Physical Interaction and Control of Robotic Systems Using Hardware-in-the-Loop Simulation

Abstract

Robotic systems used in industries and other complex applications need huge investment, and testing of them under robust conditions are highly challenging. Controlling and testing of such systems can be done with ease with the support of hardware-in-the-loop (HIL) simulation technique and it saves lot of time and resources. The chapter deals on the various interaction methods of robotic systems with physical environments using tactile, force, and vision sensors. It also discusses about the usage of hardware-in-the-loop technique for testing of grasp and task control algorithms in the model of robotic systems. The chapter also elaborates on usage of hardware and software platforms for implementing the control algorithms for performing physical interaction. Finally, the chapter summarizes with the case study of HIL implementation of the control algorithms in Texas Instruments (TI) C2000 microcontroller, interacting with model of Kuka’s youBot Mobile Manipulator. The mathematical model is developed using MATLAB software and the virtual animation setup of the robot is developed using the Virtual Robot Experimentation Platform (V-REP) robot simulator. By actuating the Kuka’s youBot mobile manipulator in the V-REP tool, it is observed to produce a tracking accuracy of 92% for physical interaction and object handling tasks

    Similar works