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Abstract 

Unconstrained video understanding is a difficult task. The main aim of this thesis is to 

recognise the nature of objects, activities and environment in a given video clip using 

both audio and video information. Traditionally, audio and video information has not 

been applied together for solving such complex task, and for the first time we propose, 

develop, implement and test a new framework of multi-modal (audio and video) data 

analysis for context understanding and labelling of unconstrained videos. 

The framework relies on feature selection techniques and introduces a novel algorithm 

(PCFS) that is faster than the well-established SFFS algorithm. We use the framework for 

studying the benefits of combining audio and video information in a number of different 

problems. We begin by developing two independent content recognition modules. The 

first one is based on image sequence analysis alone, and uses a range of colour, shape, 

texture and statistical features from image regions with a trained classifier to recognise 

the identity of objects, activities and environment present. The second module uses audio 

information only, and recognises activities and environment. Both of these approaches 

are preceded by detailed pre-processing to ensure that correct video segments containing 

both audio and video content are present, and that the developed system can be made 

robust to changes in camera movement, illumination, random object behaviour etc. For 

both audio and video analysis, we use a hierarchical approach of multi-stage 

classification such that difficult classification tasks can be decomposed into simpler and 

smaller tasks.  

When combining both modalities, we compare fusion techniques at different levels of 

integration and propose a novel algorithm that combines advantages of both feature and 

decision-level fusion. The analysis is evaluated on a large amount of test data comprising 

unconstrained videos collected for this work. We finally, propose a decision correction 

algorithm which shows that further steps towards combining multi-modal classification 

information effectively with semantic knowledge generates the best possible results. 
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Chapter 1 -  Introduction 

1.1  Importance of Subject Area 

Multi-modal data fusion integrates information from more than one modes of data 

measurement with the aim of superior decision than what is possible with using one or a 

limited number of measurement modes. In a range of applications, multi-modal systems 

have been shown to generate better performance than using individual (sensor) modality 

data. So why do we need multi-modal systems and what are the issues surrounding their 

use? Any application with data from multiple sensors qualifies for information fusion. It 

is important not to confuse multi-modal data fusion with other approaches such as 

classifier combination, ensemble methods etc. where feature data from the same sensor is 

segmented into different groups, each of which is used to train a different expert 

(classifier). The key premise behind multi-modal data fusion is that each sensor provides 

information that is mostly complementary to that provided by other sensors, and therefore 

combining these together leads to a superior solution. The fusion process itself must be 

directed towards a goal. In other words, what information and how to fuse it depends on 

the problem being solved. Since different modalities result in different amount and 

variety of raw data, data normalisation is an important process to ensure that each sensor 

information is adequately used in the decision making process. Furthermore, information 

can be combined at different levels, e.g. at raw data, feature, or decision level. These 

fusion models are discussed further later on. Obviously, the fusion process becomes 

increasingly complicated as more modalities and more data is fused, and complex 

decisions are made. There is no generic information fusion algorithm that serves the 

purpose for all tasks. One of the salient features of this study is the development of novel 

information fusion models that help us describe the visual content of scenes and events in 

unconstrained videos. 

In this thesis we focus on combining audio and video based decision making to generate 

higher quality description of video content, than what may be possible through image 

analysis or audio signal processing on its own. The field of audio-visual information 
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fusion is still under development. It owes its beginnings to Human-Computer Interaction 

research in the early nineties when the first definitions of modality and association where 

proposed. Over the years, the advantages of combining audio and video data became 

apparent in areas including video segmentation and indexing for person verification and 

recognition, Human-Computer interaction for action recognition, lip reading etc. Some 

studies have also investigated audio coupled video analysis for improving image signal 

quality and coding. One further interesting application of where audio and visual data 

processing can benefit each other is source localisation. In our opinion, audio-coupled 

video analysis can play a major role in the following areas: 

• Video coding and representation – the capture, transmission, storage and 

viewing of video sequences; 

• Human-Machine interaction – in the cases where the means of interaction is via 

audio and visual cues; 

• Automated Video Retrieval – description of videos in such a way that they can 

be readily accessible; 

• Video Analysis – encompassing person and object recognition/verification, 

scene understanding, and activity recognition.  

In this thesis we apply audio-coupled video analysis techniques for the purpose of 

automated video content understanding, an area of research that is becoming increasingly 

important and significant. In several applications, for example CCTV surveillance, it is 

not possible for a human to view hours of video to find interesting or desired events, or 

objects, and an automated scheme for video description is desired. In these cases, one of 

the biggest challenges is that one cannot make any a priori assumptions on what objects 

and events will take place in a scene. In other words, the videos are highly unconstrained 

which makes it very difficult to optimise image processing operations. Some of the key 

challenges associated with processing such videos include:  

• The background of images is highly variable. Hence, unlike biometrics 

applications which assume a fixed and well-structured background, it is very 
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difficult to know which objects are foreground and of importance and which 

ones are background; 

• If the videos are captured through a CCTV fixed camera, then camera shake and 

camera motion is not an issue. However, most data used within this thesis is 

obtained with hand-held camcorder or head-mounted video cameras, and 

therefore separating object motion from camera motion, as well as camera jitter 

is an important issue to be tackled before any sophisticated image analysis is 

performed; 

• Without the use of directional microphones or stereophonic systems, to know 

the image object source that is responsible for an audio source in a given image 

frame is a very difficult task without trivial solutions; 

• Image analysis tools of today are not advanced enough to work reliably with 

changing illumination, overlapping objects, changes in viewpoint, etc; 

• Defining an object category for analysis in itself is a complex task. For example, 

a class “vehicles” can be so heterogeneous that modelling its recognition can be 

a very complicated task. 

Video and Audio Processing research fields are however both well-established and 

mature. Typically, video data processing analyses individual image frames and uses 

temporal information that spreads across multiple frame sequences for calculating 

measurements that cannot be derived from a single image, e.g. motion measurements, 

object trajectories, etc. Image understanding is based on three levels of analysis. Low 

level image processing that deals with processing pixel level data (e.g. image 

enhancement, segmentation, edge detection, etc.), medium level analysis that deals with 

feature level information (calculating colour, shape and texture features) and high level 

image processing which uses low-level and medium-level tools along with semantic 

information for understanding image contents, their relationship and the content of the 

image as a whole. The methodology for processing images in general includes the 

following processes: 
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• Video Capture – using a variety of equipment from low range webcams to state-

of-the-art video cameras; 

• Coding – determines the manner in which the signal is stored and transmitted, 

which might involve some form of compression; 

• Pre-processing – transformation and improvement of the video signal in 

preparation for later manipulation; 

• Image Analysis – methods are aimed at manipulating image pixel information 

for a variety of purposes; 

• Image Interpretation – combines the output of image analysis tools with 

semantic evaluation of the results. 

Audio data processing is one dimensional and uses techniques from computational signal 

processing. The techniques involved are similar to those available in image analysis but 

tuned to uni-dimensional data analysis. Furthermore, the data is also higher frequency 

and optimising audio processing tools is harder as the results of analysis cannot generate 

a quick user feedback as image analysis, e.g. most image analysis operations such as 

image enhancement, segmentation, etc. can be immediately verified for quality through 

visual inspection of the output. This is not possible for audio processing. Audio data 

processing usually follows the following steps of analysis: 

• Audio Capture – using a variety of equipment from a range of microphones, 

some of which are directional and can provide cues on where the sound 

originates from 

• Pre-processing – is aimed at removing noise from the signal to improve signal 

to noise ratio, and to separate background noise from signal of interest. 

• Feature extraction – from audio signals of interest, mostly using a range of 

frequency based methods. 

• Audio classification or characterisation – classification involves recognising 

different types of sounds, e.g. speech vs. music, or different audio signatures of 

objects when involved in an activity, whereas characterisation is involved with 

estimating properties of sound signal, e.g. tempo, emotion, accent, source, etc. 
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Audio processing provides a range of information not easily available through video 

analysis. For example, the sound of a gunshot or a vehicle screeching to a stop conveys a 

contextual meaning to us even without an image component. In other words, even with 

this limited knowledge from audio signals and our human knowledge of how the world 

behaves, we can get a reasonably good idea of the scene. Scene classification can be 

significantly improved through audio understanding. For example, if image analysis can 

recognise an indoor building, and audio analysis can recognise a train, we can be 

reasonably sure that we are at a train station. In this thesis we explore how decisions 

made on audio component and image component can be combined so that we know more 

about a scene than possible if using audio and video alone. This whole process is going to 

be tedious because video content understanding is a still an emerging field of research, 

but promises to provide a step change in our capability to understand unconstrained 

videos, from our current ability to model and understand constrained environments. In 

this thesis, we make a strong argument that audio understanding must be coupled with 

image analysis to understand video content, that technology is now ripe with cheap 

computational power to attempt this challenge, and that without such information fusion 

we can never properly understand video content on a large scale.  

1.2  Need for Research 

Being a relatively new subject area, audio-coupled video processing is still open to much 

research. The amount of literature covering this matter is still limited (see chapter 2 for 

more detail) and there are still no commercial products that advertise the use of practical 

fusion of these modalities. There has been however a recent interest in combining 

multiple modalities and standard methodologies in the research community. No final 

generic models yet exist in the literature and the problems tackled are usually so diverse 

that solutions tend to be very specific and even of heuristic nature. This means that a lot 

of avenues are yet to be explored when defining methods to address multimodal fusion. 
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More specifically, developing a fully integrated audio-coupled video content 

understanding is a challenging task because none of the tools used for image, or audio 

processing, or information fusion are plug-and-play. Despite extensive research in the 

areas of image understanding and audio classification, basic difficulties with image 

segmentation, motion estimation, signal and filtering still remain. Furthermore, almost all 

algorithms in these areas are very specific to the application they attempt to address. We 

need to stress, that fundamental research in the following areas is needed to realise 

successful audio-coupled video analysis: 

• Environment Recognition: Understanding the environment in a scene is very 

important. The words “Environment” and “context”, are often used in the 

literature with the same connotation and despite the fact that we all understand 

what it means, defining these is difficult. In this thesis “environment” refers to 

the place, location and type of scene associated with an image. Such a 

description is hierarchical and in the broadest sense environment can be 

classified as indoors or outdoors, whereas further discrimination can be on the 

basis of whether the scene depicts a market, train station etc. Obviously, 

complex description requires a detailed understanding of image objects and 

activities to label environment and scene context. So far research has addressed 

the classification of photos as indoors or outdoors and object recognition, but 

little research has modelled the complex relationship between environment, 

objects and activities. Similarly, audio information has been infrequently used 

for environment classification. Furthermore, research is needed to make such 

decisions under uncertainty, as none of the classifiers ever is 100% accurate. 

• Image Object Recognition: Recognising objects in images is a difficult process. 

Firstly, the process of grouping pixels into homogeneous segments, called 

“image segmentation” is still an open research problem. No single winning 

algorithm exists that can handle any image. Parameter and algorithm 

optimisation for good quality image segmentation is still a headache for most 

research applications. Furthermore, most objects are complex by nature, i.e. 

consist of several subparts. Post processing algorithms are not capable of linking 
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these subparts, and therefore recognising sub-parts of an object does not 

guarantee that the object as a whole can be recognised. Finally, despite good 

quality image segmentation, one still needs high quality image feature 

extraction and classification to be able to accurately recognise objects. All of 

these stages are challenging requiring bespoke solutions for a given application. 

• Object Activity Analysis: The understanding of how objects move within an 

image is very important to understand their speed, acceleration, displacement, 

and trajectory. Despite extensive research in the area of motion estimation, even 

till date no robust solution has been found. A number of imaging approaches 

including blob based tracking using colour and texture features, shape matching, 

optic flow, landmark point tracking (KLT, SIFT, etc.) and several others, have 

been shown to work effectively only on well constrained problems. Using any 

of these approaches to unconstrained video analysis is challenging because it 

requires detailed optimisation and careful application. Better success is likely 

with audio analysis, but it is well known that several audio signatures are very 

noisy and highly overlapping across classes. Hence, robust classification 

requires cutting edge research solutions optimised for the application at hand. 

• Understanding Semantic Content: High level decision making requires coupling 

image and audio analysis capability with our knowledge of how the world 

behaves. As system developers we have to embed information within developed 

software on the nature of objects likely to be encountered, e.g. knowledge about 

what objects are of what colour, shape, texture, information on co-occurring 

objects, which objects make which type of sound, etc. One key research 

challenge is what semantic knowledge to use and how to represent it in a format 

that can be used for decision making. Despite the fact that we need to discover 

our own semantic component and how to fuse audio and video information, 

some ground-breaking studies have been published that layout the foundations 

for future work. Examples include the seminal work by Martin et al. 1998, 

which defines conceptual frameworks that establish relationships between 

modalities; Sharma et al (1998) define a number of levels of abstraction for 



27

information fusion, and Kittler et al (1998) outlines a number of probability 

based decision fusion strategies. 

1.3  Problem and Challenges 

Developing a video content understanding system is challenging especially with 

unconstrained videos because any assumptions made with a few videos do not hold on 

the others. When developing methodologies for taking raw video and audio signals and 

processing them for producing results at high levels of abstraction, a number of low-level 

data analysis steps are needed, none of which are easy to generalise. For example, if one 

intends to identify objects in a scene, it is important to be able to segment them from 

video frames. Image segmentation is a hard problem and no generic solutions have been 

proposed yet (Singh et al. 2005). The analogous problem for the audio case is blind 

source separation, where the objective is to recover a set of separate signals that compose 

the audio signal (Choi et al. 2005). This problem is very hard to solve without using 

specialised hardware and multiple microphones. In the video domain it is often important 

to divide long sequences into sets of shorter clips. This is called shot boundary detection 

and is a common pre-processing procedure for video indexing and context understanding. 

A number of approaches to this have been proposed, which often are often based on 

detailed a priori knowledge of data characteristics or constraints imposed on the data 

(Iyengar and Neti, 2000; Jasinschi et al. 2001; Raaijmakers et al. 2002). Once more, there 

are no clear winning and generic algorithms for this purpose. 

In the following we describe some of the challenges associated with our study. This 

description is not to overwhelm the reader or to suggest that we are attempting the 

impossible in this study. It is simply to state the challenges involved and highlight areas 

of research that will need special consideration. Some of the technical challenges 

involved include: 

• Image pre-processing: One of the important steps in audio-coupled video 

analysis is to automatically determine salient regions of video that contain 
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useful audio and choose frames that can be used to analyse video. Further pre-

processing steps, e.g. video stabilisation, need to be optimised for specific 

applications as none of the text book solutions work perfectly on chosen data.  

• Image segmentation: Especially when videos are captured with different 

hardware, with different amounts of camera movement, and variable lighting 

conditions. Objects move in and out of scenes and appear partially in scenes 

making it difficult to segment them. 

• Images feature extraction: This is made difficult by the fact that images are of 

finite resolution, and if objects are zoomed, in partial view, or photographed 

from different angles, their extracted features vary making it difficult to develop 

a consistent classifier training set. In such cases, the intra class variability can be 

larger than inter-class variability, making it difficult to perform good 

classification. 

• Audio feature extraction: Similarly difficult as such signals have generally poor 

signal to noise ratio. Further complications can arise because the sound signals 

can be mixed making it difficult to extract good quality features. 

• Unconstrained videos: Such data has content uncertainty, and therefore no 

assumptions can be made on what objects, events and activities are likely to be 

encountered. The developed system has to be ready for all eventualities. 

• Image motion analysis: Attempted in this thesis using landmark point tracking is 

particularly difficult for two reasons. Firstly, we need to identify those landmark 

points that are of significant importance, and those that do not disappear across 

successive frames. Since a number of objects have diffuse boundaries, or false 

edges, quite often either the points selected are too many or too few, and often 

in wrong places. Secondly, the matching process is not very accurate and can 

end up matching wrong set of points. None of the existing algorithms are very 

accurate or guarantee optimal solution. Achieving reasonably good quality 

performance without spending too much time optimising parameters on a per 

image basis is very important.  

• Information fusion: Combining audio and video is not trivial. One cannot 

simply fuse raw data. A systematic architecture of what decisions can be made 
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by these two modalities individually on the same patch of data, and how to fuse 

these, is required. 

• Semantic knowledge integration: This is an important piece of work in this 

thesis. Audio or image analysis on their own cannot provide optimal solution – 

they need to include a set of rules from us as humans to operate better. This 

integration is performed at all levels of analysis, e.g. in image segmentation, 

prior knowledge of object shape can help optimise segmentation; rules on what 

object co-occur can minimise classification mistakes, etc. 

• Real time data analysis: Such goal is often an impossibility. For example, 

calculating texture measures alone can take several seconds. Our study focuses 

on solving the problem technically at a desired level of performance in terms of 

accuracy of video content description, and not so much on speed of analysis. 

We have made many efforts in speeding up our algorithms but not necessarily 

made them real-time. 

1.4  Rough Outline of the Thesis 

This thesis addresses the problem of content understanding of unconstrained video 

sequences. Chapter 2 describes in detail what other research has been performed in this 

and related research areas. Figure 1.1 shows the major research and implementation 

modules for this thesis which forms the basis of our research outline.  The developed 

system takes video sequences as inputs which are pre-processed, analysed and classified 

to produce a description of video content. 

Figure 1.1 – Block Diagram overview of the video content understanding system. 

Video 

Capture

Pre-

processing
Classification

Semantic 

Analysis

Feature 

Extraction

Video 

Capture

Pre-

processing
Classification

Semantic 

Analysis

Feature 

Extraction



30

A brief description of where these components are described in the thesis is outlined 

below: 

• Video capture is the process of data collection and storage. In this thesis we 

intend to analyse video data that is unconstrained in terms of environment 

conditions, objects present and actions taking place. Therefore, the training and 

testing data used in this study contains a high degree of variability. Also, we 

intend to investigate the benefits of combining both audio and video for 

analysis, which requires that audio and video feature samples must be extracted 

from those portions of video that contain both signals. We describe the process 

of video capture and archiving in chapter 3; 

• The Pre-processing stage is responsible for preparing the data for further 

analysis. In our system, we require a number of operations to be performed 

including: shot selection – where we identify important regions within the video 

sequences based on audio and motion energy; video stabilisation – to reduce 

shakiness in videos, and object segmentation – selection of an image region 

corresponding to active objects. These are also described in chapter 3; 

• Feature Extraction is the process of making measurements from raw data that 

can be further used for classification purposes. These features are designed to be 

highly representative of the items we intend to identify, and discriminatory 

across different objects such that good quality classification can be obtained. In 

this thesis we generate a set of features extracted from image and video 

sequence data using standard image processing techniques, which are described 

in chapter 4 and a set of features extracted from the audio signal using audio 

analysis as described in chapter 5; 

• The Classification component uses a classifier that takes feature data for each 

training samples as input and generates a predicted class label for that sample. 

Classifier implementation and evaluation results for video features only is 

described in chapter 4, and for audio features only is described in chapter 5. 

Finally, classification performance by using information from both audio and 

video modalities is described in chapter 6; 
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• In Chapter 6, Semantic Analysis component integrates the results obtained by 

all the modules of the classification stage, with a set of rules, for a complete 

description of video content. Rules based on semantic relationships are used to 

correct mistakes in these descriptions. 

1.5  Contribution and Novelty 

The key contribution of this thesis is the specification of an overall software system that 

is designed to extract content information from “unconstrained videos”. This takes the 

form of a framework that supports both academic investigation of various components 

performance and their interactions as well as practical application to real world problems. 

One major challenge for modern research is to bridge the gap between the technology 

that we have at present and its application to real-world problems. The literature is full of 

studies that have used existing tools and techniques, or devised novel approaches that 

work very well for constrained environments. For example, developing a face detection 

or recognition system with a white background and the subject seated with a fixed pose is 

far simpler than recognising faces in a crowd. Despite much research advances in 

imaging and audio processing, the technology is many areas is still not ripe for real world 

applications. Our study has focussed on realising a complete system, with a chain of 

processes, with the aim of solving a practical application. The methodology for the 

complete process, should be modular in structure, where problems can be hierarchically 

decomposed and operated on, and where the algorithms or tools used for the same 

purpose can be interchangeably used. Some of these processes are box standard, whereas 

others are novel. In particular, our contribution to the research domain includes: (a) 

Integrating known tools and techniques across various stages of the framework with the 

goal of solving the complex problem video understanding, without imposing constraints 

or making unrealistic assumptions about the data, seeing how far we can push technology 

to realise a usable system and normalise the data flow within the framework; (b) 

Introducing a range of novel algorithms where required within the pre-processing, feature 

selection and classification stages; (c) Evaluating this approach on a large amount of data 

to show that each component, and the complete collection of components, works to its 

desired level; and (e) Developing an audio-coupled video content recognition system, a 
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problem that has not been tackled in great detail by previous research, and we have 

convincingly shown that A+V is better than using any one of these individually while 

comparing different modality fusion strategies; (f) Providing evidence that further use of 

semantic knowledge improves the results even further, thus generating a final description 

of video content that is highly accurate. 

So have we succeeded in developing a full and final system, ready for commercial use? 

No, but then it was never the intention. We have however succeeded in providing a 

detailed blueprint of how a system can be laid out, and with a limited set of known tools 

and our novel algorithms, shown that the overall system works on a fairly large amount 

of data. There is no doubt that with the methodology described in this thesis, and with 

further work, commercial systems can be built to tackle video content description 

problem. 

In terms of novelty, a number of technical components presented in this thesis are either 

new, or novel extensions of previously known techniques because the use of known 

methods directly does not produce desired results. In particular, our study introduced 

novel algorithms or extensions in the following areas: (a) Proposal of novel algorithms 

for video window selection at the pre-processing stage and image and audio probabilistic 

and signal analysis models at the feature extraction stage; (b) Development and 

evaluation of a novel methodology for feature selection which performs at similar levels 

to existing techniques by with high processing complexity saving; (c) Improvement to 

audio and video modality fusion techniques based on the combination of methodologies 

working at different levels of the fusion process (feature and decision levels); (d) Novel 

approach to using semantic knowledge for generating the final classification results by 

representing classifier decisions as concatenated bit strings, generating probability 

distribution on its basis, and using this as semantic knowledge to correct classifier 

mistakes. (d) The complete integrated system is novel in its own right while serving as a 

platform for generating evidence of the benefits of integrating modalities and evaluating 

the findings of intermediary processes and its modular approach provides the potential for 

further research and extensions within multi-modal problems and applications.  
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Chapter 2 -  Audio-Coupled Video Data Analysis in Multi-

modal Systems – Methods and Applications 

2.1  Introduction 

As humans, we interpret the world through a variety of sensory modalities (e.g. vision, 

hearing, touch, smell and taste) (Blattner and Glinert, 1996) taking advantage of the 

synergy between different modalities (Checg and Kuniyoshi, 2000; Murphy, 1996). It has 

long been the aspiration of human-computer interaction (HCI) based research to embed 

the ability in computers to process data from a variety of sources and perform fusion on 

their features and decisions.  

Multimodal data analysis has its roots in Human-Computer Interaction research. In the 

early nineties, a few studies provided the base definitions of modality and relationship 

between modalities. One such early example was presented by Nigay and Coutaz (1993) 

who defined a multi-modal system as one that “supports communication with the user 

through different modalities such as voice, gesture and typing”. The first application-

dependent heuristic solutions were also presented at that time (Nigay and Coutaz, 1993/5; 

Salem et al. 1998; Martin et al. 1998). Within a few years, the range of applications 

diversified (e.g. person recognition, video segmentation, robotics, biometrics, etc) and 

sophisticated fusion techniques began to be used. In the last few years, it has become 

possible to truly develop such systems as the cost of processing data from different 

sensors has fallen, allowing real-time data analysis for various applications. In this paper 

we particularly focus on audio coupled video data analysis for a number of applications. 

It has been proved in a several studies that the integration of these two modalities when 

processing data for decision making leads to better quality decisions compared to 

analysing them individually. 

The aim of this chapter is to provide an overview of the research in this area in order to 

serve as a starting point for future work. We focus on two important areas: (a) application 

areas of audio-coupled video analysis and (b) the technology behind such multimodal 
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systems. These are discussed in sections 2.2 and 2.3, respectively. We present some 

important conclusions, and identify important areas of further investigation in section 2.4. 

2.2  Applications 

The motivations for research in the field of audio-coupled video analysis are varied and 

often unrelated. There is a variety of applications that require, or benefit from, the use of 

several different modes of data analysis. A relative measurement of the amount of 

publications covered in our study is presented in Figure 2.1. The figure provides a general 

feel of the research according to application areas. Work in HCI and video summarisation 

has been the focus of most audio-visual research. A few other applications have also been 

important (e.g. person verification systems and source location) and new ones are still 

emerging (e.g. bimodal speech and event detection). This section presents an overview of 

the type of applications and research areas that use audio-coupled video processing.  

Figure 2.1 – Relative amount of audio-coupled video research in each application field 

based on the surveyed papers (VS – Video Segmentation/Indexing; HCI – Human 

Computer Interaction; PV – Person Verification/Recognition; SL Source Localisation; SR 

– Speech Recognition; AR – Action Recognition; SQ – Signal Quality; AC – Affective 

Computing; VC – Video Coding). 
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2.2.1 Video Abstraction and Indexing  

Video abstraction is the process of selecting appropriate video segments that concisely 

represent the original sequence. This is driven by video labelling techniques (the process 

of selecting and classifying video segments), which generally involve prior shot detection 

followed by clustering. It is only natural to take advantage of the availability of 

information in different modalities. Several important contributions illustrate the issues 

involved in this research filed and how it may be important to consider different data 

sources to reach a solution. An important case for this reasoning is the work of Lienhart 

et al. (1999) which the authors take advantage of dialogs, similar settings and similar 

audio and show that it is possible to group and cluster the shots into different categories. 

Previously, most approaches to this problem had used only either visual or audio 

techniques at a given time. This work is a clear example which shows that using both 

modalities presents a natural solution to the problem. One way to combine diverse data 

sources is to use each to tackle a different stage in the labelling process. The review by 

Naphade and Huang (2002) discussed common audio-visual solutions to semantic 

classification of scenes using one modality for video segmentation while classification of 

the video shots is performed with the other modality. Likewise, Minami et al. (1998) use 

the audio modality to detect speech and music in video. In the context of a video 

production model, the detected features enable the indexing of video segments, 

summarisation and provide further semantic link to the edited segments. Similar 

applications have been addressed by Saraceno and Leonardi (1998), Durand et al. (1999), 

Tseridou et al. (2000) and P. Muneesawang and L. Guan (2007). These studies classified 

video scenes into dialog, story, action and genre. They employed video shot detectors to 

segment the video into small shots and then audio and video features were used to 

classify and combine the shots into extended scenes. These studies showed that 

correlation exists between speech and the presence of faces in video sequences. This 

observation was explored as well by Iyengar and Neti (2000). In their work, audio-visual 

boundaries were defined with the intention of detecting speaker changes in edited video 

sequences. Other works can classify TV clips according to the series they correspond to 

(e.g. Putthividya et al. 2007). Finally, all this provides a basis for generating automatic 



36

video abstracts and trailers for summarising a range of videos including home video and 

movies (Lienhart et al. 1997; Pfeiffer et al. 1996). 

Another motivating problem surfaced with the introduction of pay-per-view and video-

on-demand systems and the specification of MPEG-4 and MPEG-7 standards for video 

coding and video indexing (Boccignone et al.1999; Correia and Ferreira, 1998). The 

development of video databases together with their indexing abilities drives the creation 

of intuitive and natural search interfaces. Hence, Query-by-Example (QBE) techniques 

have been gradually replaced by Query-by-Keyword (QBK) in the literature (Adams et 

al. 2003). The idea is to produce an interface that allows the specification of contextual 

attributes as the reference for video clips combined with a classification system capable 

of automatic recognition of such contexts. The process of building audio-visual indexing

systems often includes segmenting the video sequences into specific scenes combined 

with some degree of identification of the scene type, i.e. providing a semantic description 

of what happens during a fixed period of time. This can range from identifying genres to 

the recognition of specific activities and actions. In their review about multi-modal video 

indexing, Snoek and Worring (2002) discussed a semantic index hierarchy covering 

genres, sub genres, logical units and named events that have been used in this research 

area. Other studies try to estimate semantic ontologies based on users behaviour (Hare et 

al. 2006). Some examples that try to attribute semantic information to videos  include the 

work of Naphade et al. (1998 – 2001) which introduced a novel approach to video 

indexing and retrieval using multi-modal information in the form of probabilistic 

multimedia objects. The result was a fast and accurate retrieval system showing the 

benefit of exploring data extracted from different sources. Another video segmentation 

and indexing system was described by Jasinschi et al. (2001). This system used multi-

level audio, video and transcript processing for story segmentation and topic 

classification as opposed to customary video indexing based on low-level features. A 

more conventional approach was followed by Adams et al. (2002). They used a trainable 

system for labelling semantic concepts in video for QBK indexing using audio, video and 

textual feature models. A video indexing system for broadcasted interviews database is 

presented by Albiol et al. (2002) where the idea was to use automatically detected 
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interviewees as the search pattern in the indexing system. Another approach for newscast 

video sequences was presented by Iurgel et al. (2002), which consisted of scanning a 

multimedia database and automatically analysing and labelling documents according to 

topics. Audio-visual data processing was integrated to segment shots, and text analysis 

was performed to classify the topic. Topic segmentation was also addressed by 

Raaijmakers et al. (2002) who performed a combination of audio-visual boundary 

processing (which they claimed to result in under-segmentation) with textual 

segmentation (over-segmentation) resulting in an overall improved system. TREC is a 

project going for several years using multiple collaborators for research on video 

retrieval. A database of (mostly) news videos has been gathered and work focuses on 

several aspects such as shot boundary detection and semantic understanding. 

Nevertheless this project focuses more on video and text combination rather than audio 

(Smeaton et al. 2994; Wu et al. 2004; Over et al. 2006; Campbell et al. 2006; Xie et al. 

2007). 

In brief, video abstraction and video indexing both involve shot detection and clustering. 

Visual and audio modalities can be used with relative success in each phase but there is 

evidence that suggests there are benefits in combining their strengths. This is 

predominantly apparent when performing classification of predefined semantic concepts 

to describe video scenes. 

2.2.2 Human-Computer Interaction 

The HCI problem involves merging multiple modalities in a way that humans feel 

comfortable when interacting with computer systems. Traditional methods for interacting 

with computers include the use of different input devices, such as a keyboard and a 

mouse, and output devices such as monitor and a speaker system (Salem et al. 1998). 

However, Oviatt (1996) discussed research evidence that people prefer natural ways of 

communication. In her work, participants performed poorly when using a speech-only 

interface compared with a multi-modal solution to this problem. Similarly, Johnston et al. 

(1997) described an interface that allowed the use of speech supported by pen drawing 
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input, and showed that it was much more agreeable and efficient to use compared to a 

speech only system.  

Given that graphical interface applications benefited from the addition of speech as a 

command selection input, this technology was ready to be exploited by mid nineties. In 

1996, Cohen et al. (1996) introduced QuickSet, a wireless, handheld, collaborative 

system for military simulation and visualisation that allowed users to employ various 

input modalities including speech and gesture (through a pen stylus). This tool has been 

used extensively in subsequent multi-modal interaction studies, e.g. Johnston et al. (1997) 

investigated speech and gesture integration with a unification operation over typed 

feature structures, and Wu et al. (1999) for the study of the Members-Teams-Committee 

(MTC) algorithm. Instead of using a pen interface, Andre et al. (1998) addressed the 

problem of combining real-time speech input with asynchronous gesture input from a 

force-feedback tactile glove to generate application specific commands. Another example 

is COMIT introduced by Martin et al. (1998). It is a multi-modal interface framework 

that combines speech, keyboard and mouse, and uses a GPN to implement recognition 

and prediction of expected events. The development of geocentric and entertainment 

systems that use large displays has been tackled by Krahnstoever et al. (2002) who 

proposed a framework for Natural Multi-modal Interaction. It used non-invasive pattern 

recognition techniques in applications that included a Campus map that accepted verbal 

questions about current location and directions, and a virtual avatar that helped users 

navigate on the web. Another example, in the form of a simple object selection tool, was 

offered by Zhang et al. (2003) to select objects on the computer screen. A head mounted 

eye tracker followed the user’s gaze while a speech recogniser identified object 

descriptions. To this day, research is still ongoing in this area, for example, in their work, 

Sun et al. (2007) implement a multimodal language processor that combines gesture and 

speech recognition.  

In the footsteps of established graphical interface systems, robotic applications began to 

integrate multi-modal technology as a sensing aid. Virtual agents and social robots

technology soon followed. This technology intends to replicate humans sensory 
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processing and behaviour to be accepted as believable characters (Cheng and Kuniyoshi, 

2000; Fong et al. 2003; Natale et al. 2002). Hence, such systems (based around either 

physical hardware, e.g. robot, or software, e.g. computer animation) require audio-visual 

input and output. The challenge is how to combine artificial communication technologies 

to imitate the natural style of human communication (Blattner and Glinert, 1996), based 

on visual contact, speech, touch, and body movements. This is still a recent field. Most 

related projects encompass the collection of individual cues to drive an internal behaviour 

mechanism (e.g. an agent might become ‘bored’ if there is no human present in is field of 

vision for a period of time). Consequently, there is the need for more complex cue 

interaction and the ability to respond to different exiting signals. Hashimoto et al. (1998) 

have developed humanoid robots that provide audio-visual processing module to 

understand the surrounding environment. This system focuses mostly on the detection of 

people who are speaking. A robot that mimics human behavior is implemented by Cheng 

and Kuniyoshi (2000). The robot is able to recognise human behavior using multi-sensory 

cues and control its actuators in order to replicate it. Spatial hearing is used to determine 

audio source. A visual processing system is able to detect a variety of cues to detect 

people and body parts. Mapping to motor controls is performed directly from input cues 

e.g. spatial hearing, detected head position and head/neck/torso motion. A combination of 

many of these methodologies is presented in the Karlsruhe Humanoid Robot 

(Stiefelhagen et al. 2007). 

Affective computing is an emerging concept tied to social robot application. Its main idea 

is that genuine computer intelligence and natural interaction will require forms of 

recognising human emotions and even simulation and expression of emotions (Picard, 

1997). A person-independent multimodal emotion recognition system is demonstrated by 

Kim et al. (2002). The system fuses information collected from a number of physiological 

signals with a SVM classifier and shows equivalent performance to person-dependent 

systems. 

The use of multiple sensors has also been useful in industrial robotics. Bauckhage et al. 

(2002) present an industrial robot that performs visual and acoustic recognition tasks and 
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learns about its surroundings. Basically, the user tells a robot about component pieces that 

it needs to use to assemble a relatively complex object. The main task is to associate 

descriptive words with the corresponding objects. For achieving a similar objective, 

Wachsmuth and Sagerer (2002) developed a probabilistic decoding scheme that 

integrates speech and images to command a construction robot. The user describes the 

components to be used and assembled, and the robot identifies parts from the aural 

description associated with visual object recognition. 

It is noticeable how the need to optimise and simulate interaction between humans and 

machines drives applications in a diverse set of research fields to converge and use the 

same communication channels people are used to. From HCI to robotics, both input 

signals and output responses display advantages when combining different modalities 

2.2.3 Person Verification and Recognition 

In the last decade, research into biometrics has gained much impetus. The application of 

person verification and recognition lends itself to the use of different types of inputs, e.g. 

fingerprint, face (both global or specific features such as eye iris), voice, and others 

(Bowman, 2000). In this context, the combined analysis of facial (visual) and voice 

(audio) features has an important role to play to improve system accuracy and minimise 

false positives. 

Person recognition is concerned with discrimination and identification of people, i.e. the 

use of a model trained from a priori measurements to perform judgment about novel input 

data. Choudbury et al. (1999) proposed such a system using unconstrained video and 

audio. Person verification (or authentication), however, is a simpler task of matching a 

test sample with one of the training samples that the test sample claims to be. Most 

practical systems have been more successful at verification than recognition. These 

systems have the objective of accepting or rejecting identity claims by subjects using the 

system. Established approaches are based on unimodal features such as facial or voice 

analysis alone. Recent development in data fusion has investigated the advantages of 

merging audio and video features. Verlinde et al. (2000) introduced this problem in the 
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context of biometric verification along with a comparison of parametric and non-

parametric decision fusion techniques. One of the first studies on authentication systems 

was performed by Duc et al. (1997), who combined unimodal machine expert modules 

with a supervisory decider for final integration. This model is widely used as described in 

section 2.3. Ben-Yacoub (1999) used the same expert/supervisor model for person 

authentication as a binary classifier problem in order to study the success of different 

fusion schemes. A more detailed study, involving the determination of confidence 

measures for estimating the reliability of the intermediate and final steps in the system 

was presented by Bengio et al. (2002) who integrated a speaker recognition system with a 

face recognition system to provide an enhanced person verification system. Experiments 

by Bengio et al. (2002/3) with the M2VTS (Multi Modal Verification for Teleservices 

and Security applications) database achieved Half Total Error Rate (HTER) values as low 

as 15% using an Asynchronous Hidden Markov Model (AHMM). On the same database, 

Brady et al. (2007) evaluate several methodologies, achieving Equal Error Rates (EER) 

of 0.5%. An extension of that database is used by Fox et al. (2007) to evaluate fusion of 

speech, mouth and face experts. In parallel, recent research in biometric systems is 

increasingly being based on the use of smart cards (Czyz et al. 2003) that can store audio-

visual patterns for matching and the user can carry it with them to gain access to 

buildings and equipment.  

2.2.4 Source Localisation 

The main aim of source localisation research is to identify the exact location within an 

environment where something of interest happens, e.g. finding the location of a moving 

object based on the received audio or visual signal. This problem can be effectively 

solved by combining audio-visual signals since visual movements tend to be correlated 

with the sound signal (e.g. lip movement related to speech; person walking related to 

sound of steps, a door opening and the creaking sound, etc.).  

Generic object localisation has been performed by several researchers using a variety of 

methods. Simpler solutions involve the use of stereoscopy or stereophonic modules:  
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• Stereoscopic, stereophonic systems: Examples include the work of Aarabi and 

Zaky (2000), who integrated a dual camera vision system with a sound 

localisation system to generate a map of location probabilities, and Checka and 

Wilson (2002) who used stereo vision tracking and a microphone array together 

in a probabilistic framework to track moving objects. 

• Monocular, stereophonic systems: Beal et al. (2002/3) took advantage of the 

correlation between object movement and audio delay (they used two 

microphones) to determine the position and track objects in a complex and noisy 

environment.  

• Monocular, monophonic systems: Chen et al. (2003) studied the relationship 

between audio-visual events using only one camera and one microphone. By 

exploring covariance between repetition of movement and repetition of sound, 

they were able to obtain good correspondence even in complex environments 

with different objects and sounds. Similarly, Hershey and Movellan (2001) 

explore the evidence that sound localisation is influenced by the synchrony with 

the video signal (what they describe as the ventriloquism effect). 

Speaker tracking is another interesting application where source localisation is important. 

An automated camera operator can be made to follow a presenter as shown by Blake et 

al. (2001) using stereo sound combined with active contours. With the purpose of 

building a video telephony system, Vermaak et al. (2001) tracked a speaker’s head, 

therefore allowing the user to have some degree of freedom of movement. A similar 

purpose of speaker localisation was developed by Fisher and Darrel (2002) with 

probabilistic models to infer the portion of audio and video signals that have the same 

underlying source or the system by Segura et al. (2007) which detects the speaker’s 

position and head orientation in a SmartRoom environment. 

2.2.5 Automatic Speech Recognition 

The realisation of robust speech recognition systems has been a difficult task given low 

signal to noise ratio, time-based variability in speech source, and the similarity in signals 

across different people. It is now well recognised that the use of facial feature analysis, 
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e.g. lip movements, can be used to aid the quality of speech recognition. Traditionally, 

Hidden Markov Models (HMM) have been employed for this purpose (Hughes, 2003). 

For example, Bengio (2003) described the AHMM, which combines audio-visual 

sequences with different lengths and applies it to speech recognition. Similarly, Coupled 

Hidden Markov Models (CHMM) have been used by Nefian et al. (2002) for the same 

purpose. Word error rates (WER) in these studies revealed better recognition rates with a 

combined system than with unimodal ones (e.g. with a signal to noise ratio – SNR of 

10dB, Bengio (2003) achieves a 41% WER with an audio and video AHMM compared 

with 79% with a audio-only HMM). 

Speech output can also be combined with corresponding text, for example in television 

broadcasts, to improve the quality of automatic speech recognition. Jang and Hauptmann 

(1999) gathered large amounts of speech data from open broadcast sources and combined 

it with automatically obtained text or closed captioning to identify suitable material. They 

aligned speech recognition output with the corresponding close-captioned text. The 

matching sequences were assumed as reliable transcriptions that can later be used to 

improve the speech recognition system. 

Somewhat related, is the work by Katsamanis et al. (2007) and Papandreou et al. (2007) 

which try to model the geometry of the speech track from audio and visual information, 

to aid in speech recognition.  

2.2.6 Action and Context Understanding 

Multi-modal sensor data has a significant role to play in the machine understanding of 

our environment. In particular, action understanding relates to the task of recognising 

human dynamics (for an extensive survey see (Wang and Singh, 2003)). For example, 

certain actions such as someone walking or drinking tea, can be identified using video 

alone (albeit with some difficulty). However, actions such as clapping, talking, etc. have 

both an audio as well as a visual signal which can be analysed together (Lopes and Singh, 

2006c). In the area of context understanding, it is more the activities in the surrounding 

environment that can be understood better by integrating audio and video signals. An 
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example can be to automatically identify if a door opens, or that the context is a football 

match if we can visually identify people in the video and the audio signals typical of that 

context.  

A few studies provide a good introduction to the subject of action and context 

understanding from video alone. Bobick and Davis (1996) discussed action understanding 

from video sequences using temporal templates. Dar et al. (1999) described mechanical 

motion and recognised simple movements (by motion analysis, optic flow) and their 

corresponding position in space (using space partitioning). Another example is the view-

invariant representation of human action by Rao and Shah (2000/1). This representation 

was able to model and identify the same activity from different angles.  

However, the recent research trend is to use data from multiple modalities. For example, 

the work of Brand et al. (1996), recognised actions from several input sequences using 

Coupled HMMs using both audio and video features, or the work of Wei et al (2007) and 

Chang et al.(2007) which discriminate between a number of semantic events. In the 

recent literature, two emerging applications have much promise for multi-modal data 

analysis: (a) wearable computing; and (b) automated analysis of sports video. We discuss 

these in brief. 

Wearable computing benefits enormously from using multi-modal sensor data. Van 

Laerhoven et al. (2001) used wearable computing approach to the task of recognising 

personal activities. Several sensor data were fused (temperature, photodiode, touch, 

microphone, accelerometer) using ANNs (in this case, the Kohonen Self Organising Map 

was used) to classify actions such as sitting, standing, walking and running. This 

information can be used for logging daily tasks or for context-dependent applications. 

Another task where multi-modal fusion has been successfully applied is human 

mannerism recognition in dialogues, Chai et al. (2002). This involved using a dialogue 

interpretation semantic model to follow a conversation and associate information with the 

current context. The objective was to be able to fill information gaps with data derived 

from other modalities, such as gestures.  
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Sports videos have been the focus of much research in the recent years. Multimodal data 

analysis can be combined with prior knowledge on the rules of the game to derive a 

semantic understanding of what takes place. A number of different games have been  

recently studied such as tennis, baseball, basketball, and football, and a lot more a priori 

information of the physical size of the pitch, the spatial arrangement of players and 

landmarks is being used for semantic understanding (Bertini, 2004). Miyamori (2002) 

performed an analysis of the physical actions of players during a tennis match to 

automatically recognise the type of shot played (forehand, backhand, smash). Audio 

information was used to improve the accuracy of video analysis. Similarly, Kim et al. 

(2002) extracted video and audio events to automatically identify shot types in basketball 

video sequences. Hua-Yong et al. (2007) and Wang et al. (2007) extracted audio and 

video features, together with text and audio keywords to detect events in football videos. 

There is no doubt, that future studies will employ audio with video to improve upon the 

results obtained using only one modality.  At the same time, parallel development into the 

area of creating multi-modal databases that can be used for training machine learning 

systems or performing similarity matching is important. For example, in the area of 

human behaviour understanding, Nakamura et al. (1998) detailed the task of building a 

multi-modal multi-view integrated database. They focused on presentation situations, 

such as lectures or demonstrations with the objective of being able to address classes of 

non-verbal behaviours: emblem (e.g. sign languages), illustrator (for supporting speech), 

affect (e.g. facial expressions), regulator (e.g. movements that regulate conversations) and 

adaptor (e.g. personal habits). This database was intended for use in different types of 

applications. It contains audio, video, human body motions, and related transcripts in a 

time frame. Likewise, Rutkowski et al. (2007) focus on communication interaction using 

audio and video information. An open area of research is the development of statistical 

tools that allow data analysis obtained through multiple modalities for efficient 

information fusion.  
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2.2.7 Other Areas 

In addition to the application areas discussed in sections 2.2.1 to 2.2.6, multi-modal 

information fusion has been attempted in a limited number of other research areas 

including video, signal quality improvement and sonification.  

Video coding is the process of describing a video sequence in a manner suited for 

effective storage or transmission. Rao and Chen (1996) address the problem of coding 

video information (in particular, mouth shape) using an audio-based predictor for talking 

head applications. Because the audio stream is transmitted along-side video stream as 

well, a system that predicts the visual shape of the mouth only needs to transmit the error 

between the prediction and the original signal. 

Signal quality improvement and noise reduction can also benefit from the use of audio 

coupled video processing. This is useful for speech recognition or teleconferencing 

applications, generally in situations where the speaker is far away from the microphone 

or where there is much background noise. In their work, Fisher et al. (2000) combine the 

non-linear statistical relationship between audio and video signals in a joint subspace. 

The projection coefficients derived from this subspace are used in filters that improve the 

signal quality, i.e. SNR of the audio signal.  

Sonification is a research area concerned with applying non-speech audio, alone or in 

combination with visual imaging techniques to convey, transmit and represent 

information, Kramer et al. (1999). An example system presented by Wang and Ben-Arie 

(1996) transforms 2D binary images into “auditory images”. They use raster scan that 

modifies sound level depending on the pixel and conduct a number of experiments that 

show how this affects the listener’s shape recognition rate. Salvador et al. (1998) present 

a framework for studying how sound is able to support graphical techniques in 

visualisation tasks. 

The examples presented in this section show that many research topics and their 

subgroups can make use of information available in several modalities and, in particular, 
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audio and video. The methodologies and techniques used in practice to address the 

combination of data extracted from multiple sources are detailed in the next section, 

along with insight into evidence that show that this interaction is very much beneficial in 

most cases depending, of course, on the problem at hand. 

2.3  Multi-modal Information Fusion Strategies 

So far, we have discussed the motivation behind audio and video coupling strategies. The 

main reason why it is a good idea to integrate different modalities is that cooperation 

between different data can enhance the projected system as a whole. This cooperation can 

take many forms as proposed by Martin et al. (1998): 

• Transfer – information produced by one modality is used by another, e.g. in a 

computer interface, a mouse click can produce a visual result; 

• Equivalence – refers to different modalities expressing the same meaning, e.g. 

typing or saying a command; 

• Specialisation – defined at the implementation level by assigning a specific task 

with only one modality, e.g. errors are only acknowledged by audio signals; 

• Redundancy – relates to the same information being processed by different 

modalities, e.g. a user typing and voicing a command simultaneously; 

• Complementarity – refers to the ability of information present in one modality 

to add to the information from other modalities, e.g. the user says the command 

“create object there” while pointing to the location of interest. 

Since modality fusion is concerned with combining multiple sources, how this can be 

accomplished has been an area of active research. An earlier proposal relating to multi-

modal system design described different concept levels (Nigay and Coutaz, 1993/5): 

lexical fusion involves combining actual input data; syntactic fusion deals with the 

combination of data to compose a command; and finally, semantic fusion unifies 

command and corresponding results. Several approaches have been suggested since, that 

can be classified into three main groups: data fusion, feature fusion and decision fusion 
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(Sharma et al. 1998) as shown in Figure 2.2. Data fusion is rarely found in multi-modal 

systems because raw data is usually incompatible. Feature and decision fusion are more 

common and can have been explored frequently by using and extending standard pattern 

recognition tools. Also some studies have presented ad hoc combinations of these three 

concepts. The following sections detail the work done in the context of audio and video 

coupling strategies and are organised under these categories. Sections 2.3.1, 2.3.2 and 

2.3.3 describe work that falls into the three (data, feature and decision) fusion categories. 

Section 3.4 presents models that include fusion on several levels simultaneously. Finally, 

in section 3.5, we describe models that don’t fit into these categories and that solve 

application specific problems heuristically. 

Figure 2.2 – Fusion levels: Data fusion; Feature fusion; Decision fusion. 
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2.3.1 Data Fusion 

Data fusion is the process of exploring the relationship between information derived from 

different sources. This is seldom present in the literature due to the nature of available 

data. Audio is represented by one-dimensional high frequency signals whereas video is 

organised in two-dimensional frames over time at a much lower rate. There are issues 

when synchronising both sources, as well as the fact that video only represents the space 

covered by the camera frustum. 

Only a few studies can be described as making use of features extracted from both 

sources. Fisher et al. (2000) project audio and video measurements into low dimensional 

subspaces using single layer perceptrons. Parameter vectors (perceptron weights) are 

adapted in such way to maximise the mutual information of the projection. They show 

that the adapted vectors contain useful information such that the visual sources of the 

audio can be determined and the audio signals enhanced. Similarly, Hershey and 

Movellan use mutual information to find the correlation between the two data streams 

with the purpose of determining the location of the audio signal in the image. In this case 

though, they model each data vector as an independent sample from a joint multivariate 

Gaussian process (Hershey and Movellan, 2000). A different approach to sound 

localisation is used by Chen et al. (2003). They start by determining sound onsets (which 

mark the beginning of an event) and correlate the time series of both audio spectra and a 

space time invariant measure of tracked points in the image. This correlation is a good 

measure of correspondence between the movement and the sound produced. 

2.3.2 Feature Fusion 

Feature fusion means that features extracted from different modalities are combined and 

modelled together. It involves close coupling and synchronising of data sources, which 

allows a higher level of cross correlation and interaction between the data compared to 

late fusion. The main problems include dealing with the high dimensionality of features 

(this has direct implications in the computational cost) and the need to extract features 

that are compatible and related between modalities, but still remain generally 

discriminatory and non-redundant. 
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Hidden Markov Models (HMM) are used to model time dependent data sequences. This 

makes them the most common technique applied in the field of speech recognition and 

audio modelling (Rabiner, 1989). Furthermore, with some adaptation, they have been 

extensively used for feature level fusion of audiovisual sequences. A straightforward 

example of the use of HMMs for data fusion was presented by Iurgel et al. (2002). This 

work enhanced a HMM video segmentation algorithm by adding audio segmentation 

vectors (Mel-Frequency Cepstral Coefficients – MFCC) to the original video-only 

system. The system was able to detect topic boundaries instead of just audio or video 

cuts. Another is by Wang et al. (2007) which uses HMM to synchronise text and audio-

visual events. 

More flexible methods chose to extend the HMM model to tackle additional observation 

sequences. Pavlovic (1998) lead the way in this area by enhancing the role of HMMs to 

be multimodal feature predictors. In his work, he extended standard inference, learning 

and decoding procedures of HMM to support the intrinsic coupling of modalities from 

low-level signals. Input-Output Hidden Markov Models (IOHMM) represent a variant of 

HMMs where the emission and transition distributions are conditional on another 

sequential variable. An extension of this model was introduced by Naphade et al. (2001). 

Duration dependent input output Markov models (DDIOMM) were able to detect events 

from multiple modalities taking into account duration dependent events. It contains a 

hierarchical mechanism that maps media features to output decision sequences. 

Experimental results showed lower classification errors when comparing this scheme 

with regular HMMs. Further work by Bengio (2003) investigated the creation of 

sequence descriptions that are independent of the observation duration. Finally, Bengio 

(2003) proposed Asynchronous HMM (AHMM), which were inspired by Pair HMMs 

and Asynchronous IOHMMs. This is a HMM architecture that accounts for asynchronous 

sequences describing the same sequence of events. This allowed the combined modelling 

of different types of signals, such as audio and video. It was applied to the task of speech 

understanding and speaker verification and showed good performance on noisy data. In 

parallel to this work, coupled HMM (CHMM) are another generalisation of HMM that 
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permit the incorporation of two or more data streams modelled as different HMMs, where 

the discrete nodes at time t for each HMM are conditioned by the discrete nodes at time t 

-1 of all the related HMMs (Brand et al. 1996). This advantage was explored by Nefian et 

al. using Mel-Frequency Cepstral Coefficients (MFCC) features for the audio stream and 

Discrete Cosine Transform (DCT) and Linear Discriminate Analysis (LDA) features 

extracted from the mouth region in the image. The CHMM shows much better 

performance when classifying a set of 10 words than each modality alone and also that 

this method is also more robust in the presence of noise in the audio signal. Another 

variant is the use of multistreams HMMs which assume state synchronicity but that each 

modality have different contributions to the observation likelihood. These have been 

shown to perform better than late fusion on a articulatory trajectory prediction problem 

(Katsamanis et al. 2005, 2007). This model has also been used for speech recognition 

using active appearance models and MFCCs generating high word percent accuracy 

(Papandreou et al. 2007). 

Feature level was also attempted through the use of a probabilistic model (e.g. Bayesian 

Network – BN) that included cross-feature correspondence. This approach was suggested 

by Fisher and Darrel (2002), where statistical properties of the audio signal were 

explicitly related to the movement of the video image thus determining the source of the 

sound. Beal et al. (2002/3) took a similar approach by using a pair of microphones and a 

camera to track objects. They built a Probabilistic Generative Model (PGM) to represent 

both audio and video signals. This system’s main advantage was the ability to use Bayes-

optimal estimation of variables using the Expectation-Maximisation (EM) algorithm. 

Furthermore, both audio and video models were easily integrated by the introduction of a 

dependency between audio time delay and video spatial shift. Object tracking benefited 

from the conjunction modelling of both signal modalities when compared to the use of 

each modality alone. A similar approach, but in the context of speech enhancement was 

proposed by Hershey et al. (2004). They developed a probabilistic generative model that 

learns the dependencies between a noisy speech signal and the region of the lips in the 

image. This method showed better improvements in SNR (up to 15dB) for noisy audio 

when using the combined model as opposed to video or audio alone. Other useful models 
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for feature fusion that have shown promise can be NN or SVM (Hua-Yong et al. 2007), 

boosting strategies that optimise feature kernel subsets and train a model with these 

(Chang et al. 2007) or LDA (Putthividya et al. 2007). 

Alternative feature fusion approaches are inspired by physics or biology based 

phenomenon. Vermaak et al. (2001) used Time Delay of Arrival (TDOA) extracted from 

two microphones and visual tracking using standard active contours to detect and follow 

the speaker in a sequence. Predictions of the generative model of the observations were 

fused with a particle filter (Monte Carlo). This system exhibits improved robustness in 

initialisation and lock recovery when compared with a video only system. A further study 

by Natale et al. (2002) presented a robotic system that learns the relationship between the 

audio and video signals using a least-squares algorithm with the objective to control the 

eye actuators. 

2.3.3 Decision Fusion 

Decision level fusion and is the most commonly used technique. Fusion is performed by 

combining output decisions of different low-level classifiers or processing systems. The 

general architecture of systems that perform decision level information fusion contains a 

first stage where unimodal experts (classifiers or predictors) work in parallel, each 

providing an output based on a particular set of features. The second stage involves 

information fusion by combining the outputs of each expert to produce a final 

decision/result.  

The first level of analysis involves the use of specialised models. A number of different 

techniques have been used in the past. Audio modelling is usually performed using HMM 

(Duc et al. 1997; Kittler et al. 1998; Ben-Yacoub, 1999; Choudhury et al. 1999; Adams et 

al. 2003; Bauckhage et al. 2002) that take as input Linear Frequency Cepstral 

Coefficients (LFCC) (Duc et al. 1997; Ben-Yacoub, 1999; Czyz et al.2003) or MFCC 

(Choudhury et al. 1999) audio frame coefficients. The visual analysis is performed using 

a broad range of shape, texture, colour and statistical features. Their classification can be 

performed using standard classifiers based on Gaussian Mixture Model (GMM) 
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(Choudhury et al. 1999; Adam et al. 2003) or Multi-Layer Perceptron (MLP) (Bengio et 

al, 2002). It is important that the different experts generate similar and compatible outputs 

(decisions) so that they can be combined in a straightforward manner. A number of 

combination techniques for information fusion have been used for audio-visual data 

analysis as detailed below. 

The first approach to information (decision) fusion is based on the use of combining 

decision probabilities using a number of rules. Kittler et al. (1998) presented a seminal 

study on this topic. This work provided a theoretical framework based on Bayes theory to 

derive several decision rules in the presence of different classifier outputs (Product rule 

and Sum rule). These were used to derive further combination strategies (Max rule, Min 

rule, Median rule and Majority vote rule). This study used these rules for an identity 

verification problem solved by template matching for frontal face recognition using 

Chanfer distance for face profiles, and a text-dependent HMM for voice recognition. The 

results of this study showed improvement when using the combination scheme over using 

each classifier alone. Furthermore, the Sum rule provided the best results due to its 

sensitivity robustness. Similarly, arithmetic mean score as a combination of two decisions 

had been used earlier by Duc et al. (1997). This was compared with a Bayesian estimator 

of expert biases to combine the decisions, which was found to be better. Their work used 

elastic graph matching features for the face authentication expert and HMM to generate 

the sound model. Further work by Ben-Yacoub (1999) with the same type of features, 

showed that a Support Vector Machine (SVM) outperforms Bayesian conciliation and 

arithmetic mean approaches. Segura et al. (2007) present a fusion rule that weight the 

overall and partial estimates of speaker position using the corresponding error covariance 

matrices of Kalman filter stages. By computing and evaluating measures of expert 

reliability, Fox et al (2007) generate weights corresponding to each modality decision and 

use them as additional information in a max rule fusion. 

The second strategy is to use a machine learning approach towards determining the 

relative weights of the decisions produced by different classifiers. Czyz et al. (2003) used 

neural networks for this purpose for speech analysis. A statistical model based on the 
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Fisherface approach (Belhumeur, 1997) was used to generate a face template. The speech 

model (GMM) was obtained by parameterising the voice signal using LFCC and their 

derivatives. When performing classification, new readings were processed and matched 

to both stored models. Classification fusion was performed by training a MLP for doing 

simple score average with the outputs of both classifiers. Another work that uses MLP for 

fusion is by Brady et al. (2007) which use Eigenfaces and Fisherfaces together with a 

GMM of audio cepstral features model. Similarly, Bayesian Networks (BN) have been 

used for decision fusion. Choudhury et al. (1999) used a BN for person recognition task 

by fusing confidence measures from two initial classification schemes. The person with 

the maximum probability is the claimed identity. For the similar purpose of person 

verification, Bengio et al. (2002) investigated the use of a SVM or Artificial Neural 

Network (ANN) to perform the fusion of a text-independent speaker verification system 

and a facial verification system. The former used a statistical (Bayesian) model and the 

later a MLP per client. These two classification modules were fused using confidence 

measures (model adequacy) as training features of a statistical model, SVM or ANN. Wei 

et al. (2007) use standard SVMs to show that a multimodal system outperforms single 

ones. A number of studies propose algorithms that fuses different discriminant functions 

using a SVM (Wu et al. 2004; Muneesawang and Guan, 2007). A RBF SVM is also used 

for classification using a one vs. rest approach in Rutkowski et al. (2007). It is possible to 

increase SVM computational efficiency Least Squares SMVs and further reduce the 

number of support vectors using a nearest neighbour approach (Klausner et al. 2007). For 

modeling multimedia semantics, Adams et al. (2002) performed image analysis using 

GMM and dynamic events such as video and audio were analysed using a HMM. Text 

was also extracted from close captions or via Automatic Speech Recognition (ASR) and 

assigned to simultaneous shots. With the unimodal classification scores achieved by each 

model, fusion was accomplished by late integration using BNs or SVMs. In another 

example, Bauckhage et al. (2002) used ASR based on HMMs and knowledge based 

speech understanding to extract speech while a vision module recognised objects and 

assemblies. The modalities were interrelated using BNs, which provided the 

correspondence between the spoken words and the objects displayed by the system.  
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Additionally, it is also possible to introduce intermediate levels of decision fusion. Wu et 

al. (1999) used the Members-Teams-Committee (MTC) algorithm, which defines three 

layers for information fusion (as opposed to the standard two). The bottom layer consists 

of multiple local posteriori estimator members operating on subsets of input vectors. 

These members are aggregated into cooperating teams (middle layer), whose results are 

analysed and decided upon by the committee layer (top layer). This is a technique 

originally developed to address data with high-dimensionality. In this case, it was 

integrated into the Quickset system for studying how appropriate it is for combining 

multiple data sources. Recognition results proved to approach the theoretical boundaries 

hypothesised. 

Finally, there are a few techniques still considered to be coupling information at the 

decision level which can be used as alternatives to the expert/supervisor model. One such 

example is based on the use of Baysean Information Criterion (BIC) algorithm (Chen et 

al. 1998). This criterion was used by Iyengar and Neti (2000) to improve the quality of 

video segmentation. Video scene change detection was based on analysing hierarchical 

colour histograms of successive frames and computing the corresponding divergence 

between feature distributions of these frames. The divergence value was thresholded to 

detect scene change, and when this happened, the audio BIC penalty parameter was 

modified (consequently changing the decision result) whenever the visual module 

detected a change. Another example made use of the Spatial Probability Map (SPM) 

concept. SPMs define spatial regions (i.e. location) of high probability of certain events 

(e.g. the movement of an object) happening. If SPMs are derived from different 

modalities, then it is possible to combine them for example through a simple weighted 

sum. Aarabi and Zaky (2000) used this approach with the objective of finding an object’s 

location. The video system used two cameras. After background subtraction each camera 

detected objects and derived the fulcrum where the object could be located. The SPM was 

built from the intersection of possible region locations. A sound localisation system was 

based on an Iterative Spatial Probability (ISP) algorithm (Aarabi, 1999) for microphone 

arrays and created its own SPM using the cross-correlation histograms of microphone 
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pairs. The final integration of both systems used a weighted addition of SPMs to compute 

object location in high-probability regions. 

2.3.4 Hybrid Methods of Information Fusion 

Hybrid methods of fusion are based on a hierarchical method of data analysis where 

fusion is performed in more than one layer (data, feature and decision).  

Nigay and Coutaz (1993/5) presented a system for identifying the lexical, syntactic and 

semantic fusion levels in the context of multi-modal system design. The PAC-Amodeus 

model for handling fusion of multiple features at all these levels used a multi-agent 

architecture where different agents were responsible for tasks performed at each 

abstraction level. It has the potential for studying the performance at all of these levels of 

interaction, their inter-operability by the implementation of corresponding agent experts 

and the activation of respective data pathways. This model was applied in several 

practical applications, e.g. a paint and notebook program, that accepted vocal commands 

besides the use of a common keyboard and mouse. 

  

Naphade et al. (1998/2001) introduced the concept of probability based multi-level 

fusion. At the low level, they defined probabilistic objects (multijects) to semantically 

represent a time-sequence of multimedia events for the task of identifying video events of 

importance. These were modeled by fusing modalities using HMMs variations 

(hierarchical and event-coupled). The classification results of multijects were better when 

the modalities are coupled. Furthermore, at a higher level, multijects were combined in 

multinets, which represent the probabilistic dependencies between multijects in a video 

sequence, e.g. a bird is less likely to be found in an underwater scene, but a fish has a 

high probability. Fundamentally, this model fused modalities in low-level by using event-

coupled HMMs and in addition, provided extra classification confidence for the high-

level results. 

Finally, Kasabov et al. (2000) implemented a hierarchical connectionist-based framework 

where different levels of inputs can be combined. This framework was applied for a 
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dynamic person identification task where four modes of operation were compared for 

performance (unimodal audio mode, unimodal video mode, bimodal mode and combined 

mode – where all three modes were combined). In spite of using a small training set, the 

results showed a distinguishable advantage of combining modalities at the low-level, and 

in taking all three classifiers and combining them using a conceptual subsystem. The 

subsystems were modelled using Fuzzy Neural Networks (FuNN) and the high-level 

conceptual subsystem used the principle of statistically based specialisation where the 

class was defined by the node with the highest activation. 

2.3.5 Heuristic-based Information Fusion 

Many techniques are driven by application-dependent heuristics. This means that the 

integration method relies on rule or knowledge based algorithms that are derived from a 

priori and common knowledge the developer has about the system’s properties and 

expected behaviour. Rule based approaches use if-then constructs to identify which 

premises hold to fire certain conclusions or actions. This type of information fusion is 

applied in areas including gesture and speech analysis, scene understanding and object 

tracking. Some important studies in these areas are discussed below. 

HCI applications often combine speech with gesture (e.g. the user says “draw button” 

while pointing towards the coordinates in a visual interface).  The rule base consists of 

the mapping between words and their related gestures and, depending on which premises 

are satisfied, the appropriate rule is fired. Andre et al. (1998) presented a study 

recognising a limited set of hand gestures using a force-feedback glove as well as a 150-

word speech vocabulary to provide application commands. Integration was performed by 

“converting” gestures into words and combining them sequentially. A slot-buffer stored 

combination variables whose entries were filled with recognised commands. When a 

variable is completely filled, it triggered the corresponding instruction through the 

application interface. Another example presented by Martin et al. (1998) studied the 

cooperation between modalities. A multi-modal module was implemented based on 

Guided Propagation Networks (GPN). These networks comprise elementary processing 

units, which respond to environmental events. Furthermore, a connection between units 
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defines an internal flow that is related to sequences and temporal coincidence between 

events. The GNP structure was used to recognise and predict future expected events. 

Commands were recognised after computing a score that measured how well a detected 

command matched the expected representation. A later study by Zhang et al. (2003) 

identified objects by integrating speech and gaze. The identification results of both 

modalities were collected in a N-best list and a decision was made according to rank in 

both speech and gaze lists. This allowed disambiguation of unimodal decisions, 

producing a general improvement and error correction of wrong initial decisions. Another 

generic approach is to define rules in the form of a state-machine that take cues from 

different modalities, an example of which is the work by Sun et al. (2007). 

Automatic scene understanding involves image and video analysis for understanding the 

contents and context in such media (applications include video indexing, audio 

description, etc). Rule-based systems can be useful to describe the sequential relationship 

between separately classified video segments. Saraceno and Leonardi (1998) segmented 

the video sequence into shots using image-based features. They performed audio 

classification of each shot to recognise silence, speech, music and other sounds. Finally, a 

rule-based system aggregated shots into scenes that present certain audio and visual 

properties (e.g. a dialog scene contains speech and alternating video shots). In the same 

manner, Tsekeridou et al. (2000) used video shot boundary detection and audio was used 

for silence detection (discriminating between speech and music) and speaker change 

detection. After detecting the relevant sections, shots were joined into consistent scenes. 

In a separate study, Tseridou and Pitas (1998/9) wanted to semantically label video 

sequences such as silence, person presence and person speaking. The audio processing 

unit pre-processed the signal to remove silence and perform Linear Predictive Coefficient 

(LPC) analysis of frames. The system performed speaker modelling and online training 

using a vector quantisation algorithm and used Mahalonobis distance for classification. 

The video module was responsible for shot segmentation, face and mouth detection and 

tracking. The final interaction was based on simple rules that identify the presence or 

absence of particular items that influence the defined class labels. A further refinement 
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provided a method of estimating the likelihood of a person detected in the image to be the 

source of the speech signal. 

Object tracking from video sequences is a well-established research area in the field of 

computer vision. It is logical that related techniques can be used to identify semantic 

events, especially when coupled with audio information.  This concept has been applied 

in the context of analysing sports events. In a basketball game, we might be interested in 

semantic information such as determining types of shots and understanding player 

actions. In Kim et al. (2002) first, shot cuts were detected by image processing methods. 

Then shot information was extracted from audio signal to detect crowd cheering. The ball 

was tracked using a modified face-tracking algorithm with a Kalman filter. Further 

information was extracted on colours, the backboard position and referee whistles. These 

cues were used to identify the types of shots (long or dunk) given the relative positions of 

players and objects and their respective movements. Similarly, a tennis match was 

analysed in the work of Miyamori (2002) to compute player’s basic actions. The actions 

were inferred initially from video by detecting and tracking the player’s and ball’s 

position in relation to the tennis court. This analysis is prone to errors due to occlusion 

(mostly of the ball by the player’s body). Video detection of ball’s impact points was 

aided by audio analysis using FFT templates. This procedure was shown to improve the 

estimation rate of types of player strokes. Finally, a speaker tracking application 

(cameraman simulation) that combines face tracking and speech detection was described 

by Krahnstoever et al. (2002) who presented an interaction framework that gathers data 

from video and audio sources. The system tracked face and hand regions using color 

blobs and Kalman filter. It recognised gestures using HMMs and token passing and used 

a speech recognition system. This information was fused through the analysis of 

annotated grammars, where gestures were expected to occur at specific times during a 

sentence.  
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2.4  Discussion 

So, on the basis of our review, what can be learnt? What is the state-of-the-art, current 

and future models of sensor data integration and application areas, unsolved problems, 

and potential for further work (hot topics to study)? Well, we can answer them in brief 

here but we need to emphasise that methods and application areas that use them are 

tightly integrated in the area of audio-coupled video analysis. Hence, it will be of limited 

use to develop methods independent of the context in which they will be applied. 

It seems that the state of the art relies heavily on HMM as the main data modelling tool. 

As a feature fusion tool, it is the most popular because HMM variants allow the 

combination of multiple sequential features from multiple sources (Iurgel et al. 2002; 

Pavlovic, 1998; Naphade et al. 2001; Bengio, 2003). At the decision level, HMMs have 

been extensively used in the standard way, usually to describe audio features. The model 

classification decisions are then combined with other modalities expert systems (Duc et 

al. 1997; Kittler et al. 1998; Ben-Yacoub, 1999; Choudhury et al. 1999; Adams et al. 

2003; Bauckhage et al.2002). 

The second most popular models are based on Bayesian theory. It provides the theoretical 

foundation for many studies and plays an important role defining strategies for combining 

the output of multiple classifiers (Kittler et al. 1998; Duc et al. 1997; Ben-Yacoub, 1999). 

BNs have also been used to model low-level relation between modalities (Fisher and 

Darrell, 2002; Beal et al, 2002/3) for representing feature interrelations. 

Thirdly, decision fusion problems are often tackled using machine-learning techniques 

such as ANNs and SVMs with reasonable success (Czyz et al. 2003; Bengio et al. 2002; 

Adams et al. 2003; Choudhury et al. 1999; Adams et al. 2003). They proved to have 

advantages when compared with arithmetic or voting decision rules. 

Finally, heuristic based approaches have been extensively used, in particular, in the 

context of automatic scene understanding (Saraceno and Leonardi, 1998; Tsekeridou et 

al. 2000; Tsekeridou and Pitas, 1998/9; Kim et al. 2002; MiYamori, 2002) and HCI 
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(Andre et al. 1998; Martin et al. 1998; Zhang et al. 2003). These methods are still 

popular, but they are very application specific and lack generalisation ability. 

There is no doubt that the future trend will be to use multi-modal information for decision 

making. Almost all studies that were reviewed in this paper favoured multi-modal as 

opposed to unimodal sensor data analysis. In some of the studies, results that compared 

these two options found multi-modal solutions to be better. Encouraged by these studies, 

the research on audio-coupled video analysis has grown substantially in the last few years 

as the computational costs are becoming manageable.  

There are several unsolved and difficult problems, however, that make it difficult to 

develop practical systems. It is not clear where some methods will be better than others or 

whether low-level is better than high-level. There are no studies comparing different 

architectures for the same problem or database. We list some of the future challenges in 

the audio-coupled video research field next: 

• The objectives of research studies differ depending on the application tackled. 

For example, in human computer interaction, the performance metric can be the 

“ease of use”, whereas in person recognition task the objective is maximise 

recognition rate. In addition, within different applications, non-uniform 

measurements are used by researchers in general. In the area of person 

verification, established statistics are used (Ben-Yacoub, 1999; Duc et al. 1997) 

(concepts such as HTER are commonly applied for performance analysis). 

However, HCI systems are perhaps the hardest to evaluate because it is hard to 

define concepts such as “ease of use” as an objective quantity. The goal of these 

systems usually involves trying to provide adaptability to generic users, which is 

very subjective and dependent on the user’s experience. 

• There is, in general, a serious lack of data benchmarks. With the exception of 

person verification research where most studies use the M2VTS database 

(Pigeon and Vandendorpe, 1997), most studies presented here collect their own 

data. This makes it extremely hard to make comparisons across studies and to 
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put adequate confidence in them. The development of high quality and large 

amount of audio-visual databases that can be used as a benchmark is an 

important research issue for the near future. 

• Tools such as Hidden Markov Models require explicit modelling of the 

problem. This can be sometimes difficult. 

• The parameter optimisation of different tools used makes the solution specific to 

a given application area and problem. In general, we need to find generic 

solutions are the holy grail of most research. Parameters can be optimised using 

validation data but often this deviates from test data and the system has limited 

practical use. 

• Video and audio data analysis methods are still evolving. Without step changes 

in these areas themselves, multi-modal systems remain weak. For example, the 

understanding of real human dynamics using video data is still as difficult as the 

analysis of mixed audio signatures in natural environment to determine what is 

happening. Most studies that will therefore succeed in laboratory settings will 

not necessarily work in the real world.  

• Similarly, information fusion is also a fairly new research area, and it is 

debatable which method of fusion decisions is the best. 

In spite of the difficulties noted above, multi-modal data analysis has vast potential. It is 

the limitations of the existing models that inspire future research. This involves both 

researching new methods as well as seeking new areas of applications. Let us describe 

these in turn. 

A potential challenge for research would be to make use of more generic forms of data 

fusion, moving away from heuristic, application-specific solutions. This is a research area 

on its own and thus not dependent on the specific application objectives, making it useful 

for a variety of purposes. There are two main techniques currently used for multi-modal 

fusion that have been extensively applied with success. High-level, or decision fusion, 

(Kittler et al, 1998; Duc et al. 1997; Ben-Yacoub, 1999; Czyz et al. 2003; Belhumeur et 

al. 1997; Choudhury et al. 1999; Bengio et al. 2002) and low-level feature fusion (Iurgel, 
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et al. 2002; Pavlovic, 1998; Naphade et al. 2001; Bengio, 2003; Fisher and Darrel, 2002; 

Beal et al. 2002/3; Vermaak et al. 2001; Natale et al. 2002). The way forward might be to 

rethink the manner in which low-level fusion can be performed. Low-level fusion 

explores the relationship between multiple modalities. This field is mostly concerned 

with the study of how to blend features extracted from different data sources. In an audio-

visual situation, most data is of a sequential nature. This fact has driven a lot of research 

into modifying HMMs and corresponding variants that model two or more sequences. 

This problem still lacks a definite solution. Other techniques proposed at this level are 

still scarce, which makes this is a promising field with plenty to explore. 

Raw data fusion is another challenging unexplored area of investigation. This is a very 

hard problem considering incompatibilities between raw data, but one which has the 

potential to allow the greatest degree of information interaction. The main obstacles to 

audio and video coupling include dimensionality (2D vs. 1D), frame definition, and 

synchronisation. In the context of feature extraction, audio frames are usually defined as a 

sequence of bits that is collected at discrete intervals dependent on the video frame rate, 

but synchronisation is still difficult.  

What about existing and emerging applications? We believe the following application 

areas have much to benefit from future research into audio-coupled data analysis: 

• Pay-per-view and video-on-demand systems will drive the need for fast, 

accurate and customised retrieval architectures. Video segmentation and 

indexing is therefore, another field in rapid expansion where audio-coupled 

video processing of data is obviously pertinent.  

• Multimedia applications that involve human computer interaction were the first 

to integrate multiple modalities and remain an active field of research.  

• Humanoid robotic systems or virtual agents. They need to find and identify 

objects, events and activities in their environment using multiple sensors. 

Sophistication in cue interaction will play a major role in years to come. It will 

directly influence believability and character response.  
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• Affective computing that involves emotion analysis and emotion synthesis, both 

of which benefit from the understanding of the relationship between separate 

data sources.  

• Biometrics. It is well recognised that the confidence in using a single modality is 

low, which can be boosted by using other biometric measurements. Person 

verification and recognition has been shown to be an area where audio and 

video combination generates highly successful solutions.   

• Speech recognition is a fast growing field with diverse applications, such as 

dictation software and human machine interaction. Not many audiovisual 

solutions have been developed in this area so far, but this is one of the most 

promising applications. 

• Source localisation is extremely important in several disciplines. Since depth 

estimation techniques in computer vision literature are lacking, and omni-

direction microphones are expensive and not full robust, the combination of the 

two modalities is the obvious way forward. 

• Audio-visual coding, as a communication and information transfer technique, is 

still growing in importance. Several applications need to transmit large amounts 

of multimedia content over limited capacity and error-prone channels, which 

require sophisticated and efficient techniques to represent the data. 

We may draw some important conclusions from the review in this paper as follows. 

Firstly, although the current state-of-the-art multimodal research has difficulties in 

quantifying the level of performance and improvement over other studies, there is clear 

evidence that there are numerous advantages in combining audio and video data analysis. 

Compared with unimodal systems, results always improve and/or become more robust. 

E.g., a video segmentation scheme (Adams et al. 2003) shows an increase in the Figure of 

Merit (FOM) evaluating two multi-modal systems against a unimodal one, and a bimodal 

person verification system (Kasabov et al. 2000) shows an increase in recognition rates 

against audio or video only systems. 
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Secondly, it is well recognised that the quality of data fusion has an impact on the final 

results. The results in this area (Duc et al. 1997; Bengio, 2003; Bengio et al. 2002; 

Kasabov et al. 2000; Choudhury et al. 1999; Czyz et al. 2003) suggest that Bayesian 

decision fusion outperforms other approaches such as ANN or SVM. However, further 

trials are needed on much larger data sets and with well-designed experiments aimed at 

finding differences in fusion methods with statistical confidence. 

Thirdly, the areas of HCI and video segmentation have been the nucleus of most multi-

modal integration research (Figure 2.1). Work in these areas has provided the motivation 

and testing framework required to develop and structure the integrating techniques. As 

other application areas emerge with their own specific requirements, it is reasonable to 

assume that the limitations of available technology will become more obvious which will 

open up a number of different research themes. 

2.5  Conclusion 

In this chapter, we have provided an overview of audio-coupled video processing in 

terms of applications and methodologies. This topic is a part of multimodal integration, 

which includes other data sources, mentioned in some studies (e.g. text). We identified 

the main levels of data fusion and presented the key methods that address them. There are 

benefits (such as efficiency and robustness) in combining information from multiple 

sources for classification, data modelling, and systems control. As a result, this is an area 

with great potential both in terms of research into theoretical issues as well as practical 

applications.  
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Chapter 3 -  Problem Definition and Methodology 

3.1  Introduction 

Over the last decade, there has been significant academic and commercial interest in 

video content understanding. The output of video content analysis can be used to drive a 

number of applications. A brief description of systems that could potentially benefit from 

automated video content understanding is provided below: 

• Autonomous Robotics – mobile systems with some degree of self-sufficiency 

require location awareness for navigation. A mobile robot will need both low 

level explicit knowledge, e.g. GPS coordinates, as well as high level semantic 

information, e.g. contextual awareness on surrounding environment, objects and 

activities; 

• Interactive Systems – software agents and digital avatars are becoming 

increasingly popular for human-computer interaction and in entertainment 

software. The understanding of the user’s surrounding environment can make 

them establish a closer empathic connection towards the user and enhance his 

interactive experience; 

• Video Archiving and Retrieval – content based video retrieval systems require 

automatic description of video content in the form of meta-data such that videos 

can be retrieved efficiently using content information as opposed to simple 

keyword searches. 

A number of studies have provided concrete evidence that video image analysis is 

insufficient on its own for the purposes of understanding content (see chapter 2). Low-

level image analysis operations such as image segmentation, object recognition, and 

activity understanding based on image sequences alone is prone to error (Chalmond et al. 

2001) especially because of difficulties in modelling objects and activities as well as 

because of changes in scene, illumination, etc. Over the last few years, audio data 

analysis has been shown to be a very useful data source that can provide useful cues on 
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video content, which when integrated with video analysis can improve our understanding 

of its content. Research has shown that audio analysis can be used alongside video 

understanding to improve lip reading (Bengio, 2003) and understanding behaviour of 

humans in constrained environments (Brand et al. 1996). However, no detailed research 

has been performed on whether audio analysis can provide significant benefits to video 

content understanding for unconstrained videos. We define unconstrained videos as those 

that can be recorded in a range of environments with no prior constraint on location, 

objects or activities to be found in them. The only constraint we impose is that such 

videos should both have audio and video component because information fusion can only 

be performed if we have them together. Hence, for example a video of a person opening 

the door is acceptable as it has both audio and video, but the video of a balloon in the sky 

is not as it contains no audio information. In this thesis we aim to put together an 

automated system that takes a video as input and generates a description of its content as 

output based on both audio and video. We define “video content” on the basis of objects 

present in the video, the environment they interact in, and their activities. The 

methodology employed to devise and implement such a system is presented in the next 

section. 

3.2  Problem Description and System Overview 

For the purpose of this work, we define the content of video content as the understanding 

of three components (others could be suggested, but we concentrate our analysis on 

these): 

• Place Recognition – characterisation of the location where the action occurs, 

which conceptually can mean a variety of classes ranging from high-level 

descriptions (e.g. indoor, outdoor) to low-level precise descriptions (e.g. office, 

stadium); 

• Object Recognition – the entity that initiates the event. Again, the number of 

valid object categories is unbound (e.g. the LabelMe web-annotation tool is a 

large database of pictures which includes more than 4000 categories of objects 

(Russel et al.2005)). For the purposes of this study, we have a set of known 
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objects that are specifically recognised from videos, and anything else can be 

allocated to a large category of “unknown objects”;

• Activity Recognition – the action exhibited by the object in the scene. We focus 

on the description of motion-based activities. 

 Figure 3.1 – Content understanding component organisation and co-occurrence 

relationships (red arrows). 

In Figure 3.1 we detail the hierarchy of classes that must be recognised to understand 

video content under our definition which takes into consideration the scope of this work. 

This figure is in no way exhaustive (as indicated by the ellipses in the figure) and is an 

indication of a limited subset of evocative concepts that can be utilised for the description 

of video sequences. An attempt to generate a catalogue of concepts for describing a 

scene’s environment is presented in Figure 3.2. As shown, there are numerous possible 

types of environment descriptors. Commonly, image understanding studies limit the 

number of classes depending on the application goal or data availability. As an example, 

Vailaya provides a hierarchical organization of categories based on a data set, which 

derives from human subjects’ a priory preconceptions. This organization resulted in 
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categories such as natural scenes, landscapes and city shots at the higher level down to 

mountain, beach and street, among others, at the lower [Vailaya, et al. 1998]. There is no 

limit to the number of classes possible in unconstrained data.  

Regarding each descriptive component of Figure 3.1, for example, a place can be 

classified as “indoor” or “outdoor”, objects can be classified as “human” or “non-

human”, and activity can be based on whether the object shows “linear” or “non-linear” 

motion. Each of these classes can also have further sub-classes some of which we might 

want to be explicitly recognised, in order to provide more detail in the description; e.g. 

we further subdivide non-human objects into car, door or train and human objects into 

head, body and hands. In our work, each class or sub-class recognition uses both audio 

and video information with the underlying assumption that using both modalities is better 

than using only one of them. 

 Figure 3.2 – Environment Categories Study. 

In order to classify data as detailed in Figure 3.1, we need a range of classifiers, each 

dedicated to either audio or video analysis (or both), and each of them specialising in 

what they can classify. Furthermore these classifiers use different features that are best 

suited for their respective classification task. For each classifier we build, we need to 
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knowledge that certain objects only co-exist or are more likely to co-exist with some 

other objects and only display certain activities. These relationships are represented by 

the red bidirectional arrows in Figure 3.1, and discussed in greater detail with Table 3.1 

where we describe the practical features of the database we use. 

From a modular perspective, our proposed system has three main elements of research: 

1. Understanding of video elements – the identification of relevant activities and 

the categorisation of the scene’s visual background (environment), prominent 

objects and their movement patterns;  

2. Understanding of audio elements – the recognition of salient regions of the 

audio signal and characterising the underlying events; 

3. Information fusion – the process of combining the previous modules to produce 

a more robust result. 

Figure 3.3 provides extensive details of the components of the developed system. These 

include: 

1. Video Capture – video data is captured using a digital camera and stored in 

digital form. The data is collected in an unconstrained manner as described in 

section 3.5 and archived with lossless compression;

2. Data Archiving – the digital video data is stored using a lossless digital format 

and decomposed into its audio and video raw components (audio signal and 

video frames); 

3. Pre-processing – this phase requires the use of technologies such as automated 

detection of video events, object segmentation in images and audio editing using 

tools for signal processing and pattern recognition. It is composed of four 

modules: 

i. Audio Region Selection – in this phase, audio signal is analysed and 

salient time frames selected and cut; 
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ii. Video Stabilisation – in this phase, video shake is removed such that 

objects can be efficiently segmented and tracked; 

iii. Video Region Selection – in this phase, video frames that correspond 

with audio signals of interest are isolated for further processing; 

iv. Object Segmentation – in this phase, the selected video frames are 

processed to identify object(s) that could be the source of the activity. 

At the end of steps i-iv, we get raw audio signals, a set of video frames of 

interest, and a set of corresponding segmented images showing regions, each of 

which corresponds to an object. These form the inputs to the pattern recognition 

modules discussed below, that extract feature from these regions and classify 

these to ascertain their identity; 

4. Audio and video (image) features are individually extracted and fed into 

respective classifiers;  

5. A classifier can be trained to recognise patterns, with the aim of recognising 

objects, activities or environment. In this study, we use statistical and nearest 

neighbour classifiers; 

6. Finally, it is possible to use semantic constraints to improve classification 

decisions that are unlikely or obviously wrong. The final stage makes use of 

high level knowledge to correct mistakes introduced in previous stages. The 

aggregated output contains information about the scenario’s content that could 

possibly be used by external applications for decision making or video 

description. 

In section 3.3 we provide a detailed account of data pre-processing modules (labelled 

item 3 in Figure 3.3). The remaining components (4-6) are introduced in section 3.4 and 

are addressed in much greater detail as follows: for video components please refer to 

chapter 4 which details our methodology and novel algorithms used, and for audio 

components please refer to chapter 5. A detailed discussion of how these modalities can 

be fused together is discussed in Chapter 6. Finally in section 3.5 we detail how and what 

data we capture.  
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Figure 3.3 – Block Diagram of the Video Content Description system. 
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sequences, segmentation objects that could be the source of that particular event, and 

reduction of noise and normalisation of the data to be fed into the image understanding 

stage. A number of steps prepare the data for the feature extraction process. These steps 

include: Video Stabilisation; Audio Region Selection, Video Window Selection and 

Object Segmentation. These are described below. 

3.3.1 Video Stabilisation 

Video Stabilisation is the process of reducing the effects of shakiness or vibration in a 

video sequence (Y. Matsushita et al. 2006). This problem can result from many sources: a 

key reason is movement in the position of the camera or cameraman, usually if the 

camera is located in a moving vehicle (car, train, boat, etc…). Even in a steady location, 

the average cameraman will produce some degree of shakiness in videos recorded. All of 

the videos collected and used in this study have some degree of shakiness which needs to 

be addressed. A number of approaches have been used in the literature to address this 

issue that we discuss below before detailing the methodology actually used in this study: 

• Using the background or an object common to all the frames, camera movement 

can be compensated by matching that image region in the subsequent frame. 

The matching process can be achieved using simple matching techniques such 

as sum of absolute differences. There are a number of difficulties with this 

approach. The search window would need to be expanded in cases where 

camera movement is large; it requires the knowledge of a background window 

(which would have to be obtained previously). One way to address this issue is 

to consider the entire frame as the window of interest. The minimum difference 

is an estimate of the real pixel displacement. Obviously, this has the drawback 

that foreground object motion introduces errors, which means reliability is 

optimised with small ratios of foreground area to background area. Another 

drawback is that working with a larger window increases processing time. 

• Camera motion compensation is a technique most often used for image 

compression with the purpose of reducing the amount of information needed. 

This involves the encoding of regions of the image once, and leaving the 
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encoding of the description of their movement in subsequent frames. Motion 

compensation can be used for stabilisation by modifying region selection and 

thus considering the frame as a whole.  This procedure estimates the global 

displacement between frames and uses this information to compensate for it. 

There are several methods in the literature for determining the displacement of 

objects in an image. The most common and part of the MPEG standard is Block 

Matching – which divides the frame to be coded into blocks and estimates 

where in the previous frames these blocks came from using mean squared error 

or sum of absolute differences (Watkinson, 1994). This method is normally 

applied locally and variants have been proposed that include larger regions of 

data, e.g. hierarchical Spatial Correlation.  

• An alternative to Block Matching for motion estimation and compensation 

involves spectral analysis of two frames and analysing resulting phase 

correlation (Watkinson, 1994). We decide to use this technique because it has 

low computational complexity in the Fourier domain and performs the analysis 

on the image as a whole. Below we describe the theory behind this approach 

(based on Kuglin and Hines, 1975) and how we applied it to our data. 

  

Given two signals that differ by a translational shift  

(3.1)          )()( 1 dnsns kk += +

their corresponding Fourier transforms are  
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i.e. the shift in the spatial domain is represented as a phase change in the frequency 

domain. 

The cross-correlation between both signals in the Fourier domain is: 
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The normalised cross-correlation’s inverse Fourier transform is: 

(3.5)          )()( dnn −= δφ

This corresponds to an impulse at the displacement vector. This process can be extended 

to the 2-dimensional case with no loss of generality. Also, it is possible to simplify the 

process by subtracting the phases in the Fourier domain: 

(3.6)          )()()()( 21)(21 dneFeFn fdjdnnfj −=== −+−− δφ ππ

The camera stabilisation method implements this concept in the following way: 

i. Take two frames at a time ti and ti+1 (si and si+1); 

ii. Compute each frame’s Discrete Fourier Transform (�� � ���
���  and ��	
 �

��	
�
�����); 

iii. Subtract the phase matrices ( 1+−= iiD θθ ); 

iv. Compute the phase correlation matrix by computing using the inverse Fourier 

transform ( )(1 jDeF −=φ ). 

The resulting matrix should display a prominent maximum at the displacement 

coordinates. In reality, because there might be several objects moving, some degree of 

noise is to be expected. Figures 3.4 to 3.7 demonstrate the effect of correcting relative 

frame displacement using this method. Figure 3.4 presents two sequential frames as an 

example instance. One can notice that there is some discrepancy in terms of the global 

positioning of the background in relation to the camera. 

  

Figure 3.4 – Example of 2 sequential frames from sample st39. 
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Figure 3.5 – Phase Correlation between 2 frames. 

Figure 3.5 shows the phase correlation matrix corresponding to the two frames from 

Figure 3.4. In this particular case, the maximum value lies at coordinates )6,6(),( =yx

which means there is a displacement of 6 pixels in both horizontal and vertical directions. 

Given the displacement coordinates, the naïve approach compensates for motion in the 

opposite direction such that the second frame becomes aligned with the previous frame 

through translation (Figure 3.6). Figure 3.7 zooms into a small region of each frame for a 

clearer demonstration of the translation correction result. 

Finally, to compensate across multiple frames, the displacement adjustment is 

accumulated. Also, data that is translated to a point outside the visual borders is lost. 

Other studies produce sophisticated solutions that allow for some degree of smooth 

panning using Kalman filtering (Litvin et al. 2003). Also, it is possible to store 

information about the scene’s surroundings to recreate the missing data on the edges for 

visualisation purposes (Matsushita et al. 2006). 
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Figure 3.6 – Frame 2 is aligned with frame 1. 

Figure 3.7 – Frame regions before and after alignment1. On the left are cropped regions of 

two frames before alignment. On the right the same frame regions after alignment. 

3.3.2 Audio Region Selection 

Humans often pay attention to loud sounds especially if these are caused by noteworthy 

phenomena. In this study, we are interested in detecting those audio footprints that 

correspond to interesting events. The only constraint that we imposed in data collection 

was that only one key event (and its corresponding significant audio signature) should be 

present in one clip. From this fact, we can assume that the loudest event in each sample 

                                                 

1
 This Figure shows an example where it is apparent that the frames are extracted from interlaced video. 

During the data pre-processing stage, we have not de-interlaced the data videos where that might have been 

warranted because we believe that this would not have much impact on subsequent feature extraction 

stages. 
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corresponds to the point at which events are taking place. We mark this stretch of time 

the High Energy Region (HER) (Lopes et al. 2006b). 

We propose a small contribution to identifying the loudest sound in an audio signal using 

a simple technique based on the signal’s spectral energy. This is achieved as follows: 

Algorithm to Find High Energy Region (HER) 

i. Take the spectrogram of the signal (spec); 

ii. Compute the sum of the magnitude of each frame as a measure of its energy 

content:  

(3.7)          : �
∈

=∈∀
fw

wf Aenergyspecf

where f  is a frame, ω  is frequency and Aω  the corresponding Fourier coefficient. 

iii. HER is defined by the maximum energy in audio frame, together with the left 

and right thresholds defined as a fraction of that peak (see Figure 3.8). 

HER defines an important temporal segment for the analysis of an event. As we explain 

later, it helps in the selection of the event video window of occurrence (see next section) 

and for audio feature extraction (chapters 5 and 6). 

Figure 3.8 – Example of High Energy Region determination for samples ca01 and ta02 

respectively. 
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3.3.3 Video Window Selection 

We need to identify events that take place in a video scene. For this we need to identify 

the timing of an event in a video sequence and, within this time frame, identify the 

elements that compose that event. During the pre-processing stage, we develop an 

automatic system for segmenting a window of video frames which the system uses later 

for feature extraction. 

When an event takes place in a video sequence, it is expected that it originates from 

objects moving in the scene’s foreground. At the same time, it is likely that a prominent 

audio signature (as defined in section 3.3.2.) corresponding to the same event is also 

available. Given a static background, any movement present in the video sequence can be 

used to provide help in the detection of objects of interest There are several state-of-the-

art motion estimation methods, e.g. optical flow (Horn and Schunck 1981) and object 

tracking methods such as Kalman filter (Weng et al. 2006). These methods are able to 

provide detailed description of pixel movement which makes them computationally 

expensive and are also susceptible to initialisation and local errors. In several 

applications, detailed pixel-level information may not be necessary and a quick gross 

estimation may be sufficient, e.g. (Wixson 2006) or (Latzel and Tsotsos 2001). Two 

simple solutions which quickly detect the motion region are as follows: 

• Subtraction between subsequent frames. This reveals differences that are 

normally accounted for by movement (exceptions include chromatic changes 

due to global illumination or object change, e.g. turning on the lights in a room). 

This procedure is however, only weakly related to movement and susceptible to 

large errors. Also, it does not provide a relative measure of intensity of 

movement. 

• Fourier time domain filtering. There has been noteworthy research on the use of 

frequency information analysis used for the analysis of motion and 

segmentation of moving objects or motion salient regions within an image. 

Some approaches focus on taking Fourier transform of each frame and 
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analysing its change over time (Briassouli and Ahuja, 2004). Kojima et al. 

(1993) detect and characterise constant motion using line filters in 3D Fourier 

space. Video coding can also take advantage of 3D transforms for motion 

analysis (Božinovic and Konrad, 2005). Based on the principle that moving 

objects generate a spectral signature along a directed plane we propose a novel 

method for the detection of salient motion using filtering in the 3D frequency 

domain, which serves as the main cue in a novel approach for the purpose of 

video segmentation. The method works as follows: A video clip composed of N

image frames can be represented as a three dimensional signal with two spatial 

and one temporal dimensions. The discrete Fourier transform of this signal 

represents frequency components of the signal across the three dimensions. By 

extending a low-pass filter into the third dimension, it is possible to reduce the 

image information to find those pixels that have significant motion. Figure 3.9 

shows an example of a collection of frames where we want to determine the 

most salient motion (in this case, the moving car). This is done in the following 

manner: 

Algorithm for Detection of Motion Region 

i. Organise these images in a Nheightwidth ××  data matrix called d ; 

ii. Compute the 3-dimensional Fast Fourier Transform of d: 

(3.8)          )(dFFTD =

iii. Create a rectangular mask H  of the same size of D , with all elements 

set to zero except for low spatial frequencies (reducing noise) and a 

selected temporal band (the chosen band has a wavelength equal to the 

number of frames as this represents the slowest possible movement. 

Higher frequencies contain the noise originating from localised pixel 

differences); 

iv. Recover a filtered sequence using the Inverse Fast Fourier Transform: 

(3.9)          )( HDIFFTr ×=

v. Locate the coordinates of the maximum valued pixel, which 

corresponds to the region of maximum movement across frames. 
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Figure 3.10 shows the result obtained after applying this procedure to the sequence of 

images in Figure 3.9. It can be clearly seen that the region corresponding to the car’s 

motion is the most salient region. 

Figure 3.9 – Data from sample “car01”. 

Figure 3.10 – Filtered result. 

In order to select the most relevant group of frames for processing, we divide a video 

sequence into smaller groups and one of these groups is declared the event window by 

combining audio and video cues in the following manner: 

- We begin by thresholding the HER duration. The HER contains highest energy 

signature of the audio signal (section 3.3.2.). Its duration reflects the amount of 

time the audio signal is loud relative to the remainder of the clip.  
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- In case the duration is small (quick burst of sound), it is enough to select the 

time of the HER peak and choose the window corresponding to the same time of 

occurrence; 

- For audio signals that maintain a relatively constant energy (long duration 

HER), we select the window corresponding to the maximum movement 

amplitude as derived from the 3D Fourier filtering process. 

The video window extracted is used for the activity feature extraction module, described 

in chapters 4 and 6. Finally, within the event window, we select the image frame that 

contains the highest motion energy as the one for further processing to perform object 

segmentation, and environment and object feature extraction as described in chapters 4 

and 6. Figure 3.12 shows examples of selected frames. 

3.3.4 Object Segmentation 

So far, we have accomplished the selection of video frames for analysis. As part of the 

event’s description, it is required to locate and identify the object(s) that might be 

associated with it. We, therefore, need to segment the object of interest from the chosen 

frames for the purpose of object detection and classification. Object segmentation is an 

open problem. There have been a range of methodologies proposed to address it (Zhang, 

2006), varying in terms of how to represent the final regions (blob or edge boundary), the 

method for separating regions (e.g. thresholding, classification, etc) or what type of 

image information is exploited (colour, texture and corresponding statistical models). 

Noteworthy approaches to detecting and isolating specific object regions from the 

surrounding scene include: 

• Template matching – this class of methods presupposes the existence of images 

that contain the object to be found (templates). The process then reduces to a 

search over the image in focus for the presence and location of the template. The 

main problems with this technique, besides the requirement of a pre-existing 

template, are the variety of transformations that the image of an object might go 

through (e.g. changes in illumination, scaling, angle or occlusion) that alter the 

appearance of the object (Pratt, 2001); 
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• Key-point/feature point detection – including bag of words and part based models, 

these methods model the objects to be detected by focusing on the existence of 

specific feature points or regions (codewords) that display certain properties and 

the way they are geometrically related towards each other. This model can be 

used for recognition or even for searching for similar feature points which obey 

the same constraints on a test image (Fei-Fei et al. 2007); 

• Appearance based segmentation – the objective here is to separate an image into 

regions containing some type of homogeneous property. As an example Singh and 

Singh (2004) explore a variety of image segmentation methodologies and 

optimise them automatically based on image properties; 

• Motion based segmentation – when analysing video sequences, it is possible to 

segment compact regions that display movement over time. This can be achieved 

from a multitude of motion based techniques such as optical flow, object tracking 

and motion compensation (Zhang and Lu, 2001; Colombari et al. 2007). 

Some approaches start with a known object (or type of object) and require only detection 

and verification whilst others first extract the object region and leave the recognition as a 

posterior task. The later case is what we take into consideration for this work because our 

goal is to derive the understanding of the scene with minimal a priori information. 

Research into object segmentation is still very active and there are no obvious algorithms 

that are clear winners for our unconstrained video data. The focus of this thesis is not on 

optimising image segmentation and therefore a semi-automated process was implemented 

to ensure that the correct features are extracted. We settled on using the masks originated 

from the 3D Fourier process as a starting point followed by manual correction of region 

boundaries. Examples of extracted objects are presented in Figure 3.11. There can be an 

argument for performing fully automated segmentation based on thresholding the motion 

images and thus generating object masks that are not necessarily perfect or optimal. The 

main concern of this thesis is a relative comparison of performance between unimodal 

and multimodal approaches and then the inclusion of semantic analysis. Therefore, 

changing the experiments in a manner that reduces performance would impact on all 

stages while still maintaining the same relative performances between approaches. 
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In the above discussion we have detailed how video data is pre-processed. In the next 

section, we summarise the rest of the components in Figure 3.3. 

Figure 3.11 – Object masks. 

3.4  Summary of Data Processing Components 

3.4.1 Feature Selection and Classification 

At the core of this work, we develop a modular classification system responsible for 

understanding video content in terms of objects, activities and environment. Figure 3.1 

shows that a number of classifiers needed to be implemented, each trained with different 

feature data (audio and video) to be an expert at a specific task. The internal methodology 

of implementing all classifiers is similar: they all contain a feature extraction stage which 

takes specific data from the pre-processing stage and use a collection of standard and 

customised video and audio processing techniques to create a representation vector of the 
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data. Then, the feature vectors are reduced by means of feature selection before being fed 

into a classifier. In particular, we use SFFS (Pudil et al. 1994) for feature selection which 

has been shown to be better than several other feature selection methods (Jain and 

Zongker, 1997). Classifier success is evaluated by comparing classifier decisions to 

ground truth description of each sample. The overall methodology in this thesis is 

independent of the classifier used but to support this argument we have used more than 

one classifier in this thesis: k-Nearest Neighbour (kNN) and Naïve Bayes classifiers are 

used with leave-one-out cross-validation. In particular, these classifiers are trained to 

perform three key tasks: environment classification, object classification and activity 

classification. These are described in detail in sections 3.4.2, 3.4.3, and 3.4.4. 

3.4.2 Environment Classification 

Scene understanding research has focussed on discriminating between indoor and outdoor 

images, as well as characterising urban and natural landscapes (Vailaya, et al. 1998). The 

ability to discriminate between indoor and outdoor scenes is an important indicator of 

location and environment. In this thesis we focus on indoor/outdoor classification as a 

rough representation of environment content, and expect that any further work on 

improved understanding of image environment can be integrated within the generic 

framework of video content understanding as described in this thesis. 

The Indoor/Outdoor discrimination problem in image scenes is quite popular in the 

literature and commonly makes the use of low-level features such as colour and texture 

distributions (Vailaya, et al. 1998) or edge measures (Payne and Singh, 2005). In this 

thesis we use a number of features from images, described across more than one study, to 

characterise environment from image data alone. Furthermore, this problem has not been 

solved using audio features and in this thesis we attempt to use audio information to 

characterise whether the environment is indoor or outdoor. 

3.4.3 Object Classification 

Over the past two decades, substantial research has been conducted in the area of object 

recognition in images (Batlle et al. 2000; Prokop et al. 1992). From an object detection 
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point-of-view, boosting and bag-of-words methodologies have become highly successful 

(Fei-Fei et al. 2007). In terms of classification, methods can be grouped into appearance, 

feature or 3D model based as the information models to be fed into classification or 

discriminating processes (Campbell and Flynn, 2001; Axel Pinz, 2005). There is no 

generic solution with respect to the features or classifiers used and most studies attempt 

to find the best suited tools to solve a specific problem. An important consideration is 

what object classes are to be recognised. Unconstrained videos typically can contain 

infinite variety of objects and we must focus on reducing the number of classes that 

serves our purpose. We primarily concentrate on “objects” that are typical sources of 

movement (in the visual domain) and sound (in the audio domain). As shown in Figure 

3.1, we first divide objects in human or non-human (inanimate) high level groups (HNH). 

These are further separated into whole head, body and hands in the human group (HBH) 

and car, door and train (CDT) in the non-human. 

Object recognition in an image frame is performed on the basis of image information 

alone, because firstly an image can contain multiple objects and it may be unclear which 

of them is the source of audio signal, and also an object can perform multiple activities 

with different audio signals. Firstly, the object’s visual features are extracted and 

analysed from a segmented image (see section 3.4.2.4) from frames that contain events 

(chapters 4 and 6 detail the classification methodology and results). 

3.4.4 Activity Classification 

Image based object activity classification has been studied in literature from the point of 

view of understanding human dynamics (Bobick, 1996), and understanding in-animate 

object movement, e.g. vehicles (Medioni et al. 2001).  Further work in the area of audio 

processing has addressed speech recognition (Davis and Mermelstein, 1980), scene 

recognition (Peltonen et al, 2002), and in general audio classification (Wold et al. 1996). 

A detailed survey of image analysis technologies used to understand human motion is 

available in (Wang and Singh, 2003). In this thesis we are interested in both human and 

non-human movement analysis. Objects can be first classified as humans or not based on 

colour distribution of regions – those that match skin colour are labelled as human. 
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Further understanding of whether the regions are hands, or face is important in 

understanding the nature of activity. For all objects considered in our work, we focus on 

describing the nature of region motion as either absent (stationary), translational (linear 

motion), oscillatory.  Motion features require an understanding of changes in video and 

audio streams. This means that both these signals need are required at this stage (further 

details are discussed in chapters 4, 5 and 6). 

3.4.5 Semantic Fusion 

Describing events takes into consideration all three classification processes for 

environment, objects and activities described so far. However, content understanding is 

more than the sum of the parts. For example, if we know whether the video shows an 

indoor or outdoor environment, what objects are present and what they are doing, we 

need to combine all this information using further semantic knowledge about what we 

know about the world, to better understand events and scenes in unconstrained videos. 

Furthermore, each decision also influences other decisions. For example, if we can hear a 

clapping sound, but cannot find any humans in the video, this needs further investigation 

to find errors. We use semantic fusion as the final stage in our decision making to correct 

such errors. This process takes as input the decisions of each independent classifier and 

combines them for improved and compact description. Chapter 6 addresses two main 

issues related with semantic fusion. Firstly, it examines how fusion can be achieved. As 

described in chapter 2, there are two main approaches to this task – feature and decision 

fusion which we test, evaluate and conclude about which methodologies to use. Secondly, 

we improve on the combined classification results by implementing a semantic based 

technique for confirmation and correction of classification errors. 

3.5  Data Collection 

In this work, it is imperative to gather a collection of unconstrained video sequences 

spanning a wide representation of regular situations in day-to-day situations. 
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In particular, we concentrate on videos that contain instances of the concepts detailed 

earlier in this chapter. The “unconstrained” quality of the data refers to the efforts 

undertaken to minimise the restrictions imposed on data quality. This means that data can 

contain any number of degrees-of-freedom, e.g. different magnitudes of global 

luminance, various view angles, several types of objects of interest and events. 

However, data must contain audio-coupled video information. When evaluating publicly 

available data benchmarks that could possibly be used for this work we found that most 

include situations that are very problem specific and not unconstrained enough for our 

needs. Also, there is an extensive range of datasets that could be of use separately in each 

module, but there is none that contain all the content information required for this work. 

It could have been possible to separately use databases for object recognition (Russel et 

al. 2005) or indoor/outdoor discrimination (Payne and Singh, 2005), but in practice, these 

are very unrelated, containing images or video collected under different and usually quite 

specific circumstances, that make the process of combining the data and arguing for 

correlation between parts (most importantly, video and audio synchronisation) hard to 

achieve. 

In this study, we develop our own extensive database of unconstrained videos which is 

detailed in the next section. 

3.5.1 Database Description 

Describing a video event in terms of its content (as defined in section 3.2) requires 

information about the environment, participating objects and associated activities. Video 

samples were collected covering all of the above. Note that the problem at hand is the 

description of the event and not its detection; so we can assume that the given video 

sample has three key ingredients: audio, video, and event based content. In order to 

ensure that the data collected is as real as possible, maximise its variability by capturing 

events under different conditions, e.g. different times of day, global luminance, object 

colour and size, motion speed, etc.  



89

In broad terms, we can divide the database into 7 sets (later these will be organised 

differently depending on the objectives of our study): 

I. Videos of ‘Car’ containing scenes of a vehicle driving past; 

II. Videos of ‘Clap’ containing scenes of a person clapping his/her hands; 

III. Videos of ‘Door’ containing scenes of  a person opening, going through and 

closing a door; 

IV. Videos of ‘Step’ containing scenes of a person walking; 

V. Videos of ‘Talk’ containing scenes of a person talking; 

VI. Videos of ‘Train’ containing scenes of a train going past; 

VII. Videos of ‘Type’ containing scenes of a person typing at a keyboard. 

This video database was collected using a digital video camera and contains 50 samples 

(videos) per set – a total of 350 samples. Each video clip was later reduced to 8 seconds 

in length (200 frames). The videos were stored in AVI format under Indeo Video 5 

compression coding. Sample sizes range from 6.5 Mbytes to 25 Mbytes. The audio signal 

was extracted and saved in a mono, uncompressed pulse-code modulated (PCM) .wav 

file, sampled at 44.1 kHz at 16 bits. One of the major problems with audio analysis is the 

presence of background noise. We decided not to perform any pre-processing to remove 

such noise because of the risks involved with affecting the signal of interest and the 

difficulty in modelling the differences between the signal of interest and other signals. 

The database used contains 50 samples (videos) per set – a total of 350 samples.  

In order to demonstrate the variability and the lack of constraints present in the data, we 

present a description of the database files in table format in appendix A. The tables show 

detail the properties of the video sequences including the environment, what objects are 

present in the scene and the behaviour of the primary object. There is one table per 

sample group. The first row describes the properties that are common to all video 

sequences of that set. Further rows present alternative or additional properties of each 

sample. Note that later in the thesis we refer to specific video examples from the database 

using a descriptor identifier composed of 2 letters referring to the activity type (‘ca’ for 
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car, ‘cl’ for clap, ‘do’ for door, ‘st’ for steps, ‘ta’ for talk, ‘tr’ for train and ‘ty’ for type) 

and 2 digits (Examples: ca01 is the first sample of the ‘car’ set; ta46 is sample 46 of the 

‘talk’ set).  

It follows from the tables that: 

• ‘Car’ videos are outdoors, on a street and with a variety of secondary objects 

such as other cars, people and buildings. The vehicle, itself, can be a car, a truck 

or a van; 

• ‘Clap’ videos are generally indoors and the background can take any form 

(home, office, etc), and is, therefore, independent from the event. 

• ‘Door’ scenes are again indoors (although, they could also be outdoors, but we 

do not have any such samples). An important concern is the fact that the person 

going through the door will also be walking, which might produce some 

confusion with the ‘step’ samples. 

• ‘Step’ or walking scenes take place either indoors or outdoors. The speed of 

motion is variable. 

• ‘Talk’ samples are also not limited in terms of the environment. A person could 

be talking in a variety of backgrounds. 

• ‘Train’ samples are collected in open outdoors or train platform backgrounds. 

• ‘Type’ sequences occur in office scenarios. The person typing is generally in 

view, mostly sitting in front of a computer. 

Figure 3.12 shows example frames from the database. In video sequences, visual features 

can be extracted on motion, texture, colour and shape both for the whole image frame or 

specific segmented regions or objects. A preliminary inspection of the video frames show 

visual features can vary considerably even for the same object because of changes in 

illumination, in object viewpoint, different instances of the same object, unpredictable 

object motion, changes in skin tone, and so on. This presents a challenge for this thesis in 

terms of how robustly objects can be modelled with feature data and recognised in 
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unconstrained video streams with high accuracy. We consider these issues further in 

Chapter 4. 

Figure 3.12 – Scene image examples (ca01, ca42, cl01, cl41, do02, do44, st29, st47, ta30, 

ta48, tr01, tr03, ty03 and ty43). 

Figure 3.13 shows examples of audio spectrograms from the database. A preliminary 

visual inspection of the audio spectrograms shows that the signals across these seven sets 

are not easily distinguishable. The ‘clap’, ‘step’ and ‘type’ signals are periodic and 

regular, whereas ‘train’ and ‘car’ are loud and have a lower signal-to-noise ratio (SNR). 
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The set ‘talk’ is more erratic, and because speech signals can be done both indoors and 

outdoors, some of the samples are noisier than others. Also different class data can have 

overlap. For example, the ‘step’ and ‘door’ sets are similar because ‘door’ clips can have 

stepping sounds. ‘Car’ and ‘train’ videos are similar because they contain vehicles that 

are present in an outdoor environment and contain higher ambient sounds. 

Figure 3.13 – Scene spectrogram examples (ca01, ca42, cl01, cl41, do02, do44, st29, 

st47, ta30, ta48, tr01, tr03, ty03 and ty43). 

Another important characteristic of the data is the relationship between classification sets, 

i.e. the occurrence of certain classes excludes the occurrence of others and, in contrast, 

can increase the likelihood of the occurrence of other classes. E.g. ‘Car’ never occurs 

“Indoor” and ‘Clap’ presents “Oscillatory” movement. These relationships are expressed 

in Table 3.1. Note that these relationships are asymmetrical in the sense that even though 
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‘Car’ objects are always in an ‘Outdoor’ environment, not all ‘Outdoor’ environments 

contain ‘Car’ objects. 

Table 3.1 – Relationships between database classification groups (Y – row class implies 

the column class; N – row class excludes the column class; M – both classes may occur 

simultaneously) 

  Place Object Activity 

  I O H N-H B He Ha T C D S L Os 

Place 
Indoor Y N M M M M M N N M M M M 

Outdoor N Y M M M M N M M N M M N 

Object 

Human M M Y N M M M N N N M M M 

Non-
human 

M M N Y N N N M M M M M N 

Body M M Y N Y N N N N N N M N 

Head M M Y N N Y N N N N Y N N 

Hands M M Y N N N Y N N N M N M 

Train N Y N Y N N N Y N N N Y N 

Car N Y N Y N N N N Y N N Y N 

Door Y N N Y N N N N N Y Y N N 

Motion 

Stationary M M M M N M N N N M Y N N 

Linear M M M M M N N M M N N Y N 

Oscillatory Y N Y N N N Y N N N N N Y 

The information presented in Table 3.1 can be used in a variety of ways to improve 

classification decision making and will be discussed and used further later when 

addressing semantic fusion.  

In conclusion, the identification of events and their content based on visual or audio 

information alone is challenging and is likely to benefit from a combined strategy. The 

key objective of this thesis is to develop the methodology that can efficiently combine 

audio and video decision making for improved understanding of unconstrained video 

content. In Chapters 4 and 5 we discuss how video and audio based decision making can 

be realised, followed by how this can be fused in Chapter 6 to generate better results. 
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3.6  Conclusion 

This chapter described the main motivation behind this work and defined the problem and 

difficulties associated with describing video sequence events in terms of its environment, 

objects and motion. Given the vast amount of information present in videos, we reduced 

our objectives to focus on specific classes. We then provided an in depth description of 

an automated video understanding system architecture and explained in detail the initial 

pre-processing stages that prepare data for classification stage. These include video 

stabilisation and cutting and object segmentation. This was followed by an overview of 

feature extraction and classification stages, which are further detailed in later chapters. 

Finally, we describe our video database collection process together with examples of the 

data in both the visual and audio domains. 

The following chapters describe video and audio components of our methodology in far 

greater detail followed by how decisions from these modalities can be combined 

effectively for highly effective video content understanding. 
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Chapter 4 -  Image Analysis based Video Content 

Understanding 

4.1  Introduction 

In this chapter, we describe the design, implementation and testing stages of an 

automated image analysis system that generates a description of events within a video 

sequence as discussed in chapter 3. 

We use a modular methodology that discriminates between different types of 

environments, objects and activities (this is described in section 4.2).  

In section 4.3, we describe the environment classification module, detailing of all the 

techniques used for feature extraction, analysis and classification. We conclude this 

discussion with performance analysis of our methodology on data collected for this study 

as described in section 3.5.1. 

In sections 4.4 and 4.5 we describe the object and activity classification modules. A 

number of data analysis tools used for these are common with those used for environment 

classification, with the exception of feature extraction. The chapter concludes by 

highlighting salient results from this work. 

4.2  Methodology Overview 

Our classification approach includes three stages described in Figure 4.1. These are 

described as a high-level block diagram of the overall system, which was described in 

greater detail in Figure 3.3. 

Each stage is responsible for discriminating between different classes and takes 

information made available from the pre-processing stage described in chapter 3.  
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Figure 4.1 – Block Diagram of the Visual Content Understanding module. 

The environment classification process analyses all pixels within a key-frame 

corresponding to the time of the event. The object recognition process extracts features 

from a segmented region within that key-frame, whereas the activity recognition process 

uses a set of frames describing the event. All recognition processes include three sub-

processes: Feature extraction, Feature Selection and Classification as shown in Figure 

4.2. We show a clear separation between the feature extraction block from the remainder 

of the system to emphasise the importance of collecting relevant features for performance 

enhancement. 

  

Figure 4.2 – High-level block Diagram of the classification systems. 

These sub-processes are described in brief below: 

• Feature extraction: All pattern recognition processes need to train a classifier 

based on unique features that describe the data. Extracting features is problem 

specific, i.e. what may be a good set of features to recognise one object may not 

be good for another object. For example, vegetation is best recognised with 
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colour and texture features, whereas man-made objects are best defined using 

shape features. When multi-class recognition is needed, we look for features 

that minimise the intra-class distance and maximise the inter-class distance. For 

each of the problems addressed, the feature extraction stage extracts appropriate 

features from video or image frames and performs a preliminary evaluation of 

their expected usefulness using separability and covariance measures. 

• Feature selection: The feature selection stage is responsible for reducing the 

number of features. The number of features to be obtained represent user-

desired trade-off between number of features (computational complexity) and 

recognition capability (percentage of samples correctly recognised). Feature 

selection is essential avoid the problem of the curse of dimensionality (Donoho, 

2000) and works by removing irrelevant and redundant data. We use the SFFS 

algorithm (see section 4.3.5 for a detailed description) for feature selection 

because it has been shown to outperform its competitors (Jain and Zongker, 

1997) and we present a variation of this algorithm that increases computational 

performance. 

• Classification: Finally, the classification stage trains a classifier to recognise 

feature vectors (patterns and samples) and their corresponding classes. When 

testing the system, the classifier is presented with a feature vector with no 

knowledge of the desired class. On the basis of what the models have learnt 

from training, the classifier allocates the sample to one of the known classes. In 

our experiments, during the testing phase, despite the fact we never tell the 

classifier what the desired class should be for each sample presented, we do 

have this information and use it to evaluate the classifier decisions. The number 

of correct and incorrect class allocations are recorded and used to calculate 

recognition rate and construct a confusion matrix. In this thesis, we compare 

two well-known simple techniques for classification – kNN and Naïve Bayes – 

to avoid the need to optimise parameters. To analyse the performance of 

classifier learning, we compute results based on leave-one-out cross-validation 
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for maximum confidence (Martens and Dardenne, 1998). We show that these 

schemes produce high enough success rates at this level and therefore, the need 

for a more complex classification is not justified.

4.3  Environment Classification 

4.3.1 Introduction and Background 

The classification of visual scenes as Indoor or Outdoor is a much researched topic often 

serving as a basis for further sub-categorisation of scenes (Vailaya et al. 1998). The 

discrimination of images as indoor/outdoor is a difficult problem due to the complexity 

and variability that images can present. For example, similar objects can be present both 

in indoor and outdoor scenes (e.g. people, plants). Other problems include variable 

illumination and object clutter. Automated approaches to indoor/outdoor classification 

often use a combination of colour, texture and shape features to train classifiers. The 

recognition rates reported in most studies depend on the database used, features involved, 

classification methodology (type of cross-validation used), and the classifier used 

(Szummer and Picard, 1998; Serrano et. al 2002; Bosch et al. 2007). 

Most studies have used edge and texture information for analysis, even though it is 

common to use colour features for additional information, which generally, by 

themselves do not produce good enough performance. The works of Szummer and 

Picard, (1998), Vailaya et al. (1998), Serrano et al. (2002) all show the weakness of using 

colour features alone to address the environment classification problem. 

Texture and edge features are more reliable when discriminating between indoor and 

outdoor images. These features are reasonably illumination invariant and many studies 

have hypothesised that objects are characterised by distinct texture surfaces that are very 

typical of either one or the other case. For example, Yiu (1996) uses sub-block 

orientation dominance vectors, Summer and Picard (1998) use MSAR and spatial 

frequency features, Payne and Singh (2005) use an edge-straightness measure with the 

premise that indoor images objects are predominantly artificial and thus contain straighter 
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edges than natural outdoor objects and Gupta et al. (2007) use wavelet coefficient means 

of segmented objects. 

Another typical approach is to tessellate the image and either compute features per region 

or classify each region and aggregate results. The first is useful for including spatial 

information about the image and can somewhat improve the recognition in certain cases 

(e.g. if blue sky is detected near the top of an image the likelihood of an outdoor scene is 

higher) (Szummer and Picard, 1998) or for extracting regions based feature vectors 

(Gupta et al. 2007). The second is beneficial to remove the influence of erroneous regions 

that can be present in cluttered scenes (Payne and Singh, 2005) or as an arbitrary 

segmentation of the image prior to the computation of feature vectors (Siagian and Itti, 

2007; Bosch et al. 2007). 

Finally, the choice of classifier is important for optimising classification performance, but 

to a lesser extent. Yiu (1996) argued that preference should be given to different feature 

types depending on which classifier is being used. Nevertheless, Ng at al. (2007) explore 

the use of radial basis function neural networks (RBFNN) and show that optimising the 

localised generalisation error can improve on classification accuracy compared with 

SVMs or standard,  not optimised RBFNNs.  It is difficult to speculate how important 

classifier selection is, however, it can reasonably be expected that non-linear 

classification approaches such as neural networks would perform better than linear 

classifiers (Siagian and Itti, 2007). 

4.3.2 Methodology for Environment Classification 

Classifier methodology is composed of three stages as described in section 4.2 (Feature 

extraction, Feature selection and Classification). The data used for training and testing of 

the system is obtained from frame selection, which is described in chapter 3, section 

3.3.3. This data is composed of a collection of images containing different events. We 

divide the data into two environment classes as defined in section 3.2 (indoor and 

outdoor).  
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We ground truth each image by labelling the data as ‘indoor’ or ‘outdoor’. Specifically, 

all ‘car’ and ‘train’ samples are ‘outdoor’; all ‘door’ and ‘type’ samples are ‘indoor’; 

‘clap’ is ‘indoor’ except in 2 cases; ‘step’ contains 35 instances of ‘indoor’ and 15 of 

‘outdoor’ and ‘talk’ is ‘indoor’ except for 3 cases. In total, there are 230 samples of 

‘indoor’ and 120 of ‘outdoor’. 

Figure 4.3 shows a few examples of indoor and outdoor images from the database. 

Figure 4.3 – Example frames of ‘outdoor’ (above – samples ca09, st40, ta46 and tr02) 

and ‘indoor’ (below – samples cl01, do17, st49 and ty23) scenarios. 

A preliminary inspection of the images reveals considerable variability in terms of 

lighting properties, colour distribution and type of objects present in the scene. A number 

of outdoor images contain a region of sky and natural objects such as plants and rocks. 

Indoor scenes, on the other hand, are more artificial with a larger proportion of objects 

with straight edges. 

4.3.2.1 Feature Extraction 

Classifying indoor and outdoor scenes uses low-level visual features based on colour and 

texture. Also it is quite common to divide the image into separate blocks for analysis to 

reduce the computational complexity and take advantage of spatial information (Vailaya 

et al. 1998). For this study, a number of well-established image processing features are 
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computed to reflect the scenes’ colour and texture characteristics. In total, we generate a 

feature vector composed of 1972 features spanning different characteristics from all the 

pixels within the image. The features used are detailed in Table 4.1, where the last 

column defines a unique identifier (label) (‘ev’ stands for environment video feature). 

Table 4.1 – Visual features extracted for environment recognition with corresponding 

vector size and identifiers (CH – Colour Histogram, CCV – Colour Coherence Vector, 

EDH – Edge Direction Histogram, EDCV – Edge Direction Coherence Vector). 

Feature Method # features identifiers 

CH (Vailaya et al. 1998) 320 ev1 – ev320 

CCV (Vailaya et al. 1998) 640 ev321 – ev960 

EDH (Vailaya et al. 1998) 73 ev961 – ev1033 

EDCV (Vailaya et al. 1998) 145 ev1034 – ev1178 

Probabilistic Models 7 ev1179 – ev1185 

Colour Space (various) 108 ev1186 – ev1293 

Laws Masks (Laws 1980) 450 ev1294 – ev1743 

Colour Moments (Mindru et al. 1999) 5 ev1744 – ev1748 

Wavelets (Mallet et al. 1997) 144 ev1749 – ev1892 

Edge Count 80 ev1893 – ev1972 

We choose these features because they extract a broad range of visual information (e.g. 

colour space features include descriptors of colour distribution within the image; Laws 

Mask features do the same for texture information, and so on). The initial selection of 

which features to include was made on the basis of our literature survey on scene 

classification, previous experience and recommendations from other work. 

Once all the features are computed for the whole dataset, we aggregate all the extracted 

features into one feature vector and normalise the data such that each feature is of zero 

mean and unit standard deviation: 

(4.1)    ,'
X

XX
X

σ

µ−
=

where � is the feature’s average and ��  its standard deviation. 
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The normalisation process takes features from different domains and transforms them to 

become comparable for selection and classification stages. The feature extraction 

methods and preliminary evaluation are presented in the following subsections in detail. 

Vailaya Features 

Vailaya et. al, 1998 describe and evaluate a set of colour and edge features used to 

discriminate between cityscape and landscape images. We use their features to 

investigate if they can also be of use for the indoor/outdoor problem. We reason that 

regional colour and edge distribution, and coherence are good indicators of the scene’s 

content (e.g. outdoor scenes usually have blue sky and unstructured edge content, indoor 

images usually contain uniform backgrounds and artificial objects with straight edges). 

The first feature vector is a set of 5 localised colour histograms (CH), each histogram 

being computed for the four quarters of the image plus a central quarter in the following 

manner: 

Algorithm for Computing Localised Colour Histograms

i. Create an RGB space (3-dimensional) histogram sampled into bins; 

ii. Transform the histogram into HSV colour space; 

iii. Reduce these colours to 64 clusters using a k-means algorithm and represent 

these as a vector of 64 bins (H); 

iv. Create a look-up table that maps each (3D) RGB value into one of the 64 cluster 

bins; 

v. Smooth the histogram by multiplying a colour similarity matrix A that contains 

all 64×64 pairwise Euclidean distances between the 64 clusters centres:                                                   

(4.2)    ),()()('
64

1

�
=

=
j

jiAjHiH

where 'H  is the smoothed histogram and H  the original cluster histogram. 
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Figure 4.5 shows examples of the CH features for both indoors and outdoors images (in 

this example CH features are extracted from images ca01 and cl01 shown in Figure 4.4). 

The colour histograms are organised as aggregated vectors containing a concatenation of 

the five quarters of the image (top left – NW; top right – NE; bottom left – SW; bottom 

right – SE; and centre), which in the graphs are separated by the dashed lines. The 

examples of Figure 4.5 provide an insight on how histograms can differ and their 

measurements can be helpful for solving this problem. Differences in colour distribution 

are visually clear in this example. Further analysis (in subsequent sections) evaluates the 

relevancy of all features for discriminating these classes for the whole dataset.  

Figure 4.4 – Example images for ‘outdoor’ (ca01) and ‘indoor’ (cl01) cases. 

Figure 4.5 – Colour Histograms of images ca01 (outdoor) and cl01 (indoor). 

A Colour Coherence Vector (CCV) expands on the histogram analysis by using 2 bins for 

each colour cluster, representing coherent and non-coherent pixel colours. Coherent 
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pixels are defined as the ones that belong to an 8-neighbour connected component that 

exceeds a certain size. The algorithm is as such: 

Algorithm for Computing Localised Colour Coherence Vectors 

i. Create a label image using the HSV cluster look-up table as defined in in step 

iv. of the CH algorithm. In the label image, each pixel contains the identifier of 

the HSV cluster corresponding to the pixel’s original colour; 

ii. Perform region growing segmentation of the label image based on 8-

neighbourhood connectivity of identical identifiers; 

iii. A coherent region is defined as a region of reasonable size in relation to the total 

image size. In our implementation, we determine as coherent all regions 

containing more pixels than 0.1% of the image total number of pixels; 

iv. Compute the histogram taking into consideration that, if a pixel is part of a 

coherent region, its contribution is towards the coherent bin, otherwise, the 

contribution is towards the non-coherent bin. 

In Figure 4.6, the graph is again organised into the same five image quarters as before. 

For each quarter, the first half of the histogram represents the incoherent pixels and the 

second half the coherent pixels. In the outdoor case there is more colour variety and a 

predominance of incoherent pixels. The indoor case appears to contain less number of 

colours represented in the histogram and higher percentage of coherent regions. 

Figure 4.6 – Colour Coherence Vectors of images ca01 (outdoor) and cl01 (indoor). 
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Edge Direction Histograms (EDH) represent the distribution of the orientation of edges in 

°5  bins. The algorithm is as follows: 

Algorithm for Computing Edge Direction Histograms 

i. Apply the Canny algorithm (see below) to the image and store both the pixels 

declared as edges and their corresponding orientation. The parameters for 

Canny used here are low threshold = 0, high threshold = 0.2 and � = 0.2; 

ii. Compute the orientation histogram using °5  bins; 

iii.  Normalise the orientation bins by the number of edge pixels found; 

iv.  Compute an extra bin counting the number of non-edge pixels; 

v.   Normalise the non-edge bin by the total size of the image. 

Figure 4.7 exemplifies typical edge direction histograms. Note that for this case the 

histogram is computed for the whole image. It is apparent that more edges and edges of 

similar directions are present in the outdoor image due to all the man-made objects 

present in the background (e.g. buildings). The indoor edge histogram is evenly 

distributed and the empty background reduces the total amount of edges present. 

Figure 4.7 – Edge Direction Histograms of images ca01 (outdoor) and cl01 (indoor). 

Edge Direction Coherence Vector (EDCV) includes coherence information about edge 

directions in a similar form as it is done for colour coherence. Each direction is now 
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represented by 2 bins that include coherence information. The vector is computed as 

follows: 

Algorithm for Computing Edge Direction Coherence Vectors 

i. Apply the Canny algorithm to the image and store both the pixels declared as 

edges and their corresponding orientation. The parameters for Canny used here 

are low threshold = 0, high threshold = 0.2 and � = 0.2; 

ii. Perform region growing segmentation of the edge image based on 8-

neighbourhood connectivity of edge pixels; 

iii. A coherent edge is defined as an edge of reasonable size in relation to the total 

image size. In our implementation, we determine as coherent all edge regions 

containing more pixels than 0.001% of the image total number of pixels (in this 

case edge “objects” are lines, which are smaller in number of pixels than colour 

objects); 

iv. Compute the histogram (using °5  bins) taking into consideration that, if a pixel 

is part of a coherent edge, its contribution is towards the coherent bin, 

otherwise, the contribution is towards the non-coherent bin. 

Figure 4.8 – Edge Direction Coherence Vectors of images ca01 (outdoor) and cl01 

(indoor). 

Figure 4.8 shows examples of edge coherence vectors. EDCV features are computed for 

the whole image. On the graphs, the left hand side half of the histogram counts the 

0 18 36 54 72 90 108 126 145

Bins

C
o

u
n

t

Non Coherent Edges Coherent Edges

0 18 36 54 72 90 108 126 145

Bins

C
o

u
n

t

Non Coherent Edges Coherent Edges



107

number of edge pixels in non-coherent edges whereas the right hand side bins count the 

number of pixels belonging to coherent edges. Edge coherence seems to be higher in the 

indoor case. This phenomenon is caused by the higher level of detail in indoor images, 

which is due to the majority of objects being generally closer to the camera than in 

outdoor scenes. 

Colour Space Features 

Colour spaces are abstract models that describe colours in terms of different measures, 

each of which can be computed from the original three primary colours or channels (red 

R, green G and blue B) (Hunt, 2004). Colour information can vary considerably in both 

indoor and outdoor scenes and therefore, there can be a lot of overlap between the two 

classes using this type of data only. 

We extract image features starting with their RGB information. We compute a number of 

statistical descriptors derived from the histogram of each channel in the following manner 

(Umbaugh, 2004): Given a gray-level histogram of a monochromatic image or image 

region (of L  levels), the first-order histogram probability is defined as 

(4.3)    ,
)(

)(
M

gN
gP =

where M is the number of pixels in that region and N(g) is the number of pixels of value 

g. 

From )(gP  several statistical features are computed for each channel separately in the 

following manner: 
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In addition to RGB, the set of colour spaces we analyse are described next. 

Normalised RGB colour space (often called rgb) is obtained, which is a luminance 

independent representation obtained from RGB using the following transformations: 
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The YIQ model (used in the NTSC colour TV system) represents colour using a 

luminance channel – Y (originally the only signal used in black and white television sets) 

and two chrominance channels – I (orange-blue range) and Q (purple-green range) 

(Sonka et al. 1999). The conversion formula from RGB is: 
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The HSI colour space features include Hue – pure colour, Saturation – depth of colour 

and Intensity – brightness information. This representation is modelled on how humans 

perceive colour making it a relevant tool for analysing colour in images. The conversion 

formula is: 
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The TSL (tint-luminosity-luminance) colour space features are obtained following the 

transformation from RGB (Terrillon and Akamatsu, 2000) as follows: 
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The CIE-L*a*b colour space was created to produce a uniform and more accurate colour 

model than the original CIE-XYZ. Later, CIE-L*C*H was specified as a more intuitive 

version of L*a*b. In our work we use only L*C*H features: 
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Laws Masks 

Laws Masks (Laws 1980) are a set of filters that is commonly used for texture 

discrimination tasks. These masks, when convolved with an image, accentuate its 

underlying texture microstructure. After this step, it is possible to evaluate the filtered 

results by computing a number of statistics on them. In this work, we used a set of 25 

masks of size that are produced from the combination of 5 1-dimensional vectors: 

– Level (L5): [1 4 6 4 1] 

– Edge (E5): [-1 -2 0 2 1] 

– Spot (S5): [-1 0 2 0 -1] 

– Wave (W5): [-1 2 0 -2 1] 

– Ripple (R5): [1 -4 6 -4 1] 

As examples, the following masks are the result of convolution of 2 of these vectors: 



111

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−−−

−−−−−

=∗=

14641

281282

00000

281282

14641

'5555 ELEL

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−

−−

−−−

=∗=

14641

00000

281282

00000

14641

'5555 SRSR

We convolved each of the RGB channels with each of the 25 masks for texture analysis 

and compute the same six statistical features as detailed in the colour space subsection 

above (mean, standard deviation, skewness, kurtosis, entropy and energy). 

Colour Moments 

Colour Moments (Mindru et al. 1999) are used to characterise shape and colour 

information and are claimed to be invariant to illumination and viewpoint changes. These 

features are commonly used in recognition of colour patterns. Although these might be of 

more relevance for object identification, in this case we use it to characterise the whole 

image. 

The generalised colour moment of order qp +  and degree cba ++  is defined as: 

( )[ ] ( )[ ] ( )[ ] (4.24)    ,,, dxdyyxByxGyxRyxM
cba

qpabc

pq ��
Ω

=

It is interesting to note that by manipulation of order and values, we can generate shape 

moments or band intensity moments (shape moments are further discussed in section 

4.4.2.1). We select feature set G from Mindru et al. (1999) because these features have 

been used to successfully classify natural scenes in Markou et al. (2000). 
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, depending on which of the 2 colour bands 

are used.  

Wavelets 

Wavelets are a collection of functions constructed from a basis function   (mother 

wavelet) by dilation and translation ( Ζ∈
�
�
�

�
�
�

−−
−

lkltk

k

,,)2(2 2ψ ) with the property that the 

resulting functions form an orthonormal basis of the Hilbert space (Chui, 1992). This 

interesting property permits the decomposition of signals into a weighted sum of basis 

functions (the wavelets) in a similar fashion to Fourier decomposition, but with the added 

benefit of increased localised detail both in frequency and in time, which allows a more 

meticulous level of analysis. In the discrete case,

(4.29)    )2(2),()( 2� �
∞

−∞=

∞

−∞=

−
−

−=
k l

k

k

ltlkdtf ψ where ),( lkd  is the Discrete Wavelet 

Transform (DWT) of )(tf , k is the dilation factor and l the translation (Mallet et al. 

1997). 
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There are many function families in the literature that comply with the wavelet properties 

of zero direct component and finite energy. For the purpose of this work we use the 

Daubechies family as basis functions and perform a 2-level DWT (Daubechies, 1992). At 

each level we extract the statistics (mean, standard deviation, skewness, kurtosis, entropy 

and energy) on four matrices of coefficients (approximation and horizontal, vertical and 

diagonal detail). 

Edge Count 

For the case of Vailaya’s edge histogram features (EDH), we produce a single feature 

with the ratio of non-edge pixels present in an image. Because in that section we 

reproduce the feature vectors as they are described in Vailaya et al. (1998), edges are 

extracted using a single parameter set for the Canny edge detector. In this subsection, we 

extract the ratio of edge pixels over image size for a range of parameter values (�, high 

threshold and low threshold) of the Canny edge detector algorithm. The Canny edge 

detector (Canny, 1986) is an optimised approach to edge detection which was designed to 

address three main properties: 

• Detection: obvious edges present in an image should not be missed and no false 

edges should be detected; 

• Localisation: distance between the detected edge and the true edge should be 

minimised; 

• One response: there should be only one response to a single edge. 

The edge detector algorithm follows a number of steps to generate an edge image that 

obeys these properties (Sonka et al. 1999): 

Algorithm for Canny Edge Detection 

i. Noise filter using a Gaussian smoothing filter of scale �. The larger the scale, 

the lower the sensitivity to noise at the cost of some increase in localisation 

error; 
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ii. Estimate the edge magnitude for each pixel; 

iii. Perform non-maximal suppression of each pixel to find location of edges; 

iv. Compute the magnitude of each edge; 

v. Threshold edge magnitude using a chosen threshold (high threshold) parameter 

to eliminate false edges; 

vi. Perform hysteresis to eliminate streaking (broken edges) using a different 

threshold (low threshold) parameter, i.e. for each edge pixel find its neighbour 

following the gradient direction and, if the neighbour’s gradient magnitude is 

still above the low threshold, consider it still part of the edge continue this 

process until all neighbours lie bellow the low threshold;  

We build a vector of ratios of number of edge pixels over total number of pixels of the 

image by running the above edge detection algorithm for all the pairwise combinations of 

the following � and high threshold Canny parameters: 

� � �����������������������������

�� �!"�#�$�%&' � ����������� ( ���)��

While setting the !"�#�$�%&' � �� �!"�#�$�%&' * ��+ . 

Colour Distribution Models 

In addition to the previous features, we propose a novel methodology that segments 

image regions based on probabilistic colour models of object or concept categories. The 

idea is based on the notion that certain regions in an image have a limited range of colour 

signatures, particularly naturally occurring image segments, such as sky, vegetation or 

water. It can be assumed that sky regions in an image will most often have a blue hue 

while ranging from bright to dark intensities (there can be obvious exceptions, but these 

are uncommon). With this in mind, we develop probabilistic colour models and evaluate 

how many pixels in the image lie within these models. We expect that some of these 

features correlate with either indoor or outdoor scenes. 

The process of building these models relies on collecting pixel data from a large number 

of objects of the same class. We extract information from object images from the 
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LabelMe database (Russell et al. 2005). This database contains a large collection of 

images together with ground truth labels of object regions that are manually segmented 

and annotated by volunteers online. 

  

We select a total of seven classes of objects and object regions (building, bush, car, road, 

rock, sky and water) and use up to 2000 examples of each object. 

The probabilistic model of an object class is built using two 3-dimensional 

(128×128×128) RGB histograms
2
. The first histogram (probability of a pixel colour given 

the object class – ,-# ./%.0�1"2) counts all the pixel colours that belong to all the 

objects of the same class and the second (probability of a pixel colour given other objects 

not belonging to the object class – ,-# ./3%.0�1"2) counts all the pixel colours that 

belong to all the objects of all other classes. 

When analysing a new image, we decide that a pixel belongs to an object class under 

consideration if its conditional probability given the object class is higher than its 

probability given non-class objects, i.e. we are making an assumption that the priors are 

the same. In principle, we could obtain an estimation of the prior class probabilities based 

on the database in use or investigate possible recognition performance effects by using 

different estimates of the using different ratios or weightings of prior class and non-class 

probabilities. This study would require extensive evaluation for little gain, as we found 

from visual analysis of resulting images that the recognition performance is reasonable 

enough for usage as a discriminating feature.  

Finally, for a whole image, a feature per class is computed as the ratio of the number of 

pixels belonging to the class over the total image size. 

                                                 

2
 We use 128×128×128 sized matrices instead of 256×256×256 due to memory constraints. From similar 

experiments with the skin colour pixel model detailed in Section 4.4.2.1, we expect that the resolution 

reduction has a low impact on the overall performance of the algorithm. 
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In the above discussion we highlight a range of features used for environment 

classification. Since we do not know a priori, which features are optimal for this 

classification process, we choose more features than what may be necessary. This is 

particularly true as several features have considerable correlation and measure similar 

things. This redundancy can be removed by retaining uncorrelated and useful features. 

Next, we examine the combined data set to provide some insights into how relevant these 

features are as well as possibilities for reducing the data set. 

4.3.2.2 Understanding Feature Redundancy and Feature Selection 

High-dimensionality in data can introduce a number of problems, especially when we 

have a finite and limited number samples. The higher the number of dimensions in a 

representative space, the more samples we need to ensure the classifier system can model 

data complexity adequately. A number of studies have set out heuristic and empirical 

guidelines on what ratio between the number of features and number of samples is ideal 

for classifier training. Despite the lack of agreement on what is a good ratio, it is 

generally agreed that such ratio should be as low as possible (we should have as many 

samples as possible for any given number of features). There is also a general consensus 

that redundant features lower classification accuracy and make the classifier learning 

process tedious. 

In this section we perform a gross analysis of how relevant and redundant the features 

are. The input to this analysis is a feature data table. The rows are samples and columns 

are features described in the previous section. Firstly, we analyse feature importance by 

computing the ratio between intra-class and inter-class densities (Sw/Sb) for each feature. 

This measure is given by: 
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where ),( yxd  is the Euclidean distance; )(XSw  is the intra-class average distance; and 

),( YXSb  is the inter-class average distance. 

A ratio close to 1.0 means the average distances within class are comparable to the 

distances between the 2 classes, which indicates that the data sets have a large overlap. 

Smaller values indicate a higher degree of separability between classes using those 

features. 

We compute the Sw/Sb measure for each feature to measure its success at separating 

between ‘indoor’ and ‘outdoor’ samples. The results are shown in Figure 4.9. 

Figure 4.9 – Intra-class over inter-class ratio for Indoor/Outdoor visual feature vector. 

From Figure 4.9 we conclude that there is a reasonable number of irrelevant features that 

are poor at separating the indoor from outdoor (90% of features have Sw/Sb>0.9). The 
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10% remaining features, however, contain enough information that may discriminate 

between the two to some level.  

We are interested in evaluating the redundancy of the feature set in order to remove 

features that duplicate information. This is possible by measuring correlation between 

features. The coefficients of the correlation matrix are given by: 

(4.33)    
),(),(

),(
),(

jjCiiC

jiC
jiCC =

where C(i,j) is the covariance matrix: 

( )( )[ ] (4.34)    ),( jjii xxEjiC µµ −−=

where E is the expected value and ][ kk xE=µ . 

CC is a square matrix with size equal to the number of features of each vector. Below, we 

analyse feature data to generate the correlation coefficient matrix in pictorial form. 

Coefficients lie within [0,1] and image intensity ranges from black (CC(i,j)=0; low 

correlation) to white (CC(i,j)=1; high correlation). 

Figure 4.10 presents the correlation matrix in the form of a greyscale image for the 

indoor/outdoor feature vector. Dark bands are representative of features that contain no 

information (e.g. as some of the Vailaya features in cases where histogram bins are empty 

across the whole dataset). The matrix shows high degree of correlation between particular 

features. From this, we can conclude that it is possible to remove a number of features 

without loss of performance.  
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Figure 4.10 – Correlation coefficients of the Indoor/Outdoor feature vector. 

On the basis of our observations with Figure 4.10, we decide to perform feature selection. 

Consider a dataset S of dimensionality D. Feature selection is the process of reducing the 

number of features to Dd <  such that the performance of the system making use of 

these features does not deteriorate significantly. 

Several methods for feature selection exist in the literature, set search and genetic 

algorithms being two prominent methodologies. In this work, we use the Sequential 

Forward Floating Selection (SFFS) algorithm (Pudil et al. 1994) because it provides the 

best compromise between performance and processing time (Kudo et al. 2000). Jain and 

Zongker (1997) also evaluated the performance of 15 feature selection algorithms in 

terms of classification error and run-time on a two-class, 20-dimensional, multivariate 

Gaussian dataset. Their findings demonstrated that SFFS of Pudil et al. (1994) dominated 

the other methods for that data, obtaining feature selection results comparable to the 

optimum branch-and-bound algorithm while requiring less computation time. 
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SFFS is an extension of two simpler feature selection methods: Sequential Forward 

Selection (SFS) and Sequential Backward Selection (SBS). SFS is a bottom up approach 

whereby given a heuristic measure it is used to select the best performing feature of the 

selected set until the cardinality of d is achieved. Its counterpart (SBS) removes the worst 

performing feature until the same condition is met.

These two methods are generally suboptimal and suffer from the “nesting effect”, where 

features that have been selected (or discarded) are never again considered for removal (or 

inclusion). SFFS addresses this problem by combining both algorithms in an alternate 

manner, i.e. it starts by adding features to the selected subset using SFS and then switches 

to SBS to remove features. This process is iterated until the desired cardinality is reached. 

A salient feature of the SFFS algorithm is the ability to determine the number of features 

to add or remove dynamically. Every time a SFS (or SBS) step is performed, the measure 

of the selected set is evaluated and while it increases, the same process is repeated. 

A key issue when using a feature selection technique is the overall processing time 

required to reduce the feature set to the desired level [Pradhananga, 2007]. For a number 

of applications, this process is executed once at the training stage and therefore, it is 

acceptable to use slower algorithms to achieve higher confidence and prediction efficacy. 

But in cases where the feature selection process might be run multiple times, such as 

auto-calibration systems or when new features are introduced to the training feature set 

regularly, it is important to establish a compromise that promotes temporal efficiency 

while maintaining reasonable levels of accuracy. 

We compare three variations of the SFFS algorithm. First, we use SFFS with 

Battacharyya distance as the maximisation measure. This is a typical measure used with 

this algorithm (Singh and Markou, 2004) and it is often used to measure classes’ 

separability in classification. The Battacharyya distance between two clusters ci and cj is 

given by (Duda et al. 2001): 
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Where iµ  and 
jµ  are the cluster means, iΣ  and 

jΣ  are the class covariance matrices and 

•  denotes the determinant of a matrix. The downside of using the Battacharyya 

distance is that it assumes data has a normal distribution. The second approach we test 

addresses this issue by directly evaluating the performance of a classifier output. Thus, 

we setup the SFFS algorithm to maximise the average success rate of a kNN classifier 

(k=7) using a leave-one-out strategy. This measure evaluates localised separability 

between classes and is a preliminary predictor of the performance of future classifiers that 

use selected features. The downside of this method is its computational temporal 

complexity. This algorithm is )( 2MNO  (where N is the number of features and M the 

number of samples in the training set). In this study, we introduce a new feature selection 

method called “Preliminary Culling Feature Selection” (PCFS) which concentrates on 

reducing the number of features evaluated. It works as follows: 

Algorithm for PCFS  

i. The first feature is selected similarly to SFFS – for the whole feature set it is the 

one that maximises the performance measure; 

ii. While we compute the maximisation measure (average success rate of kNN) of 

each feature f taken alone, we store, for each sample s, the distances to the k

neighbours of each class c (dfsnc), where n is the rank of the neighbour in terms 

of distance. We are interested in the distance to the )
2

(
k

ceil  neighbours (this is 

the neighbour that in the kNN classifier defines the majority boundary; in our 

case k=7 and we only consider the 4th ranked neighbour, i.e. n=4); 

iii. For each sample s in the training set, we compute (across all features) the 

average ( sdsµ ) and standard deviation ( sdsσ ) of the stored distances to the 

neighbour of the same class neighbour and similar values for the distance to the 

other(s) class(es) ( sdoµ  and sdoσ ); 
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iv. For each sample s in the training set S, we define a number of Boolean 

properties relating to each feature f: 

– Separation is correct – distance to the neighbour of the same class cc is 

smaller than the distances to the neighbour of other classes co:  

(4.36)   
otherwise 0

)min( if 1 44

�
�
� <
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– Separation is high – distance to neighbour of other class is bigger than 

average distances plus 2 standard deviations otherwise: 
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– Separation is low – distance to neighbour of other class is smaller than 

average distances minus 2 standard deviations: 

(4.38)   
otherwise 0
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– Separation is correct and high:  

(4.39)   sfsfsf SHSCSCH ∧=

– Separation is correct or low:  

(4.40)   sfsfsf SLSCSCL ∨=

v. Until we reach the number of desired features do:  

v.i. For each feature f that has not been chosen, we compute a measure of its 

potential to improve the classification if chosen. Given SW ⊂ as the set of 

samples that were wrongly classified in the previous iteration the combined 

separation measure is as follows: 

(4.41)   
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The first term is high when there is high separation on the cases where there 

occurred mistakes and the second term is high when there is low impact on 

the cases that are already correct. 
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v.ii.We test only the features with higher
fCS , thereby, for each feature after the 

first, reducing the search space. We chose the 10% as threshold of the 

percentage of top ranking features with the objective of reducing processing 

time to 10% of SFFS. Some preliminary experiments showed that lower 

values of this threshold (e.g. 5%) reduce the final accuracy while higher 

values increase processing time with little benefit. 

Figure 4.11 shows the classification rates obtained when using the features selected (from 

a set of 1 feature to 20 features) by each method with a kNN classifier, as well as the 

processing time taken by each method. Also, to confirm the similarity or disparity 

between the prediction rates we perform a two-sample t-test on the success rates for each 

pair-wise combination of types of feature selection methods. The null hypothesis is that 

the difference between the means of each method’s success rates is zero with a 95% 

confidence interval. We obtain p-values of 0 when testing SFFS with Battacharyya 

distance with both other methods, thus rejecting the hypothesis and concluding that the 

results are very dissimilar. In contrast, the test using SFFS with kNN and PCFS produces 

a p-value of 0.403, which upholds the hypothesis that the distributions difference is not 

statistically significant. 

From Figure 4.11 and the t-test results we can conclude that using Battacharyya distance 

underperforms the other two approaches while being the fastest. The prediction 

performance of SFFS and PCFS are very similar, in this case our method has a slight 

advantage, and the time taken to obtain each feature set is close to 10% of using full 

SFFS, with the exception of the first feature which takes approximately the same time. 
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Figure 4.11 – Comparison between different feature selection methods for the 

Indoor/Outdoor classifier (left – success rate vs. #features; right – processing time vs. 

#features). 

We decide to perform in-depth analysis of the classification for a cardinality of the 

feature selected set is set to 5, which was chosen because all the performance at this level 

is reasonable to high, there is little redundancy on such small number of features, in a 

practical scenario this would limit the time taken on training systems with higher number 

of samples and to explore, in chapter 6, the behaviour of the feature selection process 

when choosing from features of different modalities.  

SFFS selects the following five features as being the most important for discrimination 

between indoor and outdoor images: 

• ev1361 – Laws mask; 

• ev1258 – TSL Colour Space; 

• ev1849 – Wavelet; 

• ev1068 – Edge Direction Coherence Vector; 

• ev1958 – Canny Edge Count. 

The above list shows that SFFS picks up both colour and texture features, which is in line 

with literature suggestions that solutions to indoor/outdoor require a combination of 

different features (Szummer et al. 1998). It is interesting to note that more texture and 
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edge features were selected than colour. This seems to support the suggestion that edges 

are very important when discriminating between indoor and outdoor (Payne and Singh, 

2005). Figure 4.12 displays the principal component scatter plot of the reduced feature 

vector. The graph shows a reasonably high separability of data which means that good 

recognition rates should be possible. 

Figure 4.12 – Principal Components plot using selected environment features. 

4.3.3 Classification and Evaluation 

The classification stage is responsible for building a model that maps the previously 

selected features into one of the predefined classes. Despite the fact that unconstrained 

videos may contain a much larger number of object classes than we model, we do not 

explicitly use novelty detection (M. Markou, 2003; Franc and Hlavac, 2004) since our 

approach to semi-automated segmentation ensures that only known objects are analysed. 

The experimental setup evaluates the performance of two simple classification 

methodologies: k-Nearest Neighbours and Naïve Bayes. These classifiers are deliberately 

chosen to maximise recognition accuracy with the least amount of parameter adjustment. 
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The k-Nearest Neighbours model produces a classification decision based on a voting 

strategy, which counts the most occurring class in the set of k training samples that are 

closer to the test sample using a distance measure (Fix and Hodges, 1951). In practice, 

generally, if all features have the same importance and variation, it is enough to use 

Euclidean distance as the neighbour selection operation. The feature selection process 

chooses features that optimise the success rate of this model; therefore as long as k is the 

same in both processes, there is no need to optimise the parameter, consequently we 

decide to use k=7. 

The Naïve Bayesian classifier (Franc and Hlavac, 2004) is chosen for several reasons. 

Firstly, the lack of parameter dependence simplifies the design process; secondly, it has 

been shown to be optimal in terms of misclassification rate (Domingos and Pazzani 

1997); thirdly, if it proves to be an under-performing model, it can still provide a baseline 

measure for more complex classification models (as we describe later, this was not 

required); finally, the a posteriori probability that results as outputs can be of use in later 

stages for data fusion, as described in chapter 6. 

Discriminant classifiers model each class using functions derived from the training set 

and assign a test sample to the class whose function is higher, i.e. given example x  and 

discriminant functions cc Ncxf ..1),( =  where cN  is the number of classes, the elected 

class is ))((maxarg xfC c
c

= . 

The Naïve Bayesian is a discriminant classifier where the class models are given by: 

(4.42)    ,)|()()|()(
1

∏
=

==
N

j

c cxPcPxcPxf

The classifier generates class-conditional distributions using a simple Gaussian Model 

and the a priori probabilities are estimated by the relative occurrences in the data.  The a 
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posteriori probability is used to discriminate between classes, i.e. the class with the 

higher a posterior probability is elected as the classification outcome. 

The classification experiments are performed using a leave-one-out cross-validation 

strategy, in order to maximise confidence in the result. For each sample, we use the 

remainder of the database (349 samples) as training data and use the sample to test the 

classifier. This is repeated for each sample. Success rate measures the quantity of samples 

that were correctly classified and a confusion matrix is presented for further detail. We 

decide to examine straightforward success rate and not perform any kind of balancing of 

the performance based on the number of samples of each class (as it is normally done 

while evaluating the sensitivity and specificity of the classifiers). This is because in the 

feature selection stage, the optimisation measure is the raw success rate of the classifiers 

without weighting or balancing, so this is the measure under scrutiny over all classifiers 

for the remainder of this work. Also, we intend to evaluate relative performance increases 

when using different modalities, which means that it is important to use the same 

evaluation measure across all classification experiments. 

Tables 4.2 and 4.3 present the confusion matrices obtained with leave-one-out cross-

validation using kNN and Naïve Bayes classification models, respectively. Total samples 

per class are ‘indoor’ (230) and ‘outdoor’ (120). We obtain 94% success rate using kNN 

and 90% with Naïve Bayes classifier. 

Table 4.2 – Indoor/Outdoor confusion matrix using kNN. 

 Indoor Outdoor 

Indoor 219 11 

Outdoor 8 112 

Table 4.3 – Indoor/Outdoor confusion matrix using Naïve Bayes. 

 Indoor Outdoor 

Indoor 213 17 

Outdoor 16 104 
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To summarise, with these classifier models and these selected visual features, we achieve 

high level classification performances, comparable with other results described in the 

literature (Szummer and Picard, 1998; Serrano et. al 2002). The kNN model’s results are 

slightly better because the feature selection process is designed to optimise its 

performance. Overall, these results are very promising and we can be assured that 

accurate video description is possible with reliable environment recognition capability. 

4.4  Object Classification 

4.4.1 Introduction and Background 

Object classification is the process of labelling regions in an image in a discriminative 

sense. It is a difficult problem in computer vision research because: 

• Illumination changes impact on how an object appears, and therefore on the 

quality of features extracted;  

• Objects belonging to the same class can occur in a variety of colour and textures 

as well as varying in size and shape;  

• Camera viewpoint geometry transforms an object’s observed size and shape to 

the extent that parts can be missed if outside the viewing frustrum. Moreover, in 

monocular systems, depth perception is lost; 

• The presence of multiple objects in a scene can produce partial or total 

occlusions of the object of interest. 

Proposed solutions to object classification span a number of feature extraction or object 

modelling methodologies, which arguably can be grouped into three categories. 

(Campbell and Flynn, 2001; Axel Pinz, 2005): 

• Appearance-based classification – takes the object’s pixel data as a whole 

(perhaps after pre-processing, normalisation and filtering procedures) and 

generates a model that encodes object views as points in a multi-dimensional 
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space. Examples of suggested appearance description operations include 

enhancing filters or transforms (Shekar et al. 2006), vector quantization (Lopes 

and Singh, 2006a), local thresholding binary descriptors (Zhang et al. 2007) and 

biologically inspired filters (Serre et al. 2007).  This approach is very robust for 

its ability to model information about shape, reflectance, pose and illumination. 

Common drawbacks include the need for large amounts of data for training and 

complex data collection setups to account for object variation. Earlier work 

concentrated in using principal component analysis (PCA) to produce 

eigenspaces for data projection (Kirby and Sirovich, 1990). Over the years, 

extensions to this method included modelling part relationships (Huang et al. 

1997) and the use of other statistical models such as neural networks to replace 

PCA (Mukherjee and Nayar, 1995). In parallel to feature reduction, appearance 

based descriptors are often used with boosting recognition methodologies. E.g. 

Bar-Hillel et al. (2005) uses appearance part-based models to represent, detect 

and classify objects using a discriminative boosting algorithm whilst Zhang et 

al. (2007) uses an AdaBoost approach for feature reduction and strong binary 

classification. 

• Feature-based classification – this approach transforms objects’ visual content 

into a set of measurements (features) that form a description vector that is used 

for discrimination purposes. For good quality classification it is important that 

the feature vectors are good representations of the data, i.e. they maximise the 

inter-class distance while minimising the intra-class distance. The literature is 

quite broad on various methodologies applied to object recognition, but most 

use either: shape analysis (e.g. binary moments (Prokop and Reeves, 1992); 

contour representation (Sonka et al. 1999); or other various shape features such 

as aspect ratio or area (Renno et al. 2007)); colour modelling (e.g. statistical 

colour distribution (Terrillon and Akamatsu, 2000); colour moments (Mindru et 

al. 1999)); texture analysis (e.g. using filter banks (Laws, 1980) or wavelet 

decomposition (Mallet et al. 1997)). These models assume some form of 

previous object or region segmentation which is the support of the feature 

extraction stage. Cao and Fei-Fei, (2007) even use a spatially coherent latent 
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topic model to both segment and classify the objects simultaneously.  It is also 

possible to describe and classify objects by automatically detecting key-points 

and organising an object’s features description as bag of words or part based 

models, which have the added benefit of allowing the possibility of modelling 

geometrical relationships between feature points. (Fei-Fei et al. 2007) 

• 3D model-based classification – these approaches use 3-dimensional knowledge 

of an object’s shape data and match it with observed objects. Known 

methodologies depend on the type of data collected. Stereo systems and other 

multi-camera setups build 3-dimensional approximations of an object’s surface, 

which can be directly matched to known shapes (Besl, 1990) or transformed 

into geometric shape descriptions such as fitting to a deformable superquadratic 

and using its parameters for classification (Raja and Jain, 1992). In monocular 

systems, range data is not available; therefore, solutions involve the projection 

of the model onto a 2-dimensional surface for shape comparison (Malciu and 

Pretuex, 2000) or homographic transformation of key-point features (Yan et al. 

2007). 

The automated identification of objects in a visual scene typically involves image 

segmentation, feature extraction from object regions and classification with a trained 

classifier. In order to develop a fully trained classifier, a large amount of ground-truth 

data is necessary which may not be available with limited amount of data collected by a 

research project. Also, some objects appear less often in scenes leading to less number of 

samples. A number of proposals regarding the classification methodology try to address 

these issues with the objective of obtaining good recognition while maintaining good 

generalisation and minimising the amount of data required. One salient example is the 

work of Fei-Fei et al. (2004) which introduces an incrementally generative Bayesian 

model for represents shape and appearance of groups of feature points. Renno et al. 

(2007) uses AdaBoost ensemble of classifiers with two training stages which allows for 

weighting of the weak classifiers. 

The following section details our methodology in full. 
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4.4.2 Methodology for Object Recognition 

The object identification module follows a feature-based recognition approach similar to 

the one presented in section 4.3 for the indoor/outdoor classification. Object classification 

is somewhat more complex because we need to perform hierarchical classification given 

the large number of classes that cannot be separated with a single classifier. The class 

hierarchy, and corresponding multi-stage classification approach is shown in Figure 4.13. 

Figure 4.13 – Object class hierarchy. 

A hierarchical approach to classification is helpful in a number of ways: 

• The number of classes handled by a classifier at any level in the hierarchy is 

much less than the total number of classes and therefore recognition 

performance is much improved (Lopes et al. 2006b).;

• Lower layers concentrate on detailed labelling of objects, by working on more 

specific information while limiting the problem domain (i.e. avoids confusion 

with other detailed classes belonging to different broader categories). 

• Architecture modularity makes it easier to introduce additional classification 

models at the same level (new concepts) or deeper level (more detail). 

• This approach breaks down a complex decision-making process into several 

simpler decision stages, with increased performance. It is also easier to discard 

unnecessary data in the design phase (Safavian and Landgrebe, 1990). 
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Our object classification approach involves three classification processes which are 

independent of each other and organised at two different layers of the hierarchy. Figure 

4.14 shows a block diagram of this system. 

Figure 4.14 – Object classification system (HNH – Human/Non-Human, HBH – 

Head/Body/Hands, CDT – Car/Door/Train). 

Although we use three different classification stages, each model in itself is similar to the 

indoor/outdoor model presented in the previous section. Each makes use of a feature 

vector containing features extracted from the analysis of objects segmented from video 

frames (see chapter 3 for a detailed description of this process). The features are then 

selected using SFFS and serve as input to the classification stage. In the following 

description we detail what data is used to train and test the three classifiers. 

The first classifier is trained to distinguish between human and non-human (HNH) parts 

and objects. Figure 4.15 presents a few examples of the segmented objects for such 

categories. The data is labelled as ‘human’ for all cases of ‘clap’, ‘step’, ‘talk’ and ‘type’; 

the remaining events (‘car’, ‘door’ and ‘train’) are considered ‘non-human’. In total there 

are 200 samples for ‘human’ and 150 samples for ‘non-human’. 

To the human eye, these classes might seem easy to set apart, especially because ‘human’ 

samples should be identifiable from skin colouration. However, this is not as easy as one 

may think. Wooden objects (e.g. doors) have similar colour to certain skin types; in 
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situations where the object is far from the camera only minimal information about its 

visual properties can be obtained; and there are always difficulties with controlling 

illumination and object occlusion. 

Figure 4.15 – Example frames of ‘non-human’ (above) and ‘human’ (below) objects. 

The second classifier takes the samples of the ‘human’ category and further allocates 

them to one of these three classes: ‘hand’, ‘body’ and ‘head’ (HBH). We have 100 

samples of ‘hand’ and 50 samples of each of the other two classes. Examples are 

presented in Figure 4.16. 

Figure 4.16 – Example frames of ‘hand’ (left), ‘body’ (centre) and ‘head’ (right) objects. 
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The third classifier further subdivides ‘non-human’ category into three classes: ‘car’, 

‘door’ and ‘train (CDT). There are 50 samples of each class. Representative examples are 

shown in Figure 4.17. 

Figure 4.17 – Example frames of ‘car’ (left), ‘train’ (centre) and ‘door’ (right) objects. 

The following section reviews the feature extraction process from the selected object 

regions. 

4.4.2.1 Feature Extraction 

Objects can be recognised based on low-level visual features based on colour and texture, 

in a similar way to the environment classification. Additionally, shape information is also 

very helpful in predicting an object’s identity. We generate a feature vector composed of 

823 descriptors of the object region. Table 4.4 presents the details of the object’s feature 

vector (identifiers use the prefix ‘ov’ for object video feature). 

Most of these methods are described in section 4.3.2.1 (Colour Space, Laws Masks, 

Colour Moments, Wavelets and Edge Count). It should be noted that for environment 

classification features are extracted from the whole image, whereas in object recognition 

these features are calculated using pixels that define object region. The following 

describes only those features that are used for object recognition and not described 

earlier. 
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Table 4.4 – Visual features extracted for object recognition with corresponding vector 

size and identifiers. 

Feature Method # features identifiers 

Colour Space (various) 108 ov1 – ov108 

Laws Masks (Laws 1980) 450 ov109 – ov558 

Colour Moments (Mindru et al. 1999) 5 ov559 – ov563

Wavelets (Mallet et al. 1997) 144 ov564 – ov707 

Shape Features 33 ov708 – ov740 

Edge Count 80 ov741 – ov820 

Skin Ratio 1 ov821 – ov821 

Blob Features 2 ov822 – ov823 

Shape Features (Ellipse and Moments) 

Shape is a common feature for the description of segmented objects (Sonka et al. 1999). 

Several methods have been proposed, but we focus on two types of shape description. 

Ellipse Fitting is the computation of a best fitting ellipse around the region of interest. A 

number of ellipse characteristics can be thereafter used to describe the overall shape and 

orientation of the object. 

An ellipse can be described as a second-order polynomial (Halif and Flusser, 2000): 

(4.43)    04    ,0),( 222 <−=+++++= acbfeydxcybxyaxyxf

where a, b, c, d, e, f are ellipse coefficients and ),( yx  the coordinates of points that lie on 

it. 

The fitting process takes a set of points and derives the coefficients of an ellipse that best 

describes those points. We use a publicly available implementation of the algorithm from 

Halif and Flusser (2000) to find the coefficients. In addition to the coefficient set, we 

compute 4 shape related features: 

• Axis relationship – given A and B the major and minor axis of the ellipse, we 

measure their relationship using  
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(4.44)    1−
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The properties of this measure are: 

o If AB << , 0≈R  (elongated shape) 

o If AB ≈ , 1≈R  (round shape) 

• Orientation – given by  

(4.45)    )cos(ϕ=O

where ϕ  is the angle between the major axis and the x axis. 

• Irregularity ratios – two ratios are derived:  
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where iA  is the area of the object that lies inside the ellipse; oA  is the area of the 

object that lies outside the ellipse and TA  is the total area of the object. 

Region moment representation is a description of an image as a probability density of a 

2D random variable (Sonka et al. 1999). In the discrete case, a moment of order (p+q) is: 
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where W is the width and H the height of the image and ),( yxf  the intensity of the 

image at point ),( yx  (Papoulis 1991). 

For translation invariance, the scaled central moments are defined as: 
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where xµ  and 
yµ  are the image centroids. 

Hu (1962) proposes a set of compound spatial moments that are invariant to translation, 

rotation and scale change, which are defined as: 
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The moment vector includes all binary central moments up to order (3+3) and the seven 

Hu moments. 

Skin Colour Distribution 

A colour feature approach is chosen to detect skin coloured pixels. To this purpose, Jones 

and Rehg, (1999) designed a Gaussian mixture model using a large database of labelled 

pixels. The model estimates the probability of a RGB colour value given the skin class: 

P(rgb|skin) and do the same for non-skin class: P(rgb|~skin). A pixel is classified as skin 

if: 

,-$4�5/# .2 6 7,-3$4�5/# .2!!-+���2!

Using Bayes rule 

,-$4�5/# .2

,-3$4�5/# .2
�

,-$4�52
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Which reduces to  
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6 9!!!-+��)2

where 9 � 7
:-;<�=2

:-3;<�=2
, i.e. 9 is a function of the prior probabilities and theoretically 

should be chosen according to the expected distribution of skin vs. non skin pixels and by 

associating costs to the sensitivity and specificity of the application. In practice, we found 
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that the detection of skin in a variety of scenarios is not too sensitive to this threshold and 

thus used 9 � ��+ as proposed by Jones and Rehg (1999). 

Having selected which pixels in the object region are more likely to be skin, we use the 

ratio between skin area and total object area as a feature for classification. 

Object Complexity Measure  

Some objects, most often, large and artificial ones, are composed of several parts. E.g. a 

car is composed of body, windscreen, wheels, etc. We produce a measure of the 

complexity of each object by determining how many distinguishable areas can be 

observed in the region of interest. 

This can be achieved by performing colour segmentation on the region of interest. 

Several implementations of image segmentation can be found in the literature (M. Singh 

et al. 2005). We apply a region growing algorithm as described below: 

Algorithm for Region Growing Image Segmentation 

i. Smooth the image with a 33×  gaussian filter; 

ii. Transform the image into HSI colour space and compute the cosine of the 

Hue component (this is to make Hue’s range to be [ ]1:1−  and make sure 

similar hues are close together); 

iii. Find all points in the region that have not been processed yet; 

iv. The first point in that set is the seed and we threshold the region to find all 

pixels that have similar hue, satisfying a threshold parameter; 

v. Find the 8-neighbour connectivity region of similar hue that includes the 

seed point; 

vi. Fill holes using erosion followed by dilation; 

vii. Mark the new region with a unique label; 

viii. Mark new region’s pixels as processed; 

ix. Repeat from step iii. until all pixels have been processed. 
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Two features are extracted after image segmentation based on the above algorithm: the 

number of blobs found and the size of the largest one. 

4.4.2.2 Understanding Feature Redundancy and Feature Selection 

For each sample we have 823 features available as shown in Table 4.4. Although the 

number of features present is less that those used in environment classification, there is 

still a need to reduce feature dimensionality. This is justified on the basis of the following 

analysis that computes the ratio between intra-class and inter-class densities for each 

feature. 

Figure 4.18 – Intra-class over inter-class ratio for Human/Non-Human visual feature 

vector. 
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Figure 4.19 – Intra-class over inter-class ratio for Head/Body/Hands visual feature vector. 

Figure 4.20 – Intra-class over inter-class ratio for Car/Door/Train visual feature vector. 

Figures 4.17 – 4.20 show the separability measures of the three classifiers. We can 

observe that a large number of features are poor at class separation. The percentage of 

features with a high Sw/Sb is small (81% for Head/Body/Hands and 62% for 

Car/Door/Train). Also, features that produce good separability for one form of 

classification do not necessarily do so in other cases. Furthermore, as shown in Figure 

4.21, there is considerable correlation between features which implies redundancy and 

need for feature selection. 
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Figure 4.21 – Correlation coefficients of the objects feature vector. 

Figure 4.22 – Comparison between different feature selection methods for the 

Human/Non-Human classifier (left – success rate vs. #features; right – processing time 

vs. #features). 
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Figure 4.23 – Comparison between different feature selection methods for the 

Head/Body/Hands classifier (left – success rate vs. #features; right – processing time vs. 

#features). 

Figure 4.24 – Comparison between different feature selection methods for the 

Car/Door/Train classifier (left – success rate vs. #features; right – processing time vs. 

#features). 
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the best compromise with high accuracy rates (statistically similar to SFFS) and low 

processing time (90% faster).  

We examine the results of feature selection using SFFS which selects the following 

feature sets for each classification task (in the five features case): 

• SFFS Selected Features for Human vs. Non-human (HNH) Classification: 

o ov720 – Binary Central Moment (m02) ; 

o ov103 – LCH Colour Space (H average); 

o ov758 – Canny Edge Count; 

o ov64 – HSI Colour Space (S kurtosis); 

o ov4 – RGB Colour Space (R kurtosis). 

• SFFS Selected Features for Head vs. Body vs. Hands (HBH) Classification: 

o ov103 – LCH Colour Space (H average); 

o ov712 – Shape feature (ellipse coefficient); 

o ov725 – Binary Central Moment (m13); 

o ov714 – Shape feature (ellipse coefficient); 

o ov767 – Canny Edge Count. 

• SFFS Selected Features for Car vs. Door vs. Train (CDT) Classification: 

o ov720 – Binary Central Moment (m02); 

o ov57 – HSI Colour Space (H skewness); 

o ov746 – Canny Edge Count; 

o ov708 – Shape feature (Axis relationship); 

o ov108 – LCH Colour Space (H energy). 

The selected features contain examples of colour, shape and texture descriptors. It is 

interesting to note that the first two features for the human/non-human classification are 

the first selected features of each of the sub-modules. 
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Analysing the correlation information, we can draw the following interpretation. Firstly, 

human parts seem to be better described using colour data. Feature ev103 is highly 

correlated with ev821 (skin ratio) which indicates that skin colour is an important factor. 

But after that, mostly shape features are selected, some of which are correlated, meaning 

that their utility is somewhat reduced in comparison with the initial features. Non-human 

objects require a broader range of information for discrimination. The most important 

feature is the column moment of inertia (ev720) which is a measure of object height 

(good for distinguishing between door and trains, for example). The last two features are 

reasonably correlated with the first two, meaning that there is no need to acquire more 

features as additional feature data becomes redundant very quickly. All classifiers use a 

Canny Edge Count feature as texture feature. 

Figure 4.25 – Principal Components plot using selected object features for Human/Non-

human case. 

  

-6 -5 -4 -3 -2 -1 0 1 2
-6

-4

-2

0

2

4

6

8

1st PC

2
n
d
 P

C

Human

Non-Human



145

Figure 4.26 – Principal Components plot using selected object features for 

Head/Body/Hands case. 

Figure 4.27 – Principal Components plot using selected object features for 

Car/Door/Train case. 
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Figures 4.25 - 4.27 display the principal component scatter plots for the three object 

classification tasks. It is apparent that in all three tasks, features across different classes 

overlap, making the classification problem difficult to solve. Nevertheless, PCA plots 

should be viewed with caution as they only plot the first two PCs and it is possible that 

classes are further separable in the other principal component spaces. 

4.4.3 Classification and Evaluation 

For each classification task, labelled here HNH, HBH and CDT for simplicity, uses both 

a kNN and a Naïve Bayes classifier with leave-one-out cross-validation strategy (see 

section 4.3.4.1 for algorithmic and implementation details). The classifiers are trained 

with appropriate training data described earlier. When testing, we first determine if the 

sample is ‘human’ or ‘non-human’. The detail level classifiers (HBH and CDT) group all 

data that do not belong to the classes of interest and treat them as an ‘other’ class. 

The HNH Classifier when trained and tested shows 95% success rate and Naïve bayes 

classifier for the same task produces 83% accuracy (Tables 4.5 and 4.6 show the 

confusion matrices with total samples per class ‘human’ (200) and ‘non-human’ (150)). 

In this case the discrepancy between the two classifier methods is very clear. 

Nevertheless, it is important to note that the overall performance is high. 

For the HBH classification task we obtain 88% and 83% success rates respectively for 

kNN and Bayes classifiers (Tables 4.7 and 4.8 with total samples per class ‘hands’ (100), 

‘body’ (50), ‘head’ (50) and ‘other1’ (150)). If we disregard the ‘other’ class, we obtain 

90% in both cases. When examining the confusion matrices, we find that ‘hands’ are 

never confused with ‘body’, but sometimes confused with ‘head’ due to similarity in 

colour (skin).  

Table 4.5 – HNH confusion matrix using kNN. 

 Human Non-Human

Human 191 9 

Non-Human 8 142 
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Table 4.6 – HNH confusion matrix using Naïve Bayes.

 Human Non-Human

Human 170 30 

Non-Human 29 121 

Table 4.7 – HBH confusion matrix using kNN. 

 Hands Body Head Other1 

Hands 92 0 6 2 

Body 3 40 1 6 

Head 5 4 40 1 

Other1 4 5 5 136 

Table 4.8 – HBH confusion matrix using Naïve Bayes.

 Hands Body Head Other1 

Hands 88 0 5 7 

Body 2 38 2 8 

Head 6 2 40 2 

Other1 3 19 3 125 

For the CDT classification task we obtain 87% success rate with kNN and 79% with 

Naïve Bayes, which increases to 89% and 87% if we discard ‘other’ information. ‘Door’ 

is never confused with the other two classes, but it can sometimes be confused with 

‘other1’ class (Tables 4.9 and 4.10 with total samples per class ‘car’ (50), ‘door’ (50), 

‘train’ (50) and ‘other2’ (200)). 

In summary, this module is very accurate, taking into account the higher number of 

classes we are attempting to discriminate between. For the purpose of this thesis, these 

results are very good to demonstrate how the overall system works, as the key focus of 

our work is to develop a generic methodology behind unconstrained video understanding 

in which future improvements can change classifiers and their training data for enhanced 
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ability to recognise objects. In the next section, we detail our final image analysis task – 

activity classification. 

  

Table 4.9 – CDT confusion matrix using kNN. 

 Car Door Train Other2 

Car 35 0 9 6 

Door 0 43 0 7 

Train 5 0 42 3 

Other2 2 5 6 197 

Table 4.10 – CDT confusion matrix using Naïve Bayes. 

 Car Door Train Other2 

Car 36 0 7 7 

Door 0 30 0 20 

Train 8 0 37 5 

Other2 12 10 5 173 

4.5  Activity Classification 

4.5.1 Introduction and Background 

Activity recognition or classification can mean very different things to different people 

depending on the application task. Its analysis, however, is most commonly associated 

with applications that describe video events (e.g. detect moving objects (Medioni et al. 

2001) or content and behaviour analysis (Sahouria and Zakhor, 1999)) or object 

(including human) dynamics (e.g. interactions between people (Hongeng et al, 2004) or 

motion primitive modelling (Yacoob and Black, 1999)).  

Activity understanding is based on an object’s motion analysis, which can be performed 

in a number of ways:  
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• Feature point tracking from video – Before analysing motion data, many studies 

estimate movement content of the scene or specific objects by identifying and 

tracking relevant landmark points, which can be defined at the low level (such 

as corners, localised texture or high optic flow regions (Fablet and Bouthemy, 

2003)) or at the high level (such as eyes, hands or mouth) (Wang and Singh, 

2004); 

• Object tracking – After initial segmentation it is possible to track objects with 

some degree of success (e.g. using Kalman filtering) and use location 

information to estimate the motion path (Hongeng et al, 2004). 

• Block matching – This approach is similar to point tracking and uses block 

matching information (e.g. motion vector data used by predictive stages of 

MEPG coding format) for motion estimation (Sahouria and Zakhor, 1999); 

• Precise measuring – In studies with focus on motion analysis only, it is possible 

to use motion capture techniques to obtain accurate paths (Moeslund and 

Granum, 2001).  

Several methodologies have been proposed for the analysis of the object motion itself 

with varying degrees of success. These include projection of feature vectors into principal 

component space (Sahouria and Zakhor, 1999; Yacoob and Black, 1999), probabilistic 

Bayesian models (Hongeng et al, 2004), Maximum Likelihood estimation based on 

temporal multiscale Gibbs models (Fablet and Bouthemy, 2003), Hidden Markov Models 

(Siskind and Morris, 1996; Bashir et al. 2007) or Dynamic Oriented Graphs (Duque et al. 

2007), among others. It is hard to compare these approaches or comment on their relative 

advantages as they have been applied to different applications with different data sets. 

When qualifying motion for the purpose of activity description, most studies define fairly 

high-level classification taxonomies. For example, Sahouria and Zakhor (1999) and 

Bashir et al. (2007) discriminate between motion qualities that relate to different sports 

video sequences; Weinland et al. (2006) define a number of human motion primitives 

which are very specific (e.g. lift arms, catch, turn); Wang and Singh (2004) discriminate 

between different human behaviours that include reading, waving and thinking, among 
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others; Bashir et al. (2007) also evaluate their activity classification method on a 95 word 

sign language trajectory database; Duque et al. (2007) model normal behaviours in order 

to perform detection of trajectories that lie outside and are, therefore, unusual or 

abnormal. 

In this thesis, we propose to qualify motion using very low-level attributes that are not 

dependent on the object that causes the movement. As described in chapter 3, we arrange 

motion into three categories: ‘linear’, ‘oscillatory’ and ‘static’. ‘Linear’ motion is related 

to large translation movements; ‘oscillatory’ motion is repetitive by nature; ‘static’ state 

denotes lack of movement, i.e. the object’s location does not change, but the object could 

still rotate. Activity classification with these categories has not been explored in the 

research literature, thus making this a novel and interesting problem to solve. In the 

following section we outline our methodology for classifying motion activity. 

4.5.2 Methodology for Activity Classification and Understanding 

The activity classification module is similar to previous classification tasks discussed in 

this chapter. It includes: 

• Creating a feature set – this time including temporal data from a window of 

sequential video frames (chapter 3); 

• Analysing the resulting feature vector for redundancy and, if required, 

performing feature selection; 

• Carrying out classification using the selected feature set and evaluating the 

results. 

The main difference is the number of output classes – three in the activity case (‘linear’, 

‘oscillatory’ and ‘stationary’). 

‘Linear’ motion is mostly shown by video samples with ‘car’, ‘train’ and ‘step’. The 

‘stationary’ cases include ‘door’, ‘talk’ and ‘type’ and are representative of those 

situations where objects exhibit small or no movement and do not change their position. 
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‘Clap’ samples are examples of ‘oscillatory’ motion that repeats itself over time.  Activity 

classification in itself is a challenging task because of changes in camera viewpoint with 

scale (near vs. far) and orientation (e.g. a translation movement is very different whether 

the object is going from left to right or away from the camera). The following section 

details our chosen features for discriminating between different types of motion. 

4.5.2.1 Feature Extraction 

It is not possible to directly use methods of motion estimation from available literature as 

such features have been typically applied for human activity and gait analysis (Wang and 

Singh, 2004; Hongeng et al, 2004). Such features require the explicit knowledge of which 

pixels comprise the object, which is often not easy to do because of difficulties with 

image segmentation. Instead, we determine motion features based on the movement of 

landmark points within the image, which can be automatically performed by techniques 

such as KLT (detailed in the following sections). This generates a 924 sized vector (see 

Table 4.11 – in this case ‘mv’ means motion video feature). 

Table 4.11 – Video features extracted for motion understanding with corresponding 

vector size and identifiers (KLT – Kanade-Lucas-Tomasi based features). 

Feature Method # features identifiers 

KLT 
θ∆∆∆∆ and  , , Myx 44 mv1 – mv44 

KLT >?@A 220 mv45 – mv264 

KLT >?@B 220 mv265 – mv484 

KLT >?@C 220 mv485 – mv704 

KLT >?@D 220 mv705 – mv924 

KLT features 

Kanade-Lucas-Tomasi (KLT) tracker selects points in an image and tracks them in 

subsequent frames (Tomasi and Kanade, 1991). The keypoints (or features) are selected 

by analysis of the eigenvalues of gradient matrix of a window surrounding the point 

location. Tomasi and Kanade (1991) propose that if both eigenvalues are bigger than a set 

threshold, then the region contains a corner or belong to highly textured objects, making 
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it optimal for translational tracking across frames. The tracking process is responsible for 

searching for the features in the subsequent frame by minimising the difference between 

windows across frames. This search is an iterative process using a Newton-Raphson 

method.  

To describe object movement using KLT features, we use a public domain 

implementation of KLT tracker (Birchfield, 2007) and apply it to the motion 

compensated sequences (see chapter 3). This extracts a number of landmark points and 

their corresponding coordinates, and tracks them across frames. If a point is lost, a new 

one is selected starting from the current frame. 

We extract a number of features from the points’ x and y coordinates as follows: 

1. For each landmark point motion between two frames and all frames in the 

sequence, compute point displacement in x and y directions, as well as 

displacement magnitude and angle (
θ∆∆∆∆ and  , , Myx

); 

2. Each of the four displacement types computed at step 1 is aggregated in one 

global vector and the following statistical measures are computed: minimum, 

maximum, mean, standard deviation, range, interquartile range, skewness, 

kurtosis, entropy, energy and mode. This generates features mv1 – mv44; 

3. Aggregate the displacement types computed at step 1 such that, for each frame 

pair, there is a displacement vector (@�E � @FE � @GE
!H5'!@�E, where f is the frame 

pair). Then, compute the same statistics (as step 2) for each frame vector and 

organise these as a sequence. For example, for each measurement, in the case of 

displacements in the horizontal direction and for each frame pair we compute 

�@AI
� J�H$K#�-@�E2. These are organised as a sequence vector �@A

LLLLL); 

4. To measure repetition patterns in the displacements across the sequence, we run 

a Fourier transform on each different sequence vector and retrieve its first 20 

coefficients, e.g. MGN � OOP-�N2. Finally, we concatenate all 11 measurements 
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forming a vector of length 220. There are 4 vectors, one for each type of 

displacement (>?@A � >?@B � >?@C !QRS!>?@D) 

4.5.2.2 Understanding Feature Redundancy and Feature Selection 

The KLT feature vector is of size 924. We perform the same relevance and redundancy 

analysis of this data using separability measures and correlation coefficients as described 

earlier for environment and object classification. 

Figure 4.28 (Sw/Sb measure of the motion feature vector) shows the overlap between 

classes is high, all values are higher than 0.83, which indicates poor separability.  

Figure 4.29 shows the correlation coefficient matrix for redundancy analysis. 

This image shows high correlation between KLT features only changes in motion angle 

display low correlation with the remaining information. This means there is high 

redundancy in this feature vector and feature selection can be highly efficient at reducing 

information amount. 

Figure 4.28 – Intra-class over inter-class ratio for Motion visual feature vector. 
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Figure 4.29 – Correlation coefficients of the Activities feature vector. 

Figure 4.30 – Comparison between different feature selection methods for the Activities 

classifier (left – success rate vs. #features; right – processing time vs. #features). 

Figure 4.30 compares the feature selection methods in the Activities classification case. 
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other methods  results in p-values of 0 while testing SFFS with kNN and PCFS results in 

a p-value of 0.252. These results continue to show PCFS performing at SFFS level, but 

significantly quicker in terms of processing time. 

SFFS feature selection to find the best five features for activity classification obtains the 

following feature set: 

• mv127 – 
x

F∆
; 

• mv525 – 
M

F∆
; 

• mv65 – 
x

F∆
; 

• mv705 – 
θ∆F ; 

• mv548 – 
M

F∆
. 

Features are selected from Fourier transform components of each type of displacement 

information across the sequence. The selected features are quite uncorrelated between 

themselves, which is a good indicator that they measure different things.  

Figure 4.31 shows the principal components scatter plot of the activity recognition 

features. The plot suggests the discrimination problem is quite hard and that, even after 

feature selection, class separability might still be an issue.  

Next, we make use of the selected features and conclude the experimental procedure for 

evaluating the classification models’ performance. 
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Figure 4.31 – Principal Components plot using selected activity features. 

4.5.3 Classification and Evaluation 

The combined results of the video activity classifier show 77% and 66% success rate 

using kNN and Naïve Bayes, respectively (Tables 4.12 and 4.13 with total samples per 

class ‘stationary’ (150), ‘linear’ (150) and ‘oscillatory’ (50)).  

Most mistakes are due to confusion with the ‘stationary’ class. This means that the points 

of interest that have been tracked by the feature selection methods are mostly still, which 

suggests that bigger frame windows (covering a longer period of activity) could improve 

motion characterisation. 

  

Table 4.12 – Activity confusion matrix using kNN. 

 Stationary Linear Oscillatory

Stationary 128 18 4 

Linear 34 111 5 

Oscillatory 14 5 31 

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

8

1st PC

2
n
d
 P

C
stationary

linear

oscillatory



157

Table 4.13 – Activity confusion matrix using Naïve Bayes. 

 Stationary Linear Oscillatory

Stationary 117 13 20 

Linear 54 87 9 

Oscillatory 15 5 30 

4.6  Conclusion 

This chapter described a complete image analysis based video content understanding 

system. Our fundamental principle underlying the system is that video content 

understanding can be achieved by integrating information about image scene 

(environment), objects and activities, and that such information can be obtained through a 

hierarchical process of classification. Each classifier is an expert in deciding on a 

different issue, and is trained with appropriate data.  

We first described a large database of unconstrained videos that we collected for this 

thesis as most available benchmark data is not suitable for our work. We also, presented a 

comparison of feature selection methods including a novel approach that reduces the 

number of features before each selection iteration. On these classification problems, this 

method performed on par with SFFS in a fraction of the time. Subsequently, we showed 

that very good recognition performance for environment, object and activity recognition 

can be obtained on this data based on our selected features (for environment recognition 

up to 94% success rate, object classification close to 90% and for activity recognition 

close to 77% for a 3-class problem).  

The focus was to demonstrate a principled approach to content understanding, and we 

hope that our proposed approach is generic enough incorporate more complex classifiers 

in the future. 
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Chapter 5 -  Audio Analysis based Video Content 

Understanding 

5.1  Introduction 

In this chapter we describe an automated audio analysis system for generating a 

meaningful description of the contents of an audio signal and discuss its design, 

implementation and performance evaluation. Similar to the image analysis system 

described in chapter 4, the audio understanding system is composed of a modular 

architecture that performs content classification (section 5.2). One of the differences 

between video and audio processing is that in the latter analysis, object classification is 

not performed because audio information is not caused by the objects alone, but by their 

actions. Sections 5.3 and 5.4 explain the environment and activity classifiers based on 

audio analysis, including a detailed description of the features extracted from the audio 

signal. We finish this chapter with a discussion of the results obtained and suggestions for 

further improvement. 

5.2  Methodology Overview 

An overview of the modules developed in this chapter is shown in block diagram form as 

in Figure 5.1. 

Figure 5.1 – Block Diagram of the Auditory Content Understanding module. 

The inputs into the system are audio signals extracted from unconstrained video 

sequences and each module is responsible for classification of a number of classes for 

describing environment and activities. We assume that objects cannot be characterised 
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directly from audio signatures, but only through actions they produce, i.e. the same object 

can perform multiple actions each of which can sound different (in summary, the audio 

characteristics are a property of the activity and not of the object itself). We, therefore, 

limit the analysis to the recognition of environment and motion-based activities as 

described before, and address them from an audio analysis perspective. The key steps of 

audio analysis include: 

• Feature extraction: Data cues are extracted from the audio stream. It is 

important to cover a wide range of feature types in order to collect good 

representation of the required classes. Discriminatory features minimise the 

ratio between intra-class density and inter-class distance while being 

uncorrelated between each other. 

• Feature selection: Its purpose is dimensionality reduction and optimisation of 

system’s performance and complexity. We use SFFS algorithm for this purpose 

and compare three variants, including our proposed culled selection method 

PCFS. 

• Classification: This takes the selected feature set as input and models the data 

for recognition of testing samples. We evaluate results obtained using kNN and 

Naïve Bayes classification models. 

5.3  Environment Classification 

5.3.1 Introduction and Background 

Auditory scene recognition is the task of attributing a meaningful explanation to the 

contents of an audio signal. In contrast with most audio classification work, which 

concentrates on speech and music discrimination and recognition (Foote, 1997), this field 

explores the classification of auditory segments into a predefined taxonomy of contextual 

classes (Peltonen et al, 2002). Environment recognition, as such, has been the focus of a 

growing number of studies, which as a rule, address the discrimination of quite extensive 

and low-level range of settings, e.g. Malkin (2006) develops a system to classify between 

airport, bus, gallery, park, plaza, restaurant, street, train, and train platform data types. It 
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is relevant to note that there are few studies that perform higher level discrimination or 

even multistage classification by aggregating specific concepts into broader, more 

abstract ones. An example of such work is presented in Eronen et al. (2003) who compare 

performance between a 16 class classification experiment and a 6 class aggregation of the 

data, which produces better recognition rates. With extensive research already underway 

in audio analysis and speech recognition, approaches into environment scene recognition 

using audio have made use of proven and available concepts and tools for audio feature 

extraction. The majority of studies use MFCCs (see section 5.3.3.2) and LPCs as the 

main audio descriptors for classification (Peltonen et al, 2002; Eronen et al. 2003) These 

features are well-known and extensively evaluated in speech analysis applications. 

  

In general, audio features can be divided into time-based and frequency-based (or 

spectral) groupings. Time-based features include zero-crossing rate (ZCR), volume 

contour, pitch contour and short-time energy. Frequency-based features include 

bandwidth, frequency centroid, LPC and MFCC. The majority of studies extract a 

combination of features and evaluate their performance either by comparing each type of 

features (Li et al. 2001) or make use of the entire feature vector (Malkin, 2006). 

Besides feature extraction, the choice of classifier methodology is important for 

producing reliable results. The most popular classification technique for modelling audio 

signals is Hidden Markov Models (HMM). These have been used extensively in the audio 

analysis literature and in particular for scene understanding with high degree of success 

(Malkin, 2006; Peltonen, 2001; Eronen et al. 2003). Other classification schemes used 

include kNN (Peltonen, 2001), Gausian Mixture Models (GMM) (Malkin, 2006; 

Peltonen, 2001), clustering (Cai et al, 2005) and neural networks (Sawhney, 1997). 

Performance evaluation rates vary greatly across different studies, depending on the data 

used, number of classes, type of features and classification strategy. In general, 

comparative studies have reported that HMM performs better than kNN or GMM. For 

example Peltonen, (2001) achieved 63% success rate on a 17 class problem and Eronen et 

al. (2003) 61% success rate on a 16 class problem. Recent work has achieved close to 

90% success at discriminating between nine environment classes (Malkin, 2006).  



161

5.3.2 Methodology for Environment Classification 

The objective of our environment classification task is to discriminate between indoor 

and outdoor scenes. Evidence in the audio scene understanding literature shows that a 

top-down approach is preferable, i.e. using fewer, broader, high-level classes produce 

higher accuracy (Peltonen et al, 2002; Eronen et al. 2003). Also, such systems can be 

further extended to produce a higher level of detail by introducing hierarchical 

classification architectures such as the one we describe in section 4.4. 

The audio analysis feature vector uses a broad range of popular methodologies, covering 

time and spectral-based feature types, as well as a few custom defined features based on 

the High Energy Region (HER) as defined in chapter 3. As with image analysis based 

environment, object and activity classification, we reduce the audio feature through the 

use of SFFS (Pudil, et al. 1994). Furthermore, we also use the same classifiers as used 

before and compare their performances. These are kNN and Naïve Bayes. Our 

experimental methodology follows exactly the same principles as highlighted in chapter 4 

to ensure that video analysis results can be compared, and later combined with audio 

analysis results. If the methodology and data used deviates then such a comparative and 

combinatory analysis will be impossible. 

The objective of environment classification is to label video sequences as either indoor or 

outdoor scenes. We use the same labelling for the samples in the database as in section 

4.3.2, for a total of 230 ‘indoor’ and 120 ‘outdoor’ examples. Figure 5.2 shows a visual 

example (spectrograms) of how indoor and outdoor samples vary in terms of their audio 

signals. In some cases, the simple amount of energy and noise of the signal might be 

enough to identify some outdoor cases where cars or trains are present. In other cases, 

more subtle cues are required, especially when considering that similar audio events can 

occur both indoors and outdoors (e.g. people talking and people walking).  

  



162

Figure 5.2 – Example spectrograms of ‘indoor’ (top four – samples ca09, st40, ta46 and 

tr02) and ‘outdoor’ (bottom four – samples cl01, do17, st49 and ty23) scenarios. 
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Table 5.1 – Extracted audio features with corresponding vector size and identifiers 

(MFCC – Mel-Frequency Cepstral Coefficients, LPC – Linear Predictive Coding, VDR – 

Volume Dynamic Range, HPS – Harmonic Product Spectrum, FCVC4 – Volume 

Contour around 4Hz, HER – High Energy Region). Note: Unreferenced features are 

proposed by the authors. 

Feature Method # features identifiers 

MFCC (Logan, 2000) 1020 a1 – a1020 

LPC (Makhoul, 1975) 47 a1021 – a1067 

Gabor + LPC (Feichtinger and Strohmer, 1998) 564 a1068 – a1631 

VDR (Liu et al., 1998) 1 a1632 

Silence (Liu et al., 1998) 1 a1633 

HPS frequency (Cuadra et al. 2001) 1 a1634 

Frequency Centroid (Liu et al., 1998) 90 a1635 – a1724 

Bandwidth (Liu et al., 1998) 90 a1725 – a1814 

FCVC4 (Liu et al., 1998) 1 a1815 

Power Spectrum (Davenport and Root, 1987) 100 a1816 – a1915 

HER Duration 1 a1916 

HER Value 1 a1917 

HER Area 1 a1918 

Average Maxima Distance 1 a1919 

Moment 1 a1920 

HER MFCC (Logan, 2000) 262 a1921 – a2182 

HER LPC (Makhoul, 1975) 47 a2183 – a2229 

HER Gabor + LPC (Feichtinger and Strohmer, 1998) 564 a2230 – a2793 

HER VDR (Liu et al., 1998) 1 a2794 

HER Silence (Liu et al., 1998) 1 a2795 

HER HPS frequency (Cuadra et al. 2001) 1 a2796 

HER FQC (Liu et al., 1998) 90 a2797 – a2886 

HER Bandwidth (Liu et al., 1998) 90 a2807 – a2975 

HER FCVC4 (Liu et al., 1998) 1 a2976 

HER Power Spectrum (Davenport and Root, 1987) 100 a2977 – a3076 

5.3.2.1 Feature Extraction 

Signal and audio processing are mature fields with several well-established, reliable 

techniques used for extraction signal based features. A number of past studies have 

successfully used MFCC or LPC as good scene recognition features (Peltonen et al. 

2002). We extend this basic set and compute several other popular audio features to be 
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included in our machine learning system. The final feature vector is of length 3076 and is 

described in Table 5.1 (the identifier ‘a’ stands for audio). 

The features are standardised to zero mean and unit standard deviation in a similar 

manner to the video feature vectors (section 4.3.3.2). The subsequent subsections 

describe in detail the extracted features. 

MFCC 

The Mel-Frequency Cepstral Coefficients (MFCC) compose a non-parametric model of 

the human auditory perception system. These features have been extensively used in the 

audio processing literature as means to characterise phonemes in the speech recognition 

domain. Other applications, such as music modelling and instrument recognition have 

also considered MFCC features (Logan, 2000). 

The Cepstrum of a signal is defined as the Fourier transform of the logarithm of the 

signal’s Fourier transform (Bogert et al. 1963). Linear Cepstral Coefficients (LFCC) are a 

simple method for analysing the distribution of spectral energy and can be computed by: 

  

(5.1)    })}(({{log)( 1 nxFFkc −=

where F is the Fourier transform and F
-1

 the inverse Fourier transform. 

A salient advantage of using these features for modelling the audio signal is that most 

information is stored in the first coefficients and it is possible to discard phase 

information if one is interested in energy distribution only. However, the linear nature of 

the frequency scale in LFCC has the drawback of providing lower detail for lower 

frequency ranges. In practice, the human auditory system follows a logarithmic frequency 

scale which assigns the same importance to different frequency bands. Stevens and 

Volkmann (1940) propose a model based on the ‘mel’ scale for measuring subjective 

pitch in relation to its frequency. The mel-frequency scale can be approximated by: 
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(5.2)    )
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The MFCC are an application of the mel-frequency scale to the cepstral coefficients 

extraction. Here we detail in brief the algorithm for extracting MFCCs from the original 

audio signal: 

• Compute the signal’s spectrogram:  

i. Divide the signal into windowed frames; 

ii. Compute the power spectrum using Discrete Fourier Transform. 

• Convert linear frequency scale into mel-frequency scale using a filter-bank 

composed of triangular filters spaced uniformly on the mel-scale; 

• The MFCCs are the output of the Discrete Cosine Transform (DCT) applied to 

the logarithm of the power output of each filter. 

The success of MFCC is due to several reasons: It emphasises the lower frequencies 

which are perceptually more meaningful in speech (and other audio sources); its ability to 

model the human auditory system means that temporal changes of the coefficients imply 

clear perceptual changes for a human; the final DCT step decorrelates the coefficients 

making them more meaningful individually. 

In our application, we divide the entire audio signal into 340 windows of size 1024 and 

compute the first 3 coefficients of the DCT, for a final vector of size 1020. 

LPC 

Linear Predictive Coding (LPC) is another popular tool in the domain of audio signal 

processing. It is of special value in speech recognition applications and audio 

compression. The idea behind LPC is the assumption that a speech signal is produced by 

a buzzer at the end of a tube which is a simplified model of the human vocal tract 

(Makhoul, 1975). LPC coefficients exploit the auto-correlated characteristics of the input 
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waveform, which are determined from an input waveform by estimating the value of the 

current sample using a linear combination of the previous samples. Computing the LPCs 

involves predicting the current value of the real-valued time series xn based on the past 

samples: 

(5.3)    ...2211 pnpnnn xaxaxax −−− −−−−=

where p is the order of the LPC filter. 

The coefficients are determined by minimising the least squares prediction error. Details 

of the minimisation procedure can be found in (Jackson, 1989). We compute a LPC 

coefficient vector of order 47 based on the popular heuristic of speech analysis that states 

(Plichta, 2002): 

(5.4)    
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where Fs is the sampling frequency of the signal. 

Gabor Filtered LPC 

The Gabor function (Feichtinger and Strohmer, 1998) has wavelet properties as they form 

a basis of the Hilbert space (Chui, 1992) and thus, can be used for signal decomposition. 

Gabor filter banks have been successfully used for audio time-frequency analysis (Wolfe 

et al. 2001). 

The Gabor function is given by: 
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where σ  controls the fall-off of the Gaussian function and λ  the period of the cosine. 

In this study, we filter the signals with a set of Gabor masks obtained from a combination 

of different parameters: 
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 The filtered signals are LPC coded and resulting 47 coefficients used as features. 

VDR, Silence and FCVC4 

Many time-domain features can be used to characterise audio signals (Liu et al., 1998). 

The Volume Contour (VC) feature contains information about the signal’s magnitude 

changes over time. It is calculated by: 

• Divide the signal into frames (overlap is allowed); 

• Take the root mean square of each frame: 
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where )(isn  is the i-th sample of the n-th frame and N the frame length. 

Given VC, we are interested in: 

1. Volume Dynamic Range (VDR), which is a normalised measure of VC’s 

variation on the time-domain. It is defined by Liu et al. (1998) as: 
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2. Silence ratio is computed as the ratio of silent frames (low VC) against loud 

frames (high VC) to measure the amount of silence contained within the signal: 
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3. Frequency Component of the Volume Contour around 4Hz (FCVC4) – Houtgast 

and Steeneken (1973) show that there is a characteristic energy modulation 

around the 4Hz syllabic rate which is higher in speech signals compared with 

music or noisy signals. Liu et al. (1998) propose to measure this attribute using: 

(5.9)    
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where )(ωW  is a triangular function centered at 4Hz and )(ωC  is the Fourier 

transform of the Volume Contour. 

HPS Frequency 

The fundamental frequency (f0) or first harmonic is the lowest frequency produced by a 

vibrating object. This feature is important when analysing music because from the way 

instruments are built, musical notes consist of a fundamental frequency wave together 

with corresponding harmonic waves (pitch). Pitch is also important for analysis of other 

audio sources such as speech. 

The Harmonic Product Spectrum (HPS) (Cuadra et al. 2001) is a methodology employed 

to approximate the fundamental frequency. In the simple case when the input signal is a 

musical note, the spectrum consists of a series of peaks, corresponding to fundamental 

frequency with harmonic components at integer multiples of the fundamental frequency. 

HPS is a measure of the correlation between downsampled spectres of the signal, in 

detail: 

i. Take the Fourier transform of the audio signal: 

(5.10)    ))(()( tsFFTwS =
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ii. Represent harmonic information by downsampling:

(5.11)    )()( wnSwSn =

where  is the n-th harmonic. 

iii. Correlate harmonics by multiplication 
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where N is the maximum number of harmonics considered. 

iv. The fundamental frequency estimate is the frequency corresponding to 

maximum correlation: 
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Frequency Centroid and Bandwidth 

A signal’s Frequency Centroid (FQC) and Bandwidth features are examples of frequency 

domain features. FQC is a measure of the brightness of the signal (Wold et al. 1996), i.e. 

brighter sounds correspond to high FQC.  

Liu et al (1998) define Frequency Centroid as: 
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where )(wAi  is the spectral energy of spectrogram’s frame i. 

Bandwidth (BW) is the difference between two frequencies (usually the upper and lower 

cut-off frequencies of a filter or a signal). It represents the range of significant 

frequencies present in the signal. From the FQC, Bandwidth can be defined as: 

)(wS n
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In practice, the FQC represents the first-order statistics of the spectrogram and the 

Bandwidth the second-order statistics. 

Power Spectrum 

The power spectrum is the energy present in the signal as a function of frequency. The 

power spectrum P(w) is defined as: 

(5.16)    )()()( * ωωω SSP =

where S(�) is the Discrete Fourier Transform of signal s(t) and S*(�) its complex 

conjugate. 

We use the first 100 lowest frequency coefficients because these contain most 

information about the signal’s energy content. 

HER Features 

In section 3.3.2, we define the High Energy Region (HER) from the spectrogram by the 

highest energy audio frame together with the left and right thresholds defined as a 

fraction of that maximum. Using this information, we propose the computation of a 

number of properties associated with the HER. These features intend to capture concepts 

such as how long and how loud a salient sound is and the frequency of repetitiveness 

between recurring audio energy peaks. The HER features are computed as follows: 

• Duration – The time difference between the last frame of the HER and the first 

frame. Longer times are associated with activities that produce constant levels 

of energy; 
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• Peak energy – Total energy of the maximum frame. After selecting the higher 

energy frame, we use the sum of its energy content as a measure of the intensity 

of the event’s audio signal; 

• Area – The energy area within the HER: 

(5.17)    : �
∈

=∈∀
f

f Aenergyspecf
ω

ω

where f is a frame, � is frequency and A� the corresponding Fourier coefficient. 

• Average Distance – We find other energy maxima within the signal, but outside 

the HER (by iterating the HER algorithm to cover the whole audio sequence). 

We then compute the average temporal distance between adjacent maxima; 

• Spectogram Moment – inspired by image processing techniques, we apply a 

standard first order moment algorithm to the spectrogram in the HER. This 

feature is defined as: 

(5.18)    )),,((
,

µω
ω

ω fdA
HERf

×�
∈

where �
	



�
�


=

∈∈ HERfHERf

meanfmean )(,)( ωµ  and (.)d  is the Euclidean distance. 

Finally, we compute all of the features defined in the previous sections using as input a 

cut of the audio signal within this region (MFCC, LPC, Gabor, VDR, Silence, HPS, FQC, 

BW, FCVC4 and Power). We expect this region to be a better representation of the 

activity taking place and thus contain more specific information about the events. 

We follow with a description of the experimental setup. 

5.3.2.2 Understanding Feature Redundancy and Feature Selection 

The number of audio feature is quite large compared to the number of samples available, 

and provided that there is sufficient feature redundancy, we are interested in reducing the 

dimensionality of the feature vector to simplify the classification process avoiding the 

curse of dimensionality. We first evaluate features’ as before (section 4.3.2.2) by 
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computing the intra-class and inter-class ratio (Sw/Sb) for each feature and correlation 

coefficients between features. 

The audio feature vector consists of 3076 descriptors which we intend to reduce. It is 

important to estimate a feature’s success at separating the classes ‘indoor’ and ‘outdoor’ 

as a preliminary assessment of the difficulty of the classification process. Figure 5.3 

shows the Sw/Sb results for the audio feature set for environment recognition. Only 66% 

of the features have Sw/Sb>0.9, which indicates there are many potential candidates for 

good classification performance. Features with low Sw/Sb values include: a third of the 

MFCC features (the first coefficient for each spectrogram window); HER duration and 

area; HER HPS frequency; HER FQC and HER FCVC4. This indicates that low 

frequency content of the signal is an important cue for indoor/outdoor discrimination, as 

well as spectral content in the HER time of the event. On the whole, good separability 

implies good classification results.  

In Figure 5.4, we examine the correlation matrix of the audio feature vector. High 

correlation is concentrated in blocks, showing that features extracted from the same 

methodology measure similar things, and that some of these can be removed without 

affecting classification accuracy. This fact further suggests that, in order to reduce 

redundancy, the selection process should select features from diverse sources.  

Figure 5.3 – Intra-class over inter-class ratio for Indoor/Outdoor audio feature vector. 
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Figure 5.4 – Correlation coefficients of the audio feature vector. 

Figure 5.5 – Comparison between different feature selection methods for the 

Indoor/Outdoor classifier (left – success rate vs. #features; right – processing time vs. 

#features). 
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Figure 5.5 presents the results of the comparison of the feature selection methods 

described in section 4.3. At this instance, all three t-test exercises produce p-values of 0, 

which means that the prediction rates are all statistically different. While, in this case, the 

PCFS performance seems to deviate from the SFFS with kNN approach, going against 

our hypothesis, the prediction rate still remains at reasonable high levels while being  

very efficient time-wise. 

After running the feature selection process (SFFS), the feature set with cardinality 5 that 

produces a near-optimal kNN performance is: 

• a610 – MFCC; 

• a2976 – HER FCVC4; 

• a1340 – Gabor LPC; 

• a2784 – HER Gabor LPC; 

• a666 – MFCC. 

The selected features come from different methods, concentrating on MFCCs and HER 

frequency descriptors. It is relevant to mention that the last three features actually have 

high Sw/Sb values. This, allied with a verification of correlation details for feature with 

low Sw/Sb, indicate that these features contain similar information, e.g. a610 is highly 

correlated with other MFCC features as well as with HER area. This feature set should 

discriminate ‘indoor’ and ‘outdoor’ classes well. This is confirmed by Figure 5.6 (PCA 

plot) where there is a clear separation between indoor/outdoor samples. 
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Figure 5.6 – Principal Components plot using selected environment features. 

5.3.3 Classification and Evaluation 

We use the selected feature set in both kNN and Naïve Bayes classifiers. The 

classification performance results of leave-one-out cross-validation are presented in 

confusion matrices of tables 5.2 and 5.313 with total samples per class ‘indoor’ (230), 

and ‘outdoor’ (120). The audio classifier shows a 94% success rate using kNN and 90% 

using Naïve Bayes. 

Table 5.2 – Indoor/Outdoor confusion matrix using kNN. 
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Table 5.3 – Indoor/Outdoor confusion matrix using Naïve Bayes. 

 Indoor Outdoor 

Indoor 219 11 

Outdoor 23 97 

These results show high level classification performances providing confidence in our 

overall methodology. 

5.4  Activity Classification 

5.4.1 Introduction and Background 

Activity recognition is a problem rarely addressed using audio feature only. A rare 

example where this subject is addressed by Ward et al. (2005), who perform signal 

intensity analysis for recognising specific wood workshop activities such as handheld and 

machine tasks performed by workers. Most work in this area uses several modalities for 

activity recognition often using audio analysis as additional means for performance 

improvement of visual systems (for an extensive literature review of this subject refer 

back to chapter 2) or other sensory information such as accelerometer data (Huynh and 

Schiele, 2005). In the following we address how activities can be distinguished and 

recognised on the basis of audio features. 

5.4.2 Methodology for Activity Classification and Understanding 

The activity classification module follows a similar approach to the other modules 

described so far. We want to recognise three activity classes based on type of motion 

portrayed by the object in the scene: ‘stationary’, ‘linear’ and ‘oscillatory’. Samples are 

first grouped into the three motion classes as detailed in section 4.5.2. ‘Stationary’ 

activities include ‘door’, ‘talk’ and ‘type’ data, ‘Linear’ motion is characteristic of ‘car’, 

‘train’ and ‘step’ and ‘clap’ samples are classed as ‘oscillatory’. Figure 5.7 presents 

spectrogram examples of these classes. It can be observed that energy content can vary 

greatly within each class, e.g. ‘car’ ‘linear’ motion contains high energy and noise while 

‘step’ ’linear’ motion is quieter and discontinuous. Also, ‘door’ samples can often contain 
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walking sounds, which can add to the confusion between some ‘stationary’ and ‘linear’ 

cases. In summary, the audio classification problem is very challenging. 

Figure 5.7 – Example spectrograms of ‘stationary’ (top – samples do17, ta46), ‘linear’ 

(centre – samples ca01, st40) and ‘oscillatory’ (bottom – samples cl01, cl41) motion 

types. 



178

We now detail feature extraction, feature redundancy analysis, feature selection and 

classification steps followed by details of experimental results. 

5.4.2.1 Feature Extraction 

We use the same audio feature vector as in the environment case because we believe the 

features we extract in the HER region should contain enough information to describe 

object’s behaviour. 

5.4.2.2 Understanding Feature Redundancy and Feature Selection 

The Sw/Sb separability measure for the activity problem is shown in Figure 5.8. The 

amount of relevant features is high (20% have Sw/Sb<0.9) and in particular FCVC4 and 

VDR features provide good separability on their own. 

Figure 5.8 – Intra-class over inter-class ratio for Activity audio feature vector. 

Because we use the same feature vector as before, we refer the redundancy analysis to 

section 5.3.2.2 where the correlation matrix and its implications are described. 
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Figure 5.9 – Comparison between different feature selection methods for the Activities 

classifier (left – success rate vs. #features; right – processing time vs. #features). 

Similar results to previous experiments (t-tests: p-value of 0.800 with SFFS with kNN vs. 

PCFS and 0 otherwise) confirm the benefits of using PCFS when SFFS uses the kNN 

success rate as the optimisation measure. 

The application of SFFS for feature selection results in the following five features: 
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next selected feature is the third in terms of degree of separability. This confirms that 
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Figure 5.10 – Principal Components plot using selected activity features. 

In Figure 5.10 we show the PCA plot representing this problem using the reduced feature 

set. There is a good degree of separation between classes ‘linear’ and ‘oscillatory’, and, 

as we mention in section 5.4.2, the ‘stationary’ class introduces some discrimination 

confusion between classes. 

5.4.3 Classification and Evaluation 

The audio activity classifier shows success rates of 87% and 81% using kNN and Naïve 

Bayes, respectively (Tables 5.4 and 5.513 with total samples per class ‘stationary’ (150), 

‘linear’ (150) and ‘oscillatory’ (50)). Even though there is some confusion between 

‘stationary’ and the other classes, the system’s overall performance is very high. 

Classification mistakes are due to confusion with the ‘stationary’ class. In fact, the other 

two classes are never confused except in one case using the Bayes model. 
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Table 5.4 – Activity confusion matrix using kNN. 

 Stationary Linear Oscillatory

Stationary 138 10 2 

Linear 27 123 0 

Oscillatory 6 0 44 

Table 5.5 – Activity confusion matrix using Naïve Bayes. 

 Stationary Linear Oscillatory

Stationary 122 24 4 

Linear 30 119 1 

Oscillatory 6 0 44 

5.5  Conclusion 

This chapter described the methodology and implementation of an audio-based 

environment and activity recognition system for unconstrained video data. Using the 

database described in chapter 3, we extracted audio features based on popular audio 

analysis methodologies as well as specific customised ones. Results of the comparison 

between several methods of SFFS feature selection are similar to the ones obtained in the 

video-only case, suggesting that the PCFS method for improving temporal performance 

can be extended to different problem domains and are not specific to the video database. 

Classification results using automatically selected features showed that high recognition 

performance can be achieved for this data (success rates reach 94% in the environment 

module and 87% for activity recognition). Now that we have the methodology and 

evaluation results in place for audio and video approaches to video understanding, it is 

timely to compare and combine their strengths. This is discussed in the next chapter. 
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Chapter 6 -  Audio and Video Information Fusion based 

Content Understanding 

6.1  Introduction 

In this chapter, we describe a complete audio-coupled content recognition system for 

unconstrained video sequences. We focus on improving the capabilities of the systems 

described in chapters 4 and 5, through the use of information fusion strategies and 

semantic knowledge (details in section 6.2). In sections 6.3 and 6.4, we present in detail 

the procedures used for combining audio and video modalities with the goal of improving 

environment and activity classification performance respectively. Section 6.5 brings 

together classifier module outputs and content description generation. Furthermore, the 

output unification procedure exploits semantic relationships between classifiers for an 

improved result both in terms of overall content recognition and classification 

performance of each module. 

6.2  Methodology Overview 

In chapter 3 we presented an overview of the entire audio-coupled video content 

recognition system. In chapters 4 and 5 we described a modular methodology for the 

feature extraction and classification stages using either video or audio information. These 

classifiers were shown to perform well when using our database. In this chapter, we 

intend to improve on the results obtained so far by combining data from both audio and 

video modalities. As reviewed in section 2.3, there are three main approaches to 

information fusion depending on the level at which data is combined. These are: raw data 

fusion, feature fusion and decision fusion. 

In particular, fusion at the data level is impractical for our application as audio is 

represented by one-dimensional high frequency data whereas video is organised in two-

dimensional frames sampled at a much lower rate. There are issues when synchronising 

both sources, as well as the fact that video only represents the space covered by the 
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camera frustum. As a result, in this thesis, we concentrate on investigating the benefits of 

combining information at the feature and decision levels and proposing a methodology 

that combines these strategies. In section 6.3, we address the problem of environment 

classification from a modality fusion perspective. We describe in detail the 

methodologies employed for feature, decision and hybrid fusion. We evaluate the 

performance obtained with each strategy and compare them. We also highlight the 

benefits of information fusion. In section 6.4, we apply the same techniques to the 

activity recognition problem. 

Semantic Fusion plays a key role in terms of how audio and video information is fused. 

This module uses the classification outputs of the three classifiers as inputs: environment 

– classes Indoor/Outdoor; object – classes Human/Non-Human (HNH), 

Head/Body/Hands (HBH), Car/Door/Train (CDT); and activity – classes 

Stationary/Linear/Oscillatory. Based on semantic knowledge about the known 

relationships between these classes, the system automatically identifies and corrects 

decision mistakes for an overall improvement in reliability of the content recognition 

process. The details of the methodology used and its evaluation are detailed in section 

6.5. This chapter concludes with an analysis of the results obtained with the finalised 

system in place. 

6.3  Environment Classification 

6.3.1 Introduction and Background 

There is much work that addresses video indexing and content understanding in the 

audio-coupled video analysis literature (see chapter 2). However, most applications are 

concerned with segmenting different types of shots from the video, and relatively few 

studies attempt classification of these shots for specific domains, e.g. sports (Miyamori, 

2002) or human behaviour (Nakamura et al. 1998). To our knowledge, there are no other 

detailed studies that address the problem of environment recognition in unconstrained 

videos by combining audio and video information, and in particular the task of 

indoor/outdoor discrimination. In the previous two chapters, we have highlighted our 

approach and results of the environment classification task. Despite the fact that 
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reasonably promising results were obtained with our chosen classifiers, we expect that 

audio-coupled video analysis, especially when integrated with semantic knowledge, is 

likely to generate even better results. In order to test this hypothesis further, we use our 

data with the same labelling as described in section 4.3.2 for the 2-class environment 

discrimination problem (230 ‘indoor’ samples and 120 ‘outdoor’). We investigate two 

types of fusion strategies (Lopes and Singh, 2007):  

• Feature-level fusion takes features extracted from both audio and video 

methodologies and combines them such that a mixed feature set can be used for 

classification; 

• Decision-level fusion takes the output decisions of independent audio and video 

classifiers and integrates these to produce a more robust decision. 

We divide this section into two main sub-sections (see below) that describe each of these 

strategies and evaluate the results produced. In section 6.3.4 we compare the results of 

each technique and comment on their merits and disadvantages. 

6.3.2 Audio-Coupled Video Feature-level Fusion 

6.3.2.1 Methodology for Feature-level Fusion 

Feature-level fusion is the process of combining features extracted from different signal 

modalities for the purpose of classification (section 2.3). Regardless of the classification 

methodology employed to model training data, generally, feature fusion involves 

aggregation of all features in a common feature set which is fed into the classifier. As 

long as extracted features are intended for the same classification task (and that they are 

synchronised), an extended feature set offers better decision making capabilities. The 

main problem however with feature fusion methods lies in dealing with the high 

dimensionality of the combined feature set. This can become a problem if dealing with 

several hundreds or thousands of features. With a very large number of features, the 

classifier training and data fitting process is very tedious and prone to errors. 

Furthermore, it is important that features from each modality are appropriate to the task 
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themselves and largely uncorrelated so that little redundancy is introduced in the 

integration process. The algorithmic procedures used for feature-level fusion are as 

follows: 

i. Feature extraction – in the previous chapters we demonstrate that the feature 

sets we extract contain information that is relevant to the environment 

classification problem and ultimately produce high recognition levels. We use 

the same feature vectors now (‘ev’ and ‘a’ vectors); 

ii. Feature vector aggregation – both audio and video vectors are concatenated as a 

large, single feature vector; 

iii. Feature analysis – as before, we evaluate the new audio and video vector for 

data relevancy (intra-class over inter-class ratio) and redundancy (feature 

correlation) as a step that estimates how adequate the data is for the problem at 

hand; 

iv. Feature Selection – SFFS (Pudil et al. 1994) is used as the preferred feature 

selection method. We compare two variations of this algorithm and the 

proposed culled selection method PCFS.  

v. A set of features (of cardinality 5 – see chapter 4) is used as the input to the 

classification stage. This small set is also chosen to demonstrate the benefit of 

combining both modalities. As the original feature set is quite extensive, if 

features from both audio and video get selected, it provides evidence of the 

advantage of fusion. 

After extracting and combining both video and audio features into a single vector, we 

examine the collective class separability by computing the Sw/Sb measure for each 

feature. Figure 6.1 shows these results. Note that this graph is in practice a concatenation 

of Figures 4.9 and 5.3, but it is still relevant for comparing the video (first 1972 features) 

with the audio features’ class separability. It is clear that the percentage of features that 

are poor at separating between the two classes (75% of features have Sw/Sb>0.9) lies in 

between the video (90%) and the audio (66%) values, which upholds the conclusion that 

the vector contains ample information for the classification task. 
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Figure 6.1 – Intra-class over inter-class ratio for Indoor/Outdoor visual and audio feature 

vector. 

In this methodology for feature fusion, it is important that audio and video feature vectors 

provide complementary information. If they contain similar information, then few 

benefits will result from the combination process. Figure 6.2 presents the correlation 

coefficients of the combined vector. The top left 1972×1972 feature block is the same as 

Figure 4.10 and the bottom right 3076×3076 block is a repetition of Figure 5.4. The most 

important aspect of this figure is that the video (1-1972) vs. audio (1973-5048) 

correlation blocks show low to no correlation between the two feature sources, indicating 

that features from different modalities contain complementary information. It can be 

therefore expected that the feature selection stage should automatically choose features 

from both sets. 

Figure 6.3 evaluates the performance of the feature selection methodologies. Again, 

PCFS performs at the same level as SFFS (t-test p-value = 0.610) in a significant shorter 

amount of time. This is a substantial benefit when aggregating feature vectors of multiple 

modalities, generating vectors with large number of features. Processing times become an 

important factor of the training procedures. 
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The SFFS feature selection process selects the following feature set as the best 

combination of five features for discrimination between indoor and outdoor scenes: 

• a1981 – HER MFCC; 

• ev1353 – Laws Mask; 

• a592 – MFCC; 

• ev682 – Colour Coherence Vector; 

• ev713 – Colour Coherence Vector. 

Figure 6.2 – Correlation coefficients of the Indoor/Outdoor feature vector. 
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Figure 6.3 – Comparison between different feature selection methods for the 

Indoor/Outdoor classifier (left – success rate vs. #features; right – processing time vs. 

#features). 

Figure 6.4 – Principal Components plot using selected environment features. 

The above findings are in agreement with the correlation matrix: features are selected 

from both audio and video vectors. The choice of MFCCs for audio and Laws Mask for 
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plot, which presents ‘indoor’ as a very tightly clustered class and a reasonable degree of 

separability between both classes. 

6.3.2.2 Classification and Evaluation 

In order to ensure that results are easy to compare, we use the same experimental 

procedure for audio-coupled video analysis, as that used with audio and video analysis 

individually. We evaluate results on kNN and Naïve Bayes classifiers and determine 

classification outcomes with leave-one-out cross-validation. 

Tables 6.1 and 6.2 present the confusion matrices obtained with both models, respectively 

with total samples per class ‘indoor’ (230) and ‘outdoor’ (120). We obtain 96% success 

rate using kNN and 92% with Naïve Bayes classifier, which is an improvement of 2% 

over all single modality classifiers (both modalities and both classification methods). 

Table 6.1 – Indoor/Outdoor confusion matrix using kNN. 

 Indoor Outdoor 

Indoor 223 7 

Outdoor 4 116 

Table 6.2 – Indoor/Outdoor confusion matrix using Naïve Bayes. 

 Indoor Outdoor 

Indoor 220 10 

Outdoor 16 104 

6.3.3 Audio-Video Decision-level Fusion 

6.3.3.1 Methodology for Decision-level Fusion 

Decision-level information fusion combines classification outputs of separate classifiers. 

These systems generally include a number of unimodal expert modules working in 

parallel with the same goal, and use specific rules or techniques to generate a new output 



190

based on the output of each expert (section 2.3). In general, the specifics of each expert 

classifier are irrelevant to the fusion technique, as long as decisions are suitable for 

fusion. For our purposes, fortunately it is possible to use the video and audio 

classification systems of previous chapters and combine their decisions in a favourable 

manner. The methodology employed for decision fusion follows these broad steps 

(Figure 6.5): 

Algorithm for Decision Fusion 

i. Decision collection – process each sample with each expert to generate a set of 

classification decisions; 

ii. Decision combination – generate a new decision as a function of individual 

classifier decisions. 

Figure 6.5 – Decision Fusion Block Diagram. 

The decision fusion process can be simplified if each classifier decision can be measured 

as a probability of the sample belonging to each class. Hence, there are two key issues. 

Firstly, how ensuring that classifier outputs are probability values. Secondly, how to 

combine these probabilities into a single likelihood value for class allocation. We address 

these issues for the two classifiers involved: 

• kNN – The kNN classifier’s decisions are based on a voting method. A count of 

which classes constitute the k neighbours of the test sample is tallied and the 

decision is based on the most represented class. As such, the number of votes 

for each class divided by the total number of votes is a measure of how certain 
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drops. Therefore, for each sample and each modality, we generate a class vote 

vector to determine probability values and use it as input for decision 

combination; 

• Naïve Bayes – in this case, the discrimination data is given by the a posteriori 

probability of a sample belonging to each class (section 4.3.3). For each 

classifier and for each modality, we extract a vector of class probability 

likelihoods and normalise them to have unit sum. 

The likelihood vectors are used as inputs to the decision combination stage, which is 

described in the next section. 

6.3.3.2 Classification and Evaluation 

Given classes’ posterior probability vectors derived from each modality, we need to 

combine them to produce a new, more accurate decision about the test sample. A number 

of techniques have been suggested in the literature. As we mention in section 2.3, Kittler 

et al. (1998) showed that the Sum Rule outperforms other rules due to its robustness. This 

study, however, makes a number of assumptions about the data, (such as normal 

distribution) that are not always true in practical conditions. Todorovski, and Dzeroski 

(2003) suggests using decision tree classifiers for decision fusion due to their being 

nonparametric and nonlinear. We implemented both these approaches.  

The sum rule in both kNN and Naïve Bayes cases is defined as: 

(6.1)    )(maxarg av
c

PP +=θ

where θ  is the final class decision, Pv and Pa the video and audio posterior probability 

vectors each of cardinality C and },...,1{ Cc ∈ . 

We use a classic classification and regression tree method (Breiman et al. 1984) for the 

decision tree case. 
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The results obtained for each decision fusion with sum rule setup are detailed in Tables 

6.3 and 6.4 with total samples per class ‘indoor’ (230), and ‘outdoor’ (120). The 

combined success rates are 95% for kNN classifiers setup and 94% with the Naïve Bayes 

case, which means, over the use of video and audio methods alone we have 

improvements of 1% and 4% respectively. 

Table 6.3 – Indoor/Outdoor confusion matrix using kNN with Sum Rule. 

 Indoor Outdoor 

Indoor 228 2 

Outdoor 13 107 

Table 6.4 – Indoor/Outdoor confusion matrix using Naïve Bayes with Sum Rule. 

 Indoor Outdoor 

Indoor 221 9 

Outdoor 12 108 

For the case of decision fusion using decision trees we present confusion matrices in 

tables in Tables 6.5 and 6.6. We obtain 96% success rate with kNN and 93% with Naïve 

Bayes, which means an improvement over kNN + Sum Rule. The Naïve Bayes with 

Decision Tree is slightly worse, indicating that the Bayesian model is not adequate at 

providing the non-linear information required to present advantages at the Decision Tree 

level. 

Table 6.5 – Indoor/Outdoor confusion matrix using kNN with Decision Tree. 

 Indoor Outdoor 

Indoor 224 6 

Outdoor 8 112 
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Table 6.6 – Indoor/Outdoor confusion matrix using Naïve Bayes with Decision Tree. 

 Indoor Outdoor 

Indoor 219 11 

Outdoor 15 105 

These results are similar to those obtained with feature-level fusion (section 6.3.2.1). In 

terms of computational complexity, a comparison between feature and decision level 

fusion requires the following considerations: 

1. Training – in our system, the main processing bottleneck when training is the 

feature selection process (SFFS). In the case of feature-level fusion we select 

one 5-feature set out of a feature vector containing both audio and video 

features. For decision level, we run SFFS twice, but for smaller feature vectors. 

Due to the combinatorial nature of the selection process, feature-level fusion 

takes longer to complete; 

2. Testing – once features are selected, the testing process only requires extracting 

the specific features belonging to the chosen set and processing them through 

the classification model. Decision fusion requires double the amount of features 

and classification steps. 

6.3.4 Audio-Video Hybrid Fusion 

6.3.4.1 Methodology for Hybrid Fusion 

So far we compared a number of techniques that perform modality fusion at the feature 

and decision levels. These techniques produce good classification rates and are evidence 

of the benefits of combining audio and video information. The feature fusion approach 

performs a blind quantitative search of the features that have the potential to be the best. 

This fails to consider certain feature combinations that would be chosen if only they were 

evaluated. We have found that there is often an imbalance in the selection process that, as 

a whole, favours features from one modality instead of a balanced combination. This 

means that some contextual information may be being lost by not considering the need to 
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select features from both modalities. At the decision fusion level, by definition, there is 

balance between both modalities features, but the features were selected to optimise 

single modality problems and, it follows that there can exist redundancy between the 

selected feature sets. It is possible that further combination of the methodologies could 

address these issues and improve the results further. 

In this section, we describe an algorithm for combining feature and decision information 

fusion.  

In Figure 6.5 we present the overall architecture of the decision fusion methodologies. 

Then, we used the features selected in the previous chapters (where each modality was 

considered separately) to study different decision fusion methods. We propose a hybrid 

system that takes a similar architecture, but selects features that optimise it as a whole, 

which follows that SFFS algorithm with a number of changes: 

Algorithm for Hybrid Fusion 

i. Given two feature vectors V = [v1...vn] and A = [a1...am], the goal is to reduce them 

to two subsets FSv = [sv1...svp] and  FSa = [sa1...sap] of cardinality p which 

maximize a given performance measure; 

ii. The performance measure is given by the average success rate of a leave-one-out 

classifier that takes two feature subsets (S1 and S2) as input to kNN classifiers and 

combines both output class posterior probabilities using a Decision Tree classifier. 

For the purpose of this algorithm we call this process PMKD(S1,S2); 

iii. At the start FSv = FSa = Ø. 

iv. While #FSv �p AND #FSa�p 

Add features by selecting two features, one for each subset, one selected 

from V and the other from A: 

1. The first feature can be chosen from V or from A: 

for j = 1 to n: 

];,[ jvvj vFSFS =

);,( avjvj FSFSPMKDPMKD =
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The selected video feature index is );(maxarg vj
j

v PMKD=λ

for j = 1 to m: 

];,[ jaaj aFSFS =

);,( ajvaj FSFSPMKDPMKD =

 The selected audio feature index is );(maxarg aj
j

a PMKD=λ

if( )max()max( ajvj PMKDPMKD > ) 

then ],[
v

vFSFS vv λ=  and ;aa FSFS =

else vv FSFS =  and ];,[
a

aFSFS aaj λ=

2. The second feature is chosen from the other modality: 

if( )max()max( ajvj PMKDPMKD > ) 

for j = 1 to m: 

];,[ jaaj aFSFS =

);,( ajvaj FSFSPMKDPMKD =

);(maxarg aj
j

a PMKD=λ

];,[
a

aFSFS aaj λ=

else 

for j = 1 to n: 

];,[ jvvj vFSFS =

);,( avjvj FSFSPMKDPMKD =

);(maxarg vj
j

v PMKD=λ

],[
v

vFSFS vv λ=

Remove features by evaluating pairs of selected features: 

);,( avT FSFSPMKDPMKD =

for i = 1 to n, j = 1 to m 

;\ ivvi vFSFS = ;\ jaaj aFSFS =

);,( ajviij FSFSPMKDPMKD =
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,�TUV � WQX!-,�TU��2 and k and l the respective video and audio feature 

indexes corresponding to this maximal measure.  

if( TL PMKDPMKD > ) 

 then ;vkv FSFS = ;ala FSFS = LT PMKDPMKD =

We evaluate the performance of the Hybrid fusion algorithm on environment 

classification in the following section. 

6.3.4.2 Classification and Evaluation 

To test the hybrid fusion approach, we use both kNN and Naïve Bayes followed by 

Decision Tree fusion. As we can see from tables 6.7 and 6.8, we improve on every result 

achieved so far. We achieve 99% average success rate with the kNN classifiers and are 

on par with other methods when using Naïve Bayes – 92%. 

Table 6.7 – Indoor/Outdoor confusion matrix of Hybrid fusion using kNN. 

 Indoor Outdoor 

Indoor 229 1 

Outdoor 3 117 

Table 6.8 – Indoor/Outdoor confusion matrix of Hybrid fusion using Naïve Bayes. 

 Indoor Outdoor 

Indoor 216 14 

Outdoor 13 107 

6.4  Activity Classification 

6.4.1 Introductions and Background 

We have discussed in earlier chapters the importance of activity classification using video 

and audio processing alone. As far as we are aware, there are no studies that address the 
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classification or recognition of motion-based activities by combination of audio and video 

modalities. There are studies on context understanding that try to identify various events, 

but these are often highly constrained and based on rules (Bertini, 2004; Miyamori, 2002; 

Kim et al. 2002;  Hua-Yong et al. 2007 and Wang et al. 2007).  

The results obtained for a 3-class activity classification problem using either video or 

audio features were presented in chapters 4 and 5. In the following description we explore 

the combination of these two modalities at both feature and decision levels. Our data is 

composed of 150 ‘stationary’ samples, 150 ‘linear’ motion samples and 50 ‘oscillatory’ 

samples. 

6.4.2 Audio-Video Feature-level Fusion 

6.4.2.1 Methodology for Feature-level Fusion 

We first aggregate both video and audio feature sets (‘mv’ and ‘a’) for activity 

recognition, forming feature vector of size 4000. Figure 6.6 shows the Sw/Sb results when 

using these features for activity discrimination. 80% of features have Sw/Sb>0.9 which is 

comparable with results obtained with both modalities separately. 

Figure 6.6 – Intra-class over inter-class ratio for Activity visual and audio feature vector. 
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Correlation between motion and audio features is also low (Figure 6.7), indicating that 

both sets are relevant for activity classification.

Figure 6.7 – Correlation coefficients of the Activities feature vector. 

Figure 6.8 – Comparison between different feature selection methods for the Activities 

classifier (left – success rate vs. #features; right – processing time vs. #features). 
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In Figure 6.8 we show the comparison of the feature selection methods. Also, the t-test 

evaluation of paired performance similarity is consistent with previous results (p-value of 

0.376 for SFFS with kNN vs. PCFS and 0 otherwise). These results confirm the 

conclusions stated before about the performance of these algorithms. 

Running SFFS for activity recognition automatically generates the following feature set: 

• a2976 – HER FCVC4; 

• a1917 – HER Value; 

• mv567 – KLT ; 

• mv861 – KLT ; 

• mv107 – KLT . 

Figure 6.9 – Principal Components plot using selected activity features. 
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that were selected in the audio case and video motion features present high correlation 

with the ones selected using video data only. The PCA plot shown in Figure 6.9 is 

identical to the one derived from audio features only in Figure 5.8. This means that the 

first two selected features, which are audio features, contribute the most to the 

classification process.  

6.4.2.2 Classification and Evaluation 

The audio-coupled video activity classifier with Sum Rule produces a success rate of 

89% and 83% using kNN and Naïve Bayes, respectively (Tables 6.9 and 6.10 with total 

samples per class ‘stationary’ (150), ‘linear’ (150) and ‘oscillatory’ (50)), which shows 

an improvement of 12% and 7% over the video only case and 2% and 17% over the audio 

only case.  

  

Table 6.9 – Activity confusion matrix using kNN. 

 Stationary Linear Oscillatory

Stationary 137 10 3 

Linear 17 131 2 

Oscillatory 4 1 45 

Table 6.10 – Activity confusion matrix using Naïve Bayes. 

 Stationary Linear Oscillatory

Stationary 129 19 2 

Linear 33 117 0 

Oscillatory 4 0 46 

6.4.3 Audio-Video Decision-level Fusion 

6.4.3.1 Methodology for Decision-level Fusion 

The methodology used to perform decision-level fusion for audio-coupled video 

classification takes the posterior probabilities associated with each classifier’s decisions 

and combines them to generate correct and reliable decisions. 
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6.4.3.2 Classification and Evaluation 

Combination of class posterior probabilities generated by both audio and video classifiers 

are combined using the Sum Rule or Decision Tree as described in section 6.3.3.2. 

Confusion matrices obtained are shown in Tables 6.11 to 6.14 with total samples per 

class ‘stationary’ (150), ‘linear’ (150) and ‘oscillatory’ (50). We obtain classification 

success rates of 88% with kNN and 83% with Naïve Bayes. This is an improvement of 

11% and 17% over video and 1% and 2% over audio. In the Decision Tree case we 

achieve 90% and 81%, respectively. Again, the KNN case is better and the Naïve Bayes 

is worse than before. 

Table 6.11 – Activity confusion matrix using kNN with Sum Rule. 

 Stationary Linear Oscillatory

Stationary 144 5 1 

Linear 25 125 0 

Oscillatory 9 0 41 

Table 6.12 – Activity confusion matrix using Naïve Bayes with Sum Rule. 

 Stationary Linear Oscillatory

Stationary 129 19 2 

Linear 33 117 0 

Oscillatory 4 0 46 

Table 6.13 – Activity confusion matrix using kNN with Decision Tree. 

 Stationary Linear Oscillatory

Stationary 132 11 7 

Linear 12 138 0 

Oscillatory 5 1 44 

  



202

Table 6.14 – Activity confusion matrix using Naïve Bayes with Decision Tree. 

 Stationary Linear Oscillatory

Stationary 121 26 3 

Linear 31 118 1 

Oscillatory 3 2 45 

We find that feature fusion is to some extent better in the kNN classification methodology 

whereas Naïve Bayes performs better in the decision fusion case. 

6.4.4 Audio-Video Hybrid Fusion 

6.4.4.1 Methodology for Hybrid Fusion 

We use the feature vectors ‘mv’ and ‘a’ as inputs of the hybrid fusion system described in 

section 6.3.4.1. Thus we select two feature sets according to that algorithm that are used 

in two separate classifiers and combined with a Decision Tree. The results are in the 

following section. 

6.4.4.2 Classification and Evaluation 

The Hybrid method improves on previous results for activity classification and achieves 

92% success rate with kNN and 88% with Naïve Bayes. These are 5% and 8% better 

performance than the audio only system and a much bigger improvement over the video 

only classifiers. 

Table 6.15 – Indoor/Outdoor confusion matrix of Hybrid fusion using kNN. 

 Stationary Linear Oscillatory

Stationary 139 10 1 

Linear 15 133 2 

Oscillatory 1 0 49 
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Table 6.16 – Indoor/Outdoor confusion matrix of Hybrid fusion using Naïve Bayes. 

 Stationary Linear Oscillatory

Stationary 129 17 4 

Linear 12 136 2 

Oscillatory 3 1 46 

Next, we describe how to improve on combined classification results making use of 

semantic information about class relationships.

6.5  Content Understanding of Unconstrained Videos 

6.5.1 Introduction and Background 

The use of semantic knowledge is important for improving image and audio analysis 

results in a number of applications. For example, in the case in Human-Computer 

Interaction applications where user options are limited to the capabilities of the system, 

making it easier to predict temporal and spatial relationships between events (Nigay and 

Coutaz (1995); Andre et al. 1998; Martin et al. 1998). Rule-based systems can also be 

viewed as practical applications of semantic knowledge and have been extensively used 

for video shot segmentation for automatic scene analysis (Saraceno and Leonardi, 1998) 

(Tsekeridou et al. 2000). Semantic levels of information fusion have been explored in 

video indexing applications as a means to increase retrieval accuracy by modelling the 

probabilistic dependencies between objects within a video sequence database (Naphade et 

al. 2001). In all these applications, the semantic knowledge used and its implementation 

is different and therefore it is difficult to borrow any of these approaches and use it within 

our current study. 

In Figure 3.1, we introduced a hierarchy of classes for describing contextual content of 

unconstrained video sequences. We also emphasised that we can use the information on 

which objects co-occur with each other as a post-processing approach to improve our 

results. In this section, we define a methodology for detecting and correcting 

classification mistakes made by video and audio classifiers based on semantic 

knowledge. 
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6.5.2 Methodology for Content Understanding of Unconstrained Videos 

The final stage of our content understanding system records the outputs of all 

classification modules for an integrated description of what is happening in the scene (see 

Figure 6.10). 

Figure 6.10 – Semantic Fusion Block Diagram. 

Our proposed methodology for classification output combination and improvement with 

semantic knowledge involves three main stages: classification output analysis; error 

detection and error correction. These are described in detail next. 

Classification Output Analysis 
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value of ‘1’ represents that it did. For example, the first bit represents the 

‘indoor’ class – if the sample is classified as such, the bit is set to ‘1’, if it is 

‘outdoor’ the bit is set to ‘0’. Note that the second bit represents the ‘outdoor’ 

class, and this contains the reverse of the first bit. Figure 6.11 details the 

contents of the bit string. The coding of the decisions as a bit string serves a 

number of purposes. Firstly, it constitutes a short and clear representation of the 

video content as outputted by the variety of classifiers present in the system. 

Secondly, when designing this correction algorithm, combinations of classes 

can be abstracted as bit combinations. Finally, when implementing the 

following algorithm steps, entries to the classification patter histogram can be 

quickly accessed by decoding the bit patterns.  

Figure 6.11 – Bit string representation of classification decisions. 

• Classification pattern histogram (PH) – Consider pair wise bit combinations 

}15,...,2,1{,:),( ∈mnbb mn . There are 105 bit pairs for a 15 long bit string and 

each bit pair can have four configurations from the training data – (‘0’,’0’), 
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probabilities (P(bn=’0’,bm=’0’) = P(~classn,~classm); P(bn=’0’,bm=’1’) = 
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occur or when the pattern has a constant property. For example, the pattern (b1, 
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represent the same class but derived from different classifiers (Human/Non-

human and Car/Door/Train respectively); 

• A posteriori probabilities (Pp) – This information is recorded from the final 

stages of each classifier. We aggregate all class probabilities into a 15 value 

long vector (Pp) which contains the relative confidence of each decision. 

Error Detection 

One important post-processing task is to determine whether a classifier has made error or 

not. For this, firstly the contents of the sample are classified. The final results after audio-

visual fusion are evaluated as follows. For each pair of detected objects within an image, 

its probability is evaluated from the PH histogram. If the probability is zero, then one of 

the objects must be wrongly recognised. In detail, error detection process works as 

follows: 

Algorithm for Error Detection 

i. Create a vector containing all the pairwise patterns present in the bit string (for a 

15 value long bit string there are 105 pair combinations). For example, the bit 

string in Figure 6.9 contains the following patterns: (b1, b2) = (‘0’,’1’); (b2, b4) = 

(‘1’,’1’); (b8, b10) = (‘1’,’0’); (b13, b15) = (‘0’,’0’); (b1, b15) = (‘0’,’0’); etc… 

ii. For each pattern pair, identify if it is consistent with database information 

(P(bn,bm)>0), i.e. when P(bn,bm)=0, this means that this pattern is impossible to 

occur in the data and therefore there is a mistake in one of the classifier 

decisions; otherwise the pattern is valid and corresponding decisions are 

assumed to be correct. The bit string of Figure 6.9 contains one mistake - (b8, 

b12) = (‘1’,’1’) is impossible as both decisions are mutually exclusive (‘other1’ 

corresponds to ‘non-human’ and ‘other2’ to ‘human’ for the HBH and CDT 

object classifiers); 
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iii. Each wrong pattern corresponds to two possibly wrong bits. For all of the wrong 

patterns we identify the bits in question and record how many times each bit’s 

validity is questioned. For example, in the bit string of Figure 6.9, bits b3, b4 and 

b8 are questioned one time each and bit b12 three times. This information is 

stored in a vector of possible wrong bits (PWB); 

iv. Similarly, we create a vector of possibly wrong decisions (PWD) by associating 

bits to corresponding classifiers and count the number of times a classifier’s 

decision is questioned. In the same example, HNH is questioned twice, HBH 

once and CDT three times. 

v. If the number of questioned bits is greater than zero, we define the classification 

decision to be corrected as: 

(6.2)    )(maxarg PWDD
d

=

where D is the decision to be corrected and d spans all possible decisions in the 

vector. 

For the case of Figure 6.9 we decide that the CDT classification of ‘other2’ is a 

mistake that needs correction. This step is described in the following subsection 

‘Error Correction’. 

vi. If all bit patterns are possible and consistent with data, the process stops. 

Error Correction 

Once all errors have been detected, we next attempt to correct detected misclassifications. 

Taking a wrong decision D as defined in the previous subsection, we modify 

classification decisions depending on the number of class outputs: 
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Algorithm for Error Correction 

i. In 2-class problems – Indoor/Outdoor and HNH – it is sufficient to switch both 

bits (‘0’ to ‘1’ and ‘1’ to ‘0’); 

ii. In n-class problems (n>2), we switch the respective ‘wrong’ bit and then decide 

which of the other bits to switch in turn. To solve that, we take the Pp vector 

and find the class with the second highest probability and choose its 

corresponding bit for switching. In the example of Figure 6.9 we switch b12 to 

‘0’. The normalised probabilities for this test sample in this classifier (CDT) are 

{,YZ � ,Y�[ � ,Y��!� ,Y�\} = {0.0043, 0.0003, 0.0255, 0.9700} thus we choose b11

and switch it to ‘1’. 

Once error correction has been performed, the Error Detection algorithm is tried again 

where we find if there are possible mistakes left to correct in the new bit string. The final 

output of this algorithm is a set of partially changed bit strings that can be compared with 

ground truth bit strings for performance evaluation. 

6.5.3 Evaluation 

We next evaluate whether our previous results can further improve on the basis of 

semantic information. In particular, we apply semantic knowledge to three tasks: 

“Environment” and “Activity” Audio and Video Feature-level Fusion classifiers of 

section 6.3 together with the three “Object” Video-based classifiers described in chapter 

4. As before, our results are generated using leave-one-out cross-validation. We don’t use 

the hybrid fusion classifiers, even though they perform better, because their output is 

based on rules generated in the Decision Tree, and we require a posteriory probabilities 

for the error correction stages. The purpose of these experiments is to provide evidence 

that this method improves on whichever separate classification modules we have at hand 

and also that the aggregate outputs strings are more accurate. 

Tables 6.17 and 6.18 show the resulting confusion matrices using kNN and Naïve Bayes 

respectively using audio and video feature fusion strategy in the environment and activity 

classifier cases. The total samples per class are ‘indoor’ (I) 230, ‘outdoor’ (O) 120, 
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‘human’ (H) 200, ‘non-human’ (NH) 150, ‘hands’ (HA) 100, ‘body’ (B) 50, ‘head’ (He) 

50, ‘other1’ (O1) 150, ‘car’ (C) 50, ‘door’ (D) 50, ‘train’ (T) 50, ‘other2’ (O2) 200, 

‘stationary’ (S) 150, ‘linear’ (L) 150 and ‘oscillatory’ (Os) 50. 

Table 6.17 – Content confusion matrices using kNN. 

Combined classification success rates using kNN are {96%, 95%, 91%, 90%, 93%} (for 

environment, HNH, HBH, CDT and activity classifiers) which show improvements of 

3% for HBH, and CDT classifiers and 4% for Audio-Video Activity classifier. The 

results of both Indoor/Outdoor and HNH classifiers did not benefit from classification 

correction.  

When using Naïve Bayes, we obtain {92%, 88%, 83%, 83%, 87%} respective success 

rates. This improves on the original HNH by 5%, CDT by 4% and Activity by 14%. Both 

Environment and HBH are on par with their earlier performances. 

Finally, we aggregate classification results in the form of bit strings for evaluation of 

global content recognition. The outputs of the five classifiers after information fusion 

reveal that with kNN, 68% of content strings are correctly recognised, i.e. all 

 I O H NH He B Ha O1 C D T O2 S L Os

I 219 11 - - - - - - - - - - - - - 

O 2 118 - - - - - - - - - - - - - 

H - - 191 9 - - - - - - - - - - - 

NH - - 8 142 - - - - - - - - - - - 

He - - - - 97 0 2 1 - - - - - - - 

B - - - - 4 39 1 6 - - - - - - - 

Ha - - - - 7 0 41 2 - - - - - - - 

O1 - - - - 1 6 1 142 - - - - - - - 

C - - - - - - - - 39 0 10 1 - - - 

D - - - - - - - - 1 43 1 5 - - - 

T - - - - - - - - 5 0 43 2 - - - 

O2 - - - - - - - - 0 7 2 191 - - - 

S - - - - - - - - - - - - 143 5 2 

L - - - - - - - - - - - - 9 141 0 

Os - - - - - - - - - - - - 7 0 43



210

environment, object and activity results are correctly recognised. This number increases 

to 82% after we perform “semantic correction” of classification patterns. Similarly, using 

Naïve Bayes, this value improves from 42% to 72% correct content descriptions. These 

results show that the global system’s performance is very precise and reliable. 

Table 6.18 – Content confusion matrices using Naïve Bayes. 

We next show examples of the final output by presenting selected key-frames from the 

video associated with the corresponding bit string and the content assigned by our system 

using kNN classification. Figure 6.12 shows a number of examples where the generated 

content description is correct and Figure 6.13 show examples with partial inaccuracies. In 

our opinion, the reasons for errors include: 

• In ca04 there is confusion between ‘car’ and ‘train’. All other items are 

coherent; 

• In cl25 the cluttered background is confused with natural scenes present 

outdoors; 

• Activity in do43 is misclassified as ‘linear’ because of high energy squeaking 

noise from the door opening. Unfortunately, the error correction algorithm 

 I O H NH He B Ha O1 C D T O2 S L Os

I 219 11 - - - - - - - - - - - - - 

O 14 106 - - - - - - - - - - - - - 

H - - 176 24 - - - - - - - - - - - 

NH - - 15 135 - - - - - - - - - - - 

He - - - - 86 3 4 7 - - - - - - - 

B - - - - 2 29 3 16 - - - - - - - 

Ha - - - - 7 1 41 1 - - - - - - - 

O1 - - - - 4 10 1 135 - - - - - - - 

C - - - - - - - - 37 1 9 3 - - - 

D - - - - - - - - 0 43 1 6 - - - 

T - - - - - - - - 7 0 37 6 - - - 

O2 - - - - - - - - 1 22 1 176 - - - 

S - - - - - - - - - - - - 140 8 2 

L - - - - - - - - - - - - 23 127 0 

Os - - - - - - - - - - - - 11 1 38
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cannot spot the mistake to correct and therefore propagates this error to other 

decisions. Similar error propagation situations arise with st50 and tr36; 

• In ty26 there are two classification errors as ‘non-human’ and ‘other1’ which 

lead to the system switching the object label ‘other2’ into ‘door’, which is 

wrong. 

Parallels could be drawn between his algorithm and others. For example, bagging and 

ensemble methods (Breinman, 1996) aggregate results from various classifiers to achieve 

stronger and more robust prediction rates. The key difference to our classification output 

combination is that, in our case, each classifier is addressing a different classification 

problem and therefore, are not being combined to improve a common prediction. Another 

example is the work by Naphade et al. (1998, 2002) where the outcome of their multiject 

representation is fed into a joint probabilities network (multinet) to produce more reliable 

detection rates. A fundamental difference to our algorithm is the multinet model affects 

the classifier confidence prior to making decisions whereas we use the classes’ joint 

relationship to correct incompatible decisions after they have been made by each 

classifier. Also, the work by Naphade et al. (1998, 2002) is based on binary detection of 

concepts for video retrieval which makes adaptation to our multi-classifier proposed 

framework non trivial. It would be interesting to develop a modification of the multinet 

approach for comparison, but that lies outside the scope of this work. Rabinovich et al. 

(2007) use a conditional random field framework to model co-occurrence of different 

objects present in an image. The problem with that approach is that the concepts used 

(object labels) are loosely associated with each other (e.g. the presence of a person in an 

image says little about whether other particular object is likely to be present) whereas in 

our model the relationships between concepts (environment, object and activity) are more 

meaningful. It would still be interesting to adapt such methodology within our framework 

to compare performance results. The important conclusion from the semantic correction 

exercise is to produce evidence that taking advantage of semantic relationship between 

relevant concepts can improve the final descriptive understanding of a video sequence, 

which we did.   
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Figure 6.12 – Examples of correct content description. 
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Figure 6.13 – Examples of incorrect content description. 

6.6  Conclusion 

This chapter described a complete audio-coupled video analysis system for content 

understanding of unconstrained video data. The final stages of our system improve upon 

the methodologies described so far through the introduction of information fusion 

techniques. We show that it is possible to obtain classification performance 

improvements using both audio and video data by feature-level fusion and decision-level 
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fusion. Environment and activity classification results show 96% and 89% success rates 

respectively. Also, a proposed hybrid approach can further improve these to 99% and 

92%. These results represent a substantial improvement over using each modality by 

itself. Then, we aggregate the classification results of all Environment, Object and 

Activity modules to produce a description of the scene. We use semantic information 

about the relationships between these concepts to improve the confidence of the 

description. Results show great improvement of classification description – 14% and 30% 

better with kNN and Naïve Bayes to a total of 82% and 72% – in terms of correctness of 

the combined classification results. 
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Chapter 7 -  Conclusions 

7.1  Summary 

The main purpose of this thesis was to develop and evaluate a methodology for content 

understanding in unconstrained video sequences using audio and video information. A 

number of techniques were developed with the purpose of classifying environment, 

objects and activities present in video data, and it was demonstrated that information 

fusion using semantic information offers significant benefits. In this chapter, we review 

the contributions of this work to the field of audio-coupled video analysis while 

summarising the subject matters covered in the thesis. We finish with possible directions 

of further work to improve and extend our research.

7.2  Key Results 

On the basis of our extensive evaluation of proposed video content understanding 

approach, we summarise below some of the key findings of our research: 

• Environment Classification: Using image information alone, the success rate 

obtained for Indoor/Outdoor discrimination was 94% with kNN and 90% with 

Naïve Bayes. A higher percentage of outdoor samples were classified as indoor, 

than the opposite. Using audio features alone for the Indoor/Outdoor case 

produced 94% and 90% success, which is similar to video-only performance, 

with the exception that misclassifications have a higher bias towards ‘indoor’. 

Environment classification using audio and video fusion of features produces an 

improvement over the separate use of individual modalities and we obtained 

recognition rates of 96% and 92%; The same is valid for decision fusion 

strategy with which we obtain 95% and 64% or hybrid fusion with 99% and 

92%; 

• Object classification: Using image information alone, for object classification 

we developed three classifiers with the following recognition rates: HNH – 95% 

and 83%; HBH – 88% and 83%; CDT – 87% and 79%. Class ‘body’ was 
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sometimes confused with ‘other1’ (non-human) and ‘door’ was sometimes 

interpreted as ‘other2’ (human); 

• Activity classification: Using image information alone, our experiments showed 

77% and 66% success rates with kNN and Naïve Bayes methods. The majority 

of misclassifications confused ‘linear’ with ‘stationary’ perhaps caused by low 

amounts of movement in the samples in question. Activity recognition using 

audio features significantly outperforms the video classifier (87% and 81% 

recognition rates with kNN and Naïve Bayes). The results still showed a high 

degree of confusion between ‘linear’ and ‘stationary’ classes. When evaluating 

the performance of the activity classifier using audio and video fusion, we 

obtain 89% and 73% with feature fusion, 88% and 83% with decision fusion 

and 92% and 88% with hybrid fusion with kNN and Naïve Bayes classifiers 

respectively;  

• Overall, the best results were obtained with kNN in all cases attaining 99% for 

environment, 95% for HNH, 88% for HBH, 87% for CDT and 92% for activity; 

• In addition, a measure of the percentage of samples whose classes were all 

correctly identified  shows that 68% of the samples are entirely correctly 

described with kNN and 42% with Naïve Bayes; 

• Integrating semantic knowledge for classification correction methodology 

improves classification accuracies to 96%, 95%, 91%, 90% and 93% respective 

to each classifier using kNN and 92%, 88%, 83%, 83%, 87% using Bayes. This 

shows that high performance classifiers have little margin for improvement, but 

lower performance cases (such as activity using Bayes) have the potential for 

great accuracy improvements; 

• Finally, the correction procedure increases the amount of correctly classified 

samples to 82 % and 72% depending on classification model, which means 

there is high confidence that descriptions are correct. 

Table 7.1 summarises these results (NB means Naïve Bayes). 
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Table 7.1 – Classification success rates of different stages of the system. 

 Audio Video 

A+V 

Feature 

Fusion 

A+V 

Decision 

Fusion 

A+V 

Hybrid 

Fusion 

A+V with 

Semantics 

kNN NB kNN NB kNN NB kNN NB kNN NB kNN NB 

Environment 94% 90% 94% 90% 95% 94% 96% 92% 99% 92% 96% 92% 

Object          

(HNH) 
- - 95% 83% - - - - - - 95% 88% 

 (HBH) - - 88% 83% - - - - - - 91% 83% 

 (CDT) - - 87% 79% - - - - - - 90% 83% 

Activity 87% 81% 77% 66% 88% 83% 89% 73% 92% 88% 93% 87% 

Altogether - - - - 68% 42% - - - - 82% 72% 

7.3  Limitations of the Model 

In this thesis, the proposed video content recognition system serves as the basis for 

evaluating a number of classification methodologies, in particular, ones that combine 

audio and video information. As such, there are a number of stages in the system that 

were not investigated to a level required for developing a commercial system. These 

include mostly pre-processing stages like object segmentation in images (which could 

consume a doctoral thesis in itself) or unconstrained shot detection in videos. We had to 

overcome these shortcomings by using semi-automated processes for object segmentation 

and naïve rule-based approaches for shot segmentation. Other processes that can add 

value to our developed system, but are not included here are video object tracking, object 

behaviour modelling and improved audio signal processing using blind source separation. 

7.4  Contributions and Novelty 

This thesis describes the proposal of a modular methodology for automated generation of 

content descriptions for unconstrained video data. Our developed system has been kept 

generic and modular such that the needs of each module in the future can be met by user 

desired algorithms. In chapter 1, section 1.5, we proposed that this thesis would provide a 

number of contributions. We again address these claims here to confirm that the thesis 

and this research study has delivered on its aims and objectives: 
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• In this thesis, a number of novel methodologies were presented at each stage of 

our system in the form of novel algorithms or known tools that can be integrated 

to solve well-specified tasks (e.g. most of the feature extracted techniques are 

publicly available, but the process of evaluating and using them for 

classification requires much effort). In detail: 

– For the pre-processing stages, we proposed a methodology using 3-

dimensional Fourier filtering for detection of motion regions and used it in 

the process of video window selection and as the starting point for object 

segmentation.  

– For the feature selection stages, we proposed indoor/outdoor discriminating 

features using probabilistic models of objects such as sky, road or buildings 

to determine the presence of these in a scene as an area ratio.  

– When using audio, we proposed a number of features based on the High 

Energy Region as defined in Section 3.3.2 to measure duration, energy, area, 

moment and distance to other energy peaks.  

– For the feature selection stage, we proposed a novel adaptation of the SFFS 

algorithm that iteratively reduces the number of features to consider.  

– For the classification stage, we developed a new, hybrid approach for 

modality fusion by combining both feature and decision level fusion. And 

finally, we detailed a novel approach to using semantic knowledge and 

demonstrated that it plays a crucial role in improving video content 

understanding results; 

• We collected a large, unconstrained database of video sequences containing 

situations where both audio and video cues can be of importance. There were no 

existing video benchmark data that would meet our requirements. Our data set 

provided the basis for extensive evaluation in this thesis, and it is our proposal 

to make this widely available to research community at a later stage; 

• The thesis proposes a modular scheme for classification of environment, objects 

and activities present in video sequences. Our approach to decomposing 

complex problems into a hierarchical set of simpler problems is a novel 

extension to how such problems have been handled in literature. Some of the 
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problems, e.g. distinguishing between linear and oscillatory movement, have not 

been addressed in literature. Our research indicates that provided high quality 

features and training is used for different classification tasks, high level of 

classification performance can be achieved even using either audio or video data 

alone; 

• The thesis successfully evaluated the performance of classifiers using audio and 

video information alone, and compared their relative advantages. Further 

information fusion results (see section 7.2) indicate that it is preferable to 

combine audio and video information when possible; 

• The thesis investigates pros and cons of different audio-video fusion strategies 

in terms of performance and computational complexity. Feature-level fusion and 

decision-level fusion performances are comparable; 

7.5  Directions for Further Work 

There are a number of avenues for taking this work further, spanning all the framework 

stages: 

• Video Capturing and Archiving – In the thesis, we focus the analysis on data 

containing activities that produce both video and audio cues with the objecting 

of comparing classification performance using different modalities and fusion 

methods. Within a real application, this constraint should not be present and the 

following generalisations to the data could be made: 

– Data sources should be independent of terms of hardware and video format. 

This means processing data collected using different cameras and sourced 

from multiple video databases.  

– The data should span other scenarios including activities that produce cues 

based on only one modality and even scenarios with no activities taking 

place. 

– The data could include edited content such as news or film videos which 

contain voiceovers and background music, which are normally not found on 

raw video.  
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• Pre-Processing – During this stage a number of automated activities should be 

included and present ones extended to increase the validity of the whole 

framework both using the data described in this thesis and to accommodate the 

data generalisations described in the previous point: 

– Prior to the video window selection and the audio region selection modules, 

a shot boundary selection stage should be available to extend the framework 

to address longer sequences and drive the scene understanding process as 

content changes during the video sequence. 

– The video window selection and the audio region selection should be 

evaluated in terms of accuracy of selecting the right moments for further 

processing. 

– The Object Segmentation stage should be made to be fully automated and be 

able to extract multiple objects present in the scene and further describe the 

activity of each one. 

• Feature Extraction – Extend feature sets adding both audio and video features 

further improving the recognition process. In particular, a few examples are: 

– Activity understanding using video could benefit from more complex 

trajectory models and respective descriptive features. 

– Audio analysis could benefit from features extracted from temporal models 

such as HMM. 

• Classification – In this thesis, we focus on the evaluation of the effect of 

combining audio and video modalities and improving the description obtained 

using semantic information. Therefore, the classification models used were 

simple such that the results obtained would not depend on classifier parameter 

optimisation. This means that there is scope for improvements: 

– Evaluation of other classification models such as Neural Networks or 

Support Vector Machines. 

– Research into other multimodal fusion techniques at all levels. Of particular 

interest would be the development of data level fusion techniques and the 

evaluation of its possible benefits and disadvantages. 
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– The development of other, more complex, semantic error correction 

techniques that use patterns composed of more than two bits or prevent error 

propagation to different decisions. The model could also take into 

consideration continuous (in the sense of conditional or joint) class 

probabilities instead of just considering 0 or 1 class joint probabilities. 

• Overall – With the objective of producing a working application and extending 

the capabilities of the current framework the following developments could be 

made: 

– Describing video content at a much finer level of detail, e.g. instead of 

describing environment as only indoor or outdoor, include detailed concepts 

such as office, home, bar, park, beach, etc. Similarly motion can be 

described as slow/high linear motion, objects can be close/far, the 

environment can be characterised by time of day, e.g. day/night, and so on. 

– Integrating the framework into practical applications such as database 

indexing, virtual agent interaction, autonomous robots or video 

summarisation systems. 

– For certain applications (e.g. virtual agent or autonomous robots), real-time 

processing would be indispensible. While feature selection allows for 

reducing the processing complexity of the system, care should be taken to 

insure all modules working as an integrated system are efficient and fast 

enough. Some of these tasks might need to be performed at the hardware 

level. 

A number of these issues were not possible to address within the period of study here, but 

we hope that the challenging nature of this field will generate significant interest in 

further research. 
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Appendix A 

Table A.1 – Description of ‘car’ samples. 

Content Files environment 
moving 

object 
objects event comments 

Common Car 

outdoor 

street 

day time 

car 

parked cars,

buildings, 

vegetation, 

road 

car going by 

Exceptions

3  truck    

8   birds   

11  van    

12    car parking  

20   people   

21  truck    

22  back of truck   beeping 

23  truck   beeping 

24-27 night time     

29     camera pans 

31     camera pans 

32     
cameraman 

walks 

33   people  camera pans 

38   bicyclist car turning  

39   bicyclist   

40   people   

44    car starting  

45  van    

49     close-up 

50   people   
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Table A.2 – Description of ‘clap’ samples. 

Content Files environment 
moving 

object 
objects event comments 

Common indoor hands person clapping indoor

Exceptions

1   sofa   

2 bedroom  
computer, 

window 
  

3   wardrobe   

4   desk   

5   door   

6   
computer, 

window 
  

7   
computer, 

desk 
  

8   
computer, 

desk, door 
  

9   people  talking noise 

10   
computer, 

desk 
  

12     close-up 

13   people   

15   sofa   

17     squash noise 

18   people   

19-20   sofa   

21   
computer, 

desk 
  

22   desk   

24-25   
computer, 

desk 
  

26   chair   

27   door   

28   

chair, 

computer, 

desk 
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29-31   

chair, 

computer, 

desk 

  

32   desk   

33-34 outdoor  
vegetation, 

cars 
  

36   door   

39   computer   

41-43   desk   

44   desk, tv   

45   
desk, 

computer 
  

46   desk, window   

47   window   

49   window   

  

Table A.3 – Description of ‘door’ samples. 

Content Files environment 
moving 

object 
objects event comments 

Common Door indoor door person 
Opening / 

closing 

Person may 

be walking 

Exceptions

3-6   plant   

15-16   

chair, 

computer, 

desk, lamp 

  

23-24   

chair, 

computer, 

desk, lamp 

  

28-29   bookshelves   

34-35   desk, printer   

36   chairs   

37-38   chair, table   

42-43   shelves   
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Table A.4 – Description of ‘step’ samples. 

Content Files environment 
moving 

object 
objects event comments 

Common Steps 
indoor or 

outdoor 
person person walking  

Exceptions

1-4 indoor  door   

5-6 indoor  door running  

7-8 indoor   
going up 

stairs 

9 indoor   
going down 

stairs 

10-11 indoor  stairs   

12 indoor   
going down 

stairs 

13 indoor   
going up 

stairs 

14 indoor   
going down 

stairs/running 

15 indoor   
going down 

stairs 

16 indoor   
going up 

stairs 

17 indoor   
going down 

stairs/running 

18-19 outdoor  

dog, 

vegetation, 

road 

  

20-21 indoor  
chairs, table, 

appliances 
  

22 indoor   
going up 

stairs/running 

23-24 indoor   
going up 

stairs 

25 indoor   
going down 

stairs 
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26 outdoor  
vegetation, 

road 
  

27 outdoor  
vegetation, 

road 
running  

28-30 indoor  bookshelves   

31-34 indoor  door   

35 outdoor  
vegetation, 

road, building 
  

36 outdoor  road  

cameraman 

follows 

subject 

37 indoor  door   

38 outdoor  road  

cameraman 

follows 

subject 

39-42 outdoor  
vegetation, 

road, building 
 camera pans 

43 outdoor  
vegetation, 

road, building 

cameraman 

follows 

subject 

44 indoor  sofa, chair  

cameraman 

follows 

subject 

45 indoor   
going down 

stairs 
camera pans 

46-47 outdoor  

vegetation, 

road, 

building, cars 

  

48 outdoor  
vegetation, 

road 

cameraman 

follows 

subject 

49-50 indoor  door   
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Table A.5 – Description of ‘talk’ samples. 

Content Files environment 
moving 

object 
objects event comments 

Common Talk indoor head person talking

Exceptions

1-2   

chair, 

computer, 

desk 

  

12   

chair, 

computer, 

desk 

  

19   

chair, 

computer, 

desk 

  

21   

chair, 

computer, 

desk 

  

30   

chair, 

computer, 

desk 

  

31-33 outdoor     

38-39   sofa, chair   

40   computer   

41   bookshelves   

46 outdoor  
plant, 

building 
  

47-48   

chair, 

computer, 

desk 
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Table A.6 – Description of ‘train’ samples. 

Content Files environment 
moving 

object 
objects event comments 

Common Train outdoor train tracks 
train going 

by 

Exceptions

1   building   

2-4   
building, 

vegetation 
  

5   platform   

6   vegetation   

8-9   vegetation   

10-11 night time     

12-13   vegetation   

14   platform   

15-17   vegetation   

18   building   

19-20   vegetation   

21   
road, 

vegetation 
  

22   platform   

23-24   
platform, 

vegetation 
  

26   
person, 

platform 
  

27   vegetation   

28   
platform, 

vegetation 
  

29   vegetation   

30-33   platform   

35-36   platform   

38-42   platform   

43   
building, 

vegetation 
  

44   vegetation   

45   building   

46   platform   
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47-48   vegetation   

49   platform   

50   
building, 

vegetation 
  

Table A.7 – Description of ‘type’ samples. 

Content Files environment 
moving 

object 
objects event comments 

Common Type indoor hands 
Desk, 

computer 
typing  

Exceptions

1-4   person   

10   person   

21-27   person   

29-35   person   

41-50   person   
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