191 research outputs found

    Vitreo-retinal eye surgery robot : sustainable precision

    Get PDF
    Vitreo-retinal eye surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Vitreo-retinal surgery is performed minimal invasively. Small needle shaped instruments are inserted into the eye. Instruments are manipulated by hand in four degrees of freedom about the insertion point. Two rotations move the instrument tip laterally, in addition to a translation in axial instrument direction and a rotation about its longitudinal axis. The manipulation of the instrument tip, e.g. a gripping motion can be considered as a fifth degree of freedom. While performing vitreo-retinal surgery manually, the surgeon faces various challenges. Typically, delicate micrometer range thick tissue is operated, for which steady hand movements and high accuracy instrument manipulation are required. Lateral instrument movements are inverted by the pivoting insertion point and scaled depending on the instrument insertion depth. A maximum of two instruments can be used simultaneously. There is nearly no perception of surgical forces, since most forces are below the human detection limit. Therefore, the surgeon relies only on visual feedback, obtained via a microscope or endoscope. Both vision systems force the surgeon to work in a static and non ergonomic body posture. Although the surgeonโ€™s proficiency improves throughout his career, hand tremor will become a problem at higher age. Robotically assisted surgery with a master-slave system can assist the surgeon in these challenges. The slave system performs the actual surgery, by means of instrument manipulators which handle the instruments. The surgeon remains in control of the instruments by operating haptic interfaces via a master. Using electronic hardware and control software, the master and slave are connected. Amongst others, advantages as tremor filtering, up-scaled force feedback, down-scaled motions and stabilized instrument positioning will enhance dexterity on surgical tasks. Furthermore, providing the surgeon an ergonomic body posture will prolong the surgeonโ€™s career. This thesis focuses on the design and realization of a high precision slave system for eye surgery. The master-slave system uses a table mounted design, where the system is compact, lightweight, easy to setup and equipped to perform a complete intervention. The slave system consists of two main parts: the instrument manipulators and their passive support system. Requirements are derived from manual eye surgery, conversations with medical specialists and analysis of the human anatomy and vitreo-retinal interventions. The passive support system provides a stiff connection between the instrument manipulator, patient and surgical table. Given the human anatomical diversity, presurgical adjustments can be made to allow the instrument manipulators to be positioned over each eye. Most of the support system is integrated within the patientโ€™s headrest. On either the left or right side, two exchangeable manipulator-support arms can be installed onto the support system, depending on the eye being operated upon. The compact, lightweight and easy to install design, allows for a short setup time and quick removal in case of a complication. The slave systemโ€™s surgical reach is optimized to emulate manually performed surgery. For bimanual instrument operation, two instrument manipulators are used. Additional instrument manipulators can be used for non-active tools e.g. an illumination probe or an endoscope. An instrument manipulator allows the same degrees of freedom and a similar reach as manually performed surgery. Instrument forces are measured to supply force feedback to the surgeon via haptic interfaces. The instrument manipulator is designed for high stiffness, is play free and has low friction to allow tissue manipulation with high accuracy. Each instrument manipulator is equipped with an on board instrument change system, by which instruments can be changed in a fast and secure way. A compact design near the instrument allows easy access to the surgical area, leaving room for the microscope and peripheral equipment. The acceptance of a surgical robot for eye surgery mostly relies on equipment safety and reliability. The design of the slave system features various safety measures, e.g. a quick release mechanism for the instrument manipulator and additional locks on the pre-surgical adjustment fixation clamp. Additional safety measures are proposed, like a hard cover over the instrument manipulator and redundant control loops in the controlling FPGA. A method to fixate the patientโ€™s head to the headrest by use of a custom shaped polymer mask is proposed. Two instrument manipulators and their passive support system have been realized so far, and the first experimental results confirm the designed low actuation torque and high precision performance

    Design of the Control System of 2-DOF Parallel Manipulator Based on CoDeSys

    Get PDF
    The 2-DOF parallel manipulator takes a parallelogram construction which can make its workbench always remain stable. Now it is widely used in various industrial sites. In consideration of the construction features and the control demands of 2-DOF parallel manipulator, this paper mainly introduces the motion control scheme and man-machine interface design of the manipulator. Based on the motion control programming platform of CoDeSys, the motion control and simulation debugging of the 2-DOF parallel manipulator are realized

    ์•ˆ์ „ํ•œ ์žฌ๊ตฌ์„ฑ ๋กœ๋ด‡ ์‹œ์Šคํ…œ: ์„ค๊ณ„, ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ฐ ๋ฐ˜์‘ํ˜• ๊ฒฝ๋กœ๊ณ„ํš

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๋ฐ•์ข…์šฐ.The next generation of robots are being asked to work in close proximity to humans. At the same time, the robot should have the ability to change its topology to flexibly cope with various tasks. To satisfy these two requirements, we propose a novel modular reconfi gurable robot and accompanying software architecture, together with real-time motion planning algorithms to allow for safe operation in unstructured dynamic environments with humans. Two of the key innovations behind our modular manipulator design are a genderless connector and multi-dof modules. By making the modules connectable regardless of the input/output directions, a genderless connector increases the number of possible connections. The developed genderless connector can transmit as much load as necessary to an industrial robot. In designing two-dof modules, an offset between two joints is imposed to improve the overall integration and the safety of the modules. To cope with the complexity in modeling due to the genderless connector and multi-dof modules, a programming architecture for modular robots is proposed. The key feature of the proposed architecture is that it efficiently represents connections of multi-dof modules only with connections between modules, while existing architectures should explicitly represent all connections between links and joints. The data structure of the proposed architecture contains properties of tree-structured multi-dof modules with intra-module relations. Using the data structure and connection relations between modules, kinematic/dynamic parameters of connected modules can be obtained through forward recursion. For safe operation of modular robots, real-time robust collision avoidance algorithms for kinematic singularities are proposed. The main idea behind the algorithms is generating control inputs that increase the directional manipulability of the robot to the object direction by reducing directional safety measures. While existing directional safety measures show undesirable behaviors in the vicinity of the kinematic singularities, the proposed geometric safety measure generates stable control inputs in the entire joint space. By adding the preparatory input from the geometric safety measure to the repulsive input, a hierarchical collision avoidance algorithm that is robust to kinematic singularity is implemented. To mathematically guarantee the safety of the robot, another collision avoidance algorithm using the invariance control framework with velocity-dependent safety constraints is proposed. When the object approached the robot from a singular direction, the safety constraints are not satis ed in the initial state of the robot and the safety cannot be guaranteed using the invariance control. By proposing a control algorithm that quickly decreases the preparatory constraints below thresholds, the robot re-enters the constraint set and avoids collisions using the invariance control framework. The modularity and safety of the developed reconfi gurable robot is validated using a set of simulations and hardware experiments. The kinematic/dynamic model of the assembled robot is obtained in real-time and used to accurately control the robot. Due to the safe design of modules with o sets and the high-level safety functions with collision avoidance algorithms, the developed recon figurable robot has a broader safe workspace and wider ranger of safe operation speed than those of cooperative robots.๋‹ค์Œ ์„ธ๋Œ€์˜ ๋กœ๋ด‡์€ ์‚ฌ๋žŒ๊ณผ ๊ฐ€๊นŒ์ด์—์„œ ํ˜‘์—…ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ€์ ธ์•ผํ•œ๋‹ค. ๊ทธ์™€ ๋™์‹œ์—, ๋กœ๋ด‡์€ ๋‹ค์–‘ํ•˜๊ฒŒ ๋ณ€ํ•˜๋Š” ์ž‘์—…์— ๋Œ€ํ•ด ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ž์‹ ์˜ ๊ตฌ์กฐ๋ฅผ ๋ฐ”๊พธ๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ€์ ธ์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋‘ ๊ฐ€์ง€ ์š”๊ตฌ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒˆ๋กœ์šด ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡ ์‹œ์Šคํ…œ๊ณผ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์•„ํ‚คํ…์ณ๋ฅผ ์ œ์‹œํ•˜๊ณ , ์‚ฌ๋žŒ์ด ์กด์žฌํ•˜๋Š” ๋™์  ํ™˜๊ฒฝ์—์„œ ์•ˆ์ „ํ•œ ๋กœ๋ด‡์˜ ์šด์šฉ์„ ์œ„ํ•œ ์‹ค์‹œํ•œ ๊ฒฝ๋กœ ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐœ๋ฐœ๋œ ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡์˜ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ์ ์ธ ํ˜์‹ ์„ฑ์€ ๋ฌด์„ฑ๋ณ„ ์ปค๋„ฅํ„ฐ์™€ ๋‹ค์ž์œ ๋„ ๋ชจ๋“ˆ์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ์ž…๋ ฅ/์ถœ๋ ฅ ๋ฐฉํ–ฅ์— ์ƒ๊ด€ ์—†์ด ๋ชจ๋“ˆ์ด ์—ฐ๊ฒฐ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•จ์œผ๋กœ์จ, ๋ฌด์„ฑ๋ณ„ ์ปค๋„ฅํ„ฐ๋Š” ๊ฒฐํ•ฉ ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ์˜ ์ˆ˜๋ฅผ ๋Š˜๋ฆด ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ๋ฐœ๋œ ๋ฌด์„ฑ๋ณ„ ์ปค๋„ฅํ„ฐ๋Š” ์‚ฐ์—…์šฉ ๋กœ๋ด‡์—์„œ ์š”๊ตฌ๋˜๋Š” ์ถฉ๋ถ„ํ•œ ๋ถ€ํ•˜๋ฅผ ๊ฒฌ๋”œ ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. 2 ์ž์œ ๋„ ๋ชจ๋“ˆ์˜ ์„ค๊ณ„์—์„œ ๋‘ ์ถ• ์‚ฌ์ด์— ์˜คํ”„์…‹์„ ๊ฐ€์ง€๋„๋ก ํ•จ์œผ๋กœ์จ ์ „์ฒด์ ์ธ ์™„์„ฑ๋„ ๋ฐ ์•ˆ์ „๋„๋ฅผ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ๋ฌด์„ฑ๋ณ„ ์ปค๋„ฅํ„ฐ์™€ ๋‹ค์ž์œ ๋„ ๋ชจ๋“ˆ๋กœ ์ธํ•œ ๋ชจ๋ธ๋ง์˜ ๋ณต์žก์„ฑ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด, ์ผ๋ฐ˜์ ์ธ ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡์„ ์œ„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ์•„ํ‚คํ…์ณ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡์˜ ์—ฐ๊ฒฐ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฐฉ๋ฒ•์ด ๋ชจ๋“  ๋งํฌ์™€ ์กฐ์ธํŠธ ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ ๊ด€๊ณ„๋ฅผ ๋ณ„๋„๋กœ ๋‚˜ํƒ€๋‚ด์•ผํ•˜๋Š” ๊ฒƒ๊ณผ ๋‹ค๋ฅด๊ฒŒ, ์ œ์•ˆ๋œ ์•„ํ‚คํ…์ณ๋Š” ๋ชจ๋“ˆ๋“ค ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ๊ด€๊ณ„๋งŒ์„ ๋‚˜ํƒ€๋ƒ„์œผ๋กœ์จ ํšจ์œจ์ ์ธ ๋‹ค์ž์œ ๋„ ๋ชจ๋“ˆ์˜ ์—ฐ๊ฒฐ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ์ผ๋ฐ˜์ ์ธ ๋‹ค์ž์œ ๋„ ๋ชจ๋“ˆ์˜ ์„ฑ์งˆ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. ๋ชจ๋“ˆ๋“ค ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ๊ด€๊ณ„ ๋ฐ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•˜์—ฌ, ์ •ํ™•ํ•œ ๊ธฐ๊ตฌํ•™/๋™์—ญํ•™ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์–ป์–ด๋‚ด๋Š” ์ˆœ๋ฐฉํ–ฅ ์žฌ๊ท€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡์˜ ์•ˆ์ „ํ•œ ์šด์šฉ์„ ์œ„ํ•ด, ๊ธฐ๊ตฌํ•™์  ํŠน์ด์ ์— ๊ฐ•๊ฑดํ•œ ์‹ค์‹œ๊ฐ„ ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฐฉํ–ฅ์„ฑ ์•ˆ์ „๋„๋ฅผ ์ค„์ด๋Š” ๋ฐฉํ–ฅ์˜ ์ œ์–ด ์ž…๋ ฅ์„ ์ƒ์„ฑํ•˜์—ฌ ๋ฌผ์ฒด ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๋กœ๋ด‡ ๋ฐฉํ–ฅ์„ฑ ๋งค๋‹ˆํ“ฐ๋Ÿฌ๋นŒ๋ฆฌํ‹ฐ๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•ต์‹ฌ์ด๋‹ค. ๊ธฐ์กด์˜ ๋ฐฉํ–ฅ์„ฑ ์•ˆ์ „๋„๊ฐ€ ๊ธฐ๊ตฌํ•™์  ํŠน์ด์  ๊ทผ์ฒ˜์—์„œ ์›ํ•˜์ง€ ์•Š๋Š” ์„ฑ์งˆ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ๊ณผ๋Š” ๋ฐ˜๋Œ€๋กœ, ์ œ์•ˆํ•œ ๊ธฐํ•˜ํ•™์  ์•ˆ์ „๋„๋Š” ์ „์ฒด ์กฐ์ธํŠธ ๊ณต๊ฐ„์—์„œ ์•ˆ์ •์ ์ธ ์ œ์–ด ์ž…๋ ฅ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด ๊ธฐํ•˜ํ•™์  ์•ˆ์ „๋„๋ฅผ ์ด์šฉํ•˜์—ฌ, ๊ธฐ๊ตฌํ•™์  ํŠน์ด์ ์— ๊ฐ•๊ฑดํ•œ ๊ณ„์ธต์  ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ˆ˜ํ•™์ ์œผ๋กœ ๋กœ๋ด‡์˜ ์•ˆ์ „๋„๋ฅผ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด, ์ƒ๋Œ€์†๋„์— ์ข…์†์ ์ธ ์•ˆ์ „ ์ œ์•ฝ์กฐ๊ฑด์„ ๊ฐ€์ง€๋Š” ๋ถˆ๋ณ€ ์ œ์–ด ํ”„๋ ˆ์ž„์›Œํฌ์„ ์ด์šฉํ•˜์—ฌ ๋˜ ํ•˜๋‚˜์˜ ์ถฉ๋Œ ํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฌผ์ฒด๊ฐ€ ํŠน์ด์  ๋ฐฉํ–ฅ์œผ๋กœ๋ถ€ํ„ฐ ๋กœ๋ด‡์— ์ ‘๊ทผํ•  ๋•Œ, ๋กœ๋ด‡์˜ ์ดˆ๊ธฐ ์ƒํƒœ์—์„œ ์•ˆ์ „ ์ œ์•ฝ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๊ฒŒ ๋˜์–ด ๋ถˆ๋ณ€์ œ์–ด๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์—†๊ฒŒ ๋œ๋‹ค. ์ค€๋น„ ์ œ์•ฝ์กฐ๊ฑด์„ ๋น ๋ฅด๊ฒŒ ์ž„๊ณ„์  ์•„๋ž˜๋กœ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•จ์œผ๋กœ์จ, ๋กœ๋ด‡์€ ์ œ์•ฝ์กฐ๊ฑด ์ง‘ํ•ฉ์— ๋‹ค์‹œ ๋“ค์–ด๊ฐ€๊ณ  ๋ถˆ๋ณ€ ์ œ์–ด ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ถฉ๋Œ์„ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๊ฐœ๋ฐœ๋œ ์žฌ๊ตฌ์„ฑ ๋กœ๋ด‡์˜ ๋ชจ๋“ˆ๋ผ๋ฆฌํ‹ฐ์™€ ์•ˆ์ „๋„๋Š” ์ผ๋ จ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ํ•˜๋“œ์›จ์–ด ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์‹ค์‹œ๊ฐ„์œผ๋กœ ์กฐ๋ฆฝ๋œ ๋กœ๋ด‡์˜ ๊ธฐ๊ตฌํ•™/๋™์—ญํ•™ ๋ชจ๋ธ์„ ์–ป์–ด๋‚ด ์ •๋ฐ€ ์ œ์–ด์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์•ˆ์ „ํ•œ ๋ชจ๋“ˆ ๋””์ž์ธ๊ณผ ์ถฉ๋Œ ํšŒํ”ผ ๋“ฑ์˜ ๊ณ ์ฐจ์› ์•ˆ์ „ ๊ธฐ๋Šฅ์„ ํ†ตํ•˜์—ฌ, ๊ฐœ๋ฐœ๋œ ์žฌ๊ตฌ์„ฑ ๋กœ๋ด‡์€ ๊ธฐ์กด ํ˜‘๋™๋กœ๋ด‡๋ณด๋‹ค ๋„“์€ ์•ˆ์ „ํ•œ ์ž‘์—…๊ณต๊ฐ„๊ณผ ์ž‘์—…์†๋„๋ฅผ ๊ฐ€์ง„๋‹ค.1 Introduction 1 1.1 Modularity and Recon gurability 1 1.2 Safe Interaction 4 1.3 Contributions of This Thesis 9 1.3.1 A Recon gurable Modular Robot System with Bidirectional Modules 9 1.3.2 A Modular Robot Software Programming Architecture 10 1.3.3 Anticipatory Collision Avoidance Planning 11 1.4 Organization of This Thesis 14 2 Design and Prototyping of the ModMan 17 2.1 Genderless Connector 18 2.2 Modules for ModMan 21 2.2.1 Joint Modules 21 2.2.2 Link and Gripper Modules 25 2.3 Experiments 26 2.3.1 System Setup 26 2.3.2 Repeatability Comparison with Non-recon gurable Robot Manipulators 28 2.3.3 E ect of the O set in Two-dof Modules 30 2.4 Conclusion 32 3 A Programming Architecture for Modular Recon gurable Robots 33 3.1 Data Structure for Multi-dof Joint Modules 34 3.2 Automatic Kinematic Modeling 37 3.3 Automatic Dynamic Modeling 40 3.4 Flexibility in Manipulator 42 3.5 Experiments 45 3.5.1 System Setup 46 3.5.2 Recon gurability 46 3.5.3 Pick-and-Place with Vision Sensors 48 3.6 Conclusion 49 4 A Preparatory Safety Measure for Robust Collision Avoidance 51 4.1 Preliminaries on Manipulability and Safety 52 4.2 Analysis on Reected Mass 56 4.3 Manipulability Control on S+(1;m) 60 4.3.1 Geometry of the Group of Positive Semi-de nite Matrices 60 4.3.2 Rank-One Manipulability Control 63 4.4 Collision Avoidance with Preparatory Action 65 4.4.1 Repulsive and Preparatory Potential Functions 65 4.4.2 Hierarchical Control and Task Relaxation 67 4.5 Experiments 70 4.5.1 Manipulability Control 71 4.5.2 Collision Avoidance 75 4.6 Conclusion 82 5 Collision Avoidance with Velocity-Dependent Constraints 85 5.1 Input-Output Linearization 87 5.2 Invariance Control 89 5.3 Velocity-Dependent Constraints for Robot Safety 90 5.3.1 Velocity-Dependent Repulsive Constraints 90 5.3.2 Preparatory Constraints 92 5.3.3 Corrective Control for Dangerous Initial State 93 5.4 Experiment 95 5.5 Conclusion 98 6 Conclusion 101 6.1 Overview of This Thesis 101 6.2 Future Work 104 Appendix A Appendix 107 A.1 Preliminaries on Graph Theory 107 A.2 Lie-Theoretic Formulations of Robot Kinematics and Dynamics 108 A.3 Derivatives of Eigenvectors and Eigenvalues 110 A.4 Proof of Proposition Proposition 4.1 111 A.5 Proof of Triangle Inequality When p = 1 114 A.6 Detailed Conditions for a Danger Field 115 Bibliography 117 Abstract 127Docto

    Modelling, Control and Optimization of Modular Reconfigurable Robots

    Get PDF
    Modular reconfigurable robots are robotic systems offering new opportunities to rapidly create fit-to-task flexible automation lines. The recent trends of increasingly varying market needs in low-volume high-mix manufacturing demands for highly adaptable robotic systems like this. In this context, methods for quickly and automatically generating a modular robot model and controller should be developed. Moreover, modularity and reconfigurabilty open up new opportunities for on-demand robot morphology optimization for varying tasks. Therefore a method to optimize the robot design for a certain criterion should be provided in order to exploit the full potential of reconfigurable robots. In this thesis, a complete hard- and software architecture for a modular reconfigurable EtherCAT-based robot is presented. This novel approach allows to automatically reconstruct the topology of different robot structures, composed of a set of body modules, each of which represents an EtherCAT slave. This approach enables to obtain in an automatic way the kinematic and dynamic model of the robot and store it in URDF format as soon as the physical robot is assembled or reconfigured. The method also automatically reshapes a generic optimization-based controller to be instantly used after reconfiguration. Finally, a study and analysis on how to find the best suited reconfigurable robot morphology for a given task are presented, starting from a fixed set of joint and link modules. In particular, is shown how exploiting multi-arm robotic systems and modifying the relative and absolute positions of their bases, can expand the solution space for a given task. Results obtained in simulations for different tasks, are verified with real-world experiments using a in-house developed reconfigurable robot prototype

    Elderly Assist Robot

    Get PDF
    This project aimed to create a robot capable of assisting elderly people with tasks in their everyday lives. The project focused on the design, simulation, and the implementation of a mobile robotic base with an attached robotic arm. The project culminated in a prototype robot capable of performing basic chassis and arm control which can be used as a platform for future development

    Inertial Measurement Network Design and Prototyping for Intelligent Hydraulic Machines

    Get PDF
    Robotisation of heavy machinery requires extensive sensing of the working environment and the motion state of the machine in relation to its environment. Inertial measurements provide a cost effective way of acquiring the pose of the machine and its parts. There are multiple earlier inertial measurement device designs that have been used in the context of heavy machinery automation research. A new, more modular design was proposed and developed as part of this thesis. The new design leverages modern communication features and enables experimenting with different sensors with relatively low effort. A concept for the new device was first drawn up. After some critical components had been selected, the concept could be turned into an actual design. The design was refined and finalised, after which prototypes could be manufactured. When the functional prototypes proved the design to be working, they could be tested on a hydraulic manipulator, similar to the use case. The sensor network formed with the new devices proved to perform better than the previously used system. The modularity of the devices enables further hardware development and future improvements. They also provide a platform for developing more sophisticated software with additional features.Raskaiden tyรถkoneiden robotisointi vaatii sekรค laajamittaista ympรคristรถn aistimista, ettรค tyรถkoneen oman tai sisรคisen liiketilan aistimista ympรคristรถรถn nรคhden. Inertiamittaus on kustannustehokas tapa saada koneen ja sen osien asento mitatuksi. Useita erilaisia tyรถkoneiden automatisoinnin tutkimukseen tarkoitettuja inertiamittauslaitteita on kehitetty aiemmin. Uutta, modulaarisempaa laitetta ehdotettiin ja se kehitettiin osana tรคtรค diplomityรถtรค. Uusi laite hyรถdyntรครค moderneja tiedonsiirto-ominaisuuksia ja mahdollistaa erilaisten anturien kokeilemisen suhteellisen vรคhรคllรค vaivalla. Uudesta laitteesta luotiin ensin konsepti. Joidenkin kriittisten komponenttivalintojen jรคlkeen konsepti saatettiin muuttaa varsinaiseksi laitesuunnitelmaksi. Suunnitelman hiomisen ja viimeistelyn jรคlkeen voitiin valmistaa prototyypit. Kun toiminnalliset prototyypit osoittivat laitesuunnitelman toimivan, voitiin siirtyรค niiden koestamiseen hydraulipuomissa, joka vastaa kรคyttรถkohdetta. Uusien laitteiden muodostama anturiverkko osoittautui paremmin toimivaksi, kuin aiemmin kรคytรถssรค ollut jรคrjestelmรค. Laitteiden modulaarisuus mahdollistaa laitteiston jatkokehittรคmisen sekรค parannukset tulevaisuudessa. Ne tarjoavat myรถs alustan monimutkaisempien, lisรคtoiminnallisuuksia sisรคltรคvien ohjelmistojen kehittรคmiselle

    Teleoperating a mobile manipulator and a free-flying camera from a single haptic device

    Get PDF
    ยฉ 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe paper presents a novel teleoperation system that allows the simultaneous and continuous command of a ground mobile manipulator and a free flying camera, implemented using an UAV, from which the operator can monitor the task execution in real-time. The proposed decoupled position and orientation workspace mapping allows the teleoperation from a single haptic device with bounded workspace of a complex robot with unbounded workspace. When the operator is reaching the position and orientation boundaries of the haptic workspace, linear and angular velocity components are respectively added to the inputs of the mobile manipulator and the flying camera. A user study on a virtual environment has been conducted to evaluate the performance and the workload on the user before and after proper training. Analysis on the data shows that the system complexity is not an obstacle for an efficient performance. This is a first step towards the implementation of a teleoperation system with a real mobile manipulator and a low-cost quadrotor as the free-flying camera.Accepted versio

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Physical Interaction and Control of Robotic Systems Using Hardware-in-the-Loop Simulation

    Get PDF
    Robotic systems used in industries and other complex applications need huge investment, and testing of them under robust conditions are highly challenging. Controlling and testing of such systems can be done with ease with the support of hardware-in-the-loop (HIL) simulation technique and it saves lot of time and resources. The chapter deals on the various interaction methods of robotic systems with physical environments using tactile, force, and vision sensors. It also discusses about the usage of hardware-in-the-loop technique for testing of grasp and task control algorithms in the model of robotic systems. The chapter also elaborates on usage of hardware and software platforms for implementing the control algorithms for performing physical interaction. Finally, the chapter summarizes with the case study of HIL implementation of the control algorithms in Texas Instruments (TI) C2000 microcontroller, interacting with model of Kukaโ€™s youBot Mobile Manipulator. The mathematical model is developed using MATLAB software and the virtual animation setup of the robot is developed using the Virtual Robot Experimentation Platform (V-REP) robot simulator. By actuating the Kukaโ€™s youBot mobile manipulator in the V-REP tool, it is observed to produce a tracking accuracy of 92% for physical interaction and object handling tasks

    Concept Development and Testing of an Invessel Articulated Arm for Remote Handling in ASDEX Upgrade- IVAR

    Get PDF
    • โ€ฆ
    corecore