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Editorial

Advances in Intelligent Vehicle Control

Juan A. Cabrera

Department of Mechanical Engineering, University of Malaga, 29071 Malaga, Spain; jcabrera@uma.es

Advanced intelligent vehicle control systems have evolved in the last few decades
thanks to the use of artificial-intelligence-based techniques, the appearance of new sensors,
and the development of technology necessary for their implementation. Therefore, a
substantial improvement in vehicle safety, comfort, and performance has been achieved.
The appearance of new vehicles with new technologies incorporated in them requires new
control strategies that will continue to increase handling, stability, and energy efficiency.

In recent years, intelligent vehicle control has been widely investigated from different
points of view. Many researchers have studied active safety systems, advanced driver
assistance systems, autonomous driver systems, etc., through strategies incorporating as-
pects of artificial intelligence, making them adapt and learn from situations never explored
before. To achieve this, it has been necessary to develop increasingly precise dynamic
vehicle models and incorporate new intelligent sensors and sensor fusion techniques to
learn the vehicle’s state accurately. However, it is important to observe not only the state
of the vehicle where these systems are incorporated but also those of vehicles around it
that can influence the vehicle’s behavior. This requires communication between vehicles
and developing architectures that enable smart transportation. On the other hand, the
incorporation of electric vehicles (EVs) in recent years has enabled a new way of focusing
on vehicle control systems, fundamentally due to the incorporation of new systems that
must be studied differently.

Today, there are still many challenges in this field of research that have to be solved
or improved, and that is why the Special Issue, “Advances in Intelligent Vehicle Control”
in the journal Sensors, has compiled 11 works that have tried to provide an answer to the
initial issues raised in it, such as:

• Development of intelligent control algorithms for active safety systems [1,2].
• Smart sensors: development of advanced strategies using future smart sensor technol-

ogy and intelligent sensor fusion for the measurement and estimation of vehicle states,
tire and road conditions, situation awareness assessment, environment mapping, fault
diagnosis, and driving conditions [3–6].

• Intelligent and efficient driving: advanced vehicle control systems for assisted and
autonomous driving and vehicle navigation by incorporating new sensors and mea-
surement systems to develop new strategies to avoid critical driving situations and
save energy [7–11].

The article titled “Investigation on the Model-Based Control Performance in Vehicle
Safety Critical Scenarios with Varying Tyre Limits” [1] was intended to investigate the pos-
sibility of physical model-based control to consider the variations in terms of the dynamic
behavior of the systems and of boundary conditions. Different scenarios with specific tire
thermal and wear conditions were tested on diverse road surfaces, validating the designed
model predictive control algorithm in a hardware-in-the-loop real-time environment and
demonstrating the augmented reliability of an advanced virtual driver aware of available
information concerning the dynamic limits of the tire.

In the article “Nonlinear Ride Height Control of Active Air Suspension System with
Output Constraints and Time-Varying Disturbances” [2], addressed the problem of non-
linear height tracking control of an automobile active air suspension with output state
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constraints and time-varying disturbances. The proposed control strategy guaranteed that
the ride height stayed within a predefined range and converged close to an arbitrarily
small neighborhood of the desired height, ensuring uniform ultimate boundedness. The
authors designed a nonlinear observer to compensate for time-varying disturbances caused
by external random road excitations and perturbations, achieving robust performance.
Co-simulation showed the efficiency of the proposed control methodology.

The article, titled “Roll Angle Estimation of a Motorcycle through Inertial Measure-
ments” [3], deals with a method to estimate the roll angle in a motorcycle. They developed
a multibody motorcycle model and used an observer based on a Kalman filter to estimate
the roll angle. The multibody model is a seven-element assembly without closed kinematic
loops, where six elements belong to motorcycle parts, and one of them represents the torso
of the driver. This model used 12 Degrees of Freedom (DOF). Six DOF from the chassis
rigid body condition; five revolute joints from the two wheels, swingarm, steer, and torso
roll movement; and one prismatic joint between the fork bars and fork bottles. One of
the most important parts of this model is the tire behavior and properties. The authors
used a toroidal tire defined with an outer radius, which represents the undeformed outer
radius of the tire, and the torus tube radius, which should be selected to represent the tire
curvature near the contact patch in the most accurate way. To test their roll angle estimation
algorithm, they performed maneuvers in six different scenarios. From these maneuvers,
some measurements were obtained, mimicking the properties of actual sensors by adding
some white Gaussian noise. These measurements were used to verify the performance of
the state observer.

In the article “Semantics Aware Dynamic SLAM Based on 3D MODT” [4], the authors
proposed a framework to solve the dynamics of Simultaneous Localization and Mapping
(SLAM) problems. They used a Visual-LIDAR based on Multiple Object Detection and
Tracking (MODT) to handle the dynamic regions of the scene. The framework was tested on
a dataset developed for LIDAR-based autonomous driving and evaluated and contrasted
with state-of-the-art SLAM algorithms. The results suggest that the proposed dynamic
SLAM framework can perform in real time with budgeted computational resources. In
addition, the fused MODT provides rich semantic information that can easily be integrated
into SLAM.

The article, titled “A Redundant Configuration of Four Low-Cost GNSS-RTK Receivers
for Reliable Estimation of Vehicular Position and Posture” [5], proposed a low-cost sensor
system composed of four GNSS-RTK receivers to obtain accurate position and posture
estimations for a vehicle in real time. The four receiver antennas are positioned so that each
combination of three antennas is optimal for obtaining the most accurate 3D coordinates
with respect to a global reference system. The redundancy provided by the fourth receiver
allows further improvement of the estimates and maintains accuracy when one of the
receivers fails. They carried out successful experiments with a ground rover on irregular
terrain. Angular estimates similar to those of a high-performance IMU were achieved in
dynamic tests.

In [6] “Deep Transfer Learning Based Intrusion Detection System for Electric Vehicu-
lar Networks”, the authors proposed a deep-transfer-learning-based Intrusion Detection
System (IDS) model for an In-Vehicle Network (IVN) along with improved performance
compared to several other existing models. The unique contributions included effective
attribute selection, which is best suited to identify malicious CAN messages and accurately
detect normal and abnormal activities, designing a deep-transfer-learning-based model
and evaluating capacity considering real-world data. To this end, an extensive experi-
mental performance evaluation was conducted. The architecture, along with empirical
analyses, showed that the proposed IDS greatly improves detection accuracy over main-
stream machine learning, deep learning, and benchmark deep transfer learning models
and demonstrated better performance for real-time IVN security.

The articles, titled “Service-Centric Heterogeneous Vehicular Network Modeling for
Connected Traffic Environments” [7], deals with connected vehicles using mobile networks.
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In this article, a heterogeneous network model for heterogeneous vehicular communications
is presented. After developing the network model, the following conclusions were reached:

• Network cooperation supports cloud computing on big traffic data to realize intelligent
traffic services.

• A heterogeneous network coordinator and gateway are the key to proper connection
management.

• Service-oriented traffic applications become smarter with increased traffic data mastery
and processing power.

• Practical simulation verified higher message diversion and flow utilization and a lower
rate of message loss and delays for traffic services when implementing heterogeneous
vehicular communications.

• The mathematical modeling of a service-oriented network prioritization and imple-
mentation of content-centric services in a heterogeneous vehicular environment was
also presented to theoretically support the implementation of the heterogeneous ve-
hicular network.

In the paper titled “Overcoming Challenges of Applying Reinforcement Learning
for Intelligent Vehicle Control” [8], the authors apply Reinforcement Learning (RL) in
intelligent vehicle control. They analyze the implications of RL in path-planning tasks.
Concretely, first of all, they discuss the role of Curriculum Learning (CL) in structuring
the learning process of intelligent vehicle control, not showing the learning examples
randomly but organized instead in a meaningful order that gradually illustrates more
concepts and gradually more complex ones. Second, they study a method to transfer RL
policies from simulation to reality to make the agent experience situations in simulation so
that it knows how to react to them in reality. To achieve this, they used 2D discrete grid
environments with four possible states for each cell in the environment. Additionally, in
the second set of experiments, they used the traffic junction environment as the learning
environment. Finally, for the physical platform, they assembled multiple robots controlled
by the Arduino Yún microcontroller. From the result of their experiments, they concluded
the following: as the complexity of the environment influences the learning time and
the performance of the agents when using intelligent vehicle control tasks such as path
planning through reinforcement learning, several problems can arise, such as the existence
of many possible states that the agent could experience, the existence of multiple agents,
difficulty in representing states, or how we should formulate these safety-critical tasks to
be solved by trial-and-error.

In [9] “On–Off Scheduling for Electric Vehicle Charging in Two-Links Charging Sta-
tions Using Binary Optimization Approaches”, the authors dealt with the problem of
scheduling charging periods of electrical vehicles (EVs) to satisfy users’ demands for en-
ergy consumption as well as to optimally utilize available power. They proposed a new
model for on–off scheduling of EV charging, assuming that every three-phase charger is
equipped with two ports that can be served alternately. The scheduler considers individual
charging rates and maximal currents that supply the entire farm separately for each phase.
For this model, the authors analyzed several algorithms, and they concluded that binary
quadratic programming solved with successive linear approximation algorithms satisfied
the most important criteria and constraints in all statistical tests performed. This algorithm
ensured smooth charging profiles but had a relatively long delay and was not the fastest.
For this reason, the authors suggested that the issue of the algorithmic approach is still
open, and further research in this area will be performed in the future.

The authors of the article “Advanced Driver Assistance Systems (ADAS) Based on
Machine Learning Techniques for the Detection and Transcription of Variable Message
Signs on Roads” [10] aimed at avoiding distractions when drivers pay attention to traffic
signs. The authors developed a prototype of a Variable Message Sign (VMS) reading system
using machine learning techniques. The assistant consists of two parts: one that recognizes
a signal on the street and another that extracts its text and transforms it into speech. They
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used a neural network to recognize the VMS in an image and indicate its location with a
confidence percentage.

Finally, in [11] “A Bidirectional Versatile Buck–Boost Converter Driver for Electric
Vehicle Applications”, the authors presented a novel dc-dc bidirectional buck–boost con-
verter between a battery pack and an inverter to regulate the dc bus in an electric vehicle
powertrain. The converter was based on the versatile buck–boost converter, which has
shown excellent performance in different fuel cell systems operating in low-voltage and
hard-switching applications. The theoretical analyses were validated using simulations and
experimental tests performed on a 400-V 1.6-kW prototype. The authors concluded that:

• The current controller regulated the traction of the dc bus during motoring and
regenerative brake conditions.

• The system presented zero steady errors and a fast-transient response in the start-
up for dc bus voltage reference changes and under realistic conditions using an EV
powertrain system emulation.
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Abstract: In recent years the increasing needs of reducing the costs of car development expressed by
the automotive market have determined a rapid development of virtual driver prototyping tools that
aims at reproducing vehicle behaviors. Nevertheless, these advanced tools are still not designed to
exploit the entire vehicle dynamics potential, preferring to assure the minimum requirements in the
worst possible operating conditions instead. Furthermore, their calibration is typically performed
in a pre-defined strict range of operating conditions, established by specific regulations or OEM
routines. For this reason, their performance can considerably decrease in particularly crucial safety-
critical situations, where the environmental conditions (rain, snow, ice), the road singularities (oil
stains, puddles, holes), and the tyre thermal and ageing phenomena can deeply affect the adherence
potential. The objective of the work is to investigate the possibility of the physical model-based
control to take into account the variations in terms of the dynamic behavior of the systems and of
the boundary conditions. Different scenarios with specific tyre thermal and wear conditions have
been tested on diverse road surfaces validating the designed model predictive control algorithm
in a hardware-in-the-loop real-time environment and demonstrating the augmented reliability of
an advanced virtual driver aware of available information concerning the tyre dynamic limits. The
multidisciplinary proposal will provide a paradigm shift in the development of strategies and a solid
breakthrough towards enhanced development of the driving automatization systems, unleashing the
potential of physical modeling to the next level of vehicle control, able to exploit and to take into
account the multi-physical tyre variations.

Keywords: model-based control; vehicle dynamic potential; tyre thermodynamics; tyre wear;
weather influence; vehicle safety; double lane change; safety optimization

1. Introduction

The information concerning the vehicle’s non-linear physical limits depending on the
thermal and wear states of tyres, the pavement characteristics, and the boundary conditions
(wet or icy ground, under-inflated or worn tyre, etc.) represents a fundamental additional
value for the optimal behavior of safety- and performance-oriented control logics [1–3].

Virtual driver prototyping is becoming an increasingly exploited tool, allowing the
car manufacturer to perform the majority of the testing campaign already in the design
phase of the vehicle. Specific prototyping choices can be reproduced and evaluated in any
condition within the virtual environment, also at the limit of performance, minimizing the
time-to-market and connected costs [4,5].

In this field, closed-loop control strategies have been widely studied in past years to
address the problem of path following for autonomous driving cars. Examples can be found

Sensors 2021, 21, 5372. https://doi.org/10.3390/s21165372 https://www.mdpi.com/journal/sensors5
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in [6], where a nested PID steering control has been designed for the lane-keeping task, and
more recently in [7], where a pure pursuit controller has been specifically developed for
path tracking. The most recent VD implementations rely on a vehicle controller based on a
non-linear model predictive control (NMPC) technique, which is a model-based control
strategy able to compute the optimal sequence of control inputs over a prediction horizon,
by minimizing a tailored cost function [8,9]. The control technique is applied in a receding
horizon mode and is capable of handling constraints and the intrinsic non-linearities of the
vehicle model [10].

The main advantages of the NMPC approach are the capability of the controller of
handling all significant features of the process dynamics directly: in this way, the constraints
on variables involved in the task (track limits, actuator constraints) can be easily integrated
into the optimal control problem, hence guaranteeing the maximal exploitation of vehicle
capabilities. Moreover, it is a predictive technique that allows optimizing the vehicle
behavior over a future horizon in time, and therein system states and controls. In this
way, the controller is allowed to retrieve information about future vehicle behavior and
about possible dangerous situations, aiming at anticipating actions and providing suitable
controls for challenging vehicle handling.

The objective of the work consists in the integration of the information concerning
the tyre dynamic limits within the definition of a virtual driver (VD), implemented as a
vehicle controller aiming at testing the vehicle behavior at limit of handling condition,
and demonstrating the advantages in terms of both enhanced active safety and optimized
performance. An interesting VD definition that addresses the problem of real-time obstacle
avoidance on low-friction road surfaces has been proposed in [11], where the code gener-
ation tool ACADO [12] has been used to define and solve the NMPC problem. Another
similar implementation of such a controller for an autonomous ground vehicle has been
proposed in [13], where the controller has been also validated in co-simulation with a
hard real-time dSPACE DS1005 Autobox system. The vehicle model employed in the both
implementations has consisted of a four-wheel vehicle, where tyres have been described
by means of a linear tyre model and Fiala tyre model for longitudinal and lateral dynamics,
respectively [14,15]. The inputs are the steering angle and the front/rear braking ratios,
while the bounds are defined through specifically defined spatial constraints. A different
virtual driver definition, especially designed for high performance vehicles, has been de-
veloped in [16]: here, the vehicle model integrates longitudinal load transfer and Pacejka’s
lateral tyres forces model. The controller implementation has been tested in a real-time
co-simulation with a commercial software VI-CarRealTime (VI-CRT) within a double lane
change (DLC) maneuver, where the abilities of the controller have been demonstrated with
high speed operating conditions and a challenging track geometry. The NMPC strategy has
also been applied in racing environment as the autonomous vehicle controller for handling
1:43 scale, RC electric vehicles [17] and autonomous racecar [18], with the specific purpose
of achieving aggressive maneuvering and lap time minimization.

In this work, the authors aim to investigate the possibility to employ the model-based
strategies to control the non-linear time-dependent system, i.e., the full vehicle model with
temperature and wear sensitive tyres operating in completely different environmental
conditions. To perform the study, the standardized DLC maneuver, currently employed for
the validation of virtual driver and advanced driving assistance systems (ADAS) [16,19,20],
is implemented in Matlab/Simulink virtual environment. The vehicle and tyre models
have been characterized and validated for a reference GT vehicle, identifying the requisite
complex tyre–road coupled phenomena concerning the temperature, wear, and road pave-
ment dependencies [21,22]. Four different roads, i.e., dry, wet, snowy, and icy, two diverse
tyre mileages, i.e., new and worn, and three thermal tyre conditions are combined and
analyzed in the study to understand which could be the advantages of the employment
of the model-based controllers, aware of the tyre instantaneous characteristics, bound-
ary operating and weather conditions, and overall vehicle dynamic potential [23]. The
model-based control logics, able to make use of the additional information concerning
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the dynamic limits of the system, is tested in co-simulation with a 14 degrees-of-freedom
vehicle plant model, where the tyres are described by means of a Pacejka’s magic formula
(MF) model. The vehicle controller is based on a robust and computationally effective
non-linear model-predictive-control (NMPC), implemented in the open-source NMPC
software MATMPC [24], able to take into account the additional instantaneous information
concerning the varying adherence potential and the vehicle non-linearities. The infor-
mation concerning the vehicle non-linear physical limits depending on the thermal and
wear states of tyres, the pavement characteristics and the boundary conditions (wet or icy
ground, under-inflated or worn tyre, etc.) represents a fundamental additional value for
the optimal behavior of safety- and performance-oriented control logics [25–27], as it allows
to maximize the potential to avoid obstacles and to reduce the severity of collisions [28].

The authors aim to lay the foundation of the future advanced driving systems, sen-
sitive to environmental conditions and adaptive to continuously varying characteristics
of the underlying non-linear system. Being currently mainly based on mere empirical
calibration, the physical model-based estimation can represent a crucial factor towards the
improvement of the pedestrians’ and passengers’ active safety, enabling the management
of the activation threshold ranges on the basis of the instantaneous operating and the
environmental boundary conditions [29,30]. This can be already employed in the current
ADAS to communicate to the driver the necessity to co-act in specific situations, but it also
constitutes a fundamental root for the future driving automatization [31,32].

The paper is organized as follows: Section 2 introduces the problem description
concerning complex phenomena linked with the tyre–road interaction and their influence
on the overall vehicle dynamics; Section 3 describes the advanced methodologies developed
to characterize, model, and reproduce the dynamic behavior of the real system in the
virtual environment, and introduces the adopted model-based control, evidencing the
peculiarities of the designed cost function; in Section 4 the outputs of the conducted
simulations employing different road surfaces, in adverse boundary conditions and with
diverse states of the tyres are discussed, addressing particular attention towards the control
strategies. Finally, in Section 5, a discussion on the next developments and the conclusions
are presented.

2. Problem Description

A proper understanding of the tyre dynamic behavior and of its multiple intrinsic
dependencies is a crucial topic for tyre manufacturers, to improve tyre performance and
durability, for users, to set the optimal working conditions, and for researchers, to develop
computationally efficient mathematical models able to represent the experimental behavior
with a high degree of accuracy. Friction phenomenon, arising at the tyre–road interface,
originates from three physical contributions: the adhesive term relative to molecular
Van der Waals links arising between the two counter surfaces in mutual contact, the
hysteretic term linked to the deformation losses within the elastomeric material, and the
wear term [33,34]. All of them are deeply interconnected and dependent on the specific tyre
working conditions, in terms of sliding velocity, temperature, and pressure distributions,
arising at the tyre contact patch as a result of different excitation spatial frequency spectra,
representative of diverse types of road pavement [35]. Furthermore, tyres may deeply
modify their dynamic behavior over time due to ageing effects, influencing the dynamic
potential of the overall vehicle [22].

The enrichment of the vehicle state with the information concerning the tyre in-
stantaneous and potential friction will allow, taking into account the tyre multi-physical
variations (Figures 1 and 2), represents a key point in the development of control logics,
able to adapt to sudden variation in boundary conditions in order to guarantee the vehicles
higher stability in critical scenarios . Indeed, in the Figure 2 it is possible to observe how
the adherence ellipse changes in three tyre thermal ranges.
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(a) (b)

Figure 1. Tyre behavior variations. (a) Compound temperature influence on the characteristic
interaction shape. (b) Wear effect on available grip.

(a) (b) (c)

Figure 2. MF-based standard and evo tyre models compared with the experimental points in three thermal ranges: under-
heating condition (a), optimal temperature (b), over-heating condition (c), (camber angle = −2 deg|vertical load = 3000 N).

The aim of the proposed adaptive control will be to avoid collisions and to minimize
risks in any environmental condition, validating all the scenarios on interest in a highly ac-
curate simulation environment. The information concerning the vehicle non-linear physical
limits depending on the thermal and wear states of tyres, the pavement characteristics and
the boundary conditions (wet or icy ground, under-inflated or worn tyre, etc.) represents a
fundamental additional value for the optimal behavior of safety- and performance-oriented
control logics. The non-linear model predictive control approach is employed to integrate
the tyre varying dynamic parameters within the definition of physical constraints of the ve-
hicle, guaranteeing the stability of the system and allowing to achieve the optimal solution
for the defined vehicle instantaneous dynamic limits.

3. Physical Model, Physical Model-Based Control, and Virtual Scenario

To parametrize the vehicle and the tyres’ model, the authors have collected data with
a chosen GT vehicle in a specific test session on track. Due to a non-disclosure agreement
with the industrial research partner, the vehicle and the track will not be specified.

The track session has consisted of handling tests in the widest possible range of tyre
operating conditions in terms of temperature, pressure, and wear level. Following the vehicle
model parametrization and the tyre parameters’ estimation procedures described in [36,37],
the vehicle non-linear system has been completely characterized in all the conditions of
interest, being able to faithfully reproduce the experimental data in the virtual environment.

3.1. Vehicle Parametrization

The 14 degrees of freedom (DoF) vehicle model, based on the mathematical represen-
tation described in [38], has been modeled in a MATLAB/Simulink environment as follows:

8
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• 6 DoF to reproduce longitudinal, lateral, vertical, pitch, roll, and yaw motion of the
vehicle body;

• 4 DoF concerning the wheel rotation and 4 DoF for the wheel normal displacement,
with the hypothesis that the degrees of freedom to the relative motion between
the wheel and the vehicle body can be neglected along the longitudinal and lateral
directions, allowing only the independent rotational and vertical displacements.

Furthermore, the parameterized vehicle is rear-wheel drive with front steering and internal
combustion engine. The tyre model is described by Pacejka’s magic formula model, whose
parameters have been characterized for different conditions of temperature, pressure, and
wear. Per each road surface under study (dry, wet, snowy, and icy), the tyre-road friction
coefficient has been supposed constant and is applied as an additional scaling factor of
the λμx and λμy parameters [39], linearly combining the tyre characteristics identified on a
reference road with the ones potentially achievable on diverse pavement surfaces.

The vehicle dynamic behavior in the reference tyre conditions has been validated in a
slow-ramp-steer maneuver, whose parameters are summarised in the Table 1 and outputs are
illustrated in the Figure 3, feeding the model with the steering input presented in the Figure 4a):

Table 1. Slow-ramp-steer inputs.

Description Value Unit

start time 13.26 s
end time 20.3 s

initial velocity 27.9 m/s
initial gear 3 -

ramp duration 7.04 s
initial steer 0 deg
slope steer −22.29 deg/s
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Figure 3. Comparison between outdoor acquisitions and simulation output. (a) Steering angle vs.
lateral acceleration diagram. (b) Sideslip angle vs lateral acceleration diagram.

For the validation purpose, lateral acceleration ay, steering angle δ, side slip angle
β have been compared for the same inputs. Figure 3 shows the comparisons between
experimental data and model outputs shown on the classic ay − δ and ay − β diagrams. An
aspect that is worth pointing out is the difference between the black dashed and continuous
lines: the first one is obtained using the starting parameters provided by the research
partner, the second one is obtained employing the calibration procedure described in [37].
In particular, the starting under-steering characteristics (dashed lines) have been revised
better identifying the parameters linked to the anti-roll bars stiffness and the steering maps,
leading to a less under-steering behavior within the handling diagram, in agreement with
the experimental data.
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Figure 4. Example of lateral maneuver’s input reproduction. (a) Experimental and simulation
steering angle comparison. (b) Slow-ramp-steer trajectory in virtual environment.

The enhanced parametrization has led to a higher slope in the linear section (Figure 3a),
but also higher lateral grip and side-slip angle values, related to the rear axle behavior
(Figure 3b). Once the vehicle and the tyres’ subsystems have been properly characterized
in the specific range of temperature, pressure, and wear, the validity range of the MF tyre
model has been extended adopting the MF-Evo one, described in [40]. In particular, the
tyre model calibration process can be summarized in three fundamental steps: the first one
is related to the pre-processing of the experimental data (which allows to discern useful
information contained in the acquired data and to eliminate the non-physical outliers); the
second one concerns the identification of the standard MF micro-coefficients in a specific
range of temperature, pressure, and wear; the third step aims at the calibration of the
additional multi-physical analytical formulations, taking into account of the entire dataset
and, thus, extending the tyre model towards thermal and degradation phenomena.

The calibration results are visible in terms of adherence ellipse in the Figure 1, where
the experimental data have been compared towards the MF and MF-evo outputs within
different temperature working ranges of the tyre. Finally, the parameters of the MF-evo
model have been further modified to extend the applicability of the tyre model on different
road surfaces, modifying the identified friction factors towards the pavement characteristics,
as reported in the Table 2. The resulting interaction characteristics for different tyres, in
diverse thermodynamic conditions and in contact with different road surfaces have been
summarized in Figures 5 and 6.
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Figure 5. New tyre in optimal thermal condition in contact with different road surfaces. (a) Lateral
interaction characteristics. (b) Adherence ellipse.

In steady-state conditions, the global force exerted by the tyres is in a dynamic equi-
librium with the centrifugal force, as a function of the longitudinal velocity of the vehicle
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v and the instantaneous cornering radius R, relating the lateral acceleration ay and the
longitudinal velocity v of the vehicle’s center of mass (CM) by the equation:

ay =
v2

R
; (1)

To demonstrate the potential influence of the road surface characteristics on the
overall vehicle behavior, a set of simulations has been conducted with different tyre
parameters described in Figure 5 in a steady-state lateral slow-ramp-steer (SRS) maneu-
ver. The maximum achievable value of the forward velocity v for a given curvature and
ay − δ characteristics are reported for dry, wet, snowy, and icy pavement conditions in the
Figure 7a,b, respectively.

-15 -10 -5 0 5 10 15

slip angle [deg]

-1

-0.5

0

0.5

1

y [-
]

Tyre
new

 - T
overheated

Tyre
new

 - T
cold

Tyre
new

 - T
optimal

Tyre
worn

 - T
overheated

Tyre
worn

 - T
cold

Tyre
worn

 - T
optimal

(a)

-1 -0.5 0 0.5 1

x
 [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y [-
]

(b)

Figure 6. New and worn tyres in diverse thermal conditions in contact with the dry road. (a) Lateral
interaction characteristics. (b) Adherence ellipse.

(a) (b)

Figure 7. SRS maneuver on different road surfaces. (a) Vehicle understeer characteristics. (b) Maxi-
mum velocity achieved.

Table 2. Summary of the velocity maximum values assumed for each road scenario.

Friction Coefficient μ Lateral Acceleration ay Longitudinal Velocity v
[−] [m/s2] [m/s]

0.35 0.35 5.92
0.55 0.70 8.37
0.80 1.50 12.2
1.00 2.52 15.9

3.2. Internal Vehicle Model

A four-wheel vehicle model based on the description in [16] has been used as the in-
ternal model for the NMPC controller. Specific characterization of load transfers, gear shift
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predictions, longitudinal force saturation, and an ellipsoidal tyre friction constraint have
been also introduced in the model definition to improve the overall prediction capabilities
of the controller. Finally, the model dynamics have been reformulated in spatial coordinates
with respect to the curvilinear abscissa s along the track. In this way, track constraints can
be defined with respect to space and the time can be considered as a minimization variable,
as already highlighted in previous works [16,41,42].

The continuous-time dynamics model is described as

ξ̇ = φ(ξ(t), u(t); p(t)), (2)

where the state is represented by ξ(t) ∈ Rnx , u(t) ∈ Rnu is the input, whereas the time-
varying parameter vector is p(t) ∈ R

np .

ẍ = ẏψ̇ +
1
m

(
∑
i,j

Fxi,j − Fd
x

)
, ÿ = −ẋψ̇ +

1
m

(
∑
i,j

Fyi,j

)
,

ψ̈ =
1
Iz

[
a

(
∑

j
Fy f ,j

)
− b

(
∑

j
Fyr,j

)
+ c

(
∑

i
Fxi,r − ∑

i
Fxi,l

)]
,

(3)

where longitudinal and lateral positions are x, y, while ψ is the yaw angle. m and Iz are
the mass and the inertia around the vertical axis of the vehicle, respectively. a, b, c are the
vehicle dimensional parameters, front wheels to CM longitudinal distance, rear wheels to
CM longitudinal distance, and wheels to CM lateral distance, respectively. F{x,y}{i,j} are

the lateral and longitudinal forces on the wheels and Fd
x is the longitudinal drag force in

the vehicle’s reference frame. Subscripts i ∈ { f , r} refer to front or rear wheels, j ∈ {l, r}
left or right wheels. Figure 8 illustrates the physical quantities involved and the reference
systems chosen. δ f is the steering angle of the front wheels, assumed the same for the both
front tyres, and β f ,j is the side slip angle of the f , j-th tyre. The projection of cornering and
longitudinal forces in the vehicle frame, the position and the dynamics of the vehicle’s CM
in the inertial frame X, Y, and the vehicle side slip angle β are described in [16], whereas
the longitudinal drag force and the down-force are modeled as [43] pp. 97–98.

Figure 8. Internal vehicle model for control.

Differently from [16], the longitudinal tire forces in each wheel reference frame are
computed as

Fli,j = fengi,j
− fbrki,j

, (4)
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where the engine and braking forces are

fengi,j
= sat

(
τengi

rw
, μFzi,j

)
, fbrki,j

= sat
(

τbrki

rw
, μFzi,j

)
, (5)

where μ is the tyre friction coefficient, rw is the wheel radius and the saturation function is
defined in (8). Then, the engine and braking torques at the wheels are:

τengi
= γt (τ

max
eng,i − τmin

eng,i) + τmin
eng,i, τbrki

= γb τmax
brk,i, (6)

where γt,b are the normalized throttle and braking efforts, τmax
brk,i is the maximum torque

given by the braking system to front/rear wheels, τmax
eng,i and τmin

eng,i are the maximum and
minimum torque values expressed by the engine at front/rear wheels at a given gear and
are changed as a time-varying parameter to the actual model gearshift. To compute the
torques in the prediction horizon, an iterative strategy predicting the engine rpm, and,
hence, gearshift, based on the predicted velocity is used [16]. Specifically, the engine rpm
quantity is computed as

rpmpred =
vpred

x
rw

diffratio

gearratio

60
2π

, (7)

where diffratio and gearratio are the input/output torque ratios at the differential and at
the gearbox (in a specific gear), respectively. The dependence of τmax,min

eng,i w.r.t. the engine
rotational velocity has been neglected. Finally, the saturation function is defined as:

sat( fa, fb) =
fb

1 + exp(−5( fa
fb
− 1

2 ))
. (8)

The normal forces Fzi,j are modeled considering the load transfer in steady-state
condition as described in [44]. The algebraic loop in the model has been avoided by
considering Fsat0

x (total longitudinal force expressed in the vehicle frame saturated at
nominal Fz) and Fstatic

y (the sum of the lateral forces computed at nominal Fz on each wheel)
as the forces used for the load transfer dynamics.

Finally, the lateral forces model is based on the simplified MF model described in [39]
pp. 187–188, expressed by means of the macro-parameters B, C, D, E.

3.3. NMPC Algorithm

The goal of the NMPC controller for the virtual driver is to compute a reliable sequence
of steering, throttle, brake commands in a prediction horizon, given a tailored cost function.
The NMPC algorithm is based on MATMPC [10,45], an open source software built in MATLAB

for real-time NMPC solution.
In MATMPC, a non-linear programming problem (NLP) is formulated at sampling instant

i by applying direct multiple shooting [46] to an optimal control problem (OCP) over the
prediction horizon S = [s0, s f ], which is divided into N shooting intervals [s0, s1, . . . , sN ],
as follows

min
ξ·|i ,u·|i

N−1

∑
k=0

1
2
‖hk(ξk|i, uk|i)‖2

W +
1
2
‖hN(ξN|i)‖2

WN
(9)

s.t. 0 = ξ0|i − ξ̂0, (10)

0 = ξk+1|i − φk(ξk|i, uk|i; pk|i), k ∈ [0, N − 1], (11)

rk|i ≤ rk(ξk|i, uk|i) ≤ rk|i, k ∈ [0, N − 1], (12)

rN|i ≤ rN(ξN|i) ≤ rN|i (13)

where ξ·|i = (ξ�0|i, ξ�1|i, . . . , ξ�N|i)
�, and u·|i = (u�

0|i, u�
1|i, . . . , u�

N−1|i)
�, while ξ̂0 represents

the measurement of the current state. System states ξk|i ∈ R
nξ are defined at the discrete
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arc-length point sk for k = 0, . . . , N and the control inputs uk|i ∈ Rnu for k = 0, . . . , N − 1
are piece-wise constant. Their definitions are given in (14) and (15). Here, (12) is defined
by r(ξk|i, uk|i) : Rnξ ×Rnu → Rnr and r(ξN|i) : Rnξ → Rnl with lower and upper bound
rk|i, rk|i. Equation (11) refers to the continuity constraint where φk(ξk|i, uk|i; pk|i) is a numerical
integration operator that solves (16) with initial condition ξ(0) = ξ0|i and returns the
solution at sk+1. The time has been included as a state variable with the following ODE
ṫ = 1

ṡ to fulfil the minimization of the travel time over the prediction horizon. The full state
vector is then given by:

ξ = [ẋ, ẏ, ψ̇, eψ, ey, δ f , γt, γb, t]T , (14)

where eψ, ey are orientation and lateral error of the vehicle with respect to the center-line of
the path, respectively. The input computed by the algorithm is then:

u = [δ̇ f , γ̇t, γ̇b, εslip, εerr, εgg]
T , (15)

where δ̇ f , γ̇t, γ̇b are the derivatives of the actual input to the vehicle and ε are slack vari-
ables. This formulation allows a smooth action of the controller and avoids too aggressive,
unrealistic behaviors.

The dynamics equation of the model used in the NMPC algorithm can be compactly
written as

ξ ′ = φ(ξ(s), u(s); p(s)), (16)

where p(s) =
[
ζ(s), τMAX,min

eng,i (s)
]T

.
The real-time iteration scheme (RTI) [47] is employed to reduce the time required

to solve the (9) problem. Moreover, a non-uniform grid strategy [48] has been used for
lowering the computational burden and let the controller predict a sufficiently long horizon
(chosen 400 m in advance for the specific vehicle).

The cost function for the NMPC is defined as:

hk(ξk, uk) = [β, γt · γb, ζ · γt, t, δ̇ f , γ̇t, γ̇b, εslip, εerr, εgg]
�,

hN(ξN) = [β, γt · γb, ζ · γt, t, ey − eref
y , ėy, eψ − eref

ψ +

+ β, ėψ]
�.

(17)

The penalty on the vehicle side slip β is used to limit the sliding behavior of the
vehicle; simultaneous throttling and braking are penalized by the cost γt · γb. The ζ · γt cost
is included to make the controller accelerate smoothly during the final phase of the track
corner exit. The objective variable time t is added to minimize the time on the prediction
horizon. Smooth control actions are ensured by the objective terms on the inputs. The
three slack variables are also adopted to define the soft constraints [49], which increase the
robustness of the overall procedure. Finally, the terms related to errors ey and eψ, used only
as terminal objective variables, are introduced to integrate information about the trajectory
over the prediction horizon.

The constraints are defined as

rk = [δ f , γt, γb, δ̇ f , γ̇t, γ̇b, εslip, εerr, εgg, β + εslip,

ey + εerr, (μx
ẍext

g
)2 + (μy

ÿext

g
)2 + εgg]

�,

rN = [δ f , γt, γb]
�,

(18)

where the constraints on δ f , γt, and γb are intrinsic bounds of the actual vehicle controls,
while those on δ̇ f , γ̇t, and γ̇b are added in order to improve the smoothness of the computed
inputs and can be used to easily tune the aggressivity of the NMPC driving commands.
Additionally, the slack variables have been constrained in order to help the optimization
procedure restricting the search space of the inputs. The slack variables are used for defining
the soft constraints: the first one is introduced on the side-slip of the vehicle and helps
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the controller to regain control of the vehicle in case of high skidding; the second one
is used to correct the trajectory when the vehicle is out of track; the third one instead
is designed to make the controller respect the required gg diagram, which represent the
maximum combined longitudinal-lateral acceleration that can be induced by the combined
longitudinal-lateral behavior of the specific tyre spec [50]. μx and μy are the longitudinal
and lateral friction coefficient of the tyres, respectively, whereas the considered accelerations
on the vehicle are

ẍext =
∑i,j Fxi,j−Fx

d

m
,

ÿext =
∑i,j Fyi,j

m
.

(19)

At the i-th sampling instant, considering that the QP solution is Δui∗ , the control input
is updated by

ui∗ = ui−1∗ + Δui∗ , (20)

The first sample of ui∗ is applied to the vehicle, the prediction horizon is shifted
forward and the optimization procedure is repeated with updated state measurement.

3.4. Co-Simulation Environment

The co-simulation platform, represented in the Figure 9, is composed of the
following subsystems:

• Plant model: a 14 DoF vehicle model reproducing the overall vehicle dynamics behavior;
• Road pavement: a boundary condition module concerning the asphalt condition

and computing the tire-road friction coefficient to reproduce dry, wet, snowy, and
icy contact;

• Tyre: MF-Evo tyre model reproducing the tyre dynamic behavior in different thermal
and wear conditions;

• Path reference: the track geometrical representation defined by the specific maneuver
and employed to compute the cost function.

Figure 9. Co-simulaton platform.

The maneuver chosen for the current study is the emergency double-lane-change
maneuver, generally performed on the highway to overtake another vehicle [51]. The test
is commonly adopted because it correlates the ability of controlling the vehicle at the limits
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of handling with an enhanced safety for the vehicle occupants in scenarios concerning
the presence of obstacles on the path [52]. Given the criteria for ideal lane-change path,
prescribing a minimal length path with a smooth and continuous curvature at a given
vehicle forward velocity, the trajectory of the DLC maneuver is computed without violating
the track boundaries and assuring that all the tyres remain always in contact with the road
surface (possible lift motions are avoided with constraints modelled within the maximum
load transfers, as described in [9]).

The co-simulation is conducted in MATLAB/Simulink environment, coupling the plant
model with NMPC controller and performing the dynamic simulation of the plant model
at fsim = 1000 Hz, while the control action is updated by NMPC at fctrl = 100 Hz. The
simulations have been computed on a Windows 10 machine with Intel(R) Core(TM) i7-
7700HQ @ 2.80GHz CPU.

4. Analysis and Results

The knowledge of the instantaneous and potential grip directly on board and in real-
time potentially allows the vehicle control logic to maximize the probability of avoiding
obstacles and reducing the severity of collisions. To investigate the possible outcomes of a
model-based control within a vehicle safety-linked scenario, the authors have performed
within the DLC maneuver a complete design of experiment comprehending:

• Case A: the adoption of two different sets of NMPC weights (best and global) in the
definition of the cost function.
The best NMPC set of weights addresses the maximum achievable performance of
the underlying vehicle plant model, specifically calibrated for a new tyre working in
the optimal thermal range in contact with the dry road, whereas the global NMPC
set of weights represents the trade-off solution to guarantee ability of the vehicle to
complete the DLC maneuver in the worst proposed dynamic scenario, i.e., a worn
cold tyre in contact the icy road surface. In this case, the parameters of the plant and
the controller models are the same for each simulation;

• Case B: the analysis of the vehicle dynamic response in case of different tyre thermal
and ageing conditions on the same road and in case of the tyre with a specific thermal
and wear state on different pavements. In this case, the parameters of the plant and
the controller models are the same for each simulation;

• Case C: the possibility to employ the non-linear model predictive controller calibrated
with the average set of weights in conditions where the parameters of the controller
model can be updated in real-time on the basis of the actual state of the plant model or
can be constant and with an estimation on the friction value affected by a percentage
error respect the real value.
This particular scenario has been conducted to highlight the importance of the correct
estimation of the parameters of the controller model, potentially aware of the actual
knowledge of tyre-road friction. The simulation outputs with average tyre parameters
within the controller model have been compared towards the ones obtained with the
instantaneous parameters of the co-simulated vehicle plant to put in evidence the
importance of the correct information concerning the tyre friction and stiffness for the
vehicle dynamics control.

The simulation outputs have been compared in terms of the vehicle trajectory, the
forward velocity, the vehicle side slip angle, and yaw angle.

4.1. Case A

In this section, the impact of two possible sets of weights, defined within the NMPC
cost function, is investigated. Both the plant and controller models share the same model
parameters of a new tyre in the optimal thermal window in contact with the dry road.

The best set of NMPC weights represents the most suitable solution to perform the
DLC maneuver with both the plant model and the controller model in the maximum
performance conditions of the tyre, corresponding the the maximum dynamic limits of
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the vehicle. The global set of NMPC weights stands for the conservative trade-off solution,
calibrated to guarantee the accomplishment of the maneuver in all the possible tyre-linked
and boundary conditions, in which the plant and controller models share the same physical
parameters (i.e., the performance of the vehicle controller is limited by the worst possible
dynamic scenario of a cold and worn tyre in contact with the icy road).

In the Figure 10a the trajectories of the vehicle with the best (red) and global (black)
sets of NMPC weights are compared. It is easy to observe that the optimized set of
weights allows the vehicle performing at a larger trajectory and achieving significantly
higher velocities both in the first part of the curves and at the end of the DLC maneuver
(Figure 10b). It is worth highlighting that the best set also demonstrates higher side slip and
yaw angles (Figure 11a,b), because it is specifically optimized to perform in the scenario of
a new optimal tyre in contact with the dry road, therefore allowing the vehicle to reach the
actual friction limits. Furthermore, the best set allows the vehicle to approach to the DLC
manuever and to end the scenario 6.62 and 8.34 s before, respectively (Figure 11c).

(a) (b)

Figure 10. (a) Vehicle trajectory performed in the DLC maneuvers in a different road surface (dry in
black, wet in red, snow in blue, and icy in light blue), but with the same tyre (new tyre in optimal
range temperature) for a NMPC tuned to better perform the maneuver in all road surface, tyre, and
temperature condition. (b) Vehicle velocity.

(a) (b) (c)
Figure 11. (a) β angle. (b) Yaw angle. (c) Time.

4.2. Case B

In this section, only the global set of NMPC weights has been employed to compare
the dynamic response of the vehicle in two scenarios: (1) different road characteristics
(dry, wet, snowy, and icy) with the new tyre within the optimal thermal range, and (2)
different tyre thermal and ageing conditions in contact with the dry road. The plant and
the controller models share the same physical parameters for each iteration.

• Scenario B1
In the Figure 12a it is possible to observe how the vehicle maneuver characterized
by the highest friction coefficient (dry pavement) performs the DLC with a largest
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trajectory and the highest velocity Figure 12b in minimum amount of time Figure 13c
and Table 3.

(a) (b)

Figure 12. (a) Vehicle trajectory. (b) Vehicle velocity.

(a) (b) (c)
Figure 13. (a) Side slip angle. (b) Yaw angle. (c) Time.

Table 3. Summary of time’s maneuver for each scenario.

Road Surface Time [s]

Dry 24.8
Wet 26.2

Snowy 40.8
Icy 51.7

Since the global NMPC set is limited by the most critical dynamic condition (worn
cold tyre in contact with the icy road), the Figure13a shows higher values in terms of
side slip angle for snowy and icy road surfaces, foreseeing the possibility to perform
the maneuver in more aggressive way for dry and wet road conditions.
Such a conservative behavior can be motivated by the fact that the global set of weights
is a result of a trade-off between completely different dynamic scenarios in the respect
of vehicle maneuverability and safety.

• Scenario B2
The comparison between a same road condition (dry) performing with different tyre
condition (new or worn, in the optimal temperature range, cold or overheated) are
shown in the following figure. Regarding the analysis of trajectories, shown in the
Figure 14a it is possible to observe how they are too similar each other due to the same
road pavement, however in the new tyre condition a little largest trajectory has been
carried out to achieve an highest velocity Figure 14.
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(a) (b)

Figure 14. (a) Vehicle trajectory performed in the DLC maneuvers in a dry road, with different tyre
condition (New tyre (continuous lines) and worn tyre (dashed lines) in optimal (black), cold (blue),
and overheated (red) temperature range. (b) Vehicle velocity.

(a) (b) (c)
Figure 15. (a) Side slip angle. (b) Yaw angle. (c) Time.

Table 4. Summary of time’s maneuver for each scenario.

Tyre Condition Time s

New − Topt 23.0
New − Tcold 23.7

New − Toverheated 23.44
Worn − Topt 24.24
Worn − Tcold 25.8

Worn − Toverheated 24.8

The analysis side slip angle show a dependence of β angle with the tyre stiffness,
indeed the highest value of β has been performed to highest cornering stiffness Figure 15a.
Finally, in the Table 4 are shown the performing time for each condition.

4.3. Case C

• Scenario C1
In this paragraph the aim of the authors is to argue the following query:
If the plant and the controller do not share the same model parameters, i.e., the parameters
of the controller model are not updated by a specific co-simulated estimator of the vehicle
parameters and state, and of the tyres’ and the road conditions are not known a priori, how a
controller model with an average "parameters’" configuration could perform with different
plant model employment scenarios within the DLC maneuver?
With this purpose, the controller model has been fed with the parameters of
friction and stiffness corresponding the mean value of the all possible tyre-road
conditions explored.
It is worth highlighting that, as expected, it is not possible to perform the DLC
maneuver with the icy road with the above configuration. Indeed, as appears clear in
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the Figure 16, the rear axle achieves the maximum slip ratio, not allowing to complete
the simulation in safety.

Figure 16. Slip ratio achieved for the four tyres.

For this reason, in the following figures, only dry, wet, and snowy road conditions
are reported. In the Figure 17a,b it is possible to observe how the difference between
the three pavement surfaces are less pronounced towards the results discussed in
Scenario B. Moreover, the vehicle in contact with the wet road achieves a maximum
velocity, even higher than with the dry surface, completing the maneuver in less
time Figure 18c).

(a) (b)

Figure 17. (a) Vehicle trajectory performed in the DLC maneuvers in a dry, wet, and snow road, with
new tyre in optimal range temperature. (b) Vehicle velocity

(a) (b) (c)
Figure 18. (a) Side slip angle. (b) Yaw angle. (c) Time.

The reason for such behavior can be conducted to the conservative control action,
particularly visible in dry boundary condition, since the absolute difference in terms
of the friction limit is particularly high between the plant and the controller mod-
els in this scenario. Indeed, in the Figure 18a the the side slip angle is similar for
three conditions explored. Furthermore, even the maneuver in snow conditions is
achieved in a comparable time period, since the friction limit of the average con-
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troller model is similar to the one of the plant model working in snowy boundary
conditions Figure 18b.

• Scenario C2
Remarking that an accurate online friction coefficient estimation becomes absolutely
necessary to allow exploiting the vehicle dynamics in maximum performance condi-
tions within a combined DLC maneuver, in this paragraph the aim of the authors is
to argue another possible query: In a real scenario, where an onboard tyre-road friction
estimator able to estimate (among others) the grip parameter with a certain degree of accuracy
and to update the control model parameters in run-time, is available, how a controller model
with a percentage error concerning the vehicle instantaneous conditions could perform within
the same maneuver?
With this purpose, the parameter concerning the tyres’ friction of the controller model
has been considered with an intrinsic error with a supposed standard deviation of
±15% respect to the actual grip value of the vehicle plant model.

It is worth noting that in a scenario where the grip factor is overestimated, the con-
troller with the global configuration of the cost function computes more aggressive control
actions leading to out-of cones trajectories and undesirable sliding effect. To avoid this
issue, a robust global configuration has been introduced in order to let the controller being
effective in managing the vehicle behavior in overestimated grip-linked scenarios. The
above new configuration leads to more conservative actions and, consequently, to a consid-
erable loss of performance in terms of velocity. In particular, the loss in performance in
terms of the average speed (in percentage) in the four cases analyzed has been objectively
quantified in Table 5. In Figures 19 and 20, the performance obtained by the two configura-
tions in terms of trajectories, speed, side-slips, and yaw angles are also compared. Notably,
the side-slip in Figure 5 reaches peaks of 5 degrees, confirming that the configurations
obtained controls the vehicle at the limit of handling.

(a) (b)

Figure 19. (a) Vehicle trajectory performed in the DLC maneuvers in conservative vs global configu-
ration. (b) Vehicle velocities

(a) (b)
Figure 20. (a) Side slip angles. (b) Yaw angles.
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Table 5. Summary of the difference in velocity mean values (%) and lateral error assumed for each
road scenario.

Road Surface Friction Estimation Longitudinal Velocity v
[−] [−] [%]

Icy correct −
Icy overestimation −16.02

Snowy correct −
Snowy overestimation −8.36

Wet correct −
Wet overestimation −8.30

Dry correct −
Dry overestimation −21.00

5. Conclusions

The global autonomous mobility industry, growing at a rapid pace, is an intrinsically
multidisciplinary field that aims at designing advanced onboard control logics by inte-
grating principles from different disciplines including mechanical, control, and computer
science engineering, legal, social, and economic fields. The multidisciplinary proposal
will provide a paradigm shift in the development of strategies and a solid breakthrough
towards enhanced development of the driving automatization systems.

In the proposed work, the authors have investigated how accurate information re-
garding the state of the real system of the parameters concerning the controller model
could affect the behavior of the real system, represented in the form of the high-fidelity
validated plant model. The influence of the tyre thermal dynamics, the impact of the
possible ageing effects and the contact with different road pavements have been examined.
Wrong parameters in the definition of the internal model of the NMPC might compromise
the control performance, especially when the vehicle is supposed to drive at the limit of
handling conditions. Specifically, a controller characterized by an overestimation of the
grip conditions is forced to compute too aggressive control actions that might bring the
vehicle in unstable and unsafe conditions, that are very difficult to handle for the controller
itself. On the contrary, an underestimation of the grip might reduce the performance of
the controller, which is forced to compute too conservative control actions. Moreover, the
parameters of the cost function play an important role in defining the level of performance
that the controller is required to achieve. A high weight on the travel time forces the vehicle
to drive fast along the path, hence requiring effective proper internal model parameters to
describe the vehicle behavior at the limit of handling. Instead, a more conservative tuning
(i.e., high weights on side-slip, lateral error, orientation error) can be effective with also less
precise coefficients, as the vehicle is not supposed to travel at the limit of handling. Due to
these statements, in future work, the effects of including a real-time estimate of the tyre
and the environment states, along with an adapting strategy for the weights of the cost
function will be included in the whole analysis.

The investigation constitutes a part of the broader panorama of studies on novel model-
based ADAS systems, which could become adaptive to the system state and boundary
conditions, by means of a real-time physical model-based estimator of adherence, sensitive
to environmental conditions and to the instantaneous state of tyres. In this way, the physical
limits of the real system could become totally exploited by the control logic, minimizing
the safety-related risks, and unleashing the potential of physical modeling to the next level
of vehicle control.
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Abstract: This paper addresses the problem of nonlinear height tracking control of an automobile
active air suspension with the output state constraints and time-varying disturbances. The proposed
control strategy guarantees that the ride height stays within a predefined range, and converges closely
to an arbitrarily small neighborhood of the desired height, ensuring uniform ultimate boundedness.
The designed nonlinear observer is able to compensate for the time-varying disturbances caused by
external random road excitation and perturbations, achieving robust performance. Simulation results
obtained from the co-simulation (AMESim-Matlab/Simulink) are given and analyzed, demonstrating
the efficiency of the proposed control methodology.

Keywords: nonlinear height control; active air suspension; output constraints; random road excita-
tion; disturbance observer design

1. Introduction

Active vehicle suspensions are effective ways to isolate or dissipate the vibration ener-
gies transferred from irregular road excitation to vehicle body [1–3]. With the development
of automobile industry, the active suspension has demonstrated its capability in (1) improv-
ing ride comfort, i.e., reducing vehicle body acceleration, and (2) the safety performance
constraint, such as suspension dynamic displacement, tire dynamic payload, and actuator
input saturation [2,4–6]. As it is convenient to employ electronically-controlled active air
suspension (AAS) systems to adjust the ride height by inflating and deflating the air spring,
they have drawn attention from automobile manufactories (e.g., Tesla) and have been
extensively utilized in commercial vehicles [7–9].

However, there are still many challenges in regulating the ride height motion of
the vehicle body (with the AAS system) robustly and accurately under random road
excitation. Moreover, the adjustment of ride height usually changes the stiffness and
hysteresis, and generates perturbations in the AAS system [10,11]. In addition, because
of the mechanical structure and travel limitations of the AAS, the ride height movement
should always be constrained in a reliable range for safety performance [12–14]. Therefore,
an appropriate ride height controller should be designed for the AAS systems in the
presence of perturbations and output constraints.

Aiming to deal with the aforesaid problems, many results have been reported, such as
robust H∞ control [15,16], sliding mode control (SMC) [11,17,18], fuzzy logic [19], neural
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network-based [20], and backstepping control techniques [14,21]. In [16], a robust H∞
controller for AAS systems was proposed, where the ride comfort and time domain hard
constraints were considered. However, the model uncertainties are linearized by trans-
formation of their utilized dynamic model [16]. As this model cannot capture the actual
behavior of the AAS system, it could deteriorate the height tracking performance. Nonlinear
controllers were proposed by employing SMC technique to handle the external random
road excitation and perturbations in the AAS system [11,17,18]. However, the authors of [11]
dealt with the time-varying disturbances by choosing high control gains for robustness
resulting in unwanted oscillations. To cope with this drawback, an adaptive SMC scheme
was proposed by using neural networks to increase SMC properties in [18]. Simulation
results and Lyapunov-based stability proof were presented, demonstrating the proposed
control method can stabilize displacement and speed of the suspension systems. Similarly,
the backstepping control has been extensively investigated by employing fuzzy logic and
neural networks for enhancing the control performance [19,20]. However, in order to make
the approximation error arbitrarily small, the numbers of FLS rules or neurons should be
increased, resulting in a heavy computational burden. Meanwhile, to our best knowledge,
the numbers of the needed rules or neurons are difficult to be determined for keeping the
estimation error bounded in a specific range. In [14,21], nonlinear backstepping-based
height tracking controllers were designed, where some conservativeness was adopted in
the control law to reduce the effects of time-varying disturbances.

In addition to the challenge raised from developing control strategy for handling
disturbances, the output height constraint is also considered as a critical issue due to
the mechanical structure limitation of the AAS system. Although the nonlinear ride
height controllers based on the classic Quadratic Lyapunov function are presented to
track predefined trajectories in the presence of perturbations and the height constraint
are neglected for the ride height control applications with the AAS system [14,21]. By
using the backstepping control approaches, the Barrier Lyapunov Functions (BLFs) have
been developed and defined as control Lyapunov candidates for achieving the constrained
objectives control [13,22–24]. In [22], the BLFs are employed in the controller design.
Moreover, an asymmetric BLF is presented and employed in the constrained controller
design to handle the external disturbances without violation of the output constraints [23].
In addition, the author of [13] proposed the constrained adaptive controller for damping
force control by using the BLFs, improving ride comfort, and satisfying the performance
constraints. However, the height motion control of AAS systems in the presence of output
constraint has not been addressed yet.

Inspired by the above discussion, this paper presents a novel solution to address
the height tracking control problem of nonlinear AAS system with output constraint and
external time-varying disturbances. The novelties and contributions of this paper are
summarized as follows.

• A nonlinear height tracking controller for the nonlinear AAS system is proposed,
guaranteeing that (i) the output height always stays in a predefined range and (ii)
uniform ultimate boundedness is achieved.

• A nonlinear disturbance observer is designed to compensate the time-varying distur-
bances caused by external random road excitation and perturbations in the AAS system.

With respect to the state-of-the art approaches, the main merits of the proposed con-
strained control strategy are as follows. In this research, unlike the linearized models used
in [16], the mathematical model with the time-varying disturbances is employed to describe
the perturbations in the AAS system. Unlike the disturbance rejection methods presented
in [14,19–21], a time-varying disturbance observer is designed in this paper, guaranteeing
that the estimation error is bounded by certain value. The designed disturbance observer
can guarantee the estimate converges closely to zero. Moreover, we take the output con-
straints into consideration by using the BLFs in the backstepping controller design. By
contrast, the output constraint was neglected in [11,17,19,20].
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The remainder of this paper is organized as follows. In Section 2, the notation used
throughout this paper is introduced. Section 3 presents a mathematical model of the
AAS system and formulates the control problem. In Section 4, a nonlinear disturbance
observer is designed, and a constrained ride height controller is proposed based on the
backstepping control technique with BLFs. To validate the efficiency of proposed control
strategy, co-simulation results are presented and analyzed in Section 5. At last, Section 6
summarizes the contents of this paper and describes the future work.

2. Notation

In this paper, Rn denotes the n−dimensional euclidean space. A function f is of class
Cn if the derivatives f

′
, f

′′
, ..., f n exist and are continuous. For a vector x ∈ Rn, its norm

is defined as ‖x‖ =
√

xTx.
∫ t

0 x dτ denotes the integral of x, and τ denotes the integration
variable. For the reader’s reference, Table 1 summarizes the main symbols and descriptions
for the model, controller, and parameter estimators in the paper.

Table 1. Symbols and their descriptions.

Symbol Description Symbol Description

hs (m) height of vehicle sprung mass m (kg) sprung mass of quarter vehicle
hu (m) unsprung mass displacement mu (kg) unsprung mass of quarter vehicle
hd (m) desired height ṁdes (g) desired change of air mass for air spring
hr (m) road excitation Ās (mm2) area of adjustable air spring
h0 (m) initial height of sprung mass hd (m) maximum value of desired height

b (N · s · m−1) damping coefficient of damper hmax (m) maximum value of sprung height
ps (Pa) air spring pressure d(t) time-varying disturbances
p0 (Pa) initial air pressure dmax maximum value of disturbances
vs (m3) air spring volume kt (N · m−1) tire stiffness

Q̇ (J · s−1) heat transfer rate u control input
Fs air spring force Fd damping force

3. Problem Formulation

The objective of this section is to formulate the problem of nonlinear ride height
tracking control with application to the AAS system in the presence of output constraints
and the time-varying disturbances. We start by presenting the mathematical model of a
quarter vehicle with AAS system. Then, the problem of constrained ride height tracking
control is formulated with the maximum boundary value of vehicle ride height and the
time-varying disturbances.

3.1. ASS Modeling

In order to describe the dynamic characteristics, a mathematical model of a quarter
vehicle with AAS is employed as a part of model-based height controller design for realizing
the control objective successfully. The schematic diagram of a quarter vehicle with AAS is
shown in Figure 1, and the dynamic equations of the sprung mass and unsprung mass are
given by

msḧs = Fs − Fd − Fg

muḧu = −Fs + Fd − Ft − Dt
(1)

where Fg = msg denotes the gravitational force; ms is the sprung mass of a quarter vehicle;
mu is the unsprung mass, which denotes mass of the wheel assembly; and Fs and Fd
represent the forces produced by the air spring and damper, respectively. Ft and Dt are
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the elasticity force and damping force of the tire, respectively. Forces produced by the
nonlinear air spring, the linear damper, and the tire yield,

Fs = Ās(ps − pa)

Fd = b(ḣs − ḣu)

Ft = kt(hu − hr)

Dt = bt(ḣu − ḣr)

(2)

where pa is the atmospheric pressure, sp = 105, and Ās = Assp is the effective area
of the adjustable air spring. hr denotes the random road excitation, and hu and hs are
the displacements of the unsprung mass and the sprung mass of the quarter vehicle,
respectively. b is the damping coefficient, kt and bt are the stiffness and damping coefficient
of the tire, respectively.

Unsprung mass

Vehicle body
(Sprung mass)

Active 
air 

suspension

Wheel

sh

uh

rh

sm

sF
sp svdF

u

um

tF tD

gF

Figure 1. Schematic diagram of quarter vehicle with active air suspension (AAS).

Due to the perturbations in the AAS system, the time-varying disturbances should be
considered in the employed model for ride height control. From (1), the quarter vehicle
model with the AAS can be then expressed in a compact state-space form as

ḣ1 = h2

ḣ2 = m−1
s

(
Ās(h3 − patm)− b(h2 − żu)− msg

)
ḣ3 = u − γAsh2h3v−1

s + Q̇(γ − 1)(spvs)
−1 + d(t)

(3)

where h1 = hs, h2 = ḣs, h3 = pss−1
p . vs represents the air volume; Q̇ = ht Aheat(Te − Tas)

is the heat transfer rate between the inner and the outer sides of the control volume, in
which ht is the heat transfer coefficient; Aheat represents the area of the heat transfer; Te and
Tas are temperatures of the outer and the inner sides of the control volume, respectively;
and u is viewed as the control input for inflating and deflating the adjustable air spring.
The time-varying disturbances are denoted by d(t) with the following assumption:

Assumption 1. Disturbances d(t) are unknown, time-varying and satisfy

|d(t)| ≤ dmax, |ḋ(t)| ≤ d̄
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where dmax and d̄ are known positive numbers.

3.2. Output Constraint and Barrier Lyapunov Function

In practice, because of the structure limitation, the output height of the AAS system
should be constrained by hmax, which denotes the maximum ride height of the AAS.
Inspired by the work in [24], the following BLF is used.

Vb =
1
2

Υ2(z1) (4)

where

Υ(z1) =
μ2z1

μ2 − z2
1

(5)

where z1 = h1 − hd is the velocity tracking error, hd denotes the desired height under the
assumption that |hd| < h < hmax, and μ = hmax − h. To facilitate the analysis, we formulate
a simple lemma, given as

Lemma 1. For any two nonzero scalars x ∈ R, y ∈ R, if |x| < xmax, |y| < ymax, xmax >
ymax > 0, then we have

|x| − |y| ≤ |x − y|. (6)

Furthermore, based on Equation (6), if we have |x− y| < xmax − ymax, |y| < ymax, xmax >
ymax > 0, we can obtain |x| < xmax.

Remark 1. The BLF Vb is positive definite and C1 continuous for |z1| < μ.

Remark 2. If there is no constraint on h1, that is, hmax → +∞, the BLF becomes

Vb =
1
2

z2
1 (7)

which is a quadratic Lyapunov function.

3.3. Problem Statement

For AAS systems, the following control objectives should be considered in the ride
height controller design.

• The proposed ride height controller can guarantee the accurate trajectory tracking
performance in the presence of time-varying disturbances.

• Due to the mechanical structure and travel limitation of the AAS, the dynamic height
should be restrained within its allowable maximum value, which is expressed as
|hs| < hmax.

4. Nonlinear Backstepping Controller Synthesis

In this section, the control objective is to design the virtual control input u for the
ASS that ensures convergence of the ride height to an arbitrarily small neighborhood of
the desired height without violating the requirement of output constraint |h1| < hmax.
A disturbance observer d̂(t) is first designed to estimates d(t), and then a constrained
controller is designed based on the backstepping technique by using the BLF. Details are
given in the sequel.
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4.1. Disturbance Observer Design

To design the disturbance observer for d(t), we take a clue from the work in [25] and
define two auxiliary terms as

ξ = d(t)− φ(h3),

ξ̂ = d̂(t)− φ(h3),
(8)

where φ(h3) = λdh3, λd is a positive estimation gain, and d̂(t) is the estimation of d(t).
From (8), we have

d̂(t) = ξ̂ + φ(h3) (9)

and the estimation error is
de = ξ − ξ̂. (10)

Computing the time derivative of ξ, we obtain

ξ̇ = ḋ(t)− ∂φ(h3)

∂h3

[
u − γAsh2h3v−1

s + Q̇(γ − 1)(spvs)
−1 + d(t)

]
. (11)

Then, we introduce the time derivative of the estimated ξ̂, given as

˙̂ξ = −∂φ(h3)

∂h3

[
u − γAsh2h3v−1

s + Q̇(γ − 1)(spvs)
−1 + d̂(t)

]
, (12)

leading to
ḋe = ξ̇ − ˙̂ξ

= ḋ(t)− λdde.
(13)

The main result is summarized in the following Lemma.

Lemma 2. Through the use of designed disturbance observer (9), the estimate |de(t)| exponentially
converges to the circle centered at the origin with radius de(t)(4ε(λd − ε))−

1
2 , which can be made

arbitrarily small by increasing the estimation gain λd, where ε is a positive constant.

Proof. We start the proof by defining a Lyapunov candidate function, given as

Vd(t) =
1
2

de(t)2. (14)

Computing the time derivative of Vd(t), we have

V̇d(t) = −λdde(t)2 + de(t)ḋ(t)

≤ −2(λd − ε)Vd(t) + d̄2(4ε)−1, (15)

where λd > ε. Solving (15), we obtain

Vd(t) ≤ e−2(λd−ε)Vd(0) + d̄2(8ε(λd − ε))−1. (16)

From here we can conclude that Vd converges to a circle of radius d̄2(8ε(λd − ε))−1.
It follows that |de(t)| converges to a circle of radius d̄(4ε(λd − ε))−

1
2 , which can be made

arbitrarily small by increasing λd.
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4.2. Constrained Controller Design

Let the desired height hd be a curve of class at least C3, with all its time derivatives
bounded. In order to address the constrained height tracking problem, we consider (4) as
an initial Lyapunov function candidate given by

V1 = Vb =
1
2

Υ(z1)
2, (17)

whose time derivative yields

V̇1 = Υ(z1)Υ̇(z1), (18)

where

Υ̇(z1) =
2μ2z2

1
(μ2 − z2

1)
2

ż1 +
μ2

μ2 − z2
1

ż1, (19)

For the sake of simplicity, we define δ1 and δ2 as

δ1 =
2μ2z2

1
(μ2 − z2

1)
2

, δ2 =
μ2

μ2 − z2
1

, (20)

then, Equation (18) can be rewritten as

V̇1 = Υ(z1)(δ1ż1 + δ2ż1). (21)

Isolating a negative definite term in Υ(z1) and rearranging the terms of V̇1, we get

V̇1 = −W1(z1) + Υ(z1)(δ1ż1 + δ2ż1 + k1Υ(z1)). (22)

where W1(z1) = k1Υ(z1)
2, and k1 is a positive number. Following the backstepping

technique, we define the new error z2 as

z2 = δ1ż1 + δ2ż1 + k1Υ(z1), (23)

and rewriting (22), we have

V̇1 = −W1(z1) + Υ(z1)z2. (24)

Constructing a new Lyapunov function candidate by incorporating z2, we obtain

V2 =
1
2

Υ(z1)
2 +

1
2

z2
2, (25)

with time derivative

V̇2 = −W2(z1, z2) + z2

(
(m−1

s Ās(h3 − patm)− m−1
s b(h2 − żu)− g − ḧd)(δ1 + δ2) (26)

+ Υ(z1) + (δ̇1 + δ̇2)ż1 + k1Υ̇(z1) + k2z2

)
,

where W2(z1, z2) = W1(z1) + k2z2
2, k2 is a positive number,

δ̇1 =
4μ2z1ż1

(μ2 − z2
1)

2
+

8μ2z3
1ż1

(μ2 − z2
1)

3
, δ̇2 =

2μ2z1ż1

(μ2 − z2
1)

2
. (27)
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Furthermore, we can rewrite (26) as

V̇2 = −W2(z1, z1) + z2(δ1 + δ2)
[
m−1

s Ās(h3 − patm)− m−1
s b(h2 − żu)− g − ḧd (28)

+
Υ(z1)

δ1 + δ2
+
( δ̇1 + δ̇2

δ1 + δ2
+ k1

)
ż1 +

k2z2

δ1 + δ2

]
.

Continuing with the backstepping procedure, we define the last error term as

z3 = m−1
s Ās(h3 − patm)− m−1

s b(h2 − żu)− g − ḧd +
Υ(z1)

δ1 + δ2

+
( δ̇1 + δ̇2

δ1 + δ2
+ k1

)
ż1 +

k2z2

δ1 + δ2
,

(29)

and augment the Lyapunov function candidate as

V3 = V2 +
1
2

z2
3. (30)

The closed-loop time derivative is then

V̇3 = −W3(z1, z2, z3) + z3

[
m−1

s Āsḣ3 − m−1
s b(h2 − żu)− h(3)d

+
( δ̇1 + δ̇2

δ1 + δ2
+ k1 + k2 + 1

)
z̈1 +

( δ̈1 + δ̈2

δ1 + δ2
− δ̇1 + δ̇2

(δ1 + δ2)2

+
k1k2

δ1 + δ2

)
ż1 +

δ̇1 + δ̇2

(δ1 + δ2)2 k1k2Υ(z1)

+ (δ1 + δ2)z2 + k3z3

]
.

(31)

where

δ̈1 =
4μ2ż2

1
(μ2 − z2

1)
2
+

40μ2z2
1ż2

1
(μ2 − z2

1)
3
+

48μ2z4
1ż2

1
(μ2 − z2

1)
4
+

4μ2z1z̈1

(μ2 − z2
1)

2
+

8μ2z3
1z̈1

(μ2 − z2
1)

3
,

δ̈1 =
2μ2ż2

1
(μ2 − z2

1)
2
+

8μ2z2
1ż2

1
(μ2 − z2

1)
3
+

2μ2z1z̈1

(μ2 − z2
1)

2
,

(32)

and W3(z1, z2, z3) = W2(z1, z2) + k3z2
3, and k3 is a positive number

Here, note that the time derivative of V̇3 is dependent on the disturbances d(t) through
the dependency of ḣ3 in these quantities. In order to exploit the dependency of ḣ3 in the
uncertain quantities, the time derivative ḣ3 can be expressed as

ḣ3 = u − γAsh2h3v−1
s + Q̇(γ − 1)(spvs)

−1 + d̂(t) + de(t), (33)

where de(t) is the estimation error. We now establish the final Lyapunov function candidate
by adding the terms of disturbance estimate error to V3 as follows,

V3b = V̇3 +
1
2

de(t)2. (34)

Computing the time derivative of V3b, we obtain

V̇3b = −W3(z1, z2, z3) + z3

[
M + m−1

s Ās

(
u − γAsh2h3v−1

s + Q̇(γ − 1)(spvs)
−1

+ d̂(t)
)
− m−1

s b(h2 − żu)− h(3)d

]
+ z3m−1

s Āsde(t) + de(t)(ḋ(t)− de(t)).
(35)
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where

M =
( δ̇1 + δ̇2

δ1 + δ2
+ k1 + k2 + 1

)
z̈1 +

( δ̈1 + δ̈2

δ1 + δ2
− δ̇1 + δ̇2

(δ1 + δ2)2 +
k1k2

δ1 + δ2

)
ż1

+
δ̇1 + δ̇2

(δ1 + δ2)2 k1k2Υ(z1) + (δ1 + δ2)z2 + k3z3.
(36)

Here, we notice that apart from the time derivative of disturbances ḋ(t) and estimated
error de(t), V̇3b is also dependent on the z1, z2, z3. To cancel the dependency of V̇3b on
z1, z2, z3 in (35), the virtual control law u is chosen as

u = Ā−1
s ms(−M + h(3)d ) + Ā−1

s b(ḣ2 + z̈u) + γAsh2h3v−1
s

− Q̇(γ − 1)(spvs)
−1 − d̂(t),

(37)

Substituting (33) and (37) into (35), in closed-loop, we have

V̇3b = −k1Υ(z1)
2 − k2z2

2 − k3z2
3 − λdde(t)2 + z3m−1

s Āsde(t) + ḋ(t)de(t). (38)

The main result of this paper is summarized in the following theorem.

Theorem 1. Let hd ∈ C3 in (5) be the desired height whose time derivatives are bounded, and
|z1(0)| < μ. By considering the designed time-varying disturbance observer (9) and input (37),
the errors z = [Υ(z1), z2, z3, de]T converge to an arbitrarily small neighborhood of zero, achieving
uniform ultimate boundedness without violating the output constraint.

Proof. Let us go back to (38) and apply Young’s inequality, we have

V̇3b ≤ −k1Υ(z1)
2 − k2z2

2 −
(

k3 −
m−1

s Ās

4

)
z2

3 −
(

λd − m−1
s Ās − 1

)
de(t)2 +

d2
max
4

(39)

where k3 are chosen such that k3 > m−1
s Ās/4, λd > 1+m−1

s Ās. Setting z = [Υ(z1), z2, z3, de]T,
V̇3b can be further written as

V̇3b ≤ −kmin||z||2 +
d2

max
4

= −kmin

(
||z||2 − d2

max
4kmin

) (40)

which is negative definite for

||z|| >
√

d2
max

4kmin
+ ε

where ε is an arbitrarily small positive constant. It follows that ||z|| is ultimately bounded by

zmax =

√
d2

max
4kmin

+ ε (41)

which can be made arbitrarily small by increasing the control gains, k1, k2, k3 and λd.
Consequently, global uniform ultimate boundedness is achieved. Notice that |Υ(z1)| > |z1|,
therefore, bounded |Υ(z1)| leads to bounded |z1|. Moreover, it is important to point out
that if the output constraint is violated, |Υ(z1)| will be infinity. However, as we established
above, for |z1(0)| < μ, the error ‖z‖ will converge to a bounded value instead of infinity,
from which we can conclude that the output constraint is guaranteed.

Remark 3. From Theorem 1, we know that larger k1, k2, k3, λd would lead to smaller ultimate
error. However, larger gains could also cause unwanted oscillation. Consequently, we cannot choose
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them arbitrarily large. In summary, we need to find a trade-off between the amplitude of oscillation
and tracking accuracy.

5. Simulation Verification

In order to verify the performance of proposed controller, a co-simulation is conducted
in this section by combining the virtual plant of quarter vehicle with the AAS system in
AMEsim software with the proposed controller in Matlab/Simulink to regulate the sprung
height by inflating and deflating the air spring. The control block diagram of co-simulation
is displayed in Figure 2. Unlike the mathematical model of the controller implemented in
Matlab/Simulink, the AMESim-based quarter vehicle plant is established based on the
actual pneumatic system configuration so that it is closer to the actual pneumatic system.

Sensor 
information

Proposed control strategy  

Nonlinear dynamic quarter 
vehicle model with AAS

Time-varying disturbance 
observer

BLFs for height constrains

Constrained Backstepping
 control law

Change of 
air mass

AMEsimMatlab/Simulink

PWM signal 

saturated control input

u
PWM generator

Air inflating and deflating 
circuit 

Quarter vehicle with active 
air suspension plant

Virtual Vehicle Plant

uhh uh sv Qshh shsh uh sp

Figure 2. Co-simulation block diagram.

5.1. Simulation Conditions

The desired height hd is a sine trajectory, given by

hd = 0.015 sin(ωt), (42)

where ω = 0.5 (rad/s) . The time-varying disturbances are chosen as

d(t) = sin(π/2t) sin(πt) + 10 sin(πt) cos(2πt) + ϑ(t), (43)

where ϑ(t) is a class of band-limited white noise. The road excitation hu is set as the class
C of ISO profile with a driving speed of 50 (km · h−1), whose graphic representation is
shown in Figure 2. The main parameters used in the co-simulation are given in Table 2,
where the control gains are chosen through a trial–error process.

Table 2. Parameters for co-simulation.

Parameter Value Parameter Value

Ā 178 (mm2) k1 9
b 1140 (N · s · m−1) k2 40
h0 0.2047 (m) k3 4
h̄ 0.4047 (m) λd 100
ms 300 (kg) γ 1.4
mu 30 (kg) p0 5.11 (Bar)
dmax 1.8 pa 1.01 (Bar)
kt 7.5 × 106 (N · m−1) bt 300 (N · s · m−1)
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5.2. Simulation Results and Analysis

The co-simulation results of the proposed control strategy for ride height control
with the AAS system are displayed in Figures 3–7. As shown in Figure 3, the height of
vehicle sprung mass with the proposed controller can track the desired height within
1 s. Moreover, the tracking errors, with μ = 10 mm and μ = 5 mm, all stay within the
predefined range of ±10 mm and ±5 mm as shown in Figure 4. Moreover, compared
with the proposed controller without considering the output state constraint (i.e., choosing
μmax very large), although the height of vehicle sprung mass is able to track the desired
value as displayed in Figure 5, the height tracking error exceeds its allowable maximum
value that results probably in a poor performance or even insecurity as illustrated in
Figure 6. Furthermore, the time-varying disturbances d(t) could be estimated by the
developed nonlinear disturbance observer and d̂(t) can also be kept within the range of
±0.1 as depicted in Figure 7. It means that the designed disturbance observer is effective.
Additionally, in order to simulate the real operating conditions, white noise is considered
during the height measurement procedure. As Figure 8 displayed, the proposed controller
still can track the desired height under the presence of measurement noise.
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Figure 3. Height tracking performance of quarter vehicle with AAS in co-simulation.
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Figure 4. Height tracking error of quarter vehicle with AAS in co-simulation, where |z1| always stays
within its corresponding bound.
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Figure 5. Height comparison of quarter vehicle with AAS in co-simulation.
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Figure 6. Error comparison of quarter vehicle with AAS in co-simulation, where |z1| exceeds its
allowable maximum value.
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Figure 7. Disturbance estimation of quarter vehicle with AAS in co-simulation.
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Figure 8. Tracking height and error of quarter vehicle with measurement noise in co-simulation.

5.3. Comparison of Simulation Results

In order to further demonstrate the benefits of the considerations of output state con-
straint and time-varying disturbances, Figures 9–11 also show the simulation results of ride
height with nonlinear robust controller [14] and hybrid model predictive controller (HMPC) [7]
under the same simulation parameters, disturbances, and road excitation. As demonstrated
in Figure 9, the height of vehicle sprung mass reaches the target value within 1 s, which is
much shorter than 4 s obtained for the controller presented in [14]. Meanwhile, during the
time from 10 s to 20 s, the steady-state error achieved by the robust controller presented in [14]
is bounded by 0.8 mm, which is larger than the bound of 0.5 mm obtained with the proposed
controller, as depicted in Figure 10. Moreover, the proposed controller can track the desired
height during both leveling up and lowering down processes so that the height of vehicle
sprung mass reaches the target height as illustrated in Figure 11. The desired height used in
the test is presented in [7]. The simulation results in Figures 10 and 11, and the performance
comparison in Tables 3 and 4 indicates that the proposed control technique is more effective
than the robust controller presented in [14] and the HMPC presented in [7].
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Figure 9. Height comparison of quarter vehicle with AAS in co-simulation.
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Figure 10. Error comparison of quarter vehicle with AAS in co-simulation.
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Figure 11. Tracking performance comparison of quarter vehicle with hybrid model predictive
controller (HMPC) presented in [7].

Table 3. Performance index comparison of co-simulation.

Performance Index Robust Controller in [14] Proposed Controller Improvement *

RMS of tracking error 4.6824 × 10−1 (mm) 1.6230 × 10−1 (mm) 65.3%
SD of tracking error 4.6809 × 10−1 (mm) 1.6012 × 10−1 (mm) 65.6%
Adjusting time 4 (s) 1 (s) 75%

* denotes relative to robust controller presented in [14].

Table 4. Performance index comparison of co-simulation.

Performance Index HMPC in [7] Proposed Controller Improvement *

RMS of tracking error 7.7785 (mm) 4.3781 (mm) 43.71%
SD of tracking error 6.0746 (mm) 3.2452 (mm) 46.58%
Adjusting time 3 (s) 1 (s) 66.67%

* denotes relative to HMPC presented in [7].

6. Conclusions

This paper presents a solution to the task of vehicle height tracking for an electroni-
cally controlled AAS system. By employing the BLF-based backstepping technique, a novel
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constrained control strategy is proposed to drive the vehicle height to the neighborhood of
preset desired values in the presence of output state constrains and perturbations in the
AAS system, achieving uniform ultimate boundedness. To realize the robust performance,
a nonlinear disturbance observer is introduced in the adaptive control law to compensate
for the time-varying disturbances caused the external random road excitation and pertur-
bations, achieving robust performance. Co-simulation results illustrate that the proposed
control strategy is effective, robust, and superior to other recent techniques. With respect to
our future research, it includes (i) designing a robust height tracking controller for a full-car
model with the AAS system, and (ii) developing a noise filter and delay compensator for
the system so as to improve the closed-loop performance in real applications.
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Abstract: Currently, the interest in creating autonomous driving vehicles and progressively more
sophisticated active safety systems is growing enormously, being a prevailing importance factor for
the end user when choosing between either one or another commercial vehicle model. While four-
wheelers are ahead in the adoption of these systems, the development for two-wheelers is beginning
to gain importance within the sector. This makes sense, since the vulnerability for the driver is much
higher in these vehicles compared to traditional four-wheelers. The particular dynamics and stability
that govern the behavior of single-track vehicles (STVs) make the task of designing active control
systems, such as Anti-lock Braking System (ABS) systems or active or semi-active suspension systems,
particularly challenging. The roll angle can achieve high values, which greatly affects the general
behavior of the vehicle. Therefore, it is a magnitude of the utmost importance; however, its accurate
measurement or estimation is far from trivial. This work is based on a previous paper, in which a
roll angle estimator based on the Kalman filter was presented and tested on an instrumented bicycle.
In this work, a further refinement of the method is proposed, and it is tested in more challenging
situations using the multibody model of a motorcycle. Moreover, an extension of the method is also
presented to improve the way noise is modeled within this Kalman filter.

Keywords: roll angle estimator; Kalman filter; LQR controller; inertial sensors; motorcycle lean angle

1. Introduction

Single track vehicles (STVs) present some intrinsic advantages as a mobility solution:
they are lighter, use less space, and have better fuel economy, particularly at low speeds.
These advantages make them great candidates for urban mobility. However, due to their
lack of static stability, they also present some intrinsic challenges regarding safety and
autonomous driving.

One magnitude that is of particular interest is the roll angle with respect to gravity
(i.e., with respect to the vertical), since it is the magnitude used to keep the balance of the
vehicle when it is in motion. Therefore, any control system that aims at controlling the
balance of a STV, or any advanced driving aid for human-driven vehicles, has to take the
roll angle into account. The roll angle determination has other potential applications.

For example, it is required in scientific experiments, such as those performed for
the rider control parameter identification [1] or to evaluate the maneuverability of a
motorcycle [2]. Unfortunately, there is not any means of measuring the roll angle of a STV in
an economic and reliable way. Usually, the practical approach is measuring this magnitude
indirectly through state observers, which combines the information provided by some
sensors with a mathematical model to estimate the variable of interest. Consequently, this
problem has been studied for several years, trying to improve the estimation algorithms.

There are some works using video-based approaches or distance sensors. The roll
angle measurements using these types of devices are not reliable enough to be installed
on commercial vehicles, since they are sensitive to the dirt. Moreover, they provide roll
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angle estimations with reference to the ground (video-based approaches use the horizon
line (e.g., [3]), and distance sensors use the distance to the ground).

However, in order to keep the balance of a STV, the roll angle with respect to gravity is
needed. Therefore, we will focus on works relying on inertial and odometric sensors, since
they are already widespread in the automotive field for safety applications. The reason is
that they are affordable and reliable because they do not depend on the lighting (as do the
video-based approaches), the ground properties, and geometry (as do the distance sensors),
nor the sky visibility (as does Global Positioning System (GPS)).

In [4], an extended Kalman filter (EKF) based on an analytical dynamics model was
presented. This model is quite complex, and hence it can provide a lot of information of
the vehicle; however, at the same time, the estimations rely on a correct characterization of
the multiple parameters of the model. Moreover, the parameter values have to be adapted
if applied to a different model of motorcycle. Similarly, in [5], a dynamics model of a
motorcycle is used into an observer, although the latter is an unknown-input high-order
sliding-mode observer instead of an EKF. The fuzzy logic approach has also been applied
to the estimation of the states of motorcycles using dynamical models [6].

However, whenever possible, simpler models are preferred, since they are easier to
adjust, and serve a broader range of vehicles with only minor or no tuning at all. The
following works belong to this category. In [7,8], an observer based on the frequency
separation is presented and validated. In [9], an EKF and an unscented Kalman filter (UKF)
were compared, achieving a similar level of accuracy. In [10], another EKF based on inertial
measurement was presented. It was applied to a racing motorcycle and validated on racing
tracks. All these methods, and some other similar works not cited here, are compared with
different tracks, sensors, vehicles, and riding conditions. Therefore, it is difficult to make
an objective comparison of their effectiveness.

The present work is based on the roll angle estimation method presented in [11], where
a roll angle estimator based on the EKF and angular rate measurements was validated
at low speed on a flat floor with a bicycle. Due to limitations of the experimental setup,
only low speeds were considered in leveled roads, with thin tires and no suspensions and
without knowledge of the rider motions. In order to fill the gaps left by [11], in this work, a
multibody model of a motorcycle is developed.

This multibody model is covered in Section 2, including the force models, such as
toroidal wheels, suspensions, and a rider that can move laterally to displace its torso
inwards or outwards during the turns, which are covered in Section 2.2. In order to
complete the desired maneuvers, some controllers are needed, where the drive and braking
forces are controlled by longitudinal controller, and the steer torque is governed by a
lateral controller, which is in charge of keeping the motorcycle balance while following the
predefined trajectories. These controllers are covered in Section 2.3.

Then, Section 2.4 describes the sensor models obtained from the multibody simulations.
A sequence of pseudorandom noise is added to the signal of every sensor to provide realistic
noise properties. The multibody model is run in several scenarios, which are described
in Section 2.5. Finally, two roll angle observers based on the one presented in [11] are
developed and tested in Section 3 using the noisy signals previously obtained from the
multibody simulations. The roll angle estimations are compared in Section 4 to the roll
angle obtained by the multibody simulation, which is used as the reference in this work.

2. Methods

This work is focused on the estimation of the roll angle of a motorcycle. In order to
achieve this, a multibody motorcycle model is developed. Sensor models are implemented
on the multibody model, and these data are used to run a state observer that estimates the
roll angle of the multibody model. Since the sensors of the multibody model are “perfect”,
a sequence of pseudorandom numbers is added to mimic the noise of a realistic signal.

This section deals with the description of the multibody model, including its kinemat-
ics and the main force models, namely, tire forces, suspensions, drive and brake forces, etc.
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Since the motorcycle is an intrinsically unstable system, a controller is required to maintain
the balance and follow the prescribed trajectory, which is also described in this section.
There are two more controllers: a longitudinal controller, which adapts the speed of the
motorcycle depending on the curvature of the upcoming path, and a rider controller, which
is used to control the position of the rider’s torso, which can be in a neutral position, tilting
inside the curve, or tilting outside the curve. Finally, this section describes the sensor data
obtained from the multibody model and the designed tracks where it is simulated.

2.1. Multibody Model

The model used is a seven-element assembly without closed kinematic loops, where
six elements belong to motorcycle parts, and one of them represents the driver’s torso.
As a result, a 12 Degrees of Freedom (DOF) model is obtained: six DOF from the chassis
rigid body condition, five revolute joints from the two wheels, swingarm, steer and torso
roll movement, and one prismatic joint between the fork bars and the fork bottles. All the
motorcycle elements and DOFs are represented in Figure 1.

Figure 1. Multibody model elements and DOFs.

Mass and inertia properties for each element of the model are shown in Table 1. Some
of them are taken from the bibliography [12] and other are obtained from a CAD tool.

Table 1. Mass and inertial properties of all the model elements.

Element Mass (kg) Inertia Tensor [Ix Iy Iz Ixy Ixz Iyz] (kg m²)

Chassis 165.13 6.14 12.51 8.55 0.01 −2.43 0.03
Swingarm 8 0.10 0.23 0.31 0 −0.01 0
Rear wheel 14.7 0.43 0.81 0.43 0 0 0
Front wheel 11.9 0.32 0.62 0.32 0 0 0

Steer & Fork bottles 10.21 0.23 0.11 0.16 0 −0.01 0
Fork bars 3.13 0.05 0.02 0.03 0 0 0

Torso 42 2.32 2.13 0.49 0 −0.23 0

A relative coordinates formulation was used, which is a well suited option to take
advantage of the topology of the mechanism. Each solid in the chain is defined relative to
the previous one, using algorithms to calculate kinematics and dynamics terms by means
of recursive methods. An in-depth description of this formulations is covered in [13]. The
trapezoidal rule was chosen as the integrator, with a 1 millisecond fixed time step to solve
the dynamics.
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2.2. Force Models

Some forces are taken into account to achieve a realistic behavior of the motorcycle
and its dynamics, such as gravity influence, forces from the motorcycle subsystems, such
as brakes, tires and suspensions, and different torques applied to rear wheel, to steer
mechanism and to the driver’s torso. Rear wheel torque represents power transmission as
an in-wheel hub motor would produce, steer torque represents the rider input to control
the vehicle, and torso torque aims to represent the influence of the rider’s movements in
the roll angle estimation.

2.2.1. Brake Models

The brake model employed in this research is based on the tangential force model
developed in [14], which takes into account sliding and stiction phenomena, with original
contributions from [15]. In essence, a dry friction model is used in series with a spring-
damper model. When the spring force exceeds the maximum achievable braking torque
for a given braking pressure, one of the ends of the spring is allowed to slide so that the
maximum braking force is not exceeded.

The front wheel has more braking capabilities than the rear one, as in a conventional
motorcycle, but both brakes act together when braking. The maximum brake torque
applied to each wheel is obtained by estimating the longitudinal force that the tires can
perform according to Equation (1).

Flong = μN, (1)

where μ is the tire-friction road considered, and N is the vertical force supported by the
wheel. In case of the front wheel, this force is considered to be the whole weight of the
vehicle and the driver, since in an emergency braking situation, almost all the weight rests
on the front wheel. The normal force considered for the rear wheel is the weight that it
supports when going straight and without any longitudinal acceleration.

2.2.2. Tire Models

Tire behavior and properties play a crucial role in the evaluation of the motorcycle
dynamics. In this work, toroidal tires are used, since it is a good approximation to the
behavior of motorcycle tires. They are defined with an outer radius, R, which represents
the undeformed tire outer radius, and the torus tube radius, r, which should be selected to
represent, in the most accurate way, the tire curvature near the contact patch.

Tire force models are divided between the normal force model and tangential force
model. Normal forces calculation is closely related with the contact routine used to detect
the intersection between the tire and the floor. In this research, a triangle mesh was used
to characterize the floor, and thus the first step to calculate normal forces is to solve the
contact problem between the torus and the triangle mesh. The contact algorithm between
analytic torus and the triangle mesh used in this work is described in [16]. After a wheel
contact is detected, the normal force is modeled as a spring-damper force. However, the
force of the spring-damper element is limited such that it can produce compression forces
over the road, but traction forces are not allowed.

Related to the tangential force model, part of the TMeasy tire model was applied [17],
using the same simplifications as in [18]. This is an empirical and physical tire model,
in the sense that first, curve fitting using few parameters is necessary to adjust the tire
characteristic curves, and then dynamic behaviors of the tire are considered. The model
takes into account both the longitudinal and lateral forces experienced by the tires, and
these forces are slip-dependent in both directions.

As a consequence, the effects of tire deflection affect the tire behavior when the forces
vary. This phenomenon is specially important when the vehicle moves at very low speed,
because small displacements can produce high slips. If tire deflection is not considered,
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these high slips introduce unrealistic high forces. What actually happens is that the forces
acting in the contact patch deflect longitudinally and laterally the tire as shown in Figure 2.

Fx

Fy
xe ye

Figure 2. Longitudinal an lateral deflections in a toroidal tire due to tangential forces

2.2.3. Suspension Models

The motorcycle has traditional suspension systems for this kind of vehicles. Thus, for
the front assembly, an inverted telescopic fork was chosen. For the rear frame, a monoshock
absorber links the swingarm and the chassis. In both cases, a linear spring-damper model
is used.

2.2.4. Drive Torque

The model simulates power transmission from an electric motor by introducing a
torque in the rear wheel. Torque values have a dependency with angular rate, hence
tabulated values with realistic properties are used. This torque value will be calculated by
the longitudinal motorcycle controller, which will be described in depth in Section 2.3.2.

2.2.5. Steer Torque

Steer torque is the only input used to control the lateral dynamics of the motorcycle.
It is used to control both the lateral equilibrium and to follow the prescribed trajectory. It
highly affects the forces experienced by the tires, modifying completely the whole vehicle
dynamics. This variable is managed by the lateral motorcycle controller, which will be
covered in Section 2.3.3.

2.2.6. Torso Torque

This work aims at analyzing the rider’s influence on the estimation of the vehicle roll
angle. For this purpose, a torque between the torso and chassis elements is introduced
in order to verify if the estimation is influenced by these movements. There is a specific
controller managing this torque value, and it will be explained in Section 2.3.4. In this
work, the torso controller is not used as a tool for motorcycle stabilization.

2.3. Controller Models

Since the aim of this work is to test the roll angle estimation in different conditions
and scenarios, the motorcycle model has to be able to perform in a wide variety of cir-
cumstances. To achieve that, several controllers were implemented. First, longitudinal
control manages accelerating and braking phases. Secondly, lateral control guarantees the
lateral dynamic equilibrium while following the specified trajectories. The longitudinal
controller has to be able to keep the velocity, which allows the lateral controller to perform
the desired maneuver.
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Lastly, a torso controller is used to perform maneuvers with a lean relative angle
between torso and motorcycle, inside and outside the turns, as an option.

2.3.1. Path Tracking

In order to follow a predetermined path, it is necessary to use a curve definition system
that can encode the trajectory that the motorcycle has to follow. In this work, splines are
employed. Each scenario has a finite number of splines. They are drawn using the Blender
software (Blender Foundation, Amsterdam, The Netherlands), and then their parameters
are exported to a text file to be read by the simulation program.

Then, a point referred to the chassis frame is defined, and its position is compared
to the path previously defined. This point is not necessarily coincident with the chassis.
In this work, it is ahead of the chassis position to evaluate the deviation with respect
to the trajectory in advance, as a human driver would do. This reference point position
is speed-dependent: the faster the motorcycle goes, the farther and higher the point is
found, as shown in Equations (2) and (3), where vch,x and vch,y stand for chassis velocity
components, and rpx and rpz are the coordinates of the reference point expressed in the
local reference system of the chassis (in SI units). In this work, the position of this reference
point has an important effect on the overall behavior of the controller.

rpx = 0.75
√

v2
ch,x + v2

ch,y (2)

rpz = 0.1 rpx (3)

The constants were adjusted by trial and error. The height of the reference point is also
variable with speed. This height is relevant in tilting vehicles, since it produces a lateral
displacement of the reference point when the vehicle is tilted. Once this point is defined, it
is necessary to calculate the distance between the point and the nearest spline of the track.
In this work, we calculate the distance to the spline perpendicular to the longitudinal axis
of the motorcycle model.

With this information, the position, velocity, and orientation errors can be calculated,
in order to correct the motorcycle position with respect to the desired path. These error
values are the data that the lateral controller needs to calculate the roll angle target required
to correct the motorcycle trajectory respect to the desired path. This will be addressed in
Section 2.3.3.

2.3.2. Longitudinal Controller

This controller manages the acceleration and braking phases. The longitudinal control
is designed to perform the maneuver as fast as possible, taking into account the curvature
of the trajectory and the power limits of the motorcycle. The controller evaluates the path
ahead the motorcycle 10 s in advance with respect to the reference point described on
the previous section, and thus there is enough time to start braking before arriving too
fast at a turn. This value is translated into a distance variable by means the Equation (4),
which means the position in advance is calculated taking into account the current speed of
the motorcycle.

xi+tpreview = tpreview vi (4)

Once the position in the spline is known, the maximum speed is obtained in relation
to the curvature of the path (κ), by means of the steady-state cornering equilibrium equa-
tion [19], expressed in Equation (5), where φmax stands for the maximum roll angle the
motorcycle can achieve, which is a configuration parameter for the controller.

Vmax =

√
g tan φmax

κ
(5)

The value of Vmax cannot achieve infinite values and is limited to a max value, which
is a configuration parameter. Once known, the current speed is evaluated against it, and the
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controller will accelerate if the current speed value is lower than Vmax, or will brake if the
motorcycle speed is too high. Both of the actions are managed by proportional controllers,
as shown in Equations (6) and (7).

accel = Kacel (Vmax − Vi) (6)

brak = Kbr (Vi − Vmax) (7)

When accelerating, the value of accel is translated into a rear wheel torque, taking into
account tabulated torque values and the wheel angular rate. When braking, the value of
brak is transformed into brake torque in both wheels, but with different values, since the
brake power capabilities are different, as mentioned before.

2.3.3. Lateral Controller

In order to obtain full stability during maneuvers, a lateral controller was implemented.
For this purpose, a Linear Quadratic Regulator (LQR) controller [20] was used, and a good
behavior was achieved. Since the LQR controller requires a dynamic model in state-space
form, the motorcycle multibody model was adapted into a Whipple model, and thus
the initial seven-solid model is transformed into a four-solid model, as described in [21].
Model adaptation is shown in Figure 3. From the Whipple model, only the lateral dynamics
are used.

Figure 3. Multibody model transform to Whipple’s model.

Linearized dynamic equations of the model are expressed by Equation (8), where M,
C1, K0 and K2 are obtained from a set of 25 parameters of the motorcycle (see Table 2),
q = [φ δ]� is a vector that contains roll (φ) and steer (δ) angles, f = [Tφ Tδ]

� is a vector that
contains roll and steer torques (the roll torque is considered to be null in this work), and
g and v stand for gravity acceleration and forward velocity, respectively. The employed
values are shown in Table 2.

Mq̈ + vC1q̇ + [gK0 + v2K2] q = f (8)

Equation (8) can be expressed in state-space form as shown in Equations (9) and (10),
where u is the input vector, x is the state vector and y is the system output.

ẋ = Ax + Bu (9)

y = Cx + Du (10)
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Table 2. Whipple’s model parameters employed.

Parameter Symbol Value, Unit

wheelbase w 1.3295 m
trail c 0.0696 m
steer axis tilt λ 0.4363 rad
gravity g 9.81 m/s²
forward velocity v 20 m/s

rear wheel
radio rR 0.3069 m
mass mR 14.7 kg
mass moments of inertia (IRxx, IRyy) (0.4332, 0.8134) kg m²

front wheel
radio rF 0.2819 m
mass mF 11.9 kg
mass moments of inertia (IFxx, IFyy) (0.3265, 0.6209) kg m²

rear body, chassis and torso
position center of mass (xB, zB) (0.6344, −0.4741) m
mass mB 215.13 kg

mass moments of inertia
⎡
⎣IBxx 0 IBxz

0 IByy 0
IBxz 0 IBzz

⎤
⎦

⎡
⎣ 22.3589 0.0197 −2.0664

0.0197 29.6528 0.0316
−2.0664 0.0316 10.3619

⎤
⎦ kg m²

front handlebar and fork assembly
position center of mass (xH , zH) (1.0669, −0.7446) m
mass mH 13.3516 kg

mass moments of inertia
⎡
⎣IHxx 0 IHxz

0 IHyy 0
IHxz 0 IHzz

⎤
⎦

⎡
⎣ 0.4221 −0.0002 −0.1112
−0.0002 0.3457 0.0002
−0.1112 0.0002 0.2722

⎤
⎦ kg m²

As Equation (8) is second order with respect to time and Equation (9) is first order,
some changes are necessary. Taking f = [0 Tδ]

�, x = [q q̇]� and its derivative as ẋ =
[q̇ q̈]�, Equation (11) is obtained.

[
q̇

q̈

]
=

[
02×2 I2×2

−M−1[v2 K2 + g K0] −M−1 v C1

][
q

q̇

]
+
[
0 0 0 (−M−1)2,2

]�Tδ (11)

Once the parameters of Table 2 are calculated, M, C1, K0 and K2 can be obtained. The
following values are the ones employed on this work.

M =

[
81.6343 4.2211
4.2211 1.0320

]
K0 =

[−119.8071 −8.7515
−8.7515 −3.6985

]
(12)

K2 =

[
0 84.9797
0 6.6004

]
C1 =

[
0 60.8120

−2.2266 5.8313

]
(13)

To ensure system stability, state feedback is used, defining the system input as a negative
feedback of the state, as in Equation (14), finding a K matrix that stabilizes the system.

u = −Kx (14)

Stabilization is achieved if the real parts of all eigenvalues of the system matrix are
negative. Thus, Equation (9) can be combined with Equation (14), obtaining:

ẋ = Ax − BKx = (A − BK)x (15)
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Now, system stability is determined by the eigenvalues of A − BK, and thus a K

matrix can be calculated with the values that ensure stability, since A and B are constants.
In LQR controllers, the value of K is the one that minimizes the following cost function:

J =
∫ ∞

0

(
xTQx + Ru2

)
dt (16)

The function combines the quadratic values, integrated over time, of the magnitudes
that should be minimized: the states and the control inputs. Each of them is weighted by a
term, Q for the states and R for the input. The values of this terms can be adjusted in order
to assign more weight to the control effort (increasing R value), or penalizing more the
state errors by increasing the values of Q.

The trajectory of the motorcycle can be controlled through its roll angle φ, and thus
we need to set it to a certain value at every time step. However, the LQR controller defined
thus far is only a regulator, i.e., it drives the states to zero. Since the resulting system is
of type 0 [20], we need to transform it into a type 1 system, in order to make it capable to
track a reference value of the roll angle. This can be achieved by adding an integrator at the
input. Therefore, the system size increases, as a new state is added, ξ, which is the integral
of the tracking error, which means the integral of the difference between the controller
target (r) and its output (φ). The input u changes its value to:

u = −Kx + kI ξ (17)

and the value of ξ should be calculated during the runtime as shown in Equation (18),
where dt is the simulation time step.

ξi = ξi−1 + dt(r − φ) (18)

Hence, the system turns into Equation (19):

ẋ′ =
[

ẋ

ξ̇

]
=

[
A − BK BkI
DK − C −DkI

][
x

ξ

]
+

[
0

1

]
r (19)

where x′ is the augmented state vector, and ẋ′ is its derivative:

x′ =
[
φ δ φ̇ δ̇ ξ

]� (20)

We can now define K′ =
[
K −kI

]
. Therefore, we can rewrite Equation (17) as follows:

u = −K′x′ (21)

The values of Q and R used in this work for Equation (16) are:

Q =
[
0 0 1 × 10−1 0 500

]� , R = 1 × 10−4 (22)

These values were adjusted by trial and error to obtain a realistic behavior.
The K′ values obtained for a 20 m/s forward velocity can be seen in Equation (23). It

was not necessary to calculate K′ values for different velocities, as could be expected, since
the controller works fine with the values obtained for the forementioned velocity for all the
speed range used in this work.

K′ = 1 × 103 [−1.1768 0.1063 −0.2079 0.0189 2.2361
]

(23)
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Now, the controller target, which represents the control input (u), should be assigned.
Hence, some terms are calculated, such as position (ui), velocity (vi), and angular errors
(αi) between the motorcycle position and the spline curve:

ui = cos ψ (ysp − yrp)− sin ψ (xsp − xrp) (24)

vi = spn × rpvel (25)

αi = α − ψ (26)

where ψ stands for the yaw motorcycle angle, xsp and ysp are the spline coordinates, xsp
and ysp are the reference point coordinates mentioned in Equations (2) and (3), spn is the
spline normal vector, rpvel is the reference point velocity, and α is the angle of the spline
tangent vector. With these values,

K1 = −k1 ui (27)

K2 = −k2 vi (28)

K3 = −k3 αi (29)

Finally, the roll target expression is obtained:

φtarget = K1 + K2 + K3 (30)

The steer torque expression becomes:

τsteer = −K′ x′ + kd vsteer (31)

The second term in Equation (31) acts as a steer damper, in order to minimize all the
small instabilities coming from different sources (contact forces, tire forces, controller, etc.),
achieving a better performance without becoming slow on response. The variable vsteer
refers to the steer velocity, while kd is a damping coefficient, which, in our case, takes a
value of 10 Ns/rad.

2.3.4. Torso Controller

Torso roll movement has a capital influence on the motorcycle dynamics, since it
changes the center of mass of the vehicle. If the torso goes inside a turn, the motorcycle
lean angle can be reduced, whereas going outside instead forces the motorcycle to increase
its roll angle to tackle the same turn at the same speed. In order to analyze this effect
in the estimator, a torso controller was implemented. The controller allows to configure
three different positions as seen in Figure 4: inside position, neutral position, and outside
position.

αobj

αobj

Figure 4. Inside, neutral, and outside configurations in a torso controller.
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In the neutral position, the torso has no influence in the maneuver, since it stays
aligned with the motorcycle. On the other hand, the inside and outside positions modify
the relative angle between the torso and the motorcycle, changing the center of mass
position. The input angle for the controller is defined by Equation (32).

αobj = 0.5 F φ (32)

where φ is the vehicle roll angle, F is a factor that can take three values: 0 for a neutral
position, 1 for an inside position, and −1 for an outside position. The 0.5 was used in this
work, but other values could be used if more or less rider lean is desired. Once obtained, a
PD controller can be defined as:

τtorso = K ε − C α̇torso (33)

ε = αobj − αtorso (34)

Proportional (K) and derivative (C) term values used in this work are 1.5 × 103 and
1 × 103.

2.4. Sensor Models

As described in [11], it is assumed that wheel speed sensor and angular rate measure-
ments are available. These sensors are already available in many commercial motorcycles.
Sensor data is built from the values of the multibody simulation.

In order to obtain vehicle forward speed, a wheel speed sensor is employed. Through
it, longitudinal speed can be easily estimated by Equation (35). Values from any wheel can
be taken, since there is no significant difference between them, except during aggressive
accelerating or braking phases. When the wheel slides, the speed estimation will not be
correct. Moreover, when the vehicle is tilted, the effective radius of the wheel is reduced.
The multibody simulation used in this work can represent these two situations.

vlong = ωwheel rwheel (35)

An Inertial Measurement Unit (IMU) sensor was modeled in order to obtain angular
rate measurements from the chassis element. The sensor is attached to the chassis reference
frame, but in order to obtain the correct measurements, the IMU longitudinal axis should
be aligned with the roll axis of the vehicle. This is particularly important since if this
condition is not fulfilled, angular rate values will not be the correct ones. A rotation matrix
can be applied to the sensor system reference in order to fix the possible wrong alignment
between the IMU axis and the longitudinal axis of the motorcycle. This can be seen in
Figure 5. Through Equation (36), the right angular rate values can be obtained.

ωIMU = R�
IMU R�

ch ωch (36)

where RIMU is the rotation matrix of the IMU relative to the chassis reference system,
and Rch is the rotation matrix of the chassis reference system with respect to the global
axes. Even if the IMU is perfectly aligned when the motorcycle goes at constant speed in
straight line, there will be some situations in which the axis coincidence condition will not
be fulfilled.
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ZIMU

XIMU

Xch

Zch
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Figure 5. IMU position adjust.

For example, during a turn, when the motorcycle leans, the wheel contact points
change their position due to the width difference between the two tires (in this case, as
usual, the rear tire is wider than the front one). When the steering is turned, the front wheel
contact point changes due to the fork trail, which also leads to a misalignment. Suspension
movements can also produce similar effects. In all of these situations, an error between the
IMU longitudinal axis and the motorcycle roll axis is expected, but it is an unavoidable fact.

In the case of both sensors, in order to achieve a more realistic situation, some additive
random noise is added to the data in order to mimic real sensor characteristics. The
noise is modeled as additive Gaussian white noise. However, neither the plant nor the
measurement white noise. Therefore, for both sensors, values employed in the estimator
(obs) are obtained through the simulation ones (mb) as:

ωobs
IMU = ωmb

IMU + NIMU (37)

ωobs
ws = ωmb

ws + Nws (38)

where NIMU and Nws are pseudorandom numbers following a normal distribution with 0
mean, which simulate the noise of the IMU and the wheel speed sensor, respectively. In the
case of the IMU, the standard deviation used for the simulated noise is 9.839 × 10−4 rad/s
(this value was obtained from a measurement taken with a low-cost IMU). For the wheel
speed sensor, since no data was available, a conservative estimation of 1 m/s was taken for
the standard deviation of the sensor noise.

2.5. Scenarios and Maneuvers

The results from the previous work shown in [11] were obtained for a bicycle with
no suspensions. Therefore, the results were only verified for low speed, thin tires, and
without suspensions. Moreover, due to the experimental setup, the motion of the rider
was unknown, and the measurement of the roll angle for verification purposes could only
be performed on flat surfaces. Since this work is based on a simulation, both the scenario
slope and bank angle can be controlled, and every magnitude can be measured, including
the motion of the rider, which is part of the model. Some scenarios were built in order
to test the estimations. The goal is to check the behavior of the estimator in all kind of
situations, such as level grounds, slopes or bends. With this in mind, six scenarios are
proposed, as shown in Figure 6: three with level ground and another three with slopes
and/or bank angles.
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Level ground scenarios

Grade change scenarios
Straight track Circular track DLC track

Slope track Car park track Bend track

Figure 6. Scenarios created to test the estimator behavior.

The level ground scenarios are the Straight track, Circular track, and DLC track scenarios,
while the Slope track, the Car park track, and the Bend track are non-planar tracks.

The Straight track is actually an oval track with two 2 km long straights, intended
to study high-speed maneuvers and the transition from straight to turn. The Circular
track is almost circular (it was approximated by four splines, and thus it is not a perfect
circumference) to verify the steady-state cornering behavior of the observer. In this case,
it has a radius of 50 m. The DLC track is also an oval track, but it features a double lane
change in one of its straights.

When considering the non-planar tracks, all of them are ovals. The Slope track has two
large bumps on each straight. Each one reaches a height of 6.5 m over a length of 38.4 m,
which gives an average slope of 17%. After they reach their maximum height, they go back
to the base level. The Car park track has an ascending slope combined with a turn, with a
trajectory resembling a screw thread. The slope of this part is 22%. After that, there is a
straight descent with a slope of 18% until the initial level is achieved. Finally, the Bend track
is a flat circuit, but with a bank angle of 15◦. The range of speeds used for the maneuvers
reproduced in every scenario are shown in Table 3. The full data set obtained from the
simulations is provided as supplementary material with this paper.

Table 3. Speeds used for the maneuvers in every test track (in m/s).

Track Minimum Speed Average Speed Maximum Speed

Straight 29.00 38.15 50.00
Circular 15.00 15.88 16.21

DLC 10.00 19.38 23.00
Slope 5.79 12.62 16.41

Car park 3.84 8.41 15.00
Bend 8.78 11.58 15.00

3. Roll Angle Estimator

The tool described in this section aims at estimating the roll angle of a STV with respect
to gravity. To achieve that, it is assumed that the data from previously described sensors
are available. Those sensors are affordable and easy to install on a vehicle, but they do not
provide any direct measurement of the roll angle. To resolve this issue, information from
both sensors and knowledge from the system has to be blended. In this work, a Kalman
filter algorithm is employed to develop two variants of the roll angle estimator.

3.1. The Kalman Filter

The Kalman filter is a stochastic estimator that combines predictions from a model
with measurements coming from sensors. The equations of the discrete version of Kalman
filter are reproduced here. The reader interested in a deeper understanding of the Kalman
filter is referred to any of the books on the topic, such as [22,23].
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The filter runs in two stages: prediction and correction. During the prediction phase,
the state x and the covariance matrix of its estimation error P are propagated by means of
the model:

x̂−k = Fx̂+k−1 + Guk−1 (39)

P−
k = Fk−1P+

k−1F�
k−1 + ΣP (40)

where F stands for the transition model of the system, G is the input matrix, x̂−k is the
estimation of the state vector in time step k before the measurement is applied, x̂+k−1 is the
estimation of the state vector of the k−1 time step after the corresponding measurements
were applied, and uk is the input of the system. If measurements from sensors are available,
they are used at the correction phase to improve the estimation from the prediction stage.

First, innovation ỹ is calculated as the difference between the measurements from
sensors (ok) and the expected sensor readings according to the model (Hx̂−k ). Kalman gain
(K) and the innovation covariance matrix (S):

ỹk = ok − Hx̂−k (41)

Sk = HP−
k H� + ΣS (42)

Kk = P−
k H�S−1

k (43)

The value of S represents the uncertainty in the system state projected via the sensor
function (HP−

K H�) plus an additional uncertainty, ΣS, due to the sensor noise. Finally, the
estimation of the state and its covariance are updated by means of the Kalman gain:

x+k = x−k + Kkỹk (44)

P+
k = (Ig − KkH)P−

k (45)

If measurements from sensors are not available, the correction stage is omitted.

3.2. Dynamical Model of the Filter

The model employed by the filter has two states: the roll angle and the bias of the
angular rate sensor along the body fixed x-axis. The relationship among the angular rates
measured by the body-mounted angular rate sensors (ωB

b , ωB
y , ωB

z ) and the time derivative
of the roll (φ̇), pitch (θ̇), and yaw (ψ̇) angles of the vehicle body follows from:

R�Ṙ = ω̃B =

⎡
⎣ 0 −ωB

z ωB
y

ωB
z 0 −ωB

x
−ωB

y ωB
x 0

⎤
⎦ (46)

and can be expressed as:

φ̇ = (ωB
y sin φ + ωB

z cos φ) tan θ + ωB
x (47)

θ̇ = ωB
y cos φ − ωB

z sin φ (48)

ψ̇ =
ωB

y sin φ + ωB
z cos φ

cos θ
(49)

Assuming a small pitch angle, |θ| ≈ 0, Equation (47) becomes:

φ̇ ≈ ωB
x (50)

The bias (bx) of the x angular rate sensor (ωB
x ) can be modeled as a random walk, i.e.,

assuming that it is constant and that the variations are produced by the plant noise. Once
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bx is known, ωB
x can be corrected. Therefore, after applying the forward Euler integration

method, the dynamic model of the filter becomes:

[
φ̂

b̂x

]−
k
=

[
1 −dt
0 1

][
φ̂

b̂x

]+
k−1

+

[
dt
0

]
ωB

x,k−1 (51)

where the states at the present time step k are expressed as a function of the states and the
inputs of the previous time step k − 1, being dt the integration time step. In the previous
equation we can identify the system and input matrices (F and G) as follows:

F =

[
1 −dt
0 1

]
(52)

G =

[
dt
0

]
(53)

3.3. Absolute Measurements of the Roll Angle

In the correction stage of this Kalman filter, absolute measurements of the roll angle
are needed. None of the sensors considered in this work provides a roll angle measurement,
therefore, a model was built from the sensor measurements, and employed as absolute roll
angle measurement. This is the measurement employed at the Kalman filter correction
stage, denoted as ok in Equation (41). The model is the same as described in [11], and
is created by combining two ways of obtaining a roll angle estimation, coming from
two different assumptions. The first one is obtaining from the steady-state cornering
equilibrium, which will be referenced as φd on this work:

φd = arctan
(

ψ̇v
g

)
(54)

where v is the forward vehicle speed (obtaining from wheel speed sensor), g is the gravity
acceleration, and ψ̇ is the yaw velocity, which is assumed that ωB

z (obtaining from IMU)
is an enough accurate estimation. This method works well for small roll angles on level
roads, but it tends to underestimate the roll angle in more realistic conditions due to the
gyroscopic effect and the thickness of the tires, which are not considered in this model.

On the other hand, roll angle can be obtained under a null pitch rate condition, which
means the Equation (48) becomes:

0 = ωB
y cos(φ)− ωB

z sin(φ) (55)

and then, the another estimation of the roll angle, referenced as φω in this case, can be
calculated as:

φω = arctan

(
ωB

y

ωB
z

)
= sgn(ωB

z ) arcsin

⎛
⎝ ωB

y√
(ωB

y )
2 + (ωB

z )
2

⎞
⎠ (56)

where sgn(ωB
z ) is the sign of the z angular rate. This method is more convenient for greater

roll angles because the predicted roll tends to oscillate around the true value, although is
noisier than the steady-state based one. In order to take the best from both estimations, they
are combined using a weighted mean. The weighing function changes its value depending
on the last available estimation provided by the equations of the steady-state cornering
equilibrium, φd.

This is the main difference with respect to the method employed in [11], where the last
estimation provided by the Kalman filter (φ̂) was used instead. The change was motivated
because it was seen that, in some cases, an instantaneous wrong angle estimation could
lead to a inadequate weighting value, which could eventually make the estimation diverge
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definitively from the true value. In this work, the weighting function, which can be seen in
Figure 7, is defined by:

W = exp

(
−φ2

d
φ̄2

)
(57)

where φ̄2 is a constant value that can be used to adjust the behavior of the weighting
function. In this work, a value of φ̄2 = 0.04 was used, with the dynamically estimated roll
angle φ2

d expressed in radians.

 (°)

W

Figure 7. Shape of the weight function used to combine the two estimated measurements of the
roll angle.

Therefore, the roll angle measurement ok to be employed in Equation (41) is φm, built
as weighted combination of φd and φω:

φm = Wφd + (1 − W) φω (58)

Since this measurement is the same magnitude than the first component of the state
vector, the output matrix H results as follows:

H =
[
1 0

]
(59)

3.4. Adaptation of the Kalman Filter for Colored Noise

The Kalman filter was formulated assuming that the noise affecting both the plant
and the measurements is additive white Gaussian noise. However, neither the plant
nor the measurement noises are white for the models used in this work. Instead, the
lower frequencies are predominant in both noises (for instance, if the measurement is
overestimating the roll angle at a given moment, it is more probable than the next time step
it will be also overestimating it). This kind of behavior, usually known as colored noise,
can be modeled as follows [22]:

Cni+1 = W × Cni + Wni (60)

where the subindex i represents the time step, Cn is the colored noise, Wn is the white
noise, and W is a parameter that can take any value from 0 to 1 to modulate the influence
of the previous value of the noise. If W = 0, the model would produce white noise. If W = 1,
the noise would behave as a Markov model. If we introduce this noise model for the noise
of the roll angle of the dynamic model of the Kalman filter, and also for the noise of the
sensor, the resulting filter matrices will be as follows:

F′ =

⎡
⎢⎢⎣

1 −dt 0 1
0 1 0 0
0 0 W1 0
0 0 0 W2

⎤
⎥⎥⎦ (61)
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G′ =

⎡
⎢⎢⎣

dt
0
0
0

⎤
⎥⎥⎦ (62)

H′ =
[
1 0 1 0

]
(63)

where F′, G′, and H′ are the system, input, and output matrices of this augmented filter, re-
spectively, W1 is the weighting parameter of the measurement noise, and W2 the weighting
parameter of the plant noise (applied only to the first state of the filter). When this model
is applied, the measurement noise is incorporated into the colored noise, and, therefore,
the covariance matrix of the measurement noise should be set to zero. Other than that, the
method is identical to the previous one.

4. Results and Discussion

One of the key aspects of the performance of a Kalman filter is a proper adjustment of
the values of the plant and the measurement noise covariance matrices. In the algorithm
presented in this work, the weighting parameter for the measurement estimation also has
to be set. Moreover, in the filter adapted to deal with colored noise there are two additional
parameters, i.e., the weights used to model low frequency component of the noise. In this
work, this tuning process was made by trial and error, seeking the minimization of the
Root Mean Square Estimation Error (RMSEE) of the worst maneuver. The parameters used
in this work are shown in Table 4.

Table 4. Values of the parameters used in this work (in SI units). In this work, both the simple Kalman filter presented
here, and the previous version in [11] were used with the same parameters for a fair comparison. Note that the ΣS for
the Kalman filter for colored noise is null. The reason is that the measurement noise is contained in the third row of the
plant noise.

Parameter ΣP ΣS φ̄2 Noise Weights

Kalman filter
[

5 × 10−7 0
0 1 × 10−8

]
1.5 0.04 -

Kalman filter for
colored noise

⎡
⎢⎢⎣

1 × 10−6 0 0 0
0 1 × 10−8 0 0
0 0 0.5 0
0 0 0 1 × 10−6

⎤
⎥⎥⎦ 0 0.04 W1 = 0.8 W2 = 0.5

The results obtained for all the six tests scenarios are shown in Figure 8. The numeric
results of the RMSEE for both methods are shown in Table 5. The method as described
in [11] is also added to the comparison. In all these tests, the rider kept a neutral position.
The results are very good for all the maneuvers with flat floor, with a RMSEE below 1◦ for
all estimation methods. The maneuvers on inclined floors are a harder challenge for the
estimator, mainly the Car park ramp track and the Bend track. In these maneuvers the RMSEE
are around 2.5◦, with the Kalman filter for colored noise having slightly better estimations
for both maneuvers.

With different parameters, the results of both maneuvers can be improved, but improv-
ing the results in one of the maneuvers would produce deterioration of the performance
on the other. The estimation at the Car park ramp track is, in general, good, but the accuracy
degrades after the turns. This might be because the bumps of this track start after the turns
and the motorcycle goes over them when it is still leaned, thus degrading the performance
of all the indicators, because neither the pitch nor the pitch rate are null.
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Figure 8. Estimated roll angle and roll angle error for the six different scenarios. All of these tests
were performed with the rider in a neutral position. The reference is the black solid line, the red
dash dotted line is the Kalman filter as presented in [11], the green dotted line is the variation of
that Kalman filter presented here, and the blue dashed line represents the Kalman filter adapted for
colored noise.
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Table 5. Root mean square estimation errors for the three estimation algorithms on the six scenarios
(in degrees).

Maneuver Straight Circular DLC Slope Car Park Bend

Kalman filter as
in [11]

0.60 0.12 0.91 1.21 2.50 2.71

Kalman filter 0.69 0.27 0.71 0.90 2.81 2.28

Kalman filter
for colored
noise

0.78 0.11 0.82 1.05 2.34 2.35

The estimation method as presented in [11] provides good estimations in general,
but it seems to be less robust than the new variations, as can be seen in the plots for the
maneuvers in the Slope track and Bend track, where some short but important deviations
can be appreciated. The risk with this method is that a temporal wrong estimation can lead
to an inadequate weighting value to combine the two roll angle estimations used at the
correction phase of the filter. This can potentially turn into a positive feedback that could
make the estimation diverge from the true value.

The Kalman filter adapted for colored noise produces the best worst-case scenario
estimations, but only by a narrow margin, and it is not the best in all the maneuvers.
Moreover, it is more difficult to adjust because it has more parameters to tune, and thus it
does not have any practical advantage in its current form.

Nevertheless, there is a potential benefit from using the colored noise adaptation for
the filter, although it is not explored in this work. Since the characterization of the noise is
improved, the statistical characteristics of the innovation sequence would be improved as
well, thus allowing to use innovation-based adaptive Kalman filters, which should be able
to improve the performance of the method for all the maneuvers that have now the worst
estimation results. It was recently shown that innovation-based Kalman filters can work
reasonably well even if the statistical properties of the noise are not perfect, and even with
nonlinear models [24].

Another point that we wanted to address with this work was the influence of the rider
position on the roll angle estimation error. For the sake of conciseness, only the Circular
track was studied. Therefore, three simulations were run on this track, the only difference
being the driver keeping its neutral position, leaning inwards, or leaning outwards. The
results are shown in Figure 9, and the numerical results of the RMSEE are shown in Table
6. As expected, when the rider tilts inwards, the roll angle to perform a given maneuver
is reduced, and the opposite happens when the rider leans outwards. Regarding the roll
angle estimation accuracy, the difference between the different rider positions does not
produce any significant perturbation.

Table 6. Root mean square estimation errors for the three estimation algorithms on the Circular track
with the rider in neutral position, leaning inwards, and leaning outwards (in degrees).

Maneuver Neutral Inwards Outwards

Kalman filter as in [11] 0.12 0.13 0.12

Kalman filter 0.27 0.28 0.28

Kalman filter for colored noise 0.11 0.10 0.17
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Figure 9. Estimated roll angle and roll angle error for the Circular test track. The left plot represents
the maneuver with the rider in a neutral position, the central plot represents the rider tilting inwards
during the turn, and the right plot represents the rider tilting outwards during the turn.

5. Conclusions

This paper is based on the roll angle estimation algorithm presented in [11], where it was
first presented and tested at low speed with an instrumented bicycle. However, due to technical
limitations of the experimental setup, part of the validation could not be performed. This work
aims at verifying the performance of the roll angle observer in more challenging conditions.
In order to achieve this goal, a multibody model of a motorcycle was developed, including
toroidal-shaped wheels to consider the displacement of the contact point with wide tires. The
multibody model also considers the suspensions, whose movement produces misalignments
that could potentially degrade the performance of the roll angle observer. In addition, non
planar scenarios modeled as triangle meshes, and rider motion were also considered. Finally,
higher speeds than those considered in [11] were tested here.

The multibody model, governed by a longitudinal controller in charge of keeping an
adequate speed and by a lateral controller used to keep the balance of the motorcycle and
follow the prescribed trajectories, performed maneuvers in six different scenarios. From
these maneuvers, some measurements were obtained, mimicking the properties of actual
sensors by adding some white Gaussian noise. These measurements were used to verify the
performance of the state observer, which was slightly modified to improve the robustness.

Moreover, an augmented version of the observer was devised to deal with the colored
noise present at the plant and measurements used at the Kalman filter. Although this last
observer provided slightly better results than the simpler version assuming white noise,
the improvement is so subtle that in its current state, it would not be justified its practical
use, given the more difficult tuning process and the increase in the size of the problem.

However, this new observer should provide (with the proper parameter tuning) statistical
properties more consistent with the theoretical assumptions made to develop the Kalman
filter. Therefore, the innovation sequence of the Kalman filter could be used to implement
an innovation-based adaptive Kalman filter, which, in turn, should provide better estimation
results, specially for the maneuvers that have the worst results in the present paper.

Supplementary Materials: Data from the simulations are provided as supplementary material at
https://www.mdpi.com/article/10.3390/s21196626/s1. The data are organized in .csv files, and a
text file (readme.md) provides the description of the data.
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Abstract: The idea of SLAM (Simultaneous Localization and Mapping) being a solved problem
revolves around the static world assumption, even though autonomous systems are gaining envi-
ronmental perception capabilities by exploiting the advances in computer vision and data-driven
approaches. The computational demands and time complexities remain the main impediment in the
effective fusion of the paradigms. In this paper, a framework to solve the dynamic SLAM problem
is proposed. The dynamic regions of the scene are handled by making use of Visual-LiDAR based
MODT (Multiple Object Detection and Tracking). Furthermore, minimal computational demands
and real-time performance are ensured. The framework is tested on the KITTI Datasets and evaluated
against the publicly available evaluation tools for a fair comparison with state-of-the-art SLAM
algorithms. The results suggest that the proposed dynamic SLAM framework can perform in real-
time with budgeted computational resources. In addition, the fused MODT provides rich semantic
information that can be readily integrated into SLAM.

Keywords: semantics; 3D multiple object detection; multiple object tracking; dynamic SLAM

1. Introduction

In the realm of robotics, the SLAM paradigm is a well-established research area. Even
though there are several efficient solutions to the problem, most of the approaches rely
on the static world assumption [1]. The use of current algorithms in a real-world setting,
where a dynamic and unstructured environment is a given, is hampered by this assumption.
Although the advances in data driven approaches have enabled near-real-time environ-
mental perception, and have shown promising performances [2,3], real-time requirements
become a hurdle in resource-constrained computing platforms. Incorporating the semantics
information from the environment into a geometric SLAM formulation also necessitates
a 3D-pose of the detected objects, as well as semantic segmentation [4–6], which further
adds to the complexity [4–6]. The learning-based techniques inherently necessitate bulky
computing resources to meet the real-time requirements. The SLAM techniques that utilize
such approaches require a lot of computing power or cannot guarantee real-time operation.

The objective of this work is to effectively merge the two broad paradigms of SLAM
and 3D MODT, such that both complement the individual findings while being capable
of performing independently. The feature based visual SLAM approaches rely on feature
tracking to estimate the camera pose over time. Unless the region of visual feature is highly
dynamic, it is hard to categorize and filter the features pertaining to the dynamic regions.
Thus, if left untreated, the information pertaining to dynamic regions of the scene gets
incorporated in the pose estimation process, which leads to an inaccurate SLAM system.
Traditionally, semantic segmentation masks are provided alongside the image to enable
SLAM for an informed selection of visual features at the early stage. This process is however
computationally demanding and real-time constraint is often compromised. Furthermore,
the semantic segmentation only provides class labels and contour of the detected objects.
Hence, there is a need for an alternate approach that can effectively provide equivalent
semantic information of the environment without demanding extraordinary computational
demands and that can guarantee real-time operation.
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The capability of detecting and avoiding information related to the dynamic objects
in the environment for mapping and localization purposes is the concept underlying the
term dynamic SLAM. The dynamic objects are often considered as outliers, and the outlier
rejection techniques such as RANSAC are employed to filter such data. In the literature,
several attempts are made to deal with the presence of dynamic objects under feature-
based SLAM [7–10] and direct SLAM approaches [11–14]. The further categorization
of dynamic SLAM is based on the type of semantics integration adopted. The loosely
coupled approaches [8,15–18] perform environmental perception and SLAM separately.
On the other hand, tightly coupled approaches solve both problems in an integrated
fashion [19–25]. Both approaches have their pros and cons, but the core issue boils down
to the computational resource requirements of perception and real-time capability of the
entire framework, which is largely left unattended.

The proposed framework operates on a Visual-LiDAR setup that provides calibrated
and time synchronized inputs. The core of the framework is a lightweight neural network
model that takes the image sequence from camera and produces classification and local-
ization of objects in the image frame. LiDAR data, on the other hand, and treated by the
MODT module, which clusters and tracks the potentially trackable objects. The sensor
fusion module utilizes the tracking information to associate visual classifications with
tracked clusters. The classified point pertaining to the tracked dynamic objects is projected
onto the image frame and up sampled to form a dynamic region mask. The mask of the
dynamic region coupled with the image is provided to visual the SLAM module. This
enables the SLAM module to make an informed selection of visual features by avoiding
the features pertaining to the dynamic regions of the scene.

The key contributions in this work are the semantic mask generation, point cloud
classification, visual-LiDAR based MODT, visual features selection in SLAM, and the
integration of SLAM and MODT. The mask is generated by fusing the information from
the visual detector and LiDAR based tracker. Instead of frame-wise classification of the
LiDAR point cloud, the tracked clusters are temporally classified using visual detection
information. The SLAM module can make effective use of masks by avoiding the features
pertaining to dynamic regions of the scene.

To evaluate and analyze the effect of the proposed dynamic SLAM framework, a com-
parison is made between basic ORB-SLAM2 [26] and the proposed MODT based dynamic
SLAM framework. The Tracking KITTI Datasets [27] are used for fair evaluation against the
provided ground truths over well-established evaluation metrics. The results suggest that
the proposed approach is an effective solution for the dynamic environments. Furthermore,
the framework is evaluated over selected sequences of Raw KITTI datasets [28] are for
comparison with state-of-the-art dynamic SLAM approaches.

The remainder of the paper is structured as follows: in Section 2, related works are
briefly described. In Section 3, an overview of the framework is presented. The proposed
methodology is introduced in Section 4. The evaluation results and comparison with state
of the art are laid down in Section 5, followed by conclusions in Section 6.

2. Related Works

In recent years, several attempts have been made to address the dynamic SLAM
problem by integrating semantics and environmental perception in SLAM. A feature-
based SLAM paradigm [7] projects the map features onto the current frame to classify
the dynamic part of the scene. Three-dimensional object tracking is performed in [8] to
identify dynamic objects in the scene. Similarly, detection and tracking approaches are
proposed in [9] but are restricted to humans being the dynamic objects. The technique
proposed in [10] assigns probabilistic weights to the objects, based on the class. The direct
SLAM approaches for dynamic environments have also been proposed [11–14]. The stereo
camera-based scene flow representation is utilized in [11] to detect moving objects. RGB
optical flow-based segmentation is performed in [12]. A method is proposed in [13], that
exploits consecutive depth images to differentiate static and dynamic parts of the scene.
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Similarly, the work in [14] focuses on the intensity difference of the consecutive RGB images.
The above-mentioned approaches consider the assumption that the dynamic object in the
scene remains dynamic for the entire view time. Consequently, the dynamic object at
rest is still considered static, which eventually becomes a part of the mapping process.
The advances in the deep learning paradigm have enabled prior classification of dynamic
objects based on the classes. References such as [8,9] can detect and classify the dynamic
objects; however, detection of changes produced in the environment by static objects is still
challenging. A fusion of multi-view geometry and deep learning techniques caters to such
shortcomings [29,30].

The MODT integrated SLAM paradigm can broadly be classified into the categories
of Loosely Coupled and Tightly Coupled approaches [25]. The loosely coupled approaches
perform MODT and SLAM separately, whereas tightly coupled approaches operate in an
integrated fashion [19–25].

Conventionally MODT based SLAM approaches are loosely coupled [8,15–18] and
solve MODT and SLAM separately. An implementation in [8] tracks 3D objects and exploits
the information provided by the SLAM, and the tracker allows the features pertaining to
the objects. A derivation of the Bayes formula of SLAM with tracking of moving objects is
devised in [15]. A graph-based approach in [16] makes use of Expectation Maximization,
allowing the landmarks to be dynamic. A dense mapping algorithm is proposed in [17] that
reconstructs the static background and the dynamic objects in the scene using stereo vision.
A dense mesh tracking approach is proposed in [18] that utilizes visual-inertial SLAM in
conjunction. The approach is focused on humans, tested on only a simulated environment,
and largely relies on camera pose estimation. That is, if the camera pose estimation fails,
the MODT also fails. The work in SLAMMOT [31] established a mathematical framework
to integrate filtering-based SLAM with dynamic object tracking. Later, an RGB-D camera
was employed with the same technique for dense reconstruction of an indoor scene,
together with dynamic objects using semantic segmentation [13,14,29,30]. Further, in dense
approaches Mask-Fusion [32] and MID-Fusion [33], z techniques were deployed for more
accurate semantic segmentation of the dynamic objects in the scene.

Tightly Coupled MODT and SLAM approaches aim to merge information from static
and dynamic parts of the scene into a single framework to enhance the estimation accuracy.
The work in [19] presented the idea of a tightly coupled approach, however, with limited
comparable results. Being end-to-end trained approach estimates 3D pose and dimen-
sions of cars jointly with camera poses. Although the approach provides accurate pose
estimations, it suffers with the loss of generality, and thus, huge data would be required
to track generic objects. The CubeSLAM [20] is a monocular SLAM based approach that
generate 3D bounding box proposals based on 2D bounding boxes and vanishing points.
The approach assumes objects to have constant velocity for a fixed time and exploits the
constraints pertaining to road structure, non-holonomic wheel motion, and visibility of
the cuboid view of objects. The approach in ClusterSLAM [24] proposes a SLAM back end
to identify rigid bodies and to estimate the motion. The approach relies on the landmark
tracking and association quality. A technique in ClusterVO [21] models the object points
for the probability of being dynamic. VDO-SLAM [23] capitalizes on dense optical flow to
identify the number of tracked points on the dynamic objects. The bundle adjustment is
implemented with cameras, objects, and points; however, at the cost of high computational
demand. Similarly, DynaSLAMII [25] proposed a tightly coupled approach for MODT
and SLAM that performs the bundle adjustment between camera, points, and objects. The
performance relies on high quality semantic segmentation and thus, high computational
resources are required.

In contrast to the existing techniques, the proposed framework in this work is unique
and hybrid in a way that MODT and SLAM is performed over different sensor modalities.
3D MODT is performed with respect to the vehicle frame of reference and independent of
SLAM’s estimated pose, whereas SLAM can take full use of semantic MODT information
as and when required for feature tracking, mapping, or loop closures. The advantage of
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such integration is manifold. The object tracking continues even if the pose estimation of
SLAM fails. Furthermore, SLAM can make use of masked dynamic regions and provide
pose information to MODT to obtain tracking information in a common frame of reference.

3. System Overview

The system pipeline of the proposed framework assumes that the platform is equipped
with visual and LiDAR sensors. The visual sensor is primarily used for SLAM and object
detection, whereas the LiDAR sensor is used for spatial object tracking. The framework is
built on top of ORB-SLAM2 [26] with an additional stream of input for the masked image of
dynamic objects. In parallel, an Interactive Multiple Model–Unscented Kalman Filter–Joint
Probabilistic Data Association Filter (IMM–UKF–JPDAF) based tracker is operated to track
objects in 3D space. To classify the objects, a lightweight visual detector YOLO-v3 [34] is
deployed that operates on a reduced image resolution. This increases the inference speed of
the visual detector at the cost of frequent missed detections of small and partially occluded
objects. However, this shortcoming is leveraged by the object tracker, which preserves the
classification history of the tracked objects. The LiDAR point cloud clusters pertaining to
the tracked objects are projected onto the image frame and up sampled to generate the
dynamic objects mask. The dynamic object mask is exploited by the visual SLAM to choose
the visual features for odometry and/or mapping. Figure 1 shows the block diagram of the
framework with individual modules.

Visual SLAM

LiDAR

Camera

Pre-processing

Object Classifier

Object Tracker

Object Pose 
Transformer

Mask Generator 

M
asked Im

age

Object tracking parameters

Transformed pose and tracking info.

Static Environment Map Tracking Information of 
Dynamic Objects

Clustered Cloud Mature Tracks

Visual Detections

Figure 1. Framework for joint MODT and SLAM.

4. Proposed Framework

The proposed framework is comprised of several modules that interact to solve the
dynamic SLAM problem. The operations of individual modules are briefly described in the
subsequent subsections and the block diagram is presented in Figure 2. The implementa-
tion and evaluation of the framework is based on sensor setup involving stereo camera and
64 channel LiDAR. A stereo camera is used for visual SLAM and visual object detection,
whereas a LiDAR sensor is utilized for spatial object detection and tracking. Further-
more, the computational environment used for developing and evaluating the proposed
framework is constituted by a desktop computer having an Intel Core i7-7700 CPU with
16 GB of RAM, and Nvidia GTX 1060 GPU. The system runs the Robot Operating System
(ROS) “Melodic Morenia” middleware on top of Ubuntu 18.04.5 LTS. The framework is
implemented and evaluated in a ROS environment to ensure real-time capability.

68



Sensors 2021, 21, 6355

Tracking 
Information

C
am

er
a

Li
D

A
R

Tracked Objects

Visual Detections Classified Point Cloud

3D
 M

O
D

T

D
yn

am
ic

 
M

as
k

Pose Object Tracking

Estimated Pose

Class Association

Im
ag

e 
Se

qu
en

ce

Im
ag

e 
Se

qu
en

ce

Map of Static Environment

Localization of Vehicle

Global Object Tracking

 

Figure 2. Proposed MODT integrated Dynamic SLAM framework.

4.1. 3D MODT

The 3D MODT module preprocesses the LiDAR point cloud and maintains the tracks
of potentially trackable objects. The module has four subcomponents: ground segmen-
tation, clustering, box fitting, and tracking. Each subcomponent is briefly discussed in
the subsequent subsections and information flow is described in Figure 3. The LiDAR
data after getting treated by the submodules of ground segmentation, clustering, and
box fitting are presented to the tracking submodule as measurements for tracking. The
tracking submodule maintains a temporal record of tracked objects’ dimensions and class
associations received from the visual detector. The 3D MODT module provides 3D MODT
information with respect to the vehicle reference frame to the camera-LiDAR fusion and
pose transformer modules, respectively.
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Figure 3. 3D MODT module in the proposed framework.

4.1.1. Ground Segmentation

The ground segmentation is a part of the LiDAR preprocessing step, where LiDAR
measurements pertaining to the ground are identified and separated from the point cloud
for further processing. Several techniques are proposed in the literature to accomplish
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ground segmentation, with a grid-based approach being the most relevant and effec-
tive [35]. The grid-based approach can accommodate the assumptions of the ground being
non-planner, and the point-cloud being a merger of multiple LiDARs measurements. Fur-
thermore, the grid-based approach is computationally efficient because of compact data
representation. Moreover, the approach can be easily deployed in any arrangement of
the sensor setup without requiring training procedures like data driven approaches. The
implementation of ground segmentation in this work follows a grid-based approach that
considers a non-planar ground.

Initially invalid and out of rage measurements of the LiDAR point cloud are filtered
out and the point cloud is converted into a 2D cylindrical representation. The 2D cylindrical
representation is composed of channels and bins, as expressed in Figure 3 from the top view.
The channels represent the measurements pertaining to the vertical slices of the LiDAR
data, whereas bins are the further divisions of the channels based on the distance from
the origin. To segment the ground, bins of each channel are traversed to estimate the local
ground level, starting from the origin, where the ground level equals the sensor height.
The estimated local ground levels together with vertical distribution of the measurements
in a bin and absolute slope between consecutive bins are used to set the ground threshold
for each bin. The bin-level ground threshold is applied to label the LiDAR measurements
as ground and non-ground measurements. The non-ground labeled point cloud is then fed
forward for clustering.

4.1.2. Clustering

The clustering of LiDAR point cloud is referred to as the process of grouping the
closely existing LiDAR measurements, the approach adopted in this work falls under
the hierarchy-based technique [36]. The 2D cylindrical representation of the non-ground
LiDAR measurements from the ground segmentation module is converted to 3D cylindrical
representation by vertical distribution of measurements. The 2D grid representation is
not effective for clustering in cluttered urban scenarios where elevated structures exist.
The 3D cylindrical representation allows the clustering of objects that exist under elevated
structures, such as streetlights, traffic signals, overhead bridges, and trees. Furthermore,
compact representation of data enables efficient computation of clusters.

In 3D grid representation, each cell of the 2D cylindrical grid is further divided into
levels based on the vertical height of LiDAR measurements, as shown in Figure 3. For
clustering, each cell with measurements is selected as an index and all neighbor cells are
traversed to inspect for a threshold number of measurements. In this fashion, the region
for each cluster grows with a unique ID. To address the time complexity, the region of
interest is selected based on the effective clustering range of LiDAR measurements. The
measurements of LiDARs, for example, with fewer channels get sparse at distances, and the
actual shape of the object cannot be identified; thus, clustering of points beyond a reliable
range only increases the computation and outliers. With these clustering limits imposed,
the clustered point cloud is effectively obtained and is treated with the cluster dimension
filter. The dimension filter identifies the clusters pertaining to the potentially trackable
objects, considering the size, position, and number of enclosed LiDAR measurements. The
clusters that are suitable for tracking are forwarded to the bounding box fitting module.

4.1.3. Box Fitting

The LiDAR measurements experience occlusions, and obtaining the exact 3D shape
object is inherently impossible. To estimate the actual shape of the clustered object, box-
fitting techniques are devised. In this work, considering the computational limitations and
real-time requirements, a feature-based method is deployed [36]. The technique represents
the cluster in a minimum rectangular shape in 2D top view, then performs L-shape point
cloud fitting as shown in Figure 3. Initially, the farthest pair of points is searched for that
exists near a threshold boundary of the minimum rectangle boundary, based on the location
of the cluster in the spatial space. The pair of points is used to form a line and a farthest
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point orthogonal to the line is searched. The three points represent the three corners of the
2D area of the clustered object; the height of the cluster is directly used to define the third
dimension of the bounding box. The three dimensions of the estimated bounding box are
then used to evaluate the centroid and yaw angle of the cluster relative to the LiDAR sensor.
The actual dimensions and centroid of the clustered object at this stage has the effect of
occlusions; therefore, the tracker module maintains the history of estimated dimensions of
the tracked cluster and performs corrections temporally if required.

4.1.4. Object Tracker

The urban cluttered environment perceived by a LiDAR sensor is affected by numer-
ous uncertainties. Cluttered clusters of trackable objects make data association challenging,
whereas dynamic objects tend to follow such motion patterns that further increase the
uncertainties. To tackle these uncertainties, an IMM–UKF–JPDAF based tracker is used [36].
The Joint Probabilistic Data Association Filter (JPDAF) based approach is utilized for data
association with an assumption of Gaussian distribution to address the uncertainties due
to clutter. Furthermore, the Interacting Multiple Model (IMM) approach is adopted for the
state estimation of objects to deal with the uncertainties due to motion. The non-linearities
of the motion models are accommodated by an Unscented Kalman Filter (UKF) through
a Gaussian process. The IMM–UKF–JPDAF based approach effectively solves the recur-
sive state estimation and mode probabilities of object clusters, which is described by a
non-linear jump Markov system.

The execution times of the tracker module mainly rely on the number of maintained
tracks. Furthermore, JPDAF based approaches tend to face a combinatorial explosion
problem, which if left untreated, requires exceptional computational resource, as a hy-
pothesis of all possible combinations of tracks and measurements are made. To tackle this
shortcoming, a clustering-based scheme is utilized to limit the association pairs of tracks
and measurements to only the gated measurements instead of all possible combinations.
The tracking block shown in Figure 3 shows a table of tracks T and measurements M in
rows and columns, respectively. The track T2 gets gated measurements of M1 and M4
forming an association cluster of two measurements and a single track. Similarly, tracks
T3 and T4 share the measurement M3 forming an association cluster of two tracks and a
single measurement. Thus, the JPDA problem is reduced to a set of smaller problems that
can be solved efficiently. Moreover, an efficient track management mechanism is set in
place that prunes out the tracks pertaining to the inconsistent measurements, resulting in a
limited number of tracks to maintain. An additional condition of a tracked object being
classified by the visual object detector, reducing the number of tracks further, results in de-
creased computational load. The prime objective of this module is to estimate the tracking
parameters of the potentially trackable objects, such as, pose, velocity, and dimensions.

4.2. Camera-LiDAR Fusion

The fusion approach adopted in this work is regarded as late fusion, where tracked
clusters are temporally classified instead of frame-wise classification [36]. This is carried
out by two components, class association and class management. The class association
component assigns a visually detected object’s class to the tracked object’s clusters, whereas
the class management component assesses the class assignment history to select a class for
the tracked object cluster.

To perform the class association, eight corners of the 3D bounding box of the tracked
object clusters are projected on the 2D image plane using camera-LiDAR extrinsic parame-
ters. The minimum and maximum pairs of x and y coordinates from the set of 2D projected
points forms a 2D bounding box in the image frame representing the 3D tracked object. The
Munkres association strategy is applied on the 2D centroids of the visual object detector
and 2D bounding box representing the tracked object in the 3D space. This association is
maintained by a class association vector that maintains the history of class associations and
provides a certainty of classes assigned to the tracked object over time.
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Let Tk and Dk be the sets representing tracks and visually detected objects, respec-
tively, at time step k. The centroids of tracked clusters ok

i are projected onto the image
frame of the corresponding time step, resulting in a 2D pixel location in an image ok

i .
Similarly, the centroids of visually detected objects are calculated using bounding box di-
mensions, represented by mk

j . The 2D centroids of both sources are utilized to populate the

Euclidean distance cost matrix Ek =
[
ck

ij

]
, where i ={1, 2, . . . , T} and j ={1, 2, . . . , D}.

The cost matrix

ck
ij =

{
d(ok

i , mk
j

)
if IOU

(
tk
i , dk

j

)
> 0.3

1000 otherwise
(1)

is, however, constrained by the criterion that at least 30% of overlap must exist among
the corresponding 2D bounding boxes from the two sources. Following the Munkres
association, the algorithm for optimized minimum cost is performed and a set of index
pairs Y relating to the associated tracks tk

i and visual detections dk
j is acquired. Using the

set Y class association matrix Êk
=
[
ĉk

ij

]
, it can be formulated such that,

ĉk
ij =

{
vj if < i, j > ⊂ Y
0 otherwise

, (2)

where v represents the association of the class of visually detected objects and the dimen-

sion index of class association vector Ai
v = (a i

1, . . . ai
n

)
. The matrix Êk finally updates the

class association vector Ai and increments the associated class dimension,

ĉk
ij =

⎧⎨
⎩

ai
ĉij

if ĉk
ij = 0

ai
ĉij
+ 1 otherwise

. (3)

The class association vector Ai, along with the age of track tage is exploited to compute
the class certainty Pi

c of tracked objects and the ratio Pi
o of the object, that reasons the

tracked object to be valid.

Pi
c =

max(av)

tage
(4)

Pi
o =

(
tage − ∑n

v=1 ai
v
)

tage
(5)

The camera-LiDAR fusion thread operates along the LiDAR based MODT and pro-
vides the class association certainty to the tracker. In Figure 4, visual classification of
tracked clusters is demonstrated. The blue and red dots in the image represent the cen-
troids of visually detected objects and centroids of tracked LiDAR clusters projected on
to the image, respectively. The qualified associations update the class association vector
of a mature track as demonstrated in Figure 4. The class association vector represents the
classes assigned to the tracked cluster, including no associations counting temporally in
terms of frames. Together with the tracking age, class certainty of 60% is evaluated for the
tracked object being a “car”.

4.3. Dynamic Mask Generator

The mask generator module takes the LiDAR point cloud cluster and projects it onto
the image frame. The visual features generally exist on the edges and corners of the
surfaces, and thus, the mask needs to slightly exceed the exact contour of the detected
object. To handle the sparsity of the LiDAR measurements, a 2D Gaussian blur kernel
is formulated,

G(x, y) =
1

2πσ2 e
x2+y2

2σ2 , (6)
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where x and y are the coordinates of the projected LiDAR measurement pertaining to the
cluster of the dynamic object. The standard deviation σ of the blur is set based on LiDAR
and image resolution. For lower ratios of image to LiDAR resolution and larger coverage
of LiDAR measurements on the image, lower values of σ are sufficient. The dynamic mask
generated from the proposed framework in contrast to the mask generated from Mask
R-CNN is presented in Figure 5. In the literature, the reported inference time of Mask
R-CNN using standard GPU fails to meet the real-time requirements, whereas the proposed
framework provides the comparable dynamic masks well within the sensor sampling time,
allowing the entire framework to operate within 100 ms.
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Figure 4. Camera-LiDAR Fusion Module.

Figure 5. Visual-LiDAR based Mask generated in comparison with Mask R CNN.

4.4. Object Pose Transformer

The primary function of the object pose transformer is to transform the pose and
tracking information of objects to the SLAM frame of reference. The module receives
the localization information from the SLAM module and tracking information from the
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3D MODT module. The object tracking is performed in the vehicle frame, where static–
dynamic classification of tracked objects cannot be effectively made without the ego-
motion information. For effective utilization of this information, tracking information is
transformed into a SLAM frame of reference, where realistic information of the tracked
objects can be realized.

4.5. Dynamic SLAM

The core of the proposed framework is an ORB-SLAM2 that gets the capability of
making an informed selection of visual features. The module takes images together
with the generated mask image as an input. The extracted visual features are labeled
as static or dynamic based on the provided mask. The features pertaining to the static
part of the scene are validated, whereas features pertaining to dynamic objects in any
state are filtered out, as demonstrated in Figure 6. The focus in this implementation is to
demonstrate an effective alternative solution to the computationally expensive semantic
segmentation algorithms like Mask R CNN [3], widely utilized in the related literature. The
proposed framework generates a comparable dynamic mask in real-time without excessive
computational resource requirement.

 
Figure 6. Dynamic SLAM with Visual-LiDAR based dynamic object mask.

The visual features generally exist on the corners and sharp edges of the scene, thus
extracting a perfect pixel-level annotation and sharp contours of the dynamic objects are
not desired, as features located on the boundary of dynamic objects are dubious. The masks
generated in the proposed framework are based on sparse LiDAR data that is treated by a
2D Gaussian blur that ensures that features on the boundary regions of dynamic objects
are filtered. Consequently, the generated map is free of information pertaining to dynamic
objects, although the tracker module allows identification of the dynamic objects that are
currently static such as parked cars and using this information within the SLAM process
of pose estimation. This implementation is intentionally left out for future work, as the
focus is to demonstrate that a comparable dynamic object’s mask to the conventional mask
generation approaches can be efficiently achieved. In this work, LiDAR data are only
used for spatial object tracking and exploitation of a classified point cloud for dynamic
mask generation.

5. Evaluation and Comparison

To evaluate and analyze the effect of the proposed Dynamic SLAM framework, a
comparison is made between basic ORB-SLAM2 [26] and the proposed MODT based
dynamic SLAM framework. Conventionally, KITTI Datasets [27] are used for fair evaluation
against the provided ground truths over well-established evaluation metrics. However,
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the datasets provided for evaluating SLAM algorithms lack in the presence of dynamic
objects, mainly because of static world assumption. For this reason, the datasets provided
for object tracking are used with the provided ego-motion data as the ground truth. The
true potential of the framework can be fairly tested in the absence of no loop closures,
allowing the measurement of maximum drift. Since the datasets are targeted to test object
detection and tracking, dynamic objects exist in almost every sequence in abundance.

To perform a detailed and standard analysis, the KITTI Odometry criterion [27]
is followed. The Absolute Trajectory Error (ATE) measures the root-mean-square error
between predicted camera poses [x, y, z] and ground truth. Relative Pose Error (RPE)
measures frame-to-frame relative pose error, since the provided ground truth data are in
the GPS/IMU frame, and the trajectories generated by SLAM are in camara coordinates.
The generated trajectory is aligned using 7DoF optimization to the ground truth associated
poses during evaluation by minimizing the ATE [37]. Table 1. The estimated trajectories
evaluation and comparison on KITTI Tracking Datasets

Table 1. The estimated trajectories evaluation and comparison on KITTI Tracking Datasets.

seq

ORB-SLAM2 [26] Proposed Framework

ATE
(m)

RPE
(m)

RPE
(deg)

ATE
(m)

RPE
(m)

RPE
(deg)

00 0.663 0.63 1.345 0.663 0.63 1.345
01 1.362 1.062 0.472 1.704 1.066 0.474
02 0.127 0.704 0.139 0.148 0.705 0.139
03 0.254 1.699 0.245 0.245 1.703 0.244
04 1.73 1.803 0.589 1.275 1.805 0.583
05 0.58 1.717 0.117 0.557 1.719 0.116
06 0.175 0.263 0.481 0.366 0.254 0.492
07 6.122 0.914 1.107 3.784 0.906 1.042
08 1.346 2.092 0.259 1.369 2.093 0.267
09 8.08 1.289 0.563 1.677 1.26 0.521
10 0.472 2.02 0.269 0.55 2.02 0.267
11 1.324 0.826 0.171 0.95 0.824 0.17
12 0.01 0.003 0.006 0.01 0.002 0.005
13 0.451 0.818 0.383 0.462 0.818 0.384
14 0.423 0.642 1.436 0.505 0.634 1.456
15 0.581 0.282 0.04 0.31 0.274 0.039
16 0.023 0.008 0.006 0.022 0.008 0.006
17 0.037 0.006 0.008 0.037 0.004 0.009
18 0.866 1.088 0.118 1.032 1.096 0.119
19 3.742 0.324 0.26 1.835 0.315 0.24
20 7.891 1.227 0.261 0.634 1.219 0.25

mean 1.812 0.970 0.413 0.906 0.967 0.408

Lower errors are written in bold.

The results of comparison are presented in Table 1. The variation in the scores suggests
the presence of dynamic objects. The better performing metrics are presented in bold
text. The sequences with dynamic objects having less effect on the SLAM produce near
similar metric results. In these sequences the dynamic objects’ presence does not cover
the entire view for consecutive time frames. In some sequences, the dynamic objects are
static, like parked cars, the conventional SLAM takes use of the features belonging to the
corresponding regions to produce better results. However, this information becomes the
part of the generated maps.

The sequences with dynamic objects are in a motion similar in pattern to the ego-
vehicle, such as in the roadway conditions, influencing SLAM the most. The metric scores
of sequences 9, 19, and 20 support this argument, where ORB-SLAM2 [26] suffers a lot
due to the presence of dynamic objects, and drift creeps into the estimated trajectory. In
contrast, the proposed framework efficiently filters the visual features pertaining to the
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dynamic object regions. Thus, the estimated trajectory is more accurate. The plots of
trajectories generated by ORB-SLAM2 [26] and the proposed framework of sequence 20 are
presented in Figure 7. The drift in both plots suggest that the informed selection of features
can estimate better trajectories, specifically in the scenario where dynamic objects tend to
follow a similar motion pattern.

Figure 7. Estimated trajectories of sequence 20 from KITTI Tracking Dataset.

To view the performance of proposed framework in comparison to the state-of-the-art
dynamic SLAM frameworks, the metric scores against KITT Raw DATASET [28] sequences
are evaluated and presented in Table 2. The evaluation scores of ORB-SLAM2 [26] are
reproduced using the similar evaluation tool and computational platform. However, the
evaluation scores of related dynamic SLAM frameworks on the same dataset sequences
are reported as a reference from the work in [25]. Best mean metric scores suggest that the
proposed dynamic SLAM framework can perform at par to the conventional approaches
that rely on data driven semantic segmentation approaches to identify dynamic objects in
the scene.

Table 2. The estimated trajectories evaluation and comparison on KITTI Raw DATASET.

seq

ORB-SLAM2
[26]

DynaSLAM
[29]

ClusterSLAM
[24]

ClusterVO
[21]

DynaSLAMII
[25]

Proposed
Framework

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

ATE
[m]

RPE
[m]

RPE
[deg]

0009 1.36 1.06 0.47 0.81 1.80 0.57 0.92 2.34 1.72 0.79 2.98 1.72 0.85 1.87 0.57 1.70 1.06 0.47
0013 0.25 1.69 0.24 0.30 0.99 0.57 2.12 5.50 4.01 0.26 1.16 0.57 0.29 0.93 0.00 0.24 1.70 0.24
0014 1.73 1.80 0.58 0.60 1.62 0.57 0.81 2.24 1.72 0.48 1.04 0.57 0.48 1.35 0.57 1.27 1.80 0.58
0004 0.86 1.08 0.12 0.56 1.36 0.57 1.12 2.78 1.15 0.40 1.77 1.15 0.64 1.41 0.57 1.03 1.09 0.12
0047 7.89 1.22 0.26 2.87 5.95 1.15 10.2 8.94 3.44 4.78 6.54 2.86 3.03 6.85 1.15 0.63 1.21 0.25

mean 2.42 1.37 0.33 1.02 2.34 0.68 3.03 4.36 2.40 1.34 2.69 1.37 1.05 2.48 0.57 0.97 1.37 0.33

Better and similar scores are written in bold.

The mean overall scores reflect the promising performance of the proposed algorithm
but the individual sequences of 0009, 0014, and 0004 show slightly poor results. The
similarity in these sequences is the abundance of dynamic objects being static. ORB-SLAM2
making use of the whole visible region can produce better pose estimation, whereas the
dynamic SLAM ignoring the dynamic regions tends to degrade the performance in such
scenarios. However, this can be seen as an advantage in terms of SLAM process, where
the generated map remains free of dynamic entities, enabling better loop closure and re-
localization capabilities. The sequence 0013 is a relatively short time sequence with limited
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dynamic regions and plentiful visual features; thus, dynamic SLAM tends to produce
similar metric scores. Sequence 0047 being a highway scenario with a large trajectory
demonstrates the effectiveness of the proposed dynamic SLAM. An interesting find in the
reported scores is that the tightly coupled approaches perform more poorly than the loosely
coupled approaches. ClusterVO [21], and DynaSLAM II [25] having a tightly coupled
approach tend to have lower accuracies on average. On the other hand, DynaSLAM [29]
which follows a dynamic masking approach like the proposed framework manages to
acquire better metrics in comparison. ClusterSLAM [24] largely relies on the initial camera
pose estimations, which further supports the argument that loosely coupled approaches
with effective use of redundant information can guarantee better accuracies.

6. Conclusions

In this work, a visual-LiDAR based 3D MODT is integrated with SLAM that caters
to the challenges pertaining to the dynamic world. The proposed framework considering
the constrained computational resources and real-time requirements performs a temporal
classification of tracked objects. An efficient IMM–UKF–JPDAF based tracker spatially
tracks the objects while maintaining the class association history, to address the real-time
limitations and shortcomings of object detection. The classified LiDAR point cloud is
effectively utilized to produce a dynamic object mask, capable of replicating the state-of-
the-art semantic segmentation approaches. SLAM exploits the dynamic mask provided
by the MODT for informed selection of visual features for tracking and mapping tasks to
realize a dynamic SLAM.

The proposed framework is tested on the KITTI Datasets [28] and evaluated against
the established metrics. The results and comparison with the related works suggest that the
proposed approach is an effective solution for the dynamic SLAM. The key contribution in
this work is the efficient generation of dynamic object mask from the Visual-LiDAR based
MODT in real-time without the need of exceptional computational resources. Furthermore,
a loosely coupled approach for 3D MODT and SLAM is proposed that can exploit the
redundant information with a minimalistic interdependence.

In the future, it is intended to incorporate the further static–dynamic classification of
characteristically dynamic objects supported by the MODT information. Furthermore, in-
formation pertaining to static regions of the scene can be utilized in semantic representation
on the maps. Moreover, the tracking and semantic information of the dynamic objects in
the environment is at the disposal of SLAM framework, which can be exploited at several
stages of SLAM to attain better accuracies and generation of semantic maps.
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Abstract: This paper proposes a low-cost sensor system composed of four GNSS-RTK receivers
to obtain accurate position and posture estimations for a vehicle in real-time. The four antennas
of the receivers are placed so that every three-antennas combination is optimal to get the most
precise 3D coordinates with respect to a global reference system. The redundancy provided by the
fourth receiver allows to improve estimations even more and to maintain accuracy when one of the
receivers fails. A mini computer with the Robotic Operating System is responsible for merging all
the available measurements reliably. Successful experiments have been carried out with a ground
rover on irregular terrain. Angular estimates similar to those of a high-performance IMU have been
achieved in dynamic tests.

Keywords: vehicle localization; GNSS receivers; RTK corrections; sensor redundancy

1. Introduction

Acquiring accurate and reliable three-dimensional (3D) coordinates for a vehicle is of
great interest in monitoring its operation for advanced driver assistance systems and for
autonomous navigation of mobile robots. Vehicle coordinates include three distances for
position and three angles for posture with respect to a global reference system on Earth
surface, that usually employs North-East-Down (NED) local axes [1].

A common possibility is the use of an Inertial Measurement Unit (IMU), which contain
different sensors such as accelerometers, gyroscopes and magnetometers [2]. For proper
operation, these units require calibration once installed on the vehicle and to take into
account local magnetic field variations. Knowing the initial position of the vehicle, global
3D coordinates can be obtained with an IMU and odometry, but the estimation of the
spatial trajectory tends to deteriorate since the measurements include small deviations that
accumulate over time [3].

To avoid the growth of position uncertainty, a Global Navigation Satellite System
(GNSS) receiver that make use of various global satellite constellations (North Amer-
ican GPS, Russian GLONASS, European Galileo and Chinese BeiDou) at once can be
employed [4]. However, absolute GNSS measurements over the Earth’s surface are subject
to various types of errors that degrade their accuracy to the order of meters.

GNSS errors can be significantly reduced by incorporating differential corrections
provided by a Satellite Based Augmentation Systems (SBAS) or a Continuously Operating
Reference Station (CORS) [5]. In this respect, one of the most effective techniques is Real
Time Kinematics (RTK) that performs carrier-phase signal synchronization [6] by using
the RTCM (Radio Technical Commission for Maritime Services) communication protocol.
Thus, GNSS receivers can operate in two different modes: RTK-fixed and RTK-float to
indicate when they achieve or not centimeter accuracy, respectively.

Besides, multiple GNSS receivers can be installed onboard to enhance vehicle posi-
tioning [5,7]. In addition, a GNSS compass with two antennas can be employed to obtain
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heading [8,9]. Moreover, by differencing over time the GNSS measurements taken in
motion, speed estimations [10] as well as pitch and heading [11] can be deduced.

In field robotics, the combination of GPS and IMU sensors has been a popular option
to estimate 3D global coordinates accurately [12]. A different strategy to achieve this
objective was to mount the antennas of three high-cost GPS-RTK receivers on the roof of
the vehicle [13].

With modern GNSS receivers, the GNSS-IMU sensor combination [14] and the syn-
chronization of three low-cost GNSS-RTK devices [6,15] or three antennas in a single
receiver [16] have also been employed in automobiles. Moreover, by tightly coupling three
GNSS-RTK receivers and an IMU, accuracy can be improved even more [1,17,18].

This paper proposes a reliable sensor system that provides the position and posture of
a vehicle by combining the measurements of four identical GNSS-RTK low-cost receivers.
In this way, the main contributions are the following:

1. The best geometrical configuration for three and four antennas to minimize position
and posture uncertainty of a vehicle is deduced.

2. A redundant setup with four antennas is analyzed, so when the precision of one
receiver degrades, reliable 3D coordinates can be still calculated in real-time.

3. A decentralized node architecture using the Robot Operating System (ROS) that
integrates all the available measurements from the receivers is presented.

Regarding the first point, although several antenna configurations have been deployed
experimentally on cars, no previous work has performed a theoretical analysis to infer the
best layout. This has not prevented two recent papers [6,16] from employing near-optimal
configurations for their tests.

With respect to the second contribution, antenna redundancy was previously intended
only to improve positioning precision [5,7], but in this paper it also serves to enhance
attitude estimations for the vehicle and to tolerate faults on the GNSS receivers.

Regarding the third point, following a low-cost philosophy, it is employed an open-
source software of common use in robotics with some already developed nodes in a mini
computer instead of programming on specialized boards [6,15,16].

The rest of the paper is organized as follows. Antenna arrangements with three
and four GNSS-RTK receivers are discussed in the next Section. Sensor hardware, ROS
programming and the optimal calculation of 3D coordinates are described in Section 3.
Then, experiments on irregular terrain with the robotic platform Argo XTR are presented
in Section 4, including comparisons with measurements from a high-end IMU. Finally,
conclusions, acknowledgements, and references complete the paper.

2. Spatial Configurations for the Antennas of the GNSS-RTK Receivers

Let vi be the actual position of an antenna with respect to a global NED coordinate system:

vi(t) =

⎛
⎝ xi(t)

yi(t)
zi(t)

⎞
⎠ = v̄i(t) + Δvi(t) =

⎛
⎝ x̄i(t)

ȳi(t)
z̄i(t)

⎞
⎠+

⎛
⎝ Δxi(t)

Δyi(t)
Δzi(t)

⎞
⎠, (1)

where v̄i(t) is the measurement produced by the receiver i = 1, 2, 3, 4 at instant t and
Δvi(t) is its associated error. The x, y, z coordinates correspond to north, east, and down
displacements, respectively. The covariance matrix for Δvi is given by:

Ci = E[Δvi(t)ΔvT
i (t)] =

E

⎡
⎣
⎛
⎝ Δxi(t)

Δyi(t)
Δzi(t)

⎞
⎠(Δxi(t), Δyi(t), Δzi(t))

⎤
⎦ =

⎛
⎝ σ2

xi
σxiyi σxizi

σxiyi σ2
yi

σyizi

σxizi σyizi σ2
zi

⎞
⎠, (2)
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where σ2
xi

= E[Δx2
i (t)], σ2

yi
= E[Δy2

i (t)] and σ2
zi

= E[Δz2
i (t)] are the variances,

whereas σxiyi = E[Δxi(t)Δyi(t)], σxizi = E[Δxi(t)Δzi(t)] and σyizi = E[Δyi(t)Δzi(t)] are
the covariances.

For this analysis, it is considered that:

• The mean errors of the receivers along time are null, i.e., E[Δvi(t)] = 0 ∀i.
• The errors of different receivers are independent, i.e., E[Δvi(t)ΔvT

j (t)] = 0 for i �= j.
• All the receivers share the same covariance matrix, i.e., C = C1 = C2 = C3 = C4.

2.1. Three Receivers Optimal Configuration

To obtain the optimal configuration for the triangle formed by three GNSS-RTK
antennas, its associated position and posture uncertainty should be minimized. In this case,
it is also assumed that:

• The distances da and db of the second and third antenna with respect to the first
antenna, respectively, are constant values determined without uncertainty.

• The angle θ between the directions given by da and db is also known certainly on the
plane that contains the three antennas.

The centroid of the triangle formed by the antennas:

v0(t) =
v1(t) + v2(t) + v3(t)

3
, (3)

can be estimated from the measurements of the receivers as:

v̄0(t) =
v̄1(t) + v̄2(t) + v̄3(t)

3
⇒ Δv0(t) =

Δv1(t) + Δv2(t) + Δv3(t)
3

. (4)

The covariance matrix for Δv0 is calculated as:

C0 = E
[
Δv0(t)ΔvT

0 (t)
]
=

E
[
Δv1(t)ΔvT

1 (t) + Δv2(t)ΔvT
2 (t) + Δv3(t)ΔvT

3 (t)
]

9
=

C
3

, (5)

where the position uncertainty of the geometric center of the triangle is reduced by three
with respect to each vertex.

Regarding the posture in space of the triangle, the direction cosines of the lines
between two antennas are given by the unitary vectors:

va(t) =
v2(t)− v1(t)

da
=

⎛
⎝ xa(t)

ya(t)
za(t)

⎞
⎠⇒ (6)

v̄a(t) =
v̄2(t)− v̄1(t)

da
, Δva(t) =

Δv2(t)− Δv1(t)
da

, (7)

vb(t) =
v3(t)− v1(t)

db
=

⎛
⎝ xb(t)

yb(t)
zb(t)

⎞
⎠⇒ (8)

v̄b(t) =
v̄3(t)− v̄1(t)

db
, Δvb(t) =

Δv3(t)− Δv1(t)
db

, (9)
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where the corresponding covariance matrices are:

Ca =E
[
Δva(t)ΔvT

a (t)
]
=

E
[
Δv2(t)ΔvT

2 (t)
]

d2
a

+
E
[
Δv1(t)ΔvT

1 (t)
]

d2
a

=
2C
d2

a
, (10)

Cb =E
[
Δvb(t)ΔvT

b (t)
]
=

E
[
Δv3(t)ΔvT

3 (t)
]

d2
b

+
E
[
Δv1(t)ΔvT

1 (t)
]

d2
b

=
2C
d2

b
, (11)

Cab =E
[
Δva(t)ΔvT

b (t)
]
= Cba = E

[
Δvb(t)ΔvT

a (t)
]
=

E
[
Δv1(t)ΔvT

1 (t)
]

da db
=

C
da db

. (12)

Thus, the spatial uncertainty of the direction cosines can be reduced by separating the
antennas as much as possible. But da and db are inherently limited by the available space
on the roof of the vehicle. Furthermore, to balance posture uncertainty in both directions,
these distances should be selected equal: d = da = db, so that Ca = Cb = 2C/d2 and
Cab = Cba = C/d2.

The direction cosine of the normal vector vc to the plane defined by the three antennas
is given by the unitary vector from the cross product of va and vb:

vc(t) =
va(t)× vb(t)

sin(θ)
=

1
sin(θ)

⎛
⎝ ya(t)zb(t)− yb(t)za(t)

xb(t)za(t)− xa(t)zb(t)
xa(t)yb(t)− xb(t)ya(t)

⎞
⎠⇒ (13)

v̄c(t) =
1

sin(θ)

⎛
⎝ ȳa(t)z̄b(t)− ȳb(t)z̄a(t)

x̄b(t)z̄a(t)− x̄a(t)z̄b(t)
x̄a(t)ȳb(t)− x̄b(t)ȳa(t)

⎞
⎠, (14)

as long as the three antennas are not aligned to avoid sin(θ) = 0, where vc will be indeterminate.
By using Taylor series expansion [19], vc can be approximated by:

vc(t) ≈ v̄c(t) +
J(t)

sin(θ)

(
Δva(t)
Δvb(t)

)
⇒ Δvc(t) ≈

J(t)
sin(θ)

(
Δva(t)
Δvb(t)

)
, (15)

where J is the time-dependent Jacobian matrix:

J(t) =

⎛
⎝ 0 z̄b(t) −ȳb(t) 0 −z̄a(t) ȳa(t)

−z̄b(t) 0 x̄b(t) z̄a(t) 0 −x̄a(t)
ȳb(t) −x̄b(t) 0 −ȳa(t) x̄a(t) 0

⎞
⎠. (16)

The error Δvc can be minimized regardless of vehicle posture by choosing θ = ±90°.
In this case, the covariance matrix for Δvc can be approximated by:

Cc(t) = E[Δvc(t)ΔvT
c (t)] ≈ J(t)

(
Ca Cab
Cba Cb

)
JT(t) =

J(t)
d2

(
2C C
C 2C

)
JT(t). (17)

Finally, the rotation matrix is obtained from the direction cosines as R = (v̄a, v̄b, v̄c).
Roll, pitch and yaw angles can be deduced from R and represent rotations with respect to
va, vb and vc axis, respectively.

To summarize, the best configuration to minimize position and posture uncertainty
with three GNSS-RTK antennas is to form a right-angled triangle with two identical sides
of the maximum possible length d (see Figure 1).
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d

v0

va

vb

v
1 v

3

v
2

d

Figure 1. Optimal antenna configuration with three receivers.

2.2. Four Receivers Optimal Layout

The optimum for four receivers would consist of placing the fourth antenna orthogonal
to the plane defined by the remaining three at a distance d of the first antenna, where
its centroid:

v0(t) =
v1(t) + v2(t) + v3(t) + v4(t)

4
, (18)

does not coincide with the geometric center of the underlying cube (see Figure 2).
Assuming perfect placement of the fourth receiver with respect to the triangle:

vc(t) =
v4(t)− v1(t)

d
, (19)

which can be calculated directly from measurements as:

v̄c(t) =
1
d

⎛
⎝ x̄4(t)− x̄1(t)

ȳ4(t)− ȳ1(t)
z̄4(t)− z̄1(t)

⎞
⎠⇒ Δvc =

Δv4(t)− Δv1(t)
d

, (20)

and can be merged with the estimation (14) to decrease posture uncertainty even more.
Furthermore, this reduction can also be applied to v̄a (7) and v̄b (9) with their corresponding
normal vectors formed by their respective ortogonal planes: v̄a(t) = v̄b(t) × v̄c(t) and
v̄b(t) = v̄c(t)× v̄a(t), respectively.

v
1

v
3

v
2

d

d
d

va

vb

v
4

vc

Figure 2. Optimal antenna configuration with four receivers.

2.3. Four Receivers Redundant Configuration

In this paper, an additional fourth receiver is added to the optimal three-receivers
configuration to form a square of side d on a planar surface (see Figure 3). This is a
redundant arrangement that is easier to mount on the roof of an automobile (see Figure 4)

85



Sensors 2021, 21, 5853

than the optimal one of Figure 2. The local coordinate system has its origin in v0 with axes
va, vb and vc as defined by (7), (9) and (13), respectively.

In Figure 4, the longitudinal and transverse axes of the car coincide with va and vb,
respectively. The vertical axis vc is not displayed but it would be pointing downwards.
This figure also shows the position of a radio antenna, denoted by the letter R, to receive
RTK corrections from a CORS.

v
1 v

3

v
2

d

d

v0

va
vb

v
4

Figure 3. Redundant antenna configuration with four receivers.

R

v
1

v
3

v
2

v0 va

vb
v
4

Figure 4. Placement of the antennas on the roof of a car.

The proposed redundancy is useful in two different ways. Firstly, position and posture
uncertainty can be reduced further than with three receivers. Secondly, if the precision of
one of the receivers deteriorates, the rest of receivers can still provide a reliable position
and posture estimation for the vehicle.

Regarding the first advantage, when all the measurements are available, its centroid
v0 (18) can be estimated as:

v̄0(t) =
v̄1(t) + v̄2(t) + v̄3(t) + v̄4(t)

4
⇒ (21)

Δv0(t) =
Δv1(t) + Δv2(t) + Δv3(t) + Δv4(t)

4
⇒ C0 =

C
4

, (22)
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whose covariance matrix is divided by four, instead of by three (5). Furthermore, the direc-
tion cosines va and vb can be estimated by using one side of the square and its opposite:

v̄a(t) =
v̄2(t)− v̄1(t) + v̄4(t)− v̄3(t)

2d
⇒ (23)

Δva(t) =
Δv2(t)− Δv1(t) + Δv4(t)− Δv3(t)

2d
⇒ Ca =

C
d2 , (24)

v̄b(t) =
v̄3(t)− v̄1(t) + v̄4(t)− v̄2(t)

2d
⇒ (25)

Δvb(t) =
Δv3(t)− Δv1(t) + Δv4(t)− Δv2(t)

2d
⇒ Cb =

C
d2 , (26)

that represents half uncertainty of (10) and (11). This reduction directly benefits to the
covariance matrix Cc (17) of the direction cosine vc:

Δvc(t) ≈ J(t)
(

Δva(t)
Δvb(t)

)
⇒ Cc(t) ≈

J(t)
d2

(
C C
C C

)
JT(t), (27)

where Cab = Cba = C/d2.
The second advantage comes from the fact that with a three-antenna configuration,

there is no possibility to obtain the complete set of six coordinates for the vehicle when
one of the receivers fails. However, the proposed sensor system can keep working with
the remaining three receivers. In this case, to obtain the center of the square, instead of the
triangle centroid (4), only two measurements from opposite vertices can be employed:

v̄0(t) =

⎧⎪⎪⎨
⎪⎪⎩

v̄2(t) + v̄3(t)
2

, when the first or fourth receiver fails, (28)

v̄1(t) + v̄4(t)
2

, when the second or third receiver fails, (29)

which implies that C0 = C/2, i.e., twice position uncertainty with respect to four available
measurements (22).

3. Sensor System

In addition to the four low-cost GNSS receivers and their corresponding antennas,
the sensor system includes a mini computer to obtain the 3D position and posture of the
vehicle (see Figure 5).

The chosen GNSS-RTK receiver is the SparkFun GPS-RTK2 (https://www.sparkfun.
com/products/15136, accessed on 28 July 2021) board, which is based on the compact
ZED-F9P module from U-blox. The receiver does not only provide geodetic coordinates
(longitude, latitude and height), but also ECEF (Cartesian coordinates with respect to Earth
center) and NED coordinates with respect to a nearby CORS to obtain centimeter accuracy
with an output rate of 8 Hz.

Each receiver is connected to a multi-band antenna ANN-MB-00 (https://www.
sparkfun.com/products/15192, accessed on 28 July 2021) from U-blox. To avoid multi-path
problems, the magnetic base of each antenna is mounted on a steel ground plate.

The mini computer is an Intel NUC8i7BEH (https://www.intel.es/content/www/es/
es/products/sku/126140/intel-nuc-kit-nuc8i7beh/specifications.html, accessed on 28 July
2021) kit with an Intel Core i7-8559U processor (8M Cache, 4 cores, 2.70 GHz). It has in-
stalled the open-source framework ROS [20] on the Linux-based operating system Ubuntu.

The computer communicates with each receiver through different Universal Serial Bus
(USB) ports. The Internet connection of the computer is used to get differential correction
data via the standard protocol NTRIP (Networked Transport of RTCM via Internet Protocol)
through the Andalusian public positioning network [21].
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(a) (b) (c)

(d)

Figure 5. Hardware components of the sensor system: a GNSS-RTK board (a), an antenna (b),
a ground plate (c) and the mini computer (d).

ROS Programming

The developed ROS software consists of a number of independent nodes, each of
which communicates with others using topics under a publish/subscribe messaging model
(see Figure 6).

RTCMntrip_ros reliable_estimator 3D_POSE

gnss_1 NED_1

gnss_2 NED_2

gnss_3 NED_3

gnss_4 NED_4

Figure 6. ROS computation graph with nodes (ellipses) and topics.

The ntrip_ros (https://github.com/ros-agriculture/ntrip_ros, accessed on 28 July
2021) node connects to a nearby CORS to get RTCM streams through internet and to
publish them into the topic RTCM. Each receiver i has associated a driver node (https:
//github.com/KumarRobotics/ublox, accessed on 28 July 2021) named gnss_i that is
subscribed to this topic to receive differential corrections via callbacks. These nodes publish
NED coordinates on its own topic NED_i along with a time stamp and three accuracy
estimates (each one ≥ 10 mm).

Then, the reliable_estimator node receives all the messages from the four NED_i
topics and computes the six 3D coordinates with three or four synchronized measurements.
Finally, it publishes the current pose into the 3D_POSE topic, making this data available for
any navigation node on the ROS system.

All the receivers weight the same to produce vehicular position and attitude in real-time.
When the accuracy of one receiver degrades, it is completely discarded from computations.

For calculating the global position of the centroid v̄0 of the square (21), (28) or (29)
are employed depending on the number of valid GNSS-RTK measurements. For posture
computation, the closed-form method by Horn [22] is applied with a scale factor of 1.
Instead of quaternions, an orthonormal rotation matrix R [23] is obtained that minimizes
the following cost function:

F(t) = ∑
∀i

‖(v∗i − v∗0)− R(t)(v̄i(t)− v̄0(t))‖2, (30)
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where v∗i and v∗0 are the relative positions of the antenna i and the centroid of the square
with respect to the local reference system, respectively. This represents a least squares
problem that can be solved with three or four valid measurements. Lastly, the roll, pitch and
yaw angles with respect to the global NED axes are extracted from the resulting rotation
matrix [17].

4. Experiments with the Rover Argo XTR

The rover Argo XTR is a battery-powered unmanned land vehicle that allows extreme
mobility with a low center of gravity and amphibious capability (see Figure 7). It features
skid-steer traction with eight low-pressure 24-inch tires, a top speed of 16 km h−1 and zero
turning radius. The robotic rover can be controlled via a follow-me system with a 2D laser
scanner or via remote teleoperation with a joystick and a line-of-sight wireless link.

The proposed sensor has been mounted on the rear deck of the vehicle. The four antennas
are tied to the side rails forming a square of d = 1.35 m on the side (see Figure 7). For compar-
ison purposes, a fifth antenna has been installed at the center of the square together with the
high-end AHRS400CC-100 MEMS IMU from Crossbow with an output rate of 60 Hz [24].

The Málaga broadcast station located 4.8 km away is employed to get differential
corrections RTCM 3.1 through 4G internet connection and it is considered the global NED
reference system in the following experiments.

4.1. Calibration Test

This test was carried out by recording the RTK-fixed measurements of the five GNSS
receivers during three hours with the rover stopped on an almost horizontal parking lot.
This experiment serves to characterize the covariance matriz C for the positioning errors.
To this end, the mean NED coordinates are calculated for each receiver and the difference
of each measurement with respect to its mean value is considered as an error. Then, by
using (2):

C = 10−3

⎛
⎝ 0.0434 −0.0025 −0.0061

−0.0025 0.0694 −0.0083
−0.0061 −0.0083 0.4255

⎞
⎠m2, (31)

where it can be observed almost null covariances and a standard deviation in the z coordinate
(σz = 21 mm) much greater than in the x (σx = 7 mm) and in the y (σy = 8 mm) coordinates.

2
1

3

4

5IMU

Figure 7. The rover Argo XTR with the sensor system mounted on the rear deck. GNSS antennas are
numbered from 1 to 5.
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Moreover, the relative location of each antenna v∗i can also be accurately estimated
with the computed mean values (see Table 1). It can be observed small positioning errors on
the square with the fifth antenna centered and 166 mm below the rest of antennas. Table 1
also includes the local position of the centroids of the square v∗0 for (30) when using four or
three receivers.

Table 1. Relative coordinates of the antennas and of the square centroid.

a (m) b (m) c (m)

v∗1 −0.672 −0.675 −0.004
v∗2 0.673 −0.676 −0.004
v∗3 −0.672 0.672 −0.004
v∗4 0.671 0.678 0.011
v∗5 −0.004 0.005 0.166
v∗0 (21) 0 0 0
v∗0 (28) 0.001 −0.002 −0.004
v∗0 (29) 0 0.002 0.004

4.2. Reliability Test

This test was performed with the vehicle stopped in the countryside as shown in
Figure 7. One by one, each GNSS antenna was partially blocked with a metallic cover
during one minute approximately to test sensor reliability.

Figure 8 shows the estimation of NED coordinates when using all (21), the first and
the fourth (28) or the second and the third (29) receivers. Similarly, Figure 9 displays the
estimation of the three angular coordinates with all the combinations of three and four
receivers. In both figures, it can be clearly observed significant estimation changes when
an antenna was temporarily blocked.

The mean accuracy provided by each receiver is shown in Figure 10 (up), where it can
be observed successive antenna covering, in this order: 3, 1, 4 and 2. Apart from checking
the RTK-fixed mode, these values can be employed as a fail indicator for each receiver.
However, there is a time period between 325 s to 350 s when the indicator for the first
receiver does not detect any error but position and posture estimations were inaccurate.

An additional accuracy indicator is the error in calculating the perimeter of the square
from measurements with respect to the data of Table 1 (5.389 m). As it is shown in Figure 10
(down), precision degradation can be better detected by using this complementary indicator.
Thus, by comparing individually the distances of each vertex with respect to the rest, outlier
measurements can be identified adequately when present.

Furthermore, in Figures 8 and 9, it can be observed that the estimations that do not
include the failing measurement maintain high accuracy. For example, when the precision
of the first receiver degrades in the interval between 290 s to 350 s, good position and
posture estimations are provided by the second and third receivers, and by the second, third
and fourth receivers, respectively. Therefore, overall accuracy for the sensor system can be
maintained by properly detecting a single failure and excluding it from computations.
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Figure 8. Estimation of position coordinates during the reliability test.

91



Sensors 2021, 21, 5853

0 100 200 300 400 500 600
t (s)

−125.0

−122.5

−120.0

−117.5

−115.0

−112.5

−110.0

ya
w

(d
eg

re
e)

1,2,3,4
1,2,4
1,2,3
1,3,4
2,3,4

0 100 200 300 400 500 600
t (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

pi
tc

h
(d

eg
re

e)

1,2,3,4
1,2,4
1,2,3
1,3,4
2,3,4

0 100 200 300 400 500 600
t (s)

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

ro
ll

(d
eg

re
e)

1,2,3,4
1,2,4
1,2,3
1,3,4
2,3,4

Figure 9. Estimation of posture coordinates during the reliability test.
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Figure 10. Accuracy estimation during the reliability test.

4.3. Dynamic Test

Several experiments were performed by teleoperating the robotic rover on rough
countryside. Figure 11 presents an aerial view of one of them using geodetic coordinates
for the grid. The beginning and the end of the path, that almost coincide, are marked with
a green square and a red circle, respectively. In total, the vehicle travelled 644 m at a mean
speed of 4.6 km h−1.

Figure 12 shows the three NED coordinates obtained by the proposed sensor system
and by the fifth receiver at the center of the square formed by the antennas. There are no
appreciable differences between both estimations, with the exception of the step of 0.166 m
in the down coordinate (see Table 1). Altogether, the rover went up and, then, under 12 m.

Figure 13 displays the rover posture obtained by the GNSS setup and by the onboard
IMU. It can be observed high peaks in the pitch (above 15°) and the roll (above 25°) angles,
as well as several complete turns in the yaw angle during the test. Both estimations are
very similar, which confirms the good performance of the proposed sensor system.
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Figure 11. Aerial view of the path followed by the rover on the countryside.
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proposed sensor.
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5. Conclusions

A low-cost sensor system composed of four GNSS-RTK receivers connected to a
mini computer has been presented in the paper. The placement of three antennas on a
vehicle have been analyzed to reduce the uncertainty associated to position and posture
estimations with respect to a global reference system. The redundant fourth receiver allows
to improve estimations even more and to maintain accuracy when the precision of one of
the receivers deteriorates.

Static calibration and reliability tests have been performed with the sensor system
mounted on the ground rover Argo XTR. Dynamic experiments on countryside show that
this new sensor, in addition to produce reliable positioning, can effectively substitute a
high performance IMU to obtain accurate vehicular roll, pitch and yaw angles in real-time.

Future work includes characterizing the achieved pose precision with the robotic
rover as well as developing ROS nodes for integrating the proposed sensor system with an
IMU for GNSS-denied environments.
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ECEF Earth-Centered, Earth-Fixed
GPS Global Positioning System
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
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Abstract: The Controller Area Network (CAN) bus works as an important protocol in the real-time
In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of
IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures
which greatly increase the accessibility to unauthorized networks and the possibility of various
types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing
interest. With the rapid development of IVNs and evolving threat types, the traditional machine
learning-based IDS has to update to cope with the security requirements of the current environment.
Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in
several areas has guided as an effective solution for network intrusion detection. This manuscript
proposes a deep transfer learning-based IDS model for IVN along with improved performance in
comparison to several other existing models. The unique contributions include effective attribute
selection which is best suited to identify malicious CAN messages and accurately detect the normal
and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating
considering real-world data. To this end, an extensive experimental performance evaluation has
been conducted. The architecture along with empirical analyses shows that the proposed IDS
greatly improves the detection accuracy over the mainstream machine learning, deep learning, and
benchmark deep transfer learning models and has demonstrated better performance for real-time
IVN security.

Keywords: electric vehicles; in-vehicle network; controller area network; cybersecurity; intrusion
detection; deep learning; transfer learning

1. Introduction

In recent years, the automotive industry has been undergoing a radical transformation.
With the ongoing development of network communication, modern vehicles are rapidly
transitioning from fully mechanical to software-controlled technologies [1]. Modern In-
vehicle Network (IVN) technologies and services are being integrated with intelligent
information systems. As a result, the number of IVN devices is rapidly increasing and
becoming more complex. The IVN devices must be seamlessly connected to an external net-
work system in order to receive communication services efficiently. However, this increases
the risk of the IVN to potential internal or external threats. The Electronic Control Units
(ECUs) are software-controlled technologies that read various sensor data and perform
relevant processing, including automatic brake control, pedestrian detection, auto-parking,
path-planning, actuators control, and collision avoidance [2]. The sensor and actuator val-
ues are transmitted to other ECUs via the IVN protocol, resulting in the formation of a very
complex network. There are several IVN protocols in the automotive industry, including
Controller Area Network (CAN), Controller Area Network Flexible Data-Rate (CAN FD),
Media Oriented Systems Transport (MOST), FlexRay, and Local Interconnect Network
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(LIN) [3]. Among all the data communication buses, CAN bus is the most well-known and
extensively used protocol in the automotive vehicles industry [4]. Furthermore, the CAN
buses are being applied also in other industries, including agriculture, aerospace, medical
devices, and commercial machinery [1]. Several other protocols are also available with
more security features (e.g., Ethernet). However, in the field of automotive IVN communi-
cation, these advanced protocols can not be completely replaced by the CAN bus protocol
due to some reasons [4]. First of all, the CAN bus is more design flexible and perfectly
appropriate for real-time environments, ensuring secure and fast communication between
ECUs with minimal latency time. Secondly, there is a process of prioritization in the CAN
bus protocol that prevents lower-priority messages from interfering with higher-priority
messages. To cite an example, a message that transmits a more critical function such as an
engine control message takes precedence over a door control message. Finally, the CAN
bus protocol serves as the backbone of automotive IVN communication in all modern
vehicles. To completely replace this protocol with another, the IVN architecture must be
completely redesigned. As a result, other protocols will not completely replace the CAN
bus’s role and application.

However, in-vehicle intrusion detection has become a growing interest field that has
been researched across a wide range of disciplines. In the CAN bus protocol, intrusion
detection is the method of monitoring normal and abnormal traffic between different
ECUs and identifying any abnormal traffic using Traditional Machine Learning (TML)
algorithms [5]. With the rapid development of IVNs and evolving threat types, the TML-
based IDS has to update to cope with the security requirements of the current environment.
Nowadays, regarding the progression of Deep Learning (DL), Deep Transfer Learning
(DTL), and its impactful outcome in several areas, these techniques have gained the
attention of many researchers in the field of cybersecurity (e.g., IDS, antivirus or malware
identification) [6]. In particular, in the field of the automotive industry, recent DL and
DTL-based IDS have also gained the attention of many researchers, which is discussed
further in the Related Work section.

Automobile manufacturers are working to develop fully autonomous vehicles, which
will necessitate the addition of more attack surfaces. Since the CAN bus protocol does not
encrypt data, the attackers can use a reverse mechanism to interpret each CAN packet in
order to inject malicious messages into in-vehicle networks [7]. This malicious message
injection mechanism will cause some abnormal behaviors in the communication traffic,
which can be detected by developing an intrusion detection system. The threat of cyber-
attacks in the automotive industry and the securing of communication protocols have
gotten a lot of attention in recent years. However, due to the complexity of in-vehicle
embedded systems and the reality of a real-time experiment with a limited processing
unit and memory resources, it is impractical and nearly impossible to apply the standard
measures to build a potential IDS for vehicular networks. Therefore, a different mechanism
is required to detect normal and abnormal characteristics in a vehicular network. In this
manuscript, we propose a deep transfer learning-based intrusion detection model that can
efficiently classify the normality and abnormality of a communication traffic and allows
the immediate detection of anomalies in the CAN bus protocol. The key contributions of
this paper are narrated as follows:

• In this work, a deep transfer learning-based LeCun Network (LeNet) model has been
proposed for effective intrusion detection in-vehicle network CAN bus protocol. The
proposed model enabled to develop effective models that speed up the training
process and improve the performance of the deep learning model.

• The experiments have been conducted using an in-vehicle real-time dataset generated
from heterogeneous sources that include three types of malicious messages. We have
made observations on this practical data to identify the best features in the context of
supervised learning for effective intrusion detection.

• In-depth architectural and statistical analyses have been conducted considering tra-
ditional machine learning, deep learning, and deep transfer learning algorithms.
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Extensive analysis and performance evaluation show that the proposed deep transfer
learning-based LeNet model outperforms other approaches.

The rest of this research paper is organized as follows. First of all, Section 2 discusses
the background of CAN bus protocol security vulnerabilities and introduces the related
work done with in-vehicle networks. Additionally, we present the problem statement and
the solution methodology also include the proposed architecture in Section 3. Furthermore,
Section 4 discusses a detailed description of the dataset as well as an overview of selected
models. Evaluation and experimental results analysis of these methods are discussed
in Section 5. Finally, Section 6 includes the summary and feasible future directions for
this research.

2. Background and Related Work

While investigating the most recent relevant works in this field, we discovered that
several of them share a common motivation in different ways. In terms of security features,
various studies show the CAN bus’s vulnerabilities and weaknesses [8]. The following
subsections illustrate those works before we demonstrate our proposed methodology.

2.1. Background of CAN and Security Vulnerabilities

During the development of the CAN bus protocol, vehicles were considered as isolated
objects that did not have a connection with the outside environment [9]. By design, the
CAN bus protocol is plagued with various security issues because of the lack of encryption
and authentication requirements [10]. Therefore, any malicious or hijacked node can cause
disastrous accidents and serious financial loss. For instance, hackers can affect an ECU by
injecting malicious messages and various attacks due to the lack of an efficient message
authentication method. The CAN node is the combination of a CAN controller and a
CAN transceiver that transmits and receives messages but not simultaneously [11]. The
architecture of a CAN bus node is shown by Figure 1. The data frame, remote frame,
error frame, and overload frame are four different types of frames that have been used in
the CAN bus [9,12]. The data frame is used to transmit actual data from a transmitter to
receivers (other nodes). A node requests a specific message with a specific identifier using
the remote frame. If any of the nodes on the bus detects an error, it will send an error frame.
The overload frame adds a delay between the data and remote frames.

Terminating
Resistor 120 Ω 

Terminating
Resistor 120 Ω CAN Bus

CAN Bus High Line

CAN Bus Low Line

CAN 
Node A

CAN 
Node X

CAN Controller

CAN Transceiver
RxTx

CAN Node B

Figure 1. The standard CAN bus node architecture.

The standard CAN message frame format is the composition of header, trailer, and pro-
tected data payload field that can be up to 64 bits long. The header field is the combination
of 1-bit Start of Frame (SOF), 12-bits arbitration field, and 6-bits control field. Further-
more, the arbitration field divided into an 11-bits identifier and 1-bit Remote Transmission
Request (RTR) field. The identifier field represents the message priority. It also consists
of Identifier Extension (IDE), Reserved, Data Length Code (DLC), Cyclical Redundancy
Check (CRC), Delimiter, Acknowledge (ACK), End of Frame (EOF), and Inter Frame Space
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(IFS) fields. Both sides of the message frame end with a bus idle field. Figure 2 shows the
standard CAN message frame format [9].
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Figure 2. The standard CAN bus message frame format.

Nowadays, with the progression of data-mining techniques, many researchers have
addressed this type of attack and are able to detect and ignore any abnormal traffic activities
in CAN networks [13–17]. Recently, modern vehicles are not considered only a closed-loop
system; instead, they also communicate with the outside world via various intelligent
systems. As a result, hackers or attackers can use various internal and external interfaces
to inject malicious messages into CAN traffic. Despite the tendency of injecting malicious
messages, ECUs can be re-programmed remotely by embracing over-the-air (OTA) updates,
which may provide more comfort and advantages to the vehicle owner [15]. However,
these mechanisms have also initiated more remote attacks, which can assist attackers or
hackers in compromising the ECUs by sending malicious messages.

2.2. TML and DL Based IDSs for IVN

In the existing automotive applications, the TML and DL-based IDSs have obvious
advantages in detecting various malicious messages [18–20]. Bozdal et al. [21] and Lok-
man et al. [22] reviewed the security threats and challenges of the automotive CAN bus
system, and discuss some potential security solutions. In 2016, Kang et al. [23] proposed
a Deep Neural Network (DNN)-based IDS for IVN security. Using the unsupervised
pre-training model of Deep Belief Networks (DBN), the selected parameters of the DNN
model were trained with probability-based feature vectors extracted from the IVN packets,
followed by the traditional stochastic gradient descent technique. The results of the ex-
periment showed that the model can provide a real-time response to malicious messages,
with a detection ratio over 95% on average in the CAN bus. The robustness of the model
is high, but detection coverage is not defined. Loukas et al. [24] proposed cloud-based
cyber-physical IDS for IVN using the Deep Learning (DL) model to detect Denial-of-Service
(DoS), command injection, and malware (Net) attacks. The model had a validation accuracy
score of overall 86.9%, which motivates additional research into this field to improve the
detection rate, particularly for these attacks. Seo et al. [25] introduced an IDS to identify
DoS, Fuzzy, RPM, and Gear attacks in the CAN bus network traffic by applying Genera-
tive Adversarial Network (GAN). This DL-based model can detect unknown malicious
messages using only normal CAN data for training. The results of various simulations
show that each of the four attacks was detected with a high accuracy score of over 95%,
demonstrating the robustness of the model.

Lokman et al. [26] developed an IDS for an in-vehicle network using an unsupervised
DL-based model, known as Deep Contractive Auto-encoders (DCAEs). The DCAE model
outperformed other regularized auto-encoder variants, with a 91.0% detection rate. As
the proposed IDS performance is evaluated within a simulated network, further evalua-
tion is necessary to validate the efficiency against a larger array of various cyber-attacks.
Zhang et al. [27] in 2019 proposed a DL-based IDSs for in-vehicle security to detect only
spoofing and replay attacks. The results were evaluated in a simulated environment, which
is hopeful as they can effectively detect only spoofing and replay attacks. The proposed
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model is capable of adapting to new attacks. The detection accuracy of this model varies
between 97.0% and 98.0% when it faces unknown attack types. Zhu et al. [28] proposed a
DL-based method to speed up intrusion detection using the LSTM model. They executed
the spoofing, replay, and flooding attacks in the CAN network. The authors proposed using
a mobile edge-assisted multi-task LSTM model because the computation time with LSTM
is so high. The model had an accuracy score of over 80% and a detection latency of 0.61 ms.
Avatefipour et al. [29] proposed a new effective IDS based on a modified one-class SVM
in the CAN traffic by deploying three attacks (e.g., DoS, fuzzing, and spoofing attacks).
The experimental result shows that the proposed model has a high accuracy score of over
90%, demonstrating the robustness of the model. In order to prove the efficiency of the
this model, they applied it to other recent popular public datasets in the scope of CAN bus
traffic intrusion detection. Xiao et al. [30] proposed a lightweight ML algorithm based on
RNN for IDS on the CAN bus network. The experimental evaluation using appropriate
hyper-parameters demonstrated that the proposed model had good performance metrics,
compared to LSTM and GAN models.

Al-Saud et al. [31] proposed an IDS model based on an improved SVM model for
the CAN bus network. The experimental results on the real dataset reveal the good per-
formance metrics and high robustness of the model against only DoS attacks in electric
vehicles. Lin et al. [32] proposed a DL-based intrusion detection system for CAN networks
to detect DoS, fuzzing, and impersonation attacks particularly. The model is trained with a
deep denoising auto-encoder during the training phase, which includes a feature extraction
mechanism. Their work had a low detection rate when compared to other ML algorithms.
Yang et al. [33] proposed an IDS using a recurrent neural network with long short-term
memory (RNN-LSTM). The selected model had a higher validation accuracy score espe-
cially for detecting only spoofing attacks in the CAN network traffic, which motivates
additional research into this field to detect other cyber-attacks. A Long Short-Term Memory
(LSTM) NN-based IDS was proposed by Hossain et al. [34]. The proposed IDS is capable
of detecting various attacks on the CAN bus network, such as DoS, fuzzing, and spoofing
attacks. Recently, Song et al. [35] proposed an IDS based on a Deep Convolutional Neu-
ral Network (DCNN) model called Inception-ResNet to detect various attacks (e.g., DoS,
fuzzing, gear, and RPM attacks) to test in a real-time in-vehicle system. The authors also
investigated the sequence of messages for intrusion detection. There are two steps to the
proposed model. The first is a training step and the last one is a detection step. In the first
step, the CNN classifier is trained and, in the last step, real CAN data frames are passed
through this proposed model to classify whether they are normal or attack messages. In
comparison to previous work, the proposed model had an over 80% detection rate and
a low error rate but has high computational cost and memory consumption. However,
further analyses are necessary to investigate the performance on new complex types of
cyber-attacks in various categories.

The existing IDSs have categorized according to detection algorithm, detection accuracy,
robustness, and detection coverage. Here, robustness is defined as the ability of the IDS to
detect attacks in the CAN bus network. A summary of all the existing IDSs for in-vehicle
network is given in Table 1. Several existing IDSs have used data from different small
in-vehicle networks, which can not be implemented in a realistic environment. Moreover,
existing IDSs concentrated on detecting whether specific cyber-attacks have occurred, but
most of them did not classify the type of attack. This limitation of previous approaches is a
significant feature for further investigation for in-vehicle security.
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Table 1. Overview of recent research on IDSs for in-vehicle networks.

Ref. Algorithm Accuracy Robustness Detection Coverage

[23] DL >95% High N/A
[24] DL >85% Medium DoS, Command Injection, Malware
[25] GAN >95% High DoS, Fuzzing, RPM, Gear attacks
[26] DCAE >90% Medium DoS, Fuzzing, Impersonation
[27] DL >95% High Spoofing, Replay
[28] LSTM >80% Medium Spoofing, Replay, Flooding
[29] ML >90% High DoS, Fuzzing, Spoofing
[30] RNN >95% High DoS, Fuzzing, Impersonation
[31] ML >90% Medium DoS
[32] DL >80% N/A DoS, Fuzzing, Impersonation
[33] RNN-LSTM >95% High Spoofing
[34] NN-LSTM >90% N/A DoS, Fuzzing, Spoofing
[35] DCNN >80% Medium DoS, Fuzzing, RPM, Gear attacks
[36] DTL >90% High Impersonation, ARP, Flooding

N/A means “Not Applicable”.

2.3. DTL Based IDSs for IVN

Deep transfer learning (DTL) is a solution that can reuse previous trained-model knowl-
edge and outperform other TML and DL models in terms of intrusion detection [36,37].
Zadrozny et al. [38] proposed a model for intrusion detection that performs better in both
labeled and unlabeled data. Another type of transfer learning model called TrAdaBoost was
proposed by Dai et al. [39]. This model allows knowledge from the old trained data to be
efficiently transferred to the new validation data, resulting in a more efficient classification
model. Additionally, Raina et al. [40] also proposed a transfer learning model that builds
an informative Bayesian from prior knowledge before validating a new task. Furthermore,
Gou et al. [41] proposed a novel transfer learning model for IDS especially to detect the
different types of cyber-attacks. The proposed model shows that the detection accuracy
of the different types of cyber-attacks has been comprehensively improved than others.
Li et al. [36] proposed a transfer learning approach for intrusion detection of different
types of attacks on the Internet of Vehicles (IoV). The experimental results show that, when
compared to existing TML and DL methods, this model significantly improved detection
accuracy by at least 23%. Xu et al. [42] recently proposed an IDS based on DL and transfer
learning. To improve the model’s efficiency and adaptability, transfer learning is imple-
mented here. The experimental analysis shows that the proposed model outperforms the
mainstream TML and DL methods in terms of efficiency and robustness, and it can detect
and classify new cyber-attacks more effectively. The deep-computational-intelligence sys-
tem has recently been applied in transfer-learning to optimize the performance of existing
transfer-learning models [37]. As a result, current transfer learning solutions for intrusion
detection still need to be updated [36]. A new-generation labeled dataset of an in-vehicle
network proposed by Kang et al. [43], which is more suitable for applying transfer learning
models because, for time series classification, deep transfer learning approach shows the
better performances than other TML or DL models [44–46]. This paper has improved the
existing transfer learning model for detecting various complex types of cyber-attacks in
CAN bus protocol.

3. Proposed Solution

The proposed deep transfer learning-based LeCun network (P-LeNet) approach is
presented in this subsection. Following that, we have thoroughly explained the problem
statement, solution formulation, the structure of the proposed P-LeNet based intrusion
detection model, and how we adapted it for deep transfer learning.
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3.1. Problem Statement

Automobile manufacturers are working to develop fully autonomous vehicles, which
will necessitate the addition of more attack surfaces. Since the CAN bus protocol does
not encrypt data, the attackers can use a reverse mechanism to interpret each CAN packet
in order to inject various malicious messages into the in-vehicle network. This malicious
message injection mechanism will cause abnormal behaviors in the communication traffic,
which can be detected by developing an intrusion detection system. Three types of attacks
(e.g., flooding, fuzzing, and spoofing) have been considered due to their severely impaired
characteristics, the intensity of an attack, and the degree of damage among in-vehicle
functions. The three most common attack scenarios against an in-vehicle network are
shown in Figure 3. By maintaining an influential situation on the CAN bus, the flooding
attack allows an ECU node to hold many of the resources allocated to the CAN bus.
This attack disrupts normal driving and limits the communication between ECU nodes
by sending high frequency and high priority messages (e.g., 0 × 000). Figure 3a shows
a scenario of a flooding attack on CAN networks. In the fuzzy attack, a malicious ECU
from IVN transmits random frames with spoofed CAN IDs with arbitrary data values,
which caused the vehicle function to be unavailable (e.g., 0 × 4CC, 0 × 7C6). Due to
the limited number of valid CAN frames streaming over the bus, this type of attack is
easy to implement and does not necessitate reverse engineering. The fuzzy attack scenario
against an IVN is shown in Figure 3b. Spoofing is a type of attack in which a malicious
node transmits messages to the receiver with a fake ID (e.g., 0 × 2B0, 0 × 130) that
appears identical to that of an original node. As a result, the receiver node considers that
the message is from an original node. It is tough to distinguish between malicious and
original messages because there is no message authentication mechanism on the CAN bus.
Figure 3c shows a scenario for a spoofing attack on a CAN network.
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Figure 3. (a) Flooding attack scenario against an IVN; (b) Fuzzing attack scenario against an IVN;
(c) Spoofing attack scenario against an IVN.

However, due to the complexity of in-vehicle embedded systems and the realities of a
real-time experiment with limited processing and memory resources, applying standard
measures to build a potential IDS for vehicular networks is impractical and nearly impos-
sible. As a result, detecting normal and abnormal characteristics in a vehicular network
requires a different mechanism. The next subsection discusses the solution formation and
the details’ architecture of our proposed intrusion detection model that can efficiently
classify the normality and abnormality of communication traffic and allows the immediate
detection of anomalies in the CAN bus protocol. Figure 4 shows the application of our
proposed intrusion detection mechanism for vehicular network traffic.
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Figure 4. Application of intrusion detection model for IVN traffic. The figure illustrates how the
proposed IDS can detect the possible attack vectors within an in-vehicle Network. The car image is
adopted from [47].

3.2. Solution Formulation

Table 2 shows the symbols and descriptions, in which we set the initial model with
enough labeled data to build an effective intrusion detection model. The source domain
data (Ds : (As, Bs)) is the combination of (As1, Bs1), (As2, Bs2), (As3, Bs3), . . . . . . (Asn, Bsm)
and the target domain data (Dt : (At, Bt)) is the combination of (At1, Bt1), (At2, Bt2),
(At3, Bt3), . . . . . . (Atn, Btm), in which the class of source domain label data (Bs) and tar-
get domain label data (Bt) is 0 and 1, where the normal and attack scenario is represented
by 0 (zero) and 1 (one), respectively.

Table 2. Symbols and description.

Description Source (s) Target (t)

Domain data Ds : (As, Bs) Dt : (At, Bt)
Domain feature As At
Domain label Bs Bt
Number of domain data n m

Additionally, both the labels of the source domain (Bs) and the target domain (Bt)
data contain only normal and attack data, although the attackers in the source and target
domains may be different. Although the source domain label (Bs) and the target domain
label (Bt) share the same feature space, they perform differently in specific features. We
used the Maximum Mean Discrepancy Equation (1) to calculate the difference between the
source and target domains [48]:

Distance(As, At) =

∥∥∥∥∥ 1
n

n

∑
i=0

φ(Asi )−
1
m

m

∑
i=0

φ(Ati )

∥∥∥∥∥
2

(1)

The detection model trained by the source domain data (Ds) does not have excellent
detection accuracy when faced with target domain data (Dt), according to the dependency
of TML and DL models, and this has been totally proven by the subsequent experiment.
The TML and DL models require a large amount of training data. Thus, it is difficult
to train an effective IDS model using a small amount of source domain data (Ds). As a
result, we have proposed a deep transfer learning based P-LeNet method to transfer the
knowledge contained in source domain data (Ds) to the target domain and combine the
target domain data (Dt) to build an efficient IDS to improve the detection accuracy for any
electric vehicular ecosystems.
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3.3. Architecture

The block diagram of the proposed P-LeNet model is shown in Figure 5, which contains
two parts: the model training part and the intrusion detection part. After pre-processing
the raw data, we have applied it to our proposed model for training. Through subsequent
empirical experiments, the most important parameters for the selected model have been
determined. We used a randomly selected training dataset to train the proposed P-LeNet
model and a validation dataset to validate the model. The final IDS model has been selected
based on its best prediction performance on the validation dataset.
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Dense Layer
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PredictionLabels VS

Loss
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Knowledge P-LeNet 

Model
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Figure 5. The block diagram of the proposed P-LeNet mode.

The proposed P-LeNet architecture is made up of seven layers with a total of 12,052
trainable parameters (weights). The layer is the composition of two convolutional layers,
two subsampling layers, one flatten layer, one fully connected layer, and one output layer. Each
layer takes the previous layer outputs as inputs for the current layer and performs some
nonlinearity’s to transform it into a multivariate series whose dimensions are defined by
the number of filters in each layer. The structure of the proposed LeCun Network (P-LeNet)
model is shown in Figure 6. The first layer is the Input layer, which is not considered
a network layer because it does not learn anything. The input layer is designed to take
dataset and pass it on to the following layer. The dataset has a total of four features
including the label feature. The four features are CAN_ID, DLC, Data_Field, and Label.
The one-dimensional convolutional layer (Conv1D) is used in the first, and the third layer
respectively to transform the dataset. The first Conv1D layer produces as output five
feature maps, and has a kernel size of 5, and the second Conv1D layer produces as output
20 feature maps, and has a kernel size of 5. The Rectified Linear-Unit (ReLU) activation
function is used in the both convolution layer. The two Conv1D layers contain 30 and 520
trainable parameters, respectively. The first MaxPooling1D subsampling layer follows the
first Conv1D layer, and the second MaxPooling1D subsampling layer follows the second
Conv1D layer shown in Figure 6. The two subsampling layers halves the dimension of
the feature maps it receives from the previous layer; this is known commonly as down-
sampling. The two subsampling layers also produce 5 and 20 feature maps, respectively,
each one corresponding to the feature maps passed as input from the previous layer. The
fifth layer of our proposed model is the Flatten layer which converts the pooled feature map
to a single column that is passed to the next layer. The next is fully-connected Dense layer
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where total trainable parameter is 10,500. This operation reduces drastically the number
of trainable parameters in a deep model while enabling the use of a class activation map
which allows an interpretation of the learned features [49]. Finally, the output layer whose
number of neurons is equal to the number of classes in the dataset. The softmax function is
used as the activation function in this layer to predict a probability distribution between
normal and attack scenarios.

Figure 6. The structure of the proposed P-LeNet model.

Furthermore, the Compile function enables the actual building of the model we have
implemented with some additional characteristics such as the loss function, optimizer, learn-
ing rate, and metrics. To train the network, we utilize a loss function called categorical
crossentropy, which calculates the difference between the network’s predicted values and
the actual values of the training data. The number of changes made to the weights within
the network is facilitated by the loss values accompanied by an optimization algorithm
(Adam). During training, we have been used the valuation dataset to validate our proposed
model after each epoch. The proposed model has achieved a better validation accuracy.
However, we have evaluated the trained model on the test dataset for a more explicit
verification of the proposed model’s performance on an unknown dataset.

4. Materials and Methods

In this section, we have thoroughly explained the dataset and the transformation
process of the dataset to feed the selected models.

4.1. Dataset Description

The dataset has been generated in two different ways. Details of the dataset can be
accessed in [43]. The first dataset contained normal driving data without an attack and the
second dataset contained abnormal driving data that has been collected during an attack
was performed in in-vehicle networks. Each dataset has been combined into one CSV file
by a Python script. The class distribution of the combined dataset is shown in Figure 7.
The combined dataset has a total of 5 features including the label feature. The five features
are Timestamp, CAN_ID, DLC, Data_Field, and Label. The Timestamp feature represents
the recorded time in seconds (s). The CAN_ID is used to identify the CAN messages in
hexadecimal format (e.g., 0 × FA5, 0 × 18F) and assigns its priority. The messages having
the lowest CAN_ID value represent the highest priority. The DLC feature in the control
field shows the number of bytes, from 0 to 8, and values change depending on the vehicle
categories. The Data_Filed feature contains the data to be transferred from one node to
another and consists of the data value in a byte that has eight fields in total (e.g., Data[0],
Data[5]). Finally, the Label feature contains two quantitative values, i.e., 0 and 1, which
indicates normal and attack (injected message) scenarios, respectively.

108



Sensors 2021, 21, 4736

Normal driving data 
without an attack

(61.82%)

Abnormal driving data 
with attacks

(38.18%)

Python Script
Combine Dataset

(100.00%)Python Script

First Dataset (CSV File)

Second Dataset (CSV File)

Flooding
Attack 

29%
Fuzzing
Attack 

40%
Spoofing
Attack 

31%

Figure 7. Statistics of the dataset.

4.2. Data Preparation

The dataset must be cleaned and prepared before applying the selected TML, DL, and
DTL methods to achieve optimal performance and improve the learning process. Data
preparation generally happens by eliminating unnecessary features, checking for changes
in independent features, converting non-numeric features, and removing outliers. Three
fundamental steps are applied during the data preparation process. The first step is data
cleaning, the second is data integration, and the final step is data transformation.

4.2.1. Data Cleaning

This dataset is very sensitive to missing and noisy data because of its large size.
There are a total of 1,270,310 instances in the dataset including noisy and inconsistent
data. In this subsection, we have discussed the essential steps in prepossessing of data.
First of all, we have applied various techniques to remove noise and clean inconsistencies
data from the dataset, for example, Rosner’s Test for outliers checking, and the Predictive
Mean Matching method for imputing missing values. Then, in order to apply the selected
models, we have converted the qualitative values into quantitative values. To cite an
example, the Label feature in the dataset, which has qualitative values ‘Normal’ and ‘Attack’,
has been converted into ‘0’ and ‘1’. These quantitative values have been converted to
quantitative values by performing a numerical convolution label-encoding library numconv.
The CAN_ID feature in the dataset, which has hexadecimal values (e.g., 58B, F41), has
been converted into decimal values by applying the hex2dec function. On the other hand,
the Data_Field feature in the dataset, which also has hexadecimal values of eight bytes
separated by space (e.g., 80 7F 00 73 20 00 0A A1, 14 80 10 80 00 00 0A 73). The space
between bytes have been removed by applying gsub function and then the hexadecimal
values have been converted into decimal values by applying the Rmpfr function as most of
the data field is over 64 bits (maximum 152 bits). The Timestamp feature has been omitted
from feature vectors as they may cause overfitting the training data. Furthermore, for some
DL and DTL models, the input data shape has been reshaped into three dimensions to feed
the models by applying numpy.reshape with swapaxes and concatenate methods.

4.2.2. Data Integration

To improve the accuracy and speed of the training and validation process, the data
integration technique helped us by reducing and avoiding redundancies from the resulting
dataset. As this dataset originates from two different ways. Thus, it is an essential step
to analyze the redundancy and correlation between the selected features. This analysis
has measured how strongly one feature, i.e., CAN_ID implies the other, i.e., Data_Field.
We used cutoff criteria (p < 0.05) to find the correlation between different features. The
results indicated that the higher the coefficient value, the stronger the relationship between
those features [50]. Table 3 shows the correlation between different features. For our
analysis, we assessed the correlation between all features by calculating the following
Pearson product-moment coefficient Equation (2) [51]:
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r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(2)

where n is the number of tuples, xi and yi are the respective values in tuple i, and x̄ and ȳ
are the respective mean values of x and y.

Table 3. Pearson product–moment correlation between different features.

Timestamp CAN_ID DLC Data_Field

Timestamp 0 × 100 4.285 × 10−2 6.525 × 10−6 1.794 × 10−4

CAN_ID 4.285 × 10−2 0 × 100 1.663 × 10−1 3.966 × 10−1

DLC 6.525 × 10−6 1.663 × 10−1 0 × 100 2.707 × 10−1

Data_Field 1.794 × 10−4 3.966 × 10−1 2.707 × 10−1 0 × 100

Cutoff criteria: p < 0.05 (statistically significant) and the values have been rounded to the four decimal places.

4.2.3. Data Transformation

We have taken this step to achieve more efficient results and to better understand the
patterns. Some features are higher than others, leading to wrong performance, though
some models may be preferred for larger functional values. We have performed these
strategies to re-scale the selected feature values within a range between [0.0, 1.0] without
changing the characteristics of original data [52,53]. As shown in the following Equation (3),
a technique called minimum–maximum normalization has been used to re-scale the selected
feature values within the range:

Nv =
X − Xmin

Xmax − Xmin
(3)

where Nv is the output normalized values, X is an original value and Xmax, and Xmin is the
maximum and minimum values of the feature, respectively.

4.3. Training Process

As mentioned in the previous subsection, a Python script combined the two datasets
into a single dataset that included both the training and test data. First of all, we have
used the scikit_learn library’s train_test_split method to split the combined dataset into the
training (80%) and test (20%) datasets. In the raw dataset, the total number of data are
1,270,310. After removing the noisy and inconsistent data, we got a total of 1,257,303 data
where the number of training data are 1,005,843 (80%) and the testing data are 251,460
(20%). The training dataset has been used to train the selected models, and the test dataset
has been used to further assess the trained classifier. Furthermore, we split again the
training data 1,005,843 (80% of the total data) into the new training data 804,674 (80%)
for training the selected model and validation data 201,169 (20%) for hyperparameters’
optimization. The percentages of 80% for the training dataset and 20% for the test dataset
have been chosen as suggested in [54]. To avoid the over-fitting problem, this splitting ratio
has been considered as the best ratio between the training and the test dataset [55]. We
have used the value of the random_state parameter as true, which decided the splitting of
dataset into the training and the test dataset randomly [56]. Finally, various performance
indicators have used to evaluate the overall performance of the selected models, which
have been discussed in the Results section. The steps involved to evaluate the performance
of all of the selected models are summarized in Figure 8.
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Figure 8. Evaluation process on the datasets with the selected models.

Several supervised TML algorithms have been applied to evaluate their performance
for intrusion–detection purposes. The TML algorithms have been chosen based on their
extensively used in the security-domain as they have already shown good performance
on these scenarios [57]. We have predominantly applied Decision Tree (DT), Random
Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) algorithms
for classification analysis. The DT algorithm is the most popular model that is used for
the IDS domain, which is showed by the authors in [57,58]. The effectiveness of the RF
models in the IDS domain has been shown in a survey conducted by Yang et al. [59]. The
SVM algorithm has been considered as it has low computation overheads [60]. Finally, the
KNN algorithm has been selected as it achieves good performance in dealing with different
sensor data [57].

In recent years, DL algorithms have advanced significantly and some of the variants
of DL algorithms have been successfully applied to solve classification tasks related to
intrusion detection [61]. Therefore, we have considered simple Neural Network (NN),
Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and Long
Short-Term Memory (LSTM) algorithms because of their optimal performance. In the
LSTM algorithm, we have used three hidden layers, and the union of hidden layers are
128, 100, and 64, respectively. The tanh is the hidden layer activation function and Adam is
used as an optimizer. In addition, sigmoid is used as a network output activation function,
and categorical_crossentropy is used as a loss function. Furthermore, both NN and CNN
algorithms have used the same optimizer and activation function but a different type of
hidden layer activation function. Particularly for the RNN model, the softmax is used
as the network output activation function, and categorical_crossentropy is used as the loss
function. On the other hand, for the CNN algorithm, the number of hidden layers is
four, and binary_crossentropy is used as the loss function. The dropout layer has been
added after each layer to prevent model overfitting as RNN and LSTM generally have
the problem of overfitting [62]. We have evaluated the selected DL models with a wide
range of tested hyperparameters. We have obtained the optimal performance when we
used these combinations of tested hyperparameters. Table 4 shows the hyper-parameter
list of all the selected DL algorithms.
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Table 4. The hyper-parameters of the selected DL models.

Parameters NN RNN CNN LSTM

Number of hidden Layers 2 3 4 3
Units in hidden layers 68, 68 64, 64, 64 32, 64, 256, 128 128, 100, 64
Batch size 64 64 64 16
Hidden layer activation relu relu relu tanh
Output activation function sigmoid softmax sigmoid sigmoid
Dropout N/A 0.1 N/A 0.2
Optimizer Adam Adam Adam Adam

In addition, we would like to emphasize some DTL models that give better perfor-
mance than others. We have considered four DTL models and the selected model are Fully
Convolutional Networks (FCN), Inception Network (IncepNet), Residual Neural Network
(ResNet), and our proposed LeCun Network (LeNet). For all the selected models, the
hyper-parameters—batch size, hidden layer activation function, output layer activation
function, loss function, and the optimizer are 64, ReLu, softmax, categorical_crossentropy, and
Adam, respectively. Furthermore, FCN, IncepNet, and ResNet models have used the same
number of hidden layers, but the units in the hidden layer are different. Particularly for
the P-LeNet model, the number of the hidden layers is 2, and the units in the hidden layer
are 5, 20. We have evaluated the selected DTL models with a wide range of tested hyperpa-
rameters. We have obtained the optimal performance when we used these combinations of
tested hyperparameters. On the other hand, we have used the Adam optimizer for all the
models because it combines the best properties of the AdaGrad and RMSProp algorithms
to provide an optimization algorithm [63]. Furthermore, particularly for this analysis,
the Adam optimizer has shown the lowest training loss and validation loss among other
optimizers. Table 5 shows the hyper-parameters list of all the selected DTL algorithms.

Table 5. The hyper-parameters of the selected DTL models.

Parameters FCN IncepNet ResNet P-LeNet

Number of hidden Layers 3 3 3 2
Units in hidden layers 128, 256, 128 32, 64, 32 128, 256, 128 5, 20
Batch size 64 64 64 64
Hidden layer activation relu linear relu relu
Output activation function softmax softmax softmax softmax
Dropout N/A N/A 0.1 N/A
Optimizer Adam Adam Adam Adam

5. Results

This section discusses the overall performance of the selected models, starting with
an analysis of TML metrics and concluding by explaining the effectiveness of the DL and
DTL models.

5.1. Experimental Evaluation Indicators

Various measurement indicators (e.g., accuracy, precision, F1-score) are used to il-
lustrate the results where the obtained accuracy shows the overall effectiveness of the
proposed model. We evaluated the performance of all the selected models using the
following four terms:

• True-positive (TP) refers to the number of actual attack instances that are correctly
detected as attack.

• True-negative (TN) is the number of normal instances that are correctly detected
as normal.
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• False-positive (FP) is the number of normal instances that are incorrectly detected
as attack.

• False-negative (FN) refers to the number of actual attack instances that are incorrectly
detected as normal.

Accuracy is the closeness of the measurements to a specific value, which demonstrates
the efficiency of the classifier to determine the total instances. Clearly, a higher accuracy
means better classification results. The mathematical expression of accuracy can be defined
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

The fraction of the true positive instances in the positive case determined by the classi-
fier is represented by precision, which demonstrates the closeness of the measurements to
each other. Precision can be represented by the following equation:

Precision =
TP

TP + FP
(5)

The proportion of relevant instances (positive cases) that are correctly judged to the
total positive case is referred to as recall. Recall can be defined as follows:

Recall =
TP

TP + FN
(6)

The following F1-score computes the harmonic mean of precision and recall, respec-
tively. F1-score can range from 1.0 to 0.0, with 1.0 indicating perfect precision and recall:

F1Score = 2 × Precision × Recall
Precision + Recall

(7)

As one of the significant indicators, the ROC AUC determines areas where the pro-
posed model is classified better within normal and attack scenarios. Measuring ROC
AUC requires diagnostic accuracy, which depends on the sensitivity, i.e., true positive rate
(TPR), and the specificity, i.e., true negative rate (TNR). As demonstrated by the following
equations, TPR, often called recall:

Sensitivity(TPR) =
TP

TP + FN
(8)

Speci f icity(TNR) =
TN

TN + FP
(9)

In this analysis, we incorporated a wide range of analyses’ scenarios with varying pa-
rameters. To this end, we conduct experiments considering different numbers of the hidden
layers, units in the hidden layers, numbers of the epoch, a range of hidden layer activation
functions, output layer activation functions, loss functions, and different optimizers. These
critical parameters significantly affect the calculation of the performance metrics for DL
and DTL algorithms. Finally, we show the performance comparisons between TML, DL,
and DTL models where the performance of the proposed model has a meaningful impact
to indicate the predicted label correctly.

5.2. TML Models Analysis

We start with the traditional machine learning (TML) algorithms because these state-
of-the-art algorithms provide the optimal performance and take the least amount of time
to run. The performance of the selected TML algorithms has been quantitatively evaluated
using the fundamental evaluation indicators. Figure 9 shows the performance metrics of
the selected TML algorithms. The DT algorithm shows the optimal performance among
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all considered TML algorithms with an accuracy score of 0.9532, precision score of 0.9463,
recall score of 0.9558, F1-score of 0.9608, and ROC AUC score of 0.8408. As shown in
Figure 9, the red quadrangle represents the accuracy score for all of the selected TML
algorithms and the best one highlighted in blue color text. On the other hand, the KNN
algorithm shows the lowest accuracy score of 0.9248 and a precision score of 0.9141. We
used an accuracy plot to determine the proper K value for the KNN algorithm, and the
highest accuracy was obtained when K = 12. The RF algorithm achieves the second-best
performance with an accuracy score of 0.9448 and a precision score of 0.9448. The SVM
algorithm achieves an accuracy score of almost 0.9440 and a precision score of 0.8840 by
using C = 1.2, epsilon = 0.1, and Gaussian RBF Kernel particularly, which is the third-best
performance. However, RF and SVM algorithms have an overall accuracy score of almost
0.9444, but the SVM algorithm has the lowest precision score of 0.8840 when compared
to the other selected TML algorithms. The lowest precision score of the SVM algorithm
indicates that most of the predicted labels are incorrect. In contrast, the precision score
of the RF and DT algorithms is around 0.9455, indicating that the majority of predicted
labels are correctly classified. Taking into account all aspects of performance indicators,
we conclude that the DT algorithm outperforms the other selected TML algorithms. This
optimal performance indicates that most of the predicted labels are correctly classified
between normal and attack scenarios.

Highest Accuracy

Lowest Accuracy

Figure 9. TML algorithms’ performance metrics visualization.

5.3. DL Models Analysis

In recent years, DL models have advanced significantly, and several variations of these
models have been successfully applied to solve classification tasks related to intrusion
detection [61]. Therefore, in this subsection, we consider DL models because of their
optimal performance. We have considered LSTM, NN, CNN, and RNN models. The
LSTM model shows the highest accuracy score of 0.9762, precision score of 0.9808, recall
score of 0.9392, F1-score of 0.8884, and ROC AUC score of 0.9288. Figure 10 shows the
performance metrics comparison of the selected DL models. We used three hidden layers
for the LSTM model, with units of hidden layers is 128, 100, and 64. The tanh is the hidden
layer activation function and Adam is used as optimizer. In addition, sigmoid is used as a
network output activation function, and categorical_crossentropy is used as a loss function.
On the other hand, the NN model has the lowest accuracy score of 0.9563. The performance
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of the RNN and the CNN models outperform most of the TML models, where these models
show an accuracy score of 0.9640 and 0.9590, respectively.

Figure 10. DL models’ performance metrics visualization.

Furthermore, both the NN and CNN models used the same optimizer and activation
function, but different types of hidden layer activation functions. Particularly for the
RNN model, the softmax is used as the network output activation function, and categori-
cal_crossentropy is used as the loss function. On the other hand, for the CNN model, the
number of hidden layers is four, and binary_crossentropy is used as the loss function. Finally,
taking into account all of the significant parameters of the DL models, the LSTM model
demonstrated the best performance, indicating that the majority of the predicted labels are
correctly classified.

5.4. DTL Models Analysis

We analyzed the results of TML and DL models to achieve optimal performance.
In this subsection, we highlighted four selected DTL models that perform better than
others. We considered the number of hidden layers, units in the hidden layers, output layer
activation functions, loss functions, and so on, in addition to the fundamental evaluation
criteria. First of all, we considered the quantitative performance of DTL models. Table 6
shows the quantitative performance summary of the DTL models, where the proposed
P-LeNet model shows an optimal performance compared to the other DTL models with an
accuracy score of 0.9810, precision score of 0.9814, recall score of 0.9804, F1-score of 0.9783,
and ROC AUC score of 0.9542. In this model, we used two hidden-layers where relu is the
hidden layer activation function. In addition, softmax is used as a network output activation
function, and categorical_crossentropy is used as a loss function along with adam optimizer.

Table 6. DTL models’ performance comparison metrics.

Algorithm Accuracy Precision Recall F1-Score ROC AUC

FCN 0.9786 0.9832 0.9617 0.9488 0.9248
IncepNet 0.9803 0.9152 0.9265 0.9024 0.9129
ResNet 0.9795 0.8958 0.8845 0.9001 0.8703
LeNet 0.9810 0.9814 0.9804 0.9783 0.9542

The values have been rounded to the four decimal places.

Figure 11 shows the accuracy score of every single epoch for both the training and
testing phase on the above-mentioned DTL models. We have considered 1000 epochs for
our analysis because the flattening characteristics of the curve and the training/testing
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accuracy are not increasing literally between the epoch number 450 to 1000. The proposed
P-LeNet model has the highest accuracy score in both the training and testing phases. For
a better understanding of our proposed P-LeNet model, Figure 12 shows the trend of the
accuracy score in both phases. The proposed model’s accuracy increases rapidly in epoch
number 10 and gradually rises to a point close to 0.9809 at epoch number 400. However, as
shown in Figure 12, which remains nearly stable up to the early stopping checkpoint with
an accuracy score of 0.9810. In contrast, the FCN model has the lowest accuracy score in
the epoch number ranges from 1 to 1000. The FCN model’s accuracy begins around 0.9545
for the training phase and 0.9422 for the testing phase in epoch number 46, as shown in
Figure 11. However, it rises dramatically around 0.9785 in epoch 554 and 0.9783 in epoch
610 for the training and testing phases, respectively. Furthermore, the accuracy score of
0.9786 remains stable in epochs 555 to 1000 during the training phase. On the other hand,
for the testing phase, the accuracy score of 0.9783 remains stable between epoch numbers
611 and 1000.

Figure 11. DTL models’ training and testing accuracy.

The training and testing accuracy of the IncepNet model remains steady between the
epoch number 500 to 1000 as shown in Figure 11. The accuracy of ResNet models starts
with a score of 0.9102 for training and 0.9089 for the testing phase. However, as the epoch
number increases, this score gradually rises and reaches approximately 0.9745 when the
epoch number is 450, and then remains stable between epoch numbers 451 and 1000 for
both phases. The remarkable point is that the behavior of the training phase is nearly
identical to that of the testing phase. For better understanding, the trend of both phases is
shown by zooming in Figure 11.

Figure 12. Training and testing accuracy of the proposed P-LeNet model.

Next, we analyzed the losses of each model. The training and testing phases’ losses
of every single epoch are shown in Figure 13. The FCN model shows the highest loss
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in both the training and testing phase. The highest loss of this model indicates that the
model cannot provide a reliable classification between normal and attack scenarios in the
CAN networks.

Figure 13. DTL models’ training and testing loss.

On the other hand, our proposed P-LeNet model shows the lowest loss. In detail, the
loss of the proposed model starts around 0.50 for the training phase and 0.35 for the testing
phase at the beginning as shown in Figure 14. However, it is decreasing to 0.1689 and
0.1750 for the epoch number 10 for the training and testing phase, respectively. The loss
score of 0.1459 remains almost constant between epochs 400 and 1000. Furthermore, the
losses of the IncepNet and ResNet models are nearly constant during both the training
and testing phases, as shown in Figure 13. The loss of these models is almost 0.5506 at
the beginning, which declines gradually to approximately 0.1409 for the epoch number
350 and remains stable for both of the phases. For better understanding, the trend of both
phases is shown by zooming in Figure 13.

Figure 14. Training and testing loss of the proposed P-LeNet model.

5.5. Performance Comparison

We have considered a variety of strategies for selecting the important features and then
applied the chosen algorithms. We have predominantly applied the TML, DL, and DTL
approach in the same dataset. The TML algorithms did not show remarkable performance.
However, when we have applied the DL algorithms, most of the algorithms perform better
than the TML algorithms. Furthermore, when we have applied the DTL algorithms, all the
algorithms perform significantly better in most cases. In such cases, accuracy, precision,
recall, F1-score, and ROC AUC are better than other experimental scenarios. Moreover, the
proposed P-LeNet model has adequate stability, low loss, and better classification accuracy
than other DTL approaches. Finally, the proposed model can effectively identify and
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classify the normal and attack scenarios of in-vehicle networks to correctly manage vehicle
communications for vehicle security.

6. Conclusions

Automobile manufacturers are working to develop fully autonomous vehicles, which
will ensure proper security. In this manuscript, we propose a deep transfer learning-based
LeNet model for intrusion detection in electric in-vehicle networks. The proposed detection
model has an overall accuracy score of 98.10%. Moreover, the model has precision score
98.14%, recall score 98.04%, F1-score 97.83%, and ROC AUC score by 95.42%, which is a
noticeable improvement when compared to the other benchmark ML, DL, and DTL models.
These experimental results demonstrated that the proposed P-LeNet model efficiently
classifies the normality and abnormality and allows the immediate detection of anomalies
in the CAN networks. To summarize, it is obvious that the model has proven its potential to
efficiently exhibit anomalous data identification to protect the CAN network that can also be
extended in other emerging applications within critical infrastructures where automation
and secure data processing is the main challenge. In the future, we will try to implement
this proposed deep learning model based on decentralized devices or servers. We will
also concentrate on improving the performance of the proposed model by optimizing the
hyper-parameters.
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Abbreviations

The following abbreviations are used in this manuscript:

CAN Controller Area Network
ECU Electronic Control Unit
IVN In-Vehicle Network
CAN FD CAN Flexible Data-Rate
LIN Local Interconnect Network
MOST Media Oriented Systems Transport
ML Machine Learning
IDS Intrusion Detection System
TML Traditional Machine Learning
DL Deep Learning
DTL Deep Transfer Learning
DT Decision Tree
RF Random Forest
SVM Support Vector Machine
KNN K-Nearest Neighbor
NN Neural Network
RNN Recurrent Neural Network
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CNN Convolutional Neural Network
LSTM Long Short-Term Memory
FCN Fully Convolutional Networks
IncepNet Inception Network
ResNet Residual Neural Network
LeNet LeCun Network
ReLu Rectified Linear-Unit
DLC Data Length Code
TNR True Negative Rate
TPR True Positive Rate
SOF Start of Frame
RTR Remote Transmission Request
IDE Identifier Extension
CRC Cyclical Redundancy Check
ACK Acknowledgment
EOF End of Frame
IFS Inter Frame Space
DEL Delimiter
ID Identifier
OTA Over the Air
DNN Deep Neural Network
DBN Deep Belief network
DoS Denial of Service
ARP Address Resolution Protocol
RPM Radiation Portal Monitors
GAN Generative Adversarial Network
DCAE Deep Contractive Auto Encoder
DCNN Deep Convolutional Neural Network
IoV Internet of Vehicle
MMN Minimum Maximum Normalization
MMD Maximum Mean Discrepancy
HEX2DEC Hexadecimal to Decimal
R-MPFR Multiple Precision Floating-Point Reliable
ROC-AUC Receiver Operating Characteristic-Area Under the Curve
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Abstract: Heterogeneous vehicular communication on the Internet of connected vehicle (IoV) envi-
ronment is an emerging research theme toward achieving smart transportation. It is an evolution
of the existing vehicular ad hoc network architecture due to the increasingly heterogeneous na-
ture of the various existing networks in road traffic environments that need to be integrated. The
existing literature on vehicular communication is lacking in the area of network optimization for
heterogeneous network environments. In this context, this paper proposes a heterogeneous network
model for IoV and service-oriented network optimization. The network model focuses on three
key networking entities: vehicular cloud, heterogeneous communication, and smart use cases as
clients. Most traffic-related data–oriented computations are performed at cloud servers for making
intelligent decisions. The connection component enables handoff-centric network communication in
heterogeneous vehicular environments. The use-case-oriented smart traffic services are implemented
as clients for the network model. The model is tested for various service-oriented metrics in hetero-
geneous vehicular communication environments with the aim of affirming several service benefits.
Future challenges and issues in heterogeneous IoV environments are also highlighted.

Keywords: heterogeneous vehicular communication; Internet of connected vehicles; vehicular ad
hoc networks; heterogeneous networking; Internet of Things

1. Introduction

A universal network architecture is being envisioned considering the significant
growth in sensor-enabled digital things in our daily life such as smartphones in our hands,
vehicles on roads, entertainment devices in homes, and computing systems in offices [1].
This global network architecture leverages most of the existing networks. It is adopted
as the Internet of things (IoT) in academic and industrial research communities. Interop-
erability is the key feature for achieving seamless integration of heterogeneous networks
by utilizing intelligent interfaces [2]. The Internet of connected vehicles (IoV) is a hetero-
geneous network that has evolved from the existing ad hoc network–oriented vehicular
communication. It integrates different vehicular networks in road traffic environments
(i.e., vehicle-to-vehicle (V2V), vehicle-to–roadside unit (V2R), vehicle-to–in vehicle sensors
(V2S), vehicle-to–mobile infrastructure (V2I), and vehicle-to–personal device (V2P)-enabled
vehicular networks) [3,4]. The ad hoc network-oriented conventional vehicular network
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aimed to enhance traffic safety and efficiency via real-time communication between on-road
vehicles utilizing roadside units. Various standards and protocols have been developed
to enable ad hoc vehicular networks, including wireless access in vehicular environments
(WAVE) and dedicated short-range communication (DSRC) [5].

Ad hoc network-enabled vehicular communication technology lacks commercial inter-
est toward implementation, despite the lower operational cost–driven networks for traffic
safety and efficiency services [6]. This is due to the ad hoc vehicular networks’ inability
to operate compatibly with existing heterogeneous network technologies [7]. Specifically,
the issues include pure ad hoc communication architecture, lack of standards for personal
devices, intermittent Internet service, and cooperative dependency for network operations.
The pure ad hoc network architecture cannot support service-oriented commercial applica-
tions [8]. The intelligent decisions based on the enormous amounts of traffic data are far
from reality due to the unavailability of cloud support in intermittent Internet service [9].
The growing number of personal devices are dead-ends for vehicles. The compatibility is
still a serious challenge considering the heterogeneous personal devices prevalent in traffic
environments [10]. Due to cooperative information processing, time-constrained traffic
information delivery is far from reality [11]. Moreover, the ever growing connected world
era has significantly affected ad hoc vehicular communication in terms of the futuristic,
connected-vehicle framework. A vehicle would always remain connected to the Internet
via smart-handover-enabled heterogeneous reachable networks.

This paper proposes a heterogeneous network model for enabling the IoV framework.
A practice-oriented modeling approach is followed to design and develop the framework. It
has significant potential to enable the connected-vehicle paradigm and to spur commercial
interest in vehicular communication. Specifically, we aim to answer the following questions:

• What are the key technical components involved in realizing a heterogeneous vehicular
network model for the IoV?

• How to realize vehicular cloud-oriented data processing in vehicular environments
enabling big traffic data computation for making intelligent traffic decisions?

• How to perform heterogeneous connection management and prioritization in dynamic
vehicular traffic environments?

• Is the provisioned heterogeneous vehicular network model for the IoV efficient and scal-
able considering the growing network heterogeneousness, vehicle speed, and density?

The rest of the paper is articulated as follows: In Section 2, a critical review of the
related literature is carried out. Section 3 presents the details of the proposed heterogeneous
network model. Section 4 discusses the service-oriented performance evaluation of the
network model, followed by the conclusions presented in Section 5.

2. Related Work

Research and development on the connected-vehicle-traffic environment are gaining
momentum in the past few years due to the growing government-level support in this the
area in most developed countries, particularly in the UK, US, and EU countries [12]. An
integrated vehicular network name, i.e., Space–Air–Ground (SAGiven) has been suggested,
focusing on heterogeneous network function and network resource identification [13]. It has
developed a vehicular communication framework considering mobile-network-connected
on-road ground vehicles, unmanned aerial vehicles (UAVs), and satellites-based space
vehicles. The framework uses a case-based study rather than a scientific novelty as no new
technologies or concepts have developed; instead, existing techniques have been utilized.
Another UAV-enabled connected-vehicle framework was investigated, focusing on 6G
communication-centric services [14]. A UAV-centric task-offloading technique was devel-
oped for edge devices in a vehicular network environment considering the high computing
capacity in the 6G communication environment. The edge devices that communicate with a
particular UAV were identified as an edge network group. However, the focus of this study
was on reducing the energy consumption of edge devices in a vehicular network. The
issue of energy consumption is not a potential issue in the vehicular network considering

124



Sensors 2022, 22, 1247

vehicles’ battery capacity. A similar UAV-based content distribution vehicular network has
been suggested considering 5G-centric IoT services [15]. Initially, an integrated network
architecture was developed to optimize the quality of experience (QoE) for vehicle drivers.
The integrated network involves a UAV network and a vehicular network for traffic-related
content distribution. These UAV-based vehicular network integration frameworks have
considered only mobile network integration without focusing on other personal networks’
integration with vehicular networks.

The other dimension of research on enabling the Internet of connected vehicle en-
vironment is improving the performance of heterogeneous network architecture using
innovative techniques [16,17]. A cooperative driving framework has been suggested for the
Internet of connected vehicle environment, focusing on velocity prediction of neighboring-
vehicle-centric motion planning for path following a driving scenario [18]. The driving data
of nearby vehicles were utilized in a neural-network-based framework for generating a safe
travel pattern considering the predicted velocity error of all the neighboring drivers. It was
validated for lane-changing scenarios in the connected vehicle environment. However, the
framework relies on the precision and accuracy of the driving data of neighboring vehicles.

Similarly, another cooperative driving control framework was investigated for the
Internet of connected vehicle environment, focusing on collision avoidance at merging
roads [19]. The merging road area was divided into three subregions, including delay
estimation region, control region, and merging region, for precisely calculating commu-
nication delay considering the dynamic mobility data of approaching vehicles and other
traffic data in the region. The study assumed roadside infrastructure-based communication,
which has practically difficult deployment limitations near all the merging roads. Another
cooperative collision avoidance framework has been explored considering trajectory predic-
tion and mobility uncertainty in connected vehicle environments [20]. An edge and cloud
server–based vehicle-to-roadside unit reliable communication architecture was considered
for improving traffic-data-centric knowledge on mobility uncertainty. The cooperative
collision avoidance framework relies on roadside-infrastructure-based communication
rather than a connected-vehicle networking environment. The aforementioned studies in
the connected-vehicle environment majorly focused on network performance improvement
rather than on network prioritization in the heterogeneous vehicular network environment,
which is the scope and focus of this paper.

3. Internet of Connected Vehicles

3.1. Heterogeneous Vehicular Networks

The IoV is a global vehicular network leveraging the Internet and various vehicular net-
works in traffic environments. The proposed heterogeneous vehicular network architecture
leverages different kinds of vehicle-oriented networking, including V2V, V2R, vehicle-to–
personal devices (V2P), vehicle-to–mobile infrastructure (V2I), and vehicle-to-sensors (V2S)
for on-road traffic environments. These vehicular communications are different due to
their enabling wireless access technologies. The intervehicle ad hoc type of communication,
including V2V and V2R, is supported by WAVE. The long-range V2I web communication is
enabled by Wi-Fi and 4G/LTE technologies. The in-vehicle V2P and V2S communications
utilize Car-Play and Wi-Fi, respectively. The range of technologies and devices increases the
design complexity of the architecture. It is complemented as a market-oriented vehicular
communication technology.

The global vehicular network framework has enormous potential not only to guide
(with respect to traffic safety and efficiency-related cooperative information sharing among
on road vehicles) vehicles but also to supervise (with respect to vehicle-safety-related
dedicated information delivery between an intelligent cloud server and vehicles or drivers
of vehicles). The abundant traffic applications related to mobile Internet and multime-
dia services are considered deployable on the heterogeneous vehicular framework using
publish–subscribe based architecture. A realistic framework is illustrated in Figure 1, fo-
cusing on three advanced traffic information processing scenarios. Firstly, IoV enables
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the verification of traffic safety information via network coordination. The verified safety
information is published over local networks by authorities on global networks. Secondly,
the efficiency information available over IoV is near-optimal information, considering the
utilization of global traffic scenarios of more significant geographical regions. Thirdly,
IoV-based utility information is intelligent due to considering the cloud-oriented market of
big-data processing by third-party utility information service providers.
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Figure 1. The realization of the IoV scenario with heterogeneous vehicular networks.

3.2. Network Model

The network model of IoV is based on cloud-oriented big traffic data computing and
heterogeneous-communication-oriented intelligence. The proposed model considers the
concept of graph partitioning in order to achieve quality of service (QoS) flow allocation and
prioritization for multitenants. Here, QoS means traffic-service-centric resource allocation
in the integrated vehicular network environment. Dijkstra’s and Kruskal’s algorithms
were used to model the procedure of multitenancy QoS path computation. The concept
of multitenancy allows sharing of resources and applications. However, its drawback
is that some dominating tenants can monopolize the resources, which results in system
performance degradation. Therefore, the concept of a software defined network (SDN)
was used to overcome this problem. In general, SDN is a network virtualization concept
for enabling specific service-centric networks. Here, SDN was used to control the tenants
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and the network usage in vehicular network integration. The network management layer
performed network virtualization, which resulted in the separation of different tenants’
flows to increase isolation among tenants. After that, different flows were controlled by
SDN dynamically. The SDN handled the virtual network layers and stored subnets of the
physical network. SDN based system overview is presented in Figure 2.
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N/W Virtualization 
Platform

Cloud Virtualization 
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Resources

Computing 
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End host 
application

Data 
forwarding 
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Figure 2. System architecture.

The network controller requested a management tool to assign the best-suited route
whenever new flow and resources arrived in the network. The network management
tools allocated the best resources to newly arrived flow based on the current status of the
network. The concept of graph partitioning was used to achieve QoS flow allocation and
prioritization for multitenants. The symbols used in this paper are summarized in Table 1.

Table 1. Symbol description.

Symbol Description

G Vehicular network connectivity graph
V Set of vehicular nodes as vertices of the graph
E Set of vehicular communication links as edges of the graph
F Set of vehicular communication flows in the network graph

SP Shortest communication paths between vehicular nodes
S Number of segments in a particular path l
P Number of subpaths in a particular path l

Wl Weight of a path l used for vehicular path selection
LUR Link utilization ratio of a vehicular network
λl Link load of shared link in a particular path l
Cl Link capacity of shared link in aparticular path l

The building blocks of the network model of the IoV include the cloud, the connection,
and the clients as key network components (Figure 3). The cloud represents the computing
brain, enabling unlimited processing capability in vehicular environments. The cloud-
based services are accessible via a reliable vehicle-to-Internet connection. The vehicle-
oriented connection is a cooperative combination of various wireless access technologies
with vehicular networks. Various traffic-utility-oriented clients utilize the heterogeneous
network access technology–enabled Internet connection for making intelligent decisions
via cloud-based computing resources. The inner-module-oriented relational structure of the
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proposed heterogeneous vehicular network model is presented, focusing on key network
entities (see Figure 4).
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Figure 3. Building blocks of the network model.

(1) Vehicular Cloud

The cloud framework has two key operation levels for realizing cloud-oriented in-
telligent application servers. The traffic-oriented essential cloud services are considered
lower-level, whereas smart IoV servers are developed on top of these essential services.
The distinguishable level-wise cloud operation is significant considering the steep growth
in the volume of traffic data once the integration of various existing networks with the
vehicular network is realized as an IoV. The traffic data uploading, information processing,
dissemination, and storage are the basis for the two-level cloud operation on big traffic
data. The technical roles of each level of operations are introduced below:

• Traffic-Oriented Cloud Services

The traffic-oriented cloud services are essential to the intelligence processing and
analysis of big traffic data (see Figure 3). The implemented services include Computing as a
Service (COaaS) on traffic data, Storage as a Service (StaaS) for traffic data, Data as a Service
(DaaS) for traffic information re-utilization, Gateway as a Service (GaaS) for heterogeneous
network support, and geo-Location as a Service (LoaaS) for vehicle localization. Some
other services toward multimedia intelligence are also implementable, including Picture
as a Service (PcaaS) for sharing traffic incidence, Platform as a Service (PlaaS) for system-
oriented traffic applications, Software as a Service (SoaaS) for traffic analysis, and Network
as a Service (NaaS).

• Smart Server

The smart IoV servers consist of two processing engines, namely, internal and external
(see Figure 5). These processing engines utilize traffic-oriented cloud services to infer
intelligent decisions from traffic data. The responsibilities of an internal processing engine
include materializing big traffic data, processing via applying artificial intelligence, and
analyzing with a focus on smartness. The external processing engine is majorly respon-
sible for traffic-oriented data collection and dissemination. The coordination between
engines to simulate intelligence enables three types of smart IoV servers: verified traffic
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safety, optimized efficiency, and intelligent utility toward business-oriented servers. The
visualization of three IoV services is due to these smart servers’ different processing and
time-oriented constraints.
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Figure 4. Vehicular cloud-oriented heterogeneous network model for IoV.

(2) Connection for Heterogeneous Vehicular Communication

The vehicular connection between smart IoV server and the vehicular end-user is com-
posed of a third-party heterogeneous internetwork coordinator (HIC) and heterogeneous
internetworking gateway (HIG). It is operational cooperation between the cloud server
and IoV end-user, including vehicles, personal devices, and roadside infrastructure. The
coordination-oriented network management in heterogeneous environments, including
802.11p, Wi-Fi, and 4G/LTE access technology, is the key responsibility of the HIC. The HIG
represents the individual network connection. The HIC prioritizes network connections
based on wireless access technologies.
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• Heterogeneous Internetworking Coordinator (HIC)

The internetwork operator provides a service level agreement to the end-user for the
heterogeneous network operators in the IoV. This enables seamless roaming between the
heterogeneous networks, enabling internetwork cooperation without compromising the
quality of network performance. The HIC eliminates the requirement of a pairwise qual-
ity of service agreement between network operators, which is a significantly challenging
constraint for any heterogeneous network framework. Three key functional modules were
developed in the HIC to carry out the internetworking-oriented connection and service
management. The modules include heterogeneous handoff management (HHM), heteroge-
neous authentication and authorization (HAA), and heterogeneous service management
(HSM). These modules interact with two major databases, including heterogeneous net-
work and network operator databases. The functional relationship among key functional
modules and databases is presented in Figure 6a.

The HHM module monitors network connections, looking for potential active connec-
tions that may require a internetwork handoff shortly. These active connections transform
into handoff connections after the operation confirmation from HAA and HSM. The trans-
formation is enabled by a handoff operator responsible for verifying response confirmation
from the authentication and service modules. The HAA module maintains end-user cre-
dentials across networks for verification. This includes network- and operator-specific
access right validation, bypassing the response for initiating handoff operation. It monitors
the session-wise network operation and initiates a time-oriented connection closer in case
of an idle connection. The third-party-oriented HIC implementation enables smooth end-
user authentication and authorization, which is challenging considering heterogeneous
network environments.

The HSM module provides an end-user service layer agreement using a service quality
rating approach for different operating networks. It uses a list of dedicated services
between heterogeneous operating networks. The service quality is rated, with a focus
on guarantying service quality to end-users by maintaining a service delivery history
for each heterogeneous operating network. The rating is implemented considering user-
feedback-oriented service monitoring for the connections initiated in the networks. The
heterogeneous network and operator database are accessed as a key information resource
in the connection-oriented operations of the three functional modules in HIC.

Vehicles Devices Roadside Units

PLaaS SOaaS NaaS

COaaS STaaS PCaaSDaaS GaaS

LOaaS

Traffic Oriented Cloud Services

Information Dissemination Unit Information Collection Unit

External Engine
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Figure 5. The two-level vehicular cloud engine for IoV.
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Figure 6. Key functional modules in heterogeneous connection: (a) HIC and (b) HIG.

• Heterogeneous Internetworking Gateway

The heterogeneous internetworking gateway of a connection implements network
access technologies in IoV to enable effective collaboration with the HIC for initiation
and maintenance of heterogeneous vehicular connections. The HIG represents four types
of wireless access technologies enabling the five types of vehicular communications. It
includes WAVE-enabled V2V and V2I, Wi-Fi- or 4G/LTE-enabled V2I, Car-Play- or android-
system-enabled V2P, and media-oriented system transport (MOST)-enabled V2S. The
access-technology-oriented HIG consists of three major functional modules, including
Internetwork Mobility Management (IMM), Network-Specific Authentication and Autho-
rization (NSAA), and Network Traffic Management (NTM). The operational flow and
association among key functional modules in the HIG are presented in Figure 6b.

The IMM module implements mobile IP by utilizing network tunneling between
vehicle home agent (VHA) and vehicle foreign agent (VFA). During an on-road journey, the
initial operating network enables a home agent, whereas any other network throughout
the journey enables a foreign agent for each vehicle. The tunnel-oriented internetwork
mobility enabling supports seamless roaming without IP conversion. The NSAA module
executes local credential verification for vehicles. It enables HAA to carry out credential
verification with the coordination between VFA and VHA. The network traffic management
module implements network policies for providing network monitoring services in a
particular network. These policies vary with the type of network in heterogeneous network
environments. The policy-oriented network monitoring is based on the historical-traffic-
usage data and the live traffic data for a specific network connection.

(3) Smart Services as Clients

A client application utilizes access-technology-oriented connection for realizing large
cloud-based services in vehicles. Some novel smart client applications are implemented
based on cloud service architecture. There are two broader aspects of these client ap-
plications in IoV. One is business-focused client applications, majorly oriented toward
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vehicle insurance, car-sharing, and infotainment. The safety and management-oriented
client applications are related to navigation, vehicle diagnostic, and remote telematics
in vehicles. Some potential service-oriented clients are materialized below by identify-
ing their parameter-oriented service requirements and corresponding access-technology
prioritization (see Figure 7 and Table 2).
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Figure 7. Experimentally validated access-technology prioritization tree.

Table 2. Client-oriented access technology prioritization.

Client
Client-Oriented Priority Order

High                              Low

Accident Prevention WAVE/DSRC → 4G/LTE → ZigBee → Wi-Fi → Bluetooth → WiMax

Emergency Call Guarantee Bluetooth → ZeeBee → Wi-Fi → WAVE/DSRC → WiMax → 4G/LTE

MEC-Oriented Parking Helper WiMax → Wi-Fi → 4G/LTE → WAVE/DSRC → Bluetooth → ZigBee

Vehicular Telematics 4G/LTE → WiMax → WAVE/DSRC → Wi-Fi → Bluetooth → ZigBee

• Machine-to-Cloud-Oriented Accident Prevention

The machine-to-cloud (M2C)-oriented traffic safety service in the IoV is implemented
considering traffic data inferred knowledge towards accident prevention. It is an advance-
ment in machine-to-machine (M2M)-oriented safety application, majorly relying on locally
inferred knowledge from neighboring vehicle’s data. The cloud-server-based smart traf-
fic applications utilize global traffic knowledge to improve decision-making for drivers.
It focuses on automatic operations on the go, including steering control, speed control,
stoppage, and lane change.

• Black-Box-Oriented Emergency Call Guarantee

The emergency call guarantee service is implemented via heterogeneous network
cooperation in the IoV. A vehicle uses the nearest and best available network-access technol-
ogy to call emergency facilities. The call is forwarded between heterogeneous networks to
guarantee its quality and completion for the desired facility. The call implementation con-
siders interval-based manual intimation as well as event-based automatic intimation. The
call implementation realizes present and past information-sharing regarding emergency
incidence, including speed, direction, location, and lane.
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• Mobile Edge Computing–Oriented Parking Helper

The parking helper service is implemented, enabling roadside units as mobile edge
computing (MEC). The geographical parking space information dissemination and precise
localization are the main technical modules involved in realizing MEC-enabled parking
helpers. The implementation is based on Wi-Fi-enabled publish–subscribe communication.
The roadside units periodically publish parking availability information. The information is
accessed by subscribed passing-by vehicles as receiver-initiated information dissemination.

• Remote-Operation-Oriented Vehicular Telematics

The remote vehicular telematics service is implemented considering guaranteed end-
to-end communication between vehicle and remote services. The implementation focuses
on executing non-driving operations such as password-oriented vehicle authentication
and authorization, intimation of vehicle access, and remote vehicle monitoring. These
remote operations exploit heterogeneous vehicular communication to transform the existing
physical entity-oriented operations into digital entity-oriented forms.

3.3. Network Prioritization in Heterogeneous Vehicular Networks

In the integrated vehicular network environment, the QoS path was computed using a
weighted internetwork routing approach. The integrated network path having the greatest
weight was chosen as a target for enabling a specific traffic service. The information
about the current traffic load was collected from each vehicular communication link using
switch port counters traffic history. The concept of multitenancy was used here in order
to maximize the QoS requirements in an heterogeneous vehicular network environment.
Initially the concept of network virtualization was used to isolate the flow among different
vehicular tenants. It was achieved by dividing the vehicular network into layers of local
and integrated vehicular networks. Secondly, the weighted internetwork routing algorithm
was used to control the allocation of new flows entering into the vehicle network and to
prioritize them as per the need of client-specific traffic services.

A software defined network (SDN) controller was used for vehicular communication
flow level network prioritization. The SDN controller was modeled using an undirected
graph G, where G = (V, E) is undirected graph among vehicular nodes and existing
network infrastructure in traffic environment. Here, V is the set of vehicular nodes in the
network and E is the set of vehicular communication links between the network nodes.
Considering n as the number of vehicular tenants in the vehicular network graph G, the
graph can be divided into various subgraphs including G1, G2, G3, . . . Gn based on the
number of flows and tenants in the traffic-specific network. This graph-centric vehicular
network can be represented as expressed in Equation (1).

Gn = (Vn, En), where Vn ∈ V, and En ∈ E (1)

where Vn denotes the set of vehicular nodes as vertices and En denotes the set of het-
erogeneous vehicular communication links as edges in the vehicular network subgraph
Gn. Each vehicular node in the subgraph was included in the heterogeneous network G
so that all possible combination of heterogeneous vehicular communication paths could
be explored by network prioritization component from a source vehicular node to any
destination client services of another vehicular node. Each subgraph Gn was considered as
vehicular nodes with heterogeneous communication links connected to the vehicular graph.
Here, two vehicular network subgraphs enabled by different types of local networks were
considered edge disjoint. However, it is highlighted that different vehicular communication
paths in a subgraph network may have common communication links as common edges.
This can be mathematically represented as expressed in Equation (2).

Gn(a,b) =

{
Ea ∩ Eb = 0, i f Ga and Gb are di f f erent types o f vehicular networks

e ∈ l1 ∧ e ∈ l2, i f l1, l2 are f rom same network, l1, l2 ∈ Ga or l1, l2 ∈ Gb
(2)
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where Ea and Eb denote set of heterogeneous connectivity links as edges of subgraphs Ga
and Gb, respectively, and e denotes a common links of the two communication paths l1 and
l2 of same network type.

The multitenancy QoS prioritization was implemented by using Dijkstra’s and Kruskal’s
algorithms for managing the shared vehicular communication resources and their utilization.
The shortest heterogeneous path between any two vehicular nodes was computed using
the algorithms considering two sets of vehicular network space and heterogenous vehicular
communication paths. It is highlighted that the two algorithms were used to carry out
heterogeneous vehicular network prioritization for enabling smart traffic client services
described in the network architecture. These algorithms were used for two-level network
prioritizations. Specifically, in first-level prioritization, Dijkstra’s algorithm was utilized for
localized vehicular network without considering other existing network infrastructure nearby
the traffic environment. In second-level prioritization, Kruskal’s algorithm was utilized for
spanning tree-centric integrated heterogeneous network prioritization where different types
of existing networks are considered for enabling vehicular network services. In the two-level
prioritization, the shortest heterogeneous vehicular communication path between vehicular
nodes was identified considering vehicular flows in the network. The following constraints
exist in the two-level prioritization, as expressed in Equations (3) and (4).

F ⊂ V2 (3)

SP ⊂ F (4)

where F denotes the set of vehicular node flows between any source and destination, and
SP denotes a shortest path between the source and destination vehicular nodes. Here, each
heterogeneous communication paths l in the network consists of number of subpaths Pl and
segments Sl joining the local vehicular networks. For obtaining the shortest heterogeneous
communication path in the shared link resource environment, link utilization ratio LUR of
the network was computed as expressed in Equation (5)

LUR =
Tra f f ic link load f rom SDN switch port

Link capacity
=

λl
Cl

(5)

where λl denotes the link load of a shared link in a particular path, and Cl denotes the
link capacity of a shared link in a particular path. The shared link utilization ration LUR

was further used in computing the weight wl of a particular path l for making shartest
heterogeneous path decsion as expressed in Equation (6).

wl = 1 −
(
∑m ∑n LUR)/Pl

∑l(∑m ∑n LUR)/Pl
where wlε(0, 1) and ∑

l
wl = 1 (6)

where m and n represents the two vehicular nodes attempting to communicat via heteroge-
neous vehicular communication links. The path with the highest weight in the heteroge-
nious vehicular network graph was considered the least loaded path and appropriate for
establishing prioritized heterogeneous vehicular communication.

4. Performance Evaluation—A Case Study

In this section, the performance of service-oriented clients is evaluated in heteroge-
neous vehicular networking environments as an IoV implementation. Compared with the
traditional ad hoc vehicular system, such as VANETs implementation, where infrastructure
support is omitted, including RSU, Wi-Fi, and LTE infrastructure.

4.1. Simulation Setting and Metrics

The heterogeneous networking environment was simulated using network simulator
ns-2. A vehicular mobility model generator MOVE and a geographic information system
ArcGIS were utilized as supporting applications. Initially, a realistic vehicular mobility
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network scenario focused on road map editor and vehicle movement editor utility in MOVE.
The scenario was executed on a real city road map obtained via a web application open
street map (see Figure 8). Two-dimensional location coordinates were precisely embedded
on the map using ArcGIS. Notably, the capital city is a real example of dense urban
infrastructure where heterogeneous vehicular network environments are a reality. The five
types of vehicular communications are implemented, focusing on varying transmission
ranges and access technologies. The traditional vehicular communications, including V2V
and V2R, were implemented considering IEEE 802.11p-enabled access technology with a
[200–300 m] transmission range. The short-range vehicular communications, including
V2S and V2P, were implemented considering Wi-Fi-enabled access technology with a lower
transmission range, precisely [5–10 m] and [40–80 m] for the respective cases. The more
extensive vehicular mobile network was implemented using 4G-enabled access technology
considering [500–1000 m]. It is clarified that the tool used to carry out experiments supports
3G and 4G services; therefore, it was mentioned in the paper. However, 5G can be used
wherever 4G has been considered. We did not test 5G experimentally in our proposal;
therefore, we do not mention it.

 

Figure 8. Simulation scenario as open street view.

The cooperation among these access technologies was realized by considering hetero-
geneous network access points in the implementation scenario (see Figure 9). The access
points included 6 4G-enabled mobile access points at junctions, 9 Wi-Fi-enabled access
points, and 22 RSUs alongside roads. Two major traffic scenarios in urban environments
were considered in the implementation: peak and off-peak hours’ traffic, where average
intervehicle distance and speed are lower and higher, respectively. The values of other
general simulation parameters were similar to those considered in vehicular networking
implementations [12]. Measuring the performance of the considered IoV clients under these
scenarios was attractive for the standardization of heterogeneous vehicular networking
and related client implementations.

The performance of M2C-enabled accident prevention was measured via message
diversion rate (i.e., the percentage of vehicles receiving an accident intimation distributed
via a dedicated cloud server on the point incidence road section) on the road section of inter-
est. The black-box-oriented emergency call guarantee was measured in message drop rate
(i.e., the percentage of emergency messages with a failed delivery attempt in point-to-point
short message delivery) in point-to-point emergency message delivery. The MEC-enabled
parking helper was evaluated in terms of delay in RSU-enabled distributed message deliv-
ery. The performance of remote-operation-oriented vehicular telematics was measured via
in-stream utilization in video data delivery. It focused on stream density (i.e., the percentage
of neighboring vehicles utilized for establishing multiple-stream-oriented communication
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path between source and destinations) targeting stream-oriented data delivery in the IoV.
It is highlighted that wherever we refer to VANET implementation in the paper, it means
a localized vehicular network implementation without considering the heterogeneous
existing networks’ integration. We compared a VANET implementation with an IoV imple-
mentation, which means an integrated vehicular network environment considering other
existing network infrastructures along with the vehicular network.

RSU Wi-Fi Access PointsW Mobile Access Towers

Figure 9. Simulation scenario as simulator view.

4.2. Analysis of Results

The comparative investigation between IoV and traditional VANETs implementations
presented in Figure 10 focuses on-peak and off-peak traffic-based diversion rate evaluation.
It can be observed that the message diversion rate was stable at around 90% in the case
of IoV implementation. The stability in message diversion can be attributed to the capa-
bility of alternative vehicular network selection in the absence of ad hoc vehicular nodes
during off-peak traffic. The diversion rate varies with a more extensive range of 20–55%
between peak and off-peak traffic in the case of the traditional implementation. The higher
variation in diversion rate can be attributed to the availability of vehicular nodes in ad hoc
implementation, which is relatively lower during off-peak traffic and higher during peak
traffic. The M2C-oriented accident prevention message diversion rate analysis highlighted
the benefits of heterogeneous cooperative vehicular networking.

The comparative investigation in Figure 11 focused on drop reduction with higher
vehicle density and drop increment with higher vehicle speed. It can be observed that the
drop reduction due to vehicle density was relatively higher in the VANET implementation
as compared to that in IoV implementations. It reduced from 35% to 20% in the state-of-
the-art VANET implementation and from 12% to 9% in the IoV implementation. This can
be attributed to the better opportunistic ad hoc networking probability with higher vehicle
density for the traditional implementation and better forwarding network selection in the
case of the IoV implementation. It is also clearly visible that the drop increment due to
higher vehicle speed was approximately equivalent for both the implementations. This was
due to the speed-oriented link failure in communication between vehicles and emergency
services, which was quite similar in both the implementation scenarios. The emergency
message drop analysis highlights the benefit of IoV implementation as an overall lower
message drop rate than the traditional implementation.
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Figure 10. Message diversion in M2C-based accident prevention.

Figure 11. Message drop in back-box-oriented emergency message delivery.

The comparative performance evaluation in Figure 12 focused on outlier delay analysis
to enable threshold monitoring for MEC-based clients. It is visible that the impact of speed
and density on the distributed operation delay of IoV was comparably negligible. It
was in the range of 45–50 ms throughout the density and speed change. This can be
attributed to the better operational network availability for distributed operation of clients
in heterogeneous IoV environments. The critical impact of higher vehicle speed and density
on delay is visible as outlier delay in the case of the VANET implementation. This is an
exciting result and provides clear evidence toward poor distributed network management
in ad hoc vehicular implementation without considering infrastructure support. The
comparative delay analysis for an MEC-based parking helper client attests to the better-
distributed network operation capability of the IoV implementation compared to the ad
hoc vehicular implementation.
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Figure 12. Distributed delay in MEC-based parking helper.

The comparative performance evaluation presented in Figure 13 focused on mon-
itoring utilization bound. It is visible that the stream utilization bound approximately
80% for IoV implementation case was better than the 45% utilization bound observed in the
case of VANET implementation. This can be attributed to the durable stream survivabil-
ity utilizing heterogeneous links in IoV environments, whereas streams are spontaneous
in pure ad hoc implementation environments. It is also noteworthy that the utilization
increased upward until stream density reached 12–15%. The stream utilization reduced
downward with further higher stream density for both the implementation scenarios. The
interesting result shows the particular characteristics of multipath streaming where up
to 15% of neighbor node usage for streams supports better network resource utilization.
Further usage of neighbor nodes for higher stream density degraded utilization. This was
due to the duplication of streams with common neighbor nodes resulting in performance
degradation in both the implementation scenarios.

Figure 13. Stream utilization in telematics-based video data delivery.
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4.3. Summary of Observations
4.3.1. Network Prioritization in Content-Centric Networking

Content-centric networking has significant potential to address the growing heteroge-
neousness in vehicular environments [21,22]. It effectively reduces point-to-point network
load in heterogeneous environments due to its publish/subscribe-based communication
architecture. However, content-oriented network prioritization is a challenging task in
heterogeneous network environments.

4.3.2. Virtual Vehicle Hijacking in Vehicular Cyber System

The vehicles are no longer stand-alone entities, particularly with the realization of
heterogeneous communication architecture. However, vehicular communication comes
with a significant cyber security risk [23]. Specifically, unauthorized wheels access, disabling
brakes, locking doors, engine disruption to path forging, location and identity manipulation,
and tracking are some examples of virtual vehicle hijacking.

4.3.3. Big Data Analytics in Heterogeneous Traffic Data

The growing heterogeneousness in vehicular traffic data has significantly enlarged
traffic data volume towards big data [24]. However, traffic safety and efficiency-oriented
intelligent decisions to enable vehicular automation are still based on sensor-based static
data. Applying big data analytics in heterogeneous traffic data can bring fundamental
changes to the driving experience by inferring sophisticated, intelligent decisions.

4.3.4. Vehicular-Cooperation-Oriented Edge Computing

The realization of cloud computing in heterogeneous vehicular environments is the
need of the hour considering the limited computing capability in distributed vehicular
networking [25]. However, enabling cooperation-oriented edge computing can significantly
enhance the computing scenario considering the overall growth in on-road vehicles and
digital things in vehicular environments.

4.3.5. Driver Privacy in Heterogeneous Vehicular Communications

Driver privacy is a potential issue due to the growing advancement toward the
connected-vehicle environment [26]. There are different types of privacy concerns in
connected vehicle environments, including personal information privacy [27], location
privacy [28], driving-data privacy [29], third-party privacy [30], and information shar-
ing consent–related privacy [31]. Location privacy has been gaining more attention from
researchers in the past few years of connected-vehicle study due to the suitability of location-
based communications technologies and services in vehicular traffic environments [32].
Driving data privacy and information sharing are becoming crucial for today’s modern
vehicles due to the growing sensor-based technology advancements for connecting vehicles
to existing mobile networks and personal gadgets.

5. Conclusions

In this paper, a heterogeneous network model for heterogeneous vehicular communi-
cation is presented along with service-oriented implementation. The following conclusions
was reached from the design and implementation of the model. The network cooperation
enables cloud-oriented computing on big traffic data for realizing intelligent traffic services.
The heterogeneous network coordinator and gateway are the key to unambiguous con-
nection management. The service-oriented traffic applications become intelligent with an
enlarged traffic data domain and processing capability. The practical simulation verified
higher message diversion and stream utilization and lower message drop rate and delays
for traffic services in heterogeneous vehicular communication implementation. Mathe-
matical modeling of service-oriented network prioritization and content-centric service
implementation in the heterogeneous vehicular environment was also presented to sup-
port the heterogeneous vehicular network implemenattion theoretically. In the future, the
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UAV-enabled networks will be integrated with the heterogeneous vehicular network for
enabling specific service-centric real-time vehicular network infrastructure.
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Abstract: Reinforcement learning (RL) is a booming area in artificial intelligence. The applications of
RL are endless nowadays, ranging from fields such as medicine or finance to manufacturing or the
gaming industry. Although multiple works argue that RL can be key to a great part of intelligent
vehicle control related problems, there are many practical problems that need to be addressed, such as
safety related problems that can result from non-optimal training in RL. For instance, for an RL agent
to be effective it should first cover all the situations during training that it may face later. This is often
difficult when applied to the real-world. In this work we investigate the impact of RL applied to the
context of intelligent vehicle control. We analyse the implications of RL in path planning tasks and
we discuss two possible approaches to overcome the gap between the theorical developments of RL
and its practical applications. Specifically, firstly this paper discusses the role of Curriculum Learning
(CL) to structure the learning process of intelligent vehicle control in a gradual way. The results
show how CL can play an important role in training agents in such context. Secondly, we discuss a
method of transferring RL policies from simulation to reality in order to make the agent experience
situations in simulation, so it knows how to react to them in reality. For that, we use Arduino Yún
controlled robots as our platforms. The results enhance the effectiveness of the presented approach
and show how RL policies can be transferred from simulation to reality even when the platforms are
resource limited.

Keywords: vehicle control; reinforcement learning; curriculum learning; sim-to-real world; intelli-
gent mobility

1. Introduction

Reinforcement learning has been well studied in the recent past as it is considered
one of the most prominent paradigms in machine learning [1,2]. Inspired by the biological
behaviours of humans or animals, RL consists in following a trial-and-error basis to train
the agents to learn the best actions for each situation they face [3]. RL quickly proved to
be useful in the gaming industry, where famous works have proved how a RL agent was
capable of beating the human being in games such as Go or in a set of the famous Atari
games [4,5].

Due to its proven success, the areas of application of RL have expanded to diverse
fields. For instance, in healthcare studies have found RL to be useful as an assistant for
critical decision making [6] or in aiding in the treatment of certain conditions [7,8]. RL
has also been used in finance as a tool for portfolio optimization [9] or for analysing
different types of stock markets [10]. In the field of robotics control and autonomous
systems the applications are also many. As one of the first applications of RL in real robots,
in [11] the authors present a robot that learns how to push boxes, trained using RL. More
recently, works such as [12,13] propose new methods that use RL in mobile robots and
autonomous vehicles to improve on-site learning. Outside the ground domain, [14] show
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how RL can be applied also to the air domain by teaching flight control policies to an
autonomous helicopter.

Coming back to the ground domain, when it comes to intelligent vehicle control
there are multiple aspects that should be considered. Path planning is a key aspect in
autonomous navigation where RL can play an important role [15]. Path planning can be
described as a process that enables a mobile robot to traverse between the specific start and
goal location in an environment with static and dynamic obstacles. The robot is required to
find the optimal path with the shortest time, distance, and working cost.

There are three types of path planning algorithms: traditional algorithms, intelligent
bionic algorithms, and reinforcement-based path planning algorithms [16]. Traditional path
planning algorithms include A* algorithms and Dijkstra algorithms. Genetic algorithms
and ant colony algorithms are typical examples of bionic path algorithms. Traditional and
bionic algorithms can achieve a good result in a known environment on a global mapping
scale. However, real-world road conditions are very complex. In recent years, RL has
become more suitable for path planning activity because it requires less prior information
about the environment [17,18].

In path planning there are two conventional approaches: offline and online planning.
The former approach assumes that the environment is perfectly known, and obstacles are
static. The latter approach assumes environments are partially known, and blocks could
be dynamic [19]. Traditional offline approaches cannot be directly applied to solve online
path planning problems because they assume static obstacles.

Learning-based approaches, such as deep learning and RL, have been studied to tackle
online path planning in a dynamic environment [20–22]. With all its shortcomings, RL is
best suited for problems such as path planning because it requires low prior knowledge
of the environment. In [23], the authors present for the first time how to employ RL
for path planning. The focus of this work was to test the usability of RL for collision
avoidance in a multi-robot environment. As a combination of deep learning and RL, deep
RL has also become a popular research interest for path planning problems [15,24–28].
Deep Q-networks (DQNs) [5] is a deep RL algorithm which combines Q-learning [29]
and deep neural networks. In the DQNs approach, it is possible to use the current state
and action as an input of the neural network to get the action’s Q-value as an output.
Once acquiring all possible actions, the one with the maximum Q-value will be chosen.
Finally, the corresponding action is selected and executed. In [30] the authors proposed
a deep RL method that decreases the learning time by parallelising the algorithm across
multiple robots. However, despite Deep Q-networks notable success, DQNs have two
major drawbacks: they require high computational power and a long learning time.

While progress has been made about how to use RL in path planning tasks there are
still challenges to address. For instance, when the environment is completely unknown and
complex, applying RL in path planning can be challenging due to the many possible states
that the agent needs to explore in order to become completely aware of the environment
around [31,32]. Therefore, in this work we carry out a set of experiments to analyse the
impact of the environmental complexity on the learning process, and more specifically
on the learning time for path planning tasks. Additionally, we discuss a method for
transferring RL policies from simulation to reality. With such setup it is possible to cover
multiple situations in simulation that would be unexpected in the real-world and would
make the agent confused. By doing it in simulation first, then the agent is able to react to
these situations in reality accordingly.

Analysing from a multi-agent perspective, to apply these concepts in situations with
multiple agents can be increasingly difficult when the number of agents is increased. Such
configuration will have an impact in the complexity and stability of the environment [2]. To
overcome the gap between theoretical RL and its applications to real scenarios, in this work
we also explore how CL can be applied to multi-agent settings in the context of intelligent
vehicle control. More specifically, we use this method in a driving decision making problem
that consists of a traffic junction. The contributions of this paper are as follows:
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1. We investigate the impact of the environmental complexity in the learning process of
RL tasks involving path planning scenarios;

2. We discuss a method for transferring RL policies from the simulation domain to the
real-world domain, supported by empirical evidence and a working algorithm for
the discussed method;

3. We show how CL can be applied within the context of intelligent vehicle control in
tasks involving multiple agents.

The rest of this paper is organized as follows: in section two we introduce the key
concepts to the understanding of this paper and we present a review of those concepts. In
section three, we describe the methodology and experimental setup used in the experiments
that are illustrated and discussed in section four. Finally, we conclude this paper in section
five, where we also discuss the future work following the results in this paper.

2. Background

2.1. Q-Learning

Q-learning is one of the most popular RL approaches. Therefore, it has been widely
used to solve path planning problems [31,32]. Q-learning attempts to learn the theory
of delayed rewards to get better future rewards that are indirectly a consequence of the
previous actions. The main objective of this method is to avoid local optimal activities that
are not globally aligned. Reference [33] introduced Q-learning as a Temporal Difference
approach (TD). In [29], the authors proved the convergence of Q-learning to optima and
its relationship with TD and dynamic programming. To overcome one of the limitations
of using Q-learning for path planning tasks—the impracticality of storing the Q-table for
all states—[34] proposes a real-time Q-learning approach that avoids storing tables in
advance. The simulation was conducted in a 10 by 10 grid map with static obstacles. Other
algorithms such as Deep Q-Networks (DQNs) [5] have also been proposed to overcome
similar limitations.

Reference [31] introduced a Q-learning approach which involves the addition of a
distance aspect into the decision of direction. This approach reduced the number of steps
taken by the agent. However, the time taken by the model to converge is greater than
the traditional Q-learning. Reference [35] proposed a method to reduce the convergence
time of Q-learning for a path planning application by introducing the Flower Pollination
Algorithm (FPA) to improve the initialisation of Q-learning. This method was only tested
in a simple and static environment. Reference [32] investigated the use of a single source
transfer and improved Q-learning transfer to acquire better learning. While this method
was tested and it reduced learning speed when compared with the conventional methods,
it was only tested in a complex static environment.

To demonstrate the use and challenges of RL in path planning applications, in this
work we use the Q-learning algorithm in different environmental setups. Q-learning is
a model-free representative learning algorithm. An action related to a specific state is
defined by a policy. Q-learning uses this policy to select an action for the agent. The
policy establishes the reward or penalty for a particular action concerning the state. Q-
learning agents learn by updating their Q-function whose values are obtained from the
following equation,

Q(s, a) = r(s, a) + γmaxa
(
Q
(
s′, a
))

(1)

where s is the current state, a is the action, r is the reward, s′ is the next state resulting from
taking an action a at the state s, and γ is the discount factor. The role of the discount factor
in this equation is to help defining the agent’s preference towards a short-term reward.
The value of γ is between [0, 1]. While values closer to 0 make the agent susceptible to a
short-term reward, a value closer to 1 makes the agent prone to a long-term reward.

2.2. Multi-Agent Reinforcement Learning and Curriculum Learning

Deep Neural Networks (DNNs) are usually trained using variations of stochastic
gradient descent. A subset of training data is randomly sampled from the training set,
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passed through the DNN, and the loss and the gradients are calculated and propagated
through the layers of the DNN. Stochastic gradient descent not only increases computa-
tional efficiency for very large datasets, but it is also an unbiased estimator of the true
gradient of the DNN. However, we never see human teachers open the textbook, pick
random exercises from random topics, and ask their students to solve the exercises in the
hopes that after enough time has passed, all the material in the textbook will be covered
and the students learned the material. Given enough time, all topics may eventually get
covered, but it is more likely that the students quit soon out of sheer frustration. Usu-
ally, the teacher follows a curriculum, designed to facilitate the learning of a collection of
interrelated topics. For example, it would make sense to teach children addition before
multiplication, because you can teach multiplication through addition. This way new
knowledge is built on something they already know, minimising the amount of new mate-
rial needed to learn. CL [36] is a method of structuring the learning process to facilitate
learning for DNNs. Informally, CL proposes to first learn and solve simpler versions of the
task at hand, gradually building up to more difficult tasks. The curriculum can be thought
of as a sequence of tasks, each consecutive task at least as challenging as the previous one.
Assuming there is transferable knowledge between any two consecutive tasks, we may
be able to re-use existing knowledge to facilitate learning the next task. By training the
DNN on intermediate tasks, we assume the learner will be better prepared to learn the
target task, compared to a randomly initialised learner. The existing knowledge could help
the DNN reach an acceptable level of performance faster than without using a curriculum
or be able to learn a complex composite computer vision which cannot be learned well
without a curriculum [37].

To create curricula, a way of generating intermediate tasks is required. In Multi-Agent
Reinforcement Learning (MARL), multiple agents interact with each other in order to
achieve a certain objective. When compared to single-agent RL, MARL differs mainly in the
fact that there is more than one single agent involved in the task of the environment. Hence,
there is a team reward that corresponds to the performance of all the agents, and they all
receive this same team reward. Furthermore, there is also a set of actions corresponding to
each agent instead of a single action and each individual agent may receive different state
information depending on their positions in the environment. In other words, in MARL
different agents may see different parts of the environment at each state. Figure 1 illustrates
the main differences between single agent and multi-agent RL. Naturally, in MARL, a
simple way of creating new tasks is by changing the number of agents in the system. For
example, instead of training robot soccer players in a 11 vs. 11 player environment, they
can first be trained in a 5 vs. 5 environment. Changing the number of agents such as this
can lower the difficulty of the task (reduce the number of opponents), change the meaning
of the task (a 1 vs. 5 soccer game focuses on training the goalkeeper) and lower the resource
costs used to operate the (virtual or physical) learning environment. Agent Count Based
Curricula have been used with success in MARL systems.

Figure 1. Illustration of the main differences between Reinforcement Learning (RL) (left) and Multi-Agent Reinforcement
Learning (MARL) (right) (adapted from [38]). The figure represents the dynamics of a RL and MARL systems at a given
time step t.
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Reference [36] defines CL(CL) as a sequence of learning distributions Q(λ), 0 ≤ λ ≤ 1,
where:

∀ε > 0 : λ < λ + ε → H(Qλ) < H(Qλ+ε),

∀ε > 0 : λ < λ + ε → Wλ(z) < Wλ+ε(z)
(2)

where H(Qλ) is entropy H of the distribution Q at step λ, Wλ(z) is the weight of train-
ing sample z in Qλ. Intuitively, in each successive distribution, the training samples get
re-weighted, with entropy of the distribution H(Qλ) growing monotonically. The initial
distribution, Q0, would favour “easy” samples and place a weight of 0 on “hard” samples.
In the distribution sequence, the weights of all samples are gradually increased, culmi-
nating in a distribution where all samples have a weight of 1, which is the target training
distribution, Q1. However, in [36] the authors do not specify a measure for the “hardness”
of samples, indicating the need for future work in this regard. In addition to formalising CL,
the authors found that a learner trained with CL achieved better generalisation compared
to the learner trained without a curriculum in their two experiments. Additionally, they
hypothesised that CL has a regularising effect, similar to unsupervised pre-training [39],
on the final learning task. In [39] the authors theorised that each successive distribution
in the curriculum would guide the learner’s internal parameters (such as the weights in a
neural network) toward regions in parameter space that would serve as a better starting
point for the next task in the curriculum.

When it comes to multi-agent systems, recent works have focused on formulating CL
specifically in the context of RL. Reference [40] defines a curriculum as a directed acyclic
graph, where the edges of the graph introduce a partial ordering over the nodes. Informally,
this means that every task has some other task that comes before it in the curriculum. The
graph nodes represent subsets of experience (transitions) associated with the intermediate
learning tasks. In this general sense, a curriculum defines which intermediate learning
tasks should be learned before others to maximise knowledge transfer between tasks. The
primary purpose of the curriculum is to help the learner perform better in the final task
in the curriculum. Compared to the Supervised Learning formulation of CL in [36], the
general idea of ordering experience remains, but the curricula are not limited to a simple
sequence of learning tasks. Reference [40] also outlines three key areas of curriculum
learning: task generation (how to generate useful intermediate tasks?), sequencing (in
what order should we learn the intermediate tasks?), and transfer learning (how should
we transfer knowledge between two tasks?).

3. Methodology and Experimental Setup

In this section we describe the environments that are used in the experiments in this
work and the platforms used in the proposed sim-to-real approach. The workflow of this
project is presented in Figure 2.

 

Figure 2. Workflow of the proposed method in this paper.
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The environment used in the first set of experiments is represented by set of 2D
discrete grid world environments W ⊆ R2 with size H × W. There are four possible
states for each cell in the environment: free cell, occupied by agent, occupied by a static
abstract, or occupied by dynamic obstacles, where a set of static and dynamic obstacles
is represented as Cs = {s1, . . . , sNs} and Cd(t) = {d1(t), . . . , dNd(t)}, respectively. The free
cells are denoted by � = { f1, . . . , fNs}.

The reward function of the model is designed to encourage good moves and discour-
age wrong actions by the agent. In this task, the agent receives a negative reward when it
hits static and dynamic obstacles and then returns to a random starting point. The agent
receives a positive reward when it reaches the target point and the episode ends. In this
environment, each new episode contains a new unique learning set of static and dynamic
obstacles, a new starting point, and a goal point.

Given the (x, y) position of an agent as result of an action a, the reward function R is
defined as:

R =

⎧⎪⎪⎨
⎪⎪⎩

−5
−5
10
−1

collision to Cd
collision to Cs
target reached

penalty f or each additional move

(3)

To compare the transferability of the model to unknown and complex environments,
we train the model in different environment settings. The multiple setups are summarized
in Table 1. In Section 4 we also present the illustration of the configurations of the experi-
mented environments. In each environment, the number of obstacles is designed in three
complexity configurations: easy, moderate, and hard.

Table 1. Configuration of the experimented environments.

Environment Grid World Obstacles Obstacles Obstacles

Environment 1 100 × 100 easy moderate hard

Environment 2 200 × 120 easy moderate hard

In the second set of experiments in this paper involving CL, we use the Traffic Junction
environment as our learning environment, found in a collection of multi-agent learning
environments [41]. In this 2D grid world environment, agents are spawned at different
ends of a cross-shaped junction. Each agent is assigned a target they must reach by driving
forward towards the four-way intersection, making a turn, and driving forward to reach
their destination. The agents can take two actions, move forward, or stop, as they move
along the pre-defined route towards their destination. However, the reward function is
designed to discourage both collisions with other agents and avoid traffic jams, both of
which yield a small punishment to the agents. The size of the grid world is 14 by 14 and
the number of cars in the environment is 10. The simpler version of the task used for CL is
also 14 by 14, but with only 4 cars. For a visual representation of the environment please
see Figure 3.

Finally, the experimental setting used in the proposed sim-to-real approach is com-
posed by both a physical platform and a computer simulation to enable transfer of learning
between the physical and simulation domains. With the proposed method we try to address
the ‘reality gap’ [42].

For the physical platform, we assembled multiple robots controlled by the microcon-
troller Arduino Yún. The model of the robots used is the Pirate 4WD Mobile Platform and
they use three HC-SR04 ultrasonic sound sensors to gather information from the environ-
ment, placed on the front and both sides of the robots (see Figure 4). These sensors will
measure the distances to other obstacles in front of them. We have intentionally limited the
robots to use just the sound sensors as their only source of information gathering in order
to keep them rudimentary and investigate how learning experience can be transferred from
simulation to reality in such limited robots.
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Figure 3. Visualisation of the traffic junction environment with 10 cars. From left to right, top to bottom:
observe the cars 1 (red) and 2 (blue) as they approach the intersection and pass it without colliding.

 

Figure 4. Arduino-controlled Pirate 4WD Mobile Platform (right) and diagram illustrating how the main parts of the
platform interact with each other (left).

It has been discussed before how limited microcontrollers are and how difficult it
can be to implement deep neural networks on them due mostly to memory and latency
constraints [43,44]. In this sense, we decided to use Q-tables in the presented approach due
to their simplicity and ease of transfer and use in the physical platforms controlled by the
Arduino Yún. In the simulation implemented we use the Q-learning algorithm [29] to train
a Q-table that will be transferred to the physical machines.

The task implemented in the simulated environment is to roam around and avoid
obstacles. The environment is composed by two agents that are trained independently and
receive a team reward. In the implementation of the simulation, we reproduce subsequent
observations to each agent that would correspond to values gathered by the sound sensors
in the physical machines. However, it would be impossible to account in simulation all the
infinite possible values that the sensors could measure due to the randomness present in
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the real world or uncertainties related to the sensors [45,46]. Thus, the key to our method is
to create a generalisation of the possible observations received by the ultrasonic sensors and
map them to a finite number of values. Hence, in the simulated environment we consider
the existence of three possible situations: (1) the front of the agent is free and so it can move
forward; (2) the front of the agent is blocked and the distance on the right is greater than
on the left; (3) the front of the agent is blocked and the distance on the left is greater than
on the right. In the simulation, the agents are trained using RL to react to these scenarios
and perform the right actions, resulting in two trained Q-tables and one of them will be
exported to the microcontroller. Once the trained Q-table is in the robots, they can roam
around and, when they receive an observation, that will be mapped to the generalized
values defined before and get the right action from the trained Q-table, avoiding obstacles.
Algorithm 1 describes the methodology used for transferring the learnt policies.

Algorithm 1. Algorithm used by the Arduino robots to use the transferred policies

1. Set static map m ← [ fs, rs, ls]
2. Input array of measured distances front, right and left, [ f , r, l]
3. For each distance d in [ f , r, l] do
4. map d to value in m, d ∼ [ fs, rs, ls]
5. add d to new array of mapped values, [ fm, rm, lm].insert(d)
6. End For

7. Get state s corresponding to [ fm, rm, lm]
8. Get Q-value for state s, Qs
9. Output action argmax

a
Qs

4. Results and Discussions

In this section we present the results of the experiments performed in this work.
The experiments in this paper are three-fold: first, we use Q-learning in a set of different
environments to analyse the impact of the environmental complexity in the learning
process of the RL agent in path planning tasks for intelligent vehicle control. Second, we
show how CL can be applied to MARL driving decision-making scenarios. Third, we
investigate a method for transfer RL policies from simulation to reality supported with
empirical evidence.

4.1. Impact of Environmental Complexity in the Learning Process

This experimental setup is designed to examine the impact of the environmental com-
plexity on path planning algorithms using RL or, more specifically in this case, Q-learning.
Hence, we experimented with six different environments with different complexity config-
urations, with a 100 × 100 and 200 × 120 grid world systems. Figures 5 and 6 illustrate the
100 × 100 and 200 × 120 grid world systems, respectively. The model was firstly trained
in an accessible environment and then is followed by a moderate and a highly complex
setup. As illustrated in Figures 5 and 6, based on the complexity of the environment, the
model took a different number of iterations to converge. However, we have not found a
significant time difference between easy, moderate, and hard configurations for the same
environment. Hence, the results suggest that changing the experimental environment to a
more complex one will increase the training time more than just adding obstacles to a fixed
environment. As the number of obstacles increases, the learning time will also increase.

The results show that the training time of the model is directly proportional to how
big the training environment is. On average, it took 19.12 s to train the 100 × 100 and
26.48 s to train the 200 × 120 environments. Table 2 illustrates the total amount of time
taken to train the model for the different configurations in each environment.
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Figure 5. 100 × 100 grid-world environments and corresponding number of steps per learning iteration for each configura-
tion. From left to right, easy, moderate, and hard.

Figure 6. 200 × 120 grid-world environments and corresponding number of steps per learning iteration for each configura-
tion. From left to the right, easy, moderate, and hard.

Table 2. Time taken to train the model for the different configurations in each environment.

Environment Easy Moderate Hard

100 × 100 18.23 s 18.41 s 19.52 s

200 × 120 25.11 s 25.41 s 27.44 s

Environmental contexts in the real world are complex and dynamic. Representing
this complexity in simulation is a challenge; however, the real change is the computa-
tional cost of training the model. This computational cost is visible in our results. When
the environmental complexity increases (Figures 5 and 6), the computational cost also
increases. Our paper only considers up to 200 × 120 grid world environments. However,
to achieve a more reliable path planning result, the environment needs to be represented in
a significantly larger grid world than the one used in this paper.

Figure 7 illustrates the adaptability problem of the Q-learning based path planning
model. One of the significant drawbacks of this method is the lack of generalisation; the
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agents learn the detailed path of the training route. Our test results show that the model
tends to always travel in the direction of the training route without considering the target
position. For instance, we trained the model from the top left corner start point to the
bottom right corner of the destination.

 

Figure 7. Illustration of the learnt paths for one of the path planning tasks experimented. On the left the training path
direction, and on the centre and right the testing learnt path for two different starting and goal places.

Our test results show that the model performs better when the destination and start
points are similar to the training environment. When we test the model by inverting
the start and end points, the model gives lower performance results, suggesting that
researchers in RL-based path planning activities need to find a way to train models in
multiple routes within a single environment in a short time. As Figure 7 shows, the agent
has more advanced knowledge of the environment in the direction of the training path
than in another different path.

4.2. Curriculum Learning for MARL Driving Decision-Making Scenarios

In this set of experiments, we use a no curriculum baseline and two kinds of curricula
in order to negotiate driving decision making policies in a traffic junction task in a MARL
setup. For the baseline, we train the policy from a random initialisation for 2 million
timesteps. The first kind is the forward curriculum, which is a sequence of tasks (in
our case, the simple and target task). First, we train in the simple task, evaluating our
performance on the target task periodically. If we see no improvement in the target task for
20 evaluations, we stop training in the simple task and switch to training in the target task.
Then, we train in the target task for 2 million time steps. The second kind of curriculum
is the sampling curriculum. In a sampling curriculum we sample learning tasks from
a distribution of tasks. In our case, we sample the simple task with probability 0.2 and
the hard task with probability 0.8. The sampling curriculum may perform better in some
environments, for example, in [47] the authors found that a forward curriculum didn’t
accelerate learning in one of their tasks, but a sampling curriculum did. We train in the
target task for 2 million time steps in total, so approximately 1.6 million time steps in the
target and 0.4 million time steps in the simple task.

We use QMIX [48] as the MARL algorithm. QMIX is capable of training policies in
a centralised manner that supports decentralised execution. It works by using a mixing
network whose weights are derived from the available state information to estimate
the joint action values of a team of cooperative agents. More specifically, each agent
produces a set of action values based on their local observations, which the mixing network
combines to produce the team’s joint action value. The mixing network is designed to
make sure the policies behave similarly during both centralised training and decentralised
execution phases.

The results in Figure 8 show that after an initial jump in performance, all policies
go through a steady decline in performance. This jump and the following decline are
a lot more pronounced when training a policy from scratch, with the highest level of
performance around −220, with the policy degrading in performance to around −800.
After a temporary increase in performance at around the 90th evaluation iteration the
policy degrades again, starting a consistent improvement in performance after the 160th
evaluation iteration. From now on, the policy keeps consistently improving with slight but
short-lived dips every now and then. The forward curriculum starts out at around −440,
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declining to −530, after which performance temporarily increases, dips again and sharply
increases, similar to the no curriculum baseline. Following this jumpy start, we see a slow
and jittery increase in performance up until the last iteration. The sampling curriculum
follows a similar path to the forward curriculum, but the fluctuations in performance are
less pronounced. Overall, the sampling curriculum shows to be the least unstable with
regard to the policy’s performance. Additionally, the sampling curriculum achieves the best
performance level during the last iterations of training, followed by the forward curriculum
and no curriculum baseline. These results suggests that the sampling curriculum is more
efficient compared to others because it trained in the target task for approximately 80%
of the time yet achieving better results. This may be due to training in the simple task
often enough causes the DNN parameters to be pulled in two directions in parameter
space. 80% of the time Gradient Descent (GD) pulls the DNN parameters towards solving
the target task, but 20% of the time GD pulls the parameters towards solving the simple
task. Assuming there is knowledge in knowing how to solve the simple task that can be
used to help learn how to solve the target task, forcing the policy to learn to solve both
problems can provide a regularising effect, constraining the possible DNN parameters to
a more specific region of parameter space, aiding optimisation. When applying CL there
are some factors that need to be accounted in some cases in order to maintain the desired
performances. For instance, when using CL, the difficulty of the tasks and subtasks needs
to be considered, which might not always be available. Furthermore, there is still some
uncertainty when it comes to creating subtasks on-demand and, in some cases, it might be
beneficial to filter the type of knowledge being transferred from task to task [40]. However,
in scenarios such as the one experimented CL proves to be successful and capable of taking
into account these factors.

Figure 8. Traffic junction performance using no curriculum, a forward curriculum, and a sampling curriculum.

4.3. Sim-to-Real: Transfer of Reinforcement Learning Policies from Simulation to Reality
4.3.1. Simulation Domain

In this section, we show the results of the implementations of Q-learning [29] and
DQN (Mnih, et al., 2015) in the simulated environment described in Section 3 that was
used to transfer simulation experience to the physical machines. Although deep neural
networks can perform better than simple Q-tables in RL when it comes to map states to the
corresponding actions, it has been discussed previously how sometimes it can be difficult
to implement neural networks in resource limited microcontrollers [43,44]. Therefore, to
support the use of Q-tables in this work we perform a set of experiments in simulation. At
the same time, the experimental results show how it is possible to minimize the number of
collisions with obstacles in a certain environment by using RL.
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In Figure 9 it is illustrated the evolution of the average number of collisions incurred by
two agents (the collisions of both agents are added together) per training step over time for
simple Q-learning and DQN. As described previously in Section 3, in this task two agents are
given successive observations with distances to walls around them. Every time the agents
collide with one of the walls each one receives a punishment. In Figure 9 it is possible to
see that, although at first both DQN and Q-learning incur in some collisions, after some
training time both can minimize the number of collisions, making the performances of the
two methods close to each other in further training episodes. Thus, we can conclude that
transferring a Q-table instead of a DQN to the physical robots was a reasonable option, since
in this setup it would not have impact. Furthermore, in this particular setup, the Q-learning
method can minimize the collisions as well as the DQN and in a smaller amount of time.

Figure 9. Collisions for the simulation environment described for DQN and Q-table approaches.

4.3.2. Real World Domain

To evaluate the fidelity of the proposed transferability approach from simulation to
reality, we have implemented a hardcoded policy in a second Arduino Yún controlled
robot to roam around and avoid obstacles. Although transferring complex situations
learned in simulation to reality is still a big challenge due to multiple constraints such as
the randomness in real world events [45,49], the results demonstrate the success of the
approach attempted in the presented scenario. By transferring the learned Q-table from the
simulation described to reality it was possible to observe a very similar behaviour between
both the hardcoded and the robot following the transferred Q-table. They both were able
to roam around and avoid obstacles and consequently, they were able to roam in the same
area avoiding colliding to each other.

Figure 10 illustrates an occupancy grid map made using data gathered by the robot
with the transferred Q-table. The robot was placed inside a large box where it gathered
data using the ultrasonic sound sensors. This was possible without any collisions with the
walls of the box, following the policy transferred from simulation and, as the figure shows,
the box was mapped with a good level of accuracy.

Figure 10. Occupancy grid map built with data collected by one of the Arduino robots corresponding
to a rectangular box.
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5. Conclusions and Future Work

In this work we have investigated some of the challenges of applying RL within the
context of intelligent vehicle control as a real-world application. By referring to common
intelligent vehicle control tasks such as path planning using RL, several problems may
arise such as the existence of many possible states that the agent should experience, the
existence of multiple agents, difficulty of representing states or how should we formulate
these safety-critical tasks to be solved by trial-and-error. Considering a use case on path
planning, we illustrate how the environmental complexity influences the learning time and
the performance of the agents. To mitigate the challenges incurred, we discussed the use
of two approaches: a method for transferring RL policies from simulation to reality and a
CL based approach to improve learning in driving decision making scenarios. Both these
approaches were demonstrated and discussed with reference to use cases pertaining to
intelligent vehicle control. Our sim-to-real approach shows to be successful to transfer a
collision avoidance policy from a simulated environment to the real world. In a real-world
context, our results enhance the importance of simulation to reality experiments by showing
that the number of collisions during training time can be minimised in simulation. In our
second approach, we demonstrated how CL can be useful when applied to intelligent
vehicle control situations. The results showed that using agents with a curriculum to
structure the learning process can be beneficial in driving decision making tasks such as a
traffic junction task where multiple agents need to negotiate their passages.

In the future, we aim to extend sim-to-real concepts to more complex scenarios, such
as dynamic environments and multi decision-making tasks. Furthermore, we intend to
investigate how CL can be used together with sim-to-real methods so that the policies
trained with CL can be used in reality.
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Abstract: In this study, we deal with the problem of scheduling charging periods of electrical vehicles
(EVs) to satisfy the users’ demands for energy consumption as well as to optimally utilize the available
power. We assume three-phase EV charging stations, each equipped with two charging ports (links)
that can serve up to two EVs in the scheduling period but not simultaneously. Considering such
a specification, we propose an on–off scheduling scheme wherein control over an energy flow is
achieved by flexibly switching the ports in each station on and off in a manner such as to satisfy
the energy demand of each EV, flatten the high energy-consuming load on the whole farm, and
to minimize the number of switching operations. To satisfy these needs, the on–off scheduling
scheme is formulated in terms of a binary linear programming problem, which is then extended to a
quadratic version to incorporate the smoothness constraints. Various algorithmic approaches are
used for solving a binary quadratic programming problem, including the Frank–Wolfe algorithm and
successive linear approximations. The numerical simulations demonstrate that the latter is scalable,
efficient, and flexible in a charging procedure, and it shaves the load peak while maintaining smooth
charging profiles.

Keywords: electrical vehicles; EV charging scheduling; binary linear programming; binary quadratic
programming

1. Introduction

The electrification of transportation offers multiple benefits, including the reduction
of noise pollution, fumes, and GHG emissions [1,2]. Hence, it has attracted increasing
attention in recent decades, both from industry and academia, leading to considerable
growth in numerous electric vehicles (EVs) in several countries globally. Consequently,
there is a great need to develop an EV charging station infrastructure while maintaining
a balanced load of power supply lines [3]. To pursue this goal, EV charging technology
must be developed not only for fast charging systems but also for balanced overnight
charging strategies with smart management of accessible energy, user energy demands,
and cost savings. One of these strategies can be adopted in distributed farms of slow
EV charging stations located in residential areas. Such farms are usually established in
residential parking lots and are equipped with Level-II AC charging stations, controlled by
the centralized coordinated scheduling unit.

In this study, we tackle the problem of smart coordination of the EV charging process in
such farms, considering power supply constraints, balanced and smooth load expectations,
energy demands, and user transportation habits and needs. The proposed strategies for
controlling the EV charging process are mainly addressed for overnight charging, wherein
the EVs to be charged and the transportation habits of their owners are usually known
to the charging management system. However, vehicles do not have to be parked in the
designed spaces. For such EVs, the expected daily energy demands can be easily estimated
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based on the charging history and parameters of the EV battery. Otherwise, new users
or users who wish to modify their statistical daily charging demands should introduce
updated data to the system before the initialization of the charging process. The system
estimates the expected energy demand for each EV. However, the procedure for pursuing
this task is not discussed in this paper.

The charging stations are currently categorized as Levels I, II, and III, depending on
the range of power, which considerably affect the charging time. Level-I charging units
usually operate on an AC electric power of 120 V and yield a power of approximately
1.4 kW. Level-II chargers offer power ranging from 4.4 kW to 22 kW and operate at 230 V
AC. Direct current fast chargers, sometimes referred to as Level-III chargers, can charge
with a maximum output of up to 350 kW, and it takes approximately 20–40 min to fill an
EV battery to approximately 80% of its capacity.

We assume that the analyzed farm contains three-phase Level-II AC charging stations,
each equipped with two charging ports that can be controlled by the central control unit
(CCU) and can serve up to two EVs but not simultaneously. The three-phase charging
currents are measured at each station, and this information is back-forwarded to the CCU
and then to the scheduler located on the cloud platform. The block diagram of the analyzed
system architecture of the EV charging stations is shown in Figure 1. The charging stations
(referred to as double-socket EVSEs) communicate with the scheduler via the CCU. The
user–cloud interface is served by a mobile application that allows users to input its energy
and time demand to the system and be informed by the status of its EVs’ charging.

Figure 1. Block diagram of the analyzed farm of EV charging stations.

The scheduler aims to determine an optimal scheduling for a charging process in the
farm based on available data (both from the CCU and the database) and to accordingly
control the charging stations. In this study, we assume that only a binary control over the
charging station is possible, i.e., the charging link between the charging station and the
connected EV can be activated or deactivated in a given time slot. This type of scheduling
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is referred to as on–off scheduling. The period between the plug-in and plug-off time was
discretized, thereby allowing us to control the EV charging process using binary variables.
The farm is supplied with three-phase power supply lines, and the scheduling should
be determined in such a manner that the current consumption of the whole farm from
each phase line does not exceed the assumed limits at any time. Moreover, the designed
system should ensure a balanced power load over the entire accessible period. Performing
this task is difficult because we expect cumulations for energy demands. Many users
may plug-in their EVs in a relatively narrow period, possibly leading to a peak of high
energy-consuming load if no control over the charging process is applied. The objective of
the proposed scheduling scheme is to shave the load peak and ensure that the energy load
is approximately constant throughout the entire accessible period. In our approach, we also
assume that there is feedback between any working charging station and the scheduler, and
the information on the charging currents is back-forwarded to the cloud in the discrete time,
for example, every few minutes. The scheduler can update the current binary variables if
any significant change in the charging currents is observed, or new EVs are recognized by
the system.

Considering the above-mentioned physical limitations and user preferences, we pro-
pose three models for scheduling the EV charging process. The models are expressed in
terms of numerical optimization problems with binary variables. In the first approach,
we assume that the objective function is linear and the weighting coefficients are selected
in such a manner as to execute the first-come first-served rule, subject to equality and
inequality constraints. The equality constraints express the energy demands, whereas the
inequality constraints refer to the power and available time limitations. Next, we extend the
objective with a quadratic term that aims to enforce local smoothness to minimize the total
number of switching operations. Frequent on/off switching of the battery might lead to a
slightly lower battery life expectancy and to an increased number of transient instability
effects (voltage ripples, overshooting, current peaks, among others). The quadratic model
provides more flexibility in controlling the load profile. In the second approach, the objec-
tive function is formulated to maximize the constrained total energy consumption in each
time slot, increasing the possibility of fast charging. In the last scenario, the optimization is
triggered to prioritize the expected load demand for each EV. The last two models were
expressed in terms of binary quadratic programming problems.

A binary linear programming (BLP) problem is not difficult to solve and can be re-
garded as a particular case of more general integer linear programming. Such problems are
usually solved using relaxation or bound methods, including cutting planes, branch-and-
bound, branch-and-cut, and many heuristics. In our approach, we need to solve a binary
quadratic programming (BQP) problem, which is more challenging than a BLP problem.
To address this, we analyze three computational algorithms—Frank–Wolfe (FW) [4], suc-
cessive linear approximations (SLA) [5], and SLA with gradient descent updates. In the
first case, the gradient of the objective function was minimized. It is a linear term for a
quadratic objective function that can be easily addressed with the BLP. In the other cases, a
BQP problem is reformulated to a BLP subject to quadratic inequality constraints that are
subsequently linearized using SLA.

The remainder of this paper is organized as follows. Section 2 reviews related studies
on scheduling schemes for EV charging. The proposed models for two-link charging
stations and related computational strategies are presented in Section 3. Numerical ex-
periments performed on various EV charging scenarios are presented and discussed in
Section 4. The final section provides concluding statements.

2. Related Works

The optimal scheduling of EV charging has been a challenging problem and has been
extensively studied in the last decade. There are many approaches and computational
strategies for this problem, which are conditioned with a variety of charging station
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configurations, characteristics, and coordination objectives. A survey of recent trends in
EV charging strategies and related optimization techniques can be observed in [6–9].

One of the main strategies, known as a decentralized or distributed strategy for EV
charging [10–16], assumes that a major scheduling problem is decomposed into local
subproblems individually tackled by charging stations based on the central reference
information such as the electricity price or a reference power load. This type of coordination
is much more flexible for users and computationally more efficient; however, this system
is more prone to a load peak effect, possibly resulting in an overload of power grid
components. The suppression of the load peak effect is one of the most important tasks in
EV charging management, and it has been extensively discussed in the literature [17–21].

In another approach, the centralized management of a charging process constitutes
a fundamental concept. Many studies [22–26] have highlighted the advantages of this
type of charging strategy. In this approach, an EV charging control decision is taken
globally by an aggregator determining the charging schedule and the rate. Central resource
management is much more efficient in the optimization of power consumption and user
demands. This strategy requires efficient real-time bidirectional communication between
an aggregator, a CCU, and charging stations. It also involves a higher computational cost
than a decentralized version; hence, it requires the use of fast scheduling algorithms.

Another issue related to the efficient management of an EV charging process is the
selection of objectives and control types. The former may be formulated as an objective
function that should be minimized, subject to various constraints. This might be due to
the minimization of charging costs [27,28], tardiness [18], power imbalance [29], energy
loss [30], grid loss [31], among others. The latter refers to the following options: spatial
management (which EVs to charge in a given time instant), time management (when
to switch on/off the stations), and available power management (how to determine the
charging rate). The latter offers higher flexibility and can be combined with other options.
Many studies [22,24,32] refer to a continuous charging rate control; however, this approach,
despite its easy algorithmic feasibility owing to continuous variable optimization, is difficult
to accomplish in practice. Discrete control over charging currents is easier to perform using
digital electronic circuits governed by microcontroller units. Examples of papers discussing
scheduling systems with a discrete charging rate can be obtained in [11,33].

A particular case of discrete charging rate control is a binary approach to the charging
process. Several studies have demonstrated the efficiency of various on–off scheduling
strategies in the context of optimal EV charging. Baek et al. [34] proposed a queuing model
with random interruptions of charging EVs to relax the overload problem. Harris et al. [35]
used a probabilistic approach for EV chargers modulating on/off, while Nguyen et al. [36]
performed a similar task using the BLP combined with the bisection scheme. On–off
scheduling schemes have also been studied by Fernandes et al. [37], who developed a
dynamic charging scheduler based on greedy and LP algorithms. Another binary schedul-
ing scheme was discussed in [38], where an EV-coordinated discrete charging problem
was formulated in terms of a BQP problem and solved using an alternating switching
algorithm. Recently, Jawad et al. [39] proposed a real-time EV charge management system
that is based on a convex relaxation of on–off scheduling. In this approach, the binary
constraint is relaxed to solve the on–off scheduling problem as a convex problem using
LP, and then, a modified mapping is used to convert the solution back to binary values.
However, this strategy cannot be adapted to the two-link charging stations in our farm
because the two-link charging constraint in our model cannot be relaxed in this way.

Binary scheduling may also have some disadvantages. It is thus well known that a
large number of charging cycles decreases battery life, as reported in [40–42]; however,
Vroey et al. [43] argued that this degradation is marginal. Moreover, there is no evidence
that switching between a minimal charging rate and its largest possible value affects the
battery life.

In centralized charging systems, fast scheduling is a challenging problem that can be
tackled using various computational strategies. Continuous variable optimization methods
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are usually used, such as LP [22,24,32,44,45] and QP [10,12,17,46]. A discrete charging rate
control or any coordination scheme with integer decision variables requires the formulation
of a non-convex optimization problem or sometimes even an NP-hard problem [47]. There-
fore, integer-variable optimization tools must be used. Examples include BLP [37], BQP [38],
MILP [48–50] and various metaheuristics with integer variables, including genetic algo-
rithms [51], ant colony optimization (ASO) [13], particle swarm optimization [52,53], tabu
search [54], memetic algorithm [55], artificial bee colony algorithm [56], binary evolutionary
programming [57], and other greedy algorithms [33,58]. Other approaches to scheduling
can also be obtained in the literature, for example, agent-based scheduling [59,60], deep
reinforcement learning [61], and deep learning [62].

Motivated by the advantages of centralized EV charging strategies, we propose a
new model and algorithmic approach for scheduling EV charging in such a strategy. The
configuration of our charging station is similar to that presented in [56], that is, each
charging station has two Type-II charging points, but each EV can be charged from a
three-phase power line, and we have only one master or CCU that controls all charging
stations in one farm. Motivated by the on–off scheduling in [37], we formulate a similar
model with binary decision variables, but our algorithmic approach is completely different.
Our algorithmic approach is motivated by the SOCDC algorithm given in [38], but the
smoothing is enforced by a regularization term instead of the alternating optimization.
We use different numerical approaches to solve QP problems; our model is also different,
containing additional physical constraints for two-link charging stations, and our objective
function is formulated such as to prioritize user demands.

3. Scheduling Problem

Notations:Boldface uppercase letters (e.g., X) denote matrices; lowercase boldface
letters represent vectors (e.g., x); non-bold letters (e.g., x) are scalars; calligraphic uppercase
letters (e.g., X ) will be used to denote sets. The j-th column of X is denoted by xj, and xj is
the j-th row vector of X. The symbol || · ||F denotes the Frobenius norm of a matrix; || · ||
denotes the 2-nd norm. The sets of real numbers, natural, and binary (0–1) numbers are
represented by R, N, and B, respectively. The symbols �x� and �x� denote the floor and
ceiling functions of x, respectively.

3.1. Problem Formulation

In this section, we formulate a static scheduling problem in the form of a mathematical
model with discrete time. The control horizon is expressed in terms of available time,
which is partitioned into T time slots of equal length, for example, a few minutes. We
assume that the farm contains M charging stations that can serve N EVs. As each station
is equipped with two charging points (ports), we have N = 2M. Let T = {1, . . . , T} and
N = {1, . . . , N} contain the indices of time slots and charging points, respectively. The
charging points are subsequently indexed, and N charging points can serve up to N EVs.
The plug-in and plug-off times of the n-th EV are denoted by t(in)n and t(o f f )

n , respectively.
Obviously, 1 ≤ t(in)n < t(o f f )

n ≤ T. Without loss of generality, we assume that the first
and second EVs are assigned to the first charging station, and the n-th and (n + 1)-th EVs
are assigned to the m-th charging station, where m = � n+1

2 � for n = 1, . . . , N − 1. Let
B = [btn] ∈ BT×N be a binary matrix indicating the available time for each EV, where

btn =

{
1 if n-th EV is available in t-th time slot,
0 otherwise

(1)

The available time of the n-th EV can be computed as Tn = ∑T
t=1 btn, and it represents

the number of time slots between t(in)n and t(o f f )
n . If Tn = 0 for any n ∈ N , then there is no

EV in the n-th charging point.
Let cn ≤ Tn denote the energy demand of the n-th EV, which is the number of time

slots required to charge a given EV to its desired state of charge (SoS) level. The charging
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rate for the n-th EV is represented by the parameter r(l)n , where l ∈ {1, 2, 3} represents the
index of the line in the Type-II three-phase charging cable. In our approach, the changing
rate refers to a quasi-stationary current (amperes/time slot) and does not have one constant
value, but it is individually set for each EV and for each phase. This setting is motivated by
the assumption that the schedule can be adjusted during charging considering the feedback
information from charging stations, rates are time-dependent, and EVs can be scheduled in
different periods of the available time.

Considering the power supply limit, let I(max,l)
t be the maximal l-th line current

supplying the entire farm in the t-th time slot. The scheduler should assure possible fast
charging but simultaneously not exceed I(max,l)

t for any time instant and phase. A separate
current limit for each line is also required to avoid power imbalance across phases when
the lines are unequally loaded.

To control the charging process, that is, which and when charging points to switch on/off,
we introduce binary decision variables that form the scheduling matrix U = [unt] ∈ BN×T.
The decision variables are defined as follows:

unt =

{
1 if n-th EV is charging in t-th time slot,
0 otherwise.

(2)

The objective of the scheduler is to estimate the matrix U based on given criteria and
available data, such as available time matrix B, energy demand {cn}, charging rates {r(l)n },
and maximal line currents {I(max,l)

t }.
A fundamental requirement from the users is to charge their EVs to satisfy the given

SoC level, and considering the variables defined above, this requirement can be determined
by the following model:

∑
t∈[t(in)n , t(o f f )

n ]

unt = cn, ∀n ∈ N , (3)

which can be equivalently expressed in the matrix equality constraint:

diag{UB} = c, (4)

where c = [c1, . . . , cN ]
T ∈ NN is the vector of the energy demands. Equation (4) restricts

the feasible region to the periods determined by the plug-in and plug-off times. As all
entries outside the periods are equal to zero, the energy demands can be reinforced by an
additional equality constraint:

UeT = c, (5)

where eT = [1, . . . , 1]T ∈ RT .
The farm of chargers is supplied with three-phase power with distribution transform-

ers or other suppliers that have limited power. Thus, we assume that the maximal line
current I(max,l)

t is not exceeded in any time slot, and this requirement can be modeled
as follows:

∑
n∈N

r(l)n unt + ξ
(l)
t ≤ I(max,l)

t , ∀t ∈ T , and l ∈ {1, 2, 3}, (6)

where ξ
(l)
t is the basic current obtained from the l-th line in the t-th time slot, which is the

difference between the cumulative charging phase current and the line current from the
transformer. The model (6) can be rewritten in the following matrix form:

eT
N

(
D(l)

R U
)
+ ξ(l) ≤ I(max,l), for l ∈ {1, 2, 3}, (7)

164



Sensors 2021, 21, 7149

where eN = [1, . . . , 1]T ∈ RN , D(l)
R = diag

{
r(l)n

}
∈ RN×N , ξ(l) =

[
ξ
(l)
1 , . . . , ξ

(l)
T

]
∈ R1×T

and I(max,l) =
[

I(max,l)
1 , . . . , I(max,l)

T

]
∈ R1×T .

In our configuration, each charging station has two charging points, which means
that two EVs can be connected to one station, but the electronic instrumentation inside the
station allows us to charge only one EV at any time instant. Switching between charging
points is possible at any time and should be controlled by the CCU. Mathematically, this
feature can be considered in a scheduling problem by formulating an inequality constraint
that does not allow the setting of more than one decision variable to one for each charging
station in any time slot. To tackle this problem, we define the two-link constraint matrix as

S =

⎡
⎢⎢⎢⎣

1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1

⎤
⎥⎥⎥⎦ ∈ B

N/2×N . (8)

Subsequently, the two-link charging constraint can be formulated as follows:

SU ≤ EN/2×T , (9)

where EN/2×T =

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦ ∈ BN/2×T is a matrix of all ones.

Considering the constraints in (4), (5), (7), and (9), the scheduling problem can be
formulated as the following constrained optimization problem:

min
U∈BN×T

Ψ(U), (10)

s.t. diag{UB} = c,

UeT = c,

eT
N

(
D(l)

R U
)
+ ξ(l) ≤ I(max,l), for l ∈ {1, 2, 3},

SU ≤ EN/2×T ,

where Ψ(U) is an objective function.
We studied various approaches to define the objective function, which can be stated

as follows:

• Linear: Motivated by the concept of the objective weighting, given in [38], we formulate
the weighted linear function:

Ψ(U) = eT
NUw, (11)

where w =
[
eT

tw+1, ϑ + 1, 2ϑ + 1, . . . , ϑ(T − tw) + 1
]T

∈ RT , where ϑ = wmax−1
T−tw

. The

parameters tw and wmax were experimentally set to tw = � T
10� and wmax = 10. Vector

w represents a piecewise linear function. The first tw entries are equal to one, whereas
the others linearly increase from one to wmax. Such weighting aims to penalize decision
variables in later time slots, which should enforce charging as early as possible. Mini-
mization of a linear function can be performed using any BLP solver. This approach is
computationally efficient; however, it is not flexible owing to the limited possibility of
using multiple penalties.
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• Quadratic I: In this model, we assume charging of all EVs with a possibly maximum
power, which leads to the following objective function:

Ψ(U) =
1
2

3

∑
l=1

∥∥∥∥I(max,l) −
(

r(l)
)T

UDw

∥∥∥∥
2

2
, (12)

where r(l) = [r(l)n ] ∈ RN for l ∈ {1, 2, 3}, and Dw = diag{w} ∈ RT×T . Matrix Dw has
a task similar to that of the linear function.

• Quadratic II: Another possibility is to reinforce the SoC level bilanse with additional
weighting of time slots. This task can be achieved using the following objective function:

Ψ(U) =
1
2
‖c − UDweT‖2

2. (13)

• Penalized quadratic with smoothness constraints: None of the above-mentioned objec-
tive functions assures a smooth solution, indicating that the number of switching
on/off charging stations is not controlled within the area of feasibility bounded by
the constraints. However, the number of switching operations can be minimized
by introducing a trade-off between the model fitting and the local smoothness mea-
sure. Taking into account the objective functions (12) and (13), the degradation of
model fitting by adding a regularization or penalty term is not a problematic issue
because the model constraints are explicitly added to the optimization problem and
guarantee feasibility.
The local smoothness of the charging profile for each EV can be measured according
to the following function:

Φ(U) =
1
2 ∑

n∈N

T−1

∑
t=1

(un,t − un,t+1)
2. (14)

Let L be the first-order differential operator defined as:

L =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 0

0
. . . . . . 0

. . . . . . . . . −1

0
. . . 0 1.

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

T×T (15)

The function Φ can be equivalently rewritten using matrix L in the form Φ(U) =
1
2

∥∥ULT∥∥2
F. Consequently, the objective function (13) with the additive smoothness

penalty term is given by

Ψ(U) =
1
2
‖c − UDweT‖2

2 +
α

2

∥∥∥ULT
∥∥∥2

F
, (16)

where α ≥ 0 is a penalty term.

For the above objective functions, the scheduling problem in (10) can be regarded as a
BLP problem with the objective function (11) or the constrained BQP problem with the other
functions. Regardless of the objective function, the problem expressed in the form (10) cannot
be directly solved with standard numerical optimization solvers because the solution has
the form of a matrix that cannot be successively processed with respect to its rows or
columns. This results from the column and row action constraints that must be satisfied
simultaneously. However, simple vectorization operations can be applied to transform the
existing matrix equations into their equivalent vector forms.
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Lemma 1. Formula (4) can be equivalently expressed in the form:

(B � IN)
Tu = c, (17)

where u = vec(U) ∈ BNT is a vectorized version of the matrix U, and the symbol � denotes the
Khatri–Rao product.

The proof of Lemma 1 is given in Appendix A.

Definition 1. Let A ∈ RM×I , X ∈ RI×J , and Y ∈ RJ×N. Then:

vec(AXY) = (YT ⊗ A)vec(X). (18)

Applying Formula (18) to (5), where A = IN , X = U, and Y = eT , we obtain:

(eT
T ⊗ IN)u = c. (19)

Similarly, the inequalities (7) and (9) can be reformulated using Formula (18) as follows:(
IT ⊗ (r(l))T

)
u ≤ Ĩ(max,l), for l ∈ {1, 2, 3}, (20)

(IT ⊗ S)u =
(

IT ⊗ IN/2 ⊗ eT
2

)
u =

(
INT/2 ⊗ eT

2

)
u ≤ ê, (21)

where Ĩ(max,l)
=
(

I(max,l) − ξ(l)
)T

and ê = vec(EN/2×T) ∈ RNT/2 and eT
2 = [1, 1]. Com-

bining (17) and (19), we obtain the equality constraints:
[

Ã
B̃

]
u =

[
c
c

]
, (22)

where Ã = eT
T ⊗ IN , and B̃ = (B � IN)

T . The inequality constraints can be presented in
the form: ⎡

⎢⎢⎢⎣
R

Z(1)

Z(2)

Z(3)

⎤
⎥⎥⎥⎦u ≤

⎡
⎢⎢⎢⎣

ê
Ĩ(max,1)

Ĩ(max,2)

Ĩ(max,3)

⎤
⎥⎥⎥⎦, (23)

where R = INT/2 ⊗ eT
2 and Z(l) = IT ⊗ (r(l))T for l ∈ {1, 2, 3}.

The objective functions can also be rewritten using Equation (18). For the linear
function, we have:

Ψ(u) = vec(eT
NUw) = (w ⊗ eN)

Tu = dTu. (24)

The other functions can be reformulated to the quadratic form:

Ψ(u) =
1
2

uTQu + dTu + const, (25)

where Q and d are given by:

• Quadratic I:

Q = D2
w ⊗

3

∑
l=1

r(l)(r(l))T , d = −

⎡
⎢⎢⎢⎣

I(max,1)
(

Dw ⊗ (r(1))T
)

I(max,2)
(

Dw ⊗ (r(2))T
)

I(max,3)
(

Dw ⊗ (r(3))T
)
⎤
⎥⎥⎥⎦

T

e3. (26)
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The derivations of Q and d in (26) are given in Appendix B.
• Quadratic II:

Q = DweTeT
T Dw ⊗ IN , d = −(eT

T Dw ⊗ IN)
Tc. (27)

• Penalized quadratic form with smoothness constraints:

Q = DweTeT
T Dw ⊗ IN + α(LT L ⊗ IN), d = −(eT

T Dw ⊗ IN)
Tc. (28)

Appendix C contains the derivations of Q and d in (28). By setting α = 0, we obtain Q
and d in (27).

Considering the constraints in (22) and (23), the set of feasible regions takes the form:

Ω =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ B
NT

∣∣∣∣∣
[

Ã
B̃

]
u =

[
c
c

]
,

⎡
⎢⎢⎢⎣

R
Z(1)

Z(2)

Z(3)

⎤
⎥⎥⎥⎦u ≤

⎡
⎢⎢⎢⎣

ê
Ĩ(max,1)

Ĩ(max,2)

Ĩ(max,3)

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(29)

For objective functions (24) and (25), the scheduling problem (10) can be reformulated to
the following single-vector problem:

min
u∈Ω

Ψ(u), (30)

which can be solved with various binary optimization solvers.

3.2. Algorithmic Approach

We herein do not assume that matrices Ã and B̃ in (22), and R and Z(l) for l ∈ {1, 2, 3}
in (23) are totally unimodular because { Ĩ(max,l)} are real-value measured currents; hence,
a binary relaxation to the LP problem is not justified. To solve the BLP problem, that is,
problem (30) with the objective function in (24), many methods such as the cutting planes,
branch-and-bound, branch-and-cut, and heuristic routines can be used. In our approach,
we solve this problem using the intlinprog function from the Optimization Toolbox in
MATLAB 2020b using default settings. This function is addressed to solve a mixed-integer
linear programming (MILP) problem. We defined all variables as integers bounded to the
range {0, 1}.

Problem (30) with the other objective functions is more challenging, and there is no
specific solver in MATLAB 2020b for solving the BQP problem. We studied the various
algorithmic approaches described below.

3.2.1. Frank—Wolfe Algorithm

The FW algorithm [4] dates back to the 1950s; however, its popularity is still noticeable
in various research areas [63,64]. This algorithm is based on the concept of SLA of the
objective function with a first-order Taylor expansion. The original version of the FW
algorithm can also be used to solve the BQP problem under the assumption that the
objective function is convex and differentiable, a set of feasible regions is convex, and a
linearized version of the original problem is easy to solve.

Note that Ω in (29) is a compact convex set in RNT because it results from the inter-
section of hyperplanes and closed half-subspaces given by linear equality and inequality
constraints. The objective function Ψ is at least weakly convex because it is a quadratic
function with a possibly semi-positive defined matrix Q. Hence, problem (30) can be solved
using the following linear approximations:

min
u∈Ω

Ψ(uk) +∇uΨ(u)T(u − uk), for k = 0, 1, 2, . . . (31)
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To solve problem (31), we used the followingAlgorithm 1:

Algorithm 1: FW Algorithm

Input : Q ∈ RNT×NT , d ∈ RNT , τ—tolerance
Output :{uk}—approximations

1 Initialization: u0 solution to the BLP problem

2 for k = 1, 2, . . . do
3 Compute gk = ∇uΨ(u)|u=uk−1 = Quk−1 + d ; // gradient

4 Solve sk = arg minu∈BNT gT
k u, s.t. (22), (23) ; // BLP problem

5 Set uk = uk−1 +
2

1+k (sk − uk−1);

6 if
||uk−uk−1||2
||uk−1||2 ≤ τ then

7 break

The BLP problem in line 4 of Algorithm 1 was solved using the intlinprog function
from MATLAB. The gradient gk is Lipschitz continuous with respect to the Frobenius norm,
which means that Algorithm 1 has a linear convergence with the rate O(1/k).

Algorithm 1 can be run with the negative gradient gk, which is equivalent to the
following update rule:

uk = uk−1 − ηksk, (32)

where ηk is the step length. Formula (32) can be regarded as the standard gradient descent
update rule. In the experiments, we set ηk = 1.

3.2.2. Successive Linear Approximations

SLA [5] is based on a concept similar to that of the FA algorithm. In this approach, the
BQP problem given by (30) is reformulated as follows:

min
u∈Ω,ζ∈R

ζ + dTu, s.t.
1
2

uTQu ≤ ζ, ζ ≥ 0. (33)

The objective function in (33) is linear, but the inequality constraints are nonlinear.
However, the quadratic constraints can be linearized using the first-order Taylor expansion,
similar to the FW algorithm. For the k-th iterative step, the inequality constraint 1

2 uTQu ≤ ζ
can be linearized around the point uk−1 as follows:

Φ(u) =
1
2

uTQu − ζ ∼= 1
2

uT
k−1Quk−1 +∇uΦ(u)T |u=uk−1(u − uk−1)− ζ

= −1
2

uT
k−1Quk−1 + uT

k−1Qu − ζ ≤ 0. (34)

The inequality (34) can be expressed in the form of the following matrix inequality:

[
uT

k−1Q, −1
][ u

ζ

]
≤ 1

2
uT

k−1Quk−1. (35)

Assuming ũ =

[
u
ζ

]
, problem (33) for the k-th iterative step can be rewritten as:

min
ũ∈BNT+1

d̃T ũ, s.t.
[
uT

k−1Q, −1
]
ũ ≤ 1

2
uT

k−1Quk−1, ζ ≥ 0, and u ∈ Ω, (36)

where d̃ =

[
d
1

]
. Problem (36) is a standard BLP problem, and we solve it using the

intlinprog function.
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4. Numerical Simulations

The scheduling algorithms discussed were extensively tested using various topologies
of farms and their settings, imitating real EV traffic on EV parking lots. The test cases and a
description of the testing environment are presented below.

4.1. Setup

Without loss of generality, we assumed a 12-h time horizon from 6 p.m. to 6 a.m.,
divided into regular time slots of 7.5 min. Hence, T = 96 in the proposed model. For
an overnight charging plan, the EVs to be charged usually arrive at a parking lot in the
evening. We assumed that the plug-in time for each EV can be modeled with a normal
distribution with a mean of 8.30 p.m. and a standard deviation of 75 min. The earliest
plug-in time was restricted to 6 p.m. The initial energy demand cn, that is, the number
of time slots required to charge the n-th EV to the desired SoC level is modeled with an
integer uniform distribution in the range [4, 30] for n = 1, . . . , N. This indicates that the
minimum charging time was 1 h, and the longest charging period did not exceed 6 h. The
plug-off time was also modeled with the same distribution in the range [tplug−in + Cn, T].

The final energy demands were determined using the correction procedure in the
preprocessing stage. This procedure aims to correct the initial energy demands in a manner
that guarantees the feasibility of problem (30) with a linear objective function (24). If the
problem is infeasible, a subset of the EVs with the highest energy demands is selected,
and their coefficients {cn} are reduced simultaneously until it is found to be feasible. If
this point is obtained, then the energy demand for each EV in this subset is individually
upgraded to reach the border of the feasible region. In practice, EVs with the lowest priority
of charging will be selected to correct their energy demands.

We analyzed farms containing various numbers of charging stations. For the smallest
farm, we assume eight two-link charging stations, which gives us 16 charging points, that
is, N = 16. We also tested scenarios with N = 32, 64, 128, and 256. Obviously, a number of
ports do not have to have a multiplicity of two, but it must be an even number. If there are
fewer EVs for scheduling, some ports are empty; consequently, the corresponding rows in
the scheduling matrix U will have all-zero entries. For Type-II stations, the charging rate is
usually limited to 16 A; however, it is not a constant parameter within a charging period.
Moreover, the rates can be different for each phase line, when using three-phase chargers.
Several research papers, for example, [65,66], report that the charging current of an EV
Li-ion battery has almost a constant value from the plug-in (after a short starting period) to
approximately half of the maximum SoC level, and then diminishes exponentially with a
negative decay. Following this observation, we assume that half of the randomly selected
EVs for each phase in the analyzed system charge with a maximal charging rate of 16 A,
and the others have the rates determined by a uniform distribution in the range [1.6, 16) A.
The phases are treated independently, indicating that there could be an unbalanced load of
the three-phase lines.

The proposed scheduling schemes are designed such that the maximal line current
I((max,l)
t of the entire farm is not exceeded in each time slot, and this limit can vary with

the time horizon. However, considering typical real charging scenarios and for simplicity
of simulations, we assume that this limit is neither time nor phase dependent, that is,
Imax = I((max,l)

t for ∀t ∈ T and l ∈ {1, 2, 3}. For each test case, the maximal line current
was set according to the data given in Table 1. Owing to the current limit, there is a limited
number of EVs that can be charged in one time slot. This number, denoted by Lx, is also
given in Table 1 for a constant charging rate of 16 A from each line.
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Table 1. Power limit settings: Imax—the maximal line current (in Amperes) of the whole farm,
Lx—the maximal number of EVs charging in one time slot given a constant charging rate of 16 A.

N = 16 N = 32 N = 64 N = 128 N = 256

Imax 50 100 200 400 800
Lx 3 6 12 25 50

In this study, we proposed various binary algorithmic approaches to solve the schedul-
ing problem in (30). The results are presented in the following cases.

• BLP: Binary linear programming (BLP) with objective function in (24);
• Q1-FW: Binary quadratic programming (Quadratic I), with the objective function

expressed by (25) and (26) and solved with the Frank–Wolfe (FW) algorithm;
• SmQ2-FW: Binary quadratic programming (Quadratic II), with the objective func-

tion expressed by (25) and (28) (including the smoothness), and solved with the
FW algorithm;

• SmQ2-NG-FW: Binary quadratic programming (Quadratic II), with the objective func-
tion expressed by (25) and (28) (including the smoothness), and solved with the
negative gradient FW algorithm—rule (32);

• SmSLA: Binary quadratic programming (Quadratic II), with the objective function
expressed by (25) and (28) (including the smoothness), and solved with the successive
linear approximations (SLA);

• FA-FS: First-arrive-first-serve (FA-FS) approach.

Q1-FW is closely related to the scheduling problem given in [38] owing to the for-
mulation of the objective function. However, our two-link constraints are quite specific,
and to the best of our knowledge, there is no competitive algorithmic strategy for a simple
comparison. FA-FS is a heuristic strategy that turns on charging each EV as quickly as
possible. If two EVs are simultaneously plugged into one charging station, their selection is
random. This strategy yields the fastest charging; however, it does not have any admissible
power constraints.

The algorithms were implemented in MATLAB 2020b and run on a machine supplied
with a 4-core Intel Core-i7 CPU, 32-GB RAM, and an SSD drive.

4.2. Results

To statistically validate the algorithms, Monte Carlo (MC) analysis was performed
using 30 runs for each algorithm. In each snapshot, the charging rates, energy demands,
plug-in, and plug-off times were generated randomly according to the procedures discussed
above. The selected single-run results are shown in Figures 2–4, while the MC statistics are
presented in Tables 2–4, and in Figures 5 and 6.

The algorithms were validated using various criteria and datasets. Figure 2 presents a
graphical visualization of the charging matrices U obtained in one selected MC run with
the tested algorithms for the smallest farm containing 16 ports (N = 16) and random
charging rates. The vertical axis corresponds to the ports, and the horizontal axis represents
the time slots. The yellow fields correspond to the switch-on state. The light blue fields
show the time slots between the plug-in and plug-off times for each EV (each row of the
matrix). The dark blue fields denote unavailable time slots. The distributions of energy
demand (ED) after using the correction procedure and available time (AT), which were
used to obtain the results in Figure 2, are illustrated in Figure 3a in the form of time slot
bars. Both ED and AT are expressed in terms of the number of time slots. The charging
rates in this case are shown in Figure 3b, separately for each phase.

Similar charging schedules are shown in Figure 4 for the largest analyzed farm. For
this case, we set N = 256 and a constant charging rate of 16 A for each phase line. The
distributions of the ED and AT parameters are shown in Figure 3c. Note that a small
number of EVs had no assigned ED. This results from using the correction algorithm to
guarantee feasibility.
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Figure 2. One MC run of charging schedules obtained with the tested algorithms for N = 16 and random charging rates.
Charging slots are in yellow, available time slots are in light blue, and unavailable time slots are in dark blue.
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Figure 3. Charging settings: (a) ED and AT parameters for N = 16 and random charging rates; (b) charging rates for N = 16;
(c) ED and AT parameters for N = 256 and a constant charging rate.
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Figure 4. One MC run of charging schedules obtained with the tested algorithms for N = 256 and a constant charging rate.

The algorithms were also quantitatively validated using various metrics, which are
listed in Tables 2–4. The results obtained for the smallest farm with N = 16 and random
charging rates are listed in Table 2. Tables 3 and 4 contain the results obtained for the
largest farm with constant and random charging rates, respectively.

One of the most important criteria for validating the correctness of the algorithm is to
check if the constraints are satisfied. The equality constraints for the EDs were validated
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with the residual error rc = ||c − UeT ||2. Tables 2–4 contain both the mean and median
values of the residual error rc obtained from the MC runs.

Table 2. Results obtained for the smallest farm with 16 ports, 16 EVs, and random charging rates.
The maximal number of EVs that can be charged in one time slot is restricted to five owing to the
power limit.

Algorithm Mean (rc) Median (rc) Fsmooth Sx Tx Lx Lf [%]

BLP 0.088 1.98 × 10−14 187.7 (37.7) 107 76 4 96.7
Q1-FW 1.09 2.54 × 10−14 191.7 (72) 105 85 4 76.7

SmQ2-FW 3.07 3.61 82.27 (38.8) 39 71 5 43.3
SmQ2-NG-FW 2.54 2.67 × 10−14 71.33 (28.58) 41 72 5 51

SmSLA 9.68 × 10−14 2.53 × 10−14 100.38 (60.57) 92 81 4 100
FA-FS 0 0 31.13 (1.45) 15 53 8 100

Table 3. Results obtained for the largest farm with 256 ports, 252 EVs, and constant charging rate.
The maximal number of EVs that can be charged in one time slot is restricted to 50 owing to the
power limit.

Algorithm Mean (rc) Median (rc) Fsmooth Sx Tx Lx Lf [%]

BLP 1.17 × 10−13 8.05 × 10−14 3505 (238) 1909 84 50 100
Q1-FW 1.48 × 10−13 9.12 × 10−14 4259 (416) 2152 94 50 100

SmQ2-FW 9.33 × 10−14 8.73 × 10−14 924.6 (27.68) 644 87 50 100
SmQ2-NG-FW 1.1 × 10−13 9.09 × 10−14 772.9 (18.44) 515 93 50 100

SmSLA 2.15 × 10−13 1.48 × 10−13 892.6 (22.66) 621 90 50 100
FA-FS 0 0 502.3 (3.57) 242 66 123 100

Table 4. Results obtained for the largest farm with 256 ports, 196 EVs, and random charging rates.
The maximal number of EVs that can be charged in one time slot is restricted to 80 owing to the
power limit.

Algorithm Mean (rc) Median (rc) Fsmooth Sx Tx Lx Lf [%]

BLP 2.97 2.92 848.4 (240.6) 395 65 78 0
Q1-FW 0.141 5.3 × 10−14 1322 (178) 745 94 61 90

SmQ2-FW 2.61 2.65 614 (34.17) 304 65 70 0
SmQ2-NG-FW 2.48 2.44 557 (25.4) 268 65 72 0

SmSLA 6.29 × 10−14 5.74 × 10−14 454.5 (38.1) 335 92 62 100
FA-FS 0 0 394.6 (12.15) 188 65 105 100

We also verified that max{SU} = 1 for each proposed algorithm and for each analyzed
scenario. This observation leads to the conclusion that each algorithm satisfies the two-link
constraint in (9), which is necessary to guarantee that only one port in each charging station
is active in one time slot.

Another criterion is the smoothness measure expressed by the function Fsmooth =
uTQLu, where u = vec(U) and QL = LT L ⊗ IN is given in (28). The mean values and
standard deviations (in parentheses) of Fsmooth are also listed in the tables. Parameter Sx
denotes the total number of switching-on operations. The lower bound of this parameter
was N. The tardiness, expressed by the number of time slots wherein at least one charging
station is switched on, is referred to as Tx. Parameter Lx denotes the maximal number of
EVs charged in any time slot. The percentage of MC runs wherein all EVs are charged
up to their desired SoC level over the entire time horizon is expressed by L f . If L f = 0, it
means that in each MC run, at least one EV is not charged according to the desired level.
All parameters Sx, Tx, Lx, and L f are expressed as median values.

The total power consumed by the entire farm versus time slots is illustrated in
Figure 5a for the smallest farm with N = 16 and random charging rates, and in Figure 5b
for the largest farm with N = 256 and a constant charging rate. The power in the t-th time
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slot is calculated as P(max)
t = Us ∑N

n=1 unt ∑3
l=1 r(l)n , where Us = 230 V is the phase voltage.

The red horizontal line determines the maximal load owing to the limit of Imax.
The computational complexity of the proposed algorithmic strategies was evaluated

in terms of the elapsed time (ET) in seconds. The plots of the averaged ET for running the
proposed algorithms on the scheduling problem in the farm with N ∈ {16, 32, 64, 128, 256}
are shown in Figure 6a for random charging rates and in Figure 6b for a constant charging
rate. The whiskers determined the standard deviation.

18:00 20:00 22:00 00:00 02:00 04:00 06:00

Charging slots

0

2

4

6

P
o
w

e
r 

[W
]

10
4 Dynamic charging rates

BLP

Q1-FW

SmQ2-FW

SmQ2-NG-FW

SmSLA

FA-FS

Power limit

18:00 20:00 22:00 00:00 02:00 04:00 06:00

Charging slots

0

5

10

15

P
o
w

e
r 

[W
]

10
5 Static charging rates

BLP

Q1-FW

SmQ2-FW

SmQ2-NG-FW

SmSLA

FA-FS

Power limit

(a) (b)

Figure 5. Averaged total power consumed by the whole farm versus the time slots: (a) small farm with N = 16 and random
charging rates; (b) large farm with N = 256 and a constant charging rate.
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4.3. Discussion

Experiments were conducted for a variety of scheduling problems. Figure 3a,c show
that ED and AT parameters are highly diversified in a wide range of their possible values
in our tests. This reflects the real charging scenarios. Moreover, the charging rates consider-
ably change with time and phase lines. In practice, the charging currents can be different
for each phase line in the same time slot. This case was considered in our simulations, as
shown in Figure 3b.

The experiments demonstrated that the most challenging scheduling problems, due
to computational issues, were scenarios with random charging rates. Such problems were
more difficult to tackle even for a small-scale farm (N = 16) than for a large-scale farm
(for N = 256) but with a constant charging rate. The residual errors and the L f measure
presented in Tables 3 and 4 clearly confirm this statement. This observation is theoretically
justified as the feasible region determined by the inequality constraints in (23) has the form
of a complex polytop, with more vertices when r(l)n varies with n and l. Our experiments
showed that for a practical case with varying charging rates, we have a robust algorithm
for scheduling problems, even when the number of EVs is large. It is the SmSLA strategy,
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which always (for each MC run) yields the solution fully satisfying all constraints, that is,
the mean rc is marginally small and L f = 100%. However, this algorithm wins only with
respect to this criterion, and it is not the best one in each analyzed competition.

Regarding all the criteria used for validating the algorithm, one can conclude that
there is no candidate that wins in all tested categories. The FA-FS provides the results
with the shortest tardiness (lowest Tx in the tables) and the shortest ET (see Figure 6).
Unfortunately, it does not have any embedded power constraints. This leads to a strong
overload effect, as clearly shown in Figure 5. Hence, this algorithm is not acceptable
for solving practical scheduling problems. FA-FS was used in our experiments only to
demonstrate the load peak effect. All other algorithms prevent the overload effect and
provide uniform energy consumption over a wide time window, as depicted in Figure 5
for each analyzed scenario. For a constant charging rate, BLP, SmQ2-FW, SmQ2-NG-
FW, and SmSLA behaved similarly, and only Q1-FW provided a slightly delayed energy
consumption profile. In this scenario, the farm works with the maximum acceptable power
in a wide time window (from approximately 6.30 p.m. to 4 a.m.). When the charging rates
are not constant, the farm works with a power slightly below the limit (the red line in
Figure 5), which is still acceptable. Moreover, the energy consumption is approximately
uniform from 7 p.m. to 1 a.m. for nearly all algorithms. Subsequently, a decreasing trend
in energy consumption was observed until 6 a.m.

With regard to tardiness (Tx), Q1-FW and SmSLA are the least competitive. However,
this criterion is correlated with the Lx measure, and it is thus obvious that fast charging is
related to higher energy consumption. Q1-FW and SmSLA have a lower number of EVs in
the most energy-consuming period. Hence, their schedules are safer with respect to energy
consumption and maintain a higher margin to the power limit.

Another crucial criterion is the smoothness of the charging profile for each EV, which
is related to the number of switching on/off operations at each charging station. The results
presented in the tables demonstrate that SmQ2-NG-FW provides the smoothest charging
profiles with a relatively low number of switching operations (parameter Sx). The worst
results in this category were obtained by the BLP and Q1-FW. This observation can be
justified by the fact that both BLP and Q1-FW do not involve any procedures for enforcing
smoothness, whereas the others (excluding FA-FS) are based on the BQP strategy, where
the quadratic term contains the smoothness penalty. Moreover, the quadratic II approach
seems to be more favorable with respect to smoothness than the quadratic I approach.
Furthermore, the results listed in the tables can be confirmed by the single-run charging
matrices presented in Figures 2 and 4. The charging profiles of SmQ2-NG-FW are the
smoothest, but SmQ2-FW and SmSLA are only slightly worse, which is in favor of the latter
considering all the criteria.

Figures 2 and 4 also show that SmQ2-FW, SmQ2-NG-FW, and SmSLA better satisfy the
rule of early charging than BLP and Q1-FW. Obviously, FA-FS is the best in this category;
however, it is disqualified due to the power limit criterion (as discussed above). This rule
is enforced by the matrix Dw in (12), (13), and (16), and it aims to enforce charging as early
as possible. Obviously, the similar rule is incorporated in (11) via vector w but BLP seems
to tackle worse in this aspect, as demonstrated in Figures 2 and 4.

The algorithms were evaluated with respect to the computational complexity ex-
pressed by the ET criterion. In this category, BLP is substantially faster than the others
(excluding FA-FS) when a constant charging rate is applied (see Figure 6). For the random
charging rates, the difference in ET was not very large. Interestingly, an increase in the
number of EVs scales linearly for BLP, and there is no simple relation between ET and N for
Q1-FW, SmQ2-FW, and SmQ2-NG-FW. This is probably owing to the high computational
cost of processing a much more complicated polytop determined by (23) when random
charging rates are used. For N = 256, Q1-FW, SmQ2-FW, SmQ2-NG-FW, and SmSLA have
approximately similar ET values for random and constant charging rates. BLP is much
faster for each scenario and provides satisfactory results for meeting the constraints. Hence,
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it can be used in the precomputing stage to check if a feasible solution exists, given the
input data.

4.4. Engineering Aspects

The above experiments allowed us to select SmSLA as the most optimal algorithm
for the scheduler. The charging matrix U, together with the real-time intervals of the time
slots, is passed to the CCU where real-time decisions on the current charging status of
EVSEs are taken for each time slot. If unt = 1, the n-th charging point is switched on in
the tth time slot. Otherwise, it is switched off. The scheduler is run each time a new EV is
connected or disconnected to/from an EVSE, the scheduling period is over, or the CCU
detects a considerable change in the charging currents. When a scheduler is called, the
initialization procedures (which are not described herein) determine the current state of
charging for each active EV. The EDs were updated using the previous charging matrices
{U}. For a new EV, the ED is evaluated using its individual charging curve, user demands,
and historical charging data.

The charging problem may not have any solution, given real input data. This is a
normal situation, not resulting from an algorithmic issue but rather due to a lack of a
feasible solution to a given problem. To tackle this problem, BLP is used in the initialization
procedure to detect this case, and if it occurs, the correction procedure is applied to decrease
the EDs for the selected group of already charging EVs or for a new EV. This procedure
was governed by the ED correction procedure.

5. Conclusions

In this study, we proposed a new model for on–off scheduling of EV charging, assum-
ing that each three-phase charger is equipped in two ports that can be alternately served.
The scheduler considers individual charging rates and maximal currents that supply the en-
tire farm separately for each phase. For this model, we analyzed various binary algorithm
approaches. All algorithms were validated with respect to multiple criteria, including
constraint satisfying conditions, energy limit, tardiness, and charging profile smoothness.
The experiments demonstrated that only SmSLA can yield the correct solution that satisfies
all constraints for each MC run of each testing scenario. It also ensures smooth charging
profiles. Unfortunately, this algorithm has a relatively long tardiness and is not the fastest.
BLP is much faster than the others; however, it does not enforce smoothness. However,
BLP could be a good choice for the preprocessing stage to guarantee feasibility.

The presented results, despite being completed, suggest that the issue of the algorith-
mic approach is still open, and further research in this area will be performed in the future.
We still admit the possibility of designing a more robust algorithm than SmSLA, which
would provide smoother charging profiles and lower tardiness. Furthermore, the topic
of fast checking the feasibility (without running the scheduler) would be very interesting,
with a high potential for practical applications.

In summary, we proposed a new model for the on–off scheduling of two-link EV
chargers and experimentally evaluated the effectiveness of various binary algorithmic
approaches with regard to multiple criteria. We statistically demonstrated that the best
choice is the computational algorithm based on SLA with smoothness constraints (SmSLA).
It satisfies the most important criteria and constraints in all statistical tests performed.
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Appendix A

Let U = [u1, . . . , uT ] ∈ BN×T , B =
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...
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the identity matrix. Formula (4) can be reformulated as follows:

c = diag{UB} =

⎡
⎢⎣

b1u1 0
. . .

0 bTuT

⎤
⎥⎦ =

⎡
⎢⎣

b1 0
. . .

0 bT

⎤
⎥⎦
⎡
⎢⎣

u1
...

uT

⎤
⎥⎦

=

⎡
⎢⎣

bT
1 0

. . .
0 bT

T

⎤
⎥⎦

T⎡
⎢⎣

u1
...

uT

⎤
⎥⎦ =

[
bT

1 ⊗ i1, · · · , bT
T ⊗ iT

]T

⎡
⎢⎣

u1
...

uT

⎤
⎥⎦

=
(

BT � IT
)T

vec(U).

(A1)

Appendix B

Function (12) can be reformulated as follows:
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Appendix C

Function (16) can be presented in the following form:
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Abstract: Among the reasons for traffic accidents, distractions are the most common. Although there
are many traffic signs on the road that contribute to safety, variable message signs (VMSs) require
special attention, which is transformed into distraction. ADAS (advanced driver assistance system)
devices are advanced systems that perceive the environment and provide assistance to the driver
for his comfort or safety. This project aims to develop a prototype of a VMS (variable message sign)
reading system using machine learning techniques, which are still not used, especially in this aspect.
The assistant consists of two parts: a first one that recognizes the signal on the street and another one
that extracts its text and transforms it into speech. For the first one, a set of images were labeled in
PASCAL VOC format by manual annotations, scraping and data augmentation. With this dataset,
the VMS recognition model was trained, a RetinaNet based off of ResNet50 pretrained on the dataset
COCO. Firstly, in the reading process, the images were preprocessed and binarized to achieve the
best possible quality. Finally, the extraction was done by the Tesseract OCR model in its 4.0 version,
and the speech was done by the cloud service of IBM Watson Text to Speech.

Keywords: VMS; machine learning; ADAS; image processing; environment perception

1. Introduction

1.1. Motivation

Since the democratization of the private car, the world’s fleet has continued to
grow [1,2] (in Spain, each household has almost two vehicles [3]). This increase has
brought with it the problem of traffic accidents. Data from the World Health Organization
(WHO) estimate that during the period 2011–2020, 1.1 million people died due to traffic
accidents and between 20 and 50 million were injured [4].

In Spain, the Dirección General de Tráfico (DGT) has produced a series of statistical
yearbooks, which illustrate the evolution from 1960 to 2018 [5,6]. Generally speaking,
the number of casualties has increased in recent years. The number of fatalities and
hospitalized victims has decreased while the number of non-hospitalized injured victims
has increased. Accidents are still occurring, but the probability of death is decreasing.

The causes of traffic accidents can be classified according to the risk factor that causes
them. They are distinguished by human, mechanical and environmental factors (the state
of the asphalt or traffic signs and weather conditions). According to the DGT, in 2018, 88%
of accidents were the result of inappropriate driver behaviors [7] (similar conclusion to
study [8], which states that 90% are due to human causes). In first place were distractions
(33%), followed by speeding (29%) and alcohol consumption (26%) [7]. The same orga-
nization has prepared a document that lists the main distractions and explains how they
affect accidents [9]. It shows that actions such as using a cell phone, eating or smoking
are activities that require time and attention, reducing concentration while driving. The
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driver’s physical condition also affects his reaction time and ability to be distracted. This
has a direct impact on braking distance, which is a serious risk. Many of these behaviors
are known to drivers and many are declared offenders [10].

The WHO, in its report on 2011–20, proposes five action points to improve safety [4].
Examples of the third (safer vehicles) are initiatives such as Prometheus [11,12], created
by an association of vehicle manufacturers and researchers, or DRIVE (Dedicated Road
Infrastructure for Vehicle Safety in Europe), funded by the EU (European Union) [12],
which has promulgated a large number of papers on fundamental and practical problems,
such as GIDS (Generic Intelligent Driver Support) [13]. Its aim was to “to determine the
requirements and design standards for a class of intelligent co-driver (GIDS) systems that
are maximally consistent with the information requirements and performance capabilities
of the human driver” [13]. It was the beginning of what we know today as ADASs
(advanced driver assistance systems), successors to basic safety systems and enablers of
autonomous driving in the future [14].

Variable message signs (VMSs) are roadside ATIS (advanced traveler information
system) devices consisting of LEDs (light-emitting diodes) that stand out against a black
background (Figure 1). They are the mechanism used by traffic agencies to communicate
useful information to drivers in order to improve their safety. These messages convey
information by means of personalized text and/or traffic sign pictograms [15].

Figure 1. VMS example [16].

Several studies indicate that VMSs have a positive impact on driving by reducing
speed [17] and relieving congestion caused by accidents or other events [18]. The very act
of reading the VMS itself causes a reduction in speed while approaching it [19]. However,
the act of investing attention and time into reading the message and understanding it is
in itself a distraction and therefore a risk. Additionally, if we add to a main task, such as
driving, the task of reading and understanding the information, we obtain a decrease in
the effectiveness of both tasks [20]. There are approaches to reduce the attention required,
simplifying the information by means of pictograms or messages consisting of a single
word. The latter are more effective in understanding the message than even pictograms,
because comprehension does not depend on prior knowledge of the pictogram [21]. There
are conventions, such as the Vienna Convention [22], but each country is free to alter their
signs, which makes it difficult to recognize them quickly.

There are solutions such as READit VMS [23], which through a client–server archi-
tecture and the geolocation of the user performs a locution of the content of the sign or
displays a pictogram on an internal screen of the vehicle. These applications require con-
stant connectivity to geolocation and the Internet to check the nearest VMS and may suffer
from latency issues. They are also limited to the VMSs registered in the system. Due to
these dependencies, they are not autonomous systems that allow the vehicle to be indepen-
dent wherever it travels. The most similar ADAS are traffic signal recognition systems that,
using sophisticated computer vision and machine learning techniques, display the signal
to the driver on a screen located on the dashboard.
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The motivation of this project is to provide solutions to the challenge of road fatali-
ties by developing an ADAS that intervenes in the major cause of accidents, the distrac-
tions [7,10]. On the road we find panels with information that many studies have reported
to cause a reduction in vehicle speed. However, the cause of this is the attention that is
required to read and understand the message [24]. This results in less efficient driving [20].
This issue has been addressed by client–server software [23], but not by machine learning
and computer vision techniques. This ADAS will allow the vehicle to be independent
from network latency, geopositioning and the sign database. The solution will consist of
a VMS recognizer that reproduces the signal content using a synthetic voice. To do so,
it recognizes and trims the VMS from the road images, delivers it to the OCR (optical
character recognition) subsystem that transcribes the panel content and announces it via
the IBM Watson Text to Speech cloud service [25].

1.2. Vehicle Safety Systems

The report [14] carried out by The Boston Consulting Group (BCG) for The Motor &
Equipment Manufacturers Association (MEMA) describes the evolution of safety systems
in three periods: assistance and comfort systems, ADASs and semi/autonomous vehicles.

First assistants. In the first period, the first projects were developed to improve
vehicle safety. Although they may seem simple, they are very useful, since they not only
help the driver, but also provide greater comfort (an aspect closely related to safety [26]).

Some of these systems are cruise control, ABS (antilock braking system), ESP (elec-
tronic stability program), etc.

ADAS. As technology developed, more advanced systems emerged that operated in
increasingly complex situations. The report [27] proposes a taxonomy based on the type of
sensor used:

• Vision systems. These have cameras (monocular, stereo and infrared) placed at strate-
gic points of the vehicle that provide images of the environment from which knowl-
edge of the scene is extracted. These kinds of systems have problems with depth and
lens obstructions; however, they are affordable [27];

• LiDAR (light detection and ranging). This is a technology that generates a 3D environ-
ment by projecting rays and measuring the distance to different objects. This allows
the vehicle to know the elements around it in high resolution. It is a cutting-edge tech-
nology, but at the same time expensive. There is currently a debate between LiDAR
and conventional cameras. Companies on a par with Tesla bet on the extraction of
knowledge through multiple cameras plus other devices, such as radars. Others, for
instance Waymo, believe that LiDAR is the solution of the future [28];

• Radars. These systems measure the speed and distance of objects in the environment
(thanks to the Doppler effect). They emit a series of microwaves and measure the
change in wave frequency. One case of use is adaptive cruise control [27];

• Ultrasound. Using a series of sound waves, these systems measure the distance to
nearby objects. An example is the parking collision warning device [27];

• All these ADASs are complemented with other functionalities to improve their ac-
curacy. For example, IMUs (inertial measurement units) or GPSs (global positioning
systems) are auxiliary systems for distance measurement [27].

Semi/autonomous vehicles. In the latest era, which comes up to the present day,
the challenge is to create cars that can drive themselves. With the help of new ADAS,
such as the autopilot for traffic jams or the automatic lane change, this is possible. By
2025, it is expected that there will be 8 million autonomous and semi-autonomous vehicles
worldwide [29–31].

The J3016 standard “Levels of Driving Automation” of the Society of Automotive
Engineers (SAE) established six levels with which to define the autonomy of a vehicle.
They range from 0 (fully manual) to 5 (fully autonomous) [32].
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1.3. Recognition Systems
1.3.1. Object Recognition

The history of object recognizers is divided into two periods: traditional models and,
since 2014, those based on deep learning [33].

First-generation detectors had to deal with a lack of computational and feature repre-
sentation resources. For this reason, these algorithms contained hand-crafted features and
methods that took full advantage of machine power [33].

• Viola Jones [34,35]. This is an extremely fast face recognizer, which slides a window
over the entire image until a face is identified in one of the subsections.

• HOG (histogram of oriented gradients) [36]. This detector is designed to work on a
uniform grid. Although it can be used to detect a variety of objects, it was primarily
motivated for pedestrian detection [33].

• DPM (deformable part-based model) [37]. This method is an extension of the HOG
detector, which applies the divide and conquer strategy. For example, the problem of
recognizing a car can be decomposed into locating parts such as wheels or windows.
It consists of a main filter and several secondary filters configured by supervised
learning as if they were latent variables [33].

With the evolution of machine learning techniques, artificial neural networks (ANNs)
emerged and within them, deep convolutional neural networks (CNNs) have improved
image classification [38,39] and object detection [39–41] accuracy. Within CNNs, those
dedicated to object detection are divided into two groups: one-stage and two-stage. The
first ones treat the task as a regression problem by learning the probabilities of a class and
the coordinates of the bounding box. The second ones group a series of regions of interest
(first step) that are sent to the object classifier and the coordinate delimiter (second step).
Each strategy has advantages and disadvantages. For example, one-step ones are faster,
but have less accuracy [42].

Two-stage models:

• R-CNN [40]. This system takes the image and divides it into about 2000 regions on
which the features are computed by a CNN. Finally, each region is classified by linear
one-vs-rest SVMs (support vector machines) [40];

• Fast R-CNN [39]. Based on the previous model, fast R-CNN directly extracts features
from the entire image, which are sent to the CNN for classification and localization at
the same time. Thanks to this improvement, training time decreases while accuracy
increases [39];

• Faster R-CNN [43]. This model eliminates the bottleneck that fast R-CNN had when
selecting the region of interest (RoI) [33] by using a CNN called a region proposal
network (RPN) to predict it. Faster R-CNN merges the RPN and fast R-CNN into
a single network, so that the first one tells the second one where to focus. This is
achieved by sharing their convolutional characteristics. This way, the RoI selection is
practically zero cost, and the system is very close to real time [43].

Single-stage models:

• YOLO (You Only Look Once v1 [44], v2/9000 [45], v3 [46], v4 [47]). This is a real-time
object recognition system thanks to the fact that the entire detection process is done
by a single network. The process consists of a phase in which the system resizes the
image to 488 x 488 and then executes a single CNN that returns the confidence of the
detected object [44]. There are several enhancements to this model that are focused
on increasing the accuracy but keeping the fast execution. The most recent version is
v4 [45–47];

• SSD (single shot detector) [48]. This model’s main contribution is the introduction
of multi-reference and multi-resolution detection techniques, which significantly
improve detection accuracy, especially for some small objects [33];

• RetinaNet [49]. Thanks to the authors of [49], it was found that the extreme imbalance
of the foreground class is the main cause of their lower accuracy. To solve it, they
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introduced a new loss function called "focal loss" to make the classifier focus on the
most difficult examples of the misclassified ones. This brings this model up to the
accuracy of the two-stage models.

There are several surveys in the literature that compare these object recognition models
by measuring accuracy and speed, both for training and for inference. One of the best
works comparing each of these models is [50], in which a systematic review of each of the
models presented above is made and they are compared in terms of different metrics such
as accuracy or inference speed. It is difficult to choose a clear winner since it depends on
the specific task we are performing and whether we are more interested in a fast model for
inference or if we need to obtain a higher accuracy in object recognition. In our work we
have chosen RetinaNet as it is a model with one of the best accuracy–FPS balances.

1.3.2. Text Recognition

As with object detection, there are two eras. A first one in which the techniques were
based on “hand-made” features to discriminate the characters, and another one in which
machine learning models predominate [51,52].

Pre-deep learning period:

• Connected-component analysis (CCA). These classifiers extract candidate compo-
nents at first and then filter out non-textual components using manual rules or trained
classifiers [53]. There are two methods, these being stroke width transform (SWT) and
maximally stable extremal regions (MSER) [51];

• Sliding window (SW). This model works by sliding a small multi-scale window
through all possible locations on the image, classifying whether text is present or
not [51].

In the era of deep learning, [52] proposes a hierarchical taxonomy divided into
text detectors, transcribers, end-to-end systems and auxiliary methods that improve the
model quality:

• Detection. Text detection can be defined as a subset of the problem of object detection,
in which there are three tendencies [52]:

• Reduction of pipelines to simplify the training process and reduce error. Decompo-

sition into subtexts and then joining them into a complete instance. Specific recogni-

tion in cases such as curved text, irregularly shaped text or text with complex backgrounds;
• Transcribers. In traditional methods, the process consisted of preprocessing, seg-

mentation and character recognition. However, segmentation is costly and has a
longer execution time. To avoid this step, connectionist temporal classification (CCT)
methods [54] and attention mechanisms [52] are used;

• End-to-end systems. Instead of dividing the main problem into detection and recog-
nition subproblems, these systems integrate the entire process for reading directly
from the image [52];

• Auxiliary techniques. An important aspect is techniques that improve training qual-
ity, such as creating synthetic examples, reducing noise in the image or incorporating
information from the environment [52].

Some examples for object detection in vehicle security systems are:
Traffic light recognition [55–57]. These are assistants that detect this type of signaling,

so that they can inform the driver of their current status. If they were connected directly to
the vehicle control system, the vehicle could even brake automatically. The main challenges
of this ADAS are related to the different types of traffic lights, since there are several models
depending on the country, and the existence of intersections or multiple lanes;

Signal recognition [58,59]. Traffic sign identification is one of the tasks required for
environment perception. They are the main source through which drivers receive infor-
mation (maximum speed, prohibitions, intersections, etc.). Although there are currently
commercialized ADAS (such as the Toyota Road Sign Assist, or RSA [60]), it is still a
challenge. The main problem is the diversity in size and shapes;
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Panel recognition [61,62]. Information boards are a type of signage located above the
lanes, which primarily communicate information by text. Therefore, the challenge for the
assistants lies in the recognition of the characters, not only in the identification of the object
on the road.

2. Methodology

The processing steps are summarized in Figure 2. The images captured by the vehicle
camera are initially processed by the VMS object recognition module. The next step is to
normalize the section that corresponds to the VMS by cropping the image, changing the
perspective and angle in addition to adjusting the color to facilitate the following task of
extracting the text from the image. Finally, the text is converted to audio using a “text to
speech” service in the cloud.

Figure 2. Processing steps.

These processing steps for the VMS speech system are divided into two subsystems
combining local processing and cloud services: a VMS recognizer and a content extractor
and speaker (Figure 3).

Figure 3. The VMS reading process consists of 2 steps. (a) VMS extraction and (b) processes the
image to extract the content and speak it.

2.1. VMS Recognizer

From a picture of the environment taken by a camera located on the front of the
vehicle, it recognizes the VMS and produces another image as an output, consisting only
of the sign itself. This task is carried out by a deep CNN, a machine learning model that
gives great results in image classification and object detection [38–41]. In order to do so, it
is necessary to build a set of labeled images to train and evaluate the model.

2.2. Content Extractor and Speaker

Taking as an input the image produced by the VMS recognizer, it processes it to obtain
the text of the panel and reproduces it using a synthetic voice. The process is as follows.

First, it is necessary to preprocess the image to make it easier to extract the text.
The steps to follow are: (1) Angle correction. Straightens the orientation of the VMS.
(2) Cropping of the VMS. Generates an image with only the content of the panel by elimi-
nating margins that do not correspond to the VMS. (3) Color adjustment. Transforms the
previous image into another one with black text over a white background; this will make
the extraction task easier.
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Then, using an OCR model, it transcribes the text contained in the panel. Finally, the
system makes a call to the IBM Watson Text to Speech cloud service, which returns a sound
file with the spoken text.

3. Variable Message Sign Recognition

3.1. Dataset
Labeled Image Collection

The strategy is to join different sources to maximize the number of examples with the
least manual work. This is a key point, since each image must be annotated individually,
which is very time-consuming. Therefore, a process has been designed to obtain a minimal
dataset and to create a basic model with which to label the images iteratively. Thus,
although the first search will be completely manual, subsequent searches will consist of
small adjustments on images extracted from videos (Table 1), which would otherwise
involve a lot of work. The initial acquisition can be divided into three steps:

1. Collection. By searching Google Images, YouTube, several websites and manual
clippings combined with scraping scripts.

2. Labeling. Each image is manually annotated using the software in [63], which
generates an XML (Extensible Markup Language) file in PASCAL VOC (Visual Object
Classes) format.

3. Data augmentation. Data augmentation is a widespread method that consists of
applying modifications to the image (rotations, cropping, translations, etc.) in order to
create apparently new instances. For this project, since the VMS will always be in the
top position of the image, we have chosen to flip the image on the y-axis. That way,
the signs on one side will be placed on the opposite side, generating a new instance.

Once the first version of the dataset (134 VMS examples) was obtained, a RetinaNet [49]
was trained with it on a ResNet50 model [64] pretrained on COCO [65]. This model has
been selected due to the fact that even though it is a single-stage model, it achieves results
very close to those of two stages, maintaining the advantages of the single-stage models [49].
Results are shown on Table 1.

Table 1. Basic model training parameters and results.

Epochs 25
No. of training images 134

Time ≈01:30:00
Learning rate 10−5

Loss 0.174

Thanks to this model, an iterative process begins in which new labeled images are
obtained more quickly. There are two methods with which to do so:

• Manual. As in the first acquisition, the VMS images are manually selected. The
difference is that the labeling is performed by the basic model;

• Semiautomatic. In this case, we select videos to be analyzed by the basic model in
order to extract a set of labeled candidate images from hours of footage, which would
otherwise be much more tedious.

Since this first model is not perfect (nor is it intended to be), it is necessary to check
the automatic selection and detection. Finally, once the images have been validated with
their annotations, data augmentation (flipping on the y-axis) is applied.

3.2. Final Dataset

Every machine learning algorithm is sensitive to overfitting its parameters to the data
with which it has been trained. In this situation, the model memorizes this information,
which prevents it from generalizing and, therefore, from performing well in real situations.
To avoid this situation, the dataset has been divided into two portions, one exclusively
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for training and another for validation. This method is a popular practice for correctly
measuring the quality of a model.

At a certain epoch, generalization is transformed into memorization of the training set.
This manifests itself as an increase in the validation error after a downward trend, while
the training error decreases until it almost disappears. The best model is found just before
this occurs.

The training set contains 706 (324 with VMSs) images extracted partially from 19 YouTube
videos with a total duration of 05:19:27. The test set contains 153 (56 with VMSs) images
that were manually reviewed to ensure the best comparison.

3.3. VMS Recognizer

Next, the training process performed to obtain the final model is detailed. A public
distribution called Keras RetinaNet [66] has been used, which works on TensorFlow 2.0 [67].
Table 2 shows hardware specifications of on-board PC used for training and deployment.

Table 2. Hardware used for training.

Processor Intel i7 9800K 3.6 GHz
RAM 32 GBs

Graphics card Nvidia RTX 2080 Ti
Hard disk 1 Tb SSD M2

It has been established as an indicator to maximize the AP (average precision), which
is the area under the coverage–precision curve given an IoU (Intersection over Union). The
IoU indicates the amount of overlap between the recognized area and the real area. It is
used as a threshold to find the true positives (TP), false positives (FP) and false negatives
(FN) that define the accuracy and coverage value.

The training parameters and results (Table 3) are as follows.

Table 3. Training parameters and results.

Epochs 16 Best epoch 7
Loss 0.008 Loss (epoch 7) 0.024

lr 10−5 AP (epoch 7) 0.703
IoU 0.5 Time 01:20:00

Once the first training is finished, it can be resumed by reducing the learning rate (lr)
to slightly improve the model. This is because the lr guides the gradient descent through
the error space until the local minimum (or in the optimal case, the absolute minimum)
is reached. A high value of the lr causes the network to diverge, while a low value, even
though it requires more time, will converge to the local minimum (or in the optimal case,
the absolute minimum).

The parameters and results of the training continuation are shown on Table 4.

Table 4. Retraining parameters and results.

Epochs 14 Best epoch 7
Loss 0.009 Loss (epoch 7) 0.024

lr 10−7 AP (epoch 7) 0.703
IoU 0.5 Time 01:15:00

Observing the retraining results, it is concluded that the model with the best AP is
still the one achieved at epoch 7. The lr reduction did not produce the desired effect.
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4. Text Extraction

4.1. Preprocessing
4.1.1. Image Straightening

The VMS image may have a small rotation that affects the OCR. In order to correct it,
a procedure based on the Canny algorithm [68–71] and the Hough transform [69,72–75]
has been designed.

• Edge detection. This task is carried out by the Canny algorithm on a grayscale image,
on which a 5 × 5 Gaussian filter has been previously applied to reduce noise (although
the Canny algorithm already applies one by default). The parameterization used is
inspired by [76]. Thresholds are automatically calculated as follows:

1. Obtain the average pixel intensity, v;
2. Apply the following formulas with σ = 0.33 to find the lower and upper thresholds:

� Tl = max(0, (1 − σ) · v)
� TH = min(255, (1 + σ) · v)

• Straight line recognition within the image. The Hough transform is applied on the
output image of the Canny algorithm, obtaining a list of (ρ, θ) pairs. The parameters
established are:

� Accumulator distance on the axis ρ = 1;
� Accumulator distance on the axis θ = π

180 radians = 1◦;
� Threshold T = 100.

• Calculation of the rotation angle, θ. For each pair (ρ, θ), Equation (1) is applied to
find the equation of the line in the xy plane. From it, the slope, a, required to transform
it into degrees using Equation (2) is obtained and entered into a list. The rotation
angle, θ, is estimated by the arithmetic mean of all the slopes of the detected lines.

y =

(
−cos θ

sin θ

)
x +
( r

sin θ

)
(1)

degrees =
a 180

π
(2)

• Calculation of the rotation matrix, R. Finally, by applying a rotation matrix, R (3), to
the original image, the straightened image is obtained. For this, it is necessary to calcu-
late α and β by means of Equations (4) and (5), knowing that center =

(
width

2 , altura
2

)
,

scale = 1 and θ is the value obtained in step three.

R =

[
α β (1 − α)·center· x − β·center·y
−β α β·center·x + (1 − α)·center· y

]
(3)

α = scale· cos θ (4)

β = scale· sin θ (5)

4.1.2. Image Cropping

Once the slope has been adjusted, the next step is to crop the image so that only the
inside of the VMS is shown. The objective is to identify the lines that delimit the panel and
mark the cut points. The following algorithm details the procedure.

1. Find the equations of the lines on the image.

Through steps one, two and three of the above procedure, (ρ, θ) of the horizontal
(between 0◦ and 1◦ slope), rhi, and vertical (between 88◦ and 92◦), rvj, lines in the image
are obtained. Then, the equations in the xy plane are calculated.

2. Calculate the intersection point with the image limits.
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Side limits. For each straight line, rhi, the intersection with the vertical limits x = 0 (22)
and x = w (23), where w is the width of the image, is calculated to store the y coordinate
of each slice in the list, lh. This way, each element of lh is a candidate to be the limit of the
horizontal slice.

Le f t side cut =
{

x = 0
y = a ∗ 0 + b = b

(6)

Right side cut =
{

x = w
y = aw + b

(7)

Upper and lower limits. For each straight line, rvj, the intersection with the horizontal
limits y = 0 (8) and y = h (9), where h is the height of the image, is calculated to store the x
coordinate of each slice in the list, lv. This way, each element of lv is a candidate to be the
limit of the vertical slice.

Upper cut =

{
x =

(
0−b

a

)
y = 0

(8)

Lower cut =

{
x =

(
h−b

a

)
y = h

(9)

3. Identify the cutting points and extract the subsection.

• Horizontal cut. Identify the upper, IHh, and lower, ILh, cut-off points of lh that
satisfy:

IHh = max(p) being p ∈ lh and 0 ≤ p ≤ h
6

(10)

ILh = min(p) being p ∈ lh and
(

5
6

h
)
≤ p ≤ h. (11)

• Vertical cut. Identify the left, ILv, and right, IRv, cut-off points of lv that satisfy:

ILv = max(p) being p ∈ lv and 0 ≤ p ≤ h
10

. (12)

IRv = min(p) being p ∈ lv and
(

9
10

h
)
≤ p ≤ h. (13)

The range of p values for IHh and ILh in addition to ILv and IRv, as well as the following
increments have been experimentally established:

IHh = IHh + 0.03ILh and ILh = ILh + 0.05ILh. (14)

ILv = ILv + 0.03IRv and IRv = IRv + 0.05IRv. (15)

4.1.3. Color Adjustment for OCR

Once the VMS content has been isolated, the image is ready for OCR. The objective is
to create a new binarized picture, i.e., black text on a white background.

1. Binarize the image.

• Convert to grayscale. By applying the formula presented in [77], the gray
value is obtained (R, G and B being the values of the red, green and blue
channels, respectively).

• Apply Otsu’s method. Otsu binarization [69,78–80] is an unsupervised parame-
terless method that consists of automatically finding a threshold, T, that mini-
mizes the intraclass variance in black and white pixels. This way, a binary image
is left.
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• Reverse the image color. The output of Otsu’s method is an image with white
text on a black background. Therefore, it is necessary to apply the NOT logic
gate on each value.

2. Join discontinuous strokes.

The binarized image may have small discontinuities in the letter strokes. To correct these
imperfections that affect recognition, the closing morphological transformation [69,81,82] has
been used to solve this problem.

Morphological transformations are operations that usually work on a binarized image
by moving a kernel over it (similar to 2D convolution). The closing one (16) consists of
a dilation that fills the small holes in the stroke, followed by an erosion that corrects the
unwanted pixels that the first operation has enlarged.

A·B = (A ⊕ B)� B (16)

Dilation transforms the value of a pixel to 1 if all pixels below the kernel are 1, and
erosion when at least one has the value 1.

3. Histogram equalization. Finally, it is necessary to increase the contrast so that the
subsequent OCR model will be able to recognize the text. For this purpose, the his-
togram [69,83] of the image, H(i), has been equalized by mapping it to the normalized
cumulative distribution, H′(i), q, which is more uniform.

4.2. Recognition and Speech

Once the VMS image has been preprocessed, it is ready to be transcribed using the
Tesseract OCR model, and then spoken by the IBM Watson Text to Speech cloud service [25].
Tesseract [84–86] is an optical character recognition engine. The version used in this project
is Tesseract 4.0, which implements LSTM (long short-term memory) recurrent neural
networks, resulting in better and much faster results.

The last step in the pipeline is the voice-over of the content. This task is very easy
thanks to the IBM Watson Text to Speech cloud service [25]. It provides the user with a
REST API that receives the text and returns an audio file.

5. Results and Discussion

The presentation of the results has been divided into two parts, according to the
subsystems of the project. All the results have been obtained with the same hardware with
which the VMS recognizer model has been trained.

5.1. VMS Detector

An average precision of 0.7 has been achieved on 153 test images. These are some
examples of the VMS detector. As can be seen, the detector confuses some static signals
as if they were VMSs (Figure 4). This is a reasonable error due to the small number of
images used to train the model and the similarity between both types of signals. However,
this problem could be solved by adding another machine learning model that classifies
between VMSs and non-VMSs. Additionally, different types of VMSs affect processing
differently. Basic panels, with road signs and logos on the sides, can be found, as can LED
matrices with higher or lower resolutions.

5.2. Image Preprocessing and Text Extraction

Qualitative results of the preprocessing and text extraction are presented below. As can
be seen, the quality of the image and the resolution of the VMS affect both preprocessing
(Figure 5) and transcription (Figure 6). Images with very low resolution are especially
complicated. In addition, signs with pictograms affect the image processing and text
extraction in the same negative way.
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Figure 4. (a) Loss, regression loss and classification loss for each training epoch; (b) AP by epoch.

Figure 5. Some examples of VMS detection.
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Figure 6. Image preprocessing examples.

It has been detected that, in some images such as the following two (Figure 7), the
OCR model performs much better without the last steps of the preprocessing algorithm
(Figure 8). In particular, without the last color adjustment, lower resolution instances have
a better transcription.
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Figure 7. Some examples of OCR (part 1).

Figure 8. Some examples of OCR (part 2).
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6. Conclusions

As a result of the research, a prototype ADAS for reading variable message signs has
been obtained. It works with a RetinaNet, a type of neural network based on ResNet50
with an average accuracy of 0.703, which recognizes the VMS in an image and indicates the
location of it with a confidence percentage. Next, the section of the image with the VMS is
processed to extract the count with an OCR model called Tesseract.
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Appendix A. Dataset Sources

Table 1. Sources of the videos used for the preparation of the dataset.

URL Duration URL Duration

youtu.be/MFzuxq4V0XI 00:06:59 youtu.be/dJcH8YFuvY4 00:25:12
youtu.be/GREMRp7rvoY 00:08:16 youtu.be/M2rvG-e04HE 00:16:22
youtu.be/lNhy2mT94Ao 00:05:22 youtu.be/8ifk3BHz1_c 00:13:35
youtu.be/37YgdfidwkA 00:19:58 youtu.be/6bkOZcBECsk 00:12:37
youtu.be/JctnDDdoy0A 00:22:56 youtu.be/afCyj52txC0 00:06:40

youtu.be/H1gxWeWsa_E 01:20:25 youtu.be/vU82-jnUi_E 00:07:57
youtu.be/UZFLDp_LLj4 00:27:23 youtu.be/D5RHKJNhw7I 00:08:01

youtu.be/tz8bEIirIx4 00:10:50 youtu.be/S1DE3pvnG8s 00:12:33
youtu.be/QJ_XSlOeCBw 00:10:48 youtu.be/XLQbclKjNrw 00:03:36
youtu.be/4s-WfvYUbPM 00:19:57
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Abstract: This work presents a novel dc-dc bidirectional buck–boost converter between a battery
pack and the inverter to regulate the dc-bus in an electric vehicle (EV) powertrain. The converter is
based on the versatile buck–boost converter, which has shown an excellent performance in different
fuel cell systems operating in low-voltage and hard-switching applications. Therefore, extending
this converter to higher voltage applications such as the EV is a challenging task reported in this
work. A high-efficiency step-up/step-down versatile converter can improve the EV powertrain
efficiency for an extended range of electric motor (EM) speeds, comprising urban and highway
driving cycles while allowing the operation under motoring and regeneration (regenerative brake)
conditions. DC-bus voltage regulation is implemented using a digital two-loop control strategy. The
inner feedback loop is based on the discrete-time sliding-mode current control (DSMCC) strategy,
and for the outer feedback loop, a proportional-integral (PI) control is employed. Both digital control
loops and the necessary transition mode strategy are implemented using a digital signal controller
TMS320F28377S. The theoretical analysis has been validated on a 400 V 1.6 kW prototype and tested
through simulation and an EV powertrain system testing.

Keywords: noninverting buck–boost converter; high efficiency; wide bandwidth control; discrete-
time sliding-mode current control (DSMCC); electric vehicle (EV); driver vehicle system; energy
management

1. Introduction

Electric vehicles (EVs) are an essential part of meeting global goals on reducing the
carbon footprint of vehicle emissions that contribute to climate change [1,2]. All the EVs
powertrain configurations shown in Figure 1 have a common system that is formed by
the battery, the power converter, and the electric motor. Each of these components has
been the subject of extensive research in recent years and a high level of development
to improve the performance of the automotive traction systems. However, these three
components represent a tremendous research challenge given the complexity of integrating
these elements in EVs application.

In EVs, the battery is generally sized by the energy requirements to allow a specific
range to be reached. Still, there is not a linear relationship between car range and battery
capacity because adding the weight of the battery reduces the efficiency on the road [2,3].
The battery cells for EVs are usually connected in series to meet the voltage requirements
of the power converter (inverter). The connection of cells in series exponentially increases
the probability of failure of the battery pack. The performance of the whole pack is limited
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by the weakest cell and the oversizing of the power inverter and the electric motor to
ensure peak power delivery at a low state of charge (SoC) of a battery pack with a wide
voltage variation at different SoC [4,5]. Thus, there is a limitation of the maximum number
of battery cells that could be connected in series, and a step-up dc-dc power converter is
required to reach the requirements of the inverter converter. Therefore, the power converter
shown in Figure 1 is implemented using a step-up DC-DC in cascade with a DC-AC traction
inverter (see Figure 2 DC-DC + DC-AC block) [6].

Figure 1. EVs powertrain configurations: hybrid electric vehicles (HEVs), plug-in hybrid electric
vehicles (PHEVs) and battery electric vehicles (BEVs).

The induction machine (IM) and the permanent magnet synchronous machine (PMSM)
are the most used [7–9] electric motors in EV traction applications. In the constant torque
operation region (Figure 2), the maximum torque capability is determined by the current
rating of the inverter [7,10]. The maximum torque at base speed (point A in Figure 2) defines
the vehicle performance at starting or climbing hills [8]. The available torque at maximum
speed (point B in Figure 2) in the constant power region limits the vehicle speed highways.
In the last region, the torque and power reduction are due to the back-electromotive force’s
increasing influence [7,10].

Connecting a DC-DC converter between the battery and the inverter allows optimizing
the inverter’s DC input voltage, improving power capability, and maximizing the electric
motor efficiency [11]. A bidirectional DC-DC converter can be used to control the voltage
at the input of the inverter according to the motor speed. In this way, the converter can
optimize the efficiency of the inverter (modulation index MI = 1 achieves it) in a wider
range of operating speeds, as can be seen in Figure 2 (see DC-DC + DC-AC block) [12,13].

In [12], the authors used an interleaving half-bridge bidirectional converter to regu-
late a variable DC-bus voltage, showing the efficiency improvement both in the step-up
converter and inverter. A detailed inverter loss model is developed in [13], where a vari-
able DC-bus voltage closely related to the rotational motor speed significantly improves
the inverter efficiency for voltages above the battery voltage. Despite proposals of using
composite topologies for high step-up gain [14] or flying capacitors topologies to reduce
inductor size [15,16], the most commonly used converter for this application has been
the bidirectional half-bridge [12,13,17–24] and boost [25] converters. In [18], the authors
proposed a three-level version of this converter to use lower breakdown voltage MOSFETs.
A coupled inductor in each phase is proposed to increase the power [19].
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Rated 
phase

voltage

Rated 
phase

voltage

Battery
voltage

MI<1 MI=1

MI<1
MI=1

Figure 2. Torque and power requirements for the EV drive systems.

An interleaved zero voltage switching (ZVS) version, included in multifunctional
power electronic interface and operating at 60 kHz, is presented in [20], achieving high-
efficiency measurements. Integration of this bidirectional converter in a new topology is
proposed in [24] for a hybrid electric vehicle system. This converter interfaces between
two different voltage values corresponding to the battery system and a DC-bus. It is worth
noting that this bidirectional converter operates as a boost- or buck-converter depending
on whether the motor is in driving or regenerative mode [26]. Therefore, this electric
drive topology is more suitable for highway driving cycles (see Figure 2), reducing the
system’s efficiency under an urban driving cycle. The latter is because the inverter efficiency
cannot be guaranteed under low speeds since the boost converter cannot reduce the DC-
bus voltage below the battery voltage [6,27]. A converter with step-up and step-down
characteristics, not only will extend the efficient range to urban driving cycle, but will also
add more flexibility in designing both battery and inverter.
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The noninverting buck–boost converter with coupled inductors known as the versatile
buck–boost converter and shown in Figure 3a, could be an excellent candidate to optimize
the global efficiency of the system. It has many advantages, such as noninverting voltage
step-up and step-down characteristic in both motor operating modes, high efficiency,
wide bandwidth [28], and input or output currents regulation because of their low ripple
values [29,30]. It provides smooth transitions between buck and boost operating modes due
an hysteresis PWM control strategy used to activate the controlled switches [31]. In addition,
the introduction of an RC damping network in parallel with the intermediate capacitor,
combined with the coupled-inductors, eliminates the right half-plane zero that limits the
closed-loop bandwidth of the step-up converters [28]. All the advantages mentioned above
have allowed its use in different fuel cell hybrid power systems [32–34] and deepen on
various digital current control techniques [35–37].
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Figure 3. Schemes of (a) the buck–boost converter, (b) switch signals generation.

A novel bidirectional version of the versatile buck–boost converter is presented to
extend its use in electric vehicle applications. This new converter shares some similarities
with their previous ones (see Figure 4) to preserve all the advantages of the versatile
converter. However, two significant changes to match the hard-switching high-voltage
bidirectional EV application are included in this new version. The first one corresponds the
use of the Silicon Carbide (SiC) devices that extend the operation at high-voltage with low
switching losses [23,38–40]. The second one corresponds with a redesign of the coupled
inductors to reduce the parasitic winding-to-winding capacitance [41]. Other important
aspects that differentiate the converter presented in this work from the existing ones are
summarized in Figure 4.
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This work presents a novel high-voltage bidirectional buck–boost converter with
digital control that allows the regulation of the high-voltage DC-bus for EV applications.
This voltage regulation and the energy flow between the battery and the motor drive are
managed by means of a two-loop digital current control strategy, which facilitates the
hysteresis transition between voltage step-up and step-down modes. The resulting control
provides output voltage regulation in the presence of variations in output voltage and
load power. The whole system is tested experimentally in a 1.6 kW prototype applied to a
resistive load and an EV hardware emulation platform. Based on Figure 4 and the state of
the art, the main contributions of this paper can be summarized as follows:

• A novel high-voltage high-switching bidirectional converter is presented. This new
converter has step-up and step-down characteristics in both current directions to
extend the EV traction inverter efficiency under a wide range of speeds. This converter
guarantees a high power conversion efficiency for EV powertrain applications due to
silicon carbide (SiC) devices and the design with a low winding-to-winding parasitic
capacitance of the coupled inductor. It can operate in boost or buck mode.

• A two-loop digital control design with a current (inner loop) controller and a voltage
(outer loop) controller regulate the DC-bus voltage during traction and regenerative
modes. The proposed controller ensures zero steady-state voltage error and fast
transient responses to the voltage reference and power variations.

• A DSMCC control is proposed for the inner loop of the voltage feedback outer loop.
The proposed controller ensures fast-tracking of the control set-points and low steady-
state error under demanding tests that include system start-up and dc bus voltage
reference with small and large variations. It is the first time that the DSMCC control
strategy is used for the versatile buck–boost converter.

This paper is organized as follows: Section 2 presents an analysis of the coupled
inductors buck–boost converter with the goal of obtaining the inductor current slope
equations. Section 3 describes the DSMCC technique implemented for the inner control
loop. This section also includes the outer voltage feedback loop analysis, which is based on
a PI controller. Simulations and experimental results of the current control technique under
startup, small and large variations, and using an EV emulator are presented and discussed
in Section 4. Finally, the main conclusions and the remaining challenges for the future are
summarized in Section 5.

2. Bidirectional Noninverting Coupled-Inductor Buck–Boost Converter

The converter scheme depicted in Figure 3a is composed of two half-bridge MOSFETs,
an RdCd damping network connected in parallel with the intermediate capacitor C, a
constant input voltage Vg, and a resistance load Ro. In addition, the coupled inductor has a
unitary ideal turns ratio N2/N1, a coupled coefficient k = 0.5, a mutual inductance M and
equal values for the primary (L1) and secondary (L2) self-inductances (L = L1 = L2). In the
analysis, a continuous conduction mode (CCM) operation is considered, with no parasitic
effects and a switching frequency much higher than the converter’s natural frequencies.
The use of the state-space averaging (SSA) method to model the converter leads to the
following set of differential equations [37]:

dig(t)
dt

=
L(Vg − vc(1 − u1L))− M(vo − vcu2H)

L2 − M2 (1)

diL(t)
dt

=
M(Vg − vc(1 − u1L))− L(vo − vcu2H)

L2 − M2 (2)

dvc(t)
dt

=
1
C

(
−iLu2H + ig(−u1L + 1)− 1

Rd
(vc − vcd)

)
(3)
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dvcd(t)
dt

=
vc − vcd

CdRd
(4)

dvo(t)
dt

=
iL
Co

− vo

RoCo
(5)

In the scheme of Figure 3, the duty cycle d1(t) is used to activate the switch Q1 and
Q2 for boost mode. Q3 and Q4 are switched with the duty cycle d2(t) for buck mode. The
activation signals u1H and u1L are for the half-bridge composed of Q1 and Q2, and the
activation signals u2H and u2L are for the half-bridge composed by Q3 and Q4. u1H and
u1L operate in a complementary manner while u2H is set at 1 and u2L is set at 0, in boost
mode. Otherwise, u2H and u2L operate in a complementary manner while u1H is set at 1
and u1L is set at 0, in buck mode. The duty cycles are computed considering a variable
control u(t), where u(t) = 1 + d1(t) in boost mode and u(t) = d2(t) for buck mode [28].
Figure 3b shows the hysteresis transition method avoids oscillations in the transitions
between buck, boost, and buck–boost working modes [31]. The aim of this analysis is to
find the converter’s current output slope diL

dt in each operation mode (buck or boost) to
design the digital inner current programmed controller. The output current has a periodic
triangular waveform where the current rises with a slope of m1 and falls with a slope −m2.
Table 1 presents the converter output current waveform slopes based on Equation (2) for
the boost and buck modes.

Table 1. Slope of the output current waveform.

Mode m1 −m2

Buck
M(Vg − vc)− L(vo − vc)

L2 − M2
M(Vg − vc)− Lvo

L2 − M2

Boost
MVg − L(vo − vc)

L2 − M2
M(Vg − vc)− L(vo − vc)

L2 − M2

3. Digital Control for Output Voltage Regulation

The control method implemented to regulate the converter’s output voltage is a
two-loop digital control. This strategy allows smooth transitions between motoring and
regenerative braking operations and during the DC-bus voltage reference changes. The
digital control has the advantage of simplifying the implementation of complex control
strategies, the soft start of the converter, higher robustness to noise, and flexibility in
design without the need to make any component or hardware changes [42]. In addition, it
allows the integration of the hysteresis mode transition strategy in the digital controller,
making the implementation and tuning of this transition strategy easier. The digital control
proposed has an inner current programmed controller with an outer voltage feedback loop
(PI compensator).

The current control loop must present a fast dynamic response to reduce the tran-
sient response between buck and boost modes. This can be achieved using discrete-time
sliding-mode current control (DSMCC) for the output current iL, taking into account the
converter dynamics.

3.1. Discrete-Time Sliding-Mode Current Control

This work presents a fixed switching DSMCC control for the bidirectional noninverting
buck–boost converter. This discrete sliding control has been presented for a boost converter
in [43] and a buck converter [44]. In this control strategy, the DSMCC aims to compute
the variable control u[n] in the n-th time sample period that ensures the control surface
(Equation 6)) is reached in the next sampling period ( fsamp = fs).
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s[n] = iLre f [n − 1]− iL[n]. (6)

The Euler approximation leads to the following discrete-time output current expres-
sion, assuming the averaged model that the converter’s current output slope
diL
dt ≈ iL [n+1]−iL [n]

T
iL[n + 1] = iL[n] + T(m1 + m2)dx[n]− m2T. (7)

Hence, the resulting expression of the duty cycle is

dx[n] =
1

(m1 + m2)T
[iLre f [n]− iL[n]] +

m2

m1 + m2
(8)

where x in Equation (8) corresponds to the operating mode of the bidirectional buck–boost
converter (x = 1 for boost mode, x = 2 for buck mode), and iLre f [n] = iL[n + 1], using the
expressions for m1 and −m2 for the output current slopes from Table 1 in Equation (8). The
expression m1 + m2 is obtained from Table 1 for each converter operation mode, yielding

m1 + m2 =

⎧⎨
⎩

MVc
L2−M2 for boost mode

LVc
L2−M2 for buck mode.

(9)

For m2/(m1 + m2), it is given by

m2

m1 + m2
=

⎧⎨
⎩

−M(Vg−Vc)+L(Vo−Vc)
MVc

for boost mode
−M(Vg−Vc)+LVo

LVc
for buck mode.

(10)

In this control method, the output current iL(t) and voltages are sampled at the begin-
ning of each switching period, then, at the end of the switching cycle, iL[n] = iLre f [n − 1].
The steady-state duty cycle from the equivalent control law (Equation 8)) can be obtained by
substituting the voltage of the intermediate capacitor vc by Vg for buck mode and by vc = Vo
for boost mode in Equation (10). In steady-state, the duty cycle is U = m2/(m1 + m2), thus,
the variable control u[n] can be written as

u[n] =
1

(m1 + m2)T

(
iLre f [n]− iL[n]

)
+ Un (11)

where Un = U for buck mode and Un = 1 + U for boost mode. The schematic diagram of
the DSMCC is depicted in Figure 5.
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Figure 5. Schematic diagram of the two-loop control using DSMCC method.
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3.2. Digital Proportional-Integral Voltage Control

In order to guarantee dc bus voltage regulation, it is necessary to add a slower outer
voltage control loop. With this new loop, the switching converter can be operated as a
controlled current source due to the control DSMCC ensures the load current will follow
the current reference. Therefore, the current-controlled buck–boost converter is operated
as a current source that allows driving the energy consumption of the load. From the point
of view of the dc voltage control loop, voltage variations with power constant should be
compensated charging or discharging the dc bus capacitor [45]. Hence, this PI control is
designed to consider the filter output capacitor value Co or the capacitor in the dc-link for
an EV powertrain Cbus. The transfer function of the PI voltage controller in the Laplace
domain can be written as follows

Gvpi(s) = Kpv +
Kiv
s

. (12)

The output current reference to output voltage transfer function is obtained from
Equation (5)

HvoiL(s) =
vo(s)
iL(s)

=
Ro

RoCos + 1
(13)

The loop-gain of the external closed loop voltage can be written as:

G(s) = HvoiL(s)Gvpi(s)Hv(s)e−sTm , (14)

where Hv(s) represents the sensor gain. The term e−sTm represents half switching cycle
delay, Tm = T/2. Then, the controller transfer function (Equation (12)) can be expressed in
the z domain using the forward Euler method, as follows

Gvpi(z) = Kpv +
KivTsamp

z − 1
. (15)

where Tsamp = 1/ fsamp. The forward Euler method is used to find the recurrence equation
of the discrete-time integral PI control

iLp[n] = Kpvev[n]

iLi[n] = KivTsampev[n] + iLi[n − 1]

iLre f [n] = iLp[n] + iLi[n]. (16)

where

Kpv = Co2πfc (17)

Kiv =
Kpv

Ti
(18)

Ti ≥
10

2πfc
(19)

can be obtained from Equations (12) and (14), taking into account that the zero of Equation (12)
is placed lower than one decade below fc, which represents the crossover frequency (CF).
The value of the crossover frequency for the voltage loop ( fc) should be lower than that of
the current loop. Hence, a fc = 2500 Hz was selected for the voltage feedback loop.

Figure 6 depicts the Bode plots of simulated (PSIM) and experimental voltage loop
gain under different operation modes (boost and buck) for the versatile buck–boost
converter with a gain of the measurement system Hv(s) = 0.044. These Bode plots show
a similar behavior at a low frequency of the magnitude plot for the experiment and the
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simulation. For a quantitative evaluation, the CF and the phase margin (PM) are listed in
Table 2. From this table, it can be concluded that the closed-loop system is stable.

Figure 6. Simulated and experimental voltage loop gain Bode plots of the buck–boost converter.

Table 2. CF and PM of voltage loop gain.

Mode

Simulated Experimental

CF PM CF PM
[kHz] [deg] [kHz] [deg]

Boost 1.99 63.79 2.03 79.4
Buck 1.99 66.52 1.94 71.2

4. Simulation and Experimental Results

Validation of the proposed current control strategy is performed on a 1.6 kW versatile
buck–boost converter. A Texas Instruments TMS320F28377S Digital Signal Processor (DSP)
is used to implement the proposed control algorithm to calculate the variable control u
and the hysteresis buck–boost transition method introduced in [31], which was employed
to compute the duty cycle values. These duty cycles allow the PWM generation using
a symmetric triangular signal to get the activation signals of the MOSFETs switches. In
addition, a direct voltage source AMREL SPS800X13-K02D is used as a power supply for
the input voltage of the buck–boost converter shown in Figure 3 and whose parameters are
listed in Table 3. The design guides of the versatile converter are described in detail in [41].

4.1. System Startup

The simulated and experimental results for the system startup in closed-loop are given
in Figure 7. The voltage reference Vore f is increased from 0 V in each switching period
during 12 ms until 293 V with an input voltage (Vg) of 200 V and 350 V for boost and
buck mode, respectively. It must also be noted that during the startup in boost mode,
the system begins in buck mode and ends in boost mode in steady-state. Therefore, this
experiment exhibits a smooth transition between the buck and boost operating modes.
The experimental results demonstrate that the voltage output is well regulated in all the
operation modes. In addition, a good agreement can be observed between the experimental
measurement and the simulated with a fast and soft startup.
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Table 3. Selected components and parameters for the buck–boost converter.

Parameter Value or Type

Input voltage Vg 200–400 V
Output voltage Vo 100–400 V
Rated Power 1.6 kW
Switching frequency fs 100 kHz
Output capacitor Co 6× R75PW44704030J, 28 μF, 630 V
Damping capacitor Cd MKP1848S62070JP2F, 20 μF, 700 V
Intermediate capacitor C 4× R76PN33304030J, 1.32 μF, 630 V
Coupled inductor M =135 μH and L =270 μH,

Core: 77,908 Magnetics,
Number turns: 80,
Wire size: 18 AWG.

Damping resistance Rd 2× BPR10100J in parallel, 5 Ω,
10 W, 500 V

MOSFET Driver UCC27714D
Power semiconductors Q1 − Q4 SCT2450KEC

20 25 30 35 40 45 50 55
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ig
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iL (CH4)

ig (CH3)

Buck
mode

Boost
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(b)
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ig
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iL (CH4)
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Figure 7. System startup with a constant resistive load. Simulated (a,c) and experimental (b,d). Two operation modes in
steady-state are shown: (a,b) boost mode (Vg = 200 V, vo = 293 V and and Ro = 200 Ω) and (c,d) buck mode (Vg = 350 V,
vo = 293 V and Ro = 32.3 Ω). CH1 or CH2: vo (100 V/div), CH3: ig (2 A/div), CH4: iL ( 2A/div), and time base of 4 ms.
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4.2. Small-Signal Response to Output Voltage Reference Variation

Figures 8 and 9 show the small-signal control loop response to small output voltage
reference changes during the boost and buck operation, respectively. The input voltage is
set at 200 V with a constant resistive load Ro = 200 Ω for all the study cases. In boost mode
(Figure 8), the output voltage reference changed between 294 V and 296 V. While in buck
mode, the output voltage reference changes between the values of 98 V and 100 V, as shown
in Figure 9. The dc component in Figures 8 and 9 have been removed to comprise the ±2 V
step change in the output voltage reference. These results show that the output voltage is
well regulated to its desired reference, and the output and input current are increased or
decreased when the voltage reference changes to recover the converter’s operating point.
The figures also demonstrate a good agreement between the experimental and simulation
results with a short outer voltage transient of around 400 μs, which validates the proposed
control method’s satisfactory operation.

vo

iL

ig

(a)

(CH1)vo

iL (CH4)

ig (CH3)

(b)

vo

iL

ig

(c)

(CH1)vo

iL (CH4)

ig (CH3)

(d)

Figure 8. Small signal transient response with a constant resistive load Ro = 200 Ω in boost mode (Vg = 200 V). Simulated
(a,c) and experimental (b,d). Transient response when the output voltage reference changes from 294 to 296 V (a,b), and
from 296 V to 294 V (c,d). CH1: vo (2 Vac/div), CH3: ig (5 A/div), CH4: iL (5 A/div), and time base of 200 μs.
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Figure 9. Small signal transient response with a constant resistive load Ro = 200 Ω in buck mode (Vg = 200 V). Simulated
(a,c) and experimental (b,d). Transient response when the output voltage reference changes from 98 to 100 V (a,b), and
from 100 V to 98 V (c,d). CH1: vo (2 Vac/div), CH3: ig (2 A/div), CH4: iL (2 A/div), and time base of 200 μs.

4.3. Large-Signal Response to Output Voltage Reference Variation

Figures 10 and 11 compare the large-signal response when the output voltage has a
±20 V step change. The figures show simulation and experimental waveforms of the input
and output current and output voltage. Figure 10 depicts the response when the converter
operates in boost mode. The output voltage reference has been changed between 293 V and
313 V. The dc component in the experimental and simulation results has been removed to
appreciate the output voltage variation in boost mode. The results for buck mode are shown
in Figure 11, where the output voltage reference has been changed between 100 V and
120 V. From these figures, for both control methods, the transient average current output
value was successfully limited to ±4 A, which is the rated output current of the converter.
These results confirm the direct relationship between the output voltage response time
with the output filter capacitor value. It should be remembered that the slew-rate (SR) is
defined in this case as SR = i/Co [V/μs], where i is the instantaneous current through
the capacitor Co. Therefore, the response time to step output variation depends on the SR
parameter. Note that the measured current iL follows the current reference accurately. Some
differences are presented between the simulated and experimental results concerning the
input current. These differences are because the converter does not control this current and
its dynamic depends on the dc power supply internal control. Again, a good agreement
between the experimental and simulation results is observed.
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Figure 10. Large signal transient response with a constant resistive load Ro = 200 Ω in boost mode (Vg = 200 V). Simulated
(a,c) and experimental (b,d). Transient response when the output voltage reference changes from 294 to 314 V (a,b), and
from 314 to 294 V (c,d). CH1: vo (20 Vac/div), CH3: ig (5 A/div), CH4: iL (5 A/div), and time base of 200 μs.

4.4. Experiments with an EV Powertrain System Emulation

Energy management system in auxiliary supply in EV topologies and the use of dc-dc
converter as an interface between the primary energy source and high-voltage powertrain
are some of the applications for EVs. This application can be studied using a powertrain
emulation system or simulation [46]. Some experiments are carried out considering the
experimental PMSM platform described in Figure 12 that emulates an EV powertrain. This
system is composed of two permanent-magnet synchronous motors (PMSMs). One of them
(LSRPM 100 L) works as a traction motor with a maximum power of 4.5 kW, and the other
one (LSRPM 90 SL) works as a controlled torque load with a maximum power of 3 kW. In
order to verify the correct operation of the whole system shown in Figure 12, a test with a
third of the total power is tested in this work. To increase the system’s operating power, it
will be necessary to connect two more converters in parallel which is possible since they are
current controlled modules. The traction part is controlled by a universal variable speed ac
drive (SP2202), and it is fed using the buck–boost converter described in this work. The
battery is emulated using a DC power supply (AMREL SPS800X13-K02D) connected in
parallel with an electronic load to absorb the current in the case of regenerative mode. This
converter is connected between the battery emulator and the output filter capacitor Co
(R75PW44704030J). Subsequently, the traction motor is mechanically coupled to the motor
that emulates the load (EV behavior). This traction motor is controlled according to a speed
profile provided by a specific driving cycle. On the other hand, the load motor is controlled
by a universal variable speed ac drive (SP1405) to follow a torque reference based on
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the vehicle dynamics. An EV powertrain system model has been implemented in the
PSIM software with the parameters of the PMSMs listed in Table 4. To startup, the system
with an initial voltage to fed the unidrive SP2202, a soft-starting of the dc-dc converter
is implemented by the algorithm as it was previously described, and the simulated and
experimental results are shown in Figure 13. During the startup, the reference voltage vore f
changed from 0 V to the final desired output voltage value with a short transient around
0.9 s. The switching frequency for the inverter (SP2202) is 16 kHz. Figure 13a,b shows
the startup response in boost mode with Vg = 200 V and steady-state the output voltage
value of 350 V. In this experiment, the currents have an average value of 0 A in steady-state
because the motors are not operating during the startup; however, the inverter remains
switched because it has a 200 V power supply terminals. Figure 13c,d shows the steady-
state converter response in buck mode with an input voltage (Vg) of 400 V and output
voltage (vo) of 300 V. The figures also show good agreement between the experimental data
and the simulation results.
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(c)

(CH1)vo
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Figure 11. Large signal transient response with a constant resistive load Ro = 200 Ω in buck mode (Vg = 200 V). Simulated
(a,c) and experimental (b,d). Transient response when the output voltage reference changes from 100 to 120 V (a,b), and
from 120 to 100 V (c,d). CH1: vo (20 V/div), CH3: ig (2 A/div), CH4: iL (2 A/div), and time base of 200 μs.
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Figure 12. Diagram of the experimental setup: Converter dc-dc and EV powertrain.
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Figure 13. System startup with an EV powertrain system emulation. Simulated (a,c) and experimental (b,d). Two operation
modes in steady-state are shown: (a,b) boost mode (Vg = 200 V, vo = 350 V) and (c,d) buck mode (Vg = 400 V, vo = 300 V).
CH1: vo (100 V/div), CH2: Vg (100 V/div), CH3: ig (5 A/div), CH4: iL (5 A/div), and time base of 200 ms.
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Table 4. Parameters of the PMSMs.

Parameter 90 SL 100 L

Motor rated speed 1500 [rpm] 1500 [rpm]
Number of pole pairs 8 8
Stator resistance Rs 2.34 Ω 1.277 Ω
d-axis inductance Ld 50.124 mH 29.128 mH
q-axis inductance Ld 29.128 mH 19.295 mH
Moment of inertia J 0.0032 kg·m2 0.0066 kg·m2

Electrical constant ke 212 Vkp/krpm 223 Vkp/krpm

Figure 14 shows the transient response with a 450 W step change in the load power,
setting the speed reference in 500 rpm and the torque value in 3.77 Nm to obtain a dc
bus power demand of 300 W. Later, the speed reference changes to 1250 rpm to obtain
a dc bus power demand of 750 W. As a result, the output current changes from 1 A to
2.5 A gradually while the output voltage is regulated at 300 V. In the experimental and
simulated results of Figure 15, the converter can be seen working in boost mode with
Vg = 200 V and bidirectional power flow. The speed of the traction motor is set to 500 rpm,
and the torque of the load motor to 7.53 Nm to get a dc bus demand of 600 W. The dc
component (300 V) was removed to appreciate the ±20 V step change in the output voltage
reference. Figure 15a,b shows the results when the output voltage is changed from 300 V
to 320 V. Consequently, the current output iL quickly goes to 4 A. Figure 15c,d shows
the results when the output voltage is changed from 320 V to 300 V with a step change,
the current output iL decreases to −3 A. This current is limited above the rated current
(−4 A) due to the limitation of the source is 13 A. The battery is simulated with a dc source
(AMREL SPS800X13-K02D ) in parallel with an electronic load (EA-ELR 9750-44 3U) (see
Figure 12) in resistance mode to absorb 6 A, and it can absorb the current when the output
voltage is decreased. The output voltage has a 20 V step change over 28 ms and has a
−20 V step change at the output voltage over 12 ms. This time is different for each case
because the unidrive SP2202 has an input filter capacitor of 2870 μF. Accordingly, this time
depends on the filter capacitor value and the instantaneous current through the capacitor
during the charging or discharging due to the output voltage step changes. Finally, there
is a qualitatively good agreement between the simulated and the experimental results
in the EV powertrain system emulation for the proposed controller and all the converter
operation modes.

2150 2200 2250 2300 2350 2400 2450 2500 2550

0

100

200

300

400

Vo
lta

ge
 [V

]

Time [ms]

−10

−5

0

5

Cu
rr

en
t[

A
]

−5

0

5

vo

iL

ig

Vg

(a)

(CH1)vo

iL (CH4)

ig (CH3)
(CH2)Vg

(b)

Figure 14. Boost operation mode in steady-state for a step power transition (Po = 300 to 750 W, Vg = 200 V, Vo = 300 V)
with an EV powertrain system emulation. Simulated (a), and experimental (b). CH1: Vo (100 V/div), CH2: Vg (100 V/div),
CH3: ig (5 A/div), CH4: iL (5 A/div), and time base of 20 ms.
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Figure 15. Boost operation mode in steady-state with an EV powertrain system emulation Vg = 200 V. Transient response
when the output voltage reference changes from 300 to 320 V. Simulated (a,c) and experimental (b,d), time base of 10 ms
(a,b), and from 320 to 300 V, time base of 4 ms (c,d). CH1: Vo (20 V/div), CH3: ig (5 A/div), CH4: iL (5 A/div).

5. Conclusions

This paper proposed the bidirectional versatile buck–boost converter modified to
operate at high voltage. This converter is an alternative to conventional topologies based
on the boost converter in electric vehicle applications. The versatile converter has been
located between the battery and traction inverter to regulate the dc bus in electric vehicle
powertrains. The use of a high-efficiency step-up/step-down converter can improve the
performance efficiency of the EV powertrain. This improvement includes an extensive
range of electric motor speeds, which comprises urban and highway driving cycles. The
proposed dc-dc bidirectional buck–boost converter is responsible for the dc bus voltage
regulation through an outer voltage feedback loop and an inner current programmed
controller. A Texas Instruments TMS320F28377S DSC is used to implement the digital
control loops. The digital implementation of this current controller has allowed to include a
dead-zone avoidance technique that effectively has suppressed very effectively undesirable
nonlinear phenomena in the buck–boost mode transitions such as sub-harmonics or other
undesirable nonlinear phenomena. The theoretical analyses have been validated using
simulations and experimental tests performed on a 400-V 1.6-kW prototype. The current
controller allows regulating the traction dc bus during motoring and regenerative brake
conditions. The system presents zero steady error and fast transient response in the start-up
for dc bus voltage reference changes and under realistic conditions using an EV powertrain
system emulation. The experimental results are in good agreement with the simulation
and the theoretical predictions. Future works will address the parallelization of power
converters to increase the operating power of the system.
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