404 research outputs found

    Advanced traffic video analytics for robust traffic accident detection

    Get PDF
    Automatic traffic accident detection is an important task in traffic video analysis due to its key applications in developing intelligent transportation systems. Reducing the time delay between the occurrence of an accident and the dispatch of the first responders to the scene may help lower the mortality rate and save lives. Since 1980, many approaches have been presented for the automatic detection of incidents in traffic videos. In this dissertation, some challenging problems for accident detection in traffic videos are discussed and a new framework is presented in order to automatically detect single-vehicle and intersection traffic accidents in real-time. First, a new foreground detection method is applied in order to detect the moving vehicles and subtract the ever-changing background in the traffic video frames captured by static or non-stationary cameras. For the traffic videos captured during day-time, the cast shadows degrade the performance of the foreground detection and road segmentation. A novel cast shadow detection method is therefore presented to detect and remove the shadows cast by moving vehicles and also the shadows cast by static objects on the road. Second, a new method is presented to detect the region of interest (ROI), which applies the location of the moving vehicles and the initial road samples and extracts the discriminating features to segment the road region. After detecting the ROI, the moving direction of the traffic is estimated based on the rationale that the crashed vehicles often make rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are detected using the first-order logic decision-making system. The experimental results using publicly available videos and a dataset provided by the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the proposed methods. Additionally, the main challenges and future directions are discussed regarding (i) improving the performance of the foreground segmentation, (ii) reducing the computational complexity, and (iii) detecting other types of traffic accidents

    Synthesis and Validation of Vision Based Spacecraft Navigation

    Get PDF

    MĂ©thodes de vision Ă  la motion et leurs applications

    Get PDF
    La détection de mouvement est une opération de base souvent utilisée en vision par ordinateur, que ce soit pour la détection de piétons, la détection d’anomalies, l’analyse de scènes vidéo ou le suivi d’objets en temps réel. Bien qu’un très grand nombre d’articles ait été publiés sur le sujet, plusieurs questions restent en suspens. Par exemple, il n’est toujours pas clair comment détecter des objets en mouvement dans des vidéos contenant des situations difficiles à gérer comme d'importants mouvements de fonds et des changements d’illumination. De plus, il n’y a pas de consensus sur comment quantifier les performances des méthodes de détection de mouvement. Aussi, il est souvent difficile d’incorporer de l’information de mouvement à des opérations de haut niveau comme par exemple la détection de piétons. Dans cette thèse, j’aborde quatre problèmes en lien avec la détection de mouvement: 1. Comment évaluer efficacement des méthodes de détection de mouvement? Pour répondre à cette question, nous avons mis sur pied une procédure d’évaluation de telles méthodes. Cela a mené à la création de la plus grosse base de données 100\% annotée au monde dédiée à la détection de mouvement et organisé une compétition internationale (CVPR 2014). J’ai également exploré différentes métriques d’évaluation ainsi que des stratégies de combinaison de méthodes de détection de mouvement. 2. L’annotation manuelle de chaque objet en mouvement dans un grand nombre de vidéos est un immense défi lors de la création d’une base de données d’analyse vidéo. Bien qu’il existe des méthodes de segmentation automatiques et semi-automatiques, ces dernières ne sont jamais assez précises pour produire des résultats de type “vérité terrain”. Pour résoudre ce problème, nous avons proposé une méthode interactive de segmentation d’objets en mouvement basée sur l’apprentissage profond. Les résultats obtenus sont aussi précis que ceux obtenus par un être humain tout en étant 40 fois plus rapide. 3. Les méthodes de détection de piétons sont très souvent utilisées en analyse de la vidéo. Malheureusement, elles souffrent parfois d’un grand nombre de faux positifs ou de faux négatifs tout dépendant de l’ajustement des paramètres de la méthode. Dans le but d’augmenter les performances des méthodes de détection de piétons, nous avons proposé un filtre non linéaire basée sur la détection de mouvement permettant de grandement réduire le nombre de faux positifs. 4. L’initialisation de fond ({\em background initialization}) est le processus par lequel on cherche à retrouver l’image de fond d’une vidéo sans les objets en mouvement. Bien qu’un grand nombre de méthodes ait été proposé, tout comme la détection de mouvement, il n’existe aucune base de donnée ni procédure d’évaluation pour de telles méthodes. Nous avons donc mis sur pied la plus grosse base de données au monde pour ce type d’applications et avons organisé une compétition internationale (ICPR 2016).Abstract : Motion detection is a basic video analytic operation on which many high-level computer vision tasks are built upon, e.g., pedestrian detection, anomaly detection, scene understanding and object tracking strategies. Even though a large number of motion detection methods have been proposed in the last decades, some important questions are still unanswered, including: (1) how to separate the foreground from the background accurately even under extremely challenging circumstances? (2) how to evaluate different motion detection methods? And (3) how to use motion information extracted by motion detection to help improving high-level computer vision tasks? In this thesis, we address four problems related to motion detection: 1. How can we benchmark (and on which videos) motion detection method? Current datasets are either too small with a limited number of scenarios, or only provide bounding box ground truth that indicates the rough location of foreground objects. As a solution, we built the largest and most objective motion detection dataset in the world with pixel accurate ground truth to evaluate and compare motion detection methods. We also explore various evaluation metrics as well as different combination strategies. 2. Providing pixel accurate ground truth is a huge challenge when building a motion detection dataset. While automatic labeling methods suffer from a too large false detection rate to be used as ground truth, manual labeling of hundreds of thousands of frames is extremely time consuming. To solve this problem, we proposed an interactive deep learning method for segmenting moving objects from videos. The proposed method can reach human-level accuracies while lowering the labeling time by a factor of 40. 3. Pedestrian detectors always suffer from either false positive detections or false negative detections all depending on the parameter tuning. Unfortunately, manual adjustment of parameters for a large number of videos is not feasible in practice. In order to make pedestrian detectors more robust on a large variety of videos, we combined motion detection with various state-of-the-art pedestrian detectors. This is done by a novel motion-based nonlinear filtering process which improves detectors by a significant margin. 4. Scene background initialization is the process by which a method tries to recover the RGB background image of a video without foreground objects in it. However, one of the reasons that background modeling is challenging is that there is no good dataset and benchmarking framework to estimate the performance of background modeling methods. To fix this problem, we proposed an extensive survey as well as a novel benchmarking framework for scene background initialization

    Audio-coupled video content understanding of unconstrained video sequences

    Get PDF
    Unconstrained video understanding is a difficult task. The main aim of this thesis is to recognise the nature of objects, activities and environment in a given video clip using both audio and video information. Traditionally, audio and video information has not been applied together for solving such complex task, and for the first time we propose, develop, implement and test a new framework of multi-modal (audio and video) data analysis for context understanding and labelling of unconstrained videos. The framework relies on feature selection techniques and introduces a novel algorithm (PCFS) that is faster than the well-established SFFS algorithm. We use the framework for studying the benefits of combining audio and video information in a number of different problems. We begin by developing two independent content recognition modules. The first one is based on image sequence analysis alone, and uses a range of colour, shape, texture and statistical features from image regions with a trained classifier to recognise the identity of objects, activities and environment present. The second module uses audio information only, and recognises activities and environment. Both of these approaches are preceded by detailed pre-processing to ensure that correct video segments containing both audio and video content are present, and that the developed system can be made robust to changes in camera movement, illumination, random object behaviour etc. For both audio and video analysis, we use a hierarchical approach of multi-stage classification such that difficult classification tasks can be decomposed into simpler and smaller tasks. When combining both modalities, we compare fusion techniques at different levels of integration and propose a novel algorithm that combines advantages of both feature and decision-level fusion. The analysis is evaluated on a large amount of test data comprising unconstrained videos collected for this work. We finally, propose a decision correction algorithm which shows that further steps towards combining multi-modal classification information effectively with semantic knowledge generates the best possible results

    Multi-Object Tracking by Flying Cameras Based on a Forward-Backward Interaction

    Get PDF
    The automatic analysis of images acquired by cameras mounted on board of drones (flying cameras) is attracting many scientists working in the field of computer vision; the interest is related to the increasing need of algorithms able to understand the scenes acquired by flying cameras, by detecting the moving objects, calculating their trajectories, and finally understanding their activities. The problem is made challenging by the fact that, in the most general case, the drone flies without any awareness of the environment; thus, no initial set-up configuration based on the appearance of the area of interest can be used for simplifying the task, as it generally happens when working with fixed cameras. Moreover, the apparent movements of the objects in the images are superimposed to that generated by the camera, associated with the flight of the drone (varying in the altitude, speed, and the angles of yaw and pitch). Finally, it has to be considered that the algorithm should involve simple visual computational models as the drone can only host embedded computers having limited computing resources. This paper proposes a detection and tracking algorithm based on a novel paradigm suitably combining a forward tracking based on local data association with a backward chain, aimed at automatically tuning the operating parameters frame by frame, so as to be totally independent on the visual appearance of the flying area. This also definitively drops any time-consuming manual configuration procedure by a human operator. Although the method is self-configured and requires low-computational resources, its accuracy on a wide data set of real videos demonstrates its applicability in real contexts, even running over embedded platforms. Experimental results are given on a set of 53 videos and more than 60 000 frames

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Fast Objective Coupled Planar Illumination Microscopy

    Get PDF
    Among optical imaging techniques light sheet fluorescence microscopy stands out as one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. This potential is especially poignant for neuroscience applications due to the fact that interactions between neurons transpire over mere milliseconds within tissue volumes spanning hundreds of cubic microns. However current-generation light sheet microscopes are limited by volume scanning rate and/or camera frame rate. We begin by reviewing the optical principles underlying light sheet fluorescence microscopy and the origin of these rate bottlenecks. We present an analysis leading us to the conclusion that Objective Coupled Planar Illumination (OCPI) microscopy is a particularly promising technique for recording the activity of large populations of neurons at high sampling rate. We then present speed-optimized OCPI microscopy, the first fast light sheet technique to avoid compromising image quality or photon efficiency. We enact two strategies to develop the fast OCPI microscope. First, we devise a set of optimizations that increase the rate of the volume scanning system to 40 Hz for volumes up to 700 microns thick. Second, we introduce Multi-Camera Image Sharing (MCIS), a technique to scale imaging rate by incorporating additional cameras. MCIS can be applied not only to OCPI but to any widefield imaging technique, circumventing the limitations imposed by the camera. Detailed design drawings are included to aid in dissemination to other research groups. We also demonstrate fast calcium imaging of the larval zebrafish brain and find a heartbeat-induced motion artifact. We recommend a new preprocessing step to remove the artifact through filtering. This step requires a minimal sampling rate of 15 Hz, and we expect it to become a standard procedure in zebrafish imaging pipelines. In the last chapter we describe essential computational considerations for controlling a fast OCPI microscope and processing the data that it generates. We introduce a new image processing pipeline developed to maximize computational efficiency when analyzing these multi-terabyte datasets, including a novel calcium imaging deconvolution algorithm. Finally we provide a demonstration of how combined innovations in microscope hardware and software enable inference of predictive relationships between neurons, a promising complement to more conventional correlation-based analyses
    • …
    corecore