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Sommaire

La détection de mouvement est une opération de base souvent utilisée en vision par or-

dinateur, que ce soit pour la détection de piétons, la détection d’anomalies, l’analyse de

scènes vidéo ou le suivi d’objets en temps réel. Bien qu’un très grand nombre d’articles

ait été publiés sur le sujet, plusieurs questions restent en suspens. Par exemple, il n’est

toujours pas clair comment détecter des objets en mouvement dans des vidéos contenant

des situations difficiles à gérer comme d’importants mouvements de fonds et des chan-

gements d’illumination. De plus, il n’y a pas de consensus sur comment quantifier les

performances des méthodes de détection de mouvement. Aussi, il est souvent difficile

d’incorporer de l’information de mouvement à des opérations de haut niveau comme

par exemple la détection de piétons.

Dans cette thèse, j’aborde quatre problèmes en lien avec la détection de mouvement :

1. Comment évaluer efficacement des méthodes de détection de mouvement ? Pour ré-

pondre à cette question, nous avons mis sur pied une procédure d’évaluation de telles

méthodes. Cela a mené à la création de la plus grosse base de données 100% annotée au

monde dédiée à la détection de mouvement et organisé une compétition internationale

(CVPR 2014). J’ai également exploré différentes métriques d’évaluation ainsi que des

stratégies de combinaison de méthodes de détection de mouvement.

2. L’annotation manuelle de chaque objet en mouvement dans un grand nombre de vi-

déos est un immense défi lors de la création d’une base de données d’analyse vidéo.

Bien qu’il existe des méthodes de segmentation automatiques et semi-automatiques,

ces dernières ne sont jamais assez précises pour produire des résultats de type “vérité

terrain”. Pour résoudre ce problème, nous avons proposé une méthode interactive de

segmentation d’objets en mouvement basée sur l’apprentissage profond. Les résultats
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obtenus sont aussi précis que ceux obtenus par un être humain tout en étant 40 fois plus

rapide.

3. Les méthodes de détection de piétons sont très souvent utilisées en analyse de la vi-

déo. Malheureusement, elles souffrent parfois d’un grand nombre de faux positifs ou

de faux négatifs tout dépendant de l’ajustement des paramètres de la méthode. Dans

le but d’augmenter les performances des méthodes de détection de piétons, nous avons

proposé un filtre non linéaire basée sur la détection de mouvement permettant de gran-

dement réduire le nombre de faux positifs.

4. L’initialisation de fond (background initialization) est le processus par lequel on

cherche à retrouver l’image de fond d’une vidéo sans les objets en mouvement. Bien

qu’un grand nombre de méthodes ait été proposé, tout comme la détection de mouve-

ment, il n’existe aucune base de donnée ni procédure d’évaluation pour de telles mé-

thodes. Nous avons donc mis sur pied la plus grosse base de données au monde pour ce

type d’applications et avons organisé une compétition internationale (ICPR 2016).

Mots-clés: Détection de mouvement, détection de piétons, estimation d’image de fond.
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Summary

Motion detection is a basic video analytic operation on which many high-level com-

puter vision tasks are built upon, e.g., pedestrian detection, anomaly detection, scene

understanding and object tracking strategies. Even though a large number of motion de-

tection methods have been proposed in the last decades, some important questions are

still unanswered, including : (1) how to separate the foreground from the background

accurately even under extremely challenging circumstances ? (2) how to evaluate dif-

ferent motion detection methods ? And (3) how to use motion information extracted by

motion detection to help improving high-level computer vision tasks ?

In this thesis, we address four problems related to motion detection :

1. How can we benchmark (and on which videos) motion detection method ? Current

datasets are either too small with a limited number of scenarios, or only provide boun-

ding box ground truth that indicates the rough location of foreground objects. As a

solution, we built the largest and most objective motion detection dataset in the world

with pixel accurate ground truth to evaluate and compare motion detection methods. We

also explore various evaluation metrics as well as different combination strategies.

2. Providing pixel accurate ground truth is a huge challenge when building a motion

detection dataset. While automatic labeling methods suffer from a too large false detec-

tion rate to be used as ground truth, manual labeling of hundreds of thousands of frames

is extremely time consuming. To solve this problem, we proposed an interactive deep

learning method for segmenting moving objects from videos. The proposed method can

reach human-level accuracies while lowering the labeling time by a factor of 40.

3. Pedestrian detectors always suffer from either false positive detections or false ne-
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SUMMARY

gative detections all depending on the parameter tuning. Unfortunately, manual adjust-

ment of parameters for a large number of videos is not feasible in practice. In order to

make pedestrian detectors more robust on a large variety of videos, we combined mo-

tion detection with various state-of-the-art pedestrian detectors. This is done by a novel

motion-based nonlinear filtering process which improves detectors by a significant mar-

gin.

4. Scene background initialization is the process by which a method tries to recover

the RGB background image of a video without foreground objects in it. However, one

of the reasons that background modeling is challenging is that there is no good data-

set and benchmarking framework to estimate the performance of background modeling

methods. To fix this problem, we proposed an extensive survey as well as a novel bench-

marking framework for scene background initialization.

Keywords: Motion detection, pedestrian detection, background image estimation.
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Introduction

Motion detection is a basic and important task in computer vision and video processing.

A large number of high level computer vision tasks such as object tracking [248], scene

understanding [107], anomaly detection [133], and traffic analytics [148] rely on motion

detection. Its importance can be gauged by the large number of algorithms that have

been developed to-date and the even larger number of articles that have been published

on this topic. A quick search for "motion detection" on IEEE Xplore returns over 20,000

papers. This shows that motion detection is a fundamental topic for a wide range of

video analytic applications. And it also proves that the number of motion detection

methods proposed so far is impressively large.

Even though hundreds of papers have been published in the past decade, motion de-

tection is still not considered as a solved problem. It appears that no single method

can provide good performance in all challenging circumstances. Such challenges in-

clude sudden illumination variations, night scenes, background movements, illumina-

tion changes, low frame rate, shadows, camouflage effects (photometric similarity of

object and background), ghosting artifacts (delayed detection of a moving object after it

has moved away), etc. In this work, we aim to answer four questions related to motion

detection.

This thesis starts with a short introduction of motion detection methods. Methods are

classified into seven categories. The features, updating strategies and post-processing

technologies that are usually used in motion detection are also described. Popular da-

tasets used to evaluate motion detection methods are also listed and compared in that

chapter.

Unfortunately, all these datasets have their limits, which makes it impossible to compare

1



INTRODUCTION

motion detection methods objectively. To solve this problem, in Chapter 2 we propose

a more objective dataset : changedetction.net 2014 (CDnet 2014) [237], an extension of

the previously released 2012 version of that dataset. With 75 videos in 11 challenging

categories and seven evaluation metrics, CDnet 2014 is the largest and most objective

motion detection dataset in the world. More details about the dataset are described in

Chapter 2. In order to understand motion detection methods more deeply, a series of

benchmarking experiments have been done, which are also mentioned in Chapter 2.

While building a motion detection dataset, ground truthing is always an important but

time-consuming task. In each frame of a video, the ground truth is a binary mask that

indicates whether a pixel in the frame belongs to the foreground or the background.

It may also have other labels to indicate the region of interests (ROI), shadow, and

uncertain areas. An accurate ground truth for a dataset may require several months of

manual labeling. Because of that, most datasets either only label a very small number of

frames for each video [219, 131], or only provide a bounding box around each moving

object [261, 224]. To solve this problem, in Chapter 3, we propose an interactive deep

learning method for segmenting moving objects [239]. By labeling only a small number

of frames, our model can learn the appearance of the background and the foreground

moving objects, and generalize the segmentation to the rest of the video frames. As will

be shown, the average F-measure of our method is within the error margin of a human

being.

Motion detection methods can be used to improve the performance of other higher level

computer vision tasks, e.g. pedestrian detection. By considering motion information, we

proposed a method to filter out the background of a video in order to decrease the false

detection rate of pedestrian detectors [240]. Our method is robust and easy to combine

with state-of-the-art pedestrian detectors. This part is discussed in Chapter 4.

The most straight forward way of detecting motion in a video is to separate the fore-

ground from the background with a simple background subtraction. For this method,

motion is defined as any significant pixel-wise difference between a frame in the video

and a background image. But to do this, we need a background image void of fore-

ground objects. Although many background initialization papers have been published,

it is not easy to objectively estimate how good these background initialized images are.
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In Chapter 5, we propose an extensive survey of scene background initialization me-

thods as well as a novel benchmarking framework involving seven evaluation metrics,

14 different state-of-the-art methods, as well as the largest video dataset ever made for

this purpose [108].

Accomplished Work

The follows are the projects that I am involved and their correlating publications during

my Ph.D.

1. I was involved in a motion-tracking-based scene understanding project. With the

help of optical flow, we proposed a method to estimate the motion patterns of traf-

fic. Our method works both with sparse and crowded video scenes. A conference

paper was published based on the subject :

— Jodoin, P.M., Benezeth, Y., Wang, Y., "Meta-tracking for video scene unders-

tanding", Advanced Video and Signal Based Surveillance, 2013, pp. 1-6.

This paper is not mentioned in the rest of the thesis.

2. I worked on a motion detection benchmarking project. I reviewed a large number

of motion detection methods, features, updating strategies, and post-processing

methods and tested it on the CDnet 2012 dataset. I also extended the 2012 dataset

which led to the CDnet 2014 dataset. This also led to the organization of a CVPR

challenge in 2014. This work allowed me to publish the following two papers :

— Jodoin, P.M., Pierard, S., Wang, Y., Droogenbroeck, V., "Overview and bench-

marking of motion detection methods", Background Modeling and Foreground

Detection for Video Surveillance, 2014.

— Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., and Ishwar, P.,

"CDnet 2014 : An Expanded Change Detection Benchmark Dataset", in Proc.

IEEE Workshop on Change Detection (CDW-2014) at CVPR-2014, pp. 387-

394.

Chapter 2 is a combination of those two papers.

3. I proposed a multi-scale cascaded convolutional neural network used to segment

foreground objects in videos. The model achieves human-level accuracies while

3
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being 40 times faster than manual labeling. This led to the publication of the

following journal paper :

— Wang, Y., Luo, Z. M., and Jodoin, P. M. "Interactive Deep Learning Method

for Segmenting Moving Objects", Pattern Recognition Letters, 2016.

This paper is the content of Chapter 3.

4. I worked on a method used to combine motion information and pedestrian de-

tectors to improve the performances of state-of-the-art pedestrian detectors. A

workshop paper and a journal paper were published on that topic :

— Wang, Y., Piérard, S., Su, S. Z., and Jodoin, P. M. "Nonlinear Background

Filter to Improve Pedestrian Detection", in New Trends in Image Analysis

and Processing–ICIAP 2015 Workshops, pp. 535-543.

— Wang, Y., Piérard, S., Su, S. Z., and Jodoin, P. M. "Improving pedestrian

detection using motion-guided filtering", Pattern Recognition Letters, 2016.

The journal paper is the content of Chapter 4.

5. I Co-organized the Scene Background Modeling Contest in conjunction with

ICPR 2016. We provided the largest scene background modeling dataset and an

online evaluation system (scenebackgroundmodeling.net). This led to a journal

paper accepted by IEEE Transactions on Image Processing :

— Jodoin P. M., Maddalena, L., Petrosino, A. and Wang Y. "Extensive Bench-

mark and Survey of Modeling Methods for Scene Background Initialization",

Accepted by IEEE Transactions on Image Processing, 2017.

This paper is the content of Chapter 5. Note that for this paper, the author order

is in alphabetical order.
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Chapter 1

Previous Work

1.1 Motion Detection Methods

Motion detection is often achieved by first building a representation of the scene, called

"the background model", and then observing deviations from this model for each in-

coming frame. Sufficient changes from the background model are assumed to indicate

the presence of moving objects. In this chapter, we report the most commonly-used

models which we refer to as the basic, parametric, non-parametric, data-driven and

matrix decomposition models. Other models for motion detection are also accounted

for in this section such as the prediction model, the motion segmentation model, and

the machine learning approaches, including deep learning models. All these motion

detection methods are summarized in Table 1.1.

Together with these eight families of methods, we review commonly-used features, spa-

tial aggregation techniques, updating scheme as well as post-processing methods.

1.1.1 Basic Models

The simplest strategy to detect motion is to subtract the pixel’s color in the current frame

from the corresponding pixel’s color in the background model [22]. Given a background

5



1.1. MOTION DETECTION METHODS

Table 1.1 – Overview of eight families of motion detection methods.

Motion detection families References

Basic
Running average [269, 22, 118, 105, 99]
Temporal median [156]
Motion history image [27, 162, 170]

Parametric

Single Gaussian [246]
Gaussian mixture model (GMM) [210, 110, 274,
106, 65, 66, 191, 87, 255, 249]
Background clustering [38, 101, 115]
Generalized Gaussian model [9, 114]
Bayesian [131, 183, 231]
Chebyshev inequality [162]

None-parametric
Kernel density estimation (KDE) [64, 161, 168, 258,
266, 109]

Data-driven

Cyclostationary [184]
Stochastic K-nearest neighbors (KNN) [16, 93]
Deterministic KNN [274]
Hidden Markov model (HMM) [212]

Matrix decomposition
Principal component analysis (PCA) [169, 254, 134,
59, 194]
Sparsity and dictionary learning [182, 267]

Prediction model
Kalman filter [112, 270]
Weiner filter [219]

Motion segmentation
Optical flow segmentation [244, 158, 147]
GMM and optical flow segmentation [101, 271]

Machine learning
SVM [138, 91, 89]
1-class SVM [47]
Neural networks [152, 154, 196]

Deep learning
Convolutional neural network (ConvNets or CNN)
[123, 239]
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B, the foreground of frame I at time t is estimated as:

F t =







1, if |I t − Bt| ≥ tr

0, otherwise,
(1.1)

where tr is a threshold for the binarization.

The basic models usually generate the background model with a statistical method. For

example, A temporal median filter can be used to estimate a color-based background

model [156]. Denote N as the number of the frames in the training set of a video, a

temporal median filter calculates the background as:

B(x,y) = median(I1
(x,y), I2

(x,y), I3
(x,y), ..., IN

(x,y)). (1.2)

One can also generalize to other features such as color histograms [118, 269] and local

self-similarity features [105]. Avola et al. [11] developed the pixel-by-pixel subtraction

into a blob subtraction filter, which is more robust for noisy videos. Beyond that, a

key points matching stage is also added for the background updating to increase the

model stability. However, these temporal filtering methods are sensitive to compression

artifacts, global illumination changes, and are incapable to detect moving objects once

they become stationary.

Frame differencing [4] is another basic motion detection method. It aims to detect

changes in the state of a pixel by subtracting the pixel’s intensity (or color) in the cur-

rent frame from its intensity (or color) in the previous frame. Although this method is

computationally inexpensive, it cannot detect a moving object once it stops moving or

when the object motion becomes small. Instead, it typically detects object boundaries,

covered and exposed areas due to object motion. Frame differencing detects the edge of

the foreground between two continuous frames It−1 and It as:

F t
(x,y) =







1, if |I t−1
(x,y) − I t

(x,y)| ≥ tr

0, otherwise.
(1.3)

Motion history image (MHI) [27, 162, 170] is also used as a basic model for motion

detection. It is obtained by successive layering of frame differences. For each new

frame, the current motion history image is scaled down in amplitude, subject to some
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threshold, on which, the new motion label field is overlaid using its full amplitude range.

In consequence, image dynamics ranging from two consecutive frames to several dozen

frames can be captured in a single image. There is also a simplified way to calculate

motion history image, which initializes the MHI with a fixed intensity τ and reduces it

by 1 when no motion is detected:

MHIt
(x,y) =







τ, if |I t
(x,y) − I t−1

(x,y)| ≥ tr

max(0, MHIt−1
(x,y) − 1), if |I t

(x,y) − I t−1
(x,y)| < tr.

(1.4)

1.1.2 Parametric Models

In order to improve robustness to noise, parasite artifacts, and background motion, the

use of a per-pixel Gaussian model has been proposed [246]. In a first step, the mean

µ and standard deviation σ are computed for each pixel. Then, for each frame, the

likelihood p of each pixel color is determined and pixels whose probability is below a

certain threshold tr are labeled as foreground pixels:

F t
(x,y) =







1, if p(I t
(x,y)|µ, σ) < tr

0, otherwise.
(1.5)

Since pixels in noisy areas are given a larger standard deviation, a larger intensity vari-

ation is needed in those areas to detect motion. This is fundamentally different from

the basic models for which the tolerance is fixed for every pixel. As shown by Kim et

al. [114], a generalized Gaussian model can also be used and Morde et al. [162] have

shown that a Chebychev inequality can further improve the performance.

Single Gaussian Model, however, is not a good model for dynamic scenes [76] as mul-

tiple colors may be observed at a location due to repetitive object motion, shadows, or

reflectance changes. A substantial improvement is achieved by using multiple statistical

models to describe background color. A Gaussian mixture model (GMM) [210] was

proposed to represent each background pixel. Given Θ the mixture parameters, for a

mixture of K (usually between 3 to 10) Gaussian models, the probability to observe a

8
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pixel value at (x, y) is calculated as:

p(I t
(x,y)|Θ) =

K
∑

i=1

wi,t
(x,y) ∗ N (I t

(x,y); µi,t
(x,y), Σi,t

(x,y)), (1.6)

where wi,t is the weight of the ith Gaussian model at time t; µi,t and
∑i,t are the mean

and the covariance matrix of the same Gaussian respectively; while η(·) is the probabil-

ity density function of the Gaussian model defined as:

η(I t
(x,y), µt, Σt) =

1

(2π)
n
2 |Σt| 1

2

e
− 1

2
(It

(x,y)
−µt)T Σt−1

(It
(x,y)

−µt)
. (1.7)

GMM compares each pixel in the current frame with every model in the mixture until a

matching Gaussian is found.

If a new pixel value matches the kth Gaussian models, i.e., the pixel value is within 2.5

standard deviation of the Gaussian distribution, the weight, the mean and the standard

deviation of that Gaussian will be updated as:

wk,t
(x,y) = (1 − α)wk,t−1

(x,y) + α, (1.8)

µk,t
(x,y) = (1 − ρ)µk,t−1

(x,y) + ρ(I t
(x,y)), (1.9)

Σk,t
(x,y)

2
= (1 − ρ)Σk,t−1

(x,y)

2
+ ρ(I t

(x,y) − µk,t
(x,y))

T (I t
(x,y) − µk,t

(x,y)), (1.10)

where α and ρ are two learning parameters.

If no Gaussian distribution is matched, the one with the lowest weight in the current

mixture will be replaced by a new Gaussian distribution with its mean equal to the

current pixel value. The weight of it will be initialized to be very low and the standard

deviation will be set to be very high.

After that, the K Gaussians will be ordered according to their wk,t/σk,t. The first b

Gaussians which satisfy the following equation will be chosen to be the background

model BM for that pixel:

BM t
(x,y) = arg min

b

(
b
∑

k=1

wk,t
(x,y) > tr). (1.11)
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If the new pixel matches any of the b Gaussians, it will be classified as background, else

foreground. To be notice, to classify a pixel, instead of calculating a probability function

and thresholding it, GMM tries to find the most significant Gaussians to represent the

background:

F t
(x,y) =







1, if I t
(x,y) does not match BM t

(x,y)

0, otherwise.
(1.12)

Instead of relying on only one pixel, GMM can be trained to incorporate extended spa-

tial information [106]. Several papers [110] improved the GMM approach to add ro-

bustness when shadows are present and to make the background models more adaptive

to parasitic background motion. A recursive method with an improved update of the

Gaussian parameters and an automatic selection of the number of modes was presented

in [274]. Haines et al. [87] also proposed an automatic mode selection method, but with

a Dirichlet process. A splitting GMM that relies on a new initialization procedure and

a mode splitting rule was proposed in [65, 66]. The splitting strategy helped to avoid

over-dominating modes and resolve problems due to newly static objects and moved

away background objects. A multi-resolution block-based GMM model was introduced

in [191]. Yadav et al. [255] built GMM for both pure ground truth frames and the entire

video, and used Kullback–Leibler divergence to auto adjust for the final thresholding.

The GMM approach can also be expanded to include the generalized Gaussian model

[9]. One limit of GMM is that it only considers the temporal information of each pixel

without using any spacial knowledge. To solve this problem, Xia et al. [249] combined

GMM with a spacial model. When the new frame arrives, each pixel is classified by a

spacial model, i.e., if the pixel appears in its neighborhood less than a certain times, it

will be classified as foreground. If not, the traditional temporal GMM is then applied.

As an alternative to mixture models, Bayesian approaches have also been proposed for

motion detection. In [183], each pixel is modeled as a combination of layered Gaus-

sians. Recursive Bayesian update instead of the conventional expectation maximiza-

tion fitting is performed to update the background parameters and better preserve the

multi-modality of the background model. A similar Bayesian decision rule with vari-

ous features and a learning method that adapt to both sudden and gradual illumination

changes is used in [131]. In [231] heterogeneous features such as brightness variation,

chromaticity variation, and texture variation are extracted to estimate the conditional

10
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probability densities for both foreground and background, pixels are then labeled with

Bayes rule.

Another alternative to GMM is background clustering. In this case, each background

pixel is assigned a certain number of clusters depending on the intensity variation ob-

served in the training video sequence. Then, each incoming pixel whose color is close

to a background cluster is considered part of the background. The clustering can be

done using K-means (or a variant of it) [38, 101] or codebook [115].

1.1.3 Non-Parametric Methods

In contrast to parametric models, non-parametric kernel density estimation (KDE) tries

to estimate the probability of observing a pixel value by accumulating the kernel prob-

ability density function temporally [64]. For KDE, the probability of observing a pixel

value equal to I t
(x,y) is estimated as:

p(I t
(x,y)) =

1

N

N
∑

i=1

K(I t
(x,y) − I i

(x,y)), (1.13)

where I i
(x,y) is the pixel value at time i, N is the total number of pixels in the sample,

and K is a kernel function. If K is defined as a normal Gaussian function G(0, Σ),

and assuming the three color channels are independent from each other, the probability

density function can be rewritten as:

p(I t
(x,y)) =

1

N

N
∑

i=1

3
∏

j=1

1
√

2πσ2
j

e
− 1

2

(I
tj

(x,y)
−I

ij

(x,y)
)2

σ2
j , (1.14)

in which, the standard deviation for each channel is estimated as a function of the dif-

ference between the pixel values of the current frame and the previous frame:

σ =
|I t

(x,y) − I t−1
(x,y)|

0.68
√

2
. (1.15)

Once the probability density function is estimated, the probability is calculated when

a new pixel I t
(x,y) arrives. The pixel is considered to be foreground if its probability is

11



1.1. MOTION DETECTION METHODS

lower than a threshold tr, vice versa:

F t
(x,y) =







1, if p(I t
(x,y)) < tr

0, otherwise.
(1.16)

Mittal and Poggio [161] have shown that robustness to background motion can be in-

creased by using variable-bandwidth kernels. Zhang et al. [266] proposed the "PAWCS"

method which uses word consensus models to separate the foreground and background.

The importance of each background word is calculated based on its recurrence. A frame-

level dictionary and a local feedback are also used in the model to improve the perfor-

mance. Liao et al. [109] maintained a background pool for each pixel. The background

pool is updated with a random strategy when the new frame comes.

Although non-parametric models are robust against small changes, they are expensive

both computationally and in terms of memory use. Moreover, extending the support

causes small foreground objects to disappear. As a consequence, several authors worked

to improve the KDE model. For instance, a multi-level method [168] makes KDE com-

putationally independent of the number of samples. A trend feature can also be used to

reliably differentiate periodic background motion from illumination changes [258].

1.1.4 Data-driven Methods

Recently, pixel-based data-driven methods using random samples for background mod-

eling have shown robustness to several types of error sources. For example, in ViBe

[16, 221], the background at location (x, y) is modeled by a collection M(x, y) which

contains N previous pixel values v in the neighborhood Sr of the pixel (including the

location of the pixel) with a radius r:

M(x, y) = {v1, v2, ...., vN}. (1.17)

The collection will be used to compare with the new pixel value at the same location.

In the neighborhood of (x, y), if the number of the pixels that match with the values in

the collection M(x, y) is smaller than a threshold tr, the pixel will be considered to be
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foreground:

F(x,y) =







1, #Sr(I(x,y)) ∩ M(x, y) < tr

0, otherwise.
(1.18)

ViBe not only shows robustness to background motion and camera jitter but also to

ghosting artifacts. Hofmann [93] improved the robustness of ViBe on a variety of diffi-

cult scenarios by automatically tuning its decision threshold and learning rate based on

previous decisions made by the system. By combining local binary similarity patterns

(LBSP) features with the ViBe random sampling strategy, [209], St-Charles et al. pro-

posed "SuBSENSE", a model which is more robust to noise and illumination changes

and can detect camouflaged foreground objects more easily. In [16, 93, 209], a pixel is

declared as foreground if it is not close to a sufficient number of background samples

from the past. A deterministic K nearest neighbor approach has also been proposed by

Zivkovic and van der Heijiden [274].

A shortcoming of the above methods is that they do not account for any "temporal cor-

relation" within video sequences, thus they are sensitive to periodic (or near-periodic)

background motion. For example, alternating light signals at an intersection, a flashing

advertisement board, the appearance of rotating objects, etc. A cyclostationary back-

ground generation method based on frequency decomposition that explicitly harnesses

the scene dynamics is proposed in [184]. In order to capture the cyclostationary be-

havior at each pixel, spectral coefficients of temporal intensity profiles are computed

in temporal windows and a background model that is composed of those coefficients is

maintained and fused with distance maps to eliminate trail effects.

An alternative approach is to use a hidden Markov model (HMM) with discrete states to

model the intensity variations of a pixel in an image sequence. State transitions can then

be used to detect changes [212]. The advantage of using HMMs is that certain events,

which may not be modeled correctly by unsupervised algorithms, can be learned using

the provided training samples.
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1.1.5 Matrix Decomposition

Instead of modeling the variation of individual pixels, the whole image can be vector-

ized and used in background modeling. In [169], a holistic approach using eigenspace

decomposition is proposed. For a certain number of input frames, a background matrix

(called eigenbackground) is formed by arranging the vectorized representations of im-

ages in a matrix where each vectorized image is a column. An eigenvalue decomposition

via principal component analysis (PCA) is performed on the covariance of this matrix.

The background is then represented by the most descriptive eigenvectors that encom-

pass all possible illuminations to decrease sensitivity to illumination. More specifically,

PCA first does singular value decomposition to find the eigenvalues and the eigenvec-

tors of the video. The eigenvectors are ranked according to their correlated eigenvalues.

Given N frames of a video with the mean µb the covariance matrix Cb of it, this part can

be formalized as:

L = ΦCbΦ
T , (1.19)

where Φ is the eigenvector matrix of the covariance of the frames and L is the corre-

sponding diagonal matrix of its eigenvalues.

The eigenvalues are sorted and the top M eigenvalues’ correlating eigenvectors are se-

lected to be the eigenbackground space ΦM . When a new frame arrives, it will be first

mean normalized as:

I t
normalized = I t − µb, (1.20)

and then projected to the eigenbackground space to calculate the background image:

Bt = ΦMI t
normalized. (1.21)

And the foreground will be the thresholding results of the subtraction between the input

image and the background image:

F t =







1, if |I t − Bt| ≥ tr

0, otherwise.
(1.22)

Several improvements of the PCA approach have been proposed. To name a few, Xu et

al. [254] proposed a variation of the eigenbackground model which includes a recursive
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error compensation step for more accurate detection. Others [194, 134] proposed PCA

methods with a computationally efficient background updating scheme, while Doug et

al. [59] proposed an illumination invariant approach based on a multi-subspace PCA,

each subspace representing different lighting conditions.

Based on PCA theory, robust principal component analysis (RPCA) [39] has also been

proposed. To separate the foreground from the background, RPCA tries to separate the

data matrix into two components, namely a low-rank component for the background,

and a sparse component for the foreground. Tepper et al. [215] used an online RPCA

framework to increase the RPCA optimization speed.

Instead of the conventional background and foreground definition, Porikli [182] decom-

poses an image into "intrinsic" background and foreground images. The multiplication

of these images reconstructs the given image. Inspired by the sparseness of the inten-

sity gradient, it applies a spatial derivative filter in the log domain to a subset of the

previous video frames to obtain the intensity gradient. Since the foreground gradients

of natural images are Laplacian distributed and independent, the maximum likelihood

(ML) estimate of the background gradient can be obtained by a median operator and

the corresponding foreground gradient is computed. The computed gradient is used to

reconstruct the background and foreground intensity images using a reconstruction fil-

ter and inverse log operator. This intrinsic decomposition is shown to be robust against

sudden and severe illumination changes, but it is computationally expensive.

Another background subtraction approach based on the theory of sparse representation

and dictionary learning is proposed by Zhao et al. [267]. This method makes the fol-

lowing two important assumptions: (1) the background of a scene has a sparse linear

representation over a learned dictionary; (2) the foreground is sparse in the sense that a

majority of the pixels of the frame belong to the background. These two assumptions

enable handling both sudden and gradual background changes.
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1.1.6 Other Methods

Prediction Models

Some methods use filters to predict background pixel intensities (or colors). Given the

last N values of a pixel and their correlating prediction coefficients w, the prediction

models try to predict what the pixel value would be at time t:

I t
predict = −

N
∑

i=1

wiI t−i. (1.23)

If the distance between the predict pixel value and the real pixel value is larger than a

threshold, the pixel will be classified to be a foreground:

F t =







1, if |I t − I t
predict| ≥ tr

0, otherwise.
(1.24)

In [112] and [270], a Kalman filter is used to model background dynamics. In [257],

Kalman filter is used to smooth the trajectories of moving objects detected by three

frames difference, the trajectories are then used to calculate the RPCA weights. Simi-

larly, in [219] Wiener filtering is used to make a linear prediction at pixel level. The main

advantage of these methods is their ability to cope with background changes (whether it

is periodic or not) without having to assume any parametric distribution.

Motion Segmentation

Motion segmentation refers to the assignment of groups of pixels to various classes

based on the speed and direction of their movements [147]. Most approaches to motion

segmentation first seek to compute optical flow from an image sequence. Discontinu-

ities in the optical flow can help in segmenting images into regions that correspond to

different objects. In [244], temporal consistency of optical flow over a narrow time win-

dow is estimated; areas with temporally-consistent optical flow are deemed to represent

moving objects and those exhibiting temporal randomness are assigned to the back-

ground. Before using optical flow to detect foreground, Hu et al. [96] use Harris corner
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detector and epipolar geometry to align the key points in each continues frames. In that

case, their method can even detect motions in a video captured by moving cameras.

Optical flow-based motion detection methods work with strict assumptions such as the

brightness of the video is constant, the velocity of the moving object is smooth, and

the frame rate of the video is high enough to extract the optical flow. Optical flow-

based methods will be erroneous if any of these assumptions is violated. In reality,

such violations are quite common. Typically, optical flow methods fail in low-texture

areas, around moving object boundaries, at depth discontinuities, etc. Due to the com-

monly imposed regularization term, most optical flow methods produce an over smooth

optical flow near boundaries. Although solutions involving a discontinuity preserving

optical flow function and object-based segmentation have been proposed [158], mo-

tion segmentation methods usually produce a halo artifact around moving objects. The

resulting errors may propagate across the entire optical flow solution. As a solution,

some authors [101, 271] use motion segmentation and optical flow in combination with

a color-based GMM model. At the same time, optical flow with Canny edge detection

is also proposed to improve the robustness [203].

Machine Learning

Motion detection methods in this category use machine learning discriminative tools

such as support vector machine (SVM) and neural networks to decide whether or not a

pixel is in motion. The parameters of these functions are learned given a training video.

Lin et al. [138] use a probabilistic SVM to initialize the background model. They use

the magnitude of optical flow and inter-frame image difference as features for classifi-

cation. Han and Davis [89] model the background with kernel density approximation

with multiple features (RGB, gradient, and Haar) and use a Kernel-SVM as a discrim-

inative function. A somewhat similar approach has also been proposed by Hao [91].

These approaches are typical machine learning methods that need positive and nega-

tive examples for training. This is a major limitation for any practical implementation

since very few videos come with manually labeled data. As a solution, Chen et al. [47]

proposed a GPU-based 1-class SVM method called SILK. This method does not need

pre-labeled training data, but also allows for online updating of the SVM parameters.
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SOBS [152, 154] models the background of a video with the weights of a neural net-

work. A very similar approach but with a post-processing Markov random field (MRF)

stage has been proposed by Schick et al. [196]. Results reported in the paper show great

compromise between processing speed and robustness to noise and background motion.

Deep Learning Methods

Recently, deep learning methods have achieved excellent results in many computer vi-

sion fields, including motion detection. The biggest advantage of deep learning methods

is that instead of using handcrafted features, the model can learn both high level features

and low level features directly from the data. Convolutional neural networks (ConvNets

or CNN) [123] were first proposed for object classification, but are now used for motion

detection tasks. Braham et al. [35] designed a CNN model similar to LeNet-5 [129]

network. The network is composed of two feature stages and two fully connected lay-

ers. Wang et al. [239] proposed a multi-scale CNN model with cascade structure to

learn the appearance of the video background and the foreground moving objects with

a small amount human interaction. This paper is the topic of Chapter 3.

1.1.7 Features

Several features can be used to detect moving objects. The simplest one is certainly

grayscale (or luminance) which is easy to interpret and has a well founded physical

meaning [74]. Grayscale motion detection methods are normally used on mono-channel

cameras like depth cameras, thermal cameras, or older grayscale surveillance cameras.

Nowadays, most motion detection methods rely on color. A color image consists of

three channels per pixel (typically red (R), green (G), blue (B)) that can be processed

separately or simultaneously. However, the physical meaning of these channels is less

obvious than the one for mono-channel sensors. Ideally, color images are acquired using

three spatially aligned sensors. But since this configuration increases the size and cost

of the sensor and requires pixel registration, most color cameras use a single image

sensor with a color filter array in front of it. The most widely implemented array is

the Bayer color filter array [18]. Each location on the sensor measures one color and
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missing colors are interpolated from neighboring pixels. Suhr [213] proposes a GMM

variant that conducts background modeling in a Bayer-pattern domain and foreground

classification in an interpolated RGB domain. The authors argue that since performance

is similar to that of the original GMM on RGB images, RGB video streams captured

with one sensor are not three times more informative than their grayscale counterpart.

In practice though, most techniques exhibit a small performance increase for the clas-

sification task when using RGB instead of grayscale features [21]. Thus, from a clas-

sification perspective and despite that the computation time is more or less tripled, it is

beneficial to use color images, even when colors have been interpolated in the image. In

their survey paper, Benezeth et al. [21] compare six RGB color distance functions used

for background subtraction, including the Euclidean distance, the L1 distance, and the

Mahalanobis distance. They conclude that four of the six metrics had globally similar

classification performances; only the simplest zero and first order distances were less

precise.

Several motion detection techniques use other color spaces such as normalized color

[161], cylindric color model [115], HSV [53], HSI [234], YCbCr [121], and normalized

RGB [59]. From an application perspective, those color spaces are believed to be more

robust to shadows and illuminations changes than RGB or grayscale [53].

RGB color space can be transferred to other color spaces:

1. RGB to normalized RGB:

Rnormalized = R
R+G+B

Gnormalized = G
R+G+B

Bnormalized = B
R+G+B

(1.25)

2. RGB to HSV:
Min = min(R, G, B)

Max = max(R, G, B)
(1.26)
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(1.27)

3. RGB to HSL:
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0, if L = 0 or Min = Max
Max−Min

2L
, if 0 < L < 0.5

1 − Max−Min
2−2L

, if L > 0.5

L = 1
2
(Max + Min)

(1.28)

4. RGB to YCbCr:

Y = 0.299 × R + 0.587 × G + 0.114 × B

Cb = 0.169 × R + 0.331 × G + 0.5 × B

Cr = 0.5 × R + 0.419 × G + 0.081 × B

(1.29)

Other features, like edges [102], texture [136], and optical flow [138, 161, 216], PCA-

based features [169] are also used. Like the color space features, these features seem

more robust to illumination changes and shadows than RGB features. Texture and opti-

cal flow features are also robust to noise and background motion. Since texture features
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integrate spatial information which often happens to be constant, a slight variation of

in the background does not lead to spurious false positives. For example, a bush with a

uniform texture will be undetected when shaken by the wind. As for optical flow, since

moving objects are assumed to have a smooth and coherent motion distribution [216],

noise and random background motion can be easily decorrelated from actual moving

objects.

In general, it seems like adding features improves performances. Parag et al. [175] even

propose to select the best combination of features at each pixel. They argue that different

parts of the image may have different statistics and thus require different features. But

this comes at the price of both a complexity and a computation time increase.

1.1.8 Updating Strategies

In order to produce consistent results over time, background models need to be updated

as the video streams in. From a model point of view, there are two major updating

techniques [178]: the recursive and non-recursive techniques. The recursive techniques

maintain a single background model that is updated with each new video frame:

Bt = (1 − β)Bt−1 + βI t, (1.30)

where β is the background updating ratio.

Non-recursive techniques, on the other hand, maintain a buffer L of n previous video

frames and estimate a background model based solely on the statistical properties of

these frames. This includes median filtering and eigenbackgrounds [169]. The major

limitation of non-recursive approaches is that computing the basis functions requires

video clips void of foreground objects. As such, it is not clear how the basis functions

can be updated over time if foreground objects are continuously present in the scene.

As mentioned by Elgammal et al. [63], other updating strategies use the output of the

segmentation process. The conditional approach (also called selective or conservative)

updates only background pixels in order to prevent the background model from being
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corrupted by foreground pixels.

Bt
(x,y) =







(1 − β)Bt−1
(x,y) + βI t

(x,y), if I t
(x,y) is foreground

Bt−1
(x,y), if I t

(x,y) is background.
(1.31)

However, this approach is incapable of eliminating false positives as the background

model will never adapt to it. Wang et al. [228] propose to operate at the blob level and

define a mechanism to incorporate pixels in the background after a given period of time.

As an alternative, the unconditional (or blind) approach updates every pixel whether

it is identified as being active or not. This approach has the advantage of integrating

new objects in the background and compensating for false detections caused, say, by

global illumination changes or camera jitter. On the other hand, it can allow slowly

moving objects to corrupt the background which leads to spurious false detections. Both

conditional and unconditional techniques can be used, depending on the appropriateness

to the model or on the requirements of the application.

Some authors introduce more nuances. For example, Porikli et al. [183] define a GMM

method and a Bayesian updating mechanism, to achieve accurate adaptation of the mod-

els. A somewhat similar refinement method is proposed by Van Droogenbroeck et al.

[221]. Both [183] and [221] distinguish between a segmentation mask, the binary out-

put image which corresponds to the background/foreground classification result, and

the updating mask. The updating mask corresponds to locations indicating which pix-

els have to be updated. The updating mask differs from the segmentation map in that

it remains unknown to the user and depends on updating strategies. For example, one

can decide not to update the model inside of static blobs or, on the contrary, decide to

erode foreground mask to progressively remove ghosts. Another recent updating strat-

egy consists in spatial diffusion; it was introduced with ViBe [16]. Spatial diffusion

is a mechanism wherein a background value is diffused in a neighboring model. This

diffusion mechanism can be modulated to help remove ghosts or static objects.

1.1.9 Spatial Aggregation, Markovian Models and Post-processing

Most motion detection techniques are local processes that focus on pixel-wise statis-

tics ignoring neighboring pixels (at least during the modeling phase). This is a well-
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founded approach from a statistical point of view since neighboring pixels might have

very different underlying feature probability density functions. Nevertheless, there exist

techniques that aggregate information from neighboring pixels into regular blocks or so-

called superpixels. Block-based aggregation is a coherent approach for video encoder,

as blocks and macroblocks are the fundamental spatial units in encoders.

Grouping pixels into blocks is motivated by several factors. First, statistics averaged

over a rectangular region increases the robustness to non-stationary backgrounds, de-

spite the fact that it blurs the object silhouette and that a post-processing method might

be needed to refine edges as in [46]. Second, if sharp edges are not mandatory, process-

ing blocks speeds up the motion detection process. Hierarchical methods, as proposed

by Park et al. [177] or Chen et al. [43], are typical examples of methods that play with

different levels of pixel aggregation.

Pixels aggregation can also be achieved with the help of a Markovian model. Typi-

cal Markovian models are based on a maximum a posteriori formulation that is solved

through an optimization algorithm such as iterative optimization scheme (ICM) or graph

cut [2, 157] which are typically slow. In [22], it was shown that simple Markovian

methods (typically those using the Ising prior) produce similar results as simple post-

processing filters.

Other Markovian methods have been proposed. In [98], Markov random fields are used

to re-label pixels. First, a region-based motion segmentation algorithm is developed to

obtain a set coherent regions. This serves to define the statistics of several Markovian

random fields. The final labeling is obtained by maximizing the a posteriori energy of

the Markov random fields, which can be seen as a post-processing step. The approach

by Schick et al. [196] relies on similar ideas. A first segmentation is used to define a

probabilistic superpixel representation. Then a post-processing is applied on the statis-

tical framework to provide an enhanced segmentation map. It is interesting to note that

Schick et al. [196] have successfully applied their post-processing technique to several

motion detection techniques.

A more classical, simpler and faster way to re-label pixels is throughout a post-processing

filter. For example, Parks and Fels [178] consider a number of post-processing tech-

niques to improve the segmentation map. Their results indicate that the performance
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is improved by morphological filters (closings), noise removal filter (such as median

filters), and area filters. Morphological filters are used to fill internal holes and small

gaps, while area filters are used to remove small objects.

In Section 2.1, we present the results of some post-processing operations. It appears

that simple post-processing operations, such as the median or close/open morphological

operations always improve the segmentation map. It is thus recommended to include

post-processing operations, even when comparing techniques. This was also the con-

clusion of Brutzer et al. [37] and Benezeth et al. [20]. Note that other filters can be

used such as temporal filters, shadow filters [37], and complex spatio-temporal filtering

techniques to relabel the classification results.

1.2 Previous Motion Detection Datasets

Without aiming to be exhaustive, we list below 15 of the most widely used datasets for

motion detection validation (see Table 1.2). Additional details regarding some of these

datasets can be found on a web page of the European CANTATA project 1. A dataset

should always come with ground truth. For a motion detection dataset, the ground truth

is provided by the dataset publisher to indicate where are the moving objects in the

video. A ground truth can be accurate binary map which indicate the label of each pixel

in a frame (i.e. foreground or background). It can also be bounding boxes approximately

indicate the locations of the moving objects.

Table 1.2 – 15 of the Most Popular Motion Detection Datasets

Dataset Description Ground truth

CDnet 2012 31 videos in six categories: baseline, dynamic back-

ground, camera jitter, shadow, intermittent motion,

and thermal.

Pixel-based labeling of

71,000 frames.

Wallflower

[219]

Seven short video clips, each representing a specific

challenge such as illumination change, background

motion, etc.

Pixel-based labeling of

one frame per video.

PETS [261] Many videos aimed at evaluating the performance of

tracking algorithms.

Bounding boxes.

1. www.hitech-projects.com/euprojects/cantata/datasets_cantata/
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CAVIAR 80 staged indoor videos representing different hu-

man behaviors such as walking, browsing, shopping,

fighting, etc.

Bounding boxes.

i-LIDS Very long videos meant for action recognition show-

ing parked vehicle, abandoned object, people walk-

ing in a restricted area, and doorway.

Not fully labeled.

ETISEO More than 80 videos meant to evaluate tracking and

event detection methods.

High-level label such as

bounding boxes, object

class, event type, etc.

ViSOR 2009

[224]

Web archive with more than 500 short videos (usu-

ally less than 10 seconds).

Bounding boxes.

BEHAVE 2007 Seven videos shot by the same camera showing hu-

man interactions such as walking in group, meeting,

splitting, etc.

Bounding boxes.

VSSN 2006 Nine semi-synthetic videos composed of a real back-

ground and artificially-moving objects. The videos

contain animated background, illumination changes,

and shadows. However the videos do not contain any

frames void of activity.

Pixel-based labeling of

each frame.

IBM 15 videos taken from PETS 2001 plus additional

videos.

Bounding box around

each moving object in one

frame out of 30.

Karlsruhe Four grayscale videos showing traffic scenes under

various weather conditions.

10 frames per video have

pixel-based labeling.

Li et al. [131] 10 small videos (usually 160×120) containing illu-

mination changes and dynamic backgrounds.

10 frames per video have

pixel-based labeling.

Karaman et al.

[111]

Five videos coming from different sources (the web,

the "art live" project, etc.) with various illumination

conditions and compression artifacts.

Pixel-based labeling of

every frame.

cVSG 2008

[217]

15 Semi-synthetic videos with various levels of tex-

tural complexity, background motion, moving object

speed, size, and interaction.

Pixel-based labeling ob-

tained by filming moving

objects (mostly humans)

in front of a blue-screen

and then pasted on top of

background videos.
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Brutzer et al.

[37]

Computer-generated videos showing one 3D scene

representing a street corner. The sequences include

illumination changes, dynamic background, shad-

ows, and noise.

Pixel-based labeling.

Out of these 15 datasets, seven were initially made to validate tracking and pattern

recognition methods (namely PETS, CAVIAR, i-LIDS, ETISEO, ViSOR 2009, BE-

HAVE 2007, and IBM). Although challenging for these applications, those datasets

mostly contain day-time videos with fixed background, constant illumination, few shad-

ows, and no camera jitter. As a consequence, it is difficult to evaluate how robust motion

detection methods are when looking at benchmarking results reported on these seven

datasets.

In parallel of these datasets, a number of survey papers have been written on the topic

of motion detection. In Table 1.3, we list survey papers devoted to the comparison and

ranking of motion detection algorithms. Note that some of these surveys use datasets

mentioned previously while others use their own datasets.

Table 1.3 – List of the most important motion detection survey papers.

Survey Description and Benchmark

Bouwmans et al. 2016

[34]

Survey of matrix decomposition methods, the paper carefully compares

PCA family foreground detection methods. Performances are compared

on the CDnet 2014 dataset.

Bouwmans et al., 2016

[32]

Survey of features used in background modeling and motion detection.

Goyette et al., 2012

[79]

Survey paper written in the wake of the CVPR 2012 Change Detection

workshop. It surveys several methods and reports benchmark results ob-

tained on the CDnet 2012 dataset.

Bouwmans et al., 2011

[29]

Probably the most complete surveys to date with more than 350 refer-

ences. The paper reviewed methods spanning six motion detection cat-

egories and the features used by each method. The survey also listed a

number of typical challenges and gave insights into memory requirements

and computational complexity. Benchmark on the Wallflower dataset.

Brutzer et al., 2011

[37]

Report benchmarking results for eight motion detection methods on the

computer generated Brutzer dataset.
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Benezeth et al., 2010

[20]

Used a collection of 29 videos (15 camera-captured, 10 semi-synthetic,

and four synthetic) taken from PETS 2001, the IBM dataset, and the

VSSN 2006 dataset.

Bouwmans et al., 2008

[31]

Survey of GMM methods. Benchmarking had been done on the

Wallflower dataset.

Parks and Fels, 2008

[178]

Benchmark results for seven motion detection methods and evaluation of

the influence of post-processing on their performance. They used seven

outdoor and six indoor videos different challenges such as dynamic back-

grounds, shadows, and various lighting conditions.

Bashir and Porikli,

2006 [17]

Performance evaluation of tracking algorithms using the PETS 2001

dataset by comparing the detected bounding box locations with the ground

truth.

Nascimento and Mar-

ques, 2006 [167]

Report benchmarks obtained on a single PETS 2001 video with pixel-

based labeling.

Radke et al. [188] Extensive survey of several motion detection methods. Most of the dis-

cussion in the paper was related to background subtraction methods, pre-

and post-processing, and methodologies to evaluate performances. Con-

tains no quantitative evaluation.

Piccardi [181] Reviewed seven background subtraction methods and highlighted their

strengths and weaknesses. Contains no quantitative evaluation.

Rosin and Ioannidis,

2003 [192]

Report results for eight methods. Videos used for validation show two lab

scenes with balls rolling on the floor.

Prati et al., 2001 [185] Used indoor sequences containing one moving person. 112 frames were

labeled.

These survey papers often contain good overviews of state-of-the-art motion detec-

tion methods. However, readers shall keep in mind that statistics reported in some of

these papers were not computed on a well-balanced dataset composed of real (camera-

captured) videos [192, 167]. Typically, synthetic videos, real videos with synthetic

moving objects pasted in it, or real videos out of which only one frame was manually

segmented for ground truth were used. Also, some survey papers report results from

fairly simple and old motion detection methods [185, 192].
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Chapter 2

Motion Detection Benchmarking on
the CDnet 2012 Dataset and the
Extended CDnet 2014 Dataset

2.1 Benchmarking Experiments

In Chapter 1, we introduced nine families of motion detection methods, presented

different features, several updating schemes, and many spatial aggregation and post-

processing methods. To provide empirical results to validate which configuration per-

forms best, we designed a series of experiments to test their performances. Note that

since the number of combinations of motion detection methods, features, updating

schemes, and post-processing methods is intractable, we provide benchmarks for each

aspect independently.

The goal of this section is to underline unsolved issues in motion detection and identify

complementary methods whose combination can further improve results. Empirical

results are obtained with the CDnet 2012 dataset. As mentioned previously, this dataset

includes 31 videos divided in six categories namely dynamic background, camera jitter,

shadow, intermittent motion, baseline, and thermal.
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But prior to presenting benchmarking results, we first describe and explain the evalua-

tion metrics used in this section.

2.1.1 Metric Evaluation

As stated by Goyette et al. [79], it is not a trivial task to find the right metric to accurately

measure the ability of a method to detect motion. If we consider background subtraction

as a classification process, we can recover the following four quantities for a processed

video: the number of true positives (TP) and false positives (FP), which accounts for the

number of foreground pixels correctly and incorrectly classified, and the number of true

negatives (TN) and false negatives (FN), which are similar measures but for background

pixels. With these values, one can come out with the following seven metrics, which are

often used to rank background subtraction methods.

1. The True Positive Rate (TPR), also named sensitivity and recall:

Re = TPR =
TP

TP + FN
(2.1)

2. The False Negative Rate (FNR):

FNR = 1 − TPR (2.2)

3. The True Negative Rate (TNR), also named specificity:

TNR =
TN

TN + FP
(2.3)

4. The False Positive Rate (FPR):

FPR = 1 − TNR (2.4)

5. The precision:

Pr =
TP

TP + FP
(2.5)
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6. The Probability of Wrong Classification (also named Error Rate):

PWC =
FP + FN

TP + TN + FP + FN
(2.6)

7. The Accuracy:

A = 1 − PWC (2.7)

In the upcoming subsections, we will try to answer the question of which metric(s)

should be used to rank methods.

Limitation of Metrics Combining TPR and TNR

For obvious reasons, TPR, TNR, FPR, and FNR cannot be used alone to rank meth-

ods. In fact, methods are typically adjusted to prevent FPR and FNR from being large

simultaneously. Such trade-offs can be interpreted by showing a Receiver Operating

Characteristic (ROC) graph. But ranking methods based on ROC curves is rather in-

convenient due to the large number of results that need to be generated and which can

be prohibitive in the context of large videos. Therefore, most often, only a single point

is known in the ROC space. Summarizing TPR and TNR into a single value remains

difficult and this is highlighted by the following discussion.

Since most surveillance videos exhibit a low amount of activity (5% on average for

the CDnet 2012 video sequences), the TNR value will always dominate A and PWC.

Actually, as one can see in Table 2.1, nearly all methods have a very low FPR (except

for [105]) and a large FNR. As a consequence, when used alone, the accuracy A and

the probability of wrong classification PWC will always favor methods with a low FPR

and a large FNR. At the limit, a method that would detect no moving object at all would

have a not-so-bad ranking score according to A and PWC alone. That is because only

a small fraction of the pixels would be wrongly classified on average. Another way of

underlying the limitation of A and PWC is by rewriting the accuracy equation. If we

denote the probabilities of observing a foreground pixel and a background pixel by pFG

and pBG respectively, then one can show that the accuracy can be computed as:

A = pFGTPR + pBGTNR. (2.8)
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Table 2.1 – Overall results for 22 methods. These results correspond to the average FPR, FNR
and F-measure obtained on all 31 videos of the CDnet 2012 dataset.

Method Description FPR FNR F-measure

Spectral-360 [197] Patent 0.008 0.22 0.77
DPGMM [87] GMM + Dirichlet Process 0.014 0.17 0.77
SGMM-SOD [66] Improved version of SGMM [65] 0.006 0.23 0.76
PBAS [93] Data-driven and stochastic method 0.010 0.21 0.75
PSP-MRF [196] Probabilistic super-pixels + neural maps 0.017 0.19 0.73
SC-SOBS [154] Improved version of SOBS [152] 0.016 0.19 0.72
SOBS [152] Neural maps 0.018 0.21 0.71
SGMM [65] GMM + new initialization, updating and splitting rule 0.009 0.29 0.70
Chebyshev Inequality [162] Multistage method + Chebyshev inequality + tracking 0.011 0.28 0.70
KNN [274] Data-driven KNN 0.009 0.32 0.67
KDE|Elgammal [62] Original KDE 0.024 0.25 0.67
GMM|Stauffer-Grimson [210] Original GMM 0.014 0.28 0.66
GMM|Zivkovic [274] GMM + automatic mode selection 0.015 0.30 0.65
KDE|Yoshinaga et al. [259] Spatio-temporal KDE 0.009 0.34 0.64
KDE|Nonaka et al. [168] Multi-level KDE 0.006 0.34 0.64
Bayesian Multi layer [183] Bayesian layers + EM 0.017 0.39 0.62
Mahalanobis distance [22] Basic background subtraction 0.040 0.23 0.62
Euclidean distance [22] Basic background subtraction 0.030 0.29 0.61
GMM|KaewTraKulPong [110] Self-adapting GMM 0.005 0.49 0.59
Histogram over time [269] Basic method + color histograms 0.065 0.23 0.54
GMM|RECTGAUSS-Tex [191] Multi-resolution GMM 0.013 0.48 0.52
Local-Self similarity [105] Basic method + self-similarity measure 0.148 0.06 0.50

Thus, with a low pFG, the TNR ends up having an overwhelming importance when com-

puting A. As an alternative, one could consider the Balanced Accuracy:

BA =
1

2
TPR +

1

2
TNR. (2.9)

However, since that metric is uncommon in the motion detection community, we de-

cided not to use it.

So in conclusion, although the accuracy A and the probability of wrong classification

PWC can be used to evaluate methods, they should not be used alone and one should

keep in mind that these two metrics favor methods with a low FPR.

Metrics Derived from Pr and Re

Another trade-off for motion detection methods is to prevent Pr and Re from being large

simultaneously, which is shown on a precision-recall curve.

But using precision-recall curves to rank methods is inconvenient for the same reasons
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as for ROC curves. In practice, precision and recall must be combined into one metric.

The most frequent way of doing so is through the F-measure F1, which is the harmonic

mean between Pr and Re:

F1 =
1

2
Pr−1 +

1

2
Re−1 =

2TP
2TP + FP + FN

. (2.10)

When both Pr and Re are large, F1 is approximately equal to the arithmetic mean of Pr

and Re. Otherwise, it is approximately equal to min(Pr, Re).

The balanced accuracy and the F-measure, although similar at the first glance, are not

equivalent. Let us consider the case shown in Figure 2.1 for which it is difficult to iden-

tify the human silhouette based on the first two results. In that example, all three results

have the same balanced accuracy but a much higher F-measure for method 3. This is a

strong indication that the F-measure is a better metric than the balanced accuracy in the

context of motion detection and thus why we use it in our validation. Another reason

for F1 to be larger for method 3 is the fact that it does not take into account TN. As a

consequence, F1 is a metric that focuses more on the foreground than on the background

which is good in the context of motion detection.

Influence of Noise

The F-measure is not void of limitations. As will be shown in this section, it is sensitive

to noise and thus should be used with care. In order to illustrate the impact of noise

and the importance of post-filtering operations, let us add a "salt and pepper" noise to

a segmentation map. Let α be the probability to switch the class of a pixel while TPR′

and TNR′ the estimates on the noisy segmentation maps. In that case, we have

TP′ = (1 − α)TP + αFN, (2.11)

FN′ = (1 − α)FN + αTP, (2.12)

TN′ = (1 − α)TN + αFP, (2.13)

FP′ = (1 − α)FP + αTN. (2.14)
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(a) Ground truth (b) Method 1

(c) Method 2 (d) Method 3

Figure 2.1 – Three methods with the same balanced accuracy (0.8) but with different
F-measures. For methods 1 and 2, F1 = 0.35 while for method 3 F1 = 0.73.

Following some algebric manipulations, one can show that the relative ranking between

two methods can change depending on the amount of noise in the data. This is illustrated

in Figure 2.2 where F1 for Spectral-360 goes below PBAS after noise has been added.

This sensitivity to noise leads us to conclude that it is preferable to filter noise with

a post-processing filter before ranking background subtraction techniques according to

F1. This is what has been done for every method reported in Section 2.1.2.

Evaluation and Ranking of Methods

The previous discussion made it clear that summarizing the performance of a back-

ground subtraction algorithm with a single metric is restrictive. Several metrics like

FNR and FPR are complementary and cannot be used independently whereas others
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(a) Input image (b) Ground truth

(c) PBAS: F1 = 76.2% (d) Spectral-360: F1 = 80.6%

(e) PBAS + noise: F1 = 41.6% (f) Spectral-360 + noise: F1 = 37.6%

Figure 2.2 – Ranking of the methods obtained according to F-measure is sensitive to
noise. It is therefore important to filter out noise from the results before ranking methods
with F1.
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like PWC and A give an overwhelming importance to TNR. As for the F-measure, al-

though widely used, it is sensitive to noise. This leads us to conclude that no metric is

perfect and should thus be used with care.

The last question that we ought to answer before presenting benchmarking results, is

how to compute evaluation metrics when considering more than one video sequence.

Naively, one could add up the total number of TP, TN, FP and FN across all videos

out of which metrics could be computed. But unfortunately, since videos have different

sizes in space and time, large videos would end up having more influence on the ranking

than the smaller ones. As explained by Goyette et al. [79], a better solution is to

compute the metrics for each video (that is Re, FNR, FPR, Specificity, Pr, PWC, A, and

F1) and then average it across videos. The CDnet 2012 dataset also has a multi-criteria

ranking which we do not retained in this chapter for the sake of simplicity.

In this chapter, we rank methods according to the average F1 computed across all videos

and categories of the CDnet 2012 dataset. Although sensitive to noise, the result of

every method has been post-processed with a median filter to prevent the previously-

mentioned ranking problems. Also, Goyette et al. [79] mentioned that the F1 score is

correlated with this multi-criteria ranking which is a good indication that F1 is a well

balance metric.

And last, let us mentioned that the benchmarking results presented in Section 2.1.2 do

not entirely capture the pros and cons of each method. Obviously, the complexity of an

algorithm together with its processing speed and memory usage are to be considered for

real-time applications.

2.1.2 Benchmarks on the CDnet 2012 Dataset

Motion Detection Methods

In this section, we report the results of motion detection benchmarking experiment

based on the CDnet 2012 dataset. The results are an extension of those reported by

Goyette [79]. Compare with it, this benchmarking not only contains more motion detec-

tion methods, but also tested the features, updating strategies, over-processing methods,
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and motion detection results merging technologies which are not mentioned in [79].

From the CDnet 2012 dataset, we retained results from 22 motion detection methods.

Five methods are relatively simple as they rely on plain background subtraction, of

which two use color features (Euclidean and Mahalanobis distance methods described in

[126, 22]), one uses RGB histograms over time [269], and one uses local self-similarity

features [105].

We also report results for eight parametric methods, seven of which use a GMM model.

This includes the well-known methods by Stauffer and Grimson [210], a self-adapting

GMM by KaewTraKulPong [110], the improved GMM method by Zivkovic and Hei-

jden [274], the multiresolution block-based GMM (RECTGAUSS-Tex) by Dora et al.

[191], GMM method with a Dirichlet process (DPGMM) that automatically estimated

the number of Gaussian modes [87] and the SGMM and SGMM-SOD methods by Evan-

gelio et al. [65, 66] which rely on a new initialization procedure and novel mode split-

ting rule. We also included a recursive per-pixel Bayesian approach by Porikli and

Tuzel [183] which shows good robustness to shadows according to [79]. We also re-

port results on three KDE methods. The original method by Elgammal et al. [62], a

multilevel KDE by Nonaka et al. [168], and a spatio-temporal KDE by Yoshinaga et

al. [259]. Results for data-driven methods and machine learning methods are also re-

ported. That is Hofmann’s stochastic and self-adaptive method (PBAS) [93], a simple

K-nearest neighbor method [274] and neural maps methods (SOBS and SC-SOBS) by

Maddalena et al. [152, 154] and a neural network method with a region-based Marko-

vian post-processing methods (PSP-MRF) by Schick et al [196]. We also have results

for two commercial products. One that does pixel-level detection using the Chebyshev

inequality and peripheral and recurrent motion detectors by Morde et. al. [162] and one

which has only been published in a pending patent so far and whose description is not

available [197]. The false positives rate (FPR), false negative rate (FNR) and F-measure

(F1) for these 22 methods are reported in Table 2.1. Note that, as mentioned in [79],

these are the average FPR, FNR and F1 across all videos.

From these results, one can conclude that the top performing methods are mostly GMM

methods (DPGMM, SGMM-SOD, SGMM), data-driven methods (KNN and PBAS)

and machine learning methods (SOBS and PSP-MRF). As shown in Table 2.2, GMM
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methods (particularly DPGMM and SGM-SOD) seem robust to background motion,

camera jitter, and intermittent motion. This can be explained by the fact that these GMM

methods come with a mode initialization (and updating) procedures that reacts swiftly

to changes in the background. Table 2.2 also shows that there is space for improvement

on jittery sequences and intermittent motion which are the categories with the lowest F-

measure. Another unsolved issue is robustness to shadows. Although the F-measure of

the most effective methods is above 0.86, the FPR on shadows of the three best methods

is above 58%. This means that even the most accurate methods wrongly classify hard

shadows.

Table 2.2 – Three highest ranked methods for each category together with their F-
measure obtained on the CDnet 2012 dataset.

Category 1st 2nd 3rd

Baseline SC-SOBS 0.93 Spectral-360 0.93 PSP-MRF 0.92
Dynamic background DPGMM 0.81 Spectral-360 0.79 Chebyshev Inequality 0.77
Shadows Spectral-360 0.88 SGMM-SOD 0.86 PBAS 0.86
Camera jitter PSP-MRF 0.78 DPGMM 0.75 SGMM 0.75
Thermal DPGMM 0.81 Spectral-360 0.78 PBAS 0.76
Intermittent object motion SGMM-SOD 0.72 SC-SOBS 0.59 PBAS 0.58

Features

Here, we report results for eight of the most commonly-used features i.e.: grayscale,

RGB, Normalized RGB, HSL, HSV, norm of the gradient, RGB+gradient, and YCbCr.

We tested these features with two different methods. The first one is a basic background

subtraction method with a forgetting constant of 0.002 [22]. The second is a version of

ViBe [16] (a stochastic data-driven method) that we adapted to the various color spaces

and removed its post-processing stage.

Results in Table 2.3 lead us to two main conclusions. First, using all three RGB color

channels when possible instead of grayscale only always improves results. Second,

out of the "illumination-robust" features N-RGB, HSL, HSV and gradient (grad), only

HSV seems to provide good results globally. That being said, combining gradient with

RGB helps improving results, especially for the basic method. As mentioned by several

authors, this suggests that for some methods, combining color and texture is a good way
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of improving results.

Table 2.3 – F-measure obtained on the CDnet 2012 dataset for eight different features
and two motion detection methods.

Method Gray RGB N-RGB HSL HSV grad RGB+grad YCbCr

Basic Method 0.48 0.53 0.49 0.56 0.58 0.3 0.59 0.59
ViBe [16] 0.72 0.75 0.60 0.65 0.74 0.11 0.74 0.71

Updating Scheme

In this section, we tested different updating schemes on one method. We tested the blind,

conservative, "soft" conservative and "edge" conservative updating schemes. Again, we

implemented a simple background subtraction method with RGB color feature. The dif-

ference from one implementation to another is the forgetting constant α in the formular

Bt = (1 − α)Bt−1 + αI t. (2.15)

For the blind scheme, α = 0.002; for the conservative α = 0.002 only for background

pixels; the soft conservative α = 0.002 for foreground pixels and α = 0.008 for back-

ground pixels; and edge conservative, α = 0.007 for background pixel, α = 0.002 for

foreground edge pixels and α = 0 for the other foreground pixels.

Results in Table 2.4 show that the edge-conservative strategy is the most effective one

while the conservative strategy is the least effective, although by a small margin. The

reason for this small difference between results comes from the fact that videos in the

CDnet 2012 dataset are all relatively short (at most six minutes) and thus do not exhibit

major changes in the background as is the case when dealing with longer videos. Longer

videos would certainly stretch the difference between each strategy.

Table 2.4 – F-measure for different background updating strategies obtained on the CD-
net 2012 dataset.

Blind Conservative Soft-conservative Edge-conservative

0.52 0.5 0.53 0.55
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Post-processing

In this section, we compared different post-processing filters on the output of three

methods. These methods are a basic background subtraction with a forgetting constant

of 0.002, ViBe [16] and ViBe+ [221]. Note that ViBe+ is a method which already has

a post-processing stage. The post-processing methods are three median filters (3 × 3,

5 × 5, and 7 × 7), a morphological opening and closing operation, a closing operation

followed by a region filling procedure (as suggested by Parks and Fels [178]) and a

connected component analysis. The latter removes small isolated regions, whether they

are active regions or not.

Results in Table 2.5 show that all post-processing filters improved the results of all three

methods. From our experiment, the post-processing improved the results of ViBe+, a

method which already had a post-processing stage! Of course, the improvement rate

is more significant for a low ranked method than for a precise one. Given its positive

impact on performance and noise removal, we recommend to use at least a 5×5 median,

but also other filtering operations to fill gaps, smooth object shapes, or remove small

regions.

Table 2.5 – F-measure obtained for six different post-processing filters on the output of
three motion detection methods.

Method
No Post Med Med Med

Morph
Close Connected

-processing 3 × 3 5 × 5 7 × 7 +fill Component

Basic Method 0.53 0.56 0.63 0.60 0.55 0.54 0.58
ViBe [16] 0.67 0.68 0.68 0.69 0.70 0.70 0.68
ViBe+ [221] 0.71 0.72 0.73 0.73 0.74 0.74 0.72

Combining Methods

So far, we analyzed and compared the behavior of individual motion detection tech-

niques. A further step consists in combining methods. From that point, at least two

questions arise: how should methods be combined, and which methods should be com-

bined?
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There are two strategies to combine methods: (1) consider every available method,

regardless of its own performance, or (2) select a small subset of methods, based on

their performances or on an optimization criterion. Here, we explore three different

combination rules: two involving all n = 22 methods and one involving a subset of

methods. Because it is difficult to model the correlation between individual methods

and to take it into account, the combination rules considered here are based on the

assumption that individual classifiers are independent from each other. An alternative

would be to learn the combination rule [60], but this is out of the scope of this chapter.

The results obtained with the three different combination rules are shown on precision

recall graphs with F1 contour lines. It should be noted that the conclusions that can

be drawn from the receiver operating characteristic space are different from those of the

precision recall space. In this chapter, we only focus on the latter, and aim at maximizing

the F1 score. The following observations should therefore be interpreted with care.

Combination rule 1: majority vote among all methods.

We define a decision thresholding function Fth as follows:

Fth(x) =







1, if x ≥ th

0, otherwise .
(2.16)

Let us denote the output of the ith background subtraction method by ŷi ∈ {0, 1}, the

combined output by ŷc ∈ {0, 1}, the ground truth by y ∈ {0, 1}, and probabilities by

p(·). The first combination rule considered in this chapter is

ŷc = Fth(
1

n

n
∑

i=1

ŷi), with th ∈ [0, 1]. (2.17)

We refer to this technique as the "majority vote" rule, since it extends the classical un-

weighted majority vote (this one is obtained when n is odd, and the decision threshold is

set to th = 0.5). This combination rule supposes that individual background subtraction

algorithms are independent. Limits of what can be expected from such a combination

are discussed in [125]. The results, obtained for every decision threshold, are shown in

Figure 2.3(a).
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(a) Majority vote (b) Summation

Figure 2.3 – Results obtained from the combination of all 22 background subtraction
methods, with two combination rules. For the purpose of comparison, the precision and
the recall of the 22 individual methods are displayed in red. The blue dots correspond
to different decision thresholds (th) as well as different estimations of the priors (Υ).

Combination rule 2: summation.

Another combination rule which is often encountered in the literature is the summation

rule [119], which is also known as the mean rule [214], or the averaged Bayes’ classifier

[251]. Adapted to our framework, the summation rule can be formalized as:

ŷc = Fth(
1

n

n
∑

i=1

p(y = 1|ŷi, Υ)), with th ∈ [0, 1], (2.18)

where

p(y = 1|ŷi = 0, Υ) =
FNRip(y = 1|Υ)

TNRip(y = 0|Υ) + FNRip(y = 1|Υ)
, (2.19)

p(y = 1|ŷi = 1, Υ) =
TPRip(y = 1|Υ)

FPRip(y = 0|Υ) + TPRip(y = 1|Υ)
. (2.20)

Here Υ represents the knowledge about the context (Υ is sometimes named the environ-

ment, as in [251]). The context is, for example, an indoor video-surveillance applica-

tion, a particular video stream, the other pixels in the same image, or some information
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related to the past. However, the choice should be carefully made, since it can have an

important impact on the performance of the combination. The priors p(y = 0|Υ) and

p(y = 1|Υ) are usually estimated on the basis of the decisions taken by the individ-

ual methods on the whole image, in order to adapt dynamically to the context. But in

some video-surveillance settings, some video regions are more likely to contain move-

ment than others. In this case, it makes sense to estimate the priors on a neighborhood

around the considered pixel, and also to take the history into account. This is somehow

equivalent to the atlas used in [242], but in a dynamic setting.

The results for this combination rule are shown in Figure 2.3(b). We have considered

the whole range of decision thresholds, and four ways of estimating the priors: (1)

fixed priors (p(y = 1) ∈ {4%, 8%, 12%, 16%, 20%}); (2) priors estimated on the whole

image; (3) priors estimated on the whole image, with a temporal exponential smooth-

ing applied on the estimated priors (with a smoothing factor α ∈ { 0.90, 0.37, 0.21,

0.14, 0.09, 0.05, 0.02 }); (4) priors estimated per pixel, on a square neighborhood of

size s ∈ {1, 7, 31, 127, 511}. Note that estimating the priors for a combination is an

ill-posed problem since false positives (false negatives) tend to increase (reduce) the es-

timated prior of the foreground, and therefore to encourage a higher number of positives

(negatives) in the combined output. Obviously, the opposite behavior is wanted.

We observe some similarities between the majority vote and the summation. However,

the majority vote only permits to reach n = 22 points in the precision recall space,

whereas the summation permits a fine tuning. The optimal threshold for the majority

vote and the summation varies significantly from one video to another (this is not repre-

sented on the graphs). Thus, there is a trade-off when choosing the threshold. The best

overall threshold is about 0.4 for the majority vote and the sum. We have obtained our

best results when estimating the priors on a neighborhood of 31 × 31 pixels.

Combination rule 3: majority vote of a predefined subset of methods.

It turns out that no combination of the 22 methods is able to beat significantly the best

individual methods. Carefully selecting a subset of methods is therefore necessary. Note

that an alternative would be to assign a "good" weight to each individual background

subtraction method.
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Our third combination rule is the same as the previous majority vote, except that it is

applied on a subset of three, five and seven methods. Since computing the majority

vote on every possible combination of methods is extremely time consuming, we first

determined the 50 most promising subsets of methods. A prediction of the F1 score has

been obtained for every combination of three, five and seven methods, without the need

to try them on the video sequences.

The results obtained with the third combination rule are depicted in Figure 2.4. We used

a decision threshold of 0.5. Whereas a blind combination of all methods together does

not permit to beat significantly the best individual methods (see Figure 2.3), combining

carefully selected subsets of methods leads to a higher performance than the methods

independently (see Figure 2.4).

(a) 50 subsets of three methods (b) 50 subsets of five methods (c) 50 subsets of seven
methods

Figure 2.4 – Real precision and recall of the majority vote combination rule (at the
neutral decision threshold). The predicted performance is shown, in blue, for 50 combi-
nations of three, five, and seven methods, selected theoretically. The precision and the
recall of the 22 individual methods are shown in red.

We have also observed how many times each method appears in the selected subsets of

three, five, and seven methods. We have noticed that, as expected, the methods which

have the highest F1 score are often taken into account, even if the ranking in Table 2.1

is not strongly correlated with the occurrences. The results show that about one third

of the methods are never selected. What is even more surprising is that the Local-Self

similarity method [105], which has the worst ranking according to F1 in Table 2.1,

appears often in the selected combinations for three methods, and is systematically used
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in the top 50 subsets of five and seven methods, with no exception. Note that it is not

a side effect of the independence assumption, as taking this method into account does

not harm to the performance when the errors are positively correlated, as the results

shown in Figure 2.4 illustrate. What should be noted about the Local-Self similarity

method [105] is that it behaves differently from the other methods: it has the highest

TPR, but also the highest FPR. Intuitively, a method that behaves differently may be

useful in a combination, even if it has a bad ranking when evaluated alone, thanks to

its complementarity with the other methods. This effect has already been observed by

Duin et al. [61]. Therefore, if combining multiple background subtraction methods is

possible, designing methods that are top-ranked, when they are evaluated alone, should

not be the primary focus. Instead, designing complementary methods is preferable.

2.1.3 Benchmarking Conclusion

In this section, we presented different features, several updating schemes and many

spatial aggregation and post-processing methods for motion detection. We also provided

several benchmarking results based on the CDnet 2012 dataset. These results lead us to

the following conclusions :

1. Methods: As of today, GMM (DPGMM, SGMM-SOD, SGMM), data-driven

methods (KNN and PBAS) and machine learning methods (SOBS and PSPMRF)

and among the most effective ones. On the other hand, every method has its limit.

No method can perform best on all the categories.

2. Remaining challenges: Intermittent motion, camera jitter, and hard shadows are

among the most glaring issues.

3. Features: HSV and RGB + gradient are the most effective features.

4. Updating scheme: The edge-conservative approach is the most effective scheme

while the conservative approach is the least effective.

5. Post-processing: Every post-processing method that we have tested improved

the results of our motion detection methods, especially for the simple low-ranked

method. Post-processing should thus always be used.

6. Combining methods: One can beat the best performing methods by combining

the output of several methods. The best results have been obtained with a majority

44



2.2. THE CDNET 2014 DATASET

vote of three and five methods and with a threshold of 50%. The best results are

obtained by not only combining top ranked methods, but by combining methods

which are complementary by nature.

2.2 The CDnet 2014 Dataset

According to Google Analytics, the CDnet 2012 website was visited by more than 12,

000 individual users after it was released, and results of 34 different methods were

uploaded to our system (see the "2012 DATASET RESULTS" section on the CDnet

website). However, the videos in the CDnet 2012 dataset still have not covered all the

challenges of motion detection. To make CDnet dataset more objective, we prepared

a new set of videos representing five additional categories incorporating challenges not

addressed in the CDnet 2012 dataset. In total, more than 70, 000 frames have been

captured, and then manually segmented and annotated by a team of 13 researchers from

seven universities. Besides, ground truths for all frames were made publicly available

for the CDnet 2012 dataset for testing and evaluation, thus users can use them to over-

tune their algorithm parameters to achieve better results. For the new videos in the

CDnet 2014 dataset, ground truths of only the first half of every video are made publicly

available for testing. The evaluation, however, is across all frames for all the videos

(both new and old) as in the CDnet 2012 dataset. This helps to reduce the possibility of

over-tuning algorithm parameters.

The CDnet 2014 dataset provides realistic, camera-captured (without Computer gen-

erated imagery (CGI)), diverse set of indoor and outdoor videos like the CDnet 2012

dataset. These videos have been recorded using cameras ranging from low-resolution

IP cameras, higher resolution consumer grade camcorders, commercial Pan–tilt–zoom

(PTZ) cameras to near-infrared cameras. As a consequence, spatial resolutions of the

videos in the CDnet 2014 dataset vary from 320 × 240 to 720 × 486. Due to the di-

verse lighting conditions present and compression parameters used, the level of noise

and compression artifacts significantly varies from one video to another. Duration of

the videos are from 900 to 7,000 frames. Videos acquired by low-resolution Internet

protocol (IP) cameras suffer from noticeable radial distortion. Different cameras have
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different hue bias due to different white balancing algorithms employed. Some cameras

apply automatic exposure adjustment resulting in global brightness fluctuations in time.

Frame rate also varies from one video to another, often as a result of limited bandwidth.

Since these videos have been captured under a wide range of settings, the extended

CDnet 2014 dataset does not favour a certain family of change detection methods over

others.

2.2.1 Video Categories

The CDnet 2014 dataset contains 53 videos grouped in 11 categories as shown in

Fig. 2.5 (including six categories of the CDnet 2012 dataset, namely Baseline, Dynamic

Background, Camera Jitter, Shadow, Intermittent Object Motion, and Thermal). Simi-

larly to the CDnet 2012 dataset, the change detection challenge in a category is unique

to that category. Such a grouping is essential for an unbiased and clear identification of

the strengths and weaknesses of different methods. The categories in the CDnet 2014

dataset are:

1. Baseline: contains four videos with a mixture of mild challenges of the next four

categories. These videos are fairly easy and are provided mainly as reference.

2. Dynamic Background: contains six videos depicting outdoor scenes with strong

background motion.

3. Camera Jitter: represents four videos captured with unstable cameras.

4. Shadow: is composed of six videos with both strong and soft moving and cast

shadows.

5. Intermittent Object Motion: contains six videos with scenarios known for caus-

ing ghosting artifacts (e.g. contains still objects that suddenly start moving).

6. Thermal: is composed of five videos captured by far-infrared cameras.

7. Challenging Weather: This category contains four outdoor videos showing low

visibility winter storm conditions. This includes two traffic scenes in a blizzard,

cars and pedestrians at the corner of a street and people skating in the snow. These

videos present a double challenge: in addition to snow accumulation, the dark tire

tracks left in the snow have potential to cause false positives.
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8. Low Frame Rate: All four videos in this category are recorded with IP cameras.

The frame rate varies from 0.17 fps to 1 fps due to limited transmission band-

width. By nature, these videos show "erratic motion patterns" of moving objects

that are hard (if not impossible) to correlate. Optical flow might be ineffective

for these videos. One sequence is particularly challenging (port_0_17fps), which

shows boats and people coming in and out of a harbour, as the low frame rate

accentuates the wavy motion of moored boats causing false detections.

9. Night: This category has six motor traffic videos. The main challenge is to cope

with low-visibility of vehicles yet their very strong headlights that cause over

saturation. Headlights cause halos and reflections on the street.

10. PTZ: We included four videos in this category: one video with a slow continu-

ous camera pan, one video with an intermittent pan, one video with a 2-position

patrol-mode PTZ, and one video with zoom-in/zoom-out. The PTZ category by

itself requires different types of change detection techniques in comparison to

static camera videos.

11. Air Turbulence: This category contains four videos showing moving objects

depicted by a near-infrared camera at noon during a hot summer day. Since the

scene is filmed at a distance (5 to 15 km) with a telephoto lens, the heat causes

constant air turbulence and distortion in frames. This results in false positives.

The size of the moving objects also varies significantly from one video to another.

The air turbulence category presents very similar challenges to those arising in

long-distance remote surveillance applications.

2.2.2 Ground Truth Labels

For consistency, we use the same labeling procedure as for the CDnet 2012 dataset.

Each frame has been manually annotated at pixel level, with the following five labels:

1. Static pixels are assigned grayscale value of 0.

2. Shadow pixels are assigned grayscale value of 50. The Shadow label is associated

with hard and well-defined moving shadows such as the one in Fig. 2.6.
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(a) Baseline (b) Camera
Jitter

(c) Dynamic
Background

(d) Intermittent
Object Motion

(e) Shadow (f) Thermal

(g) Bad Weather (h) Low
Framerate

(i) Night Video (j) PTZ (k) Turbulence

Figure 2.5 – Sample video frames of all 11 categories in the CDnet 2014 dataset.

3. Non-ROI 1 pixels (i.e. outside of the ROI) are assigned grayscale value of 85. The

first few hundred frames of each video sequence are also labelled as Non-ROI to

prevent the corruption of evaluation metrics due to errors during initialization.

At the same time, the Non-ROI label can also prevent the metrics from being

corrupted by activities unrelated to the category considered.

4. Unknown grayscale value of 170 assigned to pixels that are half-occluded or

corrupted by motion blur.

5. Moving pixels are assigned grayscale value of 255.

Please note that the evaluation metrics discussed in Section 2.2.3 consider the Shadow

pixels as Static pixels.

1. ROI stands for Region of Interest.
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Moving

Static

Non-ROI

Shadow

Unknown

Static

Moving

Non-ROI

Unknown

Figure 2.6 – 5-class ground truth label fields in the CDnet 2014 dataset.

2.2.3 Evaluation Metrics

We use seven metrics for the evaluation in the CDnet 2014 dataset, namely Recall (Re),

Specificity (Sp), False Positive Rate (FPR), False Negative Rate (FNR), Percentage of

Wrong Classifications (PWC), Precision (Pr), and F-measure (or F1 score). For the

Shadow category, we also provide an average FPR that is confined to the hard-shadow

areas (FPR-S). The metrics are discussed and tested in Section 2.1.1.

In order to easily assess the various change detection methods, these metrics are then

combined into two metrics R and RC [79]. R represents an average ranking computed

across all overall-average metrics. RC is an average ranking computed across all cate-

gories. The scores of the seven metrics plus the R and RC for all methods submitted to

the CDnet 2014 dataset are presented in Table 2.6.
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Table 2.6 – Overall results across all categories (RC: average ranking across categories,
R: average overall ranking).

Method RC R Re Sp FPR FNR PWC F-measure Pr

Cascade CNN (supervised) [239] 1.45 1.00 0.95 0.99 0.0032 0.05 0.41 0.92 0.90
IUTIS-5 [26] 3.73 4.14 0.78 0.99 0.0052 0.22 1.20 0.77 0.81
IUTIS-3 [26] 7.27 6.43 0.78 0.99 0.0060 0.22 1.30 0.76 0.79
DeepBS (supervised) [12] 7.64 12.57 0.75 0.99 0.0095 0.25 1.99 0.75 0.83
PAWCS [208] 8.36 6.43 0.77 0.99 0.0051 0.23 1.20 0.74 0.79
SuBSENSE [207] 10.09 9.86 0.81 0.99 0.0096 0.19 1.68 0.74 0.75
WeSamBE 10.18 7.86 0.80 0.99 0.0076 0.20 1.51 0.74 0.77
SharedModel [45] 10.82 8.57 0.81 0.99 0.0088 0.19 1.50 0.75 0.75
FTSG [233] 11.36 11.14 0.77 0.99 0.0078 0.23 1.38 0.73 0.77
SaliencySubsense 12.09 12.71 0.77 0.99 0.0086 0.23 1.90 0.72 0.76
M4CD Version 2.0 12.09 15.29 0.79 0.98 0.0159 0.21 2.30 0.70 0.74
SSBS 12.36 13.14 0.74 0.99 0.0077 0.26 1.89 0.71 0.78
CwisarDRP 12.64 13.29 0.71 0.99 0.0053 0.29 1.72 0.71 0.79
M4CD Version 1.0 15.18 17.14 0.78 0.98 0.0151 0.23 2.36 0.69 0.73
C-EFIC [7] 15.27 14.86 0.80 0.98 0.0218 0.20 2.63 0.73 0.75
MBS-v1 [195] 15.45 12.57 0.74 0.99 0.0073 0.26 1.26 0.73 0.74
CwisarDH [83] 17.27 15.57 0.66 0.99 0.0052 0.34 1.53 0.68 0.77
MBS-v0 [195] 17.36 14.14 0.72 0.99 0.0071 0.28 1.39 0.71 0.74
EFIC [6] 17.73 18.57 0.79 0.98 0.0221 0.21 2.79 0.71 0.72
Spectral-360 [198] 21.55 20.43 0.73 0.99 0.0139 0.27 2.27 0.67 0.71
SBBS 21.73 22.86 0.71 0.98 0.0173 0.29 2.43 0.67 0.72
IUTIS-2 [26] 22.36 25.86 0.66 0.98 0.0162 0.34 3.15 0.60 0.71
BMOG 22.45 24.00 0.73 0.98 0.0187 0.27 2.98 0.65 0.70
AMBER [225] 22.91 24.86 0.70 0.98 0.0206 0.30 2.90 0.66 0.72
IUTIS-1 [26] 24.18 28.57 0.77 0.95 0.0501 0.23 5.75 0.58 0.59
AAPSA [189] 24.45 23.57 0.65 0.99 0.0095 0.35 2.07 0.62 0.69
GraphCutDiff [160] 26.45 31.00 0.63 0.98 0.0220 0.37 3.68 0.57 0.67
SC-SOBS [149] 26.64 26.71 0.76 0.95 0.0453 0.24 5.15 0.60 0.61
Mahalanobis distance [20] 27.09 24.86 0.16 0.99 0.0069 0.84 3.48 0.23 0.74
SOBS-CF [153] 27.36 27.43 0.78 0.94 0.0558 0.22 6.07 0.59 0.58
RMoG [222] 27.64 27.29 0.59 0.99 0.0135 0.41 2.96 0.57 0.70
KDE-ElGammal [62] 28.91 30.29 0.74 0.95 0.0481 0.26 5.63 0.57 0.58
CP3-online [135] 30.91 28.86 0.72 0.97 0.0295 0.28 3.43 0.58 0.56
GMM|Stauffer-Grimson [210] 31.09 29.86 0.68 0.98 0.0250 0.32 3.77 0.57 0.60
DCB 31.73 28.43 0.39 0.99 0.0103 0.61 2.88 0.40 0.63
GMM|Zivkovic [273] 32.36 32.29 0.66 0.97 0.0275 0.34 4.00 0.56 0.60
MSTBGM [146] 34.09 33.86 0.66 0.95 0.0458 0.34 5.55 0.51 0.55
Euclidean distance [20] 35.18 34.71 0.68 0.94 0.0551 0.32 6.54 0.52 0.55

2.2.4 Methods Tested and Experimental Results

A total of 14 change detection methods were evaluated for the IEEE Change Detection

Workshop 2014 [1]. Until now, 38 methods submitted their results to the CDnet 2014

dataset. Among these methods, some are simple methods relying on a plain background

subtraction, such as the Euclidean and Mahalanobis distance methods as described in

[20]. Classical and frequently-cited methods such as KDE-based estimation by Elgam-

mal et al. [62] and GMM by Stauffer and Grimson [210] are also included. There are
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also different variations of GMM, such as a region-based GMM model [222], and a

shareable GMM model [45], and a recursive GMM method with an improved update of

the Gaussian parameters and an automatic selection of the number of modes [273].

Among the more recent methods, two deep learning methods, i.e. Cascade CNN (a su-

pervised method presented in chapter 3) [239] and DeepBS (a supervised method) [12]

achieve very good performances. This clearly shows that deep learning methods have

the ability to learn the most useful features of the video and model the background ac-

curately even under challenging circumstances. Beyond that, instead of modeling the

background, IUTIS-5, IUTIS-3 and IUTIS-2 [26] try to combine the results of the other

motion detection methods to improve their performances. Among which, the combina-

tion of five (IUTIS-5) and three (IUTIS-3) methods achieve good results. GraphCutDiff

[160] uses the optical flow and GMM model to detection motion. Then the graphcut

is applied to improve the results. FTSG [233] is a method that detects motion with a

three-step procedure. More specifically, the three steps are: (1) detecting moving ob-

ject with two complementary pixel-level motion detection models, one model is based

on the trace of a flux tensor while the other is based on a variant of the conventional

GMM; (2) combing the two motion detection results; and (3) removal of ghosting arti-

facts. In SuBSENSE [207], color and local binary similarity patterns are used to make

pixel-level decisions. The SC-SOBS method [149] is a machine learning method with

a self-organizing neural map. The SOBS-CF [153] is the fuzzy version of the SOBS al-

gorithm. Spectral-360 [198] detects motions by calculating the correlation between the

diffuse spectral reflectance components of a new video frame with an evolving back-

ground model derived from recent training frames. The method of [225] compares

the current pixel value with one long-term and several short-term adaptive templates.

For CP3-online [135], instead of modeling the background for each pixel individually,

it models the color distribution of pixels with strong spatial correlation. The authors

argue that such spatial model is robust to sudden illumination changes. [146] uses a 3-

scale spatio-temporal color/luminance Gaussian pyramid background model to model

the background.

For each of these methods, only one set of parameters was used for all the videos.

These parameters were selected according to the authors’ recommendations or, when

not available, were adjusted to enhance the overall results. All parameters are available
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on the CDnet 2014 website.

In order to give the reader an intuitive understanding of the overall performance of all

14 methods, we put in Fig. 2.7 the mean and standard deviation of the F-measure for all

methods within each category of the CDnet 2014 dataset. Without much surprise, the

"PTZ" category has the lowest performance. The second most difficult category is the

"night" category, followed by the "low framerate" category. Surprisingly, most methods

performed relatively well on the "bad weather" category. We also report the median

metrics obtained by all methods in the new five categories as shown in Table 2.7.

Figure 2.7 – Mean and standard deviation of the F-measure over all methods within each
category of the CDnet 2014 dataset.

In order to identify where the methods fail, we integrated the error at each pixel of each

frame and for every method. This leads to error maps shown in Fig 2.8. In these images,

red, green, white and black stand for the false negative (FN), false positive (FP), true

positive (TP), and true negative (TN) respectively. Pixels with saturated red and green

indicate that every method failed at those pixels. After analyzing these error maps, we

came to identify the most glaring issues that no single method handles well:

1. PTZ: any camera motion (pan, tilt or zoom) causes major false positives.
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Table 2.7 – Median F-measure, FPR, FNR, and PWC obtained by all methods for each
category.

Category F-measure FPR FNR PWC

Bad Weather 0.78 0.0015 0.26 0.66
Low Framerate 0.61 0.0050 0.26 1.00
Night 0.49 0.0227 0.42 3.86
PTZ 0.32 0.0505 0.25 5.50
Turbulence 0.66 0.0012 0.27 0.25
Basic 0.92 0.0021 0.07 0.49
Dynamic Background 0.74 0.0025 0.20 0.49
Camera Jitter 0.74 0.0096 0.22 2.08
Intermittent Object Motion 0.59 0.0131 0.39 4.73
Shadow 0.82 0.0082 0.14 1.59
Thermal 0.75 0.0053 0.33 1.97

Figure 2.8 – Error maps showing systematic errors. Green: false positives, red: false
negatives, gray: out of ROI, white: true positives, and black: true negatives.

2. Night Videos: the lack of illumination causes numerous false negatives while

headlight reflections cause systematic false positives.

3. Shadow: Hard shadows are still a challenge for every method.

4. Intermittent Object Motion: Any object which stops moving for some time,

eventually ends up being mis-detected. A similar situation occurs when a back-

ground object is removed from the scene.

5. Turbulence: Air turbulence causes the systematic occurrence of false positives.
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2.2.5 Conclusion

In this section, we introduced the CDnet 2014 dataset, including the video categories,

the ground truth labels, and the evaluation metrics. We also presented the experimental

results of the submitted methods and statistic analysis of them. With all the discussions

before, we can draw the conclusions:

1. Categories: State-of-the-art motion detection methods have no problem to sepa-

rate foregrounds of a video if the background of the video is stable. Challenges

such as thermal videos, video with jitters, and bad weather are slightly more dif-

ficult for most state-of-the-art methods. However, some challenges, e.g. videos

shot by PTZ cameras, videos shot at night with over saturation cased by the light,

and videos with low framerate, are extremely difficult for most of the methods.

2. Combining methods: Using a smart strategy to combine the results of different

methods can always improve the performances. However, two things should be

noticed while combining different methods: (1) It is recommended to combine

methods that are good at different challenges, this can help to overcome each

method’s limit and achieve better performance. (2) Even though combining meth-

ods can improve the result, the improvement can be limited.

3. Deep learning methods: As a new approach of motion detection method, deep

learning methods achieve very good results. However, as a supervised method,

deep learning method requires a large number of labeled data to train the model.

As shown by the results, there is no single traditional motion detection method can

perform excellent results for all the challenges. Merging results of different methods

can help to improve the motion detection performance. However, the F-measures (e.g.

IUTIS-5: 0.77 IUTIS-3: 0.76) are still not high enough to make the results directly be

used as ground truths. In Section 3, we will introduce the "Cascade CNN" method, this

CDnet 2014 top first ranked method produces extremely accurate results with F-measure

of 0.95 which is within the error margin of a human being.
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Chapter 3

Interactive Deep Learning Method for
Segmenting Moving Objects

Résumé

As mentioned in the previous chapter, most motion detection dataset are rel-

atively small, while most of them do not provide pixel-wise labeled ground

truth. One of the reasons is that automatic labeling methods are not accurate

enough to generate ground truth, while labeling videos manually is accurate

but extremely time consuming. In this chapter, we propose a semi-automatic

method for segmenting foreground moving objects pictured in surveillance

videos. By manually labeling only a small number of frames, our model can

label the rest of the video. The accuracy of our method is similar to that

of a human being, but only take 1/50 of the manually labeling time. The

model is fully convolutional, and thus the training and inference is done on

the whole image. This chapter is published as a paper with title Interactive

Deep Learning Method for Segmenting Moving Objects [239] in interna-

tional journal of Pattern Recognition Letter in 2016.

Commentaires
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Abstract

With the increasing number of machine learning methods used for segment-

ing images and analyzing videos, there has been a growing need for large

datasets with pixel accurate ground truth. In this letter, we propose a highly

accurate semi-automatic method for segmenting foreground moving objects

pictured in surveillance videos. Given a limited number of user interven-

tions, the goal of the method is to provide results sufficiently accurate to

be used as ground truth. In this paper, we show that by manually outlining

a small number of moving objects, we can get our model to learn the ap-

pearance of the background and the foreground moving objects. Since the

background and foreground moving objects are highly redundant from one

image to another (videos come from surveillance cameras) the model does

not need a large number of examples to accurately fit the data. Our end-

to-end model is based on a multi-resolution convolutional neural network
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(CNN) with a cascaded architecture. Tests performed on the largest publicly-

available video dataset with pixel accurate ground truth (changdetection.net)

reveal that on videos from 11 categories, our approach has an average F-

measure of 0.95 which is within the error margin of a human being. With

our model, the amount of manual work for ground truthing a video gets re-

duced by a factor of up to 40. Code is made publicly available at: https:

//github.com/zhimingluo/MovingObjectSegmentation

3.1 Introduction

With millions of hours of videos recorded daily in the world, the need for efficient

video analytic methods is becoming a glaring issue. Considering that a large num-

ber of videos are recorded by surveillance cameras, video analytics allows for multiple

surveillance tasks including object tracking [248], scene understanding [107], anomaly

detection [133], and traffic analytics [148] to name a few. In the last decade, a growing

number of machine learning methods have been used to solve these issues [144, 77].

Although different, machine learning methods all share a common denominator which

is their need for large annotated datasets on which to train. Unfortunately, video annota-

tion is a tedious task, especially when it comes to the annotation of foreground moving

objects.

Of course, foreground moving objects can be outlined by fully automatic [mostly back-

ground subtraction related [28]] methods. Although these methods are fast and widely

available, they are far from being sufficiently accurate for their results to be used as

ground truth [29]. As reported on the changedetection.net (CDnet) website, the only

videos for which fully automatic motion detection methods are highly accurate are the

so-called "Baseline" videos. "Baseline" videos are those for which the scene contains

well-contrasted and well-illuminated macroscopic moving objects pictured in front of a

fix background with a rigorously fixed camera, recording video at a high frame rate and

without hard shadows. As reported on the website, whenever one of these conditions

is violated, the F-measure of the segmented videos drops below 0.88 (and very often

below 0.75) which is far too low for it to be used as ground truth.
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As an alternative, one can manually annotate every foreground moving object and then

use it as ground truth. Although very accurate, manual annotation is tedious and very

time consuming. Extensive empirical evaluations led in our lab reveal that even with a

well-design and ergonomic annotation software, manual segmentation may take up to

60 seconds per frame. Thus, the manual labeling of a 4 minute video (∼ 7,000 frames)

may take several days for a single person.

In this letter, we propose a highly accurate semi-automatic method for segmenting fore-

ground moving objects. The proposed solution has two main objectives: (1) produce

segmentation maps sufficiently accurate to be used as ground truth and (2) require as

little user intervention as possible. The proposed solution is based on a convolution

neural network (CNN) model [123]. The main reason for using CNN comes with its

ability to learn its own features which is far better than using hand-design features.

CNN are also translation invariant which is the key feature for dealing with background

motion. Furthermore, the convolution operation can be easily parallelized on a GPU

which makes CNN a fast predictor.

The outline of our method is straightforward. Given a certain video, the user first out-

lines foreground objects from a small set of frames. The method then uses those manu-

ally annotated images as training data. Once the training is over, the method generalizes

by automatically labeling the remaining frames of the video. One important charac-

teristic of our method is that it trains and generalizes on images from the same video.

Since the video comes from a single (and usually fix) camera, its content is very redun-

dant, so the number of manually segmented frames required to properly train our model

does not need to be large. This is unlike other machine learning tasks which train and

test on images containing very different content such as ImageNet [100] and CIFAR

datasets [122]. Our approach also differs from traditional motion detection method as it

processes each frame independently without considering motion features and maintain-

ing a background model.

We explore various CNN configurations such as a multiresolution CNN, a cascaded

architecture, the FCN-8s [144] model as well as various training configurations. Results

obtained on the CDnet 2014 dataset shows that our approach is as accurate as a human

being with an average F-measure of 0.95.
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The contributions of this letter are two folds:

— We propose what we believe is the first machine learning method for ground

truthing videos. The method is highly accurate and only requires a small number

of user interactions.

— Following an extensive evaluation on the CDnet 2014 dataset, we identify the

category of videos for which our method is effective as well as the number of

frames that ought to be manually labeled for each category.

3.2 Related Work

Video foreground detection methods can be classified into two large classes: the fully-

automatic methods and those involving user interaction.

The fully-automatic video foreground segmentation methods are usually based on a

background model which is updated as the video streams in. The foreground pix-

els are those whose color (or texture feature) deviates from the background model.

The most widely used video foreground segmentation methods implement a parametric

background model. This includes those using a per-pixel single Gaussian model [246],

a mixture of Gaussians [211], generalized Gaussian mixture [8], and Bayesian mod-

els [183] to name a few. Parametric models can deal with videos with small background

movement (i.e. moving trees or water waves) but are very sensitive to camera movement

due to jitter or a pan-til-zoom camera motion.

In the past five years, various non-parametric models have achieved good performances.

[16] proposed a method called "Vibe" whose per-pixel background model is made of a

collection of N pixel values randomly selected over time. Furthermore, when a pixel

is updated, its neighboring pixels are also updated which makes ViBe less sensitive to

ghosting artifacts. [93] proposed an extension to ViBe by allowing the decision thresh-

old and the learning rate to dynamically change over time. Another improvement of

ViBe is the so-called "SubSCENE" method proposed by [209] which uses both color

and local binary pattern features to improve the spatial awareness of the method. It

also has a per-pixel feedback scheme that dynamically adjusts its parameters. From the

same authors, the so-called "PAWCS" method [208] is an extension of SubSCENE that
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implements a real-time internal parameter updating strategy. It also adds a persistence

indicator feature to the color and local binary patterns (LBP) feature as well as a visual

word model.

Many other background subtraction methods have been proposed, some involve a one-

class support vector machine (SVM), others involve a neural network, a Parzen window

estimator, a principal component analysis (PCA) model, some fuzzy logic, and many

more (refer to [28] for an extensive survey). However, none of these methods have been

shown sufficiently accurate to produce ground truth quality results.

As an alternative, some foreground segmentation methods rely on user interaction to

improve the accuracy. For these methods, the user provides information on the location

of the foreground objects as well as the background. Manual annotation can be in the

form of a bounding box around each foreground object or a series of brush strokes

drawn on top of foreground and background areas. Approaches for semi-automatic

segmentation often rely on graph-cut [126, 193]. Unfortunately, these methods being

oriented towards the segmentation of 2D images, segmenting a video would require the

manual annotation of every frame. As a solution, [13] proposed and extended 3D spatio-

temporal graph cut method that implements a 6-pixel neighborhood (four spatial and

two temporal neighbors). In [230], users are asked to give interaction not only on each

image, but also on the x-t dimension to provide additional temporal information. The

method by [77] ask the user to label the foreground and background in the first frame

of the video and use this to train two one-class SVMs for each pixel. One important

inconvenience of such algorithms comes with their way of segmenting the entire video

as a whole. Although it works well for segmenting one or few objects seen thought

the entire video, these methods cannot account for new moving objects. They are also

ineffective on low-framerate videos or when the camera moves due to pan-till-zoom

motion.

3.3 Proposed Solution

The proposed method can be summarized as follows: based on a subset of frames in

which foreground moving objects have been manually outlined, our method trains a
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foreground-background model that is then used to label the rest of the video. As men-

tioned earlier, the goals of our method are two folds: (1) get segmentation results suf-

ficiently accurate to be used as ground truth, and (2) get those results with as little

user intervention as possible. To achieve these goals, we implemented a convolution

neural network (CNN) model. The reason why our method gets to learn an accurate

foreground-background model from a limited amount of training data comes from the

very nature of surveillance videos. Being recorded from surveillance cameras, these

videos contain a highly redundant content (same background through the video with

moving objects having similar orientation, look, and size). This lack of diversity allows

for our method to quickly learn a foreground-background model from a very limited

number of examples. Furthermore, since the goal is to generalize to other frames from

the same video (and not to other videos), our method benefits from a certain level of

overfiting which is typical when a limited number of samples are used for training.

As shown in Fig. 3.1, our approach implements a three-step procedure: (i) foreground

moving objects are first manually delineated from a set of training frames; (ii) these

frames are then used to train a foreground-background segmentation model; and (iii)

once training is over, the model labels the remaining frames of the video. Note that,

as will be shown in the results section, the resulting segmentation map is sufficiently

accurate for not requiring any post-processing.

3.3.1 Selecting and Labeling Training Frames

Given an input video, the first step of our method is to select and manually segment

N training frames. In that perspective, different selection strategies can be considered.

One could uniformly select one frame out of M
N

, where M is the total number of frames

in the video. One could also randomly select N frames or manually select N frames.

Note that the latter approach requires extra user intervention which we look forward to

minimize as much as possible. But as will be shown in the results section, the frame

selection strategy is heavily correlated to the content of the video and in some cases,

manual selection is unavoidable, especially for videos with sparse activity.

Once N training frames have been selected, the user roughly outlines a region of interest
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Figure 3.1 – The pipeline of our model.

(ROI) around the area where foreground moving objects are to occur. The reason for

this ROI is to exclude regions (such as the sky or buildings) in which no moving objects

are to appear. This allows to speed up the training phase and avoid false detections

outside the ROI. As for manual delineation of moving objects, we use a custom-made

software which greatly simplifies the annotation.

3.3.2 CNN Models Used for Training and Testing

The method we used for learning the foreground-background model is a deep CNN.

The main reasons for choosing CNN are two folds. First, a CNN has the sole ability

of learning features that best fit a given set of data. This has a huge advantage over

pre-existing approaches which banks on manually selected features such as histogram

of oriented gradients (HOG) [55], scale-invariant feature transform (SIFT) [145], or lo-

cal binary pattern (LBP) [85]. Furthermore, unlike conventional hand-design features,
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learned features which come from multiple layers of the network focus on various lev-

els of details in the video. Second, since CNNs are based on an easily parallelized

convolution operators, the prediction phase is very fast.

In this section, we propose three CNN models which we thoroughly test in the results

section.

Basic CNN Model

A CNN is typically made of a series of convolutional layers, activation layers, pooling

layers, and fully-connected layers [129, 78]. CNNs are generally used for classifying

images and, as such, are usually fed with a 3-channel color image and outputs the most

likely class label associated to that image [123]. In our case, the goal is to predict a

class category (foreground/background) for each pixel instead of the entire image. In

that perspective, we extract a 31 × 31 patch around each pixel and consider that patch

as a small to-be-classified squared image [67].

The detailed configuration of our basic CNN model is provided in Table 3.1 and illus-

trated in Fig 3.2. As can be seen, our basic CNN model contains four convolutional

layers and two fully connected (FC) layers. Each convolutional layer uses a filter with

size of 7 × 7 and rectified linear unit (ReLU) as the activation function. Also, the first

two convolutional layers come with a 2 × 2 max pooling layer of a stride of 1 as well

as a zero padding of one pixel at the bottom and right border. The first fully connected

(FC) layer has an output of 64-dimension features while the second has a one-dimension

output. For the second FC layer, a sigmoid function is used as an activation function to

convert the output prediction between 0 and 1 which corresponds to the probability for

a given pixel of being part of the foreground.

Figure 3.2 – The diagram of our basic CNN model which consist of four convolutional
layers and two fully connected layers. Also the first two convolutional layers come with
a 2 × 2 max pooling layer.
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Table 3.1 – The architecture of our basic CNN model.

Layer 1 2 3 4 5 6
Stage conv conv conv conv FC FC

Input size 31 × 31 25 × 25 19 × 19 13 × 13 7 × 7 1 × 1
Filter size 7 × 7 7 × 7 7 × 7 7 × 7 - -

Conv stride 1 × 1 1 × 1 1 × 1 1 × 1 - -
Pooling method max max - - - -

Pooling size 2 × 2 2 × 2 - - - -
Pooling stride 1 × 1 1 × 1 - - - -
Padding size [0,1,0,1] [0,1,0,1] - - - -
#Channels 32 32 32 32 64 1

By considering the CNN output as a likelihood probability, we use a cross entropy loss

function for training [24]:

Loss = − 1

K

K
∑

k=1

[Ck log p̂k + (1 − Ck) log (1 − p̂k)] , (3.1)

where K is the number of training pixels, Ck is the class label in the ground truth and

p̂n is the predicted foreground probability. Note that during the training, each pixel is

treated independently and no motion features are extracted.

Multi-scale CNN Model

The basic CNN model is not void of limitations. One of its main drawback comes from

its fix input patch size. Since it processes patches with a fixed size 31 × 31, the basic

CNN model is good for distinguishing foreground and background objects whose sizes

are in the order of 31 × 31 or less. Unfortunately, videos often contain moving objects

significantly larger than that. This typically happens when foreground moving objects

are close to the camera. As shown in Fig. 3.3, large moving objects often carry out large

uniform textureless areas which can be miss-classified as background. Fig. 3.3 shows a

large car which has been inappropriately segmented by the basic CNN model.

We can overcome this issue by implementing a multi-scale CNN model as illustrated

in Fig. 3.4. Given a to-be-segmented 2D image I , we first resize it into two different
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(a) Input frame (b) Ground truth (c) basic CNN (d) MSCNN (e) MSCNN + Cas-
cade

Figure 3.3 – A video frame with large moving object (c) fooling our Basic CNN method
due to its large uniform area; (d) the multi-scale and (e) the cascaded CNN models
greatly reduce the number of false positives by making the system more scale invariant
and improving spacial coherence.

scales Iscale1 and Iscale2. In this paper, we use 0.75, 0.5 for the two scales. Then I ,

Iscale1, and Iscale2 are fed to the Basic CNN network separately. This produces three

outputs of three different sizes: O, Oscale1, and Oscale2. After that, Iscale1 and Iscale2 are

resized back to the size of the input frame I . Note that since we use a stride of 1 at the

pooling and convolution layers (cf. Table 3.1), O has de facto the same size as I . The

final foreground probability map Ofinal is obtained with an average pooling across the

upscaled maps (cf. the rightmost picture in Fig. 3.4). All three CNNs share the same

weights.

Upsampling

Upsampling

Average

Downsampling

I

Iscale1

Iscale2

Oscale1

Oscale2

O

Ofianl

Downsampling

CNN

model

CNN

model

CNN

model

Sharing parameters

Figure 3.4 – The architecture of the proposed multi-scale CNN model.
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Cascaded CNN Model

Since both the basic CNN and the multi-scale CNN process each pixel independently

based on the information contained in their local patch, they often produce isolated

false positives and false negatives. Many image segmentation papers [245, 120, 97]

use a conditional random field (CRF) with fixed weights as a way to enforce spatial

coherence. Even though this CRF can be easily implemented with graph-cut, it produces

in our case sub-optimal results, probably because of the fixed weights for all classes.

CNN

model 1

CNN

model 2

Figure 3.5 – The architecture of the proposed Cascaded model.

In order to model the dependencies among adjacent pixels and thus enforce spatial co-

herence, we implemented a cascaded CNN model. As shown in Fig. 3.5, the first CNN

model (CNN-1) is used to compute a foreground probability map which is then con-

catenated with the original frame and fed to a second CNN model (CNN-2). The input

of CNN-2 is thus an image with four channels: red, green, blue, and a foreground like-

lihood probability. CNN-2 computes a refined probability map for the input frame (cf.

Fig.3.3(e)). Unlike CRF and Markov random fields (MRF) whose parameters need to

be manually fine-tuned (e.g. kernel bandwidth, weights between unary and pair-wise

terms, etc.), the parameters for our cascaded CNN model are learned from the data.

Note that CNN-1 and CNN-2 have the same architecture which is showed in Table 3.1.

The only difference between CNN-1 and CNN-2 is the number of input channels: 3

(RGB) for CNN-1 and 4 (RGB + probability map) for CNN2. While training the cas-

caded model, we first trained the CNN-1 model, and then fixed the parameters of CNN-1

and only updated the parameters of CNN-2. Note that we also tried to increase the num-

ber of CNNs in the cascade model, however, with more CNNs in a cascade model, the
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performance was rarely improved.

Training Details

All three CNN models have been implemented with the MatConvNet deep learning

toolbox which it a wrapper on top of Caffe [223]. Since we intend to train the mod-

els on a small number of annotated frames while each CNN contains a large number

of weights, we empirically observed that a CNN with well initialized weights always

perform significantly better. So, instead of training the CNN models on the manually

outlined frames from scratch, we pre-trained our model on a larger dataset as initial-

ization [260]. The pre-training was done only once with the Motorway dataset [148], a

dataset with pixel accurate ground truth of video surveillance images. After transfering

the weights to our models, we fine-tuned the CNN parameters for each video based on

the loss function in Eq.(3.1). The Adadelta optimization method [262] was used for

updating parameters with an initial learning rate of 0.01. Our models were trained for

20 epochs with a batch size of 5 frames. Besides, although the training could be done

patch-wise, for more efficient approach, we did it on whole images, in which, the energy

gradient of the pixels located outside the previously-selected ROI were forced to zero.

Last but not least, in order to keep the size of the segmentation result the same as the

input frame, we applied mirror padding on the original frame during the testing.

3.4 Experiment and Results

3.4.1 Dataset

We tested our method on the CDnet 2014 dataset [237], the largest video dataset with

pixel accurate ground truth. The CDnet 2014 dataset contains 53 videos spanning

across 11 categories corresponding to different challenging situations (camera jitter,

background motion, pan-tilt-zoom cameras, night videos, etc). This makes it a perfect

dataset for evaluating our foreground labeling methods. Frames from the CDnet 2014

dataset are shown in Fig. 3.6.
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(a) PTZ (b) Bad weather (c) Camera jitter (d) Dynamic
background

(e) Intermittent
object motion

Figure 3.6 – A collection of video frames of the CDnet 2014 dataset with their associated
ground truths used in our experiments.

3.4.2 Evaluation metrics

In this paper, we evaluate results with the F-measure and the percentage of wrong classi-

fications (PWC). The F-measure combines precision and recall into one metric. Given a

number of true positives (TP), false positives (FP), and false negatives (FN), F-measure

is defined as:

F-measure =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2TP
2TP + FP + FN

. (3.2)

Although is widely used, the F-measure must be interpreted with case. By its very

nature, it does not consider the number of true negatives (TN) and thus is sensitive

to videos with only very small moving objects. At the limit, missing a one-pixel-size

moving objects may lead to a TP of 0 and a F-measure of 0. In order to compensate for

this, we also use the PWC metric which incorporates TN:

PWC =
100 ∗ (FN + FP)

TP + FN + FP + TN
. (3.3)

The goal of our labeling method is thus to maximize the F-measure while minimizing

the PWC. However, we also want to measure how far from the edges of the nearest

foreground object the wrongly classified pixels are. Wrongly classified pixels located

next to a foreground object is less of a problem than random noise. In that perspective,

we use the false positive error distance (FPED) and the false negative error distance
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(FNED), whose goal is to measure how far from the nearest foreground object a wrongly

labeled pixel is located. The FPED and FNED are calculated as:

FPED =
1

|FP|
∑

x∈FP

min
y∈FG

Dist(x, y), (3.4)

FNED =
1

|FN|
∑

x∈FN

min
y∈BG

Dist(x, y), (3.5)

where FG is the set of foreground pixels and BG the set of background pixels.

3.4.3 Experiments

Different Selection Strategies

In this section, we first analyze the influence of the training-frame selection strategies.

For each video, we selected 50, 100, 150, and 200 frames to train our basic CNN

model. Note that those numbers are relatively small comparing with the overall video

size (CDnet 2014 videos contain between 1,000 and 8,000 frames). After applying dif-

ferent thresholds on our model’s output foreground probability map, we get different

F-measure values and plot it in Fig. 3.7. As can be seen, a threshold between 0.6 and

0.7 give the best performance in most cases. Furthermore, given the same number of

training frames, the manual strategy achieves higher F-measure than random and uni-

form strategy. This is because for videos with a low level of activity, the random and

uniform training frame selection strategies get a much smaller number of foreground

objects to train on comparing with the manual training frame selection strategy.

Results for every metric are provided in Table 3.2. As one can see, among the three train-

ing frame selection strategies, the random and uniform achieve similar performances

with a F-measure of at most 0.86 and 0.87. As for the manual selection, the F-measure

reaches 0.9. While by considering the PWC, all three selection strategies are roughly

equivalent. One may also notice that the FPED and FNED are relatively large for all

three selection strategies (more than 4 pixels on average). This is because the basic

CNN model provides results with fuzzy edges, unfilled holes and producing some ran-

dom noise. Also, since the manual strategy selects frames with with large amount of
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Figure 3.7 – F-measure of various training frame selection strategies, various training
frames number and different thresholds.

foreground objects, the model trained on those frames have a tendency of producing

slightly more false positives hence why the FPED is larger for manual and FNED lower.

Evaluation of the Different CNN Models

In this section, we evaluate the performances of our CNN models. Four different models

have been trained, namely: (1) the basic CNN model, (2) the cascaded CNN model

(CNN + Cascade), (3) the multi-scale CNN model (MSCNN ), and (4) a multi-scale

with cascaded model (MSCNN + Cascade). Training frames are manually selected,

and the binarizing threshold is set to 0.7 for all the models.
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Table 3.2 – Results of the Basic CNN model with different training frame selection
strategies.

Strategy Training F-measure PWC FPED FNED

Random

50 0.68 0.89 5.65 4.73
100 0.75 0.67 3.57 4.42
150 0.85 0.49 4.84 3.9
200 0.87 0.40 4.68 3.71

Uniform

50 0.67 0.95 5.13 4.82
100 0.76 0.64 4.93 4.35
150 0.85 0.52 5.38 3.95
200 0.86 0.41 4.18 3.8

Manual

50 0.79 0.90 16.17 4.12
100 0.85 0.58 10.44 3.76
150 0.90 0.46 12.11 3.54
200 0.90 0.45 4.96 3.45

As can be seen in Table 3.3, the multi-scale and the cascaded architectures significantly

improve the performance. We can also see that the more training frames a model has, the

more accurate the end result it gets. The best performance is achieved by the MSCNN +

Cascade model, whose PWC, FPED and FNED are about 50% lower than for the basic

CNN model. Qualitative inspection of results reveal that the MSCNN is both accurate

on large and small foreground objects, it has a small number of isolated false positive

and false negative pixels, and the boundaries of the foreground objects are very well

defined.

We also show results for the MSCNN + Cascade model on each video category in Ta-

ble 3.4. By using only 50 frames for training, our model gets to segment videos from

four categories out of 11 with very high accuracy (F-measure > 0.95). By increasing

the number of training frames to 200, our model achieve outstanding performance for

most of the categories, e.g., F-measure of 0.96, PWC of 0.06, FPED of 2.3, and FNED

of 1.4 for pan-till-zoom (PTZ) videos and very good numbers of videos shot a night.

For more difficult categories such as Bad weather, Thermal and Turbulence, we get F-

measures above 0.94. Even for some pathological videos (especially "Low framerate"

and "Intermittent object motion" in which foreground objects can be very small), our

model achieves a good F-measure of 0.88.

72



3.4. EXPERIMENT AND RESULTS

Table 3.3 – Results of four different CNN models.

Model # training frames F-measure PWC FPED FNED

CNN

50 0.79 0.90 16.17 4.12
100 0.85 0.58 10.44 3.76
150 0.90 0.46 12.11 3.54
200 0.90 0.45 4.96 3.45

CNN+Cascade

100 0.90 0.47 7.80 2.82
50 0.88 0.53 8.88 3.15

150 0.92 0.37 5.68 2.55
200 0.93 0.37 5.68 2.37

MSCNN

50 0.87 0.51 5.80 3.51
100 0.88 0.44 3.57 2.56
150 0.91 0.35 4.27 2.86
200 0.92 0.31 2.56 2.2

MSCNN+Cascade

50 0.88 0.49 10.52 2.05
100 0.92 0.35 4.22 1.84
150 0.94 0.28 3.25 1.65
200 0.95 0.26 2.41 1.54

Comparison with Other Methods

We implemented other deep learning methods, but due to space limitation, we only re-

port results of the most accurate one which is the fully convolutional network (FCN)

[144] in this letter. The FCN model was designed to segment real images into differ-

ent semantic categories and reached state-of-art performances on several benchmark

datasets. The FCN model which we used is a re-implementation by the vlfeat team 1.

The only modification that we made to that model was the 2 class output (Background/-

Foreground). We trained the FCN the same way as we did for our method.

Quantitative results for MSCNN + Cascade and FCN are presented in Table 3.5. As

shown in the table, MSCNN + Cascade outperforms FCN on every metric with different

number of training frames. Note that these results are averaged across 11 categories

including some extreme cases like night videos, camera motion, and low frame rate

videos. Examples of results given by our method and FCN are shown in Fig. 3.8. As

shown in Fig. 3.8, FCN often mis-detects the foreground objects which leads to FN

1. https://github.com/vlfeat/matconvnet-fcn
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Table 3.4 – Metrics for MSCNN + Cascade on each CDnet video category.

Category
50 training frames 200 training frames

F-measure PWC FPED FNED F-measure PWC FPED FNED

Baseline 0.97 0.19 1.6 0.7 0.99 0.08 2.0 0.4
Dynamic backackground 0.95 0.08 1.9 2.0 0.98 0.03 1.7 1.7

Camera jitter 0.97 0.27 1.2 0.9 0.98 0.15 0.6 0.9
Intermittent Object Motion 0.87 1.24 0.8 0.7 0.88 1.30 0.6 0.5

Shadow 0.95 0.42 5.2 2.7 0.98 0.18 2.8 2.1
Thermal 0.89 1.01 15.4 3.2 0.95 0.44 4.0 2.3

Bad weather 0.79 0.90 65.4 4.3 0.97 0.11 2.3 3.1
Low framerate 0.74 0.24 5.8 1.6 0.88 0.09 6.9 1.3

Night video 0.87 0.75 1.6 2.8 0.93 0.38 1.1 2.1
PTZ 0.88 0.17 8.0 1.9 0.96 0.06 2.3 1.4

Turbulence 0.84 0.09 8.8 1.69 0.94 0.05 2.1 1.2

regions, while our method rarely has this problem. On the other hand, due to the FCN

upsampling strategy (please refer to [144] for more details on that), the foreground

objects it detected usually have a blobby shape, especially when the foreground and the

background have similar color distributions.

Table 3.5 – Results of our method and FCN with different number of training frames.

#training frames Method F-measure PWC FPED FNED

50
FCN 0.83 0.72 12.58 2.49

MSCNN + Cascade 0.88 0.49 10.52 2.05

100
FCN 0.85 0.61 8.18 2.30

MSCNN + Cascade 0.92 0.35 4.22 1.84

150
FCN 0.86 0.58 6.72 2.13

MSCNN + Cascade 0.94 0.28 3.25 1.65

200
FCN 0.87 0.56 5.58 2.00

MSCNN + Cascade 0.95 0.26 2.41 1.54

We also present in Table 3.6 the results obtained with the top 3 automatic motion de-

tection methods reported on the CDnet 2014 website, namely IUTIS-5 [26] (a method

which performs a smart majority vote of several motion detection methods), PAWCS

[208] (a non-parametric method), and SuBSENSE [209] (a non-parametric method).

As one can see, these results are far less accurate that those obtained by our method in

Table 3.2, 3.3, and 3.5.
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(a) PTZ (b) Bad weather (c) Thermal (d) Camera jitter (e) Dynamic
background

(f) Intermittent
object motion

(g) Turbulence (h) Low framerate (i) Night video (j) Shadow

Figure 3.8 – Results on the CDnet 2014 dataset. row 1: input frames, row 2: the ground
truth, row 3: the FCN results, and row 4: the results by our method.
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Table 3.6 – Results of the top 3 motion detection methods on the CDnet 2014 dataset.

Model F-measure PWC FPED FNED

IUTIS-5 0.77 1.20 219.83 4.37
PAWCS 0.74 1.20 243.12 4.78

SuBSENSE 0.74 1.68 309.43 4.76

3.4.4 Manual Labeling Accuracy

As mentioned at the beginning of the paper, our goal is to produce results sufficiently

accurate to be used as ground truth. One may thus conclude that since our model does

not reach a F-measure of 1 and a PWC of 0 in Table 3.2, 3.3, 3.4, and 3.5 it is not

accurate enough to be used as a reference. With the following experiments, we prove

that those worries are baseless since human raters can hardly obtained a F-measure of

more than 0.95 and that a F-measure of 0.94 is as precise as a 1 pixel erosion (or dilation)

of the CDnet 2014 ground truth.

Ground truthing is a subjective task as different persons may give different labeling

results for the same video. To evaluate how results vary from one person to another, we

selected 77 representative frames from the CDnet 2014 dataset and invited three persons

to label it. We then compared their results with the CDnet 2014 ground truth (which has

also been obtained by a person). Example is given in Fig. 3.9 and quantitative results

are in Table 3.7.

Table 3.7 – Results of manual labeling.

F-measure PWC FPED FNED

Person 1 0.93 1.18 3.7 5.3
Person 2 0.96 0.72 2.1 2.5
Person 3 0.96 0.72 4.4 3.5

Interestingly, none of the manually labeled results got a F-measure above 0.96. On

average, these persons got a F-measure of 0.948, a PWC of 0.87, and an error distance

of 3.6 pixels. This leads us to believe that a method with a F-measure above 0.94, a

PWC below 0.9 and an error distance of less than 3.6 pixels is within the error margin

of a human annotation. As shown previously, it is the case for our method.
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(a) Input

(b) Ground truth (c) Person 1

(d) Person 2 (e) Person 3

Figure 3.9 – Results showing the unavoidable variation between the ground truth and
the manual labeling obtained by three independent persons.
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We also noticed that a F-measure variation between 0.93 and 1.0 may be caused by a

very small number of wrongly classified pixels. In order to illustrate that claim, we

simply dilated the CDnet 2014 ground truth by 1 and 2 pixels and measured the impact

that operation had on the F-measure and the PWC (we did the same experiment with

the erosion operator). Although a simple erosion (or dilation) of one pixel may not

seriously affect the quality of the groundtruth (moving objects are only 1 pixel thinner

or fatter), it results into a F-measure of 0.94 and 0.93 (cf. Table 3.8). This shows again

that a method with F-measure of 0.93 and above may be considered almost as good as

the ground truth.

Table 3.8 – Evaluation results of dilating and eroding the ground truth.

Method #Pixel F-measure PWC

Dilate
1 0.94 0.31
2 0.88 0.73

Erode
1 0.93 0.33
2 0.86 0.63

Let us also mention that our method comes without any post-processing. After testing

a series of post-processing operations including superpixels aggregation, median filter,

open and closing morphological operations, we concluded that although post-processing

may help under certain conditions, it always degrades our overall results. This is yet

another indication that our method produces a very small number of false positives and

false negatives.

3.4.5 Experiments on the SBI2015 Dataset

We also tested our method on the Scene Background Initialization 2015 (SBI2015)

dataset [155] which contains 14 videos. Since this dataset does not contain any pixel-

accurate ground truth of background and foreground objects, we manually labeled each

video of the dataset. Also, as the SBI2015 videos are relatively short (e.g. "Toscana"

video contains only six frames), we randomly split each video into 20% frames for

training and use the remaining 80% for testing. Due to space limitation, we only re-

port results of our best model (MSCNN + Cascade) in Table 3.9 and also plot some
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representative results in Fig. 3.10.

Table 3.9 – Results of MSCNN + Cascade model on the SBI2015 dataset

Video F-measure PWC FPED FNED

Board 0.99 0.30 1.84 3.69
Candela_m1.10 0.98 0.12 1.80 3.97
CAVIAR1 0.995 0.03 1.70 1.69
CAVIAR2 0.95 0.04 2.03 1.48
CaVignal 0.97 0.58 1.33 1.42
Foliage 0.95 6.31 2.27 20.7
HallAndMonitor 0.97 0.16 1.93 2.04
HighwayI 0.98 0.30 3.36 5.62
HighwayII 0.98 0.10 2.10 7.20
HumanBody2 0.96 0.77 2.57 5.40
IBMtest2 0.95 0.48 2.58 4.53
PeopleAndFoliage 0.99 1.46 2.20 11.72
Snellen 0.33 45.84 13.74 30.23
Toscana 0.51 21.63 91.60 8.98

As can be seen from Table 3.9, our method achieves a F-measure of more than 0.95 for

12 out of the 14 SBI2015 videos. These results show again that our approach can be as

accurate as a human being. That is especially true on the CAVIAR1 video for which the

F-measure reaches 0.995. That said, we also noticed that our method performs poorly

on two videos. It is the case for the "Snellen" video which happens to be very difficult

even for a human as there is no clear boundary between the foreground and background

regions. As for the "Toscana" video, since it contains only 6 frames, the system does

not have enough training material to correctly learn the foreground and background

distributions (here only 2 frames were used for training). We shall also mention that the

main purpose of our approach is to reduce the burden of annotating long videos, which

is obviously not a problem with the "Toscana" video.

3.4.6 Processing Time

All the experiments were conducted on a GTX970 GPU with a MATLAB implemen-

tation. For a 1,700 frames long video with frame size of 320 × 240, it takes roughly
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(a) Board (b) Candela_m1.10 (c) CAVIAR1

(d) HighwayI (e) HighwayII (f) PeopleAndFoliage

Figure 3.10 – Examples of results of MSCNN + Cascade model on the SBI2015 dataset.
The first row shows input frames, the second row shows the ground truth, and the third
row shows the results obtained by MSCNN + Cascade model.
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14 minutes for our MSCNN + Cascade model to train 20 epochs with 200 frames and

2 minutes to segment the rest of the video. These 16 minutes are orders of magnitude

smaller than the time required to manually label the remaining 1,500 frames. In our

experience, on average it takes 30 seconds to label a 320 x 240 frame manually. Our

model decreases the time cost to 1/50 comparing with the manual labeling.

3.5 Discussion and Conclusion

In this letter, we proposed a highly accurate semi-automatic method for segmenting

foreground moving objects pictured in surveillance videos. With a small amount of user

intervention, our model can provide ground truth accurate labeling results. Our model

has shown to be successful in most video categories of the CDnet 2014 dataset and most

videos of the SBI 2015 dataset, with an average F-measure of 0.95 and PWC of 0.26.

The experiments reveal that:

— The best performing model involves a Multi-scale CNN with a cascaded archi-

tecture. Its results are systematically better than any other CNN models we have

tested.

— For a given video, only 50 to 200 frames are needed to be manually labeled. This

corresponds to a huge gain compared with the manual annotation of the entire

video (i.e. a factor of up to 40 for CDnet 2014 videos containing 8,000 frames).

— The number of training frames as well as the selection strategy depends on the

complexity of the video. As a rule of thumb, videos with fix illumination show-

ing a steady flow of well contrasted moving objects only require 50 training

frames chosen at random. For more complex videos such as "Night Videos"

which contains low-contrasted object and "PTZ" for which the camera moves

in all directions, a larger number of training frames (≈200) is required to reach

good results. Also, videos with sparse activity usually require the manual selec-

tion of the training frames, otherwise the system does not get enough foreground

objects to train on.

— Our approach is not void of limitations as we noticed its difficulty (F-measure

below 0.9) at dealing with very small foreground objects (cf. Fig. 3.11). Fortu-

nately, such situations are relatively infrequent.
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— Ground truthing is a subjective task and we showed that a labeling result with a

F-measure ≥ 0.94 and a PWC ≤ 0.8 can be considered within the error margin

of a human.

(a) (b)

Figure 3.11 – Examples of videos for which our method does not perform well.

Besides the model and results reported in this paper, we have tested many other CNN

models. However, due to space limitation, we couldn’t report all of it. We shall thus

draw a short summary of these methods whose results have been systematically worse

than our method.

In order to consider motion, we included a temporal gradient to the input RGB image

and trained our CNN models accordingly. However, we noticed that temporal gradient

is a poor indicator for low contrasted objects and produces ghosting artifacts in pres-

ence of intermittent motion (objects that stop for a short while and then leave). We also

concatenated a collection of frames in order to process 3D video volumes instead of 2D
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images. The results ended up being equal or worse, especially for videos with inter-

mittent motion object. Similar to [67], we segmented each image into superpixels and

combined it with the CNN segmentation results with the hope of improving accuracy

close to the borders. But that did not work out, especially for objects with a poorly

contrasted silhouette (typical of night videos). Inspired by [92], we tried to increase the

training set by copy-pasting foreground objects on top of a background image. Unfor-

tunately, we realized that adding fake foreground objects only helps when their color,

size, shape and orientation is rigorously identical to that of the actual foreground ob-

jects. And finally, as in [124], we implemented an hysteresis thresholding procedure

but again, it did not improve performance in any significant manner.

In the future, we will explore how to accommodate our method with a weakly-supervised

training approach according to which users may only provide rough strokes on top of

foreground and background regions. We shall also incorporate reinforcement learning

in order for the system to account for users’ corrections as well as 3D convolutional

layers in order to integrate the temporal dimension of the video.
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Chapter 4

Improving Pedestrian Detection Using
Motion-guided Filtering

Résumé

As mentioned before, motion detection can be used to improve the perfor-

mance of other computer vision tasks, e.g., pedestrian detection. The goal of

pedestrian detection is to detect the pedestrians in each frame of a video and

highlight them out with bounding boxes. A big challenge for pedestrian de-

tection is that false detections wildly exist because many background objects

have a humanoid shape. Objects such as a chair, a fire hydrant, a street light,

or just atextured area which happens to have the same features as that of a

pedestrian are often wrongly associated to pedestrians. One way to solve this

problem is to decrease the decision threshold of a pedestrian detector. How-

ever, while reducing the number of false detections, this will also significantly

increase the miss rate, which means the real pedestrians may also be missed

by the detector. In this chapter, we proposed a motion-guided filter based

model. The temporal gradient of foregrounds are extracted and accumulated

into motion history image (MHI). MHI is then combined with a nonlinear fil-

ter, which is used to filter the background in the video. A feedback loop is also
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added to guide the filter. In the end, a merging step is applied to remove more

false detections. By considering motion information, our model removes the

false positive and thus reduce the false positive rate significantly. This chap-

ter is published as a paper with title Improving pedestrian detection using

motion-guided filtering [240] in international journal of Pattern Recognition

Letter in 2016.
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Abstract

In this letter, we show how a simple motion-guided nonlinear filter can dras-

tically improve the accuracy of several pedestrian detectors. More specifi-

cally, we address the problem of how to pre-filter an image so almost any

pedestrian detector will see its false detection rate decrease. First, we roughly

identify moving pixels by accumulating their temporal gradient into a motion

history image (MHI). The MHI is then used in conjunction with a nonlin-

ear filter to filter out background details while leaving untouched foreground

moving objects. We also show how a feedback loop as well as a merging

procedure between the filtered and the unfiltered frames can further improve

results. We tested our method on 26 videos from six categories. The results

show that for a given miss rate, filtering out background details reduces the
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4.1. INTRODUCTION

false detection rate by a factor of up to 69.6. Our method is simple, compu-

tationally light, and can be implemented with any pedestrian detector. Code

is made publicly available at: https://bitbucket.org/wany1601/

pedestriandetection

4.1 Introduction

Despite the number of publications devoted to pedestrian detection, reliable human-

shape detection is still a work in progress. Detecting humans is a difficult task since

people may take very different poses, be pictured from different viewpoints, and be

occluded by objects or other pedestrians. Also, many background objects have a hu-

manoid shape thus leading to false detections. Objects such as a chair, a fire hydrant, or

just a textured area which happens to have the same features than that of a pedestrian are

often wrongly associated to pedestrians [69, 247]. At the same time, human detectors

are fundamentally ambivalent. A sensitive detector (one with a low decision threshold)

will detect most pedestrians but at the same time non-pedestrian background objects.

On the other hand, a more conservative detector (one with a higher decision threshold)

will have a low false positive rate but will suffer from a large miss rate.

In this letter, instead of proposing new features or an improved pedestrian detection clas-

sifier, we focus on the images a pedestrian detector is fed with. We propose a motion-

guided nonlinear filter whose goal is to filter out background details while leaving intact

everything that is likely to be a pedestrian. To achieve this, we compute a motion history

image (MHI) [56] at each frame. Since the content of the MHI is highly correlated with

moving objects (and thus pedestrians), we apply a Gaussian filter whose standard devi-

ation is proportional to the content of the MHI. By doing so, fixed background objects

are blurred out while areas around moving objects are left untouched. We show that the

number of false positives in pre-filtered images is drastically lower than in unfiltered

images. The reader shall note that although our filter has been validated with pedestrian

detectors, it can also be used in conjunction with other kinds of moving object detectors.

Furthermore, a feedback loop is used to update the MHI. This is done by using the

predicted pedestrians to update the background image. Our system also fuses results
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4.2. RELATED WORK

obtained on the original frames as well as on the filtered frames to decrease even more

the false positive rate.

The main contributions of this letter are:

— We propose a simple motion-guided filter which improves by a significant amount

the performance of off-shelf pedestrian detectors. The filter is independent of the

detector and works on a large variety of surveillance videos.

— The motion-guided filter has two novel characteristics. First, it implements a

Gaussian filter whose variance is dynamically adapted to the video (cf. Sec-

tion 4.3.2). Second, it benefits from a feedback loop which takes into account

the predicted bounding boxes (cf. Section 4.3.4).

4.2 Related Work

As of today, top performing pedestrian detectors mostly rely on sophisticated features

or discriminative classifiers [94, 172, 173]. At test time, these classifiers output a score

indicating how confident they are that a pedestrian is located in the currently-scanned

window. What differentiates most pedestrian detectors are the features and the classi-

fiers they use. Although histogram of oriented gradients (HOG) is probably the most

frequently-used feature [36, 127], local binary patterns (LBP) [42] and Haar-like fea-

tures [264] have also been shown effective. Since pedestrians are usually moving, sev-

eral methods use spatio-temporal features such as binary motion labels [137, 229] and

tracking [140, 236]. Other methods use richer features based on specialized hardware

such as stereo [19, 142] and infrared features [70, 268, 68]. A trend recently emerged

with deep learning where features are learned instead of being handcrafted [199].

The most common classifiers used for pedestrian detection are support vector machines

(SVM) [174], AdaBoost [84], Hough forests [75], and deep learning methods such as

convolutional neural networks (CNN) [199].

Motion detection is also used for pedestrian detection, [250] uses Gaussian mixture

model (GMM) in luma space and temporal saliency map obtained by background sub-

traction to extract semantic information, which is then used to adjust the pixel-wise
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learning rate adaptively. In [272], a video is split into spatio-temporal texture patches,

in which dynamic texture is extracted. In the end, a conventional GMM is used to sep-

arate foreground motion from background image. With an advanced conditional ran-

dom field model, [132] combined multiple motion and visual saliency induced features,

such as shape, foreground/background color models, and visual saliency, to extract the

foreground objects in videos. However, all these methods are only focused on motion

detection but never extended to pedestrian detection.

4.3 Proposed Method

As shown in Fig. 4.1, our method is a 5-step procedure made of: (i) a background

subtraction and MHI computation (Section 4.3.1), (ii) a nonlinear filter (Section 4.3.2),

(iii) pedestrian detection, (iv) bounding boxes fusion (Section 4.3.3), and (v) a feedback

loop (Section 4.3.4).

Passed frames I
t-n...t-1 Background B

t Δ t

MHI
t

Current frame I
t

Filtered frame I
t

f

Output on original 

frame O
t
o

Output on filtered

frame O
t
f

Final output O
t

Passed frames I
t-n...t-1

(i) Background subtraction and MHI computation
(ii) Nonlinear filter (iii) Pedestrian detection (iv) Bounding box fusion

(v) Feedback loop

Figure 4.1 – Pipeline of our method. At each time t, the current frame I t and the
background image Bt are used to update the MHIt, which is then used to filter the input
image. Pedestrians are detected in the filtered image I t

f and in I t. The two resulting
sets of bounding boxes are intersected. The ones detected in I t

f are used to update the
background image Bt.

4.3.1 Motion History Image (MHI)

The first step of our method is to identify where moving objects (and thus pedestrians)

roughly are. This information will later on be used to filter out background details.
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Motion is characterized with a temporal gradient:

∆t
(x,y) = |Bt−1

(x,y) − I t
(x,y)|, (4.1)

where (x, y) denotes the coordinates of a pixel, |·| is the Euclidean norm in the RGB

space, I t is the video frame at time t, and Bt−1 the background image at time t − 1.

Since in this step, the goal is to roughly detect the moving objects, Bt is updated with a

running average:

Bt
(x,y) = βt

(x,y)I
t
(x,y) + (1 − βt

(x,y))B
t−1
(x,y), (4.2)

where β(x,y) ∈ [0, 1] is the updating ratio which may be fixed or, as will be shown

in Section 4.3.4, adjusted according to a feedback loop. The initial background B0 is

obtained following a temporal median filter on the first 200 frames of the video.

Once the temporal gradient ∆t has been computed, we cumulate it into an MHI as

follows:

MHIt
(x,y) = max(∆t

(x,y), α∆t
(x,y) + (1 − α)MHIt−1

(x,y)), (4.3)

where α ∈ [0, 1] is the MHI updating ratio. MHI0 is initialized with zero values. The

max operator ensures the MHI always contains the latest and largest temporal gradients.

In this case, Eq. 4.3 can grasp short bursts of activity caused by fast moving objects. As

for the values of α and β(x,y), please refer to Section 4.3.4 and 4.4 for how we fix on it.

Note that Eq. 4.3 differs from the original MHI implementation by [56]. First, the use of

an α ratio allows to adjust the speed at which the MHI is renewed in time. Second, since

we directly cumulate the gradient instead of binary motion maps, there is no detection

threshold and thus one less parameter to tune.

Examples of MHI are shown in Fig. 4.2a and Fig. 4.2e. As can be seen, MHI aggregates

layers of motion so a pixel value is a function of the recent activity at that position. MHI

values are also strongly correlated with the presence of foreground moving objects: the

larger a grayscale value is at a given pixel, the more probable a moving object is at

that position. As opposed to background subtraction which produces binary maps, MHI

contains a much richer set of information, especially in low-contrasted areas. In fact,

MHI helps compensating for camouflage problems which happens when sections of a

moving object have a low temporal gradient. By cumulating gradients in time, it is likely
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2 – (a) MHI example on PETs 2006 video; (b) correlated filtered image with
σmax equals 1/5 of the image height; (c) filtered image with σmax equals 1/20 of the image
height; (d) σmax equals 1/100 of the image height. (e) MHI example of the CUHK square
video with (f) the filtered image with σmax equals 1/5 of the image height; (g) σmax

equals 1/20 of the image height; and (h) σmax equals 1/100 of the image height.

that a section of the moving object with a larger gradient will eventually compensate for

another.

4.3.2 Nonlinear Motion-Guided Filter

As mentioned before, pedestrian detectors often wrongly detect background objects

whose features happen to be similar to the ones of a pedestrian. In this section, we

propose an MHI-based nonlinear motion-guided filter to decrease the false detection

rate. Since the MHI-grayscale values are correlated with the presence of moving blobs,

the intuition behind our method is to strongly filter areas with low MHI values and filter

less (or not) for areas with higher MHI values. To achieve this goal, we first need to

model the likelihood of having a moving blob at time t given the content of MHIt, i.e.

foreground(MHI).

We first came out with an empirical model for foreground(MHI). We did so with

the CDnet 2014 dataset, the largest publicly-available video dataset with pixel-accurate
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ground truth. We took 54 videos and computed the MHI for each frame of them. Then

foreground(MHI) is computed by counting foreground and background pixels for each

MHI value (the MHI value is normalized into [0, 1]). The resulting curve is shown in

blue in Fig. 4.3. As can be seen, the chance of having a foreground moving object

is almost linearly correlated with MHI values. This is especially true for MHI values

larger than trcut = 0.2 while pixels with MHI values below trcut hardly correlate to any

motion. Note that the reason for which foreground(MHI) does not reach 1 is because

of motion detection errors, mainly due to camouflage effects (moving objects having

the same colors than fix background objects).

Now that the foreground-MHI model has been characterized, we may define our motion-

guided filter. We implemented a Gaussian filter Ĝ(0, σ) which we use to compute a

filtered version I t
f of the input image I t at time t following a convolutional operation

⊗ 1:

I t
f(x,y)

= gray(I t
(x,y)) ⊗ Ĝ(0, σt

(x,y)). (4.4)

Note that Ĝ is not a usual linear Gaussian filter since its standard deviation (std) σt
(x,y) is

a function of the likelihood of presence of a moving object, and therefore differs from a

pixel to another. According to our model, σt
(x,y) is calculated as:

σt
(x,y) = min(σmax, σmax × (1 + s × (MHIt

(x,y) − trcut)), (4.5)

where s = −1/1−trcut = −1.25 is the slope of the curve in Fig. 4.3b, and σmax is the

maximum standard deviation value which is set as 1/5 of the image height. Having

σmax be a function of the image height allows our method to work both on low and

high-resolution images. We empirically observed that a Gaussian filter with a std of 1/5

of the image height is large enough to filter out background details, as too large σmax

will decrease the filtering speed, while too small σmax can not remove the background

details. Using a appropriate σmax can also maintain the filter size small and thus reduce

the filtering time. The compare is shown in Fig. 4.2. Eq. 4.5 is illustrated by the red

curve in Fig. 4.3 which is the corollary of the blue curve. The std of our filter reaches

the maximum for MHI values below trcut (those values for which the chances of having

1. We transform It from RGB to gray because most pedestrian detectors work on grayscale images.
Furthermore, working on grayscale images reduces processing time.
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a moving object are low) and then decreases linearly between trcut and 1.
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Figure 4.3 – (a): MHI-foreground(MHI) model observed on 54 videos of changede-
tection.net dataset. (b): The σt

(x,y) model used in this letter, which is determined based
on the MHI-foreground(MHI) model.

Our filtering procedure comes with one great advantage. As some videos might be suf-

fering from camera jitter, background motion, compression artifacts, and illumination

changes, things that may create strong intensities in the MHI. Although these strong in-

tensities are inaccurate as they do not correspond to moving blobs, the only consequence

of it is to filter less in these areas, which makes the performance of the pedestrian de-

tection method closer to the one obtained by only processing the original image.

4.3.3 Merging Bounding Boxes

At this point, we have a filtered image I t
f whose background has been filtered out. That

image is then fed to a pedestrian detector (could be any detector, although results might
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vary from one detector to another). Compared with the results produced on the original

image I t, the result of the same detector applied on I t
f contains a much smaller number

of false detections, as will be shown in Section 4.4.

That being said, bounding boxes obtained with I t
f are not void of false detections. How-

ever, we empirically noticed that false detections in I t
f rarely correlate with those in I t.

While on the other hand since the nonlinear filter has little or no effect on foreground

moving objects, true positives are heavily correlated in I t
f and I t. Thus, one way of

reducing the number of false positives even more is by keeping bounding boxes that

overlap in I t
f and I t.

By considering BBt = {bbt
1, ..., bbt

n} and BBt
f = {bbt

f,1, ..., bbt
f,m} the bounding boxes

obtained with I t and I t
f respectively, where bb stands for the bounding box, the resulting

bounding boxes returned by our system is a combination of both:

BBt
final =

{

bbt
i ∈ BBt

∣

∣

∣

∣

∣

∃j,
bbt

i ∩ bbt
f,j

bbt
i ∪ bbt

f,j

≥ trmerge

}

. (4.6)

The sole objective of this equation is to keep those bounding boxes in the original frame

which overlaps with those in the filtered frame. While this procedure does not affect the

number of true positives and false negatives much, it significantly reduces the number

of false detections.

Results on the original, filtered and merged results are shown in Fig. 4.4. As can be

seen, even though false positive detections still exist in the filtered image (Fig. 4.4b),

the false detections are different from those in the original frame (Fig. 4.4a). Keeping

the overlapping bounding boxes in these two results into a smaller number of false

positives (Fig. 4.4c).

4.3.4 Detection-Guided Model for Background Update

Since the adaptive background model updates the entire frame (cf. Eq. 4.2), a pedestrian

which stays motionless for some time will be slowly integrated into the background.

To fix this problem, we propose a detection-guided background model, for which the

background updating ratio β is adapted following a feedback loop based on the detection

94



4.3. PROPOSED METHOD

(a) (b) (c)

Figure 4.4 – (a) Detection result on the original frame; (b) detection result on the filtered
frame; (c) detection result after merging the results from (a) and (b).

results (i.e. a lower ratio in areas covered by a pedestrian and a higher ratio elsewhere).

This feedback loop is illustrated with the purple arrow in Fig. 4.1. To achieve this,

we first use Eq. 4.7 to compute a detecting score map (DSM) for each pixel from the

detection results:

DSMt
(x,y) = max

(

0, min

(

1,
st

(x,y) − smin

smax − smin

))

⊗ G, (4.7)

where G is a 5 × 5 Gaussian filter with mean and standard deviation (0, 0.5) for smooth-

ing out the DSM, smin and smax are the minimum and maximum confidences for the

detector, and st
(x,y) is the maximum confidence at location (x, y) at frame t estimated by

the pedestrian detector:

st
(x,y) = max

{

score
(

bbt
f

)
∣

∣

∣bbt
f ∈ BBt

f , (x, y) ∈ bbt
f

}

, (4.8)

where score
(

bbt
f

)

is the confidence the detector has that the estimated bounding boxes

do contain a pedestrian. That confidence value is typically related to the distance be-

tween the feature vector of a bounding box and the decision hyperplane.

Then the adaptive ratio for each pixel is calculated as:

βt
(x,y) = βmax × (1 − WDSM × DSMt

(x,y)), (4.9)

where βmax is the maximum updating ratio empirically determined following some ex-

periments (details in Section 4.4), and WDSM ∈ [0, 1] is the weight for DSM for back-
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(a) Input frame (b) Correlated DSM

Figure 4.5 – The input frame and the DSM calculated based on the frame.

ground updating. An example of DSM is shown in Fig. 4.5. The intuition behind this

equation is that the more confident a pedestrian detector is over a certain pixel (x, y),

the larger DSMt
(x,y) will be at that place and thus, the smaller the updating ratio βt

(x,y)

will be.

The parameters of our method are summarized in Table 4.1.

Table 4.1 – Parameters in our pipeline.

Parameter Value Description

α 0.8 MHI updating ratio
βmax 0.016 Maximum background updating ratio
σmax

1/5 image height Maximum std of the Gaussian filter
s -1.25 The slope of the MHI-σ model in Fig. 4.3b
trcut 0.2 MHI lower than it will not be considered
trmerge 0.5 Overlapping threshold for bounding merging
WDSM 0.9 DSM weight

4.4 Results and Analysis

We tested six different pedestrian detectors namely (1) the Aggregate Channel Fea-

tures (ACF) by [58] which uses HOG + LUV features with boosting decision trees,
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Table 4.2 – Factors by which the miss rate increases and the FPPI decreases after apply-
ing our system.

Baseline Small Pedestrians Standstill Different Position Thermal Crowded Scene
Detector miss rate ↑ FPPI ↓ miss rate ↑ FPPI ↓ miss rate ↑ FPPI ↓ miss rate ↑ FPPI ↓ miss rate ↑ FPPI ↓ miss rate ↑ FPPI ↓

ACF 2.1 9.7 1.6 8.1 2.5 8.3 3.2 17.5 3.8 7.4 1.9 4.6
HOG+SVM 1.6 9.8 1.3 19.9 1.8 14.8 1.6 19.6 1.3 17.6 1.1 1.4

C4 1.3 8.1 1.4 8.0 2.2 26.0 2.1 69.6 2.5 15.6 1.3 2.1
DPM 1.4 8.3 1.4 5.5 1.7 7.9 1.9 19.9 2.8 6.1 1.1 8.3
SPF 1.3 12.3 1.6 4.5 1.9 8.4 2.2 13.4 2.5 5.8 1.1 2.2

DeepPed 3.1 11.3 1.6 13.4 4.3 13.3 4.6 23.6 1.6 4.9 1.6 30.2

(2) HOG+SVM by [55] which uses HOG feature and SVM, (3) C4 by [247] which

uses the CENTRIST visual descriptor and a linear classifier, (4) the Deformable part

model (DPM) pedestrian detector by [69], a part-based detection model with modified

HOG features and a latent SVM classifier, (5) DeepPed by [218], a deep learning based

pedestrian detector, and (6) the Spatially Pooled Features (SPF) by [174], which extracts

low-level visual features including motion-based features like us (color (LUV), gradient

magnitude, orientation bins, histogram of optical flow, spatially pooled covariance and

spatially pooled LBP).

We first determined parameters i.e. α and βmax for our model. For each pair of α and

βmax values, we calculated the MHI values for videos in changedetection.net. Given

pixel-level ground truth, the distributions of foreground and background over MHI val-

ues are calculated as shown in Fig. 4.6a. We then tried to minimize the error which is

defined as the overlapping area between these two distributions to determine the α and

βmax parameters as Eq. 4.10.

α∗, β∗
max = arg min

α,βmax

∫ 255

x=0
min

(

fα,βmax

f (x), fα,βmax

b (x)
)

dx, (4.10)

where ff and fb are the distributions of foreground and background, which are calcu-

lated by normalizing their respected histograms of MHI values.

As shown in Fig. 4.6b, the error reached its minimum value with α = 0.8 and βmax =

0.016, which will be used in Eq. 4.3 and Eq. 4.9. The reader shall also notice that since

the error plot is relatively flat near (0.8, 0.016), our model is insensitive to small changes

of α and βmax. In other words, our method has a smooth behavior when α and βmax are

changed.

97



4.4. RESULTS AND ANALYSIS

(a) Example of foreground and background distributions (ff (α, βmax) and fb(α, βmax)) calculated based
on changedetection.net for a pair of values (α, βmax). The green area is related to the error rate one would
have if the MHI value was used to determine if the pixels are in the foreground or the background. This
is a quantity we want to minimize.
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(b) Error map of MHI for different α and βmax. The optimal parameters are α = 0.8 and βmax = 0.016.

Figure 4.6 – Procedure used to determine the optimal values for α and βmax.
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(a) Baseline (b) Small pedestrians (c) Different position

(d) Standstill (e) Thermal (f) Crowded scene

Figure 4.7 – Six categories for testing: (a) Baseline; (b) Small pedestrians; (c) Different

Position; (d) Standstill; (e) Thermal; (f) Crowded Scene.

In order to gauge performances, we tested our method on 26 videos containing indoor

and outdoor scenes. These videos come from the Caviar dataset [40], the changede-

tection.net dataset [237], the CUHK Square dataset [232], the TownCentre dataset [23]

and the PETS 2009 dataset. We categorized those videos into six classes: (1) "Baseline"

which contains videos with common circumstances; (2) "Small Pedestrians" which con-

tains pedestrians with a height of roughly 50 pixels; (3) "Different Position" which con-

tains pedestrians pictured from a top-down perspective; (4) "Standstill" which contains

pedestrians that stay motionless for a certain period of time; (5) "Thermal" which con-

tains videos shot by infrared cameras and (6) "Crowded Scene" which contains groups

of pedestrians walking together. Examples of the testing dataset are shown in Fig. 4.7.

Let us also mention that 18 of those videos contain either background motion, different

types of reflection, strong shadows, and illumination changes.

Typical results obtained with and without our system are shown in Fig. 4.8. These

snapshots illustrate how our system can strongly reduce the number of false detections

while keeping the true detections almost untouched.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8 – Results obtained without [top] and with [bottom] our system. (a) C4 on
a "Baseline" video; (b) HOG + SVM on a "Small Pedestrians" video; (c) DPM on a
"Different Position" video; (d) ACF on a "Standstill" video; (e) SPF on a "Thermal"
video; (f) DeepPed on a "Crowded Scene" video.

Although a variety of evaluation metrics exists [25], in this paper we report results in

terms of miss rate and false positives per image (FPPI). Please note that the metrics

for each category are not obtained by averaging the results from every frame of every

sequence. Instead, we extract a subset of N (uniformly spaced) frames per video, where

N is the number of frames in the shortest video of the category. All the frames selected
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in a category are considered as a unique set. This selection allows to avoid biasing the

results in favor of longer videos (their lengths vary from 131 to 7,200 frames).

As shown in Fig. 4.9, our system pushes drastically to the left the curves of each pedes-

trian detector. In Table 4.2, we compare the miss rate and FPPI value before and after

applying our system. In this case, each detector use the same set of parameters (includ-

ing their threshold) when processing the filtered and the unfiltered images. The FPPI

ends up decreasing by a factor between 1.4 and 69.6. On average, the FPPI decreases

by a factor of 13.0 for each detector, while the miss rate increases by a factor less than

2 on average. It is quite remarkable to see that, for all six tested detectors and all six

categories, the targeted FPPI decrease is always higher than the increase of miss rate

that is an unavoidable side effect. This again shows how successful our method is at re-

ducing the FPPI without increasing much the miss rate. As can be seen, even the recent

DeepPed method which uses a deep learning method and as such, performs very well

on its own, sees its FPPI decrease by a factor of up to 21.

Table 4.3 – FPPI values for a fixed miss rate of 0.7.

Detector Baseline Small Pedestrians Standstill Different Position Thermal Crowded Scene

Original 22.7 11.4 4.8 10.4 1.5 15.9
ACF Filtered 4.4 1.0 0.9 2.3 0.6 5.0

Merged 2.3 1.0 0.7 1.2 0.5 4.3

HOG Original 5.9 10.4 0.7 2.6 0.4 -
+ Filtered 1.6 0.4 0.4 0.6 0.3 -

SVM Merged 0.6 0.4 0.2 0.2 0 -

Original 18.5 6.6 2.4 35.3 1.2 2.6
C4 Filtered 3.8 2.0 1.5 5.2 0.1 1.9

Merged 1.4 0.7 0.4 1.1 0.1 1.7

Original 8.3 4.0 1.3 7.1 4.3 7.1
DPM Filtered 2.3 1.9 0.6 1.3 1.5 2.6

Merged 1.2 1.0 0.2 0.4 1.2 0.9

Original 15.6 8.0 5.9 25.5 6.0 28.3
SPF Filtered 4.6 1.0 1.5 4.7 1.7 15.2

Merged 3.5 0.8 1.4 2.8 1.5 14.7

Original 3.4 2.1 1.2 1.6 0.6 4.2
DeepPed Filtered 1.4 1.0 0.3 0.7 0.3 0.4

Merged 0.5 0.2 0.1 0.2 0.2 0.2

Table 4.3 contains FPPI values obtained after processing the original frames, the filtered
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Figure 4.9 – Miss Rate-FPPI curves for six video categories.

frames, and after merging the bounding boxes for a fix miss rate of 0.7. Our motion-
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guided filter can decrease the FPPI by a factor of up to 26 while our merging procedure

can decrease it by a factor of up to 32.

Experiments were conducted on a 2.8GHz Intel computer with a MATLAB implemen-

tation. On average, for a 461 × 615 frame, our system takes approximately 0.03 secs

to update the background, compute the MHI and filter the image. Considering the 0.06

sec to detect a pedestrian with HOG+SVM, 0.1 sec with C4, 5.6 sec with DPM, 2.7 sec

with SPF, and 1.56 sec with DeepPed (GPU GTX 970), our pre-processing method does

not bring a major processing overhead.

4.5 Conclusion

We proposed a system which can be combined with almost any existing pedestrian

detector. The core of our method is a motion-guided filter relying on MHI to nonlinearly

filter video frames by redfiltering out background details. Our results demonstrate that a

motion detection algorithm can be helpful to boost the performance of a person detector,

and that a person detection algorithm is valuable to predict the areas in which motion can

occur. Our method leverages these two observations thanks to a feedback loop, which

is an extension of [238]. The experiments show that our method decreases the FPPI

rate drastically without increasing much the miss rate. Our method has been shown

successful with four pedestrian detectors on six different video categories. In the future,

more features can be considered to be combined in the method to improve the accuracy.

We will also extend the model to apply it not only for pedestrian detection, but also for

more general detecting tasks, e.g. vehicle detection.
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Chapter 5

Extensive Benchmark and Survey of
Modeling Methods for Scene
Background Initialization

Résumé

The most straight forward way to extract motion from a video is the "back-

ground subtraction" strategy, which models a clean background without any

foreground and compares each frame in the video with it. The significant dif-

ference between the video frame and the background model is considered to

be the foreground. In this case, how to initialize the background and update

it is a key technology. A large number of background initialization meth-

ods are proposed, however, the number of background initialization dataset

and benchmarking is very limit. As a result, plenty negative implications are

caused such as: (1) it is difficult to rationally compare the relative accuracy

and robustness of different methods. (2) It is difficult to re-implement a back-

ground modeling method and reproduce its results. (3) It is hard to predict

how would those methods work when the assumptions they built upon are vi-

olated. In this paper we proposed a survey of background modeling methods
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and a novel benchmarking framework for background modeling. A carefully

analysis of the state-of-the-art methods is also given. This article was ac-

cepted as a paper with title Extensive Benchmark and Survey of Modeling

Methods for Scene Background Initialization to IEEE Transactions on Im-

age Processing 2016.

Commentaires

An workshop and challenge 1 in conjunction with the International Confer-

ence on Pattern Recognition (ICPR) 2016 was organized by the other authors.

The website of the dataset and the workshop was built and maintained by the

Ph.D. candidate. The python evaluation code was written by the Ph.D. candi-

date. The experiments were mostly run by the Ph.D. candidate, and the paper

was partly written by the Ph.D. candidate. The authors of the paper were

alphabetically ordered.

1. http://scenebackgroundmodeling.net/
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Abstract

Scene background initialization is the process by which a method tries to re-

cover the background image of a video without foreground objects in it. Hav-

ing a clear understanding about which approach is more robust and/or more

suited to a given scenario is of great interest to many end users or practi-

tioners. The aim of this paper is to provide an extensive survey of scene

background initialization methods as well as a novel benchmarking frame-

work. The proposed framework involves several evaluation metrics and state-

of-the-art methods, as well as the largest video dataset ever made for this

purpose. The dataset consists of several camera-captured videos that: (i) span

categories focused on various background initialization challenges; (ii) are

obtained with different cameras of different lengths, frame rates, spatial res-
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5.1. INTRODUCTION

olutions, lighting conditions, and levels of compression; (iii) contain indoor

and outdoor scenes. The wide variety of our dataset prevents our analysis

from favoring a certain family of background initialization methods over oth-

ers. Our evaluation framework allows us to quantitatively identify solved and

unsolved issues related to scene background initialization. We also identify

scenarios for which state-of-the-art methods systematically fail.

5.1 Introduction

Initializing and updating a scene background model is of paramount importance for a

large number of applications, such as motion detection, object counting, crowd monitor-

ing, action recognition, and video segmentation [200, 187, 263, 265]. As such, a quick

search for "background initialization" and "background modeling" leads to hundreds

of scientific publications. New methods are being devised for addressing well known

issues related to background initialization, such as illumination changes, intermittent

object motion, background motion, low-frame rate, and highly cluttered videos [81].

Recent surveys have been published on background modeling [253, 201] as well as on

motion detection [28, 54], and well settled initiatives have been carried out in order to

evaluate the existing background modeling methods for the purpose of foreground de-

tection [220, 81]. However, the initialization aspect of background modeling is often

neglected, assuming emptiness hypotheses on initial video frames. Background initial-

ization is still necessary, not only for the (usual) case those hypotheses are not verified,

but also in further applications, such as video compression [180], video inpainting [51],

privacy protection for videos [163], and computational photography [3], where the avail-

ability of an image of the background free of moving objects is fundamental.

Also known as "video bootstrapping", "background estimation", "background recon-

struction", "initial background extraction", and "background generation", the goal of

initializing a background model may be defined as follows: given a temporal sequence

of images taken by a static camera showing a background scene with foreground ob-

jects on top of it, the aim is to recover a model that is able to provide an image of the

background without the foreground objects. The background image may be valid for
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the entire video or updated in time in case the background configuration changes over

time due to illumination changes or to the displacement of background objects.

Over the past two decades, many techniques have been proposed for background initial-

ization, but only initial efforts have been made to propose a benchmarking framework

devoted to an objective assessment [150, 155]. The lack of a comprehensive evalua-

tion framework has a number of negative implications. First and foremost, without a

common evaluation ground, it is difficult (if not impossible) to rationally compare the

relative accuracy and robustness of different methods. This results into a large number

of methods all claiming robustness to their own data, but with no clear understanding

on which approach is best suited to a given scenario. Second, since authors rarely share

code and often use their own data (which are not always publicly available), it is dif-

ficult to re-implement a method and reproduce its results. Indeed, the implementation

of a given method, as well as the correct tuning of its parameters, may vary signifi-

cantly from one developer to another. This results into papers comparing their methods

with simple (and yet easily re-implementable) methods and implies the alienation of

more complex state-of-the-art approaches. Third, while some algorithms perform well

in some scenarios, it is very hard to predict how those methods work when the assump-

tions they are built upon are violated. As such, algorithms often tend to overfit specific

scenarios and their generalizations to other videos are hardly predictable. For example,

a background initialization method robust to background motion might not necessarily

work well on highly cluttered videos, and vice versa.

Recognizing the importance of background initialization for the video analytics com-

munity, we believe that an extensive evaluation framework containing well-known eval-

uation metrics, as well as an exhaustive dataset containing different scenarios, would go

a long way towards providing an objective assessment. In this perspective, we gathered

a scene background modeling benchmarking framework, that the scientific community

can access via the URL http://SceneBackgroundModeling.net (SBMnet)

and organized the ICPR 2016 Scene Background Modeling (SBM) Challenge. The

framework includes 79 videos distributed into eight different categories, each repre-

senting a specific challenge. Each video comes with two scene background models

to be adopted as ground truth: one (or more) background image(s) and a pixel-wise

non-parametric model. These ground truths allow an extensive evaluation of various
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methods, in terms of seven metrics. Being completely automatic, the online evaluation

system allows researchers to upload their results and compare their methods with others.

The main contributions of this work are as follows:

1. Study several evaluation metrics and measure how good these metrics are at rank-

ing models for background initialization.

2. Propose an automatic online system for ranking scene background initialization

methods.

3. Propose the largest dataset ever made for gauging performance of scene back-

ground initialization methods and, from there, identify solved and unsolved is-

sues.

4. Provide an evaluation framework for background modeling complimentary to

those devoted to foreground detection.

The reminder of this paper is organized as follows. In Section 5.2 we review the state-

of-the-art background initialization methods. In Section 5.3, we describe details of the

SBM challenge, including the dataset, the metrics, the ranking strategy, and the prob-

ability density function model we use. Experimental results are shown in Section 5.4,

while Section 5.5 draws the conclusion.

5.2 State of the Art

Background initialization methods can be classified according to different aspects [33].

Useful insight can be gained by considering the way they model the inter-pixel relation-

ship.

Pixel-level methods: These are among the most widely implemented methods whose

main characteristic is to process each pixel independently. Examples of such methods

include the temporal mean [156], the temporal median [130, 143], and the tempo-

ral histogram [269], eventually corroborated by a reward/penalty mechanism in its up-

date [48, 52]. To improve the simple temporal median filter, Wang and Suter [227] pro-

pose a RANSAC-based method that tolerates more than 50% outliers. Kim et al. [117]
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propose a method that combines pixel-level edge difference and brightness difference

to model the background. Even though straightforward, these methods have their own

limits. Indeed, since they ignore spatial relationships among pixels, these methods are

sensitive to "ghosting" artifacts (i.e., when the estimated background contains parts of

foreground objects) and other issues that require higher-level analysis, such as local or

global illumination changes.

Region-level methods: These approaches take advantage of inter-pixel relationship

through Markov random fields (MRF) or conditional random fields (CRF), or by subdi-

viding the images into non-overlapping regions. MRF- and CRF-based methods involve

a two-term energy function, often optimized by graph-cut [49, 44] or loopy belief prop-

agation [252]. In [49], the data term accounts for pixel color stationarity and motion

boundary consistency, while the interaction term looks for spatial consistency in the

neighborhood. In [44], the data term is made of two parts: a stationary pixel color term

and a predicted term for stable pixels obtained using an image inpainting technique. The

method by Xu et al. [252] is similar to [49], although it implements a simpler data term

and a different optimizer. The Photomontage [3] method also involves a MRF graph-

cut optimizer. However, it first extracts regions of pixels which exclusively contain the

scene background. The energy function is then constructed at the level of those regions.

The work by Lin et al. [139] uses a classifier to determine background blocks and then

updates the background image with it. Note that region-level methods usually have a

higher computational complexity than pixel-level methods.

Hybrid methods: These approaches operate at both pixel- and region-level, and thus

provide a compromise between efficiency and accuracy. For example, Wallflower [219]

uses a pixel-wise Wiener filter [243] to estimate a background image and then refines

it with a region-level and a frame-level method to avoid intermittent motion and illumi-

nation change problems. Colque and Cámara-Chávez [52] propose a hybrid variation

of the method of [48], where the temporal histogram is updated region-wise. Nonaka

et al. [168] also implement a multi-level background estimation method. Here, a pixel-

wise probability density function (PDF) is estimated by using a Parzen Density Estima-

tion [179]. The spatial similarity is considered at the region level and the brightness is
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normalized at each frame.

Further insight on background initialization methods can be gained by grouping these

methods based on shared methodologies.

Subsequences of stable intensity: These methods come with a two-phase structure.

Based on the assumption that a background pixel is one with a stable RGB color over

time, a set of non-overlapping temporal subsequences with similar color values ("stable

subsequences") is first selected for each pixel or image region. Then, the best subse-

quence is selected according to some criterion and its average color is used as back-

ground color. In [86], the authors separate a video into subsequences with maximum

length of six frames for each pixel. The best subsequence is selected according to a

maximum likelihood criterion. In [227], after locating the non-overlapping stable sub-

sequences for each pixel, the best subsequence is chosen with the highest reliability as

defined in [72]. In [176], the most likely stable subsequence is selected in the subin-

terval in which co-located regions are statistically similar, and the median is applied

pixel-wise.

Iterative model completion: These methods construct the background image in an

iterative manner. At first, they identify areas in the video where no activity has been

detected. These areas are copy-pasted and serve as background initialization. From

there, the background model is iteratively completed based on criteria that vary from

one method to another. In [14, 95], video frames are first split into blocks and the stable

ones are labeled as background. The missing blocks are filled by those whose frequency

spectrum is coherent with the neighboring background. In [50], patches subdivided from

a video are temporally clustered. The background is recursively grown by selecting the

patch which provides the best continuation of the current background. In the block-level

recursive technique proposed in [190], for each block location of the image sequence, a

representative set is maintained which contains distinct blocks obtained along its tempo-

ral line. The background initialization is recasted as a MRF labeling problem, where the

clique potentials are computed based on the combined frequency response of the candi-

date block and its neighborhood. It is assumed that the most appropriate block results in

the smoothest response, indirectly enforcing the spatial continuity of structures within
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a scene. In [171], the authors temporally cluster background blocks as candidates for

each location and background seeds are spatially initialized. The background model is

then estimated iteratively from the seeds by considering both inter-block and intra-block

smoothness constraints.

Missing data reconstruction methods: These approaches are those for which the

area covered by foreground objects is considered as missing background information

that shall be recovered. For example, [51] considers the background initialization pro-

cess as an instance of video inpainting, aiming at eliminating from the sequence all the

foreground objects (considered as holes to be filled in) using the remaining visual in-

formation to estimate a statistics of the entire background scene. In [205], the problem

is formulated as a matrix completion task, later extended to tensor completion [206],

where the image sequence is revealed as partially observed data. Missing entries are

induced from the moving regions based on motion detection, and their reconstruction

can be achieved by any matrix or tensor completion method. Also robust principal

component analysis (RPCA) can be adopted for decomposing a matrix composed by

the observed video frames into a low-rank matrix (the scene background) and a sparse

matrix (the scene foreground) [30]. Based on this idea, a RPCA-based motion-aware

regularization of graphs on the low-rank component is proposed in [103, 104] in order

to better handle background variations.

Neural networks: These methods formulate the problem of background initialization

as an unsupervised or supervised classification problem. A method for background es-

timation based on a neural network model previously adopted for change detection is

proposed in [41]. The system analyzes video information and detects video scenario sit-

uations, classifying the video into four different modules to make appropriate parameter

adjustment according to those situations. Learning rates for each pixel are automatically

computed according to the results of the two parallel neural networks and of the video

classification module. A neural background model based on self-organization is ex-

ploited in the SC-SOBS method for static [154] or PTZ [71] cameras, that well adapts

to background initialization [151]. A method based on a convolutional neural network

(CNN) is proposed in [88]. The CNN starts with a "contractive" stage (a series of convo-
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lutions) followed by a "refinement" stage (a series of deconvolutions), so that the output

of the net has the same size than the input. Since the authors implement a L2 loss, their

CNN performs a regression instead of a classification, as is usually the case for such

networks.

Online and Offline methods: Several background initialization methods implement

online algorithms which process a video frame by frame, without going back in time [156,

190, 57, 41]. Online approaches are well-suited for devices that cannot store more than

a few frames at the same time, such as IP cameras. Ironically, one advantage of these

methods is also their main limitation. While these methods always end up incorporating

changes that happen in the background (e.g., illumination changes that occur through

the day), they may also wrongly include into the background slowly moving objects

or objects which stay motionless for some time before they move away, such as cars

waiting at a red light. These are the so-called intermittent object motion artifacts [81].

Offline algorithms compute the background image by considering the entire video as a

whole [219, 53, 143]. Methods relying on a temporal median filter [130] usually fall into

this category, as well as eigenbackground methods that use principal component analy-

sis to capture the main component of the video [169, 28], or genetic algorithm methods,

where survival-of-the-fittest and genetic evolution are used to search better background

candidates [116]. Offline methods often have memory issues when the video is long and

are generally slower than online methods.

We point out that several motion detection methods based on background modeling have

been published over the years (extensive surveys can be found in [31, 28, 29], and [81]).

Many of these methods involve a pixel-wise probabilistic model, such as a Gaussian

mixture model (GMM) [211], a mixture of general Gaussians [8], or a kernel density

estimation [63, 90]. Some methods implement a Bayesian spatio-temporal model of

both the background and the foreground [202, 165, 166]. Others, like "Vibe" [15] and

PBAS [93], implement a non-parametric and stochastic strategy to model each back-

ground pixel with a random subset of pixel values from the recent past. Although these

methods are very good at modeling temporal variations of the background, they are

nonetheless ill-suited for generating a single RGB background image, and thus in the

following they are not considered for comparison.
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5.3 Benchmarking Framework

5.3.1 Dataset and Video Categories

The proposed SBMnet dataset provides a realistic and diversified set of 79 videos 2 com-

ing from our personal collection as well as from public datasets, which we referred to

in Table 5.1. In order to prevent the dataset from having a bias towards a category of

methods, the videos come from different cameras, including IP cameras, web cams,

and DV cams, all with a different compression level, resolution, and frame rate. While

some videos are computer-generated, most of them come from real surveillance cameras

located indoor and outdoor, showing day-time and night-time scenes of traffic, pedes-

trians, and wild life.

Table 5.1 – Publicly available datasets from which the SBMnet videos come from.

Acronym Related references Web site
ATON Prati et al. [186] http://cvrr.ucsd.edu/aton/shadow/index.html

BMC2012 Vacavant et al. [220] http://bmc.iut-auvergne.com

CDNET
Goyette et al. [80] http://wordpress-jodoin.dmi.usherb.ca/dataset2012/

Wang et al. [237] http://wordpress-jodoin.dmi.usherb.ca/dataset2014/

CIRL Anderson et al. [10] http://www.derektanderson.com/fallrecognition/datasets.html

CMU Sheikh et al. [202] http://www.cs.cmu.edu/~yaser

EPFL Fleuret et al. [73] http://cvlab.epfl.ch/data/pom

Fish4Knowledge Kavasidis et al. [113] http://groups.inf.ed.ac.uk/f4k/

ICRA2010
http://www.cs.utexas.edu/~changhai/icra10-datasets/datasets.html,
no more available.

IPPR2006 http://media.ee.ntu.edu.tw/Archer_contest/, no more available.

LASIESTA Cuevas et al. [54] http://www.gti.ssr.upm.es/data/LASIESTA

LIMU Yoshinaga et al. [258] http://limu.ait.kyushu-u.ac.jp/dataset/en/

MIT Wang et al. [235] http://www.ee.cuhk.edu.hk/~xgwang/MITtraffic.html

PETS2001 ftp://ftp.pets.reading.ac.uk/pub/PETS2001/

SABS Brutzer et al. [37] http://www.vis.uni-stuttgart.de/index.php?id=sabs

VSSN2006 http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC/, no more available.

UCF Ali et al. [5] http://crcv.ucf.edu/data/

The videos span eight categories, selected to include diverse scene background initial-

ization challenges:

— Basic: the category represents a mixture of mild challenges typical of the back-

ground motion, camera jitter and intermittent object motion categories. Some

videos have subtle background motion, others contain bad weather, some show

2. All the videos are available through the SBMnet webpage http://

SceneBackgroundModeling.net.
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blurry underwater scenes. That being said, none of those challenges is very sig-

nificant. These basic videos have frame rates of more than 20 fps and contain a

small amount of well-contrasted foreground objects moving fluidly through the

video. These videos are provided mainly as a reference on which every method

should perform well.

— Intermittent motion: this category includes videos with scenarios known for

causing "ghosting" artifacts in the estimated background. These might be caused

by objects that move, then stop for a short while, and then start moving again.

Some videos also include abandoned objects or background objects that sud-

denly start moving, e.g., people that stand still for most of the video and then

leave the scene. This category is intended for testing how various algorithms

adapt to scenarios in which objects move in a non-fluid manner.

— Clutter: videos in this category contain a large number of foreground moving

objects occluding each other as well as a large portion of the background. In

this case, clutter is either caused by a large amount of small objects (e.g., fishes,

cars, and pedestrians) or by a small amount of large objects (e.g., persons or

foliage located right in front of the camera) occupying a large portion of the

visual field. The main challenge of this category is to cope with videos whose

pixels are often occupied by foreground objects more than 50% of the times, i.e.,

above the threshold that can be tolerated by methods based on temporal median

filtering.

— Camera jitter: this category contains indoor and outdoor videos captured by

unstable cameras. The jitter magnitude varies from one video to another. Jitter

is caused by wind or vibration due to an engine located close by or by a hand-

held camera. This can be an issue for pixel-level methods that are unable to take

into account spatial information available in the neighborhood of each pixel.

— Illumination changes: this category includes indoor and outdoor videos that

contain mild or strong illumination changes due to light switching, curtains

opening, automatic camera brightness adjustment, or varying shades when the

clouds alter the sunlight. The main challenge with this category comes from

the fact that the background evolves over time and thus any method relying on

some kind of temporal median filter will end up smudging light-shaded and dark-

shaded portions of the videos and producing a corrupted solution. This is also an
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issue for methods devoted to non-temporal image sequences (e.g., for computa-

tional photography [82]), where the temporal order of input frames is not taken

into account, and thus cannot temporally compensate illumination variations.

— Background motion: this category includes videos with strong and parasitic

background motion. These videos contain boats on shimmering water, cars

passing next to a fountain, and pedestrians passing near trees shaken by the

wind. This category also includes a video with a low frame rate background

motion caused by a flipping advertisement board. This category is intended for

discriminating methods that have strong assumptions on the stationarity of the

background [86, 190, 226, 252].

— Very long: videos in this category contain more than 3,500 frames. Like the

Basic category, these videos do not contain any specific challenge as far as

their content is concerned. However, their large size is meant to discriminate

online and offline methods, as well as methods that are particularly expensive

processing-wise and memory-wise.

— Very short: these videos contain a limited number of frames (less than 20) with

a low frame rate (less than 1 fps). The goal of this category is to discriminate

methods that require a large number of training frames or methods which assume

that the video frame rate is large enough to track foreground moving objects or

to compute the optical flow.

Note that every sequence in the dataset contains at least one foreground object. In

this way, no video contains its own solution, i.e., a background image without moving

objects. At the same time, we ensure that the scene background is revealed at least once

for each pixel in all videos. This condition allows all background initialization methods

to use only observed values to fill the background, as opposed, for example, to video

inpainting [51], where "plausible" values are used for filling-in the background image.

Moreover, some of the surveillance videos have been cropped in order to eliminate the

timestamps located at the top or the bottom. Example frames of the SBMnet dataset are

shown in Fig. 5.1.
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(a) Basic (b) Intermittent motion (c) Clutter (d) Camera jitter

(e) Illumination
changes

(f) Background Motion (g) Very long (h) Very short

Figure 5.1 – Samples from the SBMnet dataset.

5.3.2 Ground Truth Image and Model

The SBMnet dataset has been the bedrock of the ICPR 2016 SBM Challenge, where

groups from all over the world have been invited to compare their background initial-

ization methods. For that challenge, each video had one (or more) ground truth (GT)

color background image(s) 3 that we used to compute six well known quality metrics

(cf. Section 5.3.3).

In order to create the GT images, we applied the following Background Ground Truth

(BGT) procedure:

1. For every frame of every video, we produced the binary foreground mask out-

lining every foreground object. This has been done either manually, or, in case

of videos containing a too large number of foreground objects, by applying a

background subtraction algorithm and post-processing the results. In some cases,

we had to copy regions from different frames and paste them through an image

manipulating system.

2. We constructed the GT color background image, by accounting at each pixel for

the largest background color mode.

3. A small proportion of the GT images has been made available at http://

SceneBackgroundModeling.net.
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For some sequences, more than one GT color background image was constructed, to

take into account scene backgrounds which vary over time. This was typical for videos

with strong illumination changes (e.g., one GT image for the light-shaded portion of

the video and one for the dark-shaded portion), videos with strong background motion

(e.g., various GT images showing different positions of background trees shaken in the

wind), as well as videos with strong camera jitter. For those cases, the use of multiple

GT images prevents from having temporally smudged images and allows to account for

several background configurations.

The main advantage of using GT background images is that they comply with most

image-based evaluation metrics, such as PSNR and MS-SSIM. However, the outcome

of the ICPR 2016 SBM Challenge made us realize that the use of a single (or a small

set of) background image(s) has its limits. Indeed, some videos have a nearly infinite

number of valid background images, all of which being slightly different from the GT

background image(s). A good example is a scene with wavy water in the background.

Since no finite series of images may account for every possible configuration of waves,

we also considered using a probabilistic background model. This probabilistic model is

a conditional PDF p(cz|Bz) which is the likelihood of observing a generic RGB color

cz at pixel z, given a collection of background colors Bz recorded at location z.

For a given video sequence made of k frames I1, . . . , Ik, the set Bz of background

RGB colors observed at location z is obtained exploiting the binary foreground masks

constructed for each Ij , j ∈ [1, k]. Thus, Bz is a series of at most k RGB values all

associated to background pixels.

The likelihood of the background model for each pixel at location z may be estimated

with a simple histogram

p(cz|Bz) =
nb,cz

||Bz|| , (5.1)

where nb,cz
is the number of background pixels with color cz recorded at location z and

||Bz|| ∈ [1, k] is the number of background pixels recorded at location z.

However, computing a conditional PDF with a histogram requires a very large number

of samples for it to be accurate. Short videos or highly cluttered videos would lead to

sparse likelihood functions, with various colors cz having null probabilities. In order to

smooth out the PDF given the Bz background values observed at location z, we estimate
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the background conditional PDF with a Parzen-Window Density Estimation [179]. The

PDF of a given color cz at location z with respect to every background value recorded

at the same location is estimated as

p(cz|Bz) =
1

||Bz|| |H|− 1
2

||Bz ||
∑

i=1

K
(

H
− 1

2 (cz − bi)
)

, (5.2)

where bi ∈ Bz is a background RGB color, K is a multivariate kernel, satisfying
∫ K(x)dx = 1 and K(x) ≥ 0, and H is a d × d symmetric positive bandwidth matrix, d

is the dimension of the data ci and bi (i.e., d=3 as the number of the color channels). In

our implementation, we use a Gaussian kernel K and, as is usually the case, we assume

independence of different color channels, i.e., H is a diagonal matrix

H = diag(σ2
1, . . . , σ2

d), (5.3)

where σ2
j is the bandwidth of the kernel in the jth dimension. The bandwidth is esti-

mated using the following estimator [204]:

σ =

(

4σ̂5

3||Bz||

)
1
5

≈ 1.06σ̂||Bz||− 1
5 , (5.4)

where σ̂ is the standard deviation (std dev) of the data. As mentioned by Silverman,

Eq.(5.4) is well suited for unimodal distributions. He also mentioned that, in case of

heavily skewed or bimodal distributions, one can reduce the 1.06 factor down to 0.9,

and use a slightly different σ estimator. Since most of the pixels in our videos have

a unimodal distribution (except for videos with strong background motion and sudden

illumination changes), we decided to keep using Eq.(5.4). Note that, as mentioned by

Narayana et al. [164], other bandwidth estimators could also be used. Therefore, the

PDF of Eq. (5.2) can be written as

p(cz|Bz) =
1

||Bz||
||Bz ||
∑

i=1

3
∏

j=1

1
√

2πσ2
j

e
− 1

2

(cz,j −bi,j )2

σ2
j , (5.5)

where cz,j and bi,j indicate the jth component of cz and bi respectively.
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5.3.3 Evaluation Metrics

We adopted two types of metrics to accommodate with the two GT background models

our dataset provides.

The first type of metrics includes those commonly used in the background initialization

literature [155, 86, 51, 227, 14, 190, 171, 206, 104]. These are image-to-image metrics

measuring the visual correctness of an estimated background image against a GT back-

ground image. Each of them exploits different aspects of image quality evaluation, thus

leading to an extensive overall evaluation of results. To compute the metrics, we use the

Y channel in the YCbCr color space

Y = 0.299 × R + 0.587 × G + 0.114 × B. (5.6)

Let Bgt be the Y channel of the GT background image and Beb the Y channel of the

background image computed by a background initialization method. The following six

metrics 4 have been adopted to evaluate the compared algorithms:

1. Average Gray-level Error (AGE) [86, 227, 14, 190, 171, 206, 104]: It is the

average of the absolute difference between the gray-level images Bgt and Beb

AGE =
1

N

N−1
∑

z=0

|Bgtz
− Bebz|, (5.7)

where N is the total number of pixels in the image. The resulting AGE value

ranges between 0 and 255. According to that metric, the lower the AGE value is,

the better the background estimate is.

2. Percentage of Error Pixels (pEPs) [86, 227, 51, 206, 104]: An error pixel (EP)

is a pixel of the estimated background Beb whose value differs from the value

of the corresponding pixel in Bgt by more than a threshold τ (we use τ=20, as

suggested in [86, 227, 190]). pEPs is the ratio between the number N of EPs and

4. MATLAB and python scripts for computing the metrics have been made available through the
SBMnet webpage.
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the total number of image pixels:

pEPs =
1

N

N−1
∑

z=0

(

1|Bgtz−Bebz |>τ

)

, (5.8)

where 1 is an indicator function. The resulting value of pEPs ranges between 0

and 1; the lower the pEPs value is, the more accurate the estimated background

is.

3. Percentage of Clustered Error Pixels (pCEPs) [86, 227, 14, 190, 171, 206,

104]: A clustered error pixel (CEP) is defined as any error pixel whose 4-connected

neighbors are also error pixels. pCEPs is thus the ratio between the number of

CEPs and the number N of image pixels. In this case, it ignores isolated noise

pixels in the estimated background, e.g., salt and pepper noise. Its value is in the

[0, 1] range; the lower it is, the closer the background estimate is to the GT.

4. Peak-Signal-to-Noise-Ratio (PSNR) [51, 171, 206, 104, 95]: This well known

and often utilized metric is defined as

PSNR = 10 · log10

(

MAX2

MSE

)

, (5.9)

where MAX is 255 in our case and MSE is the mean squared error between Bgt

and Beb,

MSE =
1

N

N−1
∑

z=0

(

Bgtz
− Bebz

)2
. (5.10)

PSNR assumes values in decibels (db); thus, the higher it is, the better the back-

ground estimate is. Although widely utilized, PSNR has two limitations that one

shall keep in mind: (1) it assumes that both images are rigorously aligned, and (2)

it penalizes errors at brighter pixels more than errors at darker pixels.

5. Color image Quality Measure (CQM) [171, 206, 104]: This metric is an im-

proved version of PSNR [256]. It first converts RGB images to the YUV color

space and then computes the PSNR value of each YUV channel separately. The
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resulting PSNR values are then combined as follows:

CQM = PSNRY × RW +
PSNRU + PSNRV

2
× CW , (5.11)

where RW and CW are biologically-inspired coefficients set to 0.9449 and 0.0551

respectively (please refer to the original paper for more details [256]). As for the

PSNR, CQM values are in decibels and so the larger it is, the closer the estimated

background is to the GT background image.

6. Multi-Scale Structural Similarity Index (MS-SSIM) [171, 206, 104]: This is

the metric defined in [241], that uses structural distortion as an estimate of the

perceived visual distortion of two images, evaluated at multiple scales. For a

single scale, the SSIM of a squared image block xeb of Beb and the corresponding

image block xgt of Bgt is computed as:

SSIM(xeb, xgt) =
(2µgtµeb + C1)(2σgt,eb + C2)

(µ2
gt + µ2

eb + C1)(σ2
gt + σ2

eb + C2)
, (5.12)

where µy and σy are the mean and the variance of xy, y ∈ {eb, gt}, respectively,

σgt,eb is the covariance of xeb and xgt, C1 = K1L, C2 = K2L, K1 = 0.01, K2 =

0.03, and L is the range of pixel values. The SSIM of the whole images is com-

puted as the mean of the values obtained for all corresponding image blocks.

MS-SSIM aggregates SSIM values computed at different image scales, thus pro-

viding hints on the similarity of the GT and the evaluated background images at

both the global and the detail level. As opposed to the previous metrics, MS-

SSIM is translation invariant. It assumes values in [−1, 1]; the higher the value of

MS-SSIM is, the better the estimated background is.

The second type of metric evaluates the quality of the estimated background image using

the likelihood PDF function in Eq. (5.5). This is done with a probabilistic metric called

PM(·) which computes the negative log-likelihood of the overall image Beb, normalized

against the image size N :

PM(Beb) = − 1

N

N−1
∑

z=0

ln p(Bebz|Bz), (5.13)
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where Bebz indicates the RGB background pixel color at location z and Bz the list of

background color values recorded at that pixel. The lower the value of PM is, the better

the estimated background is.

5.3.4 Ranking Strategy

Once the metrics are calculated, we ranked the scene background initialization meth-

ods participating to the SBM Challenge with an approach similar to that of Goyette et

al. [81]. For each video in each category, we first computed the six image-based metrics

described in the previous section 5. Each metric is then averaged category-wise. Take

AGE for example. Let |Nc| be the number of videos in category c, the AGE metric for

that category is calculated as:

AGEc =
1

|Nc|
|Nc|
∑

v=1

AGEv,c. (5.14)

This procedure is repeated for each image-based metric.

After that, we computed the metrics for the entire dataset. This has been done by aver-

aging the eight category metrics; e.g., for AGE:

AGEoverall =
1

8

8
∑

c=1

AGEc. (5.15)

While methods can be ranked based on any of these metrics, we also consider their

ranking across all of them. The rationale for this is to give an indication of how good

a method is with respect to other methods in each category and across all categories.

Following the approach by Young and Ferryman [261] and Goyette et al. [81], we pro-

vide an average ranking R across all overall-average metrics, and an average ranking RC

across all categories. Let ranki(m, c) denote the rank of a method i (i.e., its position

with respect to other methods) for metric m in category c. For that method, the average

5. Note that, since the ranking was implemented before the ICPR 2016 SBM Challenge, it does not
include the PM metric introduced here.
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ranking over all six metrics in category c is given by:

ranki,c =
1

6

6
∑

m=1

ranki(m, c). (5.16)

The average ranking RCi across all categories for method i is then calculated as the

average across all eight categories:

RCi =
1

8

8
∑

c=1

ranki,c. (5.17)

For the average ranking R, the overall-average metric values (like that calculated by

Eq. (5.15) for the AGE metric) are ranked as ranki(m). Then, Ri is the average of

ranki(m) over all six metrics

Ri =
1

6

6
∑

m=1

ranki(m). (5.18)

The category-average and overall-average metrics obtained on so far 24 different meth-

ods, as well as their overall average rankings R and RC, are reported on the SBMnet

website.

5.4 Experimental Results

5.4.1 Compared Methods

In the wake of the ICPR 2016 SBM Challenge, results from 14 different scene back-

ground initialization methods have been uploaded on the SBMnet website.

Four temporal statistics methods are based on temporal median filter, namely the plane

temporal median filter (TMF) [156], LaBGen and LaBGen-P [128], and Temporal Me-

dian Filter with Gaussian filtering (TMFG) [141]. TMF is undoubtedly the simplest

method reported in this paper. LaBGen combines a temporal median filter with a patch-

wise motion detection, while LaBGen-P is an extension of it using a pixel-wise motion

detector. TMFG models pixel-wise the background through a single temporal Gaussian
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distribution for each pixel and applies a temporal median filter only on pixels having

sufficiently high probability values. LaBGen, LaBGen-P, and TMFG can also be seen

as background initialization methods based on subsequences of stable intensity (see

Section 5.2), where subsequences with similar intensity values are first selected through

motion detection, and intensity values of each pixel taken along time in the stable sub-

sequences are used to construct the estimated background.

Two other methods based on temporal statistics adopt a Gaussian mixture model, namely

Bidirectional Analysis (B-A) and Bidirectional Analysis and Consensus Voting (BACV)

[159]. The two offline methods implement a forward and a backward pixel-based GMM,

computed by processing the video from the first to the last frame and vice versa. The

background image is obtained, for each pixel, by selecting pixel values having the high-

est combined probability in the forward and backward models. Further consensus vot-

ing, taking into account spatial information in the neighborhood of each pixel, helps in

refining the estimated result.

Two of the compared methods are based on iterative model completion. In the online

method proposed in [190] (which we call RSL2011), for each block location a repre-

sentative set is maintained which contains distinct blocks obtained along its temporal

line. The background initialization is carried out in a MRF framework, where the opti-

mal labeling solution is computed using iterated conditional modes. In Rejection based

Multipath Reconstruction (RMR) [171], the first phase involves a temporal module that

clusters the input frames and generates background candidates. Then, a module based

on spatial analysis iteratively recovers the final background from background candi-

dates, using a multipath reconstruction method guided by smoothness constraints.

Photomontage [3] is a unified framework for interactive image composition, based on

a MRF graph-cut optimizer. The cost function consists of an interaction term, that pe-

nalizes perceivable seams in the composite image, and a data term, that reflects various

objectives of different image editing tasks. For the specific task of background initializa-

tion, the data term adopted for achieving visual smoothness is the maximum likelihood

image objective.

Motion-Aware Graph Regularized RPCA (MAGRPCA) [103] tackles background ini-

tialization as a missing data reconstruction problem. Based on RPCA, it implements a
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graph regularization on the low-rank component using motion estimation, in order to

better handle background variations.

Finally, three of the compared methods are based on neural networks, namely SC-

SOBS-C4 [151], AAPSA [41], and FC-FlowNet [88]. SC-SOBS-C4 is based on the

self-organizing neural background model SC-SOBS [154] which was originally used

for detecting moving objects. Several criteria for extracting an image of the estimated

background by the multi-modal SC-SOBS model can be considered [151]. Here, the es-

timated background image is obtained by choosing, for each pixel, the SC-SOBS model-

ing weight vector that is the closest to the corresponding pixel in the background image

estimated by an accurate uni-modal background initialization method (here Photomon-

tage [3]). AAPSA implements two neural networks for modeling the background, each

replicating a running average, which adapt their parameters at different rates. For each

pixel, the method automatically decides to use or to combine the information contained

into the two models to obtain the estimated background image. The third neural net-

work method is FC-FlowNet, based on a CNN trained to estimate background patches.

The CNN is made of a series of convolution and deconvolution.

The methods reported in this section are by nature very different. In order to measure

how complementary they are, we implemented a method which combines them all. A

typical approach for combining several methods is through a majority vote. Unfortu-

nately, a pixel-wise majority vote would result into blurry and often corrupted back-

ground images. Instead, we implemented a method which, for each video, compares all

background images computed by the 14 compared methods and selects one of them. Our

strategy for selecting one of the computed background images is based on the assump-

tion that, for each video, a subset of methods (which might be different from one video

to another) correctly estimates the background image. As such, these correct results

are all visually similar. As for the other methods which return a corrupted background

image, their visual distance to any other result is unavoidably high. Our method, in the

following referred to as MS-SSIM-Selection, returns the background image B̃i which is

visually similar to as many other results as possible, i.e.,:

B̃i = argmax
Bi

14
∑

j=1,j 6=i

MS-SSIMBi,Bj
, (5.19)
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Table 5.2 – Overall results of 15 different methods.

Method R RC AGE pEPs pCEPs MS-SSIM PSNR CQM PM

MS-SSIM-Selection 1.17 2.75 6.16 0.057 0.021 0.94 30.0 30.8 8.56
LaBGen 3.00 5.50 6.71 0.063 0.027 0.93 28.6 29.5 8.93

LaBGen-P 3.83 6.25 7.07 0.071 0.032 0.93 28.5 29.3 8.98
Photomontage 4.33 7.25 7.20 0.069 0.026 0.92 28.0 28.9 8.64
SC-SOBS-C4 5.33 6.88 7.52 0.071 0.024 0.92 27.7 28.6 8.88
MAGRPCA 6.83 7.63 8.31 0.099 0.057 0.94 28.5 29.3 17.0

TMF 8.17 6.25 8.28 0.098 0.055 0.91 27.5 28.4 10.0
BE-AAPSA 8.17 8.75 7.91 0.087 0.045 0.91 27.1 28.0 11.4

B-A 8.50 7.63 8.34 0.076 0.018 0.91 26.2 27.2 8.97
BACV 9.67 8.63 8.58 0.072 0.026 0.91 26.1 27.1 9.25
TMFG 11.00 6.88 9.40 0.110 0.057 0.90 27.1 28.1 10.1

FC-FlowNet 11.17 10.0 9.11 0.110 0.060 0.92 27.0 27.9 10.6
RSL2011 12.17 11.25 9.04 0.100 0.050 0.89 25.8 26.8 10.0
AAPSA 13.17 11.75 9.20 0.110 0.052 0.90 25.4 26.3 12.2

RMR 13.50 10.88 9.54 0.120 0.058 0.88 26.5 27.5 10.5

where MS-SSIMBi,Bj
is the visual distance value between the background images esti-

mated by methods i and j, i, j ∈ [1, 14] in terms of the MS-SSIM metric.

Indeed, even though other metrics could have been chosen, this metric perfectly fits

our selection requirement, since it well reflects the global structural relation between

different images (see Section 5.3.3).

5.4.2 Overall Results

The overall results are shown in Table 5.2. The table shows the R ranking, the RC

ranking, the six image-based metrics as well as the log-likelihood probabilistic metric

(PM) (cf. Section 5.3.3). Methods have been sorted according to R. The reader shall

find more detailed results for each category and each video on the SBMnet website.

As shown in Table 5.2, the top performing methods are LaBGen (and LaBGen-P), Pho-

tomontage, and SC-SOBS-C4, three very different methods. Surprisingly, the simplistic

temporal median filter performs quite well, as it beats more than half the methods.

This is a strong indication that, besides its obvious limits, the true background image of

many videos is close to that obtained with TMF. Even more interesting is that MS-SSIM-

Selection (the strategy for combining all 14 methods) has the best ranking according to

every metric. This underlines the fact that, as of today, there is no such thing like a
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single best method for background initialization. On the contrary, methods are comple-

mentary by nature. When a method fails on some videos, others perform better and can

compensate for it, and vice versa. This suggests that future work could borrow concepts

from several of these methods and hopefully outperform them all.

(a) (b) (c) (d)

Figure 5.2 – Sequence fall of "background motion" category: (a) result of Photomon-

tage; (b) GT image; (c) absolute gray-level difference of (a) and (b); (d) negative log
likelihood map of (b) as compared to the GT model. Although visually identical to
the GT image, the result achieves very poor image metrics scores (AGE: 23.9, pEPs:
0.32, pCEPs: 0.11, MS-SSIM: 0.73, PSNR: 15.6, CQM: 16.7), due to tree branches not
perfectly aligned, but average probabilistic metric value (PM: 9.707).

As for the metrics, pEPs and AGE are the ones whose ranking is the closest to R.

This makes us conclude that if someone is to report only one metric, pEPs and AGE

might be the most appropriate ones. The reader shall note that the R and RC rank-

ing rules should be considered with care, as they might be ill-suited for some methods.

For example, MAGRPCA got ironically the best MS-SSIM score but among the worst

pEPs score. After careful investigation, we realized that MAGRPCA is a very accurate

method, but its estimated background images often suffer from a global illumination

shift. While MS-SSIM and CQM are illumination invariant, the other metrics heavily

penalize global illumination errors. A global color shift of the background image could

be acceptable for applications like computational photography, but would lead to inac-

curate results for applications like foreground detection. Thus, the ranking rule shall

always be considered with the end application in mind.

5.4.3 Category Results

In this section, we inspect the results obtained on each category of videos. We first cal-

culated the mean and std dev of the six image metrics described in Section 5.3.3 for each
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category, as reported in Figs. 5.3 (a)-(f). With no surprise, the easiest category on aver-

age is the "Basic" category, and this is true for all six metrics. The mean metric values

are always the best (e.g., low for AGE, pEPs, and pCEPs, and high for PSNR, CQM, and

MS-SSIM) and the std dev values are always small. This shows that, for every method,

backgrounds estimated on "Basic" videos are always close to the ground truth. On the

other hand, "Jitter" and "Background motion" categories often get the worst average

metric values (e.g., large for AGE, pEPs, and pCEPs, and very low for PSNR, CQM,

and MS-SSIM). Also, with a low std dev, the side-by-side comparison of those metrics

suggests that a majority of methods are struggling with these videos. However, careful

inspection of results reveals that the main issue may come from the metrics themselves.

Indeed, since a moving background may have a nearly infinite number of configurations

(think of every possible shape a moving tree can take), using, as we do, a series of 10 or

less background images as ground truth leads unavoidably to poor metric values. This

is illustrated in Fig. 5.2 (a), showing that the background image for sequence fall of

"Background motion" category estimated by the Photomontage method is visually iden-

tical to the GT image (Fig. 5.2 (b)). However, the six image metrics values are much

worse than the corresponding mean values reported in Figs. 5.3 (a)-(f). This is because

the branches of the tree in the Photomontage result are not aligned with those in the GT,

as it can be appreciated looking at the absolute gray-level difference of the two images,

reported in Fig. 5.2 (c). Thus, although the results obtained by many methods on "Jitter"

and "Background motion" videos are indeed blurry, the side-by-side comparison of the

metrics reported in Fig. 5.3 shall be considered with care.

In the light of the above results, we implemented the log likelihood probabilistic metric

PM (cf. Section 5.3.3), that does not depend on an image-to-image distance function.

As an example, in the case of the Photomontage result of Fig. 5.2, we observe that

the negative log likelihood map reported in Fig. 5.2 (d) (computed through Eq. (5.5))

allows us to take into account the background motion of the leaves, stored into the GT

model, in a much smoother way comparing with the absolute gray-level difference. This

results in a PM value comparable to the mean value reported in Fig. 5.3(g). Overall, the

"Jitter" and "Background motion" categories get the best PM values (the smaller, the

better) with a very small std dev, as can be seen in Fig. 5.3 (g). This underlines the fact

that, although results may be blurred on these videos, they do not suffer from strong
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artifacts. Interestingly, the "Very long" videos also got an excellent PM score. This is

because long videos always have a certain level of change overtime (due to slight sun

shift in the sky), that is taken care by the PM metric.

We also report in Table 5.3 the top three methods for each category according to ranking

R. As one can see, the top three methods for each category are different and their

respective orders are also different. The overall best methods (e.g., LaBGen, LaBGen-

P, Photomontage, and SC-SOBS-C4) are not always the best methods for each category.

On the contrary, they can even be the worst methods, such as LaBGen-P on the "Very

long" category.

Overall, the category-wise rankings lead us again to conclude that there is no single best

method and that future work shall focus on a combination of different methods.

Table 5.3 – Methods with best R ranking for each category.

Category 1st 2nd 3rd

Basic TMFG TMF B-A
Intermittent motion LaBGen-P BACV RMR

Clutter Photomontage SC-SOBS-C4 B-A
Jitter TMF TMFG LaBGen

Illumination changes Photomontage LaBGen RMR
Background motion TMFG BE-AAPSA TMF

Very long BE-AAPSA MAGRPCA LaBGen
Very short Photomontage TMF TMFG

5.4.4 Unsolved Issues

Five different scenarios, as illustrated in Fig. 5.4, still appear challenging for background

initialization:

1. Whenever a foreground object stops moving for a period of time, many methods

incorporate that object in to the background or produce strong ghosting artifacts

(e.g., Figs. 5.4(a) and (b)).

2. When the background is not visible for a long enough period of time due to a

too-short video or heavy clutter, methods get to produce artifacts (e.g., Figs. 5.4

(c)-(e)).
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(g) PM

Figure 5.3 – Mean and standard deviation of seven metrics for different categories: (a)
AGE, (b) pEPs, (c) pCEPs, (d) PSNR, (e) CQM, (f) MS-SSIM, and (g) PM. The circles
are for the means, while the lines are for the std dev.

3. Strong background motion, including a wavy water surface or trees shaken by the

wind, is also a concern for a lot of methods. Although this is hard to correctly

assess with visual metrics, a large number of methods return blurry results, as

illustrated in Fig. 5.4 (e) showing a blurry water surface.
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4. Strong illumination changes is also an unsolved issue for the majority of back-

ground initialization methods, as they often produce an unrealistic mixture of

different illuminations (e.g., Fig. 5.4 (f)).

5. Although most methods are robust to low jitter, strong jitter has a tendency to

create blurry results, as shown in Figs. 5.4 (g) and (h).

Even though most of these issues are afforded and partly solved by the best perform-

ing background modeling methods for the purpose of foreground detection, our study

reveals that state-of-the-art background initialization methods fail over these scenarios.

These unsolved issues in background initialization will be surely the new trend towards

which all researchers should move when designing new and widely applicable methods.

(a) AVSS2007 (b) tramway (c) boulevardJam (d) Toscana

(e) canoe (f) Dataset3Camera2 (g) O_MC_02 (h) sidewalk

Figure 5.4 – Typical failures: (a) and (b) ghosting artifacts caused by intermittent mo-
tion; (c), (d) and (e) artifacts caused by heavy clutter where background pixels are al-
most never seen; (e) blurry water surface caused by a wavy water; (f) result containing
a mixture of two different illumination settings; (g) and (h) blurry images caused by
strong camera jitter.
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5.5 Concluding Remarks

In this paper, we proposed an extensive survey of scene background initialization meth-

ods as well as a benchmarking framework. The framework includes a large dataset,

seven evaluation metrics as well as 14 different state-of-the-art methods. The SBMnet

dataset we proposed includes 79 videos in eight categories, corresponding to eight dif-

ferent classes of challenges for video background initialization. Based on the dataset,

a complete analysis of representative state-of-the-art methods is provided. Their com-

plementarity is further analyzed by proposing a possible ideal optimum method, named

MS-SSIM-Selection, that selects, among them, the best one for each video. We analyzed

advantages and limitations of the image-based metrics useful for single background

images and proposed a probability-based metric which accounts for a complete distri-

bution of background over the whole video. Adopting this pool of metrics allowed us

to underline the strength and weaknesses of each method, giving a good understanding

of the solved and still unsolved issues, that deserve future in-depth research. More-

over, deeper analysis is required by the identification of an overall ranking strategy that

is suited for all the applications of background initialization. Methods other than MS-

SSIM-Selection could also be devised to better highlight and exploit the advantages of

existing background initialization methods.
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Conclusion

As a basic computer vision task, motion detection has attracted researchers’ attention

for decades. So many works have been done in all aspects of it. Nowadays, motion

detection has achieved significant improvements, and a lot of problems in it are claimed

to be solved. However, this does not mean in general motion detection is a solved issue.

Unsolved problems still remains.

In this work, we focused on four aspects of motion detection: (1) How to evaluate mo-

tion detection methods objectively; (2) How to use an interactive deep learning method

to detect motion in a video; (3) How to use motion information to improve the per-

formance of state-of-the-art pedestrian detectors; and (4) how to evaluate background

initialization methods.

Motion detection benchmark To evaluate motion detection methods objectively, we

built the CDnet 2014 dataset. With 75 videos separated in 11 categories that cover most

of the challenges in motion detection, the CDnet 2014 dataset is by far the biggest and

most objective motion detection dataset in the world. Seven metrics are used for the

evaluation. We also provide an online evaluation system that researchers can use to

compare their motion detection methods with others. As of today, about 40 methods

have been uploaded to the CDnet 2014 website. The CDnet 2014 paper has also been

cited 133 times.

Based on the benchmarking and evaluation made in this thesis, we discovered that:

1. For most challenging categories, state-of-the-art methods are remarkably accu-

rate. However, several challenges are still quite difficult for most of the methods.
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Overall, a majority of methods fail under the following circumstances:

(a) Videos with strong global movements: Local background movement (e.g.

a tree shaken by the wind and shimmering water), and low level global

movements (e.g. camera jitter) in a video are not a problem for most state-

of-the-art methods. However, videos with strong global background move-

ment, such as videos shot by a PTZ camera, are still a big issue for almost

every method.

(b) Videos with blurry foreground edges: It is not easy to accurately label the

foreground if its edge is unclear. This usually happens when the resolution

of the video is low, or when the video is shot at night.

(c) Videos with low framerate: With a low framerate, the location of a moving

object can change drastically from one frame to another. Tracking objects

in such a video can be very challenging. At the same time, optical flow is

more difficult to be calculated (if not impossible). In that case, any method

based on tracking or optical flow may fail when the video framerate is low.

2. Combining motion detection results of different methods can help to improve

the performance. Nevertheless, generating motion detection masks with differ-

ent methods and then combining them is computationally expensive. For appli-

cations which require fast detection, combing results of several methods is not

recommended.

Deep foreground segmentation To detect and label foreground objects in videos, we

implemented a semi-automatic motion detection method. Our model is composed of

a multi-scale CNN [123] with a cascaded structure. Our deep learning method is as

accurate as a human while being 40 times faster than manual labeling.

Results reveal that our method can be applied on all kinds of challenging videos. As

deep learning methods have redefined the limits of various applications, it can be pre-

dicted that more deep learning methods will be proposed for motion detection.

Pedestrian detection We also proposed a model to combine motion features with

state-of-the-art pedestrian detectors. To achieve this goal, we extracted motion infor-
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mation and accumulated it into an MHI. The MHI was then used to filter the video to

remove the false positive detection. At the end, a feedback loop as well as a merging

procedure between the filtered and the unfiltered frames are used to further improve re-

sults. Our model has been tested with six state-of-the-art pedestrian detectors, all their

performances have been significantly improved with our proposed strategy.

Our work clearly proved that motion detection technology can be used to improve other

computer vision tasks. The only concern is that if the extracted motion features are not

accurate, the overall performance may decrease when motion features are used. How-

ever, as the performance of state-of-the-art motion detection methods keep improving,

motion features will be more widely used in conjunction of higher-level computer vision

applications.

Scene background modeling benchmark To evaluate the background modeling meth-

ods, we proposed the largest background modeling dataset SBMnet and a novel bench-

marking framework. The SBMnet dataset contains 79 videos in eight categories. The

benchmarking framework includes seven evaluation metrics, which allows us to quanti-

tatively identify solved and unsolved issues related to scene background modeling. We

also concretely identify scenarios for which state-of-the-art methods systematically fail

and propose concrete ideas for future works. So far, an ICPR workshop has been or-

ganized based on SBMnet and 24 different background modeling methods have been

submitted to SBMnet.

Although background initialization has several applications such as video compression,

video inpainting, etc., it attracted less attention than motion detection. One big reason

for that is the difficulty to evaluate the performance of background initialization. As

most of the evaluation metrics are image based, while for some cases, a limited number

of image cannot represent all the status of the background in a video. Even though we

proposed a probabilistic model for this issue, other evaluation metrics could be proposed

in the future.
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Future Work

After I finish my Ph.D., I would like to explore more the area of motion detection. There

are plenty of things to try based on the works that I have done during my Ph.D.

From the previous projects, the following projects could be explored:

1. The convolutional neural networks based motion detection method that we pro-

posed (described in Chapter 3) achieved excellent performance. However, some

improvements can still be made. First, our model has the ability to learn the back-

ground of a video, however, it cannot be trained on one video and generalize to

another video, especially when the color distribution of the new video varies from

one of the training video. In this case, transfer learning technology may help to

solve this problem. Second, our model does not use any temporal information

which is an important feature for videos. Combining temporal features with the

current model can hopefully improve its performance. 3D convolutional layers

may work for this case. Last but not least, the current model is semi-automatic,

which means that it still needs a certain level of human interaction. How to reduce

the amount of user interaction or even remove the user interaction with minimum

drop in performance can be an interesting question that shall be answered in the

future.

2. The "pedestrian detection using motion-guided filtering project" (described in

Chapter 4) can also be improved in the future. The current model uses only

grayscale information of the video. Though increases the speed, it discards the

color information of the video. If the speed of the non-linear filtering can be in-

creased (e.g.) super pixel or other region based filtering), color and other features

can be used to improve the performance of the model.
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Beyond that, state-of-the-art deep learning methods can be utilized to explore new di-

rections.

1. Most motion detection methods have to either keep a stable background model

and update it slowly; or make the background model flexible, thus the model

can react to any foreground movement fast. With a low updating ratio, the stable

background model is robust to noise, but takes longer time to adjust to background

changes (i.e. global illumination changes, or a foreground object stops moving

and turns to be background). On the other hand, a flexible background model may

adapt to these changes fast, however, it may be affected by the noise or foreground

movement easily (i.e. a slow moving object, which should not be considered as

background).

As a deep learning model, Long Short-term Memory (LSTM) network can be

used to solve this problem. LSTM network is a recurrent neural network (RNN),

which can learn the background updating ratio dynamically from the previous

frames of the video and adapt it when a new frame arrives. For example, if a

motion is caused by noise, the LSTM will not or rarely update the background

model; while if it is the movement of a real foreground, LSTM can hopefully

detect it and merge it into the background fast once it stops moving.
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