.2 Performance Metrics

Our experiments follow the performance metrics below:

• Cluster size and distribution. It is the number of vehicles in a cluster and

the number of clusters.

• Cluster connectivity. Observed across the simulation, it is defined in Equa-
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Table 7.1: Simulation Parameter Settings

Parameter Value Range

Cologne area 5532x3869m2

Vehicle density 100− 1000
Vehicle Speed 0− 35m/s
RSU density 7
gNodeB density 2
RSU PHY model IEEE 802.11p
gNodeB PHY model LTE
Vehicle comm. range 400m
RSU comm. range 400m
gNodeB comm. range 14000m
Transmission power 30mW

tion 4.1.

• Delay. It is the average send-receive time between an RSU and cluster vehicles

after every cluster update.

• Lost connection rate. Based on the ping message, it is the rate of un-reached

vehicles that belong to a cluster.

For each run, our analyses occur in two phases. They first observe the initializa-

tion of our proposed connectivity-based clustering using either K-means or DB-Scan.

Then, they evaluate our proposed maintenance model incorporating temporal factors

to analyze and evaluate the dynamic clustering connectivity with vehicular mobil-

ity. Our simulation thus has a supervision system that evaluates the clustering and

networking performances as the groups of vehicles change. We intend to analyze

the scenario impact on vehicular connectivity and network performance including

communication delay and lost connection rate.

7.2.3 Results

This section presents and discusses the results from the model. First, we do not

consider the time parameter for the initialization of the clustering of vehicles by two

algorithms. Then, a model incorporating temporal factors and dynamic clustering is

used to analyze and evaluate the connectivity of vehicles with mobility. In addition,

a supervision system is added to fog regions to observe changes in the performance

of different clusters of vehicles in real time. Finally, the vehicle network performance

in other clusters is analyzed.

Figure 7.2 takes the vehicle density as the x-axis and the cluster size as the y-
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Figure 7.2: Behavior of clustering algorithms based on cluster size.

axis to compare the total number of clusters obtained by the two classical clustering

algorithms in the environment of the internet of vehicles. Since we set the K value

of the K-means algorithm equal to the number of RSUs in the simulated scenario,

the density of vehicles does not affect the total number of clusters in the K-means

algorithm. In contrast, the DBScan clustering algorithm records the total number

of different clusters based on the impact of vehicle density on it. When the number

of generated vehicles is 100, DBScan only generates 6 clusters. With the increase in

vehicle density, the total number of clusters rapidly rises to 10. Finally, when the

vehicle density is 300, the total number of clusters remains at a peak value of 11 and

does not change anymore.

Through Figure 7.3 and Figure 7.4, we can observe that the largest cluster size

and smallest cluster size are recorded in the initialized clusters at different vehicle

densities. By observation, the largest cluster of DBScan is always more extensive

than that of K-means in both sparse and dense vehicle-density environments. This

means that in a vehicle cluster algorithm initialized with DBScan, more vehicles are

classified into the same cluster. More than 500 is the largest cluster region stationary

for both algorithms at densities. Furthermore, in recording the smallest cluster, the

K-means algorithm shows that as the vehicle density increases, so does the number

of vehicles in the smallest cluster. But DBscan presents a more extreme result, where

the smallest cluster always includes only two cars. From the above figure, we can

summarize that the cluster initialized by DBScan has a more significant fluctuation
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Figure 7.3: Largest cluster size.
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Figure 7.4: Smallest cluster size.

in cluster size. The cluster size initialized by the K-means algorithm is relatively

average. This is because K-means is constrained to always generate the same number

of clusters as RSUs. In contrast, DBScan generates an undefined total number of

clusters depending on the spatial density of the vehicle distribution.

Next, we analyzed the relative connectivity of clusters based on different density

densities and temporal changes. Figures 7.5, 7.6 and 7.7 show cluster connectivity

trends across 7 RSUs with 5G support for different vehicle densities. The x-axis is

the simulation time from 0 to 200, and the y-axis is the relative connectivity of each

cluster. Each line represents a different density. The connectivity of the clusters is

weighted by the relative values of the four-parameter attributes of each vehicle across

all clusters. Although we designed the connectivity influence function γ, we did not

discriminate the use in our experiments.

From Figure 7.5, we can see that the blue line representing the density of 100

exhibits the highest cluster average connectivity. This is because the relative con-

nectivity criteria of vehicles in a sparse vehicle environment decreased when poor

connectivity happened to other vehicles in the cluster. While the average connectiv-

ity of 1000 densities represented by the cyan colour exhibits lower values, this does

not mean that individual vehicles are less connected than vehicles in the low-density

simulation. Since each cluster has excellent connectivity, the standard for cluster

connectivity has been raised.

We determine what a good cluster connection state from the stability of the con-

nection is. Looking deeper, we can see that as the density of vehicles in the simulator

continues to rise, the line segments fluctuate less and less in cluster connectivity. We

can use it to conclude that a vehicle in a cluster simulation environment with stable
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Figure 7.5: Vehicular density based average cluster connectivity.

connectivity is always more reliable than a vehicle in a cluster with high connectivity

fluctuations.
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Figure 7.6: Best cluster connectivity.

0 25 50 75 100 125 150 175

Simulation Time(s)

0.5

1.0

1.5

2.0

W
o
rs

t 
C

lu
s
te

r 
C

o
n
n
e
c
ti

v
it

y

Density100

Density200

Density300

Density400

Density500

Density600

Density700

Density800

Density900

Density1000

Figure 7.7: Worst cluster connectivity.

Figure 7.6 shows the best cluster connectivity of vehicle clusters in different dens-

ities at different periods. This graph confirms our previous definition of connectivity.

We can see that the best connectivity of low-density clusters constantly changes fre-

quently, which means that the composition of clusters is volatile and unpredictable.

For example, the orange line demonstrated good vehicle connectivity at 175 seconds

but dropped off rapidly in a brief period of time. Therefore, the cluster provides

an unstable vehicle cluster structure, and the optimal vehicle cluster connectivity
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changes frequently.

In an excellent internet of vehicles environment, the change of the vehicle cluster is

gradual. Observing the cyan line of 1000 vehicle density in Figure 7.6 and Figure 7.7

shows that in the optimal cluster connectivity graph, the cyan line segment continues

to rise, while in the worst cluster connectivity graph, the line segment continues to

decrease slowly. We find that the cyan line in Figure 7.7 drops rapidly at 130 seconds

and then rises sharply because the vehicle in the simulator moves out of the map

over time. Therefore, the reduction of vehicles leads to high uncertainty in the worst

cluster connectivity. We can conclude that although the highest density of vehicle

clusters does not represent the most reliable cluster, as the number of vehicle nodes

in the simulator gets higher and higher, the stability of the vehicle cluster also gets

better.
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Figure 7.8: Vehicular quantity in different clusters.

To count the real-time changes in the number of clusters, we recorded the changes

in the number of clusters under different vehicle densities in Figure 7.8. The x-axis

is the simulation time performed in the simulator, and the y-axis is the record of the

number of vehicle clusters. The figure clearly shows that a denser vehicle simulation

environment exhibits more vehicle clusters. The images show a gradual decrease in

the number of vehicle clusters of different densities after a simulation time of 100

seconds. This is because the vehicle is able to drive out of the map in the simulator,

so the total number of vehicles is gradually reduced. This also verifies the conclusion
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that the greater the vehicle density, the greater the number of clusters.
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Figure 7.9: Average vehicular quantity belongs to clusters in dynamic simulation
time.

The number of vehicles inside each cluster is monitored and recorded, and the

average cluster size means the weighted average of the cluster sizes of all vehicles.

In Figure 7.9, the x-axis is the simulator time, and the y-axis is the average cluster

size. The figure clearly shows that the average size of the clusters is also smaller in

the sparse vehicle environment. The size of clusters is inversely proportional to the

number of clusters since fewer clusters with the same total number of vehicles mean

larger cluster sizes. When the vehicle gradually moved out of the environment after

100 seconds, the cluster size increased instead. This is because the number of clusters

decreases faster, and the average size of individual clusters gradually increases.

For a more in-depth analysis of the changes in vehicle cluster size, we record the

minimum and maximum vehicle cluster sizes in Figures 7.10 and Figure 7.11. We can

see a clear difference between them by looking at the y-axis. Although the minimum

cluster size is generally higher for higher vehicle densities, this value shows higher

volatility. For example, the minimum cluster size for sparse vehicles is sometimes

higher than the minimum cluster size for dense vehicle scenarios. Typically, the min-

imum cluster size is ten vehicles. The maximum cluster size usually includes 50 to 150

vehicles compared to the minimum cluster size. The number of maximum clusters

in the initial simulations was unreasonably high since the DB-Scan algorithm initial-

ization relied on density classification. Our dynamic cluster maintenance algorithm
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Figure 7.10: Minimum vehicular
quantity belongs to clusters in dy-
namic simulation time.
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Figure 7.11: Maximum vehicular quant-
ity belongs to clusters in dynamic simu-
lation time.

gives a stationary maximum cluster size after the simulation runs for a while.
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Figure 7.12: Best case of data exchanging delay between different clusters.

To test the cluster’s latency, we created a message routing to log. Each RSU sends

an Ack message to surrounding vehicles, which records the generation time and hop

count when the surrounding vehicles receive the message if it is the first time and

the number of hops does not exceed 3. The vehicle uses the current time minus the

message generation time to record the delay and re-send the message to the neighbour

vehicle node. However, to avoid message collisions, a delay time is added whenever

a vehicle is re-sending a message to prevent a large number of messages from being
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broadcast and received at the same time.

Through the interconnectivity of clusters, we rank vehicle clusters and define the

most connected clusters in the simulated scenario. Best Cluster Delay records the

delay time of the top-ranked cluster. By looking at Figure 7.12, we can see that

the dense vehicle simulation has a more stable low latency. For example, when the

density is higher than 500, the retardation is guaranteed to be within 0.01 seconds.
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Figure 7.13: Average data exchanging delay between different clusters.

Average cluster delay is the weighted average of all cluster delay times. Figure 7.13

shows the lower and more stable vehicle average latency for denser vehicle scenarios.

When the number of vehicles is higher than 700, the average single message delay for

a cluster of vehicles is around 0.005 seconds.

Figure 7.14 and Figure 7.15 show the maximum and minimum latency records.

The maximum latency of the cluster shows a more stable distribution regardless of

whether the number of vehicles is dense or not. The changed graph proves the lower

limit of vehicle message sending delay and also demonstrates that our algorithm can

adapt to different densities of vehicle scenarios for cluster dynamic classification, and

the delay is reliable. The minimum latency sometimes reaches a short time in a sparse

vehicle environment because the vehicle environment is too few and far between, and

the network transmission speed is unstable at the upper limit. Still, the minimum

delay gradually becomes stable as the vehicle density increases.

While recording the message latency, we also recorded the probability of not dis-

covering a vehicle when broadcasting a message to neighbouring vehicles via RSU.
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Figure 7.14: Maximum data exchan-
ging delay between different clusters.
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Figure 7.15: Minimum data exchanging
delay between different clusters.

Since our algorithm sets the maximum number of vehicle multi-hops to 3 times, when

a vehicle is driven too far out of the cluster, we are not able to provide network

connectivity for that vehicle. We define the Ack message loss and count it as Packet

Loss Rate.

Best Packet Loss Rate Records the packet loss rate in the top-ranked cluster. In

Figure 7.16, the y-axis is the proportion of all messages that were not received. For

instance, a vehicle with a density of 1000, the probability that the vehicle does not

receive an Ack message is around 10 percent. This parameter shows significant volat-

ility and is more difficult to predict due to the high mobility of the vehicle. Through

observation, in a dense vehicle environment, the range of multi-hop broadcast inform-

ation of vehicles is more expansive, and the probability that vehicles in the cluster

cannot receive the message is more negligible.

Figure 7.17 counts the weighted average of packet loss rates across all clusters.

The figure clearly shows a progressively increasing packet loss rate as the vehicle

gradually travels out of the simulated city. The lower the packet loss rate, the better

the network environment. The packet loss rate in high-density vehicle scenarios is

relatively low and stable. This means that vehicles in this vehicular network are more

connected and can be trusted.

Comparing the maximum and minimum packet loss rates in the cluster, we can

define an interval where the packet loss rate is around 5% to 30%. A dense and less

mobility vehicular urban environment is expected to ensure packet reachability.

In order to know the effect of the number of RSUs in the simulated vehicle clus-

tering, our fog management set up 3 and 7 RSUs in the background to conduct

experiments respectively. We set up 1000 vehicles, enabled 5G, and recorded every 1
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Figure 7.16: Best packet loss rate between clusters transferring data.

second in the experiment.

Figure 7.19a documents the effect of the number of RSUs on the number of vehicle

clusters. The blue lines represent the real-time changes in the number of vehicle

clusters in the three RSU scenarios, and the orange lines record the changes in vehicle

clusters with an RSU of 7. We can find that when the number of RSUs increases, the

number of vehicle clusters also increases. Figure 7.19b shows the effect of different

numbers of RSUs on vehicle cluster size. When the number of RSUs is smaller,

more vehicles are included in the cluster. This is because the vehicle cluster needs

to connect to the RSU for the network, and the sparser the RSU facilities, the more

vehicle services each RSU needs to undertake.

In the interest of intensely discussing the impact of the number of RSUs on the

network performance of the clustering latency and packet loss rate in the simulated

scenario, we simulated the average delay of the cluster when the RSU is 3, and the

average delay of the cluster when the RSU is 7, respectively. From Figure 7.20a, it

can be found that when the number of RSUs is more significant, the average delay

of vehicle clustering is higher. One of the reasons is that in a dense RSU scenario,

the number of vehicles shared between RSUs increases, and more information delay
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Figure 7.17: Average packet loss rate between clusters transferring data.
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(a) Maximum packet loss rate between
clusters transferring data.
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(b) Minimum packet loss rate between
clusters transferring data.

Figure 7.18: Packet Loss Rate
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Figure 7.19: Fogs Physical Performance
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different numbers of RSUs.

Figure 7.20: RSUs affect on average packet delay and lost connection rate.
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sending functions are enabled to avoid information collision when routing messages.

Figure 7.20b shows the effect of different RSU numbers on the packet loss rate. We

can clearly see that the more RSUs, the smaller the probability of losing vehicle

tracking.

In addition, we explore the impact of adding heterogeneous 5G networks to vehicle

clusters in our simulated environment. We set the simulation parameters to 1000

vehicles, 7 RSUs, and 1 second for each recording. The blue line in the figure is not

using 5G, and the orange line is 5G enabled.
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Figure 7.21: 5G Affect on Fogs Physical Performance.

First, we run simulations under these two different network configurations and

police to get the number of clusters. In Figure 7.21a, it can be found that 5G has

little effect on the number of vehicle clusters. The two segments in the figure overlap

most of the time. The impact of enabling 5G on the average vehicle cluster size is

shown in Figure 7.21b. We can find that the cluster size of vehicles with 5G enabled

is generally more prominent than the network environment of vehicles without 5G.

Therefore, we find that 5G can explore more vehicles in our simulation scenarios that

cannot be connected or discovered by RSU alone.

Finally, we tested the effect of adding an additional 5G to heterogeneous networks

on data propagation latency and packet loss. The average information propagation

delay is shown in Figure 7.22a. Since the latency of vehicle data broadcast mainly

depends on the multi-hop communication between vehicles, we can find that 5G has

little effect on the information dissemination of our simulated vehicle network. It can

be found in Figure 7.22b that enabling 5G increases the average packet loss rate of

the vehicle network. When our RSU does Routing, the vehicle has only a limited

probability of propagating to the vehicle nodes connected via 5G and recorded in the
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Figure 7.22: 5G Affect on Delay and Packet Loss Rate.

cluster. Ultimately, we can get results that enabling 5G can discover more potentially

connectable vehicles in simulated scenarios for our vehicle cluster but has a negative

impact on V2V and V2R in our routing strategy.

7.3 Performance Analysis of MDP-based Fogs Model

This section collects the data from several simulations of the vehicle network with

varying settings to investigate various performance studies and thorough MDP model

analysis. Our vehicle network has been set up with the appropriate road infrastruc-

ture. Through our Fog Management, precise data findings are gathered for study.

The fog management system also uses the MDP model to analyze the reliability of

vehicle clustering. Through the results of the model simulation, it can be concluded

how stable the clustering is and whether it can meet long-term service requests.

7.3.1 Parameter Settings

We established parameter limits with the goal of enabling real-world vehicle network

tests and road facility layout. The MDP model is mapped on each individual cluster,

and the model iterates with the transmission probability to know the cluster’s reli-

ability. We added more parameters during the experiment, the variety of parameters

that can be employed in the experiments is summarised in Table 7.2.

We keep the city map settings Figure 7.1 and vehicle parameter settings Table 7.1

as the connectivity-based clustering algorithm in the previous part and add additional

parameter configurations for the MDP model on each vehicle cluster. Additional para-
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Table 7.2: Simulation Parameter Settings

Parameter Value Range

Cologne area 5532x3869m2

Vehicle density 100− 1000
Vehicle Speed 0− 35m/s
RSU density 7
gNodeB density 2
RSU PHY model IEEE 802.11p
gNodeB PHY model LTE
Vehicle comm. range 400m
RSU comm. range 400m
Transmission power 30mW
γ 0.1, 0.5, 1
Tfreq 0.1 - 1 frequency of transmission

meters comprise the 5G NR tower and RSUs, which extend the mediums for commu-

nication and allow the vehicular cluster to be transmitted over the classification of

reliability levels.

The uptime characteristics that facilitate the estimation of the reliability ratio

for vehicle clusters are marked by the symbol Tfreq 7.2 : frequency of transmission.

An additional parameter called the cycle is required to investigate the MDP and

reliability models. Instead of using the MDP model mapped on the grouped clusters

to estimate the vehicular clusters immediately after the clustering process is updated,

we first gather vehicle state data for up to three cycles before evaluating all the

vehicular clusters and the cars contained inside them. With a simulation length of

100 seconds with a periodic beacon occurring every second, we ran our trials at a

cycle value of 3. Three cycles produced the best MDP-model results. The MDP

model may operate with a more significant number of cycles. By increasing the

number of cycles, the MDP model may run more frequently, but this wasn’t enough

to learn the patterns. We can create a history for the MDP-model ranking using

this technique. The remaining parameters—connectivity, RSU density, 5G support,

and discount factor—remain consistent with those in the MDP model. The cars’

density has been adjusted between 300 and 900, allowing an instant check to see if

the availability ratio effectively confirms the MDP model’s vehicle ranks.
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7.3.2 Performance Metrics

The metrics Ranking and Ratio allow us to assess whether our model produces the

desired outcomes. The MDP model contributes the metric Ranking, and performance

transmission of vehicular clusters determines the second metric Ratio. The simulation

experiments select data with 3RSU, 7RSU, 5G, and 300-900 vehicular density, and

these two measures analyze in these scenarios.

The performance metric Ranking evaluates the reliability ranking of the clusters in

the model. We compare the stable bestcluster and the lowest connectivity worstcluster.

Our model represents the reliability by four ranking state levels, clustering connectiv-

ity at ”top 25 percent,” ”25 percent to 50 percent,” ”50 percent to 75 percent,” and

”75 percent to 100 percent.” The clusters in the top category show high connectivity,

strong signals, stability, and abundant connection resources. The Ratio evaluates how

the clusters’ connectivity changes in the future.

7.3.3 Results

This section has been set up to explain the model’s outcomes. To get better perform-

ances out of the model, we start with the first model findings before going deeper

and improving model parameters. The n future periods form the basis of the graph.

Later in this research, we look more closely at how each future period is impacted,

how the number of RSUs and 5G towers support the reliability and how the model’s

value decreases with each interval.

To categorize the vehicle cluster set’s level of trustworthiness, we compute the

future performance of the vehicle clusters. The model investigates the highest, low-

est, and average values of car cluster dependability to create a bar graph. Future

time intervals are represented by the x-axis, while the y-axis displays the relative

ranking value for the vehicle cluster the model assigned. The model generates ranked

clusters and gives them to each group according to minimum, average, and maximum.

We used 300 cars and a discount factor of 0.1, 0.5, and 1 as simulation settings in

Figure 7.23. Except for the first group, vehicle clustering is only very reliable when

the time interval is one. Comparing time interval one and time interval two, vehicle

clusters in time interval two represent higher connectivity values. Vehicle clusters at

time interval three showed higher connectivity status compared to lower time inter-

vals. It can be seen from the figure that the reliability of the worst cluster when the

time interval is 1 in the Minimum ranking is almost 0, regardless of whether the γ

is 0.1, 0.5 or 1. The reliability of the worst clusters improves significantly over time,
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implying that our clustering algorithm provides good pattern planning for cluster

changes. The optimal cluster also becomes more reliable over time.
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Figure 7.23: Ranking of cluster reliability on a 300-vehicle scenario (3RSU).

In Figure 7.24 We add 5G support to the operating environment. We found that

5G NR has little effect on clustering. The lowest reliability has increased, and the

highest reliability has decreased. The chart shows a more stable trend, meaning that

5G provides stable and optimized support for the clustering environment. At the

same time, the overall clustering performance is more predictable.

Comparing the number of RSUs with three and the number of RSUs with 7, we

can find from Figure 7.23 and Figure 7.25 that the overall reliability of the clustering

has dropped significantly. This is because a higher number of RSUs can reach more

vehicles and add them to the cluster. The number of clusters dramatically increases.

However, it does not mean that the quality of clusters improves simultaneously. Some

marginal vehicles cause the overall reliability of the cluster to drop, and the reliability

of the cluster is not as good as the simulated environment of 3RSU. However, more

vehicles are found by the fog controller through 7 RSUs. Nonetheless, the MDP model

shows that the cluster reliability is trending towards excellence over time, proving that

our fog controller provides proper management for vehicle clustering.
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Figure 7.24: Ranking of cluster reliability on a 300-vehicle scenario (3RSU and 5G).

By comparing Figure 7.25 and Figure 7.26, it can be found that in a scenario

with a vehicle density of 300 and 7 RSUs, enabling 5G signals can help the reliability

of vehicle clustering slightly. From the graphs with the γ of 0.1, 0.5, and 1, it can

be seen that the clustering performance is improved and the interval of confidence

interval becomes narrower, and the overall performance is higher. Therefore, in a

hybrid SDVN environment, MDP model application in clustering can achieve better

results, and 5G NR promotes short-term and long-term clustering performance.

Comparing the densities of 300 and 600 vehicles in the simulated scenario, it can be

found that the number of vehicles has little effect on the complete reliability through

Figure 7.23 and Figure 7.27. This has a significant concluding impact on our research.

First, changes in vehicle density do not affect the accuracy of the MDP model, which

means that our model can be adapted to urban centers or rural areas. Second, the

MDP model was applied to individual vehicles in the previous work. The MDP model

would be inaccurate or even fail when the vehicle travels through dense and sparse

areas. This result proves we can effectively solve this problem using the MDP model

for individual vehicle clusters. Ultimately, we can conclude that although the MDP

model relies on the historical data in vehicular clusters since the clustering algorithm
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Figure 7.25: Ranking of cluster reliability on a 300-vehicle scenario (7RSU).
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Figure 7.26: Ranking of cluster reliability on a 300-vehicle scenario (7RSU and 5G).



CHAPTER 7. PERFORMANCE ANALYSIS 65

provides stable clustering, the MDP model is applied in a cycle of vehicle clustering

period and shows accurate prediction results.
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Figure 7.27: Ranking of cluster reliability on a 600-vehicle scenario (3RSU).

In Figure 7.28, the use of 5G improves the clustering of the Minimum and reduces

the clustering of the Maximum for the reliability of the MDP model. Using 5G com-

bined with 3RSU can make the overall clustering more stable, but it does not improve

the clustering performance. The compact confidence interval in the 5G enables graph

can also verify this conclusion.

A density of 600, 7 RSUs bring lower cluster reliability, as shown in Figure 7.29.

This is similar to the 300-density vehicle scenario, where more RSUs provide more

low-connectivity vehicles for clustering. As the clustering time lengthens, the MDP

model concludes that whether the minimum clustering group, the average clustering

group, or the maximum clustering group, the reliability of the clustering increase

with the time interval increase. The MDP model demonstrates the usability of the

clustering algorithm.

Figure 7.30 shows that in the scenario of 600 vehicle density and 7 RSUs, the

application of 5G has not changed significantly. Therefore, the number of RSUs’

impact of the MDP model on vehicle clustering is more evident than 5G.
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Figure 7.28: Ranking of cluster reliability on a 600-vehicle scenario (3RSU and 5G).
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Figure 7.29: Ranking of cluster reliability on a 600-vehicle scenario (7RSU).
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Figure 7.30: Ranking of cluster reliability on a 600-vehicle scenario (7RSU and 5G).

Finally, we increased the vehicle density configuration to 900 in the SDVN network

to see the impact of the vehicle MDP model on cluster reliability performance in a

dense scenario. Comparing Figure 7.31, Figure 7.23 and Figure 7.27, it can be found

that the increase in vehicle density has little effect on the evaluation of cluster ranking

by the MDP model. The management of fog controllers promotes the reliability

of clustering, steadily increasing over time. The clustering group with minimum

reliability has the most apparent improvement compared with the clustering group

with maximum reliability in time interval one to time interval two.

Figure 7.32 shows that no matter whether the vehicle density is 300, 600, or 900.

The use of 5G has no noticeable impact on the reliability of vehicle clustering, but it

helps the clustering at different levels be more stable. We can therefore conclude that

the help of 5G for vehicle clustering is not affected by vehicle density and promotes

the stability of vehicle clustering in reliability. Thus, based on the MDP model, the

use of 5G effectively helps the clusters to provide services more stably when vehicle

clusters move from rural areas to urban environments or urban regions to rural areas.

Figure 7.33 again proves that the vehicle density has no effect on the ranking of

vehicle cluster reliability in the MDP model. Still, the number of RSUs significantly
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Figure 7.31: Ranking of cluster reliability on a 900-vehicle scenario (3RSU).
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Figure 7.32: Ranking of cluster reliability on a 900-vehicle scenario (3RSU and 5G).



CHAPTER 7. PERFORMANCE ANALYSIS 69

impacts the clustering performance. We can conclude that a more substantial number

of RSUs can serve a more significant number of vehicles, but the quality of service

decrease.
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Figure 7.33: Ranking of cluster reliability on a 900-vehicle scenario (7RSU).

We have found that 5G can help improve clustering stability, and 5G’s assistance

to clustering is not affected by vehicle density. Figure 7.34 proves that the help of

enabling 5G for vehicle clustering ranking is not affected by the number of RSUs,

and allowing 5G can improve vehicle clustering performance in any vehicle network

scenario.
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Figure 7.34: Ranking of cluster reliability on a 900-vehicle scenario (7RSU and 5G).



Chapter 8

Conclusion

We propose a novel fog-based vehicle dynamic cluster classification model and fog

management model. The model can perform connectivity-based classification of real-

world vehicle urban regions and define the most connected dynamic Fogs in the re-

gions. We evaluate and analyze the proposed model through simulations.

8.1 Summary

This thesis has explored a connectivity-based dynamic clustering model that includes

scenario management and fog monitoring for hybrid SDVN, following the concepts

of VFC. The fog regions are more predictable than individual vehicles. This reliable

collection of clustering data thus contributes to future algorithms based on historical

data.

The fog controller was developed to support V2V, V2R, and V2X communica-

tion in VANETs and SDVN. The SDVN enables 5G to contribute to a heterogeneous

network environment and hybrid connections between 5G, RSUs, and vehicle scen-

arios. Vehicles use multi-interface to receive WAVE and LTE signals achieving a

more realistic real-world vehicle network scenario. The SDVN supports vehicle simu-

lation scenarios. We can customize the number of road facilities, such as the vehicle

densities, the number of RSUs, whether to enable 5G and the management time in

the fog controller. The connectivity-oriented clustering of vehicles in urban environ-

ments facilitates the creation and maintenance of vehicular Fogs, an essential feature

for most of the works exploring data sharing and resource allocation for vehicle and

vehicle-related environments.

In addition, an MDP model uses the provided fog regions from above because the

vehicles are connectivity-based into clusters in a real-world scenario and the regions

71
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define the most connected clusters. We map the MDP model on these clusters to

evaluate and analyze the vehicle fogs in simulation experiments, demonstrating an

unprejudiced ranking based on vehicle connectivity and clustering reliability.

The model relies not on the individual vehicle data but on the vehicle cluster

historical data, improving the data reliability. Through the experiments, we found

that the vehicle network is reliable and stable in vehicle-dense or sparse scenarios

and with different RSUs and 5G support. Therefore, the model can adapt to the

frequent changes in vehicle scenarios and efficiently provide road information data.

The vehicle clusters are reliable in promoting vehicular collaborative computing for

complex tasks.

The clustering aims to accommodate the communication heterogeneity of an urban

environment where V2X and C-V2C are present. Results showed an unbiased ranking

of the vehicular regions based on network connectivity and vehicle mobility. However,

the proposed test scenario has not fully explored 5G and communication redundancies,

so the loss and delay analyses showed 5G with less cluster stability.

Comparing K-means algorithm and DB-Scan algorithm based on vehicle con-

nectivity, the K-means algorithm is more suitable for our vehicle urban region ap-

plication. Next, we propose a dynamic vehicle clustering maintenance algorithm that

includes merging and splitting clusters. While updating the clusters with new vehicle

information, our dynamic maintenance algorithm rationalizes the clusters and tries

to have better vehicle connectivity and network connectivity. Finally, we propose fog

management for real-time monitoring and data extraction of our generated vehicle

clusters. Our analysis found that vehicle clustering has equitable connectivity and

network stability.

8.2 Future Research Directions

In future work, we will implement heterogeneous applications, exploring the stochastic

of the environment and enabling efficient service-matching rates based on choosing

the appropriate vehicle regions. Also, the resource allocation method within a dy-

namic cluster is affected by the overall connectivity and performance of the vehicular

networks. We will investigate a natural extension of MDP in RL for accommodating

adaptation and possibly a more complex model.

Heterogeneous Request Test. Expanding our evaluation analyses to a heterogen-

eous and redundant request test scenario with both RSU and 5G.
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Service matching management in fog regions. A fog manager conducts the cap-

abilities of cluster network service for different vehicle regions.

Study of reinforcement learning models. Performing task allocation and match-

ing in Q-learning or reinforcement learning.
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