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Abstract: Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent trans- 1

portation systems in smart cities. With the support of open and real-time data, these networks 2

of inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly 3

enhance citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. Still, 4

the proper coordination and logistics of VANETs raise a number of optimization challenges that 5

need to be solved. After reviewing the state-of-the-art on the concepts of VANET optimization and 6

open data in smart cities, this paper discusses some of the most relevant optimization challenges 7

in this area. Since most of the optimization problems are related to the need for real-time solutions 8

or to the consideration of uncertainty and dynamic environments, the paper also discusses how 9

some VANETs challenges can be addressed with the use of agile optimization algorithms and the 10

combination of metaheuristics with simulation and machine learning methods. The paper also offers 11

a numerical analysis that measures the impact of using these optimization techniques in some related 12

problems. Our numerical analysis, based on real data from open data Barcelona, demonstrates that 13

the constructive heuristic outperforms the random scenario in the CDP combined with vehicular 14

networks, resulting in maximizing the minimum distance between facilities while meeting capacity 15

requirements with the fewest facilities. 16

Keywords: vehicular networks; smart cities; optimization; heuristics; open data. 17

1. Introduction 18

The growing global population and preference for an urban living have made city 19

management a challenging issue for city planners and policy makers. Modern cities need 20

to adapt to the emerging needs of their citizens [1]. The development of intelligent trans- 21

portation systems (ITS) is one of the key characteristics of smart cities. ITS aim to improve 22

the efficiency and safety of the road and transportation systems through new applications, 23

protocols, and standards, which allow vehicles to function as a sender, collector, and switch 24

for data broadcasting or multicasting. Furthermore, the growing number of vehicles mo- 25

tivates efforts to improve road safety and inter-vehicle entertainment through vehicular 26

systems [2]. Due to advancements in wireless technologies and the growing popularity of 27

the Internet of Things (IoT), researchers were able to develop communication systems in 28
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which vehicles directly participate in the network. As a result, networks such as VANETs 29

have been proposed to enable communication between vehicles and everything else, as 30

well as between roadside units (RSUs) and people [3]. 31

VANETs can help smart cities by improving vehicle mobility and implementing an 32

efficient system for communicating and managing warning messages. For instance, efficient 33

traffic alerts and up-to-date traffic incident information will reduce traffic congestion, 34

improve road safety, prevent car accidents, and enhance city driving. Also, real-time traffic 35

alerting will reduce travel distances, fuel consumption, and, as a result, emissions of CO2 36

[4]. Furthermore, due to the increasing need for communication, computation, and storage 37

resources, emerging vehicular applications, and exponentially growing data, Vehicular 38

Edge Computing (VEC) has a great potential to improve traffic safety and travel comfort 39

by bringing communication, computing, and caching resources closer to vehicular users. It 40

could also be able to meet the growing demand for low latency and bandwidth in edge 41

devices [5]. 42

Figure 1 shows VANETs communication in smart cities, where communication can 43

take place between infrastructure-to-infrastructure (I2I), vehicle-to-vehicle (V2V), vehicle- 44

to-infrastructure (V2I), and vehicle-to-everything (V2X) such as people, mobile phones, 45

RFID readers, traffic lights, and so on. The direct communications between devices and 46

vehicles are based on wireless access standards such as 4G, 5G, DSCR, etc. Small sensors 47

installed beneath the asphalt can measure traffic density, generate data, and send it to the 48

open repositories. The RSU is fixed and consists of a transceiver that transmits and receives 49

data. These mobile devices and vehicles are linked to edge devices such as RSUs and 50

share the edge layer. The edge serves as a bridge between the cloud and devices, vehicles, 51

and people. Servers with computational and storage capabilities are deployed close to 52

vehicular networks, and data processing and analysis are performed close to end devices. 53

Because computing and storage services are provided close to the user (on the edge), edge 54

computing services provide a better quality of service (QoS). 55

Figure 1. VANET in Smart Cities.

Since people are consuming more information with their mobile devices, vehicles are 56

equipped with edge devices and RSUs technologies in the road transport network, and 57

the popularity of new mobility services such as ridesharing and carsharing has increased 58

communication between vehicles, people, and everything else [6,7]. Therefore, the infor- 59

mation gathered by them can be used to evaluate and predict real-time traffic density and 60

compute an accurate map of road traffic density, as well as assist VANET in improving 61
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transportation efficiency, and pedestrian comfort, and provide a QoS. Cloud, fog, and edge 62

computing techniques enable the real-time transmission and processing of terabytes of data. 63

The cloud node has a lot of memory and processing power, but the fog and edge nodes 64

have limited capacity. Additionally, the physical distance between the cloud data center 65

and the fog and edge nodes influences the data transfer rate, and if it is long, it increases 66

latency and potential packet loss. Furthermore, one of the primary goals of VANET is to 67

provide QoS to end users, while infrastructure deployment is the most significant challenge 68

in the traffic improvement application of VANET. 69

In this context, we combined the Capacitated Dispersion Problem (CDP) and vehicular 70

networks in order to efficiently allocate facilities which can result in proper utilization of 71

all facilities as well as timely reaction, which is required for smart cities, to improve the 72

QoS in VANET. CDP aims at maximizing the dispersion of the open facilities while fixing a 73

given capacity threshold to make facility capacity sufficient to meet customers’ demands. 74

Since CDP is NP-hard, exact methods may take a long time to guarantee the optimality of a 75

solution when dealing with large instances [8]. Furthermore, because approximate methods 76

such as heuristics and metaheuristics have been demonstrated to be effective and capable 77

of producing high-quality solutions for large-scale and complex real-world problems, 78

optimization techniques such as these are now widely used. In particular, heuristics have a 79

strong potential to offer agility and real-time responses, which are critical for an effective 80

ITS [9]. 81

In this paper, we aim at satisfying the following goals: (i) to elaborate a comprehen- 82

sive overview of vehicular networks; (ii) to provide optimization challenges regarding 83

ridesharing, carsharing, VEC, and traffic improvement applications in VANETs; and (iii) 84

to propose a case study, based on real-life data, which combines a CDP and vehicular 85

networks. The organization of this paper is introduced as follows: Section 2 presents 86

an overview of vehicular networks. In Section 3, we provided optimization challenges 87

regarding ridesharing, carsharing, and traffic improvement applications in VANET. We 88

present a case study and computational results in Section 4. Lastly, Section 5 summarizes 89

our main conclusions and provides future research lines. 90

2. Vehicular Networks: an Overview 91

2.1. VANETS: A Conceptual Framework 92

The notion of networks characterized by a dynamic structure and limited transmission 93

speed and quality is no recent innovation - in their 1999 paper, Corson and Macker [10] 94

coined the term mobile ad hoc network (MANET). These networks are characterized by a 95

set of mobile routers which create routes for information transmission as needed [11]. In 96

ITS, vehicles can use communication technology to counteract and eliminate transportation 97

inefficiencies [12]. VANETs are the extension of this line of thought; vehicles and RSUs act 98

as network nodes that send, transmit and receive data enabled by a combination of wireless 99

access and network routing technology [13]. These vehicles range from regular roadside 100

transportation to drones [14]. Connectivity in a VANET is naturally quite demanding 101

due to the dynamic behavior of network nodes as vehicles enter, move within, and exit 102

specific regions of the network [15]. One crucial mechanic that VANETs can use to improve 103

network quality is that the path of network nodes is somewhat predictable as vehicles in 104

certain directions on a mobility grid [16]. Ultimately, the interactions between all VANET 105

participants require fast and complete communication to satisfy the ambitions of dynamic 106

mobility systems [17]. 107

Therefore, the arguably most important task to enable VANET-based mobility in smart 108

cities is to ensure a high QoS, which is influenced by the two main forms of communication 109

occurring in a VANET context: First, vehicles transfer information with each other in a 110

peer-to-peer, or V2V manner. Second, vehicles can tap into a flow of data through RSUs 111

either through a direct connection with the RSU or with a relayed connection through a 112

V2V network path [18]. In all communication between nodes in the network, transmission 113

follows one simple rule: Two nodes can only exchange data if they are within broadcasting 114
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range of their wireless devices [19]. In most VANET applications, accordingly, nodes 115

greedily forward transmissions by selecting a node in the target direction [20]. Single- 116

hop transmission occurs when the broadcasting node sends information to neighboring 117

nodes; multi-hop transmission requires nodes to re-broadcast information [21]. To ensure an 118

uninterrupted flow of data in multi-hop transmission scenarios, nodes can store information 119

and only forward them once a suitable transfer node is found [22]. Over the last decade, a 120

plethora of routing protocols have been proposed by researchers and compared in regard to 121

their performance [23–26]. In a 2014 meta-analysis, Dua et al. [18] cluster routing protocols 122

into five predominant groups such as topology-based, geographic, hybrid, clustering, 123

and data fusion. All of these protocols aim to create a network that can withstand the 124

demanding nature of smart city connected mobility. Belamri et al. [27] provide a framework 125

of parameters in regard to which a VANET routing protocol should be optimized: Most 126

importantly, routing quality should be assessed concerning message delay, network node 127

distances, link reliability, hop count, and mobility of nodes. In evaluating the QoS of a 128

network with specific routing protocols, researchers should use network metrics such 129

as end-to-end delay (EED), packet loss, throughput and bandwidth, and packet sending 130

rate (PSR). Following this logic, a VANET routing protocol and its technology should 131

be sufficient to enable whichever application needs to be run in the network. VANET 132

applications for smart city mobility can generally be clustered into one of two applications: 133

Efficiency-oriented and safety-oriented optimization [28]. Efficiency-oriented applications 134

are mainly concerned with the overall flow of traffic in a VANET environment. A VANET 135

infrastructure can be used to host a variety of applications such as traffic congestion 136

detection and mitigation [29–31], traffic forecasting [32,33], fuel-saving vehicle routing 137

[34,35] or secondary efficiency enabled by internet access, for example by providing internet 138

during traffic jams [36]. All of these applications prove to be a use case for optimization 139

techniques. Safety-oriented services in a VANET are concerned with vehicular security. 140

Given VANET connectivity, these services can be used to prevent collisions [37–39], facilitate 141

emergency service response [40–42] or support safe overtaking [43,44]. 142

Figure 2 depicts the general operation of a VANET, which includes applications, 143

routing protocols, challenges, communication, and wireless access standards. Above, we 144

discussed the routing protocol and different communications in VANET. In terms of appli- 145

cations, VANETs can provide a wide range of services and applications. The applicability of 146

these services and applications allows us to classify them into safety-related, infotainment, 147

traffic improvement, and driving system monitoring. Also, each of these applications 148

presents challenges for VANET. Other challenges could include resource management, in 149

which resources are shared among vehicles, presenting numerous difficulties for VANET 150

deployment. Since vehicles in the VANET have mobile communication devices and share 151

data, data networking is another challenge in this area. Finally, the expansion of VANET 152

services and the need to ensure the continuity and scalability of VANET communication 153

have motivated the use of various types of wireless communications such as DSCR, 4G, 5G, 154

WiMAX, etc. 155
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Figure 2. General Operation of VANET.

2.2. VANET´s and IoT, Edge Computing 156

Network routing protocols are one of the two cornerstones of connected smart city 157

mobility. They are enabled by IoT devices that, as the second cornerstone, are the foundation 158

upon which interconnected ITS are built [45]. The IoT paradigm envisions communication 159

between objects that are already part of everyday life to create an infrastructure of devices 160

that are embedded into larger networks [46]. In the context of vehicular mobility, a vast 161

array of use cases have been investigated and implemented in research: IoT devices 162

can be used to reserve and guide vehicles to parking spots [47,48] or to avoid vehicle 163

collisions [49] by providing an exchange of information between network nodes. The 164

challenge of transmitting large amounts of data over a vehicular network has led to research 165

into how external processing and storage could ameliorate the exchange of time-critical 166

information. Data-center facilitated cloud computing can dynamically integrate into a 167

VANET application, allowing network nodes to off-load data-intensive applications [50]. 168

Hussain et al. [51] was the first to propose a cloud-based VANET architecture to connect 169

vehicles and support application loads. These vehicular cloud computing networks allow 170

for scalable network architectures that support the ever-increasing stream of data and help 171

alleviate connectivity limitations [52]. As Shrestha et al. [53] argue, cloud computing might 172

reach its limitations in the context of more demanding VANET environments where large 173

numbers of vehicles demand real-time applications. Consequently, they propose to enhance 174

VANETs with edge computing. 175

Edge computing further develops the key functionalities of cloud computing by 176

moving data processing units closer to each network node: Calculations to support network 177

nodes are performed at the edge of a network [54]. Garg et al. [55] demonstrate that using 178

edge nodes as an "intermediate interface between network and cloud" in VANETs can 179

indeed improve network latency and facilitate overall data flow. It is important to note 180

that network structures supported by edge computing are not restricted to mobility on 181

the ground; the concept can be extended to any network node in three-dimensional space, 182

such as unmanned aerial vehicles (UAVs) [56,57]. These UAVs can even be used to flexibly 183

support a VANET architecture if needed [14]. Aside from providing a more capable 184

architecture, edge computing also proves to be resistant to network attacks [58]; fast data 185

transfers and processing allow for reliable message verification to ensure no malicious 186

communication occurs in the network [59]. Recent proposals even go as far as integrating 187

blockchain technology to ensure network integrity [60]. 188

VEC is a promising technology that can be used to support ITS services, smart city 189

applications, and urban computing. Figure 3, shows the problems and methods that are 190

used in the literature reviewed in VEC. 191

Qi et al. [61] introduced a knowledge-driven (KD) service offloading decision frame- 192

work for the Internet of Vehicles (IoV), which provides a unique platform for various 193

vehicular services and aims at achieving long-term optimal performance experienced 194
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Figure 3. Operation of VEC.

by vehicular users, and based on that, they proposed offloading decisions as a resource 195

scheduling problem with single or multiple objective functions and constraints, where 196

some customized heuristics are used. The framework consists of a decision model which 197

uses deep reinforcement learning (DRL) to learn decision knowledge, and an observation 198

function to obtain vehicular mobility and edge computing node data. To realize online 199

optimization of offloading decisions, they proposed a KD service based on an online A3C 200

algorithm. Evaluating the performance of KD service offloading decisions, they showed 201

that the framework achieves low service delay, can learn the distribution of task data 202

dependency, and almost always chooses a proper destination for large data transmission 203

tasks. 204

Qiao et al. [62] proposed a new edge caching scheme that optimizes content placement 205

and delivery in VEC and networks with limited storage capacity and bandwidth by taking 206

into account time-varying content popularity, dynamic network topology, and vehicle 207

driving paths. Edge caching was modeled as a double time-scale Markov decision process 208

(DTS-MDP). The joint content placement and the delivery problem is NP-hard long-term 209

mixed integer linear programming (MILP). As a result, the variable participation of vehicles 210

increases the operational complexity of the edge caching system, making it difficult to find 211

the best solution. So, they proposed a deep deterministic policy gradient (DDPG) learning 212

algorithm based on a DRL-based cooperative caching scheme to provide low-complexity 213

decision-making and adaptive resource management, and they accelerated the learning 214

speed and improved caching performance by using mini-batch gradient descent. 215

Furthermore, they concentrated on the model-free reinforcement learning approach 216

to provide training guidelines based on a large number of historical experiences. This 217

model-free approach is divided into three categories: critic-model (value-based approach), 218

actor-model (policy-based approach), and actor-critic learning approach, which employs 219

deep neural networks to provide an accurate estimation of deterministic policy function 220

and value function. 221

As a result, the actor-critic learning framework and the double time-scale content 222

caching model combined to develop a DDPG-based cooperative caching technique. The 223

performance was compared using two benchmark schemes: (i) random caching; and (ii) 224

noncooperative caching. To improve the accuracy of vehicle destination prediction, the 225

destination of the vehicle was predicted using a machine learning model based on shorter 226

strings rather than longer strings to represent the transport region of smart vehicles. The 227

analysis of caching performance based on the DDPG learning algorithm revealed that as 228

the number of episodes increases, all content caching schemes can approach their stable 229

cumulative average cost. The noncooperative caching scheme had the highest average 230

system cost, which includes the cost of content storage and access. In addition, the proposed 231
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caching scheme yielded the lowest system cost, and lowest content access latency, and 232

improved the content hit ratio, particularly in the low content delivery latency, when 233

compared to the other benchmark schemes. 234

Chen et al. [63] proposed a task offloading scheme based solely on V2V communication, 235

based on the gathered period of vehicles in urban environments due to traffic lights or areas 236

of interest (AOI) to minimize task processing time. The Max-Min Fairness scheme is used to 237

optimize the task execution time, which is then solved by the particle swarm optimization 238

(PSO) algorithm. On the one hand, for the special case where all service vehicles participate 239

in task processing, the proposed algorithm provides the optimal solution based on adapted 240

Max-Min Fairness. On the other hand, the PSO algorithm is used for generating a feasible 241

solution for the general case where it is unknown whether each service vehicle will partici- 242

pate in task processing or not. Furthermore, to evaluate the performance of their proposed 243

scheme, they generated vehicle track files using the TIGER map and then used the IDM IM 244

model provided by VanetMobiSim to compare the performance of computed schemes such 245

as local computing, offloading with the Max-Min Fairness Algorithm, and offloading with 246

the PSO Algorithm. The results showed that the Max-Min Fairness algorithm and the PSO 247

algorithm reduced task execution time based on the number of service vehicles used. Also, 248

the increasing number of service vehicles showed that the PSO algorithm is slightly better 249

than the Max-Min Fairness algorithm in terms of robustness over different task sizes for 250

each scheme. 251

Wang et al. [64] considered VEC and networks with dynamic topologies, unstable 252

connections, and unpredictable movements and proposed a near-optimal performance 253

imitation learning-enabled online task scheduling algorithm. In their proposed algorithm, 254

they used the terms service providing vehicles (SPV) and VEC servers interchangeably. 255

Also, consider the task scheduling problem by minimizing the average consumed energy of 256

offloaded computation tasks while ensuring their execution latency based on SPV clustering 257

and imitation learning approaches. 258

The branch-and-bound algorithm was used with a few iterations as the expert’s trajec- 259

tories, and the learning agent made proper task scheduling decisions by mimicking the 260

expert’s demonstrations with the help of imitation learning. They proposed an imitation 261

learning-based task scheduling algorithm that allows the learning agent to make timely 262

scheduling decisions instead of global searching, which is time-consuming and computa- 263

tionally intensive and is not suitable for online scheduling. To validate the performance of 264

their proposed algorithm, they compared it to four other designed algorithms: the Deep Q 265

Network (DQN)-based algorithm, DATE-V, local optimization, and FORT. As a result, the 266

proposed algorithm’s average energy consumption was much lower than that of the other 267

algorithms, and its task-processing ratio was higher than that of the other four algorithms. 268

3. Optimization Problems in Vehicular Networks 269

3.1. RideSharing 270

Ridesharing in public/private vehicles is an intriguing problem that has piqued the 271

interest of numerous researchers. The taxonomy, shown in Figure 4, divides the literature 272

discussed in this section into four categories: operation modes, problem type, methods 273

used to solve the problem, and type of vehicle communication/protocol used. 274

There are two types of ridesharing: static and dynamic. Static ride sharing assumes 275

that driver and rider requests are known before executing a matching process, attempting 276

to cover a wide variety of types such as dial-a-ride problems (DARP), carpooling, and 277

slugging. Due to the complexity of ridesharing optimization, researchers use or adopt 278

various heuristics, as well as mixed-integer/integer linear programming models, to solve 279

large-sized instances [7]. Dynamic ridesharing is a service that dynamically arranges ad 280

hoc shared rides, made possible by low-cost geo-locating devices, smartphones, wireless 281

networks, and social networks [65]. The dynamic ridesharing problem focuses on the 282

fact that passenger requests are generated in real-time. In this regard, Huang et al. [66] 283

proposed a branch-and-bound algorithm to solve the problem of ridesharing with service 284
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Figure 4. Operation of RideSharing.

guarantees on road networks; moreover, they proposed a kinetic tree algorithm to better 285

schedule dynamic requests and adjust routes on the fly. Their flexible algorithm could 286

also handle changing road network layouts and traffic conditions. It creates a server trip 287

schedule based on the server’s location upon request, calculating trip cost between any two 288

points on the schedule, and satisfying point order, waiting time, and service constraints. 289

Furthermore, they build an augmented valid trip schedule that combines new requests 290

with existing ones to share a partial trip among customers. Using their proposed kinetic 291

tree approach, they allow constraint flexibility if pickup and dropoff locations are close to 292

each other. 293

Based on dual social group architecture (SGA), Zhao et al. [67] proposed a distributed 294

ridesharing service that divides messages into driver social group architecture (DSGA) 295

messages which include a driver’s destination, and vehicle social group architecture (VSGA) 296

messages that provide information on traffic condition. Assigning a number of token 297

vehicles to each vehicle, tokens in the beacon packet were transmitted to the relay vehicles’ 298

neighbors by the relay vehicles. Neighbor vehicles will first collect the feature-level atomic 299

messages with a one-hop communication scope and then fuse them using a fuzzy cluster 300

method to generate the feature-level result. Each relay vehicle receives this message from 301

the token vehicle and generates its own VSGA messages; this methodology allows to 302

determine traffic conditions in double vehicle communication distance. Through this 303

dual-SGA methodology, passenger wait times are significantly reduced. 304

Bathla et al. [68] proposed four different ridesharing system models based on the 305

pickup and drop-off locations of potential riders. They also proposed a dynamic algorithm 306

for models in which the pickup and drop-off locations are different for all users. With 307

DBSCAN clustering, they simulated the scenario of multiple ride-sharing requests from the 308

same or nearby regions. Grouping together requests and calculating the distance between 309

two locations using the Haversine formula and the Google Maps Direction API, they divide 310

the cost for passengers with shared ride distance evenly. They assessed the algorithm 311

using ridesharing metrics such as satisfying requests and waiting time per passenger. 312

Additionally, they implemented a taxi distance minimization algorithm with a complexity 313

of O(n × m) where n and m are pickup and drop-off events, finding that their proposed 314

algorithm accommodates higher ride share among passengers. 315

Alisoltani et al. [69] concentrated on the automatic matching process, which is one of 316

the most difficult challenges in dynamic ridesharing. They used a variety of techniques, 317

including exact methods based on branch-and-cut and the rolling horizon method to solve 318

the problem dynamically for quality of solution; an AI-based technique to limit the number 319

of requests for the solver; a clustering method such as K-means and hierarchical clustering 320

based on the shareability function to place the most shareable trips within a separate cluster; 321

and finally, a heuristic algorithm to solve the matching problem within each cluster. As 322
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a result, the final algorithm provided high-quality solutions for large-scale problems in 323

a short amount of time. It considers both passengers’ and service providers’ objectives, 324

minimizing total travel time and distance while also minimizing passenger waiting time. 325

To simulate the operation of their proposed dynamic ride-sharing system, the authors 326

created a plant model using macroscopic fundamental diagrams (MFD) to simulate real- 327

world traffic conditions and a prediction model which calculates travel times during the 328

assignment process using mean vehicle speed. 329

Aydin et al. [70] proposed a new ride matching algorithm that takes into account the 330

participants’ characteristics and preferences. They defined joint socialness score (JSS) as a 331

score of similarity between a driver and a rider while maintaining the maximum number of 332

participants in a ride-sharing system, and they planned to maximize JSS and allow a driver 333

to be matched with more than one rider, even if only single rider-single driver matches are 334

permitted. They checked the similarities between the routes of the drivers and riders using 335

the Needleman-Wunsch algorithm and specified the score of matching, mismatching, and 336

gap. Then it was modified by removing the traceback process. They used the first-come, 337

first-served method for matching. As a result, when a rider enters the system, the feasibility 338

of each available driver is checked first. Following that, the JSSs for all possible drivers are 339

computed. The rider is paired with the driver who has the highest corresponding JSS. The 340

computational burden imposed by splitting drivers’ routes on the algorithm resulted in 341

longer computation times. Also, the proposed heuristic finds matches on relatively short 342

notice, compared to integer programming, and also can be used to solve more complex and 343

large-scale problems. 344

Unlike most vehicular applications, which rely on the availability of an easily-accessible 345

internet infrastructure, Bravo-Torres et al. [71] focused on advanced services deployed by 346

VANET to vehicles without infrastructure access. Their proposed multi-layer architecture 347

is built on a procedure combining request, response and acknowledgment messages with 348

timers. A knowledge management layer facilitates the modeling of locally-stored user 349

profiles, using context-aware algorithms to match potential riders’ mobility needs based 350

on their itineraries and preferences. The route matching algorithm defines two distinct 351

methods based on Euclidian distances: One that detects regular user routes using past 352

itineraries, and one to determine whether two users can share a route based on weighted 353

user characteristics. Both methods use GIS technologies to locate routes on a map and 354

model user mobility patterns. Testing their proposal in a VANET simulator using the 355

Simulation of Urban Mobility (SUMO) software to model traffic and NS-3 to simulate 356

communications, they found that their VaNetLayer significantly reduced downtime and 357

increased savings, outperforming the AODC and VNAODV protocols for delivery ratios. 358

Olakanmi and Odeyemi [72] proposed a novel 1-to-n ridesharing scheme for effective 359

ride sharing capable of collaborative 1-to-n ridesharing and recommending the shortest 360

routes and pickup points for riders and drivers based on previously visited locations. 361

Records for this 1-to-n ridesharing scheme are divided into three stages: trust and similarity 362

models, 1-to-n ridesharing shortest routes and pickup points recommendations, and mutual 363

authentication between the rider and car owner. Based on the location records visited, they 364

developed an algorithm that recommends pickup points for riders and the shortest routes 365

for car owners. They examined the efficiency and cost of the proposed scheme in terms of 366

mean waiting time (MWT), capacity overshoot, and computational cost of the proposed 367

mutual authentication. According to the results, the scheme’s mutual authentication 368

procedure had the lowest computational cost when compared to other authentication 369

schemes such as SAMA, ECPP, CAS, GSB, KPSD, and IBCPPA. This reduces the proposed 370

scheme’s service-delay, as evidenced by the insignificant increase in mean waiting time as 371

the number of requests increases. 372

3.2. Carsharing 373

Carsharing offers a flexible alternative that meets a wide range of transportation 374

needs around the world while mitigating the negative effects of private vehicle ownership. 375
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Extensive research has been conducted in the field of carsharing systems in recent years, 376

which includes analyzing carsharing trip characteristics, evaluating its impact on society 377

and the environment, and optimizing systems [73]. Figure 5, depicts the literature reviewed 378

in this section on carsharing optimization via vehicular networks. 379

Figure 5. Operation of Car Sharing.

Zhao et al. [74] proposed a carsharing service in VANET based on a dual SGA in 380

order to improve the quality and robustness of carsharing services while also reducing 381

passenger wait times and avoiding traffic congestion. After a successful match, the vehicle 382

will respond to carpool matching requests via relay vehicles. The DSGA procedure will 383

first calculate the geographic matching based on the driver and passenger destination 384

correlation when the relay vehicle receives the request. The vehicle will then conduct a 385

VSGA identity check. If the match fails, the request is forwarded by the relay vehicle. In 386

the final match step, each relay vehicle merges and collects its traffic data with the help of 387

nearby vehicles via the beacon package. They then distribute a certain amount of tokens 388

to each relay vehicle to control the peripheral congestion message. They also proposed 389

a layered congestion monitoring method to collect congestion information and improve 390

matching accuracy. In this process, the relay vehicle first distributes some tokens to its 391

neighbors, and then the neighbor vehicle that received the tokens will collect the atomic 392

congestion message in its driving region, such as acceleration, speed, and brake frequency, 393

and then perform fuzzy clustering on the message. The fuzzy clustering method can reduce 394

information and computation redundancy by extracting key information. 395

Lu et al. [75] combined vehicle mobility simulation and vehicular communication 396

networks to create carsharing systems. They provided two models, one for taxi systems 397

and one for the VANET configuration in NS-2. They used SUMO to generate traffic. Fur- 398

thermore, classic microscopic traffic theory was used to develop the car following model, 399

which calculates each car’s trajectory to analyze its performance. They chose the Ad hoc 400

on-demand distance vector (AODV) routing protocol for the network layer after compar- 401

ing AODV, DSR, and DSDV. They examined three parameters in carsharing application 402

performance using a Manhattan map generated by TIGER: PSR, Maximum connectivity 403

number (MCN), and vehicle count. As a result, the carsharing performance focuses on two 404

scenarios: the impact of different PSR and MCN on communication performance when 405

the number of cars remains constant, and the impact of different numbers of cars when 406

network parameters stay constant. They conclude that improving VANET performance 407

in carsharing systems is possible with a greater number of equipped vehicles and proper 408

control over the maximum connectivity number. 409

Olufemi and Adedamola [76] improved user service delivery by proposing an effective 410

anonymous authentication scheme capable of detecting and preventing malicious entities 411
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from disrupting the carsharing system’s operations. The scheme also includes a conditional 412

identity-tracing approach for tracking and exposing a malicious entity by revoking the 413

misbehaving entity’s privacy. Their proposed scheme includes five entities: an autonomous 414

vehicle taxi, a taxi user, an autonomous vehicle taxi service provider, a trusted registra- 415

tion center, and a taxi call roadside unit. Each entity in the carsharing system registers 416

with a trusted registration center, which generates an entity-specific pre-private key. The 417

entity later upgrades the pre-private key to a private key. To request a service, both the 418

requester and the requestee must perform mutual authentication, which is based on a 419

two-way parameter exchange technique and consists of five phases: setup, registration, 420

mutual authentication, service request, and conditional privacy tracing. In terms of security 421

analysis, they introduced eight theorems with proofs based on a bilinear map. Non-key and 422

key-based hash functions are used to obtain fundamental security against impersonation, 423

collusion attacks, privilege escalation, man-in-the-middle, forward secrecy, and insider 424

attacks. They evaluated the scheme’s computation latency by simulating the computational 425

overhead of the cryptographic operations used to determine the proposed scheme’s verifi- 426

cation delay. When the scheme’s verification delay is compared to the verification delays of 427

existing certificate and signature-based authentication schemes, it is discovered that their 428

scheme had the lowest computational cost. 429

3.3. Optimization Challenges in traffic improvement application of Vehicular Networks 430

VANETs promise to improve transportation efficiency, accident prevention, and pedes- 431

trian comfort by providing a variety of services and applications to drivers, and travelers. 432

These services and applications can be classified into safety-related, infotainment, traffic 433

improvement, and driving system monitoring applications based on their applicability 434

[77]. Figure 6, shows the taxonomy of the literature reviewed in this section on the traffic 435

improvement application of VANET. 436

Figure 6. Operation of traffic improvement application.

There are several challenges to overcome in order to optimize road traffic and reduce 437

travel times by avoiding traffic congestion. One of the difficulties concerned infrastructure 438

deployment, where UAVs can act as flying RSUs, relaying data to vehicles outside the 439

RSUs’ coverage range. in this context, a collaborative network coverage enhancement 440

scheme was proposed by Islam et al. [78] to bring these uncovered vehicles within the 441

infrastructure’s coverage. The PSO algorithm was used to determine the best positions to 442

deploy the UAVs, taking into account factors such as vehicle density, heading direction, 443

and previous coverage information. The new positions of the dispatched UAVs were 444

calculated after each time frame, and the UAVs were instructed to move to these positions. 445

Using the traffic simulation tool SUMO, the authors compared the performance of their 446
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proposed scheme to other UAV-assisted VANETs schemes, including those without UAVs, 447

fixed UAV-assisted VANETs, and hovering UAV-assisted VANETs, in terms of PDR, hop 448

counts (HOPs), EED, and throughput. The results showed that their proposed scheme 449

outperformed its competitors in the simulation of Daegu, South Korea. 450

Deploying RSUs in urban areas can be a complex task due to the high cost of installing 451

them at intersections and the large number of possible combinations when there are 452

many intersections. To address this issue, Lehsaini et al. [79] used various metaheuristics, 453

including genetic algorithms (GA), simulated annealing (SA), and improved versions of 454

these algorithms, to determine the best approach for achieving high coverage rates on 455

roads in the target area while deploying a minimum number of RSUs at intersections. The 456

GA-Basic approach includes a probability of performing a mutation operation, where two 457

bits are chosen randomly, while the GA-Improved approach focuses on individuals that 458

increase the overlap of coverage areas. The SA-Basic approach generates an initial solution 459

randomly, while the SA-Improved approach generates it after a preprocessing step that 460

avoids placing RSUs at closely spaced intersections. The authors used the OMNeT-5.0 and 461

SUMO simulators to evaluate the routing performance in terms of PDR and EED based on 462

the number of RSUs deployed in the urban area. The results showed that the GA-Improved 463

approach required fewer RSUs and provided better routing performance in terms of PDR 464

and EED compared to the other approaches. 465

Besides that, various recent studies address different diversity problems, where Par- 466

reño et al. [80] presented mathematical formulations for combinatorial optimization such 467

as MaxMin, MaxSum, MaxMinSum, and MinDiff and solved the problem using the com- 468

mercial CPLEX solver. Martí et al. [81] proposed new instances, tested them through 469

computational experiments and demonstrated how these problems have evolved over time 470

from an operations research standpoint. Also, based on other previous works Martí et al. 471

[82] formulated a new MILP model to propose an exact and heuristic approach to solve 472

the CDP and later Gomez et al. [83] proposed a BR algorithm that uses the construction- 473

destruction concept to generate high-quality solutions for the CDP in short computing 474

times. 475

Furthermore, Cao et al. [84] proposed an RSU optimized deployment scheme as a 476

multi-objective optimization problem for mathematical modeling based on large vehicle 477

data, which improves the quality of time-sensitive services while also reducing deployment 478

costs. They proposed a two-step solution in which they obtained the initial RSU deployment 479

location based on road topology and analyzed big vehicle data. They also used the K- 480

nearest neighbor algorithm to remove the overlapping intersection of bidirectional lanes 481

based on the actual road topology situation. Later, the branch-and-bound algorithm was 482

used to achieve optimal RSU deployment. According to the results, the proposed scheme 483

used a small number of RSUs to achieve high coverage. 484

Another challenge is prediction accuracy, where knowing about potential traffic prob- 485

lems can aid in congestion relief and road capacity expansion. Based on collected vehicular 486

data and the Continuous Time Markov Chain (CTMC), El Joubari et al. [85] developed 487

traffic behavior in multi-lane roads and near intersections. In order to analyze system 488

performance, the queuing theory was used to describe urban traffic dynamics, and CTMC 489

in continuous time was used to forecast long-run average quantities such as congestion 490

rates and average waiting times. Long-term estimates of traffic distribution can be ob- 491

tained using this method, which employs a numerical method for solving the stationary 492

distribution. In order to validate their model, the results were compared to a queue-based 493

model and realistic traces. The numerical results show that the model accurately reflects 494

real-world urban traffic behavior when historical traffic data is used. 495

Bhatia et al. [86] presented a VANET system with software-defined networking (SDN) 496

for forecasting traffic flow behavior using computationally intelligent models. They pro- 497

posed an architecture made up of RSUs and OBUs that is managed by an SDN controller 498

framework and is linked to cloud infrastructure for real-time data storage and high compu- 499

tational capacity. They used a three-phase algorithm, including a configuration phase, a 500
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clustering phase, and a running phase, to identify the system’s congestion-sensitive spots 501

before implementing a machine learning model to learn traffic patterns for each spot. They 502

also used the K-means algorithm to find three-dimensional spatiotemporal clusters, which 503

were then processed to finalize the congestion-sensitive spots under a specific RSU. They 504

used the LSTM recurrent neural network architecture to learn time series with long-term 505

traffic flow dependency on the identified congestion-sensitive spot. In addition, detailed 506

and precise LSTM hyperparameter tuning is performed to finalize the set of optimal hyper- 507

parameters required for convergence to an optimal traffic flow prediction solution. The 508

results showed that their proposed method can predict future densities with an accuracy of 509

97% on the entire dataset. 510

Another issue to consider in traffic management applications is packet storm problems 511

where VANET sends warning messages to vehicles near congested roads in order to 512

keep drivers informed of road conditions and provide the best possible routes to their 513

destinations. This generates a significant number of alert messages, which may cause 514

network congestion and QoS breakdown. In this context, Rizwan et al. [87] proposed a 515

simulation model to reduce broadcast storms by reducing redundancy. Based on three 516

factors: position, distance, and orientation, they developed the next forwarder vehicle 517

(NFV) protocol and, by using the DDP4V technique, analyzed each of these features. The 518

proposed protocol reduced broadcast storms by using DDP4V NFV isolation known as 519

wagon wheels to select the next forwarding vehicle, which can transport data packets 60% 520

faster. In addition, when compared to AID and DBRS, DDP4V has fewer dispersed packets, 521

which reduces retransmissions, and it outperforms standard techniques in high-traffic 522

areas. Considering message transmission results in unwanted data flooding, which causes 523

broadcast storm issues, affecting the overall reliability and performance of VANET. To 524

efficiently minimize the broadcast storming problem, Velmurugan and Leo Manickam [88] 525

proposed a relative speed-based dynamic broadcasting GHN algorithm for broadcasting 526

safety and warning messages in the VANET. For data transmission, the GHN algorithm 527

employs the selective distance allocation methodology. They compared it with SODAD 528

and ABIN, and the results demonstrated that the GHN algorithm can reduce the broadcast 529

storm by more than 2% when compared to the existing algorithm. The system’s output 530

proved to be more efficient in terms of data, throughput, and packet delivery ratio. 531

Table 1 summarizes the various approaches of the reviewed literature, as well as the 532

objective and specific methods used for various types of problems. Each issue made use of 533

various vehicle communications and protocols, which have also been mentioned. 534
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4. A Case Study 535

We present a case study to show how the CDP described by Gomez et al. [83] can be 536

combined with vehicular networks in real-world scenarios to efficiently allocate facilities 537

in a city. This study aims to maximize the minimum distances between any pair of open 538

facilities where each facility has a known capacity and the total capacity of open facilities 539

must exceed a user-defined threshold. 540

The CDP can be defined more formally on a complete, weighted, and undirected graph 541

G(V, E), where V is a set of facilities and E is the set of edges connecting these facilities. 542

Each edge (i, j) ∈ E has a distance di,j > 0 that satisfies the triangle inequality, considering 543

i, j ∈ V, with i ̸= j. All distances are symmetric, i.e., dij = dji. Each facility i ∈ V has 544

a predetermined, known capacity ci > 0. As a threshold, collected service capacity b is 545

needed. The CDP’s goal is to find a subset O ⊂ V of facilities with a collected capacity 546

greater than b and maximized the shortest possible distance between any two facilities 547

i, j ∈ S. The threshold is a minimum collected capacity b that represents a portion m of the 548

total facility capacities b = m · ∑i∈V ci. 549
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The data used to test are brought from Open Data BCN, specifically, bicing station in 550

the city of Barcelona is used to model CDP. The dataset contains 496 unique locations of 551

bicycle stations and 45 of them, particularly for the electric bicycle charging station. The 552

distribution of electric bicycle charging stations throughout the Barcelona metropolitan 553

area determines the facility’s locations, and the capacity of each facility is the capacity of 554

each electric bicycle charging station. Figure 7 depict the distribution of potential facilities 555

concerning red flags, and each facility has a known capacity. According to the traffic 556

data, the traffic situation is classified into various states, such as no data, very-fluid, fluid, 557

dense, very-dense, congestion, and cut-off. Here we consider very-fluid, fluid, dense, and 558

very-dense situations and applied different sizes of threshold b to evaluate the performance 559

of Gomez et al. [83] constructive heuristic model in a realistic scenario where the solution 560

is constructed by adding promising elements one by one until the required capacity was 561

reached and compare it to a random scenario where the solution is randomly selected from 562

a list of elements until all the required capacity was covered. 563

Figure 7. Potential Facilities Location.

4.1. Computational Results 564

In this section, we demonstrate the outcome of a real numerical experiment using 565

the constructive heuristic methodology Gomez et al. [83], which we then compared to 566

a random scenario. The experiment was carried out on a standard computer. A single 567

instance with 45 unique facility locations and a different capacity threshold was run 30 568

times with different random seeds. Each threshold is defined on m percentage of total 569

capacity and m ∈ {0.2, 0.4, 0.6, 0.8}, that is based on the city’s traffic state, where 0.2 for 570

very fluid, 0.4 in a fluid state, and 0.6, 0.8 for the dense and very dense situation. Figure 8 571

depicts the outcome of employing the constructive heuristic in a highly dynamic traffic 572

situation. In this situation, where there are fewer devices to connect to the facilities, the 573

constructive heuristic algorithm used seven facilities that are not particularly close to one 574

another to cover the required capacity. However, as the situation becomes fluid, the number 575

of facilities chosen increases Figure 9. Figure 10 and Figure 11 show that the algorithm 576

chose 24 and 34 facilities in the dense and very dense states, respectively, to cover the entire 577

required demand while maximizing the minimum distance between each of them. 578

Furthermore, in order to evaluate the effectiveness of the constructive heuristics 579

in real scenarios, Table 2 compares the performance of the random scenario and the 580

constructive heuristic scenario with various thresholds based on the city’s traffic sit- 581

uation. The instance was run 30 times with different random seeds and the compu- 582

tational time of both algorithms was less than one second. The gap is calculated as 583

Gap = (random_scenario − constructive_scenario)/random_scenario, since the goal of CDP 584

is to maximize the minimum distance between each pair of facilities while meeting the 585

https://opendata-ajuntament.barcelona.cat/data/en/dataset/bicing/resource/f59e276c-1a1e-4fa5-8c89-8a8a56e56b34
https://opendata-ajuntament.barcelona.cat/data/en/dataset/bicing/resource/f59e276c-1a1e-4fa5-8c89-8a8a56e56b34
https://opendata-ajuntament.barcelona.cat/data/en/dataset/bicing/resource/f59e276c-1a1e-4fa5-8c89-8a8a56e56b34
https://opendata ajuntament.barcelona.cat/data/en/dataset/trams
https://opendata ajuntament.barcelona.cat/data/en/dataset/trams
https://opendata ajuntament.barcelona.cat/data/en/dataset/trams


Version December 24, 2022 submitted to Sensors 16 of 21

Figure 8. Very Fluid, 7 Selected Facilities Figure 9. Fluid, 13 Selected Facilities

Figure 10. Dense, 24 Selected Facilities Figure 11. Very Dense, 34 Selected Facilities

required capacity, a negative distance gap indicates that the algorithm performed better. 586

Table 2 shows a generally better performance of a constructive scenario. Since both scenar- 587

ios had almost the same demand to cover, the constructive procedure used less facilities to 588

cover all required capacities and maximized the distances between each pair of facilities 589

when compared to the random scenario. The highest differences in the average distance 590

are achieved in a very fluid (−43.03%) and fluid (−26.22%) state where the constructive 591

scenario utilized 7 and 13 facilities to satisfy the required demand with the average dis- 592

tances of 3127.12 and 1521.98 meters respectively, while the random scenario used 10 and 593

19 facilities with the distance of 2186.30 and 1205.78 meters. Also, the gap decreased to 594

−19.12% and −4.24% when the traffic state shifted to the dense and very dense situation. 595

When the traffic state changes from very fluid to very dense, a general decreasing trend in 596

solution quality is identified, requiring a high capacity percentage to open more facilities. 597

As a result, the constructive heuristic outperforms the random scenario in terms of meeting 598

the required capacity with the fewest facilities while maximizing distances between them. 599

Table 2. Comparative results between constructive scenario and random scenario.

Random ScenarioState Avg_Distance [1] Avg_Capacity [2] Avg_facility_Number[3]
Very_fluid 2186.30 56 10
Fluid 1205.78 111 19
Dense 889.56 164 28
Very_dense 658.34 220 36

Constructive Scenario
Avg_Distance [4] Avg_Capacity [5] Avg_facility_Number[6]

Very_fluid 3127.12 55 7
Fluid 1521.98 108 13
Dense 1059.61 163 24
Very_dense 686.28 216 34

Gap
Gap [1]-[4] Gap [2]-[5] Gap [3]-[6]

Very_fluid -43.03% 1.79% 30.00%
Fluid -26.22% 2.70% 31.58%
Dense -19.12% 0.61% 14.29%
Very_dense -4.24% 1.82% 5.56%
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Figure 12 depicts the differences between the random and constructive scenarios, 600

demonstrating that the constructive version clearly outperforms the random version in 601

terms of distance and selecting the number of facilities. 602

Figure 12. Performance of different scenarios.

5. Conclusions 603

In this paper, we discussed the concept of VANET and the existing challenges in 604

this area, we provided a detailed taxonomy for ride sharing, car sharing, VEC, and the 605

traffic improvement application in vehicular networks, where various challenges were 606

mentioned and a detailed solution was discussed. Furthermore, in order to demonstrate the 607

effectiveness of using agile optimization algorithms in the concept of VANET. We combined 608

state-of-the-art algorithms with vehicular networks, using real data from Barcelona’s open 609

data repository, to solve the CDP using constructive heuristics, because the constructive 610

approach is built by adding promising elements one by one until the required capacity 611

is reached. Different values are considered for the threshold capacity based on the city’s 612

traffic level, which was determined as a proportion of the network’s total potential capacity. 613

In order to demonstrate the efficacy of the constructed heuristic in a real-world scenario, 614

we evaluated its performance and compared it to a random scenario. As a result, the 615

constructive heuristic outperforms the random scenario by maximizing distances between 616

facilities while satisfying the required capacity with the fewest facilities. Additionally, 617

increasing the traffic volume from very fluid to very dense resulted in a general downward 618

trend in solution quality and necessitated a high capacity percentage in order to open more 619

facilities. Consequently, using constructed heuristic would improve QoS in VANET by 620

making better use of available resources. 621

In the future, a comparison of this work to the state-of-the-art will be considered. We 622

can also extend it by using predictive models, i.e., machine learning models, to predict facil- 623

ity capacity rather than predetermined capacity and by providing a dynamic model where 624

the threshold changes based on the dynamic situation of the environment. Furthermore, 625

we would like to use a simulator to simulate a realistic scenario of transportation systems 626

with V2X communication and an intelligent roadside unit in order to evaluate the model’s 627

ability to respond adequately to edge node mobility. 628
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Appendices 821

A. List of acronyms 822

Table A1. Abbreviations table.

Abbreviations Definition Abbreviations Definition
AO Agile optimization AODV Ad-hoc on-demand distance vector
A3C Asynchronous advantage actor critic AOI Areas of interest
BR Biased randomization BSS Between-cluster sum of squares

CDP Capacitated dispersion problem CAS Certificateless aggregate signatures
CBR Constant bit rate CTMC Continuous-time Markov

DSCR Debt service coverage ratio DARP Dial-a-ride problems
DSGA Driver social group architecture DRL Deep reinforcement learning

DTS-MDP Double time-scale Markov decision process DDPG Deep deterministic policy gradient
DQN Deep Q networks DDP4V Data dissemination protocol for vehicular networks
ECPP Efficient conditional privacy preservation FTP File transfer protocol
GSB Group signature based HOPs Hop counts
ITS Intelligent transportation system IoT Internet of things
I2I Infrastructure to infrastructure JSS Joint socialness score

KPSD Key-insulated pseudonym self delegation KD Knowledge-driven
LSTM Long-short term memory MANET Mobile ad hoc network
MFD Macroscopic fundamental diagram MCN Maximum connectivity number

MaxMin Maximize the minimum distance MaxSum Maximize the total distance
MaxMinSum Maximize the minimum aggregate dispersion MinDiff Minimize the gap between max and mini of aggregate dispersion

MWT Mean waiting time NS-2 Network simulator version 2
NFV Next forwarder vehicle OBUs On-board units
PSR Packet sending rate PSO Particle swarm optimization
QoS Quality of service RSUs Roadside units
RFID Radio frequency identification SGA Social group architecture

SUMO Simulation of urban mobility SAMA Secure and anonymous mutual authentication
SPVs Service providing vehicles SDN Software-defined networking
TCP Transmission control protocol UDP User datagram protocol

VANETs Vehicular ad hoc networks VEC Vehicular edge computing
V2V Vehicle to vehicle V2I Vehicle to infrastructure
V2X Vehicle to everything VLC Visible light communication

VSGA Vehicle social group architecture VN Virtual nodes
VNLayer Virtual node layer VNAODV Virtual nodes ad-hoc on-demand distance vector

VBR Variable bit rate WiMAX Worldwide interoperability for microwave access
WSS Within-cluster sum of squares UAV Unmanned aerial vehicle
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