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Abstract

The sensory input from the entire visual field carried through the optic nerve to the 
visual system could exceed the processing capabilities of the cortex. Focalisation towards 
specific areas of interest represents the natural coping mechanism of processing exclu-
sively the relevant part of the visual field. State-of-the-art mainstream artificial vision, 
relying on frame-based cameras and convolutional neural networks, exploits the current 
availability of computational resources but falls short when the visual system has to be 
deployed in compact, autonomous systems that cannot rely on external access to comput-
ing devices. This leads to the following questions: Can we reduce computational load via 
bioinspired visual attention mechanisms? Can a robot take advantage of the same atten-
tional mechanisms to quickly interact with the environment? This work addresses these 
questions by bridging the gap between biologically inspired vision sensors and models of 
attention and resulted in the implementation of an event-driven model of attention on the 
humanoid robot iCub.
Biologically inspired event-driven vision sensors are loosely inspired by the retina parvo 
magno-parvo and magnocellular pathway, reacting to changes in the field of view. They 
reduce the redundancy of the visual signal related to static stimuli and produce a stream 
of spikes that encode information similarly to biological neurons. Biologically inspired 
models of visual attention explain which mechanisms drive the selection of salient stimuli 
in the visual input. To test the assumption that biologically inspired vision sensors coupled 
with attention models can be exploited to select relevant stimuli for a robot, I selected three 
main event-driven bottom-up feature extraction channels fed into a biologically plausible 
saliency model based on the Gestalt theory of perceptual grouping. Intensity, disparity 
and motion are the first information cues of this project towards a more complex attention 
model where the channels compete with each other to represent the scene.
My work demonstrated the applicability of biologically plausible event-driven saliency-
based visual attention models for iCub. These models can run online and on neuromorphic 
platforms proving the possibility of exploiting fully bioinspired pipelines to determine vi-
sual attention cues with low latency. 
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Chapter 1

Introduction

1.1 Motivation

This work seeks inspiration from the complex mechanisms nature has found to solve 
daily tasks throughout evolution. To make decisions for its life, an agent needs to process 
the information about the surroundings through perception. A sudden smell, sound or 
movement could lead an agent to escape from predators or look for food. In particular, the 
majority of mammals rely on the visual system to sense the environment [3]. Although 
the visual system is a complex structure where sophisticated mechanisms work to perceive 
the scene, processing all the external stimuli is too computationally demanding. Attention 
allows focusing on a specific area elaborating only on what is ”important” for a specific 
task [4].
A robot working in an unconstrained scenario can take advantage of attention mechanisms 
exploiting bioinspired algorithms to reduce computational loads and latency. Specifically, 
this work wants to exploit smart solutions such as visual attention mechanisms allowing a 
”natural” and fast response of the robot to external stimuli. The aim of my work is to create 
a fully bio-inspired pipeline for the humanoid robot iCub [2](see Figure 1.1) by bridging 
biologically plausible models of attention with biologically inspired (or ”neuromorphic”) 
hardware for sensing and processing. The synergy between neuromorphic algorithms and 
bioinspired hardware is the focal contribution of this project, made possible thanks to a 
pair of a new generation of neuromorphic cameras [5] mounted on the iCub platform and 
processing hardware [6] providing the perfect basis to explore spike-based models. In the 
brain, neurons communicate via neuron spikes (action potentials) transmitting the infor-
mation through spike trains thanks to the synaptic connections. This thesis is a starting 
point for more complex bio-inspired attention models seeking to prove the reliability of 
fully biologically plausible systems reducing the amount of data to be processed and the 
latency to obtain a response from the model, supporting the development of artificial sys-
tems capable of swift interaction within an unconstrained environment.
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Figure 1.1. Figure of iCub, the humanoid robot focusing on an object. iCub is one of the main research 
platforms used in embodied cognition research [1], it has been created for research purposes, it is 104 cm 

tall with sophisticated hands and in the form of a child. One version of the robot is the neuromorphic 
iCub [2], equipped with bio-inspired cameras and event-driven skin. (Further information 

https://icub.iit.it/)

1.2 Scope

Nowadays, the possibility to live in a world where robots are among us starts to be a 
reality. Robots can autonomously solve daily tiring tasks improving our lives. The intent 
behind this work is to exploit visual attention mechanisms to allow a robot to perceive ex-
ternal stimuli focusing only on salient regions of the scene, granting a response in a time 
comparable to perform a saccade ( 200ms [7], [8]). To do so, I explored the opportunity 
to tailor models of attention based on computational principles observed in the brain, with 
neuromorphic sensing and processing hardware. Despite being inspired by biology, the 
attention model inspiring this project relies on an artificial input, i.e. static images that 
are very far from the signals the brain receives. The motion detector instead encodes in-
formation in a way that is closer to biology, relying on spikes and their spatiotemporal 
distribution. The real problem this project faced is understanding if biologically plausible 
saliency-based attention models could realistically take part in a complex attention schema 
for a humanoid robot.
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Figure 1.2. Schematic representation of the three channels: intensity (Event-Driven Proto Object model 
and Spiking-based Proto Object model), depth (Event-Driven 3D Proto Object model) and motion 

(Eccentric Spiking Elementary Motion Detector). The contribution of each channel will be modulated to 
obtain the final saliency map.

iCub is an open-source research platform designed to test the embodied cognition hypoth-
esis where the internal model of the world is strongly determined by the form of the body. 
Developing an attention-based model on iCub allows easy integration with bioinspired al-
gorithms and hardware. It may be expected that, the use of bioinspired and neuromorphic 
hardware such as SpiNNaker [6] and the ATIS sensors [5] in combination with biological 
pipelines [9]–[11] should lead to a reduction of data load with a consequential reduction 
in power consumption and computational time allowing a quick and ”natural” response 
from the robot [12].
Neuromorphic hardware does not guarantee the scalability of big complex networks with 
a high number of neurons demanding for a challenging scientific question. In recent years 
bioinspired and neuromorphic systems with extreme low latency have proven to be suitable 
for several different applications [13]–[18]. These bioinspired systems have not yet been 
explored for a biologically inspired pipeline building an attention model for a humanoid 
robot like iCub.

1.3 Thesis Outline

The world is full of visual stimuli needing for a quick response from agents to allow 
interaction or avoidance. The urgency for robots, living in an unconstrained environment, 
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to be attentive to their surrounding becomes crucial. Visual attention mechanisms are 
the core of this project to the basis of the human selection of salient regions (Ch. 1.4). I 
have focused my work on saliency-driven (bottom-up) models of attention. These models 
reproduce non-bioinspired and bioinspired models to obtain a saliency map of the scene 
(Ch. 1.4.1). The originally proposed models were purely feature-based disregarding the 
feature integration as a key role in attention [19] further missing human perceptual group-
ing theories. Human beings instinctively group items in the scene following perceptual or-
ganisation theories introduced by the Gestalt principles (Ch. 1.4.2). These theories clearly 
illustrate the importance of border ownership in perception subsequently demonstrated as 
existent mechanisms in the Secondary Visual Cortex (see Ch. 1.4.3). The Gestalt theories 
and the presence of Border Ownership cells in the cortex inspired scientists towards bi-
ologically plausible saliency-based proto-object attention models, defining a proto-object
as an area of the visual field where potentially there is an object (Ch. 1.4.4).
This Thesis project relies on the implementation of a fully bioinspired attention system 
on neuromorphic hardware (Ch. 1.5) where different channels of information pursue the 
research of salient regions of the scene. These three channels of information are intensity 
(see Ch. 2 and Ch. 3), depth (see Ch. 4) and motion (see Ch. 5). Each chapter describes 
a single channel showing results, performances and limitations of the resulting attention 
model. These channels represent the first attempt towards a more complex attention model 
where the saliency map is given by the interpretation and modulation of these parallel 
channels of information cues (see Figure 1.2).

1.4 Attention Mechanisms

‘Everyone knows what attention is. It is the taking possession by the mind, in clear 
and vivid form, of one out of what seem several simultaneously possible objects or trains 
of thought. Focalization, concentration, of consciousness are of its essence. It implies 
withdrawal from some things in order to deal effectively with others’ [20]. Agents, be they 
biological (animals) or technological (robots) thrown into a complex environment need 
to organise their sensory input in an efficient way, to allow efficient exploration of their 
surroundings and exploitation of their resources. The exploration of the environment to 
interact with the surroundings implicitly involves the mechanism of visual-spatial atten-
tion and alertness.
Visual attention can be subdivided into intensive and selective phenomena. The state of 
alertness or arousal can be defined as an intensive phenomenon, while the ability to orient 
visual attention to a particular region of the scene is described as selective mechanism. 
Since the agent’s computational capabilities are limited, this requires careful allocation of 
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Figure 1.3. Scan path and fixation map. a) Photo of the 20th century psychologist Alfred Yarbus shown to 
human observers. b) Trace of eye movements (scan path) from one observer overlaid onto the image. Note 
frequent dwelling of gaze on eyes and mouth. c) Fixation map of the scene. The intensity of the coloured 
overlay represents the amount of fixation time received across all observers. All three figures are adapted 

from Tatler et. al.[23] licensed under CC BY-NC-ND 3.0.

perceptual and cognitive resources [21]. The study of this process goes back to antiquity 
when, in the 5th century AD, Augustine of Hippo studied how attention is attracted by 
different events [22].
The selection of interesting regions of the scene typically leads to the shift of attention 
towards the target.

The mechanism covert of mental attention shift without a physical eye movement is 
known as covert attention, whilst directing the eyes towards the salient point is called overt 
attention. The selection of interesting items is still a complex open topic. Overt attention 
has been explored focusing the research on the mechanisms behind the human saccades 
towards a particular target.
Substantial progress was made in the 1960s by Alfred Yarbus [24] who constructed a rudi-
mentary eye tracker that made it possible to record the eye movements of subjects looking 
at paintings, photographs, etc. The aim, yet again, was to discern what attracts attention 
and therefore, to determine which parts of a scene humans fixate on. The outcome empha-
sised the complexity of this topic: attention is a result of the complex interplay between the 
extraction of features from the scene as well as task-driven mechanisms. In some cases, 
the subjects were attracted by the edges of a profile, in others by the animal in the distance, 
and in others by the eyes and the mouth of a person. Overall, the subjects were interested 
in regions of the picture that were explanatory of the scene, giving more information to 
the observer [25]. For the stimuli that Yarbus chose, the gaze patterns depended heavily 
on the task (”top-down attention”) and, to a lesser extent, on parts of the scene that were 
characterised by their intrinsic salience, defined as being low-level stimulus characteristics 
without high-level semantic meaning (”bottom-up attention”). In all cases, images were 
not processed as structure-less collections of visual features; instead, visual scenes are or-
ganised in terms of objects, and attention can be directed preferentially to them [26].
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The trajectory of eye movements is called the scan path for a given picture and for one 
observer. Averaging them either over multiple scan paths of one observer or over those 
of multiple observers, or both defines the mean scan path that is used to draw conclu-
sions about attentional processes. Points of the scene where the observer was focused on 
a particular target determine a fixation. The collection of all the fixations is then called a 
fixation map, (see Figure  1.3). The amplitude in each point of this map is proportional to 
the time spent during fixation at the corresponding point of the image, i.e. the intensity of 
overt attention to this point. It has been known for more than a century that overt attention 
can be distinguished from covert attention, defined as moving attention directed towards 
different parts of the visual input without moving the centre of gaze towards them [27]. Al-
though overt and covert attention can be dissociated [28], [29], they are generally assumed 
to be strongly and positively correlated during normal viewing [30]–[33]. Parkhurst et. 
al.[34] therefore suggested evaluating computational models of covert attention by test-
ing their predictions against observed eye movements, a convenient procedure which has 
become the standard method in the field [35]. The shift of the gaze depends on internal 
desires/personal goals or external stimuli [36]. The bottom-up process extracts features 
from the scene perceptually organising alerting the agent of possible salient items. Top-
down mechanisms come to play in modulating the bottom-up signals when the task is 
clearly defined [37]. A robot can similarly take advantage of basic attention behaviour as 
a paradigm to interact with the surroundings. Furthermore, it can be the foundation for 
more complex real-time behaviours, combining alertness with actions in response to an 
incoming stimulus, or simply reaching interesting items in the surrounding.
The evaluation of saliency-based models via human fixation maps is not only important 
behavioural research to emulate intelligent human-like eye movements that can improve 
the naturalness in social-robot interaction [38][39], but it is also important to orient the 
robot towards regions of the visual scene that are likely to be relevant in downstream tasks 
like segmentation, tracking and subsequent interaction.
Attention in robotics scenarios has been already tackled, providing perception to robots 
for social interaction tasks with humans [40] directing the robotic gaze towards specific 
regions of the scene using a face detector, colour and motion cues. This model attempts 
to combine top-down and bottom-up cues generating a map influenced by the habituation 
function allowing the robot to switch from one task to another one when it is habituated
to a specific task. This model proposes a set of possible chosen ”Strategies” defining a 
priori a set of possible behaviours precluding an autonomous unconstrained exploration 
and interaction with the surrounding.
Attention mechanisms are exploited also to distribute processing from different feature 
extractions to provide a real-time response, moving a humanoid robot head, linearly com-
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bining several conspicuity maps to generate a final saliency map [41]. This bottom-up 
model also claims top-down effects weighting the contribution of the conspicuity maps. 
The focus of this model is the parallel processing using a computer cluster architecture 
with 8 PCs that allows for proper distribution of the high computational load of the model.
Similar attention approaches have been applied using saliency maps for an anthropomor-
phic robot [42]. This work, focused on the interplay between the oculomotor control and 
the visual processing integrating cues from vision, audition, haptics, and also top-down 
volitional inputs to allow overt visual attention. The sensory processing module feeds into 
the motor planning block subsequently generating a motor command. The system includes 
an ’Interaction Issue’ computation maintaining the frame of reference once the robot’s eyes 
move towards a target. In this work, spatially localised stimuli compete to become the next 
saccade target using a Winner-Take-All (WTA) mechanism representing the salient target 
worthy of attention.
A different work proposes a bottom-up attention system moving iCub’s eyes based on vi-
sual and acoustic saliency maps exploiting an inhibition-of-return mechanism allowing the 
robot to explore seeking new salient regions [43].
The model computes saliency pre-filtering the image input extracting fundamental visual 
features (intensity, colour, motion and hue) and detecting the location of the sound source. 
The saliency map is then generated extracting the maximum value across all saliency chan-
nels at each location. This model moves iCub’s eyes only using exploratory behaviour 
without taking into account a target task or situation-driven behaviour.
Another bioinspired model proposed for iCub combines orientation, contrast and flicker 
are combined over different scales, producing a saliency map allowing the robot to focus 
its attention on salient regions of the scene [44]. This model exploits the low latency due 
to bio-inspired cameras mounted on iCub dramatically decreasing the amount of data to 
be processed thanks to the reduction of redundant information. Furthermore, the system 
takes advantage of the attention system to detect interesting parts of the scene processing 
only relevant regions rather than the whole field of view. A saliency-based method signif-
icantly decreases the number of further computations, processing only interesting parts of 
the scene instead of analysing the entire visual field.
None of the mentioned attention models takes into account depth perception as an impor-
tant feature to determine interaction with the environment. Depth plays a key role in the 
interpretation of the scene, and vice versa attention takes part in the initiation of the three-
dimensional interpretation [45]. Furthermore, depth perception allows robots to safely 
explore the environment. These models are characterised by high computational loads 
and lack of important aspects for robotic attentional systems such as depth perception to 
reach specific targets or running online on the robot for real-time responses. Already in 
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1988 Clark et al. proposed a saliency-based motion control system to fixate specific 3D 
locations using depth as a further feature of the model [46]. Years later, Pahlavan et al. 
focused on the ’fixation vergence control’ problem stating which portion of the image a 
robot should fixate on [47]. Moreover, in 2005, Neil and Tsotsos incorporated binocu-
lar disparity in a selective turning attention system prioritising features using biases [48]. 
Another work from Pasquale et al. has studied attention exploiting disparity-based seg-
mentation using frame-based cameras on the iCub humanoid robot [49]. Motion is another 
important cue for attention mechanisms, either in selective attention tracking an object or 
avoiding an obstacle in an alert state. Motion is strongly modulated by attention mecha-
nisms, especially in actions perception and recognition [50]. Motion perception has proven 
to shift the focus of attention during attentive tracking [51] and attract attention even when 
the motion per se is not informative [52]. Motion attention models have been proposed 
for video skimming [53], video captioning [54] or to predict human motion exploiting a 
feed-forward network comparing motion sub-sequences. Li et al. proposed an interesting 
pipeline for visual salient object detection using motion as a cue [55]. Motion attention al-
gorithms have proven to be effective also for robotic applications where robotic movement 
depends on subjects’ attention [56]. What seems missing in the literature is a bottom-
up saliency-based attention schema exploiting a fully bioinspired pipeline where different 
cues cooperate to provide saliency in natural scenes seeking low latency allowing a ”nat-
ural” response from humanoid robots.

1.4.1 Saliency-based models

During decades of attention studies, several attention models have been proposed and ex-
ploited for their characteristics to reduce the computational load focusing the processing 
only on salient regions of the scene. Saliency-based models share three main processes: 
the extraction of the features, the computation of the individual feature maps and the in-
tegration and/or competition to generate the final saliency map of the scene [57]. The 
saliency map can be used for various purposes, such as visual searching for selective at-
tention [58], object recognition [59], tracking objects [60] proving the applicability of 
saliency-based models to define Regions of Interests (ROIs) for further localised process-
ing. The work described in [60] in particular, is based on a recurrent neural network 
outperforming classical convolutional networks without the need to train the network.
Na Tong et al. [61] instead, proposed a saliency-based model tackling the noise reduction 
problem by generating two different saliency maps, weak and strong. This model learns 
the saliency via bootstrap learning including the centre bias phenomenon [62]. Attention 
models have also been proposed for human fixation prediction exploiting deep neural net-
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works to predict saliency [63]. The saliency-based approach has been exploited also for 
robotic applications [64], [65] where iCub moves eyes and neck depending on bottom-up 
saliency multimodal model with visual and acoustic cues [43]. Given the complexity of 
these models, a fast approximation for visual saliency by Butko et al. [66] was proposed 
to reduce the heavy computations in saliency-based approaches to quickly orient robotic 
cameras toward human faces. A reinforcment learning saliency-based algorithm was pro-
posed to guide an unmanned aerial vehicle through obstacle avoidance [67]. During years 
of attention studies, bioinspired saliency-based models have been developed exploiting 
bioinspired mechanisms to emulate neurons for visual attention tasks [68]–[72]. Mech-
anisms of selective attention have been further implemented by exploiting the benefit of 
neuromorphic circuits [73], [74]. One of the cornerstones of these models has been pro-
posed by Itti and Koch [33]. This model extracts features (colour, intensity and orientation) 
from the visual input. These three channels of information compete with each other ex-
ploiting the WTA mechanism to represent the scene producing a final saliency map. Later 
on, the same authors describe five trends arisen in computational models of visual atten-
tion: saliency critically depends on the context, a unique ‘saliency map’ is an efficient and 
plausible bottom-up control strategy, inhibiting currently attended location (inhibition of 
return) is crucial for attentional deployment, attention and eye movements work together 
and the understanding of the scene and object recognition seem to constrain the selec-
tion of attended locations [75]. These models extract data from the scene disregarding the 
integration within features ruling the perceptual organisation of items in the visual field.

1.4.2 Gestalt laws

”The whole is other than the sum of the parts.” This sentence, by Kurt Koffka, represents 
the meaning behind the Gestalt theory born in the early 20th century [76]. Gestalt princi-
ples try to explain how human beings perceive the world reducing complex scenes into sim-
ple shapes, counteracting the dominant structuralist view. The structuralism, described by 
the work of Wilhelm Wundt, Edward B. Titchener and Hermann von Helmholtz [77],[78], 
conceives the idea that complex items, ideas or thoughts, therefore any complex matter 
is always built from simple elements. Gestalt is a German word for ”form” and ”shape” 
and is used nowadays to describe the way a thing ”has been put together”. There is no 
exact equivalent in English. In psychology, the word is often interpreted as “pattern” or 
“configuration”. Max Wertheimer, Kurt Koffka and Wolfgang Kohler refer to the word 
”Gestalt” also as ”unified whole” devising the Gestalt principles for the first time.
The eyes perceive shapes, a multitude of elements as a whole, perceptually grouping items 
in the scene. The intrinsic content of an item, whether it is perceived or imagined, is de-
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scribed from a set of sensations and images associated with that specific object. Therefore, 
the perception of items is the result of the sensations together with the images representing 
the item. The perceptions of shapes and patterns begin with fundamental local sensations. 
These shapes and local sensations work together to create the mental representation of 
the object. Helmholtz suggested that the idea we have in mind of an item carries on the 
information about the structure. For example, the structural idea we have of a table is 
built exploiting what we would expect to see from another viewpoint [79]. The Gestalt 
theory, suggests the perception as an effect of the stimulus configuration, disregarding pre-
vious hypotheses suggesting the perception of an item as an aggregation of local stimulus 
properties. In opposition to this theory, Hearing [80] and Mach [81] previously debated the 
perception of an item as due to specific neural interactions at the lowest level of the sensory 
system directly perceiving the properties. Ehrenfels [82], the author of the Gestalt quali-
ties, finally explained the attribute of the whole configuration, adding the Gestalt qualities
in the list of sensory primitives. The perception of an object is not only the combination 
of simple elements, its visual form is perceived also changing size, colour, orientation and 
etc.
Gestalt theory involves a series of different laws describing our ability to perceive the sur-
roundings finding order in the disorder of the external stimuli. Four of these principles are 
known to be the most famous ones:

• Closure (Reification) or Continuity: We automatically fill gaps when looking at 
elements to perceive the complete image searching for the whole.

• Common Region: Elements belonging to the same closed region are grouped.

• Figure-Ground: We search for stable items to identify a figure segmenting the fore-
ground from the background.

• Proximity: We group items based on their distance from each other. Items next to 
each other are more likely to be grouped together.

These mechanisms contribute together to the grouping of visual features into coher-
ent objects [83]. Gestalt psychology further introduced the concept of border ownership 
in perceptual organisation highlighting the importance of discriminating items from the 
background.
These theories inspired scientists exploiting Gestalt laws to build models for robotic vi-
sion [84]–[86]. In the last decade, more recent work has been focused on the border own-
ership perceptual organisation using kernels to model feature extraction [9], [87]–[89] and 
figure-ground segmentation [90].
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Figure 1.4. Rubin illusion, referred as ”The Two Face, One Vase Illusion”, where depending on the border 
assignment the content of the image swaps from a vase to two faces inf front of each other [91]

1.4.3 Border Ownership cells

In mammals, and some particular insects like Praying Mantis the perception of the three-
dimensional space starts from the two-dimensional retinal images. To interact with the 
items in the scene, an agent needs to visually organise the perceived visual information 
acquired. The shape of an item is defined by the borders that allow one to distinguish it 
from the background. Gestalt psychologists were the first scientists to understand the im-
portance of border ownership in perception, defining the need for an agent to distinguish 
the foreground from the background. Edgar Rubin proved how the detection of an item 
in the scene depends strongly on the border assignment process during the perceptual or-
ganisation of the visual information received [93]. The illusions proposed by Rubin (see 
Figure 1.4), where the content of the image changes depending on the border assignment, 
became a popular description for the figure-ground segmentation mechanism. There is no 
computational solution able to beat the visual system extracting features from the scene 
and solving the figure-ground task with the same robustness and reliability of the primate 
visual system [94], [95]. In 2000, Zhou et. al [92] found neurons in the visual cortex 
firing only if an edge belonged to an item as foreground (see Figure 1.5). The same cell 
mechanisms have been found in the human visual system [96] with strong evidence of 
dependence on attention mechanisms [97]. These cells are in the Secondary Visual Cor-
tex (V2) with a significant connection to higher-level cortical areas [97]. Williford and 
von der Heydt [98] describe the Border Ownership (BO) cells coding reviewing the latest 
studies. These cells do not depend only on the local features detected in their receptive 
field but they strongly depend on the context. In recent studies, scientists tried to under-
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Figure 1.5. Representation of the firing rate of a Border Ownership cell in the Secondary Visual Cortex in 
monkeys [92]. The stimuli present a square as foreground and a background of a contrast colour (white 
and gray). The small black ellipse represents the orientation and the location of the receptive field. For 

each graph (A),B),C)&D) the raster plots show the response of the cell at the start of the fixation moment, 
where each row represent a different trial. The cell significantly responded when the edge belongs to the 
foreground on the left (A) and B)) and it poorly responded when the edge belonged to the square on the 

right (C) and D)). Figure adapted from Zhou et al. [92] under CCBY4.0.

Figure 1.6. Representation of the Von Mises filter (0°) used in the Border Ownership layer to detect close 
contours.
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stand how these cells modulate their action together with high-level cortex mechanisms 
proposing a hierarchical model with recurrence and lateral modulation respectively with 
the dorsal and the ventral stream [99]. The dorsal stream in the parietal lobe, also called 
”where pathway” is the area of the cortex where objects are spatially located. The ven-
tral stream, also called ”what pathway” corresponds to the temporal lobe areas, where an 
object is identified and recognised. In the work proposed by [99] they show evidence of 
BO dorsally-modulated simulated signal similar to the biological counterparts. The re-
sponse is invariant to size, position and solid/outlined figures explaining the processing of 
contours in high-level areas of the cortex. The Border Ownership cells provide compo-
nents of the perceptual organisation of the scene suggesting hypothetical grouping layers 
of cells using Gestalt laws to pool the information integrating the global contour of figures. 
These mechanisms could explain the higher saliency of areas containing possible objects, 
”proto-objects”.

1.4.4 Proto-object Models

The concept of proto-object has been introduced as ”volatile units” of visual informa-
tion that can be bound into a coherent and stable object when accessed by focused at-
tention” [100], [101]. Early low-level processing defines whether a coherent structure, 
appearing in the retinal field, represents an object. This mechanism happens before the 
focus of attention [100]. The areas of the visual field that could potentially represent an 
object boost attention leading the agent’s gaze towards the proto-object. The same au-
thor who proposed the bioinspired saliency-based model [33] Christof Koch, proposed 
in 2006 together with Dirk Walther a biologically plausible system introducing the proto-
object concept [102]. This model explains how an object can be detected even before being 
recognised within each feature such as intensity, colour and orientation. These features are 
then combined into single conspicuity maps and finally into a saliency map by a compet-
itive mechanism. To estimate the proto-object region, feedback connections trace back to 
the most salient location at the conspicuity maps searching for the maps that contributed 
the most. The same three channels from [33], intensity, colour and orientation, extract 
features from the scene making a bioinspired model exploiting proto-objects to serialise 
object recognition in multi-object scenes [103].
During decades of studies, a proto-object model has been proposed for a humanoid robot to 
learn Gestalt laws [85]. The red, green and blue channels of each input RGB image are sep-
arated to generate colour opponency channels on which the edge extraction is performed. 
A watershed transformation is then applied to generate the proto-object upon which the 
saliency map is calculated. Yanulevskaya et al. [104] proposed a model assigning saliency 
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to the centre of objects rather than over edges using proto-objects extracted with image seg-
mentation algorithms as coherent image regions. Proto-objects are exploited as coherent 
regions of neighbouring superpixels that share a common colour cluster also for clutter per-
ception [105]. In 2014, Russell et al. [9] proposed a specific kernel to detect proto-objects 
following the Gestalt Laws using the same three channels of extraction (intensity, colour 
opponency and orientation). This model is a bottom-up biologically inspired architecture 
to generate a saliency map processing an RGB image as input. The model exploits Gabor 
filters to extract edges from the scene using an energy representation [106], [107] to emu-
late the response from contrast invariant complex cells. To obtain the response from centre 
surround cells the input image is filtered with a difference of Gaussians emulating the ON 
and OFF-center distinguishing light objects on dark backgrounds and dark objects on light 
backgrounds respectively. The processed outputs are then fed into the two main layers of 
the model: Border Ownership Pyramid and Grouping Pyramid. The Border Ownership 
Pyramid uses the Von Mises (VM) filter (see Figure 1.6) in different orientations to detect 
close contours from the scene. The information is then pooled together by the Grouping 
cells in the Grouping Pyramid layer giving saliency to the proto-object ROIs.
The output of the model is a saliency map of the scene, and the response is invariant to 
the size thanks to a classical computer vision pyramid mechanism [108]. This model is a 
baseline to generate the saliency map adding different channels of information to compete 
with each other for the representation of the scene. The work proposed by Russell et al. [9] 
has been extended adding different channels of information where a WTA mechanism se-
lects the most salient region of the saliency map. In 2013, Molin et al. [87] proposed the 
same structure adding the non-directional motion information into the system. Hu [88] 
and Mancinelli [109] added depth perception, respectively using an RGB-D sensor and 
stereoscopic cameras with a number of known correspondence points. During the same 
period, Uejima et al. [89] added the texture information correcting boundaries through a 
bank of Gabor filters, but with a computationally expensive system. Despite these systems 
representing multimodal bottom-up saliency-based approaches, they do not exploit bioin-
spired and/or neuromorphic sensing or processing hardware to produce the saliency map. 
This project takes inspiration from them tailoring a fully bioinspired pipeline to exploit 
low latency for a robotic application requiring a fast reaction from the robot.
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Figure 1.7. a) Event-driven Asynchronous Time-based Image Sensor (ATIS) camera. b Representation of 
the output from a classical frame-based sensor and an event-based sensor to a ball moving across the 

visual field. The image is adapted from [110].

1.5 Neuromorphic hardware

1.5.1 From the human retina to event-driven cameras

The human visual system is a complex organisation of highly structured mechanisms pro-
cessing the light from the pupils and projecting the information to the retinas. The retina 
carries information from the photoreceptors (rods and cones) to the optic nerve. The ma-
jority of the cones are placed densely near the fovea, which allows light perception during 
the day. Rods instead, are sparse around the fovea, allowing us to perceive the presence 
of stimuli in the periphery of the visual field with low resolution, but with high sensitivity 
even in the darkness.
Upon detection of light, photoreceptors release glutamate to the bipolar cells, responsible 
for temporal contrast detection. The information goes then from the bipolar cells to the 
ganglion cells that generate spikes that travel from the retina to the brain. These ’vertical’ 
connections work together with the Horizontal cells and the Amacrine cells (’horizontal’ 
connections), which spatially integrate the information coming from the ’vertical’ cells 
enhancing spatial contrast.
The combination of temporal and spatial integration of contrast changes and light decre-
ments or increments encodes the visual signal associating and aggregating in time and 
space coherent features.
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The human visual system allows seeing over a wide range of light intensities thanks to the 
gain control mechanism of adaptation, scaling the responses of the cells according to the 
ambient light level and shifting along different light intensities to obtain the same sensi-
tivity [111], [112].
The human retina has been an inspiration throughout decades of studies inspiring scien-
tists to build visual neuromorphic sensors loosely mimicking its functions. Lichtsteiner 
et al. [113] came out with a new generation of bioinspired event-driven cameras asyn-
chronously encoding temporal contrast changes at pixel level at a high temporal resolution 
(see Figure 1.7). These cameras locally respond only where a brightness change occurs, 
providing a significant reduction in data, improvement of dynamic range and lower latency. 
The pixels of these cameras react to the contrast change based on a threshold mechanism, 
emitting an event (or spike) represented by the coordinates (𝑥, 𝑦), the polarity (negative 
or positive change in contrast) 𝑝 and the timestamp 𝑡𝑠. The perception of darkness and 
light depends on the contrast of the stimulus and not on the absolute amount of light re-
flected. This exact mechanism happens in the human retina modulated by the gain con-
trol, while the contrast information is detected by the bipolar cells (ON-center and OFF-
center-surround cells) through the lateral inhibition. Event-driven cameras have been used 
throughout the years exploiting their inherent characteristics for low and high-level vision 
algorithms [15] and are particularly suitable also for online robotic applications [114]–
[118].
They have proven to be suitable for many applications such as motion estimation, depth and 
optical flow estimation [119], [120], angular velocity estimation [121] and contour motion 
estimation [122]. These cameras have been used also for neuromorphic and bioinspired 
algorithms for obstacle avoidance, detecting the motion direction [10], [123] or motion 
estimation [124], depth estimation solving the correspondence problem [11], [125] and 
many others.

1.5.2 Neuromorphic platforms

Neuromorphic computing platforms aim at capturing fundamental computational princi-
ples of neural systems. Decades of inspiration from nature have led to the studying of 
neuromorphic circuits inspired by biological principles [126]. Neuromorphic computing 
emulates with analog or digital circuits the nervous system mechanisms. The fundamental 
characteristics are listed below:

• The event-driven sensing is directly elicited by events in the sensory signal.

• The computation happens in the soma of each neuron of the population network.
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• The digital communication of spikes guarantees robust transmission of information.

• The encoding of information exploits the spatio-temporal sequences of spikes, ”spike 
trains” from the network.

• Adaptation and on-chip learning. Feature adaption and learning at different temporal 
scales.

• In-memory computing, memory and computation are co-located.

Every neuron in the nervous system represents the fundamental unit of the brain, com-
posed of an axon, dendrites and soma. Each neuron is able to communicate with neurons 
nearby via electrical signals, called action potentials based on the membrane potential 
changing over time. The classic membrane potential, at the resting state, is around -70 
mV. If the membrane potential depolarises over a certain threshold the cell produces a 
spike. This mechanism represents the basis of the neuronal communication system al-
lowing neurons to communicate with each other transmitting spike trains throughout the 
network.
Already in 1952, Hodgkin and Huxley [127] tried to model the ionic currents through the 
membrane as mathematical descriptions. After this important discovery, several neuron 
models have been proposed and studied, including the most used one: The Leaky Integrate 
and Fire (LIF) neuron [128].
In 1991, Mahowald and Douglas presented a circuit with the functional characteristic of 
a real nerve cell operating in real-time [129] imagining the creation of neurons on sin-
gle chips. Over the years, from Mahowald and Douglas’s HH silicon neuron, different 
platforms have been proposed with different characteristics and aims:

• Analog: Analog neuromorphic circuits depute the computation on physical circuits 
built to emulate a neuron following the characteristic differential equations. The 
global connections among neurons are digitally encoded to allow communication. 
BrainScaleS, BrainScaleS-2, DyNAPS, and ROLLS are the neuromorphic analog 
platforms currently available.
BrainScaleS and BrainScaleS-2 allow fast simulations of large neural networks sup-
porting neuroscience research and online learning. These platforms have accelerated 
computation thanks to the short time-constant to charge the capacitors.
ROLLS and DyNAPS support the implementation of smaller networks in real-time as 
they feature the same time constants of biological neurons. ROLLS supports online 
learning, while DyNAPS can run pre-trained networks supporting temporal adapta-
tion. These platforms have low flexibility due to the physical emulation of the neuron 
and low power consumption thanks to parallel in-memory computing.
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• Digital: Digital neuromorphic platforms simulate the differential equations emulat-
ing neurons. This approach allows full flexibility to change the neuron model pro-
gramming custom neurons behaviours. These platforms offer the possibility to create 
large networks using the cloud for deployment. SpiNNaker, Loihi and SPECK are the 
main examples, whilst SpiNNaker can offer boards with a different number of chips 
(different numbers of neurons to be created), Loihi is more compact and smaller, eas-
ily inserted via a USB input into the computer.
SPECK is the world’s first single-chip smart neuromorphic vision sensor based on 
DYNAP-CNN neuromorphic processor, combining a low-power SNN vision proces-
sor with an event-based sensor.
These platforms are used for general-purpose computing of neuromorphic models.

Neuromorphic computing can be the key to more powerful computers. These platforms 
are extremely capable of reducing latency, promoting parallel computing as opposed to the 
Von Neumann architecture aiding serial computation due to the split of the memory from 
the computation. One important limitation of these platforms is the scalability of big net-
works with a high number of neurons.
The future of neuromorphic platforms is held in the new generation of neuromorphic hard-
ware such as Loihi [130] or DYNAPs [131] that already proved to be suitable for address 
event representation (AER) [132], [133]. All of the platforms support AER. While the 
analog is a promising venue for final deployment, we prefer digital flexibility for model 
exploration. We used SpiNNaker which was available and fully functional at the time of 
my PhD.

1.6 Contribution of this work

Recent literature sees attention mechanisms exploited for several reasons such as clas-
sifying digits taking advantage of a spike-based approach but disregarding a biologically 
plausible pipeline [134], or gesture classification [135] through supervised learning.
The first model [134] integrates event-based visual and auditory signals exploiting a Spik-
ing Neural Network (SNN). The two modalities are split into two separate sub-networks 
where the visual pathway sees several layers of convolution and pooling. The auditory 
modality exploits an architecture with several recurrent fully connected (FC) layers. The 
two modalities are fused by the attention-based cross-modality with an end-to-end training 
scheme for the overall multimodal network.
The latter one [135] describes the combination of bioinspired visual sensors producing 
events to be fed into a SNN using biology-grounded low-level computation. The archi-
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tecture sees a feedforward pipeline with an attention neuron and three layers: the input, 
intermediate and output layers. The intermediate layer processes data only if the atten-
tion neuron is activated, namely the classifier processes only relevant data. This model 
classifies event videos of gestures where each neuron of the output layer learns a specific 
pattern and produces a spike when it is detected. Attention has also been used to judge the 
significance of event frames at the training stage [136] discarding irrelevant frames at the 
inference stage for different recognition tasks: gesture recognition, image classification, 
and spoken digit recognition. This model exploits a temporal-wise attention SNN looking 
for the correlation between event frames focusing on the most informative components of 
the input. All of these models do not take into consideration perceptual rules of perception 
such as the Gestalt laws, but most importantly they claim to focus on relevant parts of the 
scene without validating the results by comparing the saliency maps to the ground truth. 
Human fixational maps can be used to validate the outcome of the model by computing 
the similarity following standard analysis methods in the literature (Normalized Scanpath 
Saliency (NSS), Area under the ROC Curve (AUC-Borji) & (AUC-Judd), Pearson’s Cor-
relation Coefficient (CC) and Similarity (SIM)) [35], [137]–[139]. These metrics judge 
several different aspects of the similarity [140] not allowing a single saliency map to per-
form well on all the metrics and determining how well the model approximates the eye 
fixations.
My idea of exploiting attention mechanisms for iCub is to create a building block for at-
tention models starting from bottom-up approaches including Gestalt rules of visual per-
ception to build up task-dependent mechanisms prioritising one channel at a time or a 
combination of channels. In doing so, the robot would be able to integrate mechanisms 
of alertness or selective attention depending on the scene dynamic. Moreover, the usage 
of biologically plausible pipelines on neuromorphic hardware allows full immersion in 
spike-based structures where redundant information is disregarded. The need for valida-
tion with fixational maps is necessary to understand how far the model reaches the ground 
truth where the task is not defined. Focusing attention is still a complex open topic where 
bottom-up and top-down cues are not well split and easily recognisable [141]. I started this 
project by designing three main channels of information for a basic event-driven saliency-
based attention model: intensity, depth and motion. Intensity is inherently outputted from 
the event-driven cameras providing the information of contrast changes in the scene and 
the polarity associated. Depth is an important cue for attention mechanisms allowing a 
three-dimensional perception of items helping the interpretation of objects [45]. Eventu-
ally, motion plays a key role in being modulated by attention mechanisms during tracking 
and alertness [50], [51]. These three channels of attention represent to me the starting 
point towards a complex attention robotic schema.
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The intensity and the depth channel directly fed into the proto-object model [9] allowing 
the perceptual organisation of the scene exploiting the Gestalt theories. Being an intrinsic 
alertness cue, the motion channel does not input into the proto-object model granting a 
response from the robot to anything approaching with a sustained speed.
The Intensity channel (see Chapter 2) has been implemented based on the RGB biolog-
ically plausible saliency-based model proposed by Russell et al. [9] modifying the input 
for the bioinspired sensors mounted on iCub. The first two layers of processing, edge ex-
traction and detection of contrast, have been completely removed thanks to the inherent 
capabilities of the event-driven cameras to directly provide a similar scene representa-
tion. The model runs online using PyTorch on a GPU providing a saliency map as an 
outcome in 100ms. The model outputs an update of the saliency map every time events 
occur. The biological pipeline has proven to suit the event-based representation for online 
robotic applications showing low latency and reduced power consumption removing layers 
of processing. The system is able to detect proto-objects in different scenarios slightly re-
moving clutter from the scene. Moreover, the saliency map is provided also with dynamic 
scenarios and with fast motion (2000 [px/ms]). The limitation of this implementation is 
the lack of the robustness of the system to maintain attention focused on a specific target.
This system does not take full advantage of the low latency and low power consumption 
of a fully neuromorphic pipeline on a neuromorphic dedicated platform. In this respect, 
the intensity channel has been further investigated by implementing a fully spiking-based 
version (see Chapter 3) of the event-based model using the neuromorphic platform SpiN-
Naker. We changed dramatically the structure of the model to suit a SNN pipeline ex-
ploiting at best the event-based characteristics of the bio-inspired algorithm. The SNN 
architecture exploits populations of proto-object neurons where each neuron encodes the 
output of one VM kernel. The model has different orientations of the VM filter and dif-
ferent sizes ensuring scale invariance to the system. We further benchmarked the output 
validating the model with the ground truth and analysing the qualitative and quantitative 
results. The model shows a great capacity in removing the clutter from the scene, sig-
nificantly improving the outcome with respect to the PyTorch implementation. This im-
plementation proved also a great capability in reducing the latency to 4ms to produce a 
saliency spike output, confirming the relevance of a fully spiking-based pipeline for appli-
cations where the latency of perceptual processing is crucial, such as in robots that need to 
interact smoothly with the dynamical environment. Although these significant improve-
ments, taking inputs from the full resolution of the ATIS cameras implies more than one 
physical SpiNNaker board to run the model. A real robotic application setup requiring 
three physical SpiNNaker boards would be a challenge if the robot would need to be free 
to move in the future. Diversely, the simplification of the system reducing the visual field 
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to fit the model in one board would require a field of view of 50x50 pixels. This approach 
would significantly diminish the visibility of the scene affecting the saliency results. The 
use of neuromorphic platforms in computer vision is still an open problem due to the high 
number of neurons required to cover the full visual field.
The Depth channel (see Chapter 4) has been introduced thanks to the asynchronous event-
based bio-inspired cooperative matching algorithm proposed by Firouzi et al. [11] solving 
the correspondence problem in a multiple objects scenario. The disparity extractor is pro-
viding an online asynchronous disparity map of the scene which has been directly fed into 
the proto-object model [9]. The disparity extractor has been implemented using C++ feed-
ing the PyTorch attention network. The entire system extracts the online disparity map and 
detects proto-objects providing a saliency map in 170ms. In this work, we benchmarked 
the response of the model comparing the outcome with real ground truth fixation maps 
using saliency-based metrics known in the literature. The system proved the capability 
to provide an online response for the robot  feeding into the proto-object model a robust 
disparity map of the scene. Furthermore, the model significantly improved in stability 
avoiding the focus of attention to jump from one proto-object to another one. The event-
driven depth attention model focuses on the closest target as it is the most probable to 
be reached by the robot. The model was able to select the closest proto-object discarding 
non-proto-object items generating more events, also prioritising the proto-object detection 
over closer non-proto-objects.
The Motion channel (see Chapter 5) is implemented using SpiNNaker. This model relies 
on the Spiking Elementary Motion Detector (sEMD) proposed by Milde et al. [10], where 
the consecutive activation of two neighbouring receptive fields in the visual field is used to 
measure motion in a given direction. The implementation of this motion detector builds up 
from the biologically inspired models proposed by Hassenstein and Reichardt [142] and 
Barlow and Levick [143] exploiting the time-to-travel method [144]. The fundamental of 
this system lies in each elementary motion detection unit being selective to motion only 
in one cardinal direction, suppressing motion in the anti-preferred direction1.
The model has been modified to exploit the eccentric structure of the human retina, seeing 
the size of the receptive fields increasing going from the fovea to the periphery.
My contribution to this model is the implementation of an ”eccentric” down-sampling re-
placing the uniform initial down-sampling of the original model. This structure allowed 
a wider speed range detection of moving objects reducing the overall Mean Firing Rate 
(MFR) needed to detect motion direction. The model is yet not robust for complex scenar-
ios opening a crucial problem for the removal of ego-motion in dynamic scenes. Moreover, 

1Time Difference Encoding (TDE) neurons are sensitive to a preferred motion direction. LR (Left to Right), RL(Right to Left), 
TB(Top to Bottom), and BT(Bottom to Top). The anti-preferred direction is opposite to the preferred one (i.e. Right to Left or Left to 
Right)
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the retina structure can be further exploited creating a log-polar representation with an-
gular directions obtaining the angle direction of an incoming entity without making any 
additional computation.
These three channels represent the work done towards a biologically plausible event-driven 
saliency-based attention model on bioinspired sensors and neuromorphic platforms.
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Chapter 2

Proto-object based saliency for 

event-driven cameras
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2.3 Authors Contribution

C.B. and M.I conceived the main idea behind the work with the help of A.G and 
G.D. M.I. developed the code for the event-based proto-object model. M.I. and G.D. de-
signed the experiments with supervision from C.B. and A.G. M.I. and G.D. conducted 
experiments. M.I. and G.D. analysed the experimental results. M.I. and G.D. wrote the 
manuscript with the supervision of C.B, A.G., V.T and E.N. G.D. and V.T. made the sup-
plementary video accompanying this work.

2.4 Abstract

Autonomous robots can rely on attention mechanisms to explore complex scenes and 
select salient stimuli relevant for behaviour. Stimulus selection should be fast to efficiently 
allocate available (and limited) computational resources to process in detail a subset of the 
otherwise overwhelmingly large sensory input. The amount of processing required is a 
product of the amount of data sampled by a robot’s sensors; while a standard RGB camera 
produces a fixed amount of data for every pixel of the sensor, an event-camera produces 
data only for where there is a contrast change in the field of view, and does so with a 
lower latency. In this paper, we describe the implementation of a state-of-the-art bottom-
up attention model, based on structuring the visual scene in terms of proto-objects. As 
an event-camera encodes different visual information compared to frame-based cameras, 
the original algorithm must be adapted and modified. We find that the event-camera’s 
inherent detection of edges removes the need for some early stages of processing in the 
model. We describe the modifications, compare the event-driven algorithm to the original, 
and validate the potential for use on the iCub humanoid robot.

Multimedia Material

Video:https://zenodo.org/record/7112769

2.5 Introduction

Attentional selection is crucial for biological organisms to react to the most important 
stimulus at any given time, like a fast-moving predator from which they must immedi-
ately escape, or a single red apple amongst green foliage. Fast selection is paramount to 
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real-time interaction (and survival) of the system in a dynamic world and enables detailed 
further processing of a small region of the visual input since all of the input cannot be 
fully processed by the brain in real time [145], [146]. Autonomous robots can similarly 
take advantage of attention mechanisms to reduce the computational load for visual pro-
cessing when confronted with the vast amount of information in the world, and choose the 
most appropriate behaviour. As in all resource-restricted systems, in which it is impos-
sible to fully process all sensor information simultaneously, choosing the most important 
sensory signals is important. Attention solves this problem by subdividing visual input 
into segments, identifying the most relevant of these segments, and processing them se-
quentially in the order of decreasing relevance. This process is formalised in the concept 
of the saliency map [147].

To be behaviourally relevant in robotic applications, the computation of the saliency 
map and the selection of relevant stimuli have to be performed in the shortest possible 
time, while minimising the use of computational resources. In a previous study [44], it 
has been demonstrated that using event-cameras [113] meets these targets, substantially 
reducing the latency and the computational cost of the feature-based saliency model ini-
tially proposed in [75]. In that model, the saliency of a stimulus is defined by features 
such as intensity, colour, orientation, etc. However, recent work based on the concept of 
proto-objects proved to better explain perceptual saliency [9]. Proto-objects are regions 
of the scene that potentially correspond to physical objects. This concept of “perceptual 
organisation” of visual scenes derives from the work of early Gestalt psychologists that de-
veloped “Gestalt laws”, e.g. continuation, proximity, and convexity [83]. Russel et. al. [9] 
implemented a subset of such laws into a simple computational model.

Such an approach is relevant for robots that operate within a human environment, as 
it is behaviourally relevant to, e.g., quickly locate potential objects upon which the robot 
can act. The algorithm [9] is divided into three main stages: 1. a centre-surround filter 
enhances the contrast of the stimulus and acts as pre-processing for the extraction of edges, 
2. border ownership cells represent edges and, importantly, signal in their firing rates the 
location of foreground objects relative to the location of their receptive fields, as observed 
in primate extrastriate cortex [92], [98], and 3. grouping cells which respond to regions 
enclosed by several borders, thereby representing the presence of a proto-object [98].

In this work, we adapt the proto-object-based saliency model from [9] to use the visual 
signal provided by an event-camera [5] mounted on the neuromorphic iCub humanoid 
robot [1], to allow the robot to quickly select object candidates and pass only the relevant 
regions of interest (ROI) to further modules to perform the high-resolution processing 
required for recognition, grasping and manipulation.
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Event-cameras have more recently gained interest for robotics applications. They have 
been designed to capture the stimulus-driven activation of retinal cells, meaning that each 
pixel responds individually (rather than as part of a whole image frame), and only to change
in the light falling on this pixel. The result is a low-latency, asynchronous visual signal 
that describes the edges and contrast change of objects in motion. For robotics, this means 
lower processing requirements and a faster response [114], [148]. The proto-object ap-
proach to saliency, in which an object is defined by borders which are bound together at 
the grouping cell stage, is particularly suited for using event-camera signals, as it only re-
sponds to the edges and outlines of objects. However, as event-cameras perform a different 
computation at the silicon level, they produce a different output and visual representation 
than traditional frame-based systems. For this reason, it is necessary to adapt existing 
models, developed using input from frame-based cameras, to work with a new data rep-
resentation and encoding. Interestingly, we found that, as the event-camera more closely 
corresponds to a biological vision system, the processing layers in the original proto-object 
model designed to respond to contrast changes (i.e. centre surround cells [149]) are no 
longer required in the event-driven model.

In this paper we describe the differences in the visual signal of the event-camera and 
how the original proto-object algorithm can be adapted. We design and tune the algorithm 
for our intended robotic application: an iCub robot quickly identifying potential objects. 
The event-driven algorithm is then validated on identical stimuli used in the original study, 
and also on new stimuli typical for the iCub environment.

2.6 Proto-object based saliency

In this section we describe the adaption of the proto-object algorithm to the event-
camera data, which is formed by three different layers of processing: centre-surround, 
border ownership, and grouping cells.

The baseline algorithm, from which we form our event-driven version, and to which 
results are compared, is described in [9]. Attention models such as this have been inspired 
by [33] in which images are split into different feature maps, separately providing informa-
tion about intensity, colour and orientation. The feature maps are then filtered by means of 
centre surround kernels, inspired by the organisation of visual cortex [150]. Final stages 
of the model aim to integrate and further process the feature maps to provide the final 
saliency map.

The main difference of [9] compared to similar studies is the exploitation of the proto-
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Figure 2.1. CS filters with ON (red) and OFF (black) centres respond to the light and dark side of the edge 
respectively. An event-camera will instead produce a an event directly on the edge location, with a polarity 

dependent on the edge’s direction of motion.

Figure 2.2. As an object moves, an event-camera produces events of opposite polarities on either side of 
the object. Processing an RGB image with CS filters instead results in negative (black) and positive (red) 

polarities on the inside and the outside of the object.

object concept [101], where (partially) closed contours that might correspond to objects 
provoke a strong activation on the saliency map. The final processing layers are divided in 
two main stages: border ownership and grouping. The first aims to respond to individual 
edges that potentially form a (generally convex) border of an object. The second groups 
the elements of these potential borders, and regions enclosed by several object borders 
generate high response of grouping cells.

The peak response of the initial centre-surround (CS) filter is offset with respect to the 
edges that cause the cell’s excitation. The result is that the filter response does not occur 
on the actual edges of objects. Figure 2.1 shows qualitatively this behavior in the presence 
of a high contrast region, in relation to the spike (event) generated by the event camera. 
Figure 2.2 additionally illustrates the different locations at which positive and negative 
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polarities occur. At the border-ownership stage, the output of CS cells is convolved with 
kernels generated from the von Mises distribution. As shown below (Fig. 2.5), the filters 
have an offset which moves the saliency signal back to the edge location. The filter orien-
tation also has a preferred direction, eliciting a stronger response in the presence of edges 
whose convexity matches one of the filters. This is important for segmentation, because, 
according to Gestalt principles [83], objects tend to be convex around their centres. Border 
ownership cells are computed from the output of Complex cells, composed of of odd and 
even Gabor filters, making responses to edges phase-invariant.

The response of border ownership cells is then integrated at the grouping cells stage, 
which is responsive to multiple borders that show proximity and continuity features [83]. 
The grouping cells also receive an inhibitory signal from filters with the opposing preferred 
side. This mutual inhibition suppresses the response from isolated edges, which aren’t 
particularly convex in either direction. Border ownership is a mutually exclusive property: 
a given edge either belongs to one object or another, and potential ambiguities are resolved 
in the human visual system in the form of perceptual rivalry [151], an effect that has been 
shown to be implemented in primate visual cortex [152].

For more details on the original implementation we direct the reader to [9]; the present 
study adapts this algorithm to suit the visual signals of an event-camera.

2.6.1 Event-camera

The pixels of an event-driven cameras only elicit a spike when they detect a change in the 
light intensity. As each pixel fires independently of all others, the resulting output is an 
asynchronous stream of events carrying information about the location, the time and the 
polarity (light to dark or dark to light) of such changes. The events have low latency, on the 
order of a few microseconds, allowing for gap-free tracing of moving edges on the image 
plane.

In our implementation, each event (or spike) 𝑣 is represented by its coordinates, polarity 
and time stamp, 𝑣(𝑥, 𝑦, 𝑝, 𝑡𝑠). The events received from the camera are accumulated into 
a binary matrix 𝑉 as well as two other binary maps 𝑉+ and 𝑉−, encoding for positive and 
negative polarities respectively. All maps have the same size as the sensor, which in our 
case is 304 × 240. We consider a fixed number of events in a time window 𝑊 at each 
iteration, but multiple events occurring at the same location are considered as a single one 
according to 

  \label {eq:map_rep} V_{+}(x,y) = \begin {cases} 1, & \text {if} \ \exists \ v \ \in \ W \ | \ p_v(x,y)=1 \\ 0, & \text {otherwise}\\ \end {cases}  



         


(2.1)
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where 𝑝𝑣(𝑥, 𝑦) is the polarity of the event occurring at coordinates (𝑥, 𝑦) that can be either 
1 (positive) or 0 (negative). Similarly we fill 𝑉−(𝑥, 𝑦) with events where 𝑝𝑣(𝑥, 𝑦) = 0. 
The resulting maps are then sent to the border ownership computation where we select the 
borders which likely belong to objects.

As the event-camera does not have colour sensitivity, the colour-based feature map was 
not used in our implementation. In addition, for initial algorithm simplicity, the orientation 
filter was also removed. The implication is that our algorithm will be equally responsive to 
edges independent of their angle. In comparison, an orientation filter map would instead 
make a single horizontal line more salient amongst many vertical lines. We made this 
simplification since we assume that its effect on the saliency computation is minor. If 
necessary, an orientation filter can be reintroduced in future work.

2.6.2 Center-Surround

The pixels of event-driven cameras produce an asynchronous stream of events every time 
they detect an illumination change, making them natural contrast and edge detectors. As-
suming a dark object moving on a light background, as shown in Fig. 2.2, processing RGB 
camera inputs through CS filtering of opposite polarities would produce negative responses 
on the inside of the object and positive outside. In the event camera, we obtain “positive” 
(off-to-on) spikes on the leading edge of the object (the side towards which the object is 
moving) and negative spikes (on-to-off) at its trailing edge. Even though the information 
that we receive from these two types of representations is very similar, the interpretation 
of the scene comes from different processes.

Furthermore, as reported in the original paper [9], Russell et al. used a center-surround 
mechanism of both polarities detecting a light object on a dark background and vice-versa, 
i.e., ON-center and OFF-center receptive field. However, as the events occur only on 
edges, implicitly containing the polarity information, we can make the assumption that 
the information that would normally come from the CS can be inherently found in the 
output of these sensors.

Not only can we exploit this information to save some computation steps of the algo-
rithm, but we can also assume that the spiking pixels already give us the precise location 
of the edges in the image plane. We therefore remove the CS layer from the event-driven 
implementation. Figure 2.3 highlights the differences between the algorithm from [9] and 
ours.
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Figure 2.3. Comparison between border ownership algorithm in [9] (a) and ours (b). The red lines are 
inhibitory signals. In our implementation the Center Surround is not used as the polarities of the events 

already encode a similar information. Also we don’t compute feature maps, but we use the events as they 
come from the sensor. For clarity we don’t show multiple feature maps in (a).

2.6.3 Border Ownership

Despite using the same filters as in [9], modifications were made due to our application to 
robotics. In short, filters were made more rounded and less responsive to straight edges. 
The border ownership cells are modelled by the Von Mises (VM) distribution: 

  \label {eq:VM} VM_{\theta } (x,y) = \frac {\exp (\rho \cdot R_0 \cdot \cos (atan2(-Y, X) - \theta )}{I_0(\sqrt {X^2 + Y^2 - R_0})}           
    

(2.2)

where 𝑋 and 𝑌 are the kernel coordinates with origin in the centre of the filter, 𝑅0 is the 
radius of the filter, 𝜃 its orientation and 𝐼0 is the modified Bessel Function of the first kind. 
We added the 𝜌 parameter which determines the arc length of active pixels in the kernel, 
allowing to change the convexity of the kernel. For values 𝜌 < 1 the filter becomes more 
sensitive to convexities rather than straight lines, making it more suitable for the proto-
object detection task. Suitable tuning of this parameter improves the robustness of the 
model, making it more suitable to detect curved lines. We have empirically found that 
a value of 𝜌 = 0.2 is good for detecting convexities while rejecting straight lines at the 
same time. The orientations we use are 𝜃 = [0, 45, 90, 135].1 Additionally, since we have 
already an “in-place” response on edges due to the event-camera, as shown in Fig. 2.2, 
the filter response does not need to be moved back to the edge locations. At this stage we 
instead use filters which are centered on the position of the peak activity. To do so we 
apply a simple translation to eq. (2.2) as follows: 

  \label {eq:VM_trans} \begin {aligned} X' &= X + R_0 \cos (\theta ) \\ Y' &= Y + R_0 \sin (\theta ) \end {aligned}     

  \label {eq:VM_trans} \begin {aligned} X' &= X + R_0 \cos (\theta ) \\ Y' &= Y + R_0 \sin (\theta ) \end {aligned}     
(2.3)

1The opposite orientations with opposite polarity will be used to compute Equation 2.4.
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Figure 2.4. Example Von Mises (VM) filters used at the border ownership stage at 0 and 45 degrees. The 
centre of the filter is at the peak of the filter response, i.e. these filters are ‘in-place’.

Figure 2.5. Example Von Mises (VM) filters used at grouping stage at 0 and 45 degrees. The centre of the 
filter is offset from the peak response.

The resulting filters are shown in Fig. 2.4. The final border ownership response is then 
computed as follows: 

  \label {eq:BO} \begin {aligned} B1_\theta = V &\odot (\lfloor V_+ * VM_\theta - w V_- * VM_{\theta + \pi }\rfloor \\ &+ \lfloor V_- * VM_\theta - w V_+ * VM_{\theta + \pi }\rfloor ) \\ B2_\theta = V &\odot (\lfloor V_+ * VM_{\theta + \pi } - w V_- * VM_{\theta }\rfloor \\ &+ \lfloor V_- * VM_{\theta + \pi } - w V_+ * VM_{\theta }\rfloor ) \end {aligned}            

  \label {eq:BO} \begin {aligned} B1_\theta = V &\odot (\lfloor V_+ * VM_\theta - w V_- * VM_{\theta + \pi }\rfloor \\ &+ \lfloor V_- * VM_\theta - w V_+ * VM_{\theta + \pi }\rfloor ) \\ B2_\theta = V &\odot (\lfloor V_+ * VM_{\theta + \pi } - w V_- * VM_{\theta }\rfloor \\ &+ \lfloor V_- * VM_{\theta + \pi } - w V_+ * VM_{\theta }\rfloor ) \end {aligned}        

  \label {eq:BO} \begin {aligned} B1_\theta = V &\odot (\lfloor V_+ * VM_\theta - w V_- * VM_{\theta + \pi }\rfloor \\ &+ \lfloor V_- * VM_\theta - w V_+ * VM_{\theta + \pi }\rfloor ) \\ B2_\theta = V &\odot (\lfloor V_+ * VM_{\theta + \pi } - w V_- * VM_{\theta }\rfloor \\ &+ \lfloor V_- * VM_{\theta + \pi } - w V_+ * VM_{\theta }\rfloor ) \end {aligned}            

  \label {eq:BO} \begin {aligned} B1_\theta = V &\odot (\lfloor V_+ * VM_\theta - w V_- * VM_{\theta + \pi }\rfloor \\ &+ \lfloor V_- * VM_\theta - w V_+ * VM_{\theta + \pi }\rfloor ) \\ B2_\theta = V &\odot (\lfloor V_+ * VM_{\theta + \pi } - w V_- * VM_{\theta }\rfloor \\ &+ \lfloor V_- * VM_{\theta + \pi } - w V_+ * VM_{\theta }\rfloor ) \end {aligned}        

(2.4)

where ⌊⋅⌋ is a linear rectification operation, ∗ a convolution, and ⊙ an element-wise mul-
tiplication operator. The factor 𝑤 weights the inhibition between competing polarities and 
orientations. The higher its value the harder it is for one orientation to dominate over its 
opposite, filtering out ambiguities. In other words, the border ownership cells are excited 
by the presence of a convex edge at a certain orientation 𝜃 and inhibited by activity of the 
same edge with opposite polarity and orientation. As a result, the borders that show only 
one preferred side and only one polarity are preserved, and all the others get inhibited. 
This mechanism helps reject clutter and noise because responses from both polarities are 
suppressed, as are straight lines. The rectification ensures that no inhibitory signal gets 
propagated to later stages of the computation. Finally the element-wise multiplication by 
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𝑉 masks the response of the border ownership located only where events exist. The result 
of the border ownership computation gives each event a score based on its likelihood of 
being a border regardless of its polarity according to [92]. The resulting 𝐵1𝜃 and 𝐵2𝜃

encode the dominant orientations in the range 0 ≤ 𝜃 < 𝜋 and 𝜋 ≤ 𝜃 < 2𝜋. The response 
of the border ownership layer is then passed to the grouping cells.

2.6.4 Grouping Cells

The activity of border ownership signal cells is grouped by the grouping cells (G). The 
grouping mechanism moves the energy towards the centre of the objects, from multiple 
boundaries, and thereby enhances proximity and continuity patterns [153]. Grouping is 
achieved using the same kernels as in Eq. 2.2, and the standard (no translated) filters are 
used, in which the centre of the filter does not coincide with the maximal response of that 
filter.

The excitatory component of the grouping cells is computed as: 

  \label {eq:G_exc} \begin {aligned} G1 = & \sum _{\theta }B1_{\theta } * VM_{\theta }\\ G2 = & \sum _{\theta }B2_{\theta } * VM_{\theta + \pi }\\ \end {aligned}  


  

  \label {eq:G_exc} \begin {aligned} G1 = & \sum _{\theta }B1_{\theta } * VM_{\theta }\\ G2 = & \sum _{\theta }B2_{\theta } * VM_{\theta + \pi }\\ \end {aligned}  


  

(2.5)

𝐵1 and 𝐵2 are highly responsive to opposite convexity, this is why in Eq. 2.5 we apply 
two opposite 𝑉 𝑀 filters. The aim of this is to move all the response coming from the ob-
ject edges to the centre of the object. This process would also affect the object’s surround, 
which can lead to ambiguity in-between objects. We introduce an inhibition mechanism 
for the grouping cells that reduces inter-object interference and preserves the saliency in-
side the object. First we compute the inhibitory signal as shown in Eq. 2.6. Different 
from Eq. 2.5, we apply kernels of the opposite orientation, because we are suppressing the 
activity of the non-preferred side of the border ownership cells: 

  \label {eq:G_inh} \begin {aligned} G1^* = & \sum _{\theta }B1_{\theta } * VM_{\theta + \pi }\\ G2^* = & \sum _{\theta }B2_{\theta } * VM_{\theta }\\ \end {aligned}  


  

  \label {eq:G_inh} \begin {aligned} G1^* = & \sum _{\theta }B1_{\theta } * VM_{\theta + \pi }\\ G2^* = & \sum _{\theta }B2_{\theta } * VM_{\theta }\\ \end {aligned}  


  

(2.6)

We find the maximum value within the map and subtract it from from the remaining 
elements, eq.(2.7). The reason is that peaks of activity can be found inside the objects, 
where responses from all orientations overlap, and by subtracting the maximum value 
these peaks get suppressed. If we then take the absolute value of the resulting map, we 
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(a) (b)

Figure 2.6. Results of the calibration (a) without grouping inhibition and (b) with grouping inhibition. 
With correct inhibition calibration, high peaks of response can be found in the objects of sizes 
20-30-40-50 pixels, which is the desired sensitivity for a typical humanoid robot application.

are left with an inhibitory signal which is mostly concentrated outside and in-between the 
objects. Fig. 2.6 shows the effects of the inhibition on the final result.

 \label {eq:G_inh_abs} \begin {aligned} G1^* = |G1^* - max(G1^*)|\\ G2^* = |G2^* - max(G2^*)|\\ \end {aligned}    

 \label {eq:G_inh_abs} \begin {aligned} G1^* = |G1^* - max(G1^*)|\\ G2^* = |G2^* - max(G2^*)|\\ \end {aligned}    
(2.7)

The final grouping is computed as follows: 

  G = (G1 - G1^*) + (G2 - G2^*)         (2.8)

2.6.5 Scale invariance

All the computation steps mentioned so far are performed at several different scales to 
obtain object size invariance/tolerance. To achieve this, the feature maps are arranged into 
a pyramid, in which each level is down-scaled by a 

√
2 factor. To obtain the saliency map 

we collapse all the levels into one by applying the normalisation method described in [33].

2.7 Validation and experimental results

We implemented the algorithm to work on the neuromorphic iCub humanoid robot [2], 
equipped with a pair of ATIS [5] sensors coupled with a pair of traditional cameras that we 
use for validation of the algorithm, both located in the robot’s eyes. The two cameras share 
the same field of view and are calibrated to have pixel to pixel correspondence [118]. The 
ATIS camera has 304 × 240 pixels, whereas the RGB camera has a nominal resolution of 
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1920 × 1080 but for our experiments the images are down-scaled to 320 × 240. The algo-
rithm is implemented in C++ and runs online on the robot. In the following experiments, 
the iCub looks at a number of either static or dynamic objects. Since static objects do not 
elicit any response from the event-cameras, the eyes are programmed to move in small 
circles introducing relative motion between them and the cameras. The circular motion 
has been chosen to span all possible orientations and capture all the edges in the scene.

2.7.1 Calibration

In a first set of preparatory tests, we tuned some parameters of the cells in the model to 
match the correct range of object sizes and positions that are relevant for the robot. Specif-
ically, we target applications where the robot can grasp and manipulate objects, tailoring 
the model to optimally respond to objects whose size in the image plane is between 25 and 
50 pixels. We chose this range of sizes according to the typical object that the robot can 
interact with, which is constrained by the robot workspace and grasping capabilities [154], 
[155]. We ran a calibration test in a controlled scenario to set the right filter size for best 
response to the situation of interest. For this purpose, we put in front of the robot’s eyes a 
calibration pattern with six circles of radii ranging from 10 to 60 mm. In this condition, 
we set the pyramid depth to 1, in order to find the smallest desired size by increasing the 
VM filter radius up to the point where we obtain a high peak in the middle of the object. 
Once calibrated for the smallest size, we increase the number of pyramid levels until the 
algorithm responds to the largest desired object size. Results of the calibration process are 
shown in Fig. 2.6. With this empirical procedure, we set 𝑅0 = 10 (see Equation 2.2) and 
5 levels of pyramid. Table 2.1 shows the values used for each parameter of the model.

2.7.2 Comparison with original algorithm

We carried out a series of experiments to benchmark our model against the original work 
[9]. To this aim, we printed a set of images, on which we computed the saliency map using 
[9], and showed them to the event-driven cameras mounted on the robot. Fig. 2.7 com-
pares the response of both models to two pattern of corners. In the first pattern (top), four 

Parameter Value
𝑅0 10
𝜌 0.2
𝜔 3

Pyramid levels 5
Orientations 0, 45, 90, 135

Table 2.1. Values of the parameters used in the experiments
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(a) RGB camera (b) event-camera

Figure 2.7. The response to proto-objects for a closed stimulus (top) and to a similar stimulus but without 
the enclosed shape (bottom), comparing the original RGB implementation to the proposed event-driven 

implementation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8. Comparison of saliency maps from the grouping cells response obtained with the original 
algorithm (first row) and our implementation (second row). The four pictures come from a dataset for 

saliency benchmarking [139]

corners enclose a squared area; these are generally perceived as parts of the edge of an ob-
ject, while the second pattern does not contain a similar “proto-object” [156], [157]. Both 
models correctly select the corners in the second pattern and show a peak activation of the 
saliency map in correspondence of the space enclosed by the four corners corresponding 
to the proto-object (left side of the image plane). In contrast, random orientation of corners 
(bottom) do not generate the perception of an object, and both models reflect this by gen-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.9. Saliency response for different stimuli including multiple objects, clutter texture and cluttered 
objects. The top row shows the original image, the middle row shows the response of the original RGB 

algorithm and the bottom row shows the response of the proposed event-driven algorithm.

(a) (b) (c) (d)

Figure 2.10. Effect of distance between objects. From left to right, the objects are first far apart (a), only 
when the objects share a contact point they are perceived as a single object (b,c). They are again detected 

as distinct ones with increasing distance (d).

(a) (b) (c) (d)

Figure 2.11. Saliency map for static and dynamic stimuli: (a) Two static objects are placed on the table 
and the focus of attention is localised on the left (bigger) object. (b, c) As the dynamic stimulus enters the 
field of view, it captures the robot’s attention. When the moving object gets out of sight (d), attention goes 

back to the static object.

erating weaker, disorganized activation patterns. Fig. 2.8 compares the output of the two 
models to some images taken from the saliency benchmark dataset CAT2000 [139]. All 
Figures present a coherent and comparable response except for one, Figs 2.8c/2.8g. This 
might be due to the enhancement in curvature of the VM filter we adopted that generates 
higher response in the presence of circular shapes like the one in the picture.
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Figure 2.12. Saliency map of rapidly moving object

Fig. 2.9 shows the algorithm behavior in a realistic scenario, with objects of different 
sizes and shapes as well as distractors (in form of cluttered cables) placed in front of the 
robot. In this case, we recorded simultaneously RGB images and events [118], and run the 
original model on the RGB image. The output of both models is consistent, confirming 
that the adapted algorithm responds to the presence of proto-objects in the scene.

While the output of the proposed event-based and original models are qualitatively 
comparable, they produce different responses to the input images in Figures 2.9b and 2.9c, 
where the textured objects on the left side is less salient in the event-driven model. The 
strong inhibition factor 𝑤 = 3 might explain this result. Moreover, the added inhibition 
mechanism explained in Section 2.6.4 would be useful to suppress the saliency of regions 
with events of both polarities, that often correspond to noise, clutter, or flicker stimuli. 

2.7.3 Moving objects

Finally, we tested the event-driven model with dynamic scenes. Fig. 2.10 shows some 
snapshots of a sequence where two objects roll on a desk and collide. The model shows 
two peaks when the objects are far apart. When the two objects are closer, the saliency 
map shows interference between the two objects, generating a single peak.

The role of inhibition in the grouping layer is crucial to suppress the activity elicited 
by edges with opposing curvatures, i.e. contours of two different objects which would 
increase saliency in the space between two objects. This mechanism works as long as the 
two objects are not too close: when two approaching objects are touching each other, the 
algorithm is not able to distinguish them anymore. The grouping mechanism reduces the 
representation of objects to their simplest possible form. This is in agreement with the 
Gestalt law of proximity, where “objects or shapes that are close to one another appear 
to form groups”. Algorithmically, the collision between the two objects generates a large 
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number of events which causes attention to get focused on that point. Fig. 2.11 shows 
snapshots of a sequence with the robot observing at static objects when a new object enters 
the field of view. In Fig. 2.11a, the static objects generate peaks in the saliency map. In 
Figs. 2.11b and 2.11c the dynamic stimulus captures the robot’s attention as soon as it gets 
in the field of view of the camera. When the dynamic object leaves the field of view, the 
attention goes back on the previous object, Fig. 2.11d. An advantage of the event camera is 
that it can process very fast motion because it is not limited by frame rates. To demonstrate 
that this advantage translates into saliency processing of rapidly moving objects, we tossed 
a ball in front of the cameras which moved with a speed of ≈2000 px/s. Fig. 2.12 shows 
that our method successfully places attention on the ball.

2.8 Conclusion

The aim of this work is to adapt a proto-object attention model [9] to work with the 
neuromorphic event-driven cameras embedded on the iCub humanoid platform. The over-
arching goal of this approach is to endow the robot with a low-latency, computationally 
efficient attention system that we believe is fundamental in an image processing pipeline 
for a robot which has to act in a dynamic and unconstrained environment. As event-driven 
cameras encode the visual signal in a radically different way with respect to frame-based 
cameras, it was necessary to tailor the model and correctly interpret the sensor output and 
the effect of the different filters on the novel input. Specifically, the event-driven sensor 
acts as an edge extractor, functionally replacing the first layer of the frame-based model, 
based on centre-surround filters. However, further modifications to the border ownership 
and grouping layers are required to correctly process the output of the event-driven cam-
era. Specifically, we separated on and off events in two parallel streams and modified the 
inhibition connectivity pattern in the grouping layer to take into account the difference 
between polarities in the leading and trailing edges of objects.

We carried out preliminary qualitative experiments to prove the consistency of our im-
plementation with the theoretical model and test its limits. In general, the implementation 
of the proto-object-based saliency model proposed in this paper produces an output that 
is consistent with the original model. We tested the model with static objects and images, 
but also extended the scenario to dynamic scenes, with moving objects. In the event-based 
representation, saliency is related to the speed of the object since increased speed increases 
the number of events of the faster object within the scene. Event cameras naturally pro-
duce a bias towards this type of stimulus as the moving object generates the most events 
for the camera.
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The C++ implementation of the event-driven model runs online on the neuromorphic 
iCub and is capable of selecting objects in a range of sizes that are typically used when 
the robot performs grasping and manipulation tasks. The use of event-driven cameras 
– that efficiently compress the signal and performs part of the computation on a chip – 
leads to a computationally efficient implementation. However, the proposed implemen-
tation is based on a hybrid solution, where the events are accumulated in frames that are 
then convolved with Von Mises filters in the border ownership and grouping cell layers. 
While this implementation is certainly helpful in characterising the algorithm and proof 
that the results are comparable to the original model, a fully spiking implementation of 
the model will further increase efficiency and latency: Events elicited by the sensor travel 
asynchronously along the hierarchy, the computation is restricted only to the filters that 
receive input events and, as soon as there is enough activity in a region, the network can 
produce a result that can be almost simultaneous with the stimulus presentation. The spik-
ing implementation of the proposed model and quantitative analysis of its performance 
in terms of attentional selection, efficiency and latency are the goals of current develop-
ment. Additionally, we are exploring the possibilities of learning the kernels by exploiting 
gradient-based techniques.

2.9 Reflections & Conclusions

The first attempt to modify a biologically plausible model of attention mechanisms, by 
adapting of an RGB saliency-based proto-object model to receive an event-based input has 
been advantageous for several reasons.
The event-based implementation needed a modification of the Border Ownership compu-
tation (Equation 2.4) subtracting the contribution of kernels of the opposite orientation and 
polarity. This is due to the leading edge polarity of an object being opposite to the trailing 
edge. The computation results in detecting curve edges of 𝜃 angles and their opposites 
with competing polarities. Final 𝐺1∗ and 𝐺2∗ represent the activity of the non-preferred 
side to be suppressed. The final Grouping stage sum up the contribution of opposite angle 
kernels finally detecting the proto-object.
Due to the event-driven camera properties, the stereotyped eye movements are needed for 
static scenes emulating biological microsaccades [158]. The choice of the parameter in 
Table 2.1 refers to empirical values found for: 𝑅0, 𝜌 and 𝜔. As shown by the calibration 
results in Figure 2.6 (b), the 5 Pyramid levels cover the real-world objects’ size range ex-
plored.
The frame-based implementation runs on MATLAB requiring minutes of execution due to 
the nested loops in the code. This implementation is not meant to run online for a robotic 
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application. The event-based proto-object model optimised the code in C++ for an online 
application and it has been further implemented in Python exploiting PyTorch to obtain a 
saliency map every 100ms. Thanks to the intrinsic edge-extraction mechanism performed 
by the event camera, we could get rid of the first two layers of processing (contrast detection 
and edge extraction) promoting a reduced pipeline with the consequent further reduction 
in processing loads.
The time to obtain a saliency map is fairly similar to the time needed to compute a human 
saccade, demonstrating a comparable and ”natural” reaction in the time of the system. 
Although the model clearly detects proto-objects, the comparison presented in Figure 2.8
shows a non-equal response between the models. The same response can be seen also in 
Figure 2.9. The evProto shows overall a more local response and is less centre-biased. The 
frame-based model indeed has a further centre-biasing mechanism which has not been im-
plemented. The model response can still be defined as coherent because the salient points 
are found to belong to the same items selected as most salient from the fame-based im-
plementation. Furthermore, the response in Figure 2.11 suggests a probable propensity 
of the model to be driven by the number of events. This model well represents the initial 
intensity channel for my Thesis project proving good performances in proto-object detec-
tion in different situations. The static and dynamic experiments, as well as the benchmark 
dataset, show a reliable response from the event-based proto-object model.
Despite all of the above-mentioned reasons, the pipeline can not be considered fully neu-
romorphic due to the use of the event-frames representation used as input to the model. 
The system is still not robust when placed in an environment with multiple objects with 
similar salience, where the selection among them becomes jittery. Objects have similar 
salience if the selection is based only on contrast. The jittery response seeing the salient 
point ping poing among the items in the scene has been addressed in Chapter 4 prioritis-
ing the selection of the closest proto-object. A mechanism of WTA with hysteresis and 
self-excitation could further solve the problem allowing for a robust fixation over a spe-
cific target. As an alternative solution, a feature channel disambiguating the selection and 
boosting the salience over a particular proto-object could be added.
This work clearly shows qualitative results detecting objects in the scene still not entirely 
removing the clutter. Even though these results show a good response from the model in 
different circumstances they do not validate the model outcome. The analysis of the re-
sponse must be investigated quantitatively definitively assessing the saliency map in com-
parison to the ground truth. A quantitative analysis has been further added in the next 
Chapters ( 3 and 4).
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Chapter 3

Event driven bio-inspired attentive 

system for the iCub humanoid robot on 

SpiNNaker

This work has been published.
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3.4 Abstract

Attention leads the gaze of the observer towards interesting items, allowing a detailed 
analysis only for selected regions of a scene. A robot can take advantage of the percep-
tual organisation of the features in the scene to guide its attention to better understand 
its environment. Current bottom-up attention models work with standard RGB cameras 
requiring a significant amount of time to detect the most salient item in a frame-based fash-
ion. Event-driven cameras are an innovative technology to asynchronously detect contrast 
changes in the scene with a high temporal resolution and low latency. We propose a new 
neuromorphic pipeline exploiting the asynchronous output of the event-driven cameras to 
generate saliency maps of the scene. In an attempt to further decrease the latency, the 
neuromorphic attention model is implemented in a spiking neural network on SpiNNaker, 
a dedicated neuromorphic platform. The proposed implementation has been compared 
with its bio-inspired GPU counterpart, and it has been benchmarked against ground truth 
fixational maps. The system successfully detects items in the scene, producing saliency 
maps comparable with the GPU implementation. The asynchronous pipeline achieves an 
average of 16 ms latency to produce a usable saliency map.

3.5 Introduction

Visual attention guides the perception of the environment [159]. It is a mechanism 
that selects relevant parts of the scene to sequentially allocate the limited available com-
putational resources to smaller regions of the field of view. In the animal world, this is 
coupled with eye movements, aimed to sequentially centre the selected region within the 
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highest resolution region of the retina [160]. The detailed analysis only of salient regions 
of the visual field can dramatically reduce the computational load of processing the full 
visual field at once. In a similar manner, a robot working in real-time can exploit visual 
attention advantageously to optimise the use of computational resources. The motivation 
of this work is to produce an analogous reduction in computational loads for autonomous 
systems. Robots, such as the humanoid robot iCub [1], need to generate fast and precise re-
sponse to autonomously interact with the environment reacting to external stimuli. Recent 
studies in computer vision have exploited the concept of attention for different tasks: clas-
sifying MNIST handwritten numbers only on regions of interest (ROIs) of the visual field 
with the 1.07% error [60], fixation prediction adding audio cues [161], visual search [58], 
and object recognition, where it has been demonstrated that attentional selection (based on 
saliency) increases the number of regions where objects are identified with random ROI 
selection [59].
Attention has attracted interest since the first psychological experiments where Yarbus 
et al. [25] were recording the fixation points of subjects examining different pictures. Since 
then, attention has been modelled in order to understand its underlying neural implementa-
tion, and to equip artificial agents with similar capability to obtain a reasonable perception 
of the scene [75]. Attention is a complex mechanism that results from the interplay of a 
bottom-up process that is driven by the physical characteristic of the stimuli and top-down 
effects that depends on priors and goals [141]. Diverse studies tried to model the bottom-
up components of attention. Some proposed the use of the saliency map formalism [19], 
[28], [162]. A saliency map is the representation of visual saliency in a scene, where each 
item appears to be interesting (salient) based on the observer visual exploration [147].
Specifically, selective attention extracts features from the environment and explains the 
situation as fast as possible filtering what is not necessary to understand the scene.  [163].
The widely used feature-based saliency model [75] extracts in parallel multiple different 
visual features and finds regions of high contrast within each feature channel. Their con-
tribution defines the saliency of each point in the field of view. The weight of each feature 
map can be modulated to model the effect of top-down mechanisms competing with each 
other for the representation of the scene. This model was then augmented [102], by in-
tegrating principles of perceptual grouping of individual components that reflect “Gestalt 
laws” as proximity, common fate, good continuity and closure [83].
These principles give perceptual saliency to regions of the visual field that can be per-
ceived as ”proto-objects” [146], [145].
A proto-object describes regions of the visual field that may coincide to real objects in 
the physical world, referring to the human ability to organise part of the retina stimuli into 
structures [164]. The work of Russell et al. [9] improved [102] by creating a filter capa-
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ble of detecting partial contours. Recent studies added other sources of information to the 
proto-object model such as motion [87], depth [88] and texture [89]. Further, a new line of 
research has started to develop these types of models using event-driven cameras as input. 
In these cameras, the contrast change in the scene is outputted asynchronously, with high 
temporal resolution, low latency, and most importantly, reducing data rate. For a real-time 
application in a robotics scenario this leads to a faster response given the low processing 
required [114],  [148].
Adams et. al. [165] exploited the address-event representation (AER) and the neuromor-
phic platform SpiNNaker to allow the humanoid robot iCub [1] to perform real-world tasks 
fixating attention upon a selected stimulus. Rea et. al. [44] exploited visual attention for 
a bio-inspired pipeline using event-driven cameras (ATIS cameras) [5] mounted on iCub, 
the neuromorphic robot [2]. This implementation [44] exploits the low latency of the event 
cameras, further increasing the speed of the response towards online attention, but does 
not include the proto-object concept, that was later included by modifying a frame-based 
proto-object model [9] in a way that is suitable for event-based cameras [166]. The imple-
mentation proposed by Iacono et al. [166] adapts the proto-object model based on RGB 
cameras to event-driven input, using the contrast feature maps naturally encoded by event-
driven cameras. However that work didn’t fully exploit the advantages given by the sensor. 
In fact events were accumulated over time generating frames that were then processed us-
ing a GPU. In an attempt to decrease latency and computational cost we implemented 
the model proposed in [166] on the SpiNNaker neuromorphic computing platform [167], 
that is able to properly exploit the asynchronous output of the event-based cameras. SpiN-
Naker is a dedicated neuromorphic computational device which provides a digital platform 
to model spiking neural networks at large scale in real time. Using an asynchronous and 
highly parallel architecture, large numbers of small data packets can be processed, which 
in most applications represents spikes being sent between biological neurons. This pro-
vides an ideal computational tool for event based processing.
The platform supports asynchronous spiking models that propagate events from the sen-
sors in the network. Such models yield minimum processing latency, most of which de-
pends on the propagation across layers and on the accumulation of sufficient informa-
tion [168]. The contribution of this work is the validation of the model implemented on 
SpiNNaker (SNNevProto) through a direct comparison with the event-driven proto-object 
(PyTevProto) (i.e. its counterpart implemented on GPU using PyTorch). We compared 
the two models using the dataset from [166] (SalMapIROS) and benchmarked both against 
ground truth fixation maps [169]. We analyse the trade off between accuracy, number of 
neurons, computational cost and latency.
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Figure 3.1. An overview of the model architectures for the PyTevProto (on the left) and the SNNevProto 
(on the right). The events are split based on the polarity and fed into the two models as input. The 

event-based model generates different scales by subsampling the ”event-frame” and creating a pyramid. 
The resulting scaled ”event-frames” are convolved with VM filters at 4 different orientations (Border 

Ownership Pyramid) and grouped at the Grouping Layer directly processes the input with the two layers o 
Border Ownership and Grouping Pyramids. The red lines are inhibitory signals. The spike-based 

implementation processes the events asynchronously exploiting layers of VM shaped neurons at different 
scales and rotations. The Proto-Object Neurons (Grouping Pyramid Layer) integrate the response 

connecting VM filters with opposite side and pool the response from different scales. The outcome of both 
models is the saliency map.

Figure 3.2. Representation of the VM filter described in Eq. 3.1 at 0 ∘

3.6 Event-based Spiking Neural Network proto-object saliency model

This work takes inspiration from the bio-inspired saliency-based proto-object model 
for frame-based cameras initially proposed by Russell et al. [9] and its event-camera adap-
tation [166]. The former is composed of three channels: intensity, colour opponency and 
orientation, competing with each other to represent the scene. Its core is composed of 
four layers: Center Surround Pyramids (CSP), Edge Pyramids, Border Ownership and the 
Grouping Pyramid (see Fig. 3.1).
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Figure 3.3. Representation of a VM layer and its connections. Each VM filter is split in 4 sections all 
connected to the same Filter neuron. The area around the ”active” part of the neuron (moon shaped yellow 
region) is connected to the Filter neuron with an Inhibitory connection (red lines). This stage of the model 
represents the Border Ownership pyramids detecting close contours. Two complementary VM filters with 
opposite orientation are then connected to the same Proto-Object Neuron (Grouping Pyramid) to identify 
possible proto-objects. This structure is repeated for each layer with different orientations of the filter: 0∘, 

45∘, 90∘ and 135∘.

The CSP layer convolves the input image with a difference of Gaussians kernel to detect re-
gions in the scene with either positive or negative contrast, emulating the Center Surround 
(or Bipolar) cells present in the retina [149], [170]. In parallel, the system convolves the 
RGB image with Gabor filters, emulating the edge extraction done by the Primary Vi-
sual Cortex [171]. The Border Ownership and Grouping Pyramid implement the “Gestalt 
laws” of continuity and figure-ground segmentation, mimicking the neurons in the Sec-
ondary Visual Cortex area, which are mostly selective to edges [92]. All the computation 
steps are performed at several scales to obtain object size invariance/tolerance. In the Bor-
der Ownership layer the output of the CSP is convolved with curved Von Mises (VM) filter 
(see Fig. 3.2). The convolution with four different orientations of the filter detects partial 
contours of objects. All filters in the same location are connected via inhibitory connec-
tions to each other creating local competition for the dominant orientation. The output 
is then pooled by the Grouping Pyramid which combines oppositely rotated contours ori-
ented to the same centre forming a partially closed contour. Closed contour activity is 
captured by the proto-object neurons whose combined activity creates the saliency map.
In [166] we have adapted this model to run using the output of event-driven cameras. Here 
we take a step further, implementing the model with spiking neurons on neuromorphic 
hardware.
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Example # Input stimulus PyTevProto SalMap SNNevProto SalMap

1

2

3

4

Figure 3.4. Qualitative comparison among the PyTevProto and the SNNevProto. From the left column to 
the right column: the example number, a RGB image representing the scene shown to iCub (the input 

stimulus), PyTevProto saliency map and SNNevProto saliency map. These examples are a selection from 
13 scenarios of the SalMapIROS dataset. The events are recorded directly from the event-driven cameras 

mounted on iCub’s eyes. The objects and the 2D printed patterns are placed on a desk in front of the 
robot. The RGB input images are only for a better visualisation of the input stimulus.

Example # Input stimulus PyTevProto SalMap SNNevProto SalMap

1

2

Figure 3.5. Qualitative comparison among the PyTevProto and the SNNevProto. From the left column to 
the right column: the example number, a RGB image representing the scene shown to iCub (the input 
stimulus), PyTevProto saliency map and SNNevProto saliency map. This table show only results from 
clutter experiments of the SalMapIROS dataset. The events are recorded directly from the event-driven 

cameras mounted on iCub’s eyes. The objects and the 2D printed patterns are placed on a desk in front of 
the robot. The RGB input images are only for a better visualisation of the input stimulus.
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(a)

(b)

Figure 3.6. Comparison with different metrics evaluating the similarity between the the SNNevProto 
saliency maps and the PyTevProto saliency maps [166] using the SalMapIROS Fig. 3.4) exploring 
different OL percentages (a) exploring a range of inhibitions (b) (𝜇S conductances) with fixed OL 

percentage at 60%. The metrics used are: the Normalized Scanpath Saliency (NSS), Area under the ROC 
Curve (AUC-Borji) & (AUC-Judd), Pearson’s Correlation Coefficient (CC) and Similarity (SIM) [35], 

[137]–[139], Structural Similarity (SSIM) and Mean Square Error (MSE). A higher score is better for all 
excluding the MSE where the lower score determines similarity.

Event-driven camera’s pixels asynchronously produce an event every time a local illu-
mination change occurs providing the information of positive or negative change in con-
trast. As such, they perform an inherent operation of edge extraction that can functionally 
be equivalent to the edge extraction performed by center-surround (CS) cells in the frame-

63



OL% # of neurons # of SpiNNaker boards
10% 10428 3
20% 12000 3
30% 15801 3
40% 22266 3
50% 30306 6
60% 48878 6
70% 82084 12
80% 176248 24

Table 3.1. Table showing the number of neurons and SpiNNaker boards required given a percentage of 
overlapping for the VM filters. The spalloc server was used to run these jobs which allocates boards in 

multiples of 3.

based model. A similar contrast change information is provided by the CS cells [172]. The 
event-driven camera does not obtain the local contrast change due to lateral inhibition as 
in the CS cells, but rather due to the relative motion between the camera and the scene. 
The two processes are different but the related outcome, the edge extraction and the con-
trast information, are similar. These inherent capabilities can be used as substitutes for the 
first two layers of processing in the event-based version of the saliency-based model [166]: 
center-surround filtering and edge extraction. In fact, assuming a dynamic scene where 
a dark object is moving over a white background the leading edge would produce neg-
ative events and the trailing edge positive events, therefore providing information about 
the object contrast with respect to the background. In the PyTevProto model implemen-
tation running on GPU, the output from the event-based cameras is used to create frames 
of events divided into positive and negative polarity. The frames of events are fed into the 
Border Ownership layer following the process explained above.

This work proposes a new fully spiking based pipeline, with dedicated neuromorphic 
hardware, aiming to improve the speed and reduce the latency of the model. The SpiN-
Naker neuromorphic platform [167] acts as a computation medium modelling the SNN in 
a feedforward architecture (see Fig. 3.1). The neural model mimics the cells as populations 
of current-based leaky integrate and fire neurons.

These neurons process the data coming from the ATIS cameras in form of events carry-
ing the information of the position in the visual field, polarity (positive or negative contrast 
change) and the timestamp of the event. The VM filter, shown in Figure 3.2, is a kernel 
designed to respond to curved edges that can potentially delimit a closed area. They are 
formalised as a curve (Eq. 3.1) with the largest value at its midpoint providing the ideal 
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input->segment segment->filter input->filter filter->proto-object

0.02% 0.8% 0.0013% 0.75%

Table 3.2. The percentage firing thresholds for different population connections, input->filter is the only 
inhibitory connection. Percentage firing threshold is the percentage of the pre-synaptic population that 
need to fire to produce a spike in the post-synaptic population. Inhibitory connections do not induce a 

spike but are scaled in the same fashion. This metric is used to standardise weights across varying 
convolutional kernel sizes.

shape to respond to closed contours:

  \label {eq:VMeq} VM_{\theta } (x,y) = \frac {\exp (\rho \cdot R_0 \cdot \cos (atan2(-y, x) - \theta )}{I_0(\sqrt {x^2 + y^2 - R_0})}          
   

(3.1)

Where 𝑥 and 𝑦 are the kernel coordinates with origin in the centre of the filter, 𝑅0 is 
the radius of the filter, 𝜌 determines the arc length of active pixels in the kernel allowing to 
change the convexity of the kernel, 𝜃 its orientation and 𝐼0 is the modified Bessel Function 
of the first kind. The VM output is then thresholded to reduce sensitivity to localised 
activity:

  \label {eq:VMth} e(x,y) = \begin {cases} \text {1} & \text {for $VM_\theta (x,y) > 0.75$} \\ -1 & \text {else} \end {cases}  



    


(3.2)

Where 𝑒(𝑥, 𝑦) describes whether the pixel at (x, y) is connected to the filter neuron with 
excitatory synapses (𝑒(𝑥, 𝑦) = 1) or inhibitory synapses (𝑒(𝑥, 𝑦) = −1)(see Fig. 3.3). 
Connection weights, 𝑤, are determined using Eq. 3.3 where 𝑛 is the size of the pre-synaptic 
population and 𝑝 is the percentage firing threshold for that particular projection between 
populations. A value of 5𝜇𝑆 is chosen as it is the minimum weight at which one exci-
tatory input spike produces a spike in the post-synaptic neuron in this implementation of 
conductance-based neurons. Inhibitory connections are scaled using the same method but 
do not produce a post-synaptic spike. Values of the percentage firing thresholds of con-
nection weights can be found in Table 3.2. The filters are used as convolutional kernels 
which are tiled over the whole image1. 

 \label {eq:pft} w = \frac {5}{pn} 


(3.3)

This implementation of the model is a Spiking Neural Network where the first layer 
is covered with VM filters spaced with strides relative to their size 2. Consequently, each 

1The percentage of overlapping between filters is a parameter of the system.
2The distance between two centres of the VM filters depends on the overlapping percentage and consequently on their size.
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VM filter has its own receptive field onto the input layer. Therefore each incoming event 
triggers a specific pixel belonging to a specific receptive field in the field of view. Each 
VM filter is composed of four rotationally distributed segments. As the inputs are discrete 
spikes generated by an event-based camera it is possible for noise and other artefacts to 
produce a high number of events in a small area unrelated to the visual scene. Splitting the 
VM filter into four sections helps to reduce the sensitivity to localised activity, aiding the 
filter to respond more selectively to input spikes arranged in the shape of the VM. As the 
strides of the convolutional kernels are relatively large, appropriate control of VM filter 
activity is important to reduce undesired spikes and, therefore, inaccurate saliency map 
generation. Each filter segment is connected to a neuron representing the entire VM filter. 
The refractory periods of the segment neurons and input weights to the filter neuron are 
balanced to require all segments to fire within a narrow temporal window to produce a 
spike. In addition, all spikes within the filter region that are not part of the VM kernel 
will have an inhibitory contribution to the combined filter neuron, effectively increasing 
the selectivity to the VM shape (see Fig.3.2). The grouping cells, called proto-object neu-
rons, pool the output of VM complementary cells that form a close contour representing 
proto-objects (see Fig. 3.3). The output of the convolution, and the subsequent output 
of the proto-objects which form the saliency map, are all represented as spikes emitted 
by a neuron. The filters exist in 4 rotation pairs with their complementary filters rotated 
180∘, evenly distributed from 0-135∘, and in 5 spatial scales (104, 73, 51, 36, 25 pixels2). 
Over each layer the VM filters are placed overlapped with each other. Overlap is related to 
stride used in the convolutional layers of neural networks. Instead of measuring how much 
the filter has shifted relative to the previous it measures how much it is overlapping with 
the previous. The overlap among the VM filters is important to define the robustness of 
the model. In biology, cell receptive fields are often overlapped for robustness, ensuring 
a response even if a cell no longer functions [173], [174]. Over time, cells overlapping 
have been used as a way to avoid the aliasing problem in bio-inspired models [175]. The 
overlapping percentage (OL) increases resolution and accuracy and it is directly linked to 
the number of neurons required in the implementation and, hence, its power and compu-
tational cost (see Table 3.1). We therefore decided to use the OL as a parameter of the 
model to be explored. A percentage is used to ensure a uniform overlap at multiple spatial 
scales.
Each VM filter is connected with its mirrored one (VM in Fig. 3.3) of the opposite side cre-
ating a sub-population. All projections between sub-populations share a common weight 
as described in Eq. 3.3. This approach is analogous to tuning the percentage of the pre-
synaptic neurons that must fire to produce a spike in the post-synaptic neuron of the next 
layer. A list of percentage firing thresholds for population projects can be found in Ta-
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Image # NUS3D RGB image SNNevProto SalMap NUS3D Fixation Map

23

6

91

Figure 3.7. Representation of examples from the NUS3D (robot scenario) dataset. The three columns 
represent the input RGB image, the outcome from the SNNevProto and the related ground truth from the 

NUS3D dataset. These examples show how the model performs when the observer fixation maps focus on 
objects. The response from the model is with 60% OL and 0.013 inhibition.

ble 3.2. This stage of the SNNevProto mimics the Border Ownership Pyramid in [9]. A 
similar process to the Border Ownership in [9] pools the activity of mirrored VM filter 
orientations into a single neuron. The combined filter neuron has maximal activation at 
the presentation of a closed surface of the same size as the convolution filter size. Follow-
ing the Gestalt principles [83] this represents detection of a proto-object. The proto-object 
spikes are added to a combined saliency map with their energy spread over the surround-
ing pixels using a 2D Gaussian distribution with standard deviation a third of the filter 
size in pixels. Therefore, a pooling stage mimicking the Grouping Pyramid is computed 
making the response size invariant. Values from all scales and the four pairs of rotations 
are pooled together to produce a combined saliency map.

3.7 Experiments and Results

We validated the SpiNNaker implementation of the proto-object attention model, SNNevProto, 
by comparing its performance with the PyTorch GPU implementation, PyTevProto.
The system is further benchmarked using the ground truth 2D fixation maps of the NUS-
3D dataset [169], obtained recording the eye movements of subjects observing the images 
of the dataset.

The characterisation compares the responses from the two models qualitatively, show-
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Image # NUS3D RGB image SNNevProto SalMap NUS3D Fixation Map

238

468

558

Figure 3.8. Representation of random chosen examples from the NUS3D (random subset) dataset. The 
three columns represent the input RGB image, the outcome from the SNNevProto and the related ground 
truth from the NUS3D dataset. These examples show how the model performs when the observer fixation 

maps are sparse and unclear. The response from the model is with 60% OL and 0.013 inhibition.

dataset # First sample latency [ms] Second Sample latency [ms]
1 17 19
2 15 18
3 10 18
4 15 29
5 14 15
6 18 19
7 15 17
8 16 16
9 16 19

10 18 20
11 16 20
12 18 19
13 20 21

average 16±2.44 19.2±3.37

Table 3.3. Results of latency in milliseconds for different datasets of SalMapIROS. The test is done 
measuring the latency of two different samples for each dataset. Each row represents a dataset used to 

measure the latency in two separate samples. Each dataset represents static and dynamic objects placed in 
front of iCub (such as a paddle, a puck, calibration circles, proto-object patterns, a mouse, a cup and 

clutter (see Fig. 3.4)
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(a) (b)

Figure 3.9. Comparison with different metrics evaluating the similarity of the SNNevProto saliency maps 
with the NUS3D fixation maps (ground truth) [169] in two different subsets (robot scenario (a) and 

random subset (b)) for different OL percentages. The metrics used are: the Normalized Scanpath Saliency 
(NSS), Area under the ROC Curve (AUC-Borji) & (AUC-Judd), Pearson’s Correlation Coefficient (CC) 
and Similarity (SIM) [35], [137]–[139], Structural Similarity (SSIM) and Mean Square Error (MSE). A 

higher score is better for all excluding the MSE where the lower score determines similarity.

ing the strength and the weaknesses of each system. We then quantitatively compared the 
response between the SNNevProto and the PyTevProto using the latter model as the base-
line. We searched for the best set of parameters, exploring different OL percentages of the 
VM filters on each layer and the best inhibition value.

To characterise the response, this analysis exploits the SalMapIROS dataset which con-
tains patterns and robotic scenarios with objects and clutter in the scene. The SalMapIROS 
dataset is obtained recording the events coming from the event-driven cameras mounted 
on iCub looking at different scenes with real objects or 2D printed patterns. The robot per-
forms small circular periodic stereotyped ocular movements to generate stimulus-dependent 
activity from event-driven cameras for static scenes. To estimate the selectivity to a range 
of sizes we used a pattern representing circles of different dimensions (see Fig. 3.4, third 
row). The other two patterns in Figure 3.4 (first and second row) describe the definition 
of non proto-object and proto-object exploiting the design used by [9]. The proto-object 
is represented by the four corners facing each other forming close contours reminding of 
a square shape. The remaining pictures see objects of different sizes over a desk (fourth 
row) to study the applicability of our system in a scenario where we want the robot to 
interact with items in the scene. Figure 3.5 shows two cases of simple clutter represented 
by a pattern and a bag of nails alongside with an object (a puck).

Figure 3.4 and  3.5 qualitatively show the saliency map from the two models on some 
samples of the SalMapIROS dataset. Overall, the response from the models is coherent 
and both implementations detect the objects in the scene. In Figure 3.4 the response from 
the SNNevProto is less sparse and more localised over the targets which is helpful if a robot 
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needs to locate and reach the object. The PyTevProto correctly gets rid of the clutter in 
Fig. 3.5 (first row) but not in Fig. 3.5 (second row). The SNNevProto instead successfully 
discards clutter in both cases. This results show robustness to clutter of the SNN model. 
This behaviour was achieved by tuning the level of inhibition. By balancing inhibition 
appropriately the filter can be made selective to the VM kernel shape without silencing 
the firing of the filter neurons. As the clutter did not contain the specific contours the VM 
filter is selective to, the inhibition effectively suppresses firing from the filter neurons.

The SalMapIROS dataset has been used also to obtain data related to the latency mea-
surements. As the SpiNNaker simulation is run in real-time, latency is both walk-clock 
time and simulated time. The results in Table 3.3 show the amount of time needed to 
obtain spikes from the proto-object neurons, which compose the saliency map, given an 
input. Each sample is obtained by waiting for the onset of input spikes following a quies-
cent period and measuring the time taken for the activity to flow out of the model. This 
allows the delay of the input spike to the consequential output spike to be most clearly 
extracted. The average latency is 16 ms (2.44 ms standard deviation) and 19.2 ms (3.37 
ms standard deviation)3 for the second set of samples, compared with the 170 ms needed 
in average for the PyTevProto model4 to obtain a saliency map of the scene. Figure 3.6a
shows the comparison between the SNNevProto and the PyTevProto saliency maps using 
the SalMapIROS dataset. We evaluated the similarity among the outcomes using Normal-
ized Scanpath Saliency (NSS), Area under the ROC Curve (AUC-Borji) & (AUC-Judd), 
Pearson’s Correlation Coefficient (CC) and Similarity (SIM) [35], [137]–[139], Structural 
Similarity (SSIM) and Mean Square Error (MSE). These metrics are computed to compare 
the saliency maps to the ground-truth, following standard analysis methods in the litera-
ture[35], [137]–[139]. A single saliency map cannot perform well in all the metrics since 
they judge different aspects of the similarity between ground truth and predicted saliency 
map [140]. These metrics offer a way to determine how well a saliency-based model ap-
proximates human eye fixations. The properties of the chosen images for the benchmark, 
such as dataset bias (centre biasing, blur and scale), probabilistic input and spatial de-
viations, affect the result of the metrics [137]. Saliency based models can include such 
properties. In this work the robot needs to detect objects of different sizes to potentially 
interact with them. In fact, the SNNevProto only focuses on the scale of the objects rather 
than other properties. MSE and SSIM are metrics used in classical computer vision to 
explore the similarity among images. MSE estimates the error between two images and it 
is a global comparison, and the SSIM estimates the similarity between two images taking 
into account structural changes in the images.

3The model is running in simulation on the ”big machine” using 6 SpiNNaker boards and 48878 neurons.
4The PyTevProto is the PyTorch implementation of the same bioinspired attention model running on a laptop with Nvidia GTX 

1650 GPU and Intel Core i7-9750H CPU @ 2.60GHz x 12
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There is not a significant difference over the OLs percentages comparing the saliency 
maps between the SNNevProto and the baseline (PyTevProto). Only AUC-JUDD and SIM 
slightly increased increasing the OL percentage. Although there is not a remarkable in-
crement we chose 60% OL to explore the inhibition parameter (𝜇S conductances). 60% 
OL represents a good compromise among the robustness of the model, ensuring enough 
overlap to cover the whole visual field without losing any area of the visual field, the num-
ber of SpiNNaker boards needed (see Table 3.1) and the results obtained. Each significant 
increment of neurons causes an increment on the number of SpiNNaker boards required. 
Nevertheless, the number of neurons required does not affect the latency of the model be-
cause the pipeline remains unaltered. Figure 3.6b explores a range of different inhibitions 
showing again not a significant incremental or decremental trend. Only SIM and CC show 
a slight improvement increasing the inhibition parameter. The results exhibit a stable re-
sponse exploring different parameters showing no need to create a complex network with 
a large number of neurons to get usable saliency maps. Overall SSIM and AUC-JUDD 
seem the best metrics to explain our saliency map results.

Along with the characterisation where we compared the response of our implementa-
tion with the PyTevProto, we evaluated the response from the model by benchmarking the 
saliency maps with the ground truth provided by the NUS-3D dataset [169]. The investi-
gation includes the comparison between the saliency maps generated by the SNNevProto 
and the fixation maps qualitatively and quantitatively evaluating the similarity between the 
two maps. The 2D fixation maps of the NUS-3D were collected from subjects looking at 
images while recording eye movements. The ground truth obtained recording the response 
from the subjects includes different mechanisms of bottom-up and top-down processings, 
increasing the complexity of the observers’ fixations. The observer response does not ex-
clusively derive from a data-driven process but also a task-driven mechanism driving the 
gaze towards a particular region of the scene. Attention is a complex interplay between 
these two mechanisms combining bottom-up and top-down mechanisms to perceive the 
surrounding [141]. The model we propose is a bottom-up system that does not include 
top-down mechanisms, but 2D fixation maps can be used to evaluate the response of our 
system as they represent the only ground truth we can refer to.

To use the NUS-3D dataset within the event-driven proto-object model, we used the 
Open Event Camera Simulator [176] shaking the images to simulate small periodic circu-
lar eye movements.
We chose two subsets of data from the dataset: one is a selection of 50 images representa-
tive of a robotic scenario (robot scenario) and the second one is a collection of 50 random 
images (random subset). The first subset (see Fig. 3.7) represents a simple robotic scenario 
where objects are placed over a surface. The second subset (see Fig. 3.8) is a random se-
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Metrics

Normalized Scanpath Saliency (NSS)
CC approximation, good for saliency evaluation.

Area under ROC Curve (AUC)
Invariant to monotonic transformations, driven 
by high-valued predictions. Good for detection 
applications.

Pearson’s Correlation Coefficient (CC)
Linear correlation between the prediction and 
ground truth distributions. Treats false positives 
and false negatives symmetrically.

Similarity (SIM)
Similarity computation between histograms, more 
sensitive to false negatives than false positives.

Structural Similarity (SSIM)
Similarity among images, highly sensitive to 
structural changes.

Mean Square Error (MSE)
Similarity among images, global comparison.

Table 3.4. Metrics summary. This table takes inspiration from [137]

lection among all the dataset images adding complexity and variety to the scenarios.

Qualitatively, the saliency maps from the model and the fixation maps are sparse and 
not easily understandable at a first glance (see Fig. 3.7 and Fig. 3.8). Figure 3.7 represents 
a scenario where the SNNevProto Saliency Map and the ground truth target select the 
same objects as interesting. The highest response (brightest) is located around the objects 
in the scene. Figure 3.8 shows a slightly sparse response from the model compared to the 
fixation maps, not allowing a clear understanding of the agent’s attention.

Quantitatively, Figure 3.9 shows good results for both datasets exploring different per-
centages of OL. Furthermore, all the metrics do not show a significant increment changing 
the OL%, validating the response of the model either for simple or for complex scenarios.

Although we do not include the complex bottom-up top-down interplay [141] in our im-
plementation, overall the results yield a good representation of the scene for our purposes. 
Moreover, the metrics used to quantify the similarity do not give equal results among 
them. All the metrics are used in literature to explain saliency-based model performances. 
They compare different aspects depending on the ground truth representation and the def-
inition of the saliency map of the model. These metrics treat differently false negative 
and positives, viewing biases, spatial deviation and the pre-process of the saliency maps. 
We were initially interested in the location of the responses from the saliency maps rather 
then the value in that position, choosing the SSIM as the metric we could rely on. SSIM 
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estimates the structural similarity between two images comparing small sub-samples of 
the images with each other. This metric well describes our situation where we are more 
interested in having a response in the same location rather then having the same amount 
of response in terms of intensity. We further added other metrics used in literature for 
completeness [137]. The results seem to bare out our expectations. Overall, in our case 
SSIM seems a good metric to explain our saliency maps. Alongside with the SSIM, AUC-
JUDD provides good results too, where each saliency pixel is treated as a classifier split-
ting them in ”fixation” and ”background”. This metric computes the ratio of true and 
false positives to the total number of fixations and saliency map pixels using a thresholded 
mechanism [177].

3.8 Conclusion

Overall the response of the spiking implementation of the event-driven attention model 
on SpiNNaker (SNNevProto) is coherent with the PyTevProto, showing a significant im-
provement in removing the clutter with respect to the baseline GPU-based implementation 
(PyTevProto). This can be well explained by the nature of the model. The SNN model, as 
a result of the inhibitory connections, is far more selective to the shape of the VM filter, 
than in a classic convolution using a kernel with no negative weighting. The convolution 
will produce activity everywhere the filter overlaps with events, enabling clutter to evoke 
a response in the saliency map. The advantage of the resulting higher selectivity and lo-
calised activity in the saliency map is in the possibility to improve object localisation and 
segmentation and, hence, the interaction of the robot with the selected object.

For the same structural reason, the response from the SNN is less sparse and focused on 
the location where the detected objects are placed. Two VM filter of opposite side are con-
nected together at every scale and with different rotations. Only when they both respond 
there is a response from the successive layer of the SNN. Therefore, this significantly helps 
in generating a preciser saliency map.

Given the parallel structure of SpiNNaker, increasing the number of neurons does not 
affect the latency performance. For this reason, we tested the model for increasing the OL 
percentage, and therefore increasing the density of the convolutions. This strategy appears 
to provide little benefit to model performance and requires the use of an additional number 
of SpiNNaker boards. Results for low values of OL percentage, equivalent to a large stride 
in CNNs, produce a similarly reasonable representation of the visual scene compared to 
high values, with significantly reduced network size. This displays the feasibility of fitting 
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the SNNevProto model on a single SpiNNaker board and having it work in tandem with 
the iCub humanoid robot.

The SNN implementation provides a saliency map of the scene in around 17.5ms. In 
comparison with the PyTevProto ( 120ms), these results are a significant improvement, 
that enables the system to run online in dynamic environments, where the saliency map 
can be used to drive the gaze and actions of the robot in real-time. To this aim, the SNN 
implementation on SpiNNaker could easily include Winner-Take-All competition and In-
hibition of Return [75] to dynamically select the location of the next saccade of the robot. 
Additionally, the saliency map allows the system to focus its attention towards a specific 
target, devoting computational resources to perform other tasks, such as object recognition, 
only in the area where they are needed.

Finally, the attention and gaze of robots are extremely important in the interaction with 
humans [178], we, therefore, questioned how close the saliency map (used as a proxy for 
the robot’s fixational eye movements) was close to humans. We validated and characterised 
the system, but the quantitative results of the benchmark do not capture the true merit of 
the model. Quantitatively, the similarity among the benchmark results (robot scenario 
and random subset datasets) suggests another question; how do we define the complexity 
of a scenario? and which aspects should we take into consideration for attention? These 
results proved to us that the random subset does not produce lower results, hence, it may not 
contain as complex scenarios as we expected. Each metric captures a specific aspect of the 
saliency maps, our analysis is instrumental to give a quantitative comparison but mostly to 
study the effects of the different parameters on the model performance. Moreover, most of 
the metrics present a high variance due to the mismatch between the SNNevProto saliency 
maps and the ground truth. This should be investigated in depth creating several subsets 
from the 600 images of the NUS3D dataset investigating the variability of the response. 
As expected, a pure bottom-up neuromorphic attention system taking into consideration 
only the intensity as a feature to determine the saliency map only partially predicts the 
fixational eye movements of humans. To this aim, the model can be enriched with other 
channels (such as motion, depth, texture, etc) and with top-down processing to focus the 
attention towards a specific task.

The model could benefit from the leveraging of learning dynamics in the fine-tuning of 
network parameters. This could allow the model to adapt itself to particular data sets and 
reach a higher level of performance. This may improve the inference of the model given 
appropriate training and data as compared to handcrafted parameter selection.

Moreover, the spatial integration [179] and the lateral inhibition [180] could enrich the 
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model following a detailed bioinspired pipeline and further reduce the amount of data to 
be processed. Finally, further experiments could be done emphasising the clutter removal 
capabilities and exploring the potentiality of the model.
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3.10 Reflections & Conclusions

The SNN version of the saliency-based proto-object model clearly detects proto-objects 
in different environments especially removing clutter as a possible interesting feature. Fur-
ther experiments investigating the clutter removal could be interesting for a further more 
complex application along with the figure-ground segmentation concept [181]
This pipeline is fully neuromorphic and gets rid of the event-frames representation taking 
advantage of the spike-based architecture. The impressive result of this implementation is 
due to the use of the neuromorphic platform, SpiNNaker, reducing dramatically the overall 
system latency. Given the first spike from the event camera, the first spike from the saliency 
map is produced after only 4 ms. This latency is computed as the first spike-in/spike-out 
of the system. Therefore the first output spike could not represent the most salient object 
in the scene. A more accurate investigation should address the real system latency since 
the stimulus presentation (onset) to the first stable saliency map.
Smart connectivity in the network allowed the replacement of several layers of processing 
and ensures an asynchronous response.
This work includes the investigation on the quantitative results validating the model through 
comparison methods used in literature. The saliency map computed from the network is 
sparse due to the spike-based implementation, still achieving a reasonable comparison with 
the ground truth. The results changing the overlap among filters did not show any substan-
tial change in the response, suggesting the choice of simple scenarios as a used dataset 
(SalMapIROS). The intuition would see a change in response among overlap percentages 
exploiting a more crowded scene requiring a high number of VM filters on the input layer. 
These results do not see a 0% overlapping percentage because of the bio-inspired choice 
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to ensure robustness [173], [174] for the model. The inhibition results show the same, not 
informative conclusions, confirming the possible not adequate dataset choice for these in-
vestigations. The explored inhibition values represent the empirical range of values found 
to generate a clear response from the system. The quantitative investigation on the bench-
mark dataset allowed a better understanding of the results providing a new set of questions 
around the choice of the input scenes. The saliency maps obtained from the ”robot sce-
nario” dataset show the same quantitative results as the ”random subset” dataset suggesting 
a wrong splitting of the two datasets erroneously considering the ”random subset” as the 
complex scenario.
Although the quantitative evaluation provides a quantifiable measurement of closeness to 
the ground truth, the internal cognitive biases from subjects looking freely at an image 
do not guarantee an absolute comparison with the saliency maps. This problem could 
be solved by defining a clear task (i.e. focusing on the closest target as further done in 
Chapter 4). The complex interplay between bottom-up and top-down human mechanisms 
does not allow for a fair comparison with the purely bottom-up outcome of the proposed 
model. The two outcomes cannot indeed be identical per se. Moreover, the metrics look at 
different aspects of the similarity, making the perfect match with the ground truth further 
impossible. AUC-JUDD and SSIM are described to be the metrics to explain the results 
obtained. Both metrics are driven by the high response in the same location, being sensi-
tive to structural changes. These metrics do not explain the results, but they are only the 
best scores obtained among the used metrics. To the current author’s knowledge, these 
experiments are non-informative, suggesting a more detailed investigation to characterise 
the model response for each metric using ad-hoc datasets.
Despite the clear advantages of this neuromorphic implementation, the number of required 
SpiNNaker boards increases significantly with the percentage of filter overlap. Maintain-
ing a good percentage of overlap (60%) the system needs up to 48878 neurons and 6 boards 
in parallel running remotely on the ”big machine” exploiting batch processing.
However, the quantitative results obtained have shown a good response to the model re-
ducing the overlap percentage from 60% to 10%. This percentage of overlap still requires 
3 SpiNNaker boards and 10428 neurons. A possible online implementation on iCub, using 
only one board for convenience, would force a simplification of the pipeline and a consid-
erable reduction of the visual field. This consideration confirms the scalability problem 
on neuromorphic platforms mentioned in the introduction.
Whether the platform would allow an increased number of neurons on the physical board 
this SNN implementation of the saliency-based proto-object model could certainly replace 
the PyTorch implementation.
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Chapter 4

Event-driven Proto-object based 

saliency in 3D space to attract a robot’s 

attention

The supplementary materials can be found in Appendix A, section A.
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4.4 Abstract

To interact with its environment, a robot working in 3D space needs to organise its vi-
sual input in terms of objects or their perceptual precursors, proto-objects. Among other 
visual cues, depth is a submodality used to direct attention to visual features and objects. 
Current depth-based proto-object attention models have been implemented for standard 
RGB-D cameras that produce synchronous frames. In contrast, event cameras are neuro-
morphic sensors that loosely mimic the function of the human retina by asynchronously 
encoding per-pixel brightness changes at very high temporal resolution, thereby provid-
ing advantages like high dynamic range, efficiency (thanks to their high degree of signal 
compression), and low latency. We propose a bio-inspired bottom-up attention model that 
exploits event-driven sensing to generate depth-based saliency maps that allow a robot to 
interact with complex visual input. We use event-cameras mounted in the eyes of the iCub 
humanoid robot to directly extract edge, disparity and motion information. Real-world ex-
periments demonstrate that our system robustly selects salient objects near the robot in the 
presence of clutter and dynamic scene changes, for the benefit of downstream applications 
like object segmentation, tracking and robot interaction with external objects.
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Multimedia Material

Video:https://zenodo.org/record/5091539

4.5 Introduction

Every agent, whether animal or robotic, needs to process its sensory input in an ef-
ficient way, to allow understanding of, and interaction with,the environment. Since the 
agent’s computational capabilities are limited, careful allocation of perceptual and cogni-
tive resources is required [182]. The process of filtering relevant information out of the 
continuous bombardment of complex sensory data is called selective attention. This pro-
cess not only occurs in animals, where the selection of the most ecologically important 
stimuli like the presence of a predator is required but also in complex machinery with a 
rich array of sensors, like robots. The large amount of information arriving in the informa-
tion processing stages at all times from sensors that are needed only at some times cannot 
be processed economically in its entirety. Selective attention mechanisms are used to anal-
yse only the most important subset of the sensory stream. A number of visual attention 
algorithms have been proposed in robotics exploiting selective attention mechanisms [44], 
[46]–[49].

Figure 4.1. Event-driven proto-object saliency estimation in 3D. Left: Cluttered table top with objects of 
different sizes and textures placed at varying depths (only for visualisation). Middle: Events produced 
from the ATIS camera using circular robot eye motion. The event stream is plotted in spatio-temporal 

coordinates. The green and purple colours represent whether the pixel witnessed a brightness increase or 
decrease. Events from the stereo cameras serve as input to our model. Right: Saliency map computed 

using the proposed evProtoDepth model, with the closest object (black bottle) selected. The saliency map 
is overlaid on the event image generated by accumulating events generated within a 100 ms time window.

Visual attention is the result of the complex interplay between the physical characteris-
tics of the scene (stimulus-driven, bottom-up mechanisms) and the goals of the agent (task-
dependent, top-down mechanisms) [183]. Bottom-up models of selective attention rely 
both on feature extraction [102], [147], [184] and perceptual organisation of the scene [9]. 
Mechanisms of perceptual organisation have been formalised in the form of “Gestalt laws” 
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(e.g. continuity, proximity, figure-ground segmentation) that contribute to the grouping of 
visual features into coherent objects [83]. These principles can be integrated into feature 
based bottom-up models [33], [75] to identify so-called proto-objects [9], by adding a layer 
of Gabor [102], or curved Von Mises filters [9], loosely similar to neuronal responses in 
primate visual cortex [98]. Such models use biological inspiration by emulating the cells 
that extract visual features and combine them using border ownership and grouping mech-
anisms, to produce a robust saliency map of the scene that increases perceptual saliency 
of regions with object-like stimuli.

We are interested in the bridge between biologically plausible models, bio-inspired 
hardware, and embodied agents (robots) to further understand the role of the hardware and 
the environment in selective attention processes. Our previous work [166] implemented 
the proto-object model proposed by Russell et.al. [9] using bio-inspired artificial visual 
sensors, called event-driven cameras [5]. The event-driven cameras function more simi-
larly to biological eyes than frame-based cameras. Instead of scanning each pixel in order 
to measure the incident light level as in a traditional camera, each pixel in an event camera 
is independent and produces a spike when the incident light changes beyond a threshold. 
These ”pixel spikes” are similar in function to the action potentials that the retina sends to 
the brain. The output of the event-camera is asynchronous, sparse, and occurs only where 
there is a differential between dark and light regions of the scene detected as an illumina-
tion change of each pixel over time, functioning de facto as a dynamic edge extractor. The 
integration of the event-camera into the proto-object processing pipeline inherently per-
forms some of the lower-level processing that the model requires (detecting illumination 
change), opening interesting questions on the role of the hardware, as well as the brain, in 
sensory processing.

Relative depth and apparent object size provide important cues to guide bottom-up at-
tention mechanisms during physical scene interpretation  [185]–[187]. Depth cues from 
binocular disparity have been shown to modify eye movements of participants when shown 
3D images [188] and videos [189]. Directed attention to local features have also been 
shown to aid in the interpretation of three-dimensional cues [45]. To explore the role of 
depth in event-driven attention, in this paper, we extend our previously developed event-
driven proto-object model (evProto) [166] by combining it with a biologically inspired 
stereo disparity estimation algorithm [11], resulting in a depth-based attention model. 
Furthermore, our implementation runs online on a robotic platform (the neuromorphic 
iCub [2]).

In two previous studies, a proto-object based model of selective attention[9] was ex-
tended to include depth in the saliency map computation [88], [109]. Our model goes be-
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Figure 4.2. Interplay between depth (disparity) and Gestalt cues in evProtoDepth saliency. The disparity 
maps (Row 1) have two possible depths: near (dark red) and far (light orange), and the evProtoDepth 
saliency (Row 2) is shown from strong (red) to weak (blue). Arranging the angle features in a convex 

shape generates a perceptual (proto-)object that contributes to saliency in our model. Turning any of the 
angles in a different orientation destroys object perception. This contribution to saliency is integrated with 
that resulting from differences in depth. The salience of the synthetic proto-object pattern increases as it 
moves closer to the camera. However, even when the proto-object moves further away in the background, 
it produces a strong response compared to the non-object pattern in the foreground. This demonstrates the 
advantage of using a proto-object model instead of directly relying on raw scene depth for nearest ”object” 
selection by the robot. The selectivity is the strongest when the proto-object is placed closer to the camera 

while the non-object pattern is in the background (Column 2).

yond those studies mainly in two ways. First, both of these models are frame-based while 
we use input from neuromorphic event cameras. Second, both models require supplemen-
tary information in addition to the two input images. A full depth map obtained by an 
RGB-D sensor is needed for the Hu et. al.odel [88]. The Mancinelli et. al.odel [109] does 
obtain depth information from stereoscopic cameras but it assumes that a certain number 
of known correspondence points are available. Instead, our model solves the correspon-
dence problem directly, using only visual input streams from two event-driven cameras by 
making use of the precise signal timing at the pixel level, as is described in Methods.).

An important concept for all agents interacting with their physical environment, be it 
humans, animals or robots, is the implicit, underlying interpretation of the environment 
imposed by object affordance [190]; the object features that define their possible uses 
and/or make clear how they can or should be used [191]. It seems reasonable to expect that 
there is a bi-directional relationship between affordances and salience: Affordances are 
important for interacting with objects, so they need to be attended to make this interaction 
possible. On the other hand, features related to affordances may be salient by themselves, 
either by their inherent visual properties (shape etc.) or by their design (e.g. painting 
a handle red). There is evidence for a bidirectional relationship between attention and 
affordance [192], [193], while other studies have shown that the correlation may not be 
particularly strong [194]–[196]. The relationship may be more nuanced and be affected by 
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additional neurological systems, which would require additional study. We note, however, 
that even though we do not include any explicit consideration of affordances in our study, 
we direct the robot’s attention towards objects in a certain size range, according to its 
grasping capabilities [166]. Furthermore, in our implementation of the depth channel we 
increase the saliency of closer objects, which are therefore easier to reach by the robot, 
which is an affordance of elementary importance.

Our motivation is to understand the benefits of combining biologically inspired algo-
rithms with neuromorphic hardware on embodied agents, as opposed to improving the 
precision and performance of the object selection or eye fixation prediction. The objec-
tive we pursue with our attention model is to produce saliency maps that are robust to 
noise, quickly adapt to dynamic changes in the visual scene, and remain close to impor-
tant biological processing mechanisms. As the system produces saliency estimation using 
event-driven cameras based on depth information, we will refer to it as the evProtoDepth 
(event-driven Proto-object 3D) model. It is able to cope both with dynamic scenes (with 
motion) and with static images. In order to process the latter, small periodic stereotyped 
ocular movements are performed by the robot to generate stimulus dependent activity from 
event-driven cameras to generate pixel motion, akin to microsaccades in biological vi-
sion[158].

Since we want the robot to be more attentive to nearby objects that are within its reach, 
our saliency model design puts a higher importance on stimuli with higher disparity. This 
allows nearby objects to inherently appear more salient. Besides the affordance of reach-
ability, our design choice is also based on ecological evidence which suggests that atten-
tion in insects, mice and humans is drawn towards looming stimuli [197]–[199], wherein 
nearby approaching objects are deemed especially important. Whereas other features also 
contribute to salience in full attention systems, here we focus on depth alone and leave 
the integration with other submodalities for future work. Thus, the evProtoDepth model 
selects the nearest potential object (proto-object) that the robot could reach and interact 
with as the most important item in the scene (see Fig 4.1). To fully explore the influence 
of depth on the event-driven saliency model, we propose a depth-only implementation as 
the base for a more complex saliency based attention system in the future, in which multi-
ple features are weighted based on top-down mechanisms to adapt the detection of salient 
regions of the scene to the task at hand [200].

In the next section, we demonstrate the performance and suitability of the event-driven 
stereo depth algorithm as an input to the proposed attention model. A comparison of the 
proposed evProtoDepth and the non-event-based proto-object attention model is made on 
publicly available attention-based datasets, and a series of tests on the iCub robot are made 
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to demonstrate the attention to nearby objects, as opposed to nearby non-objects and far 
away objects.

NSS AUC_Borji KLDiv CC SIM
mean, median mean, median mean, median mean, median mean, median

fbProtoDepth [88] 0.936, 0.917 0.737, 0.747 1.603, 1.501 0.386, 0.386 0.283, 0.296
evProtoDepth 0.769, 0.888 0.606, 0.592 2.971, 2.249 0.417, 0.417 0.401, 0.420

Table 4.1. Consolidated MIT saliency metrics Normalized Scanpath Saliency (NSS), Area under the ROC 
Curve (AUC-Borji), Kullback-Leibler Divergence (KLDiv), Pearson’s Correlation Coefficent (CC) and 

Similarity (SIM) [35], [137]–[139] on the closest-object subset of the NUS3D dataset. A higher score is 
better for all metrics, excluding the KLDiv. Bold font indicates the model with the better performance. 

Some of the corresponding scenes and saliency maps are depicted in Fig 4.3. The metrics for each 
individual image in this subset are presented in Supplementary Fig A.8.

4.6 Results

The evProtoDepth model is biased to select the closest object in the scene, and to de-
crease the saliency of near stimuli that do not fulfil the continuity and proximity conditions 
that define the presence of a proto-object, as shown in Fig 4.2. We evaluate the evPro-
toDepth model against the standard frame-based proto-object model (fbProtoDepth) [88] 
on a subset of the NUS3D publicly available dataset [169], comparing also to ground truth 
fixation maps captured from human eye tracking data. We validate the accuracy of the on-
line event-based depth estimation model and on the neuromorphic iCub robot [2] with live 
visual data from stereo ATIS cameras [5], and evaluate the response of the full evPro-
toDepth pipeline on the iCub robot to identify salient regions produced by nearby objects 
in the scene.

The model takes ≈ 170ms to compute saliency of one frame on a laptop with Nvidia 
GTX 1650 GPU and Intel Core i7-9750H CPU @ 2.60GHz x 121. The parameters used 
to run the model are specified in the supplementary material (Tables A.2 and A.1)2.

An accompanying video (https://zenodo.org/record/5091539) supports an in-
tuitive understanding of the experiments.

4.6.1 Saliency Benchmarking with NUS3D Saliency Dataset

The NUS3D dataset [169] is used to quantitatively compare event-based evProtoDepth 
with frame-based fbProtoDepth against a ground-truth saliency map. The goal of the 

1The disparity extractor is implemented on C++ and the visual attention proto-object model is a PyTorch implementation
2Supplementary materials can be found in Appendix A
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Image # RGB image
Simulated event disparity 

maps used as inputs to 
evProtoDepth

Saliency Map: 
fbProtoDepth [88]

Saliency Map: 
evProtoDepth Ground truth 3D fixations
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Figure 4.3. Comparison of saliency maps generated by fbProtoDepth [88] and evProtoDepth on samples 
from a subset of the NUS3D dataset where ground truth fixation was concentrated on the nearest object in 

the scene. The subset comprises all cases where the cross-correlation between the ground truth 3D 
fixation and inverse of ground truth depth ≥ 0.5. These scenes depict scenarios relevant to a robot 

application where the goal is to select the nearest ”object”. This benchmarking experiment investigates 
how depth contributes to event-based proto-object saliency for predicting human eye fixations in such 

scenarios. evProtoDepth uses a single depth channel for saliency prediction whereas fbProtoDepth 
combines information from parallel depth, colour opponency, intensity and orientation channels at the 

final stage. This causes the former to generate sparser saliency maps highly localised on the nearest object 
which are suitable for robot applications like segmentation and grasping.
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analysis is to understand how close we are to the real fixation maps in cases where hu-
mans fixate mostly on the closest object. To this aim, we algorithmically selected a subset 
of 19 images from the dataset in which the highest salient region should be the closest 
object, i.e. images in which the cross-correlation between the ground truth fixation map 
and the inverse of ground truth depth is ≥ 0.5.

The dataset provides colour RGB input stimuli, depth maps as well as locations of fix-
ations when humans fixated on either the 2D or 3D images. To produce simulated ”micro-
saccades” (see above), the still images were shifted by 1 pixel in the cardinal directions 
(right, left, top and bottom) to simulate random small eye motion [201] and a video of 50 
frames (25 fps) was created for each input image. Events were generated from the video 
using the Open Event Camera Simulator [176]. Depth was assigned to each event using 
the ground-truth depth map for each pixel and smoothed by 1 pixel in each direction to 
account for the eye-motion. The evProtoDepth saliency map is computed from the simu-
lated events whereas the fbProtoDepth is computed from the static RGB and depth images 
in the dataset. Fig 4.3 shows that both models detect the objects in the scene focusing the 
attention on the closest one. The fbProtoDepth shows a wider and centre-biased response, 
whereas the evProtoDepth shows a more localised response which is useful in a robotic 
context. It allows the robot to pinpoint the location of most salient parts of the scene with 
higher precision and confidence, which is important for subsequent physical interaction.

The Normalized Scanpath Saliency (NSS), Area under the ROC Curve (AUC-Borji), 
Kullback-Leibler Divergence (KLDiv), Pearson’s Correlation Coefficient (CC) and Simi-
larity (SIM) are computed as metrics to compare the saliency maps to the ground-truth, 
following standard analysis methods in the literature[35], [137]–[139]. A single saliency 
map cannot perform well in all the metrics since they judge different aspects of the simi-
larity between ground truth and predicted saliency map [140].

The fbProtoDepth model has better performance than evProtoDepth on three of the five 
metrics (NSS, AUC-Borji, and KLDiv), while evProtoDepth achieves a better result for 
the CC and SIM metrics as shown in Table 4.1. The fbProtoDepth model uses intensity, 
colour, and opponency channels, while evProtoDepth uses only the depth channel, and as 
such saliency patterns are not expected to be identical between methods.

The response of both models and the ground truth all peak on the closest objects, as 
shown in Fig 4.3. While there is not a large amount of clutter in the dataset, it is clear 
from the second column of Fig 4.3 that the intensity gradient of the background (curtain) 
is non-negligible and produces many background events. The signal from the background 
does not conform to the proto-object pattern and therefore is correctly suppressed by the 
models. In cases in which there is a large difference between the object depth, all models 
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successfully produce a stronger response to the closest object.

(a)

(b)

(c)

Figure 4.4. Evaluation of estimated disparity accuracy of a circular paddle moving to and fro along the 
depth axis. a Colour-coded (red=near, blue=far) event disparity maps (time window 100ms) of the paddle 
at three time instances: far (left), intermediate (centre) and close (right). b The corresponding disparity 

distribution histograms. c Variation of ground truth and computed disparity (mean and mode within 
manually annotated ROI) over time, and an image of the input stimulus.

Even in scenes where the ground truth 3D eye fixations were not necessarily confined 
to the nearest ”proto-object”, the event-driven evProtoDepth model may produce saliency 
maps concentrated on the nearest object following Gestalt principles, because it relies 
on depth information. By contrast, fbProtoDepth, which relies on multiple information 
channels besides depth, better predicts eye fixations. Some examples of such scenes are 
shown in supplementary Fig A.92.

4.6.2 Disparity Estimation for the Neuromorphic iCub

The accuracy of the disparity estimation model is demonstrated online (50 microseconds 
latency per event) on the robot by moving a high-contrast fiducial marker, a circle shape, at 
different distances (within a 30 to 210 cm range) from the stereo cameras and comparing 
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the computed disparity to the ground truth. The ground truth is computed by tracking the 
circle shape [202] independently in each camera and computing the horizontal distance 
between the circle centres in the left and right cameras.

The ground truth is compared to the mean and mode of estimated disparity values 
within a Region of Interest (ROI) placed around the tracked circle centre. Fig 4.4 shows 
accuracy of disparity estimation qualitatively and quantitatively. The histogram peaks 
position in Fig 4.4b corresponds to the depth of the stimulus shown in 4.4a. Fig 4.4c
shows quantitatively that the estimated disparity is accurate with respect to the ground 
truth throughout the sequence. The jitter is due to imperfect time correspondence in the 
asynchronous system.

Further experiments with more complex multi-object stimuli are presented in the sup-
plementary material (Fig A.7)2. We observe that even the noisy disparity map manages to 
reflect the real scene depth to accurately represent the dynamic environment. The network 
simultaneously encodes different levels of disparity information, solving the correspon-
dence problem, at different spatial locations and times, consistent with real-world depth. 
The model is capable of resolving the depth of complex stimuli like the human body, with 
multiple non-rigid moving parts.

4.6.3 Robot application of 3D proto object model

To validate the evProtoDepth model, we implemented a robot application where iCub 
uses its movable stereo event-driven cameras to observe static and moving stimuli and 
selects the nearest proto-object with the goal of further physical interaction. Specifically, 
we tested whether the evProtoDepth implementation consistently selects the nearest object 
in the scene as the most salient, when the depth of objects changes dynamically. At the 
same time, an important aspect of our evaluation is the stability of object selection when 
the scene configuration remains constant, and the model’s robustness to noise both in the 
background and foreground.

Fig 4.5 shows how the addition of depth information improves object selection stability. 
The 2D histogram of saliency maps (bottom two rows) obtained during each object con-
figuration shows that both models can select plausible objects in the scene. The addition 
of the disparity information in the evProtoDepth model, however, enhances the salience 
of the object which is closer to the observer. While the 2D evProto model assigns overall 
similar saliency values to the bottle and the mug. The development of saliency over time 
is shown for both models in Fig 4.6. The comparison between Fig 6d and its evProto coun-
terpart (Fig 6e) shows that the peak response of the evProto model jumps from one object 
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Figure 4.5. Static Objects at Changing Depth (bottle-mug) dataset. The columns show snapshots from the 
4 different configurations in the dataset. Row 1 depicts the scene from a third perspective. Row 2 shows 

the event images accumulated over 100ms. Row 3 and 4 illustrate the output generated by the evProto and 
the evProtoDepth models respectively. Each plot shows the 2D histogram of saliency maps accumulated 
over all frames in a single input configuration. Object selection is more stable with the 3D model in the 

presence of multiple objects.

to the other even when the scene configuration remains unchanged. Furthermore, the peak 
of the saliency map obtained from the evProto model often occurs outside the annotated 
object boundaries (green dots, ”No selection”). As an example, in Fig 4.5 Row 3 shows 
that the evProto model finds the ray of the sunlight on the top-right corner of the wall (as 
seen in the colour image in Row 1) as highly salient. Object disparity therefore stabilises 
object selection (see Fig 4.6b). The selection does not depend on the number of events 
generated by the object, as plotted in Fig 4.6c: during the ”Bottle + Mug (near)” configu-
ration, the evProtoDepth selects the mug which is closer to the camera, even though both 
objects generate similar number of events.

The experiment of Fig 4.7 investigates the response of the system to continuously 
changing stimuli, in the example shown, a person alternately moving the left and right 
hand towards and away from the iCub. The location of attention quickly and reliably 
shifts to the nearest proto-object as soon as the relative position of the hands change sign. 
The rightmost column shows the location of maximum salience over time, confirming the 
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Figure 4.6. The disparity channel stabilises object selection in the bottle-mug dataset, during which the 
object positions are moved on a table. (a) Sample event frame with manually annotated object boundaries 
– at this particular time, the mug is closer to the camera. (b) Mean disparity within each object boundary 

in both object frames. (c) the number of events generated within each object boundary in both event 
frames. (d), (e) x coordinates of the peak response in each frame for the evProtoDepth and evProto 

attention models. For each frame, an object is ”selected” if the peak saliency pixel lies within its annotated 
boundaries, otherwise ”No selection” occurs. There is only one unique object selection at each time stamp 
(frame). This means that for evProto in (e), the saliency peak jumps from one object to another frequently. 

Thus the orange, blue and green dots occur at (different) timestamps very close to each other.

switch of attention from the left hand to the right one while the hands were moving, even 
when the eyes of the robot are moving. In this second scenario, events are generated by 
the moving cameras from static objects, leading to high saliency at intermediate depth 
locations as well (e.g. the face of the person standing in front of the camera). However, 
most of the time the closest objects are selected. This experiment demonstrates that the 
evProtoDepth model can in real-time track the closest object in a dynamic scene with eyes 
fixed and in motion.

To obtain a fair comparison between our implementation and the fbProtoDepth model, 
we recorded RGB-D frames from a Real-Sense D435 depth camera that uses active IR 
stereo technology to record depth information along with visual images. The depth maps 
were post-processed with hole-filling filters provided in the Real-Sense library. These 
holes are 0 value pixels which would otherwise be erroneously treated as the nearest stimuli 
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Figure 4.7. Saliency prediction from evProtoDepth in a dynamic scene (data set hands) containing hands 
moving towards the cameras and away from them, with and without the iCub eye motion. The events from 

the stereo cameras are the only input to our model. RGB (Row 1) frames at different instances of the 
sequence are shown for visualisation. The two leftmost columns of Rows 2 and 3 depict corresponding 
saliency outputs overlaid on input events while the robot eyes were fixed (Row 2), and moving (Row 3). 

With fixed eyes, only the moving hands trigger events, whereas with moving eyes, events are generated by 
static as well as moving features in the scene, thus both static (e.g. the face) and moving objects (hands) 

appear salient. The rightmost column shows the 𝑥 coordinates (along the axis between the person and the 
cameras) of peak saliency plotted against time (frame number) for both datasets. The true locations of the 
hands are marked with coloured bands. For static cameras (Row 2), the peak saliency pixel consistently 
alternates between the left and right hand locations as they move towards and away from the camera, i.e., 

it follows the hand closest to the camera. For moving eyes, (Row 3), excess events caused by 
micro-saccades result in some spurious saliency peaks at objects like the face despite them being farther 

away from the camera.

by the attention models.

The direct comparison between the evProtoDepth and the fbProtoDepth qualitatively 
on hands dataset depicts that the fbProtoDepth shows a wider and centre-biased response, 
whereas the evProtoDepth shows a more localised response because event-driven cam-
eras only respond to motion and high contrast changes and generate sparse features. The 
fbProtoDepth takes the entire human as single object due to the presence of additional 
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orientation and colour opponency channels, whereas in case of evProtoDepth, the event 
cameras produce sparse and disjointed features leading to the detection of multiple smaller 
objects. This can be observed in supplementary Fig A.102.

The evProtoDepth model is able to focus the attention towards the target which is closer 
to the robot, making it more suitable for behavioural decisions and interaction within its 
proximity. The system shows reliable response in cluttered scenarios and dynamic scenes. 
The Disparity Extractor alone provides a disparity map without any higher level filtering 
of ”objects” in the scene. Therefore, the integration of the evProto model with the dispar-
ity extractor informs the system about salient regions which are not only nearby but also 
follow Gestalt laws. The proto-object model helps select a proto-object following Gestalt 
laws while discarding noise from the disparity map, whereas the additional disparity infor-
mation improves selection precision in evProtoDepth. For evidence we point the reader to 
the supplementary Fig A.112, which depicts 2D histograms of peak responses for evProto, 
Disparity and evProtoDepth saliency maps.

4.7 Discussion

We introduce a model that combines disparity computations based on neuromorphic 
event-driven algorithms and hardware with a bio-inspired attention model. It improves 
upon the 2D model (the evProto model) which assigns perceptual saliency to (moving) 
edges that enclose a region (not necessarily completely) and can hence form the contour of 
an object. Adding the disparity information results in our 3D evProtoDepth model which, 
in addition to the salience imparted by evProto, assigns additional saliency to regions 
that are also closer to the cameras compared to those at larger distance. Adding depth 
information provides more stable object selection and robustness to noise, as demonstrated 
in Fig 4.5 and 4.6.

From the results presented about disparity estimation (see Fig 4.4 and Supplementary 
Fig A.7)2, the event-based disparity estimation is robust and reliable in different scenarios 
with dynamic objects of increasing complexity. It can solve the correspondence problem 
for multiple objects simultaneously, distinguishing their relative distance from the robot. 
When the stream of events increases because of clutter and/or eyes movements, the ac-
curacy of the disparity estimation is traded-off with latency, increasing the level of noise. 
Typically, the disparity information successfully enables the attentive system to select the 
nearest proto-object. The online evaluation implemented on a robot using real-world data 
proves the capabilities of the model in a realistic scenario. The system is robust to clut-
ter and it demonstrates robust selection of the nearest proto-object in a noisy background. 
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The robot is responsive to motion, giving preference to closer moving objects. When we 
enable eyes motion, it can also select the nearby static object. The model tolerates motion 
of the cameras and of scene objects and usually determines as salient those areas that are 
closest to the cameras. The use of a biologically inspired event-driven disparity extractor 
distinguishes the evProtoDepth model from its frame-based counterpart fbProtoDepth. 
While the latter requires a pre-computed depth map from RGB-D sensor and computes 
feature maps representing local intensity, colour opponency and orientations, the only in-
put required by our new evProtoDepth are raw streams of events from two neuromorphic 
cameras. Disparity information is extracted directly from these event streams using a bio-
inspired cooperative matching algorithm. Benchmarking on the NUS3D dataset shows 
that despite those differences both models achieve similar performance, with the event-
driven one being more easily applicable to online robotic applications, thanks to a more 
localised response over the selected objects.

Both models, fbProtoDepth and evProtoDepth, have strict bottom-up (data-driven) ar-
chitectures and achieve mediocre results on the MIT metrics when directly compared with 
the eye fixation maps. This is expected due to the presence of complex attention mecha-
nisms which include influences that are not captured by either of the models. These in-
fluences include cognitive top-down (goal driven) mechanisms, previous stimuli or prim-
ing [141] among others. As such, the quantitative comparison with the ground truth fixa-
tions of the NUS3D dataset, needed for a formal evaluation of the model, does not capture 
the system’s true merit, that is, the robust selection of nearby objects in dynamic environ-
ments within 170 ms.

Although the saliency maps from the model can thus not be directly compared with 
fixation maps, the model still reasonably represents interesting regions of the scene. In 
general, the evProtoDepth model shows a more localised response to near-objects when 
compared with the fbProtoDepth model (see Fig 4.3). We believe this is mainly due to 
the sequential nature of processing in the event-based model. The simulated events used 
in this case first extract contrast information from the scene. Subsequently, only the depth 
information at event locations is used to inform the proto-object model. Therefore, the 
evProtoDepth model, having only one channel (depth), inherently prioritises the closer 
objects. In contrast, the frame-based model combines information from multiple channels 
(depth, colour opponency, intensity, orientations) at the latter stage of the pipeline, causing 
multiple features to contribute to predict the salient regions. The combination of cues from 
multiple channels produces a more dispersed overall saliency response. This may also lead 
to the fbProtoDepth model selecting objects with high contrast edges possibly located far 
away from the camera. We believe that prioritisation of close objects, at the cost of de-
creased attention to distant objects, is of high importance for a robotic agent because of its 
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need for interactions with physical objects. Nevertheless, on the long run information from 
different sub-modalities and from different distances needs to be integrated and weighted 
appropriately. The proposed model acts as a first milestone towards more complex robotic 
attentive systems that can include other important cues such as contrast, motion, colour 
and orientation. Furthermore, in future developments, such an entirely data-driven system 
could be enriched with top-down mechanisms, enabling the machine to switch priorities 
between extracted features depending on the robot’s behavioural goals.

Additionally, in a more complete robotic pipeline, the saliency map could drive the 
robot’s gaze in a more natural way. In fact, humans continuously gaze in order to bring 
the region of interest onto the fovea. In another work [179], we proposed an eccentricity 
model for sub-sampling the input visual space similar to that performed by a biological 
retina. In brief, the periphery of the field of view has coarser resolution than the middle 
(fovea). Combining such a model with an attentive system could be used in a pipeline that 
exploits saliency to drive the robot’s eyes towards the most interesting regions, thereby 
giving salient regions a higher sensory resolution required for higher-level processing. 
This mechanism would both bestow the robot with a natural behaviour similar to that 
found in biology, and would also lead to savings in computational resources, since only 
salient regions are processed at the full resolution.

This work attempts to bridge the gap between biologically plausible saliency models 
and bio-inspired hardware. We demonstrated the model running online on a humanoid 
robot in different scenarios proving how event-driven cameras are well-suited for saliency 
detection in embodied agents. Stereo event cameras allowed the easy extraction of moving 
edges, solving the correspondence problem using precise spiking times, and the removal 
of layers of processing from the fbProtoDepth. The long term goal would be to implement 
such a complex algorithm onto neuromorphic specialised platforms [130], [167] to better 
exploit the event-driven pipeline aiming to further decrease the computational cost of the 
system in terms of latency and power consumption.

4.8 Methods

Traditional frame-based cameras generate frames synchronously at a fixed rate regard-
less of changes in the scene. For this reason the output contains great amounts of re-
dundant data, especially in case of static scenes. Unlike regular cameras, event-driven 
sensors overcome the data redundancy providing data-driven output. This is particularly 
suitable for online robotic applications [115]–[118] given the need for low latency and high 
speed [114], [148]. Event-driven cameras react to illumination changes at the pixel level, 
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generating an asynchronous stream of events. Each event is defined as a tuple (𝑥, 𝑦, 𝑝, 𝑡), 
where 𝑥 and 𝑦 are the spatial coordinates of the instantaneously active pixel, 𝑝 the polarity 
bit encoding the direction of the illumination change (dark-to-light or light-to-dark), and 
𝑡 timestamp when the event occurs at microsecond resolution. An example of an event 
stream plotted in spatio-temporal coordinates is shown in the middle column of Fig 4.1.

In this study, we combine evProto [166], a previously developed event-based model for 
attentional selection with fbProtoDepth, a frame-based proto-object model that incorpo-
rates depth information[88] to develop the first version of an event-driven based saliency 
model in 3D which we call evProtoDepth. The current model uses depth as the primary 
channel for computing saliency. Depth perception is introduced via scene disparity ex-
tracted from stereo event cameras. Disparity is extracted using an asynchronous event-
based bio-inspired cooperative neural network able to solve the correspondence prob-
lem [11] in a scenario with multiple objects. The disparity-encoded events from the dispar-
ity extractor are accumulated into non-overlapping disparity frames of 100ms duration, and 
are processed by the Border Ownership and Grouping Pyramids mechanisms in evProto 
to form proto-objects in the disparity map. An overview of the processing pipeline of the 
evProtoDepth model is presented in Supplementary Fig A.12. We designed and imple-
mented the model for real-time usage on the iCub robot.

4.8.1 Event-driven disparity extraction

In robotics, depth cues are important to select reachable objects upon which the robot can 
act, in addition to providing input for other tasks. The fbProtoDepth model uses depth from 
an RGB-D sensor. In order to implement a fully bio-inspired pipeline, we use disparity 
estimation techniques using stereo event-driven cameras as input for the evProtoDepth 
model. Binocular disparity of a 3D point relays information about its distance from the 
plane of fixation, but suffers from the problem of false correspondences. It is now widely 
accepted that mammalian brains solve this problem relying on a competitive process in 
disparity-sensitive neuron populations to encode and detect horizontal disparity [203]. 
Neurons compete with each other to represent the disparity of the scene, by removing false 
matching to reach a global solution. In particular, a disparity Cooperative Network [204] 
employs correspondence between a stereo event-pair, and it imposes disparity uniqueness 
and continuity conditions to construct a map representing the level of belief/confidence of 
corresponding points.

Asynchronous cooperative matching processing is well-suited to exploit the output of 
event-driven cameras since the precise timing of event generation can be used to find cor-
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respondences efficiently at pixel-level without the need for patch or feature-based match-
ing. This can produce disparity maps that can adapt to a dynamic input scene in real-
time. Event-based cooperative matching algorithms have been efficiently implemented on 
neuromorphic platforms using Spiking Neural Networks (SNN) [125], [205] as well as 
on traditional computing platforms[11], [206]. Although specialised neuromorphic hard-
ware [130], [167] is well-adapted for spike-based computation due to its low latency and 
power consumption, these new generation devices have difficulty handling networks with 
hundreds of thousands of neurons working in real-time on robotic platforms which demand 
robustness. This model implements an array-based representation of a Spiking Neural 
Network (SNN) based on an Event-based Cooperative Stereo Matching [11], similar to 
the SNN proposed by Osswald [125]. Our work implemented a real-time version of this 
algorithm on a standard CPU, prioritising its ease of deployment on the iCub and inte-
gration with the proto-object model over power consumption and efficiency afforded by 
neuromorphic hardware. It uses a 3D voxel-grid in 𝑥−𝑦−𝑑 space (𝑑=disparity), called an 
activity map, which is updated asynchronously with each incoming event. Each element 
(cell) of this array represents a computational neuron in the SNN, which spikes during 
simultaneous triggering of events in the left and right camera. To ensure that temporally 
close events have higher probability to correspond to each other, a simplified version of 
the Leaky Integrate and Fire (LIF) model[207] is used to model the internal dynamics of 
each activity cell.

The output disparity value 𝑑 for each pixel corresponds to the layer with the highest 
activity (belief) for that pixel. Each incoming rectified event affects multiple cells in the 
activity map through excitatory and inhibitory connections. The excitatory connections 
enforce continuity constraints by ensuring that neighbouring pixels have similar disparity 
values, implementing the prior that most surfaces in the 3D environment are continuous 
and smooth. The inhibitory connections enforce uniqueness constraints by suppressing 
false correspondences between stereo-pairs along the line of sight. They ensure that each 
pixel is assigned only one disparity value. The strength of interaction is determined by the 
time difference between successive interactions, such that a cell affected by multiple events 
in close temporal proximity will be highly active. The activity generated by each incoming 
event on a particular voxel is inversely proportional to how far in the past that voxel was 
last affected. After several cycles of excitation and inhibition within the activity map, a 
disparity event is generated by the network by associating the incoming event with the 
disparity value of the layer that has the highest activity. The output of the network consists 
of estimates of the disparities of all events and collects them in a single channel of disparity 
events 𝐸𝑑 in the reference view of the left camera frame. With the event-based cooperative 
matching algorithm, we gain improvements over frame-based processing algorithms in 
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terms of processing time at the cost of accuracy of disparity. The resulting disparity maps 
are sparse and prone to noise, especially when the input event throughput is high, e.g. when 
the camera moves in a textured scene. However, this suits our needs as the downstream 
proto-object saliency model acts as a filter that suppresses noise in the disparity maps 
while selecting the nearest object (e.g. Fig 4.7). A schematic illustration of the network 
architecture is shown in Fig A.22. Further details about the disparity extraction algorithm 
is provided in the supplementary material.

4.8.2 Proto-object based saliency with depth information

Variations and extensions of proto-object saliency models using frame-based cameras in-
clude the addition of addtional features including motion[87], texture [89] and depth[88], 
[109] (we call the latter fbProtoDepth). Each information channel is separately processed 
by a “grouping” layer, that represents proto-objects in the final saliency map combining 
all channels.

A previous event-driven implementation of the proto-object model [166] (evProto) fo-
cused on the use of event-driven cameras. The model exploits the inherent edge extraction 
capabilities of event-driven cameras, allowing it to omit the Gabor and center-surround 
filtering of the original frame-based model[9]. The output from the cameras is directly 
fed into the Border Ownership layer and processed in the same way as in the original ver-
sion, detecting salient regions of the scene with a latency of ≈170ms every time there is a 
change in the scene.

The fbProtoDepth model[88] uses intensity, orientation, colour opponency and depth 
channels in parallel to compute saliency. In the evProtoDepth model, we implemented a 
single depth information channel, in the form of disparity-weighted event frames, fed into 
the grouping layer of the evProto model. The disparity of each individual event (based 
on the input from both cameras) is computed using a cooperative network model. Each 
output disparity event 𝐸𝑑 contains information about the pixel (𝑥, 𝑦), generation time 𝑡𝑠
and disparity estimate 𝑑 of the corresponding visual stimulus. Disparity events arriving 
within a time window 𝛿𝑡 are accumulated in a disparity frame 𝐷(𝑥, 𝑦, 𝑡). Each of its pixels 
stores the disparity value 𝑑 of the latest disparity event 𝐸𝑑 emitted within that temporal 
window (𝑡 − 𝛿𝑡, 𝑡) at pixel (𝑥, 𝑦). The length of the time-window is selected based on the 
desired sparseness of the disparity map fed into the grouping layer of the evProto model. 
The disparity frames are subsequently normalised within [0, 1] and passed onto the evProto 
model. While the input map in the original evProto model accounted for the presence of 
edges, our implementation extends this representation by also encoding the depth of each 
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edge. The key components of the evProto model[166] and proposed evProtoDepth models 
are shown in Supplementary Fig A.12.

Consent Statement

Informed consent has been obtained from the respective individual to publish images 
(Figs 4.7 and A.10) in an online open access publication.

Data Availability

The datasets generated and analysed during the current study are available from the cor-
responding authors on reasonable request.

4.9 Reflections & Conclusions

This implementation solves some of the problems of the intensity channel introduced 
in Chapter 2. It is robust to clutter and most importantly it focuses steadily on a specific 
target, namely the closest one.
The proposed work takes inspiration from the RGB version of the 3D proto-object model 
running on MATLAB [88].
The event-driven implementation allows a proper reaction of the robot to external stim-
uli. The system runs online exploiting the C++ speed for the disparity extractor and the 
Python implementation to generate the saliency map. The full pipeline takes 170ms to 
produce a stable saliency map, 100ms for the disparity map generation and 70ms for the 
proto-object detection. Regardless of all of these remarkable results the model still takes 
advantage of the event-frame representation feeding the proto-object model with a dispar-
ity map. The architecture would benefit if implemented fully on a neuromorphic platform 
such as SpiNNaker decreasing from 70 to 16ms the proto-object detection. Moreover, the 
disparity extractor could be implemented on SpiNNker [125], [133] further decreasing the 
time to obtain the disparity map.
The results show a prioritisation of the proto-object detection over closer non-proto-object 
items. Therefore, confirming the need for proto-object processing to avoid the detection 
of close noise or clutter. The pipeline voluntarily prioritises the closest object to the robot 
towards a possible physical interaction with it. The definition of this clear task would fi-
nally define a loss function where the robot needs to reach the closest object in the scene. 
The fixations maps from human subjects would still be a validation of the model and not 
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the ground truth. Bottom-up and top-down mechanisms would still work together even 
if the task has been defined. In order to obtain a more fair comparison with the fixation 
maps, the model would benefit from the addition of a centre bias mechanism [208].
One of the main achievements of this work is the increased robustness of the salient point 
(see the video: https://zenodo.org/record/5091539). The video clearly shows the differ-
ence between the evProto and the evProtoDepth when a multi-object scenario is happen-
ing. Along with the increased robustness, another great achievement is the confirmation of 
the model not being driven by the number of events but still prioritising close proto-objects. 
The sparse disparity maps are enough representative of the scene to allow proto-objects 
detection. Although the claim of the proposed model is the detection of complex stimuli 
like the human body, a detailed investigation would be necessary. Also, a more in-depth 
investigation into the accuracy of the disparity estimation would be necessary. All the ex-
periments see scenarios where the background is mostly plain and not enough cluttered for 
the strong claim made. Experiments should further take into account fast dynamic scenes 
and clutter scenarios.
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Chapter 5

Event-based eccentric motion detection 

exploiting time difference encoding

The supplementary materials can be found in Appendix B section B.
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5.4 Abstract

Attentional selectivity tends to follow events considered as interesting stimuli. Indeed, 
the motion of visual stimuli present in the environment attract our attention and allow us to 
react and interact with our surroundings. Extracting relevant motion information from the 
environment presents a challenge with regards to the high information content of the visual 
input. In this work we propose a novel integration between an eccentric down-sampling 
of the visual field, taking inspiration from the varying size of receptive fields (RFs) in 
the mammalian retina, and the Spiking Elementary Motion Detector (sEMD) model. We 
characterise the system functionality with simulated data and real world data collected with 
bio-inspired event driven cameras, successfully implementing motion detection along the 
four cardinal directions and diagonally.

Keywords: Attentional Selectivity, Motion Detection, Eccentric Down-Sampling, Spik-
ing Elementary Motion Detection, Bio-Inspired Visual System, Humanoid Robotics, Event 
Driven
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5.5 Introduction

Most modern robotic systems still lack the ability to effectively and autonomously in-
teract with their environment using visual information. Key requirements to achieve this 
ability are efficient sensory data acquisition and intelligent data processing. Useful in-
formation about the environment (e.g., how far away an object of interest is, how big it 
is, whether it is moving) can be extracted from sensory data. More complex interactions, 
for example locating and retrieving a particular resource, require an attentive system that 
allows robots to isolate their target(s) within their environment as well as process complex 
top-down information.

There are a number of ways for autonomous robots and natural organisms alike to gather 
information about their surroundings. Teleceptive sensors, for example those using ultra-
sound or infra-red light, are common in engineered systems, and are also exploited by 
some natural organisms for navigation and object tracking [209]. However, a closer rela-
tionship between attention and activation in the visual cortex has been observed by [210], 
showing the importance of vision when interacting and being attentive within an envi-
ronment whilst performing a task. Motion detection, in particular, represents one of the 
important attentional cues for facilitating agent-environment interactions [51], and is used 
by natural organisms to avoid obstacles, respond quickly and coherently to an external 
stimulus within a scene, or to focus attention to a certain feature of a scene [52]. Due to its 
wide range of applications, motion detection has been an area of research for decades and 
has produced a number of different detection models, ranging from gradient-based algo-
rithms [211], [212], over local-plane fitting [213], [214] and time-to-travel methods [144] 
to correlation-based approaches  [215]. Gradient-based methods utilise the relationship 
between the velocity and the ratio between the temporal and the spatial derivative. Hence, 
to determine the speed and direction of the motion, the derivation of the spatial and tem-
poral intensity for each pixel is needed. All correlation-based models share the linear and 
spatio-temporal filtering of measured intensities, which are functions of time and location. 
The best-known correlation motion detectors are the biologically derived Hassenstein-
Reichardt and the Barlow-Levick models [142], [143]. The Hassenstein-Reichardt model 
was derived from behavioural experiments with beetles, while the Barlow-Levick model 
was inspired by motion detection in the rabbit’s retina. In both cases one elementary mo-
tion detection unit is selective to motion in one cardinal direction (preferred direction) 
and suppresses output to motion in the opposite direction (anti-preferred direction) [143]. 
The models themselves (from 1956 and 1964, respectively), are still assumed to describe 
motion detection in organisms such as fruit flies [216]–[220]. A limitation of correlation-
based detectors is that, depending on the time-constant of the filters used, the detector is 
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only receptive to a limited range of velocities. This range can be shifted by varying the 
parameters but always remains limited.

Environment analysis using traditional frame-by-frame visual processing generally re-
quires a robot to extract and evaluate huge amounts of information from the scene, much 
of which may be redundant, which hinders the real-time response of the robot. The com-
putational resources required for visual processing can be significantly reduced by using 
bio-inspired event-based cameras [5], [113], where the change in temporal contrast trig-
gers asynchronous events. Event-based cameras perceive only the parts of a scene which 
are moving relative to themselves1. Thus, they are idle until they detect a change in light 
intensity above a relative threshold. When this happens, the pixel reacts by producing 
an event characterised by its time of occurrence. Address Event Representation (AER) 
protocol allows the asynchronous readout of active pixels while providing information 
on the the event polarity and the pixel location. As such, the camera’s output are ON-
events for increments in temporal contrast and OFF-events for decrements. Optical flow, 
the vector representation of the relative velocity in a scene, has a wide range of uses, 
from navigation [214], [221], to predicting the motion of objects [222]. We propose that 
these models can also be used to direct attention towards moving objects within a scene. 
Recent studies have developed event-based motion detection for optical flow estimation 
both relying on conventional processing archtitectures [120], [212], [223]–[225] and un-
conventional neuromorphic processing architectures [10], [226], [227]. Even though the 
former mechanisms, which leverage standard processing capabilities, show real-time optic 
flow estimation with very high accuracy, they are not suited for spiking neural networks 
and neuromorphic processors. This is due to the way information is represented, using 
real values in these algorithms. Additionally, the power consumption and computational 
complexity in [120], [224] is too high for constrained robotic tasks. The neuromorphic ap-
proaches on the other hand can naturally interact with spiking networks implemented on 
low-power neuromorphic processing architectures as information is encoded using events.

In the last decade a number of spike-based correlation motion detectors have been in-
troduced [10], [226]. Of particular interest to this work is the spiking elementary motion 
detector (sEMD) proposed by  [10]. The sEMD encodes the time-to-travel across the vi-
sual field as a number of spikes (where time-to-travel is inversely proportional to velocity). 
The sEMD’s functionality has been evaluated in Brian 2 simulations and on SpiNNaker 
using real-world data recorded with the Dynamic Vision Sensor (DVS) [10], [228]. Fur-
thermore, the model has been implemented on a neuromorphic analog CMOS chip and 
tested successfully [10]. The implementation on chip presents a low latency and low en-

1The perception of events is based on intensity changes in the scene. These changes can be due to negative or positive temporal 
contrast change occurring not only from relative motion.
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ergy estimate of locally occurring motion. It further offers the advantage of a wider range 
of encoded speeds as compared to the Hassenstein-Reichardt model, and it can be tuned 
to different working ranges in sympathy with the desired output. Event-driven cameras, 
compared with classic frame-based cameras, dramatically reduce the computational cost in 
processing data, however they produce a considerable amount of output events due to ego-
motion. Previous implementations of the sEMD have applied a uniform down-sampling 
across the camera’s visual field. However, recent studies have found that motion detec-
tion performance depends strongly on the location of the stimulus on the retina, due to 
the non-uniform distribution of photoreceptors throughout the mammalian retina [229]. 
Rod and cone density in the mammalian retina is high at the fovea, and decreases towards 
the periphery. The non-uniform distribution of photoreceptors in the retina has a strong 
role in speed discrimination, and it should be taken into account as an important factor 
in motion estimation. Taking inspiration from the mammalian visual system [230], [231], 
where Receptive Fields (RFs) linearly decrease in size going from the retinal periphery 
towards the fovea [232], we propose an eccentric, space-variant, down-sampling as an ef-
ficient strategy to further decrease computational load without hindering performances. A 
good approximation of the mammalian space-variant down-sampling is the log-polar map-
ping, describing each point in the 2D space as logarithm of the distance from the centre 
and angle. Given its formalised geometrical distribution, the log-polar mapping provides 
algorithmic simplification and computational advantages, for example for tasks such as 
moving a robot’s cameras towards a desired vergence configuration [233], or binocular 
tracking [234]. Recently, the log-polar approach has been studied also for event-driven 
cameras, with the proposal of the Distribution Aware Retinal Transform (DART) [235]. 
Although the log-polar representation would better suit the implementation of the eccentric 
down-sampling, the results in polar dimension would not be comparable with the classic 
down-sampling of the sEMD with Cartesian coordinates. For benchmarking purposes, in 
this paper we use an approximate implementation of the mammalian space-variant reso-
lution, based on Cartesian coordinates.

In this work, we propose a novel approach to spiking elementary motion detection, 
exploiting the non-uniform retina model as a down-sampling of the visual field. By com-
bining the sEMD with eccentric down-sampling, this work aims to improve the computa-
tional efficiency of the motion computation and take a step towards a bio-inspired atten-
tion model where information at the centre of the field of view is of higher resolution and 
more heavily weighted than information at the periphery, allowing robots to exploit visual 
information to effectively interact with their environments in real time. The proposed ar-
chitecture is suitable for simulation on neuromorphic platforms such as SpiNNaker [6], 
and offers the possibility to be easily implemented for recorded and live input data. To the 
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authors’ knowledge, artificial motion detectors with eccentric filtering of the visual field 
are a novel approach to motion detection. Link to the authors’ repository containing the 
model and the data: https://github.com/event-driven-robotics/sEMD-iCub.git

5.6 Methodology

The proposed work integrates bio-inspired eccentric down-sampling with the sEMD [10]. 
Our aim is to further decrease the computational resources required, by filtering the num-
ber of incoming events into the visual field, while maintaining a fine resolution in the 
centre of the visual field.

5.6.1 Eccentric down-sampling

Several physiological studies have explored the mammalian retina topography such as the 
blind spot, fovea and eccentricities [236], showing that receptive fields are uniformly over-
lapped in the mammalian retina  [237]. The proposed eccentric down-sampling approxi-
mates the two-dimensional circular retina onto a square, maintaining a quadrilateral cam-
era resolution (Figure 5.1b), where each RF spatio-temporally integrates the information 
within its area of sensitivity. The RF size of the squared approximation decreases linearly 
toward the foveal region, where each RF is defined by one pixel. All RFs of the same 
size create a square ring around the foveal region, with each successive ring framing the 
previous one. The eccentric down-sampling reproduces the RF overlap between RFs of 
consecutive rings ensuring the robustness in response all over the retina. However, the 
proposed model does not include the central blind spot present in mammalian retina.

Equation (5.1) and (5.2) describe the relationship between the receptive field size (𝑅𝑠) 
and its distance from the foveal region, where (𝑅𝑐

𝑖 ) is the centre of the top left RF of each 
squared ring and 𝑖 = [1, .., 𝑛] is the number of squared rings over the retinal layer. The 
term 𝑥 in Equation (5.1) represents the x axis of the camera where the origin is placed in 
the top left corner, 𝑚𝑎𝑥[R𝑠] is the maximum kernel size of the outermost peripheral ring, 
and 𝑑𝑓𝑜𝑣𝑒𝑎 is the total distance from the periphery to the edge of the fovea.

  \textbf {R}^s(x)= - \frac {max[\textbf {R}^s]}{d_{fovea}}x+max[\textbf {R}^s] \label {eq:next_kernel_size}  


   (5.1)

  \textbf {R}_{i}^c = R_{i-1}^c+ \frac {R_{i-1}^c}{2} \label {eq:RFnewcenter} 
 

 



(5.2)
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Figure 5.1. The grid in a) represents the uniform down-sampling of the visual field in equal matrices of 𝑛
by 𝑛. c) Represents the eccentric down-sampling decreasing the size of the matrices going to the center of 

the visual field (fovea).This implementation does not include the blind spot present in the mammalian 
visual system. The three gray squares with varied hues represent three RF sizes at different eccentricities: 

0, 39, 70 pixels distant from the centre. The square with the same hue in both grids (a, c) represents a 
matrix with equal size in the two down-samplings. Panels (b, d) represent the encoding in horizontal and 
vertical trajectories of the uniform down-sampling (b) and the eccentric down-sampling (d). On both top 
rows of (b, d), an example of the RFs belonging to the first, middle and last horizontal trajectories, and on 
the bottom row the vertical trajectories is given. All RFs are represented with different gray-scale for the 

reason of visualisation.

  \textbf {M}_{t} = M_{t-1}e^{-\frac {dt}{\tau }} + \frac {1}{R_{nf}} \label {eq:mem_update}   
 


(5.3)

Each RF is a matrix of input pixels from the sensor. Every RF is modelled as a leaky in-
tegrate and fire (LIF) neuron integrating the information in space and time (Equation 5.3), 
where 𝑀 is the membrane potential of the RF, 𝑡 represents the temporal information of the 
incoming event into the RF, 𝑑𝑡 the difference in time with the previous event in the RF, and 
𝜏 is the time constant of the exponential decay (𝜏 = 1000𝑚𝑠). The membrane potential of 
every RF integrates incoming spikes until it reaches the threshold (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1), which 
is the same for all RFs. The contribution of each event to the increase in membrane poten-
tial of a neuron is normalised with the dimension of the RF. As the activity of the ATIS2

is sparse, the normalisation factor (𝑅𝑛𝑓) is expressed as a percentage of the area of the RF. 
Every incoming event triggers the updating of the membrane potential by calculating the 

2Event-driven cameras [5] used for this project.
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temporal decay of the membrane since the last event. In addition, the membrane potential 
is increased by the normalisation factor. This way, the response from all RFs is normalised 
by their occupied space over the visual field. Finally, if the threshold is reached, the neu-
ron emits an output spike. Hence, the response from each RF coherently encodes the input 
information in relationship with the distance from the fovea. 

5.6.2 The spiking Elementary Motion Detector (sEMD)

Figure 5.2. Basic principle of the sEMD [10]. a) The model consists of an event-based retina sending 
events into the Time Difference Encoder (TDE). Two adjacent RFs are connected to the facilitation 

synapse and the trigger synapse respectively. b) TDE computation for a small time difference Δ t between 
facilitation event and trigger event. An event at the facilitation synapse generates an exponentially 

decaying factor called gain. A trigger pulse at the trigger synapse shortly after causes an exponentially 
decaying Excitatory Post Synaptic Current (EPSC). The EPSC amplitude depends on the gain factor. The 

EPSC integrates onto the membrane potential (mem). Every time the membrane potential reaches the 
spiking threshold (𝜏𝑆𝑝𝑖𝑘𝑒) an output digital pulse is produced. c) Similar to b) part but with high Δ t. d) 

Similar to c) but the trigger pulse arrives before facilitation pulse. No output spikes are produced for 
negative time differences. e) TDE output spike response over time difference Δ t between facilitation 

event and trigger event.

The spiking Elementary Motion Detector (sEMD) depicted in Figure 5.2 has been 
designed for the purpose of encoding optic flow using event-based visual sensors [10]. 
The use of event-based sensors is suited to perceiving motion. The edge of an object 
moving from the receptive field of one pixel to the adjacent one generates a spike in the 
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two pixels with a given time difference, depending on the velocity of the edge and its 
distance from the pixels. The relative motion or optic flow is inversely proportional to this 
time-to-travel. An sEMD is composed of two pixels and a time difference encoder (TDE). 
The TDE encodes the time difference between two pulses into the number of output spikes 
produced in response to the second input pulse. The number of output spikes encodes the 
motion flow of objects moving in front of the two pixels.

The synapses connecting the inputs to the TDE are of two types - facilitator and trigger 
(see Figure 5.2 fac and trig). The facilitator synapse gates the activity of the TDE neuron. 
The trigger synapse elicits a response from the TDE neuron only if its input event occurs 
after the event from the facilitator synapse (compare Figures 5.2 b & d). The output current 
of the trigger synapse increases the TDE neuron’s membrane potential as shown in Figure 
5.2c). The strength of the current depends on the exponentially decaying gain variable of 
the facilitator synapse. Therefore, the TDE not only detects the direction of motion but 
also encodes the velocity of the stimulus in the number of output spikes and time to first 
spike. The faster the stimulus propagates, the more spikes are produced by the TDE. In 
order to mitigate the noise present at the output of a silicon retina, a pre-processing filtering 
stage is used. It consist of neural spatio-temporal filters (SPTCs) used to detect correlated 
events. Two uniform neighbourhoods, of 𝑛 by 𝑛 pixels, are connected to a LIF neuron 
each. The neurons fire once only if within a specific time, defined by their time constant, 
66 % of the pixels in the neighbourhood produce events. The proposed implementation 
exploits the eccentric down-sampling (Chapter 5.6.1) replacing the uniform filtering stage 
previously used with the sEMD model by [10].

5.6.3 Experiments

The objective of this work is to quantitatively and qualitatively characterise the output of 
the TDE population receiving input from the eccentricity filtering layer and to compare it 
with the TDE population receiving input from a uniform resolution filtering layer. This 
characterisation aims to demonstrate the advantages of our proposed model, namely a 
decrease in computational load whilst maintaining the ability to estimate the velocity of 
moving entities within the visual field. To this purpose we characterised and compared the 
model using moving bars with 1D and 2D motion. In the following, we will refer to the 
two different implementations as ”sEMD with uniform down-sampling” and ”sEMD with 
eccentric down-sampling”. The characterisation of the proposed motion detection system 
(Figure 5.3) is achieved using simulated data. Furthermore, additional experiments are 
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undertaken using real input3 collected with ATIS cameras [5] mounted on the iCub robot 
(see Supplementary Materials for real-world data). The simulated data used in this work 
reproduces the activity of an event driven sensor in response to a bar moving horizontally 
(Left to Right (LR), Right to Left (RL)), vertically (Top to Bottom (TB), Bottom to Top 
(BT)) and transversely, i.e. along the diagonal of the Cartesian plane.

Figure 5.3. Basic scheme of the pipeline. From left to right the ATIS output is processed by the eccentric 
down-sampling model and sent to the sEMD model, hosted on SpiNNaker neuromorphic hardware. The 
sEMD model represents the layer of neurons producing spikes and encoding the motion detection. The 
eccentric down-sampling and the sEMD model representation show the spatio-temporal filter neurons 

(green, blue, violet, and orange square), the facilitator and the trigger, both synaptically connected to the 
sEMD neuron. Facilitators (F) and triggers (T) are shown for LR sEMD neuron, RL sEMD neuron, TB 

sEMD neuron and BT sEMD neuron.

Firstly, we recorded the activity of the sEMD with uniform down-sampling and eccen-
tric down-sampling model, while the speed of the input bar ranges from 0.01 px/ms to 1 
px/ms, in accordance to the experiments of [226]. This ideal input allows a comparison of 
the two model’s spike raster plots and mean population activities.
We first analysed the selectivity of all sEMDs tuned to the same movement direction, 
measuring the mean firing rate (MFR) of the whole population. Given the symmetrical 
connectivity of the sEMD neurons along the eccentric visual field, the responses from 
the population of LR, RL, TB and BT sEMD neurons are expected to be comparable, re-
sponding with a large MFR to a stimulus moving along their preferred direction and being 
unresponsive to a stimulus moving along their anti-preferred direction.

Further investigations focus on a single population and its response to its preferred 
stimulus direction (from left to right, or top to bottom), assuming transferable responses 

3We explored the real-world applicability of the underlying motion detection mechanism prior to this work in which we demon-
strated the functionality of the underlying given variable contrast and event-rates in natural environments. (Milde et al. 2015, Milde 
et al. 2018, Schoepe et al. 2019)
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for the other directions.

A deeper understanding of the temporal response from the neurons was achieved by 
collecting the spike raster plots for nine speeds of the chosen range: (0.01, 0.03, 0.05, 
0.07, 0.1, 0.3, 0.5, 0.7, 1 px/ms), respectively.

For each speed, we analysed the response of each sEMD in the population, mapping 
its MRF onto the Cartesian space and visualising spatial rather than temporal information. 
We analysed how the Mean Firing Rate (MFR) of each sEMD changes with speed and 
distance from the centre of the field of view. Additional experiments have been performed 
changing the length of the stimulus, by recruiting more sEMDs, should increase the MFR 
of the whole population tuned to the corresponding stimulus direction. Eventually, we 
analysed the response of the model to a bar moving transversally exploring the response 
from the population to 2D motion. In such a case, the stimulus does not elicit the maximum 
response of any sEMD, rather, it elicits intermediate activity in more than one sEMD 
population, that need to be combined to decode the correct input direction.

5.6.4 Experimental setup

In all experiments the model was simulated on a SpiNNaker 5 board hosting 48 ARM-
chips, each with 18 cores. The SpiNNaker architecture supports highly parallelized asyn-
chronous simulation of large spiking neural networks in almost real-time. The aspect of 
real-time computation is of utmost importance for the interaction of the robot with the en-
vironment. For the implementation of the SNN we chose 160×160 pixels as a retinal layer 
resolution, to limit the number of neurons to be simulated on SpiNNaker and to further 
minimise the impact of the residual distortion in the fringes of the camera after calibration. 
The output of the retinal layer serves as input to the uniformly and eccentrically down-
sampled filtering layer respectively. For the uniform down-sampling sEMD, we chose a 
non-overlapping neighbourhood matrix size of 4×4 ATIS pixels to represent one RF. This 
filtering layer is simulated on SpiNNaker and consists of 1600 LIF neurons. It receives 
input from a SpikeSourceArray, containing the respective ATIS pixel spike times. The 
synaptic weight of the connections is 0.3. In contrast, the fovea (1 RF = 1 pixel) of the ec-
centric down-sampling covers 10% of the total retinal layer, and the biggest receptive field 
has a dimension of 10×10 pixels with a normalisation factor of 60% (Equation 5.3). The 
population is made up of 8836 LIF neurons. The eccentric down-sampling occurs locally 
before the spike times of the respective receptive fields are transferred to SpiNNaker in a 
SpikeSourceArray. The final layer of the network consists of four sEMD populations sen-
sitive to local motion in one cardinal directions respectively, using sEMD neuron model 
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Figure 5.4. Response of the sEMDs with eccentric down-sampling to a simulated bar moving with a speed 
of 0.3 px/ms: a) Instantaneous MFR and variance of the four sEMD-populations, each tuned to one of the 
four cardinal directions, to the preferred and anti-preferred stimulus. Similarly to the sEMD with uniform 
down-sampling, the response to the anti-preferred stimulus is negligible with respect to the response to the 
preferred direction stimulus. b) Raster plot of the left to right (LR) population in response to a vertical bar 
moving from left to right. In the first 100 ms, the difference in the size of the RF can be seen, as the active 

neurons spike with different spike rates and the number of active neurons increases with time, when the 
bar moves closer to the fovea. c) Raster plot of the top to bottom (TB) population in response to an 

horizontal bar moving from top to bottom. The sigmoidal shape arises from the geometry of the eccentric 
down-sampling and the neurons’ indexing.

included in the extra models of the pyNN library. The sEMD populations were connected 
to the filtering layers along the trajectories as shown in Figure 5.3. The combination of the 
output of the four populations allows the encoding of transversal stimuli. Each population 
shares the size of the down-sampling population. For both down-sampling approaches 
all sEMD neuron and synapse parameters are the same. The connectivity of the respec-
tive sEMD populations are displayed in Figure 5.3. The synaptic weights are 0.3 and the 
synaptic time-constants 𝜏𝑒𝑥 and 𝜏𝑖𝑛 are both 20 ms. The neuron parameters amount to: 
a membrane capacitance of 0.25 nF, and time-constants 𝜏𝑚 and 𝜏𝑟𝑓 of 10 ms and 1 ms 
respectively. The reset, resting and threshold voltage of the neurons are defined as -85, 
-60, and -50 mv respectively. To avoid a response of the sEMD-populations perpendicular 
to the preferred direction, in case of a bar moving their facilitator and trigger synapses 
receive input at the same time, the input to the facilitator synapse was delayed by 1 ms.
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Figure 5.5. Comparison of the sEMD model with the uniform down-sampling (a, c) and the eccentric 
down-sampling (b, d) in response (MFR) to a left to right moving bar (simulated data). The preferred 

direction is displayed in red (LR), with the anti-preferred direction in blue (RL). The response for the top 
to bottom (TB) and bottom to top (BT) populations are displayed in green and magenta respectively. Panel 
(c,d) are a magnification for the anti-preferred direction (right to left) and the incorrect directions (top to 

bottom and bottom to top) of the panels (a,b). The Figure compares the behaviour from the populations of 
the two approaches to the same stimulus and over the same range of speeds.

5.7 Results

Our investigation starts with the characterisation of the eccentric down-sampling sEMD’s 
response to a simulated bar moving in the four cardinal directions with a speed of 0.3 
px/ms: left to right, right to left, top to bottom and bottom to top. Figure 5.4 shows the 
response to stimuli moving in the preferred and anti-preferred directions at fixed velocity 
0.3 px/ms (the middle of the regarded velocity range). In particular, Figure 5.4a) shows the 
mean instantaneous firing rates of the preferred and anti-preferred direction populations. 
The preferred directions are coloured in red and the anti-preferred directions in blue. As 
expected, the preferred direction population’s response is significantly higher than the re-
sponse of the anti-preferred direction population. Furthermore, as expected the response 
from all the populations to the respective preferred direction is similar in terms of instan-
taneous firing rate and mean firing rate, and comparable among each other, thus validating 
the assumption that the response to stimuli in the preferred direction is similar for all of 
the populations. Assuming a bar moving across the retina at a constant speed, the high 
variances in preferred and anti-preferred directions can be explained by the difference in 
receptive field sizes in our proposed model (see Figure 5.1). Depending on the stimulus 
speed, the size of the RF determines a period of time in which the stimulus moves over 
the RF. Thus, for the same stimulus speed, a peripheral RF takes more time to respond 
than one in the foveal region, leading to a different RF rings having a different sensitivity 
to stimulus speed. Only the RFs along the same squared ring have the same sensitivity to 
the same speed. If a bar is moving across the visual field at a certain speed, only neigh-
bour RFs, that produce spikes able to trigger the TDE neurons, will detect the stimulus. 
Consequently, due to the varying RF sizes and varying speed sensitivities, the size of the 
RF relative to its neighbour affects the response of the TDE. This causes the visual field 

111



to respond non-uniformly. Figure 5.4b),c) show examples of characteristic raster plots of 
the preferred direction populations, in response to a bar stimulus moving horizontally and 
vertically, respectively. The colour-coding indicates the direction sensitivity of the popu-
lation: left to right (red) and top to bottom (green). The first response to the horizontal and 
vertical bar movement (Figures 5.4b,c)), is delayed by  40 ms. This is due to the stimulus 
taking 30 ms (speed of 0.3 px/ms) to travel over the first peripheral RF (10 x10 px), before 
reaching the RF connected to the trigger. In the first 50 ms of reaction to the stimulus, 
the resulting spike density is rather sparse, caused by a lower response from the peripheral 
RFs (sensitive to higher speeds). Conversely, from  150 to  400 ms, the time where the 
stimulus is expected to cross the fovea, the spike density is higher because the RFs at the 
fovea are of a size more suited to the stimuli velocity. The impact of the proposed model is 
more clearly visible in response to the vertically moving stimulus (Figure 5.4c).The map-
ping from the eccentric receptive fields to the neuron IDs transforms the time sequence of 
a vertical bar response to a sigmoid. By contrast, the output of the sEMD with uniform 
down-sampling resembles the shape of stairs, with each row activated after one another, 
spiking with the same rate. The non-uniform size of the RFs in our proposed model is 
again the cause for the different spike densities produced in response to the stimulus mov-
ing at constant velocity. In this experiment the sEMDs successfully encode the direction of 
the bar stimulus moving across the visual field in all the four cardinal directions, showing 
a negligible response to the anti-preferred direction. This therefore shows that the eccen-
tric down-sampling preserves the ability of the sEMD populations to encode optic flow of 
moving stimuli.

A comparison of the MFR for all populations of the uniform down-sampling model and 
the eccentric down-sampling model in response to a simulated stimulus moving from left 
to right at different velocities is shown in Figure 5.5. The color-coding remains the same 
as in Figure  5.4(b,c), additionally the response of the populations selective to stimuli from 
right to left and bottom to top is depicted in blue and magenta respectively. Figure 5.5 a) 
shows the behaviour of the uniform down-sampling model, and Figure 5.5 b) depicts the 
behaviour of the eccentric down-sampling model. Both methods show a trend of increas-
ing MFR until target velocity reaches 0.6 px/ms. While the response from the sEMD with 
uniform down-sampling keeps increasing after 0.6 px/ms, the firing rate of the popula-
tion with eccentric down-sampling gradually reduces as the target velocity approaches 1.0 
px/ms. The same trend can also be seen for targets moving in the anti-preferred direction. 
Figure 5.5 shows that, while the sEMD response of the anti-preferred (right to left) and 
the incorrect directions (top to bottom and bottom to top) of the uniform down-sampling 
model (5.5 c) linearly increases4 until 1.0 px/ms, the output firing rate of the proposed 

4The linear increment of the TB and BT response from the neurons is due to the events occurring for the moving vertical bar. 
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Figure 5.6. Response (MFR) to a left to right moving bar (simulated) from RFs (eccentric down-sampling) 
of the central horizontal line of the visual field at different eccentricities (distances from the center of the 
field of view). In blue, orange and green at 0, 39 and 70 pixels distant from the centre, respectively (see 

Figure 5.1).

eccentric down-sampling model (5.5 d) increases for target speeds up to 0.5 px/ms and de-
creases thereafter. Despite the number of sEMDs required for the proposed model (8836 
per population) being significantly higher than for the uniform down-sampling (1600 per 
population) under the same setup conditions, the eccentric sEMDs’ down-sampling shows 
an overall significant decrease in the mean output firing rate of the whole population i 
response to the same stimulus. Differently from frame-based systems, where the num-
ber of operations - and hence power consumption - depend on the number of filters, in 
event-driven spiking architectures, filters are active (and consume power) only when they 
receive input spikes and produce output spikes. Figure 5.5 shows that the proposed eccen-
tric down-sampling model is able to differentiate between stimulus in preferred and anti-
preferred directions more efficiently than a model with uniform down-sampling, without 
sacrificing performance. The proposed model still maintains an order of magnitude differ-
ence between MFR for stimulus in the preferred direction versus anti-preferred direction. 
Although the eccentric down-sampled model does not allow for an inference of stimulus 
velocity to be made based on the MFR of the entire population, the same information can 
be extracted based on the eccentricity of the RFs with the greatest MFR.

The response from sEMDs selected at different eccentricities (at 0, 39 and 70 pixels 
distant from the centre) is examined in Figure 5.6 in relation to the same speed range. In 
the original model [10] the MFR of all three neurons would increase proportionally to the 
Events belonging to the same 𝑥 but different 𝑦 have a different timestamp.
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Figure 5.7. Response from the population of sEMDs with the eccentric down-sampling mapped into the 
cartesian space with a camera resolution of 160x160 pixels. The color-code heatmap represents the MFR 
of each RF. The stimulus was a bar moving (simulated data) from left to right with constant speed: 0.03 

a), 0.3 b), 1.0 c) px/ms, respectively.

target speed. Figure 5.6 shows that the speed encoding for our proposed model depends on 
the RF size, because the integration time for each RF size corresponds to a specific range of 
velocities. This leads to a specific range of time-differences between two connected RFs. 
Each sEMD has a speed limit, which depends on its tuning, above which it will be unable to 
detect motion. Figure 5.2 e) shows the TDE output spikes over time difference. If a trigger 
event occurs before the output of the facilitation event has had time to reach the minimum 
threshold required, the sEMD will not fire. Due to the varying sensitivity of different RF 
sizes and enhanced by the 1 ms synaptic delay of the facilitator synapse, while the response 
from the foveal region (0 px distance) drops to zero for speeds higher than  0.7px/ms, the 
response from the neuron with a middle eccentricity (39 px distance) begins to decrease 
dramatically at  0.9px/ms. The response from the peripheral neuron keeps increasing until 
the end of the examined speed range (1.0 px/ms). A possible explanation for the relatively 
low MFR of the peripheral neuron is the increased number of events needed to trigger the 
RF and its specific sensitivity to higher speeds. Figure 5.6 shows how the RF size affects 
the behaviour of the correspondent neuron, obtaining a wider operative range from the 
whole population. In comparison, uniform down-sampling where all the RF sizes are the 
same provides a comparatively limited operative range.

The spike raster plots (Figures 5.4b,c) provide the temporal response from the pop-
ulation but they do not provide any spatial information. The visualisation in Figure 5.7
maps the response of the sEMDs to the corresponding x and y locations for three differ-
ent speeds: slow (0.03 px/ms Figure 5.7a), medium (0.3 px/ms Figure 5.7b) and fast (1.0 
px/ms Figure 5.7c). The data displayed in Figure 5.7b) corresponds to the spike raster plot 
in Figure 5.4b). Figure 5.7 shows that the MFR of the whole population increases in rela-
tion to the speed: 0.26, 33.44, 38.76 Hz, respectively. The spatial visualisation highlights 
the function of the eccentric down-sampling. As proposed by [229], the slow speeds are 
detected primarily in the foveal region, where RFs have the smallest dimension and are 
closest to one another (Figure 5.7a). As the stimulus speed increases, the peripheral re-
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gion starts responding from the first squared ring around the foveal region (Figure 5.7b) 
to the rings with the largest RF size for the fast speed (Figure 5.7c).

The response for each RF square ring is different for horizontal and vertical components 
(most obvious example being in Figure 5.7c). This is because the sEMDs in this case 
are only connected horizontally (as we are working with left-right motion). Therefore, 
at the left and right peripheries, there is a descending and ascending scale of RF sizes 
approaching and moving away from the foveal region, respectively. A concentrated region 
of diverse, overlapping connected RFs improves the likelihood of the sEMDs picking up 
the stimulus motion. This does not exist in the regions above and below the fovea, in which 
each RF will only be connected to horizontally adjacent RFs of the same size, hence the 
relatively low MFR in these regions.

The response on the right side of the visual field is attenuated in Figure 5.7b and Fig-
ure 5.7 c because the sEMDs from the last RF ring are not connected with any subsequent 
facilitator (although this does not cause a problem in detecting stimuli entering the scene).

Figure 5.8. Mean and variance in MFR of RFs at different distances from the centre of the visual field. 
The stimulus is a moving bar (simulated data) going from left to right at speeds of: 0.03 (a), 0.3 (b), 1.0 

px/ms (c).

As shown in Figure 5.7, the RF-ring of maximal response appears to move toward 
the periphery with increasing velocities. Figure 5.8 shows the mean and variance of the 
MFRs at different eccentricities for velocities 0.03, 0.3 and 1.0 px/ms, Figures 5.8a) (b,c), 
respectively. It is clearly distinguishable, that the maximal response in MFR shifts towards 
the periphery with increasing velocities.

The higher variances observed at greater eccentricities (distance from the centre) in 
Figure 5.8b) and c), can be explained by the different RFs response from the horizontal 
and vertical component of the squared rings (which can be seen in Figure 5.7). The low 
MFR at 29 pixels (Figure 5.8a) from the centre (fovea region from 0 to  28 px) can be 
explained by the connections between RFs of the first peripheral squared ring (about 3x3 
px) and the fovea, where each RF has a dimension of 1 px. This sudden increase in size 
leads to a delay in response from the TDE receiving input to the trigger synapse from the 
larger receptive field.
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To compare the trend of the RFs’ peak response increasing in eccentricity with increas-
ing stimulus speed, the center of mass of the RFs response is plotted in relation to the speed 
range, from 0.01-1.0 px/ms (see Figure 5.9). Figure 5.9 shows that for low speeds (0.01 to 
0.06 px/ms) the centre of mass of the RFs’ response shifts from 0 to  27 pixels (distance 
from the centre). The centre of mass then plateaus from 0.06 px/ms to 0.6 px/ms, where 
only the RFs of the edges of the foveal region respond to the stimulus. For higher speeds 
(from 0.6 to 1.0 px/ms), the eccentricity of the centre of mass of RF responses starts to 
increase again, due to a lack of activity in the fovea. The centre of mass of RF responses 
eventually shifts to the periphery, reaching a distance of 49 px from center.

Figure 5.9. Center of mass (solid line) of the neurons response location to a left to right moving bar 
(simulated data), from 0.01 to 1.0 px/ms. The dash line indicates the end of the foveal region.

A comparison of the MFR of the sEMD with uniform down-sampling and eccentric 
down-sampling has been explored with simulated data. Figure 5.10 shows the difference in 
response, normalised for the total number of neurons, from all populations of sEMD neu-
rons with uniform down-sampling and eccentric down-sampling. Even though the uniform 
down-sampling model has fewer neurons than the eccentric down-sampling model (1600 
compared to 8836 neurons, respectively) the MFR from the eccentric down-sampling is 
considerably less at each explored speed, increasing computational and power efficiency.

Figure 5.11 shows the MFR from the population of LR sEMD neurons in response to a 
stimulus moving from left to right, at a medium speed of 0.3 px/ms, with bars of varying 
lengths: 10, 50, 100 and 160 pixels, respectively. The plot shows a positive correlation 
between the size of the bar and the response from the neurons sensitive to the correspond-
ing direction. Figure 5.11 shows that the MFR increment decays as the length of the bar 
increases - most noticeable when comparing the difference in MFR between the 50 and 
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Figure 5.10. Comparison, between the sEMD model with the uniform down-sampling (1600 neurons) and 
the eccentric down-sampling (8836 neurons), of MFR from the LR sEMD neurons in response to a left to 

right moving bar.

100px bar, and that between the 100px and 160px bar. This is because the bar is vertically 
centred in the visual field, and so longer bars cover more of the peripheral region - where 
each RF requires a greater number of events in order to be activated. Finally, Figure 5.12
shows the behaviour of the population to a bar moving transversely, revealing the response 
of the model to 2D motion. Figure 5.12 a) shows the response to a bar moving from the 
top left corner to the bottom right, b) from the top right corner to the bottom left, c) from 
the bottom left to the top right corner and d) from the bottom right corner to the top left.
All the explored cases report a similar response from two kind of sEMD populations and a 
response close to zero from the other neurons. The combination of the responding sEMD 
neurons successfully detects the transverse motion, showing similar MFR values of the 
neurons that actively respond.

5.8 Discussion

The biological role of detecting temporal changes comprise two mechanisms: the de-
tection of fast and slow movements. The first one to identify an entering stimulus into the 
scene and the latter one to recognise its spatial structure [238]. Sudden onset of motion can 
attract our attention [52], [239]. Hence, fast movements, speed and acceleration similarly 
increase our perception of a threat - making it a noticeable stimulus and grabbing our atten-
tion [240]. Thus, motion detection collaborates with attentional mechanisms to react on 
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Figure 5.11. MFR response of the sEMD the LR sEMD neurons for a left to right moving bar at 0.3 px/ms 
with different bar lengths: 10, 50, 100, 160 pixels respectively.

Figure 5.12. MFR response of the sEMD neurons reacting to a bar moving transversely at 0.3 px/ms. a) 
Bar moving from the top left corner to the bottom right corner, b) bar moving from the top right corner to 
the bottom left corner, c) bar moving from the bottom left corner to the top right corner and c) bar moving 

from the bottom right corner to the top left corner. The length of the bar covers the whole visual field.

time and interact with the surrounding. In this paper, we have presented a novel implemen-
tation of motion detection based on the use of spiking elementary motion detectors cou-
pled with non-uniform down-sampling inspired by the mammalian retina. The proposed 
model successfully detects the correct direction of an edge moving in the field of view at 
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speeds ranging from 30 to 1000 px/s, being suitable for the coarse motion processing of 
robots interacting with the environment [226]. With respect to the uniform down-sampling 
implementation presented in the original work [10], the eccentricity model significantly 
decreases the overall activation of each motion detector at every investigated speed. The 
reduced spiking activity makes this implementation more power efficient even in face of 
an increased number of elementary motion detectors. To achieve the same result in the 
uniform down sampling implementation, the size of the spatio-temporal filters should be 
increased, at the cost of a coarser resolution in the whole visual field and a reduced sensi-
tivity to low velocities. The eccentricity implementation overcomes this issue maintaining 
the sensitivity for low and fast speed — distributed over different regions of the field of 
view — while significantly reducing the number of incoming events to be processed by 
the down-stream computational layers.

In the proposed non-uniform down sampling, the elementary motion detectors are tuned 
to different ranges of speed depending on their position in the field of view. The peripheral 
sEMDs are characterised by large receptive fields and are hence tuned to higher speeds, 
that progressively decreases towards the fovea. Hence, the proposed implementation en-
codes the speed based on the location of the active sEMD. RFs with similar size work in 
a similar range of speed producing redundant information, and making the decoding of 
the population activity robust. Moreover, thanks to the sensitivity to high speeds of the 
peripheral RFs, the detection of objects moving into the visual field is immediate. The 
sEMDs in periphery will trigger a response to a fast stimulus entering the field of view 
with extremely low latency. This behaviour is desirable in our target scenario, where a 
robot shall react quickly to fast approaching objects suddenly entering the field of view, 
and attracting its attention. Furthermore, the combination of RFs with different size, pro-
cessing events on the same field of vision, allows working with a wider operative range 
of speeds. In the final application5, this motion detection module will be used as one of 
the feature maps used to compute the salience of inputs in the field of view, directing the 
attention of the robot to potentially relevant stimuli that will be further processed once a 
saccadic eye motion will place the salient region in the fovea. A strong and low latency 
response of peripheral sEMDs to fast stimuli could override the salience of static objects. 
The characterisation of the response of the sEMDs in the non-uniform down sampling 
shows the same qualitative overall behaviour for real-world stimuli, showing robustness to 
noise and to changing the overall spiking activity of the input. The analysis of the indi-
vidual responses of the sEMDs at different distance from the fovea shows variability that 
depends on the discretisation of the receptive fields and on the uneven distribution of the 
receptive field sizes. This effect possibly depends on the Cartesian implementation of the 

5The final application represents the full proposed PhD Thesis project.
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eccentricity, that approximates the distribution of the receptive fields with a rectangular 
symmetry. A polar implementation of the same concept will reduce the effects of dis-
cretisation and improve the overall population response. In a polar implementation, the 
direction of each sEMD will be aligned along the polar coordinates (radius and tangent), 
rather than along the Cartesian directions, further improving the variability in the overall 
response of individual modules and allowing decoding of stimulus direction beyond the 
cardinal ones.

5.9 Data Availability Statement

The datasets generated for this study can be found in the https:// github.com/event-
driven-robotics/sEMD-iCub.
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5.11 Reflections & Conclusions

The eccentric representation of the visual field further enhances the bioinspiration of 
the system, allowing better management of the events from the cameras. This implemen-
tation exploits a ”smart” subsample of the visual field increasing the size of the RFs in the 
periphery allowing a detailed vision in the fovea and coarse in the periphery. The system 
detects the motion direction thanks to two consequent RFs connected to a time-difference-
encoding (TDE) neuron.
The big RFs in the periphery are sensitive to high speeds due to their bigger size with 
respect to the RFs in the fovea, providing a sense of alertness. The proposed model de-
tects the speed and motion direction of a moving item granting a quick response from the 
robot for avoidance or interaction with the moving object. The model response depends on 
the fixed 1 ms delay between two consequent RFs (trigger and facilitator). We explored a 
speed range from 0.01 to 1.0 px/ms where the fastest speed was detected by the peripheral 
RFs, guaranteeing an immediate response from the system for an object entering the visual 
field.
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The system runs on SpiNNaker, taking advantage of this neuromorphic platform to gener-
ate a fully spike-based pipeline. Furthermore, once the trigger and facilitator neurons are 
triggered, the response from the output neuron is immediate.
A further decrement of incorrect motion direction detection is visible and not appropri-
ately explained in Figure 5.5. The uniform down-sampling shows a linear increment of 
not only the response of the anti-preferred direction but also of the TB and BT neurons. 
The eccentric down-sampling model further decreases this incorrect response thanks to 
the RFs size of the periphery. The events occurring (on the same 𝑥 and different 𝑦 values) 
do not trigger the ”big” RFs. This implementation uses more neurons compared with the 
original version but they fire significantly less frequently to decode the same speed con-
firming a good administration of the input data. However, this achievement has not been 
investigated further by looking at the signal-to-noise ratio. Therefore, it would need addi-
tional experiments to confirm the efficiency improvement claimed. Nonetheless, the most 
important achievement is the wider speed range obtained thanks to the different sizes of 
the RFs. Although the proposed eccentric down-sampling widens the speed range detec-
tion, the visual representation in Figure 5.7 b) shows artefacts due to the activation of RFs 
with different sizes. Periphery and fovea are concurrently responding generating artefacts 
on the right part of the visual field due to the left-to-right motion triggering the RFs where 
𝑥 RF centre is between 126 and 140). This implementation could easily become log-polar 
detecting circular motion, incoming motion towards the fovea and the opposite direction 
adding another information for free: the angle motion direction over the retina (see Fig-
ure 5.13).
Motion seems to be an important cue in attention mechanisms modulation attention di-
rectly without the need to detect the item itself. Something moving is inherently interest-
ing [52], and for this reason, this channel does not need to feed the proto-object model, 
contributing to the final saliency map together with the intensity and the depth channel.
The unfortunate issue of this model is the high sensitivity to noise making the non-preferred 
direction neurons slightly respond also for not ideal motion directions. This could be 
handled using lateral inhibition mechanisms all over the visual field, enhancing coherent 
motion among neighbouring RFs.
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Figure 5.13. a) Schematic representation of the log-polar architecture. a) Difference between the 
”eccentric” subsample proposed in Ch. 5 and the ongoing log-polar implementation. The four cardinal 

direction changed to: incoming and outgoing the fovea, clockwise and anti-clockwise. b) Log-polar 
representation of the log-polar model response (MFR) to a bar moving from left to right at the center of 

the visual field.
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Chapter 6

Discussion

The proto-object saliency-based model demonstrated to be a suitable biological plausi-
ble system to detect salient regions of the scene allowing extension for different channels 
and sources of information to be integrated, playing a role in the generation of the saliency 
map. The saliency-based proto-object model is based on the Gestalt intuition to introduce 
the Border Ownership concept in visual perception. The model effectively detects the 
presence of a possible object in the scene discarding the clutter in static and dynamic 
scenes. The event-driven system drastically reduced the need for computation due to the 
inherent properties of the event-driven sensors. The use of these cameras leveraged the 
system’s capabilities to produce an outcome with a reduction in latency and computa-
tional load. Whilst the event-based proto-object model does not completely get rid of the 
clutter, the spiking-based intensity channel effectively removes the clutter due to ON and 
OFF polarity spikes balancing each other avoiding triggering the Von Mises correspondent 
neuron. These results prove the advantage of fully spike-based pipelines, enhanced by the 
significant reduction in latency, to obtain output spikes from the system. In both cases, 
event-driven and fully spiking-based implementation, the intensity channel does not seem 
to robustly focus on a target, as it jumps from one proto-object to another one depending 
on the number of events. This behaviour can be corrected by adding a Winner-Take-All 
mechanism with hysteresis avoiding the same focus multiple times in a short period of 
time. That gives a competitive advantage to the current winner and stability to the selec-
tion. The attentional scan path is then generated by the complex interplay between WTA 
and inhibition-of-return. The response of both models is dependent on the number of 
events and indirectly on the intrinsic information of motion and size of the entities in the 
scene. For the intensity channel, these factors should be modulated giving equal priority 
to objects with different sizes and motions unless the task is clearly defined. This simple 
problem gives rise to an important and focal question around attention.
Do bottom-up and top-down mechanisms follow separate paths in the entire attention pro-
cess or do they contribute and compete with each other at the same time towards the rep-
resentation of the scene? The interesting question behind this is, why do we need to split 
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these two pathways forcing the saliency-based models to be purely bottom-up or top-down? 
An answer to this issue lies in the complexity of these mechanisms to be controlled allow-
ing a natural response from a global schema. These two processes are indeed not sepa-
rated [141], making the creation of an attention schema a critical challenge. The interplay 
between data-driven and task-driven visual attention mechanisms represents a complex 
open topic. This scientific question requires a in detail analysis looking at human mecha-
nisms. Indeed, humans can be alert while performing top-down visual search tasks seem-
ingly without effort. For the depth channel, I assumed a precise task for the robot to focus 
attention towards entities in its closeness. This approach allowed me to identify a specific 
task by prioritising objects with which the robot can interact because of their proximity. 
We proved depth to be an important cue for the proto-object model. The evProtoDepth 
model proved the need for the combination of depth perception with proto-object detec-
tion. Depth perception alone cannot guarantee the perception of actual objects in the scene. 
The presence of the Gestalt-based proto-object model is, therefore, necessary to allow the 
interaction of the robot with close items. The online system detects proto-objects without 
being driven by the number of events prioritising proto-objects over random clusters with 
high disparity. This is by far the most relevant result regarding this channel due to the 
choice to directly feed the disparity map into the Border Ownership Pyramid. The model 
suits the addition of different channels such as texture [89] and orientation [9]. These 
channels could be merged, prioritising and modulating their influence depending on the 
task. The proposed models are feedforward architectures that could be enriched with feed-
back connections to strengthen proto-object detection. A future channel could be added to 
represent the figure-ground segmentation [181]. The event-driven figure-ground organisa-
tion model has already been implemented in Python, showing promising initial results (see 
Figure 6.1). This model distinguishes the foreground from the background by exploiting 
feedforward and feedback connections.
One of the main limitations of the proposed saliency-based visual attention model is the 
impossibility to obtain a ground truth comparable with the purely bottom-up system we 
proposed. Human fixation maps are the result of combined top-down and bottom-up mech-
anisms making the available benchmark datasets good only to validate the work, assessing 
how far the response from the model is from the actual ground truth. The problem depends 
on the several saliency-based metrics existent in the literature complicating the validation 
of the system. The fixation maps used as ground truth come from more complex mech-
anisms than the mechanisms represented in the proposed bottom-up model. This funda-
mental difference does not guarantee a fair comparison even if the resulting saliency maps 
would be equal. The experiments are a model validation verifying the distance from the 
real ground truth. The fixation maps from human subjects are the only source of ground 
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truth. Therefore, a single saliency map cannot perform well in all the metrics, especially 
because each metric is looking for a specific aspect of the saliency map. These metrics 
rely on different factors of fixation points treating differently false positives and negatives. 
This analysis causes a saliency map that is optimal for one metric to perform worse than 
the baselines in other metrics [140].
The motion channel is the only channel where the output does not input into the Border 
Ownership Pyramid. This model proved the real applicability of biologically plausible 
pipelines by taking advantage of a retina-like structure where the receptive fields have 
different sizes across the visual field. This model detects the direction of motion with a 
lower firing rate from the neurons, despite the increased number of neurons required for ro-
bustness. This work presents two main results, the wider speed range obtained making the 
retina layer able to detect different speeds depending on the areas of the visual field and the 
possibility to detect transversal directions combining the response from the neuron pop-
ulations. Fast speeds are detected from the receptive fields in the periphery of the visual 
field allowing a fast reaction of the robot to incoming stimuli, effectively making the robot 
able to be in an alert state. The motion information does not input into the proto-object 
model. In fact, motion alone can already independently trigger visual alertness in attention 
mechanisms. Motion is per se an attentional cue [52]. Furthermore, the onset of coherent 
motion attracts attention regardless of the luminance change [52] suggesting a different 
processing from the Border Ownership cells. Indeed, motion can be detected without at-
tention and it is considered a fundamental component in early vision [241]. This motion 
detector model for the spiking-based version of the proto-object implementation, both on 
SpiNNaker, are affected by the same problem. These platforms allow low latency and re-
duced power consumption due to the spike-based architecture but they show limitations in 
scalability. One of the challenges faced by neuromorphic computing is the limitation on the 
possible number of neurons and synapses achievable by the currently available platforms. 
The SpiNNaker platform (SpiNN-5, 48 chips) can simulate up to 80.000 neurons and 0.3 
billion synapses [242]. BrainScale-2 provides an analog core with 512 neurons and 27

synapses [243]. Loihi offers 128 cores each containing 1024 neural primitives units [130]. 
DyNAPS supports event-based neural networks providing 1k as the maximum number of 
neurons and 64k number of synapses [131]. All of these platforms provide a significant 
amount of fixed possible neurons enabling the creation of complex networks. The full 
resolution of the ATIS cameras used for this project is 304x240 pixels, requiring a high 
number of neurons in input (72,960). The possible applications exploiting neuromorphic 
hardware need to down-sample the visual field or make use of small networks avoiding 
the creation of multiple populations. The analog platforms (DyNAPS, BrainScale-2) do 
not offer a reasonable amount of neurons to allow an acceptable size of the visual field. 
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Figure 6.1. On the left: a scheme of the Event-Driven Figure-Ground organisation model (evFG) taking 
inspiration from the RGB implementation [181]. On the right: the first experiments distinguishing the 

foreground. The model detects objects pointing an arrow toward the object centre (see the Legend at the 
top-right).

SpiNNaker and Loihi represent a feasible choice to implement visual algorithms. While 
SpiNNaker works building connections among neurons where each neuron (soma) can fire 
emitting spikes, in Loihi, any compartment can fire. Each element of the network (axon, 
dendrite, and soma) is represented as a compartment allowing great flexibility. Loihi and 
SpiNNaker are fully clock-based digital both accepting spike arrays as input. Loihi is 
working with a defined timestep period and SpiNNaker exploits timestamps. Both SpiN-
Naker and Loihi allow modelling neurons granting flexibility. These platforms indeed 
support the exploration of bioinspired architectures, they both would need a more user-
friendly experience providing for example a set of matrix connections already prepared 
or either the possibility to draw the network. Neuromorphic computing represents a valid 
and worth exploring alternative to classical computing. The inherent capabilities of event-
driven cameras, along with the cut out of redundant information, allowed the remotion of 
processing layers. The low latency obtained, due to the SpiNNaker board shown from the 
SNNevProto and the Eccentric sEMD clearly confirms the benefit of the neuromorphic 
hardware. Robotic applications seeking fast responses in unconstrained environments can 
thoroughly take advantage of this new generation of computing allowing for a ”natural” 
response from the robot.
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Chapter 7

Conclusions

This work answers the initial scientific question arose at the start of the project.

The bridge between bioinspired hardware and software is possible, and it helps the 
reduction in computational loads and latency needed to obtain a response from the system.

The pipelines which take advantage of the fully spike-based approach, the SNN In-
tensity channel and the Motion channel, reduced dramatically the latency, at the cost of 
the complexity of the model. The number of SpiNNaker boards needed depending on the 
number of neurons required is still not convenient for an application where the robot needs 
to move around.
The Intensity and the Depth channel run online on the robot exploiting C++ and PyTorch 
on a GPU, providing the system with an outcome in  100/200ms, approximately the same 
time needed to perform a saccade [7], [8]. This is the first big achievement compared to 
the RGB model I took inspiration from running on Matlab, requiring minutes for the re-
sponse. Thanks to this latency the robot can realistically interact with external stimuli.
The model exploits a fully bio-inspired biologically plausible pipeline making the basis for 
a complex scenario where the robot needs to shift attention depending on different tasks yet 
be able to remain alert. This work aims to start a complex attention schema where inten-
sity, depth and motion are the initial channels where several other sources of information 
can be added. The start of the complex attention schema would be to weigh and prioritise 
one channel at a time, or a combination of channels, to obtain a specific response for a 
particular task. The modulation of contributions among different channels is still an open 
question due to the combination of bottom-up and top-down mechanisms. This project 
certainly lacks a WTA mechanism to select the maximum value representing the salient 
location [73] based on the Intensity, Depth and Motion channel. Once the model finally 
finds a point to fixate on, the inhibition-of-return mechanism becomes necessary to allow 
the next shift towards the new salient location. The limitations of attention-based models 
are the impossibility to have a ground truth to assess the system or define a loss func-
tion for training. Human fixations represent the only ground truth available to evaluate 
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a saliency map response. The cognitive bias behind a human attention focus cannot be 
clearly explained from a purely bottom-up or top-down perspective [141]. The deep inter-
play between these two mechanisms does not guarantee voluntary human fixations over a 
specific point not even if the task is chosen. Obtaining a loss function would allow learning 
the kernel used for proto-object detection or learning the saliency map for a specific atten-
tion task. Learning the kernel would discover new kernels for specific tasks or confirm the 
used curved filter. Training on human fixation maps to move the robot’s eyes would learn 
fixation points depending on the training data. This would not solve the question about 
the bottom-up mechanisms behind the attention dilemma. The event-based approach is 
fast, efficient and sparse, unlocking new possibilities for attention models in robotic ap-
plications. Future perspectives see many challenges in the combination of bottom-up and 
top-down mechanisms working together towards an autonomous selection of the salient 
point. How to switch from one mechanism to another one? Also, do they have to work 
separately? How much a bottom-up attentional cue interferes when the model is perform-
ing a task?
All of these questions can be explored by different experts analysing human attentional 
reactions to different situations. To answer such scientific questions a fundamental step 
would also be the creation of the first event-driven saliency-based dataset providing the 
ground truth for event-based approaches.
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Appendix A

Event-driven Proto-object based 

saliency in 3D space to attract a robot’s 

attention –Supplementary Material–

Multimedia Material

A supplementary video summarizing proposed methodology and results can be found 
at https://zenodo.org/record/5091539/files/evProtoDepth.mp4?download=1

Event-based proto-object model structure and parameters
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Figure A.1. Schematic representation of the evProto (left) and evProtoDepth (right) models. Both models 
show size invariance due to the 5 levels of the Normalised Pyramid. In the evProto model, positive and 

negative events go into the two core stages of the model: Border Ownership and Grouping. In the case of 
the evProtoDepth, the binocular events are fed into the disparity Extractor producing a Disparity Map. 
The Border Ownership takes in input the normalised outcome from the Pyramid fed with the disparity 

events.
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Parameter Value

𝑅0 10
𝜌 0.2

𝑃𝑦𝑟𝑎𝑚𝑖𝑑 𝑙𝑒𝑣𝑒𝑙𝑠 5
𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 0∘, 45∘, 90∘, 135∘

Table A.1. Parameters used in the 2D proto-object model [166] and the proposed evProtoDepth model. 
𝑅0 is the radius of the filter, 𝜌 determines the arc length of active pixels in the kernel allowing to change 

the convexity of the kernel, 𝑃𝑦𝑟𝑎𝑚𝑖𝑑 𝑙𝑒𝑣𝑒𝑙𝑠 the number of scales and the 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 of the Von 
Mises filters.

A schematic diagram of the event-driven proto-object models in both 2D (evProto [166]) 
and 3D (our proposed evProtoDepth) is depicted in Fig A.1. The parameters used in the 
proto-object model are listed in Table A.1.

Disparity computation model

Figure A.2. Asynchronous Cooperative Stereo Network for event-based disparity estimation[11]. a) 
Representation of the stereopsis problem describing continuity and uniqueness constraints b) 

three-dimensional view of the Excitation and Inhibition Network. The axes refer to the horizontal 
coordinates of the two cameras and the disparity c), d) Excitation and Inhibition Network on a 

two-dimensional plane: c)𝑥𝑙, 𝑦𝑙 axes and d) 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦, 𝑥𝑙 & 𝑥𝑙, 𝑥𝑟 axes.

We computed disparity of the scene on a per-event basis using a cooperative network 
that employs time correspondence between a stereo event-pair and imposes the dispar-
ity uniqueness and continuity conditions proposed by Marr and Poggio[204] to model a 
correspondence belief map. Inspired from Firouzi et al.[11], we used a 3D array-based 
representation of the network, called an activity map 𝐶, which gets updated with each 
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incoming input event. Each element (cell) of this array abstracts a computational neuron 
in the Spiking Neural Network, where each correspondence neuron spikes during simul-
taneous triggering of events in its associated left and right pixels. At any time instant, 
the current state of the activity map represents the disparity of the present input scene. 
Each incoming event from the left or right camera gets processed asynchronously in the 
network without any explicit synchronization between them. A schematic diagram of the 
cooperative network used is shown in Fig A.2.

Each incoming event was remapped to its pixels coordinate using pre-calibrated stereo 
camera parameters to ensure that the corresponding left and right events have the same y 
coordinates. The stereo correspondence search thus gets simplified to a single row scan due 
to the inherent epipolar constraints. We define disparity as 𝑑 = 𝑥𝑙 − 𝑥𝑟, where 𝑥𝑙 and 𝑥𝑟

are rectified events from the left and right cameras respectively. Since the rectified image 
planes are parallel, we only have positive disparities. Due to the asymmetric nature of the 
disparity computation, the left and right events are processed non-identically. We present 
here the relevant computations performed on an incoming left event. The corresponding 
operations to be performed on a right event then follows by changing the signs for disparity 
equations as the direction of matching switches. Furthermore, the activity map and hence 
the disparity map, is represented with the reference of the left camera frame. It is a matter 
of arbitrary choice, and each pixel coordinate only needs to be horizontally shifted by its 
computed disparity when a right reference frame is used.

We consider an input rectified event 𝐸𝑙 = (𝑃𝑙, 𝑡𝑙) that is generated from the left sensor 
at time 𝑡𝑙 and pixel location 𝑃𝑙 = (𝑥𝑙, 𝑦𝑙). The cooperative network computes the best 
disparity value for this event. Each activity cell 𝐶𝑥𝑙,𝑦𝑙,𝑑𝑘

encodes the belief of the system 
about whether 𝑥𝑙 from the left event and 𝑥𝑟 = 𝑥𝑙 − 𝑑𝑘 from the right event are true stereo 
correspondences, in the form of activity. Consequently, each cell encodes the validity of 
the disparity value 𝑑𝑘 for event 𝐸𝑙. The size of the matrix is thus 𝑀 × 𝑁 × 𝑑𝑚𝑎𝑥, where 
𝑀 × 𝑁 is the sensor dimension.

Due to epipolar constraints, the set of possible corresponding pixels in the right image 
are:

  S_l = \{(x_r, y_r) \mid x_l - d_{max} \leq x_r \leq x_l,\, y_r = y_l\}                (A.1)

where 𝑑𝑚𝑎𝑥 is an algorithmic parameter that determines the maximum detectable dis-
parity. Each element of this correspondence set represents a layer 𝑑𝑘 in the activity map 
for 𝑃𝑙. Therefore, a cell 𝐶𝑥𝑙,𝑦𝑙,𝑑𝑘

represents a candidate correspondence in 𝑆𝑙. For a single 
incoming event, we thus compute the activity related to each candidate correspondence in 
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𝑆𝑙. The cooperative network evaluates the legitimacy of each candidate in 𝑆𝑙 for its true 
correspondence to 𝑃𝑙, using a Winner-Takes-All mechanism. The winner disparity value 
𝑑𝑊𝑇 𝐴, representing the 𝑑𝑘 layer with the maximum activity value (above a predefined 
threshold 𝜃), is the final computed disparity for the input event 𝐸𝑙.

  \label {eq:wta} d_{WTA}(E_l) = \underset {d_k}{\arg \max } \Big \{C_{x_l,y_l,d_k} \mid C_{x_l,y_l,d_k} \geq \theta \Big \}    





  (A.2)

The activity for each cell is computed using time-weighted excitatory and inhibitory 
connections from previously activated cells in the network. These connections are deter-
mined according to the continuity and uniqueness disparity constraints respectively.

Figure A.3. Event correspondence

Figure A.4. 𝐶𝑥𝑙,𝑦𝑙,𝑑𝑘
depicted in cross-sectional views of the activity map, along with its excitatory and 

inhibitory sets, given by equations A.3, A.4 and A.5, with parameters 𝑑𝑚𝑎𝑥 = 6 and 𝑟 = 1. Top: 
cross-sectional view at vertical layer 𝑦𝑙; Bottom: cross-sectional views at disparity layers 𝑑𝑘 − 1, 𝑑𝑘 and 

𝑑𝑘 + 1.
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Figure A.5. Cross-section of activity map 𝐶 at layer 𝑦𝑙, showing all excitatory and inhibitory sets for an 
input left event 𝑒𝑙 at pixel 𝑃𝑙 = (𝑥𝑙, 𝑦𝑙), with parameters 𝑑𝑚𝑎𝑥 = 6 and 𝑟 = 1. Each yellow element in the 
column 𝑥𝑙 represents an activity cell 𝐶𝑥𝑙,𝑦𝑙,𝑑. The lines of the excitatory and inhibitory sets for each cell 

intersect at its center. Inhibition set 𝐼1 is nearly same (all cells along the 𝑥𝑙 column except the cell in 
focus) for all candidate correspondences.
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Figure A.6. Network computations for matching left and right event pair with pixel coordinates (𝑥𝑙, 𝑦) and 
(𝑥𝑟, 𝑦) respectively, with parameters 𝑑𝑚𝑎𝑥 = 6 and 𝑟 = 1. Top-left: Representation of estimated true 

disparity 𝑑𝑊𝑇 𝐴 in left-right x-coordinate correspondence map; Bottom-left: All network excitations and 
inhibitions for input left event at (𝑥𝑙, 𝑦); Bottom-right: All network excitations and inhibitions for input 

right event at (𝑥𝑟, 𝑦).
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Excitatory connections

To enforce the within-disparity continuity constraint, cells in the same disparity layer sur-
rounding the firing pixel should potentiate each other. This leads to more contiguous re-
gions in the disparity map based on the reasoning that pixels in the close neighbourhood 
should possess similar disparity values. Events generated by extended objects in the spa-
tial and temporal vicinity thus lead to more accurate disparity values. Therefore, for each 
element in 𝑆𝑙, the set of excitatory connections are defined as:

  \label {eq:ex_l} E(C_{x_l,y_l,d_k}) = \{C_{x',y',d_k} \mid |x'-x_l|\leq r,\, |y'-y_l|\leq r\} 
 

           (A.3)

where 𝑟 is the size of the neighborhood which we consider for excitation.

Inhibitory connections

To enforce the cross-disparity uniqueness conditions, cells in the same epipolar line con-
tributing to other disparities should inhibit the current disparity belief evaluation. For 
each candidate correspondence in 𝑆𝑙, we use two kinds of inhibitory connections in the 
network.

The first set of inhibitory connections are defined as

  \label {eq:in1_l} I_1(C_{x_l,y_l,d_k}) = \{C_{x',y',d} \mid 0\leq d \leq d_{max}, \, d\neq d_k,\, x' = x_l, \, y' = y_l\} 
                  (A.4)

This set of inhibitory cells topologically represent correspondence between the current 
cell 𝐶𝑥𝑙,𝑦𝑙,𝑑𝑘

and all other pixels lying on the conjugate epipolar line of 𝑃𝑙 in the right im-
age. This means that for a left event, a candidate disparity that has already been assigned 
a high belief by the network, inhibits all other possible disparities for that event. Lateral 
inhibition like this is present throughout the human vision system [244]. It helps to re-
duce false positive matches in noisy environments. A false positive matching scenario is 
depicted in figure A.3 – if 𝑝𝑙 on the left image is a retinal projection of the point object 𝑃, 
there are two possible matches in the right retina, 𝑝𝑟 or 𝑞𝑟. However, since just one of the 
candidates can be chosen, the correspondence 𝑝𝑙 - 𝑝𝑟 should inhibit 𝑝𝑙 - 𝑞𝑟 so that it does 
not lead to the false positive 3D point 𝑄.
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The second set of inhibitory connections is defined as:

  \label {eq:in2_l} I_2(C_{x_l,y_l,d_k}) = \{C_{x',y',d} \mid 0\leq d \leq d_{max}, \, d\neq d_k,\, x' = x_l-d_k+d, \, y' = y_l\} 
                      (A.5)

This layer of inhibition, as proposed in [11], is used to further reduce false matches 
by enforcing that a candidate right pixel should contribute to only one stereo correspon-
dence. For each disparity level 𝑑𝑘, it may happen that the corresponding right pixel 
(𝑥𝑟 = 𝑥𝑙 − 𝑑𝑘, 𝑦𝑟 = 𝑦𝑙) in 𝑆𝑙 has already contributed to a stereo match in an earlier 
iteration of the algorithm. We thus inhibit the current correspondence belief 𝐶𝑥𝑙,𝑦𝑙,𝑑𝑘

, 
using the summation of cell activities (𝑥𝑟, 𝑦𝑟) might have contributed to. Since the 𝐶 is 
formulated with reference to the left image frame, 𝑥𝑟 is actually represented as 𝑥′ = 𝑥𝑟 +𝑑
in the activity map. This extra layer of inhibition resolves disparity ambiguity in the scene 
caused by multiple bodies, therefore producing more precise disparity maps.

Figure A.4 illustrates the excitatory set 𝐸 (in green), as well as inhibitory sets 𝐼1 (in 
red) and 𝐼2 (in magenta) for a single activity cell 𝐶𝑥𝑙,𝑦𝑙,𝑑𝑘

. Both (𝑥𝑙𝑒𝑓𝑡-disparity) and 
(𝑥𝑙𝑒𝑓𝑡-𝑦𝑙𝑒𝑓𝑡) cross-sections of a section of the 3D activity map 𝐶 are shown. These sets 
are computed for each candidate correspondence element in 𝑆𝑙. Thus, computations for an 
input left event 𝑒𝑙 with pixel coordinates 𝑃𝑙 = (𝑥𝑙, 𝑦𝑙) are affected by multiple excitatory 
and inhibitory sets as depicted in figure A.5.

Temporal Correspondence for Activity computation

Events are triggered by the ATIS cameras whenever there is change is illumination in the 
input scene. Thus, events originating from the left and right cameras due to the same source 
are generated around the same time. The temporal proximity of corresponding events 
thus helps in better stereo matching. Ideally, temporal coincidence should represent pixel 
correspondence on an event level. However, input stimuli with noise and multiple extended 
objects generate a lot of events around the same time, thus the timing information encoded 
in the events are not perfect due to jitter in latency of the acquisition system from the left 
and right cameras. Furthermore, the order of generated events from each camera may also 
be incoherent. The cooperative network we use ensures that the disparity estimation works 
even when timing information is not precise.

To ensure that temporally close events have higher probability to correspond to each 
other, a simplified abstraction of Leaky Integrate and Fire (LIF) model [245] is used to 
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model the internal dynamics of each activity cell. An activation time is maintained for 
each cell in the activity map. Every time a cell in the network 𝐶𝑥,𝑦,𝑑 gets activated due 
to an incoming input event, we update its activation time 𝑡𝑥,𝑦,𝑑. We use a temporal kernel 
𝑊 that weights the contribution of each interacting cell (excitatory and inhibitory) based 
on how far ago in time they were activated, with respect to the current event time 𝑡𝑙. It is 
defined as follows:

  \label {eq:kernel} W^{t_l}_{x,y,d} = \frac {1}{1+\beta (t_l-t_{x,y,d})} 
 

   
(A.6)

where 𝑡𝑙 is the current activation time, and 𝑡𝑥,𝑦,𝑑 is the time when the activity of cell 
𝐶𝑥,𝑦,𝑑 was last activated.

Therefore, for an incoming left event 𝐸𝑙, activities of all network cells, each corre-
sponding to a disparity layer, are computed in a single pass and stored in temporary one-
dimensional array. Using the temporal kernel 𝑊, excitation set 𝐸, and inhibition sets 𝐼1

and 𝐼2, the activity of each cell 𝐶𝑥𝑙,𝑦𝑙,𝑑𝑘
is computed as:

  C_{x_l,y_l,d_k} = \sigma \Bigg ( \sum _{x',y',d' \epsilon \, E} W^{t_l}_{x',y',d'}C_{x',y',d'} \,-\, \alpha \sum _{x',y',d' \epsilon \, I_1 \cup I_2} W^{t_l}_{x',y',d'} \, C_{x',y',d'}\Bigg ) 
 




  



  (A.7)

where the sigmoid function 𝜎(𝑘) = 1
1+𝑒−𝑘 is used to normalize the activity to values 

between 0 and 1. Using equation A.2, we estimate the disparity value for 𝐸𝑙. The activity 
values and their respective trigger times are finally updated inside the network in a single 
pass.

When two events 𝑒𝑙 and 𝑒𝑟 from the left and right cameras are generated close in time, 
the network computes their disparity as 𝑑𝑊𝑇 𝐴 = 𝑥𝑙 − 𝑥𝑟, where 𝑥𝑙 and 𝑥𝑟 are respec-
tive horizontal pixel coordinates of the events. This is ensured by appropriately weighting 
the inhibitory and excitatory connections in the network, using the parameter 𝛼. Figure 
A.6 illustrates the computations performed by the network for these two corresponding 
events. In this figure, all connections are plotted in the domain of 𝑥𝑙𝑒𝑓𝑡 - 𝑥𝑟𝑖𝑔ℎ𝑡 corre-
spondence maps for symmetrical representation. The candidate matching cells for both 
events (shown in yellow) lie along rows and columns of the correspondence map. Layers 
of constant disparity are shown with dashed arrows. The figure explains how the coop-
erative network excites disparity in neighbouring regions, and inhibits disparities along 
epipolar lines. However, for ease of implementation, we map all computations in the 𝑥 - 
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disparity domain, like in figure A.5. This leads to efficient traversal across disparity layers 
represented by straight lines along contiguous 1-D array elements.

Parameter Value

𝑟 3
𝜃 0.4
𝛼 0.3
𝛽 0.0001

𝑑𝑚𝑎𝑥 45

Table A.2. Parameters used for disparity computation using the asynchronous cooperative network. 
Excitatory neighborhood 𝑟 tunes the smoothness of the disparity maps. Activation function threshold 𝜃

can be used to adjust the desired trade-off between noise and sparsity of output – high values will filter out 
noisy predictions with low activity but may also remove valid estimates. Inhibitory factor 𝛼 tunes the 

strength of inhibition during cooperation. Slope of temporal correlation kernel 𝛽 can adjust the temporal 
sensitivity of the cells to input events – higher value means faster dynamics and sharper temporal 

sensitivity to the upcoming events. The number of disparity levels 𝑑𝑚𝑎𝑥 is used to modulate the precision 
of disparity estimation at the cost of increased computational overheads.

The empirically chosen parameters of disparity extractor are listed in Table A.2.
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(a)

(b)

(c)

Figure A.7. Estimated disparity for various instances of three sequences: a Two paddles of different sizes 
moving towards and away from the cameras, along the depth axis of the robot’s cameras. Pixels where 

events occur during the 100ms time-window are colour-coded as per the computed disparity (depth). The 
object stimuli switch colours as their relative depth changes. b Same as (a) but for a person with at varying 

distances between 30 cm and 210 cm from the robot. c Scene showing two persons at different depths 
from the robot. Person 1 (mainly yellow and red pixes) is waving a hand at 30 cm depth. Person 2 (mainly 
blue) is walking horizontally across the scene at ≈210 cm depth. Pixel colours represent depth, as in (a) 

and (b), and remain constant for motion in the same depth plane.
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Saliency Benchmarking with NUS-3D dataset

Figure A.8. Quantitative evaluation of saliency maps generated by fbProtoDepth [88] and evProtoDepth 
using the MIT saliency metrics Normalized Scanpath Saliency (NSS), Area under the ROC Curve 

(AUC-Borji), Kullback-Leibler Divergence (KLDiv), Pearson’s Correlation Coefficent (CC) and Similarity 
(SIM) [35], [137]–[139] on a subset of the NUS3D dataset where human eyes were fixated is mostly on 

the nearest object of the scene. The subset comprises all cases among the NUS-3D dataset where the 
cross-correlation between the ground truth 3D fixation and inverse of ground truth depth ≥ 0.5. The 

x-axis depicts the image number as present in the NUS-3D dataset. For all metrics except KLDiv, larger 
value is better.
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Image # RGB image Saliency Map: 
fbProtoDepth [88]

Saliency Metrics: 
fbProtoDepth [88]

Saliency Map: 
evProtoDepth

Saliency Metrics: 
evProtoDepth

Ground truth 3D 
fixations

156

NSS = 0.808
AUC-Borji = 0.708

KLDiv = 1.343
CC = 0.387
Sim = 0.362

NSS = 0.655
AUC-Borji = 0.6
KLDiv = 3.215

CC = 0.364
Sim = 0.361

188

NSS = 0.856
AUC-Borji = 0.74

KLDiv = 1.176
CC = 0.454
Sim = 0.384

NSS = 0.357
AUC-Borji = 0.602

KLDiv = 5.086
CC = 0.116
Sim = 0.303

208

NSS = 0.693
AUC-Borji = 0.704

KLDiv = 1.516
CC = 0.283
Sim = 0.285

NSS = 0.339
AUC-Borji = 0.606

KLDiv = 3.622
CC = 0.171
Sim = 0.258

250

NSS = 0.935
AUC-Borji = 0.74

KLDiv = 1.563
CC = 0.372
Sim = 0.285

NSS = 0.15
AUC-Borji = 0.531

KLDiv = 3.3
CC = 0.054
Sim = 0.198

300

NSS = 0.79
AUC-Borji = 0.705

KLDiv = 1.556
CC = 0.331
Sim = 0.292

NSS = 0.482
AUC-Borji = 0.588

KLDiv = 2.319
CC = 0.172
Sim = 0.252

350

NSS = 0.808
AUC-Borji = 0.713

KLDiv = 1.388
CC = 0.467
Sim = 0.318

NSS = -0.031
AUC-Borji = 0.503

KLDiv = 6.676
CC = -0.051
Sim = 0.139

410

NSS = 0.557
AUC-Borji = 0.657

KLDiv = 1.379
CC = 0.271
Sim = 0.325

NSS = -0.057
AUC-Borji = 0.479

KLDiv = 12.357
CC = -0.037
Sim = 0.192

500

NSS = 0.282
AUC-Borji = 0.636

KLDiv = 1.466
CC = 0.203
Sim = 0.312

NSS = 0.236
AUC-Borji = 0.534

KLDiv = 2.157
CC = 0.15

Sim = 0.251

536

NSS = 1.099
AUC-Borji = 0.81

KLDiv = 1.809
CC = 0.372
Sim = 0.248

NSS = 0.602
AUC-Borji = 0.607

KLDiv = 2.335
CC = 0.13

Sim = 0.236

569

NSS = 0.252
AUC-Borji = 0.565

KLDiv = 1.846
CC = 0.337
Sim = 0.251

NSS = -0.218
AUC-Borji = 0.431

KLDiv = 6.576
CC = -0.138
Sim = 0.096

Figure A.9. Example scenes from the publicly available NUS-3D dataset [169] where the frame-based 
fbProtoDepth model [88], which includes colour opponency as well as orientation information channels, 

quantitatively outperforms the event-based evProtoDepth model in all the MIT saliency benchmark 
metrics. Here, the ground truth fixations are not confined to the nearest ”object” in the scene. Better 

values are bold-faced. The event-based model generates more localised saliency maps that are better at 
precisely selecting the nearest ”object” since it mainly relies on depth and Gestalt cues from high contrast 

edges.
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Robot experiments

RGB frame + fbProtoDepth saliency [88] Input events + evProtoDepth saliency
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Figure A.10. Comparison of saliency map selectivity between fbProtoDepth and evProtoDepth models 
running on the robot. Each plot shows the 2D histogram of accumulated saliency maps over all the frames 
of the clutter and hands-eyesmoving datasets. The frame-based model receives RGB and depth input from 
the RealSense camera, and the event-driven models receive input from the stereo event cameras. The two 

cameras have different field of views, and hence are not spatially aligned.

Event image evProto [166] Disparity map evProtoDepth
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Figure A.11. Contribution of both disparity and proto-object modelling in selecting the nearest (most 
salient) ”object” on the clutter and hands datasets. Each plot depicts the 2D histogram of peak saliency 

pixel over all the frames of a dataset. For the disparity-only setup in Column 3, the peaks of the raw 
disparity map also includes non-salient regions of the scene, hence using disparity alone is not suitable for 

stable object selection. For the proto-object models in Column 2 and 4, the saliency peaks are more 
precisely concentrated at suitable proto-objects. The combination of disparity and proto-object modelling 

in evProtoDepth thus generates more robust and precise peak saliency locations than the individual 2D 
evProto model or the disparity map. While the disparity information improves selectivity of the saliency 
model, the proto-object model acts as filter to isolate high-level ”proto-objects” from noisy depth maps.
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Appendix B

Event-based eccentric motion detection 

exploiting time difference encoding 

–Supplementary Material–

B.1 Experiments real-world data

Final experiments were conducted using recorded data as input to understand the be-
haviour of the model to a real scenario. We analysed various recordings showing a black 
bar moving from left to right on a white canvas. The datasets differ in terms of stimulus 
speed. Given that we want to simulate a real robotic scenario we manually moved the bar 
in front of the camera. However, as the bar was moved manually, a constant velocity could 
not be guaranteed. Hence, this is not a comparison with the simulated input experiments 
because is out of the scope of this analysis. The aim of these recordings was to show 
the real-world response of the model and its robustness in detecting the correct speed re-
gardless to the noise while decreasing the incoming events from the cameras thanks to the 
eccentric down-sampling.

B.2 Experiments real-world data results

Figure B.1 shows the response of the sEMD with eccentric down-sampling for real-
world input data from the ATIS camera. Three different stimulus speeds are visualised, 
ranging from slow B.1 a), to medium B.1 b) and fast B.1 c). As the stimuli were moved 
manually, no more reliable assertion of the velocities can be made. The observed responses 
showed the same trend observed for the simulated data. An increase of stimulus speed 
causes a shift of the area of highest response from the fovea to the periphery. However, 
unlike observed with the simulated data, the mean firing rate seems to decrease instead 
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Figure B.1. Response from the population of LR sEMDs with the eccentric down-sampling mapped into 
the cartesian space with a camera resolution of 160x160 pixels. The color-code heatmap represents the 
MFR of each RF. Population response to real data for three symbolic speeds: slow (a), medium (b) and 

fast (c).

of increase for increasing stimulus velocities. A possible explanation for this is the ATIS 
cameras inherent noise around boarders of the moving bar causing false triggers at slow 
speeds. Furthermore, as the recordings were performed in an open space with many pos-
sible interference sources, thus the datasets are not ideal. However, the center of mass 
location of the RFs response still provides information about the stimulus velocity. Thus, 
showing that the model is suitable for a real-world application.
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