49 research outputs found

    Evaluating MODIS dust-detection indices over the Arabian Peninsula

    Get PDF
    Sand and dust storm events (SDEs), which result from strong surface winds in arid and semi-arid areas, exhibiting loose dry soil surfaces are detrimental to human health, agricultural land, infrastructure, and transport. The accurate detection of near-surface dust is crucial for quantifying the spatial and temporal occurrence of SDEs globally. The Arabian Peninsula is an important source region for global dust due to the presence of extensive deserts. This paper evaluates the suitability of five different MODIS-based methods for detecting airborne dust over the Arabian Peninsula: (a) Normalized Difference Dust Index (NDDI); (b) Brightness Temperature Difference (BTD) (31–32); (c) BTD (20–31); (d) Middle East Dust Index (MEDI) and (e) Reflective Solar Band (RSB). We derive detection thresholds for each index by comparing observed values for ‘dust-present’ versus ‘dust-free’ conditions, taking into account various land cover settings and analyzing associated temporal trends. Our results suggest that the BTD (31–32) method and the RSB index are the most suitable indices for detecting dust storms over different land-cover types across the Arabian Peninsula. The NDDI and BTD (20–31) methods have limitations in identifying dust over multiple land-cover types. Furthermore, the MEDI has been found to be unsuitable for detecting dust in the study area across all land-cover types

    Spatial and temporal analysis of dust storms in Saudi Arabia and associated impacts, using Geographic Information Systems and remote sensing

    Get PDF
    Dust storm events occur in arid and semi-arid areas around the world. These result from strong surface winds and blow dust and sand from loose, dry soil surfaces into the atmosphere. Such events can have damaging effects on human health, environment, infrastructure and transport. In the first section of this PhD dissertation, focus on the suitability of the existing of five different MODIS-based methods for detecting airborne dust over the Arabian Peninsula are examined. These are the: (a) Normalized Difference Dust Index (NDDI); (b) Brightness Temperature Difference (BTD) (Band 31–32); (c) BTD (Band 20–31); (d) Middle East Dust Index (MEDI) and (e) Reflective Solar Band (RSB). This work also develops dust detection thresholds for each index by comparing observed values for ‘dust-present’ versus ‘dust-free’ conditions, taking into account various land cover settings and analysing associated temporal trends. The results suggest the most suitable indices for identifying dust storms over different land cover types across the Arabian Peninsula are BTD31–32 and the RSB index. Methods such as NDDI and BTD20 – 31 have limitations in detecting dust over multiple land-cover types. In addition, MEDI was found to be an unsuccessful index for detecting dust storms over all types of land cover in the study area. Furthermore, this thesis explores the spatial and temporal variations of dust storms by using monthly meteorological data from 27 observation stations across Saudi Arabia during the period (2000–2016), considering the associations between dust storm frequency and temperature, precipitation and wind variables. In terms of the frequency of dust in Saudi Arabia, the results show significant spatial, seasonal and inter-annual. In the eastern part of the study area, for example, dust storm events have increased over time, especially in Al-Ahsa. There are evident relationships (p < 0.005) between dust storm occurrence and wind speed, wind direction and precipitation. This thesis also describes the impact of dust on health, and specifically on respiratory admissions to King Fahad Medical City (KFMC) for the period (February 2015 – January 2016).This study uses dust data from the World Meteorological Or-ganization (WMO) for comparing and analysing the daily weather conditions and hospital admissions. The findings indicate that the total number of emergency respiratory admissions during dust events was higher than background levels by 36% per day on average. Numbers of admissions during ‘widespread dust’ events were 19.62% per day higher than during periods of ‘blowing dust’ activity. The average number of hospital admissions for lower respiratory tract infections (LRTI) was 11.62 per day during widespread dust events and 10.36 per day during blowing dust. The average number of hospital admissions for upper respiratory tract infections (URTI) was 10.25 per day during widespread dust events and 7.87 per day during blowing dust ones. I found clear seasonal variability with a peak in the number of emergency admissions during the months of February to April. Furthermore, qualitative evidence suggests that there is a significant impact on hospital operations due to the increase in patients and pressure on staffing and hospital consumables in this period. Taken together, these findings suggest the (BTD 31–32) and (RSB) are the most suitable indices of the five different MODIS-based methods for detecting airborne dust over the Arabian Peninsula and over different land cover. There are important spatial and temporal pattern variations, as well as seasonal and inter-annual variability, in the occurrence of dust storms in Saudi Arabia. There is also a seasonal pat-tern to the number of hospital admissions during dust events. This is research in-tended to fill the knowledge gap in the dust detection filed. Here I address the knowledge gap by evaluating the identified dust methods over the whole Arabian Peninsula and by considering different land cover. To my knowledge, this is the first study analysed the temporal trends in indices values considering dust and dust-free conditions. Previous work has only focused on 13 stations for analysing dust storms over Saudi Arabia. Therefore, this study has analysed the seasonal and inter-annual and spatial variation by using data from 27 observations in Saudi Arabia. This study addresses the relationship between dust storm frequency and the three meteorological factors (i.e. temperature, precipitation and wind variables) which have not yet been clarified in previous studies. In addition, this research fills the gap in the literature by investigating the correlation between different types of dust events such as (wide-spread dust and blowing dust) and their effects on the hospital admissions for upper and lower respiratory tract issues for pediatric in Riyadh city

    Quantifying the Impact of Dust Sources on Urban Physical Growth and Vegetation Status: A Case Study of Saudi Arabia

    Get PDF
    Recently, dust has created many problems, including negative effects on health, and environmental and economic costs, for people who live both near to and far from sources of dust. The aim of this study is to evaluate and quantify the impact of dust sources located inside Saudi Arabia on the physical growth and vegetation status of cities. In order to do so, satellite data sets, simulated surface data, and soil data for Saudi Arabia from 2000 to 2021 were used. In the first step, a dust sources map of the study area was generated using multi-criteria decision analysis. Land surface temperature (LST), vegetation cover, soil moisture, precipitation, air humidity, wind speed, and soil erodibility factors were considered as effective criteria in identifying dust sources. In the second step, built-up land and vegetation status maps of major cities located at different distances from dust sources were generated for different years based on spectral indicators. Then, the spatiaotemporal change of built-up land and vegetation status of the study area and major cities were extracted. Finally, impacts of major dust sources on urban physical growth and vegetation were quantified. The importance degrees of soil erodibility, wind speed, soil moisture, vegetation cover, LST, air humidity, and precipitation to identify dust sources were 0.22, 0.20, 0.16, 0.15, 0.14, 0.07, and 0.05, respectively. Thirteen major dust sources (with at least 8 years of repetition) were identified in the study area based on the overlap of the effective criteria. The identified major dust sources had about 300 days with Aerosol Optical Depth (AOD) values greater than 0.85, which indicates that these dust sources are active. The location of the nine major dust sources identified in this study corresponds to the location of the dust sources identified in previous studies. The physical growth rates of cities located 400 km from a major dust source (DMDS) are 46.2% and 95.4%, respectively. The reduction rates of average annual normalized difference vegetation index (NDVI) in these sub-regions are 0.006 and 0.002, respectively. The reduction rate of the intensity of vegetation cover in the sub-region close to dust sources is three times higher than that of the sub-region farther from dust sources. The coefficients of determination (R2) between the DMDS and urban growth rate and the NDVI change rate are 0.52 and 0.73, respectively, which indicates that dust sources have a significant impact on the physical growth of cities and their vegetation status.Institutional Fund ProjectsPeer Reviewe

    On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Get PDF
    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challengespublishersversionPeer reviewe

    On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Full text link
    [EN] Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small-and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air-and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.The present work has been funded by the COST Action CA16219 "HARMONIOUS-Harmonization of UAS techniques for agricultural and natural ecosystems monitoring". B. Toth acknowledges financial support by the Hungarian National Research, Development and Innovation Office (NRDI) under grant KH124765. J. Millerovd was supported by projects GA17-13998S and RVO67985939. Isabel and Jodo de Lima were supported by project HIRT (PTDC/ECM-HID/4259/2014-POCI-0145-FEDER016668).Manfreda, S.; Mccabe, MF.; Miller, PE.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.... (2018). On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sensing. 10(4):1-28. https://doi.org/10.3390/rs10040641S12810

    SafeSpace MFNet: Precise and Efficient MultiFeature Drone Detection Network

    Full text link
    The increasing prevalence of unmanned aerial vehicles (UAVs), commonly known as drones, has generated a demand for reliable detection systems. The inappropriate use of drones presents potential security and privacy hazards, particularly concerning sensitive facilities. To overcome those obstacles, we proposed the concept of MultiFeatureNet (MFNet), a solution that enhances feature representation by capturing the most concentrated feature maps. Additionally, we present MultiFeatureNet-Feature Attention (MFNet-FA), a technique that adaptively weights different channels of the input feature maps. To meet the requirements of multi-scale detection, we presented the versions of MFNet and MFNet-FA, namely the small (S), medium (M), and large (L). The outcomes reveal notable performance enhancements. For optimal bird detection, MFNet-M (Ablation study 2) achieves an impressive precision of 99.8\%, while for UAV detection, MFNet-L (Ablation study 2) achieves a precision score of 97.2\%. Among the options, MFNet-FA-S (Ablation study 3) emerges as the most resource-efficient alternative, considering its small feature map size, computational demands (GFLOPs), and operational efficiency (in frame per second). This makes it particularly suitable for deployment on hardware with limited capabilities. Additionally, MFNet-FA-S (Ablation study 3) stands out for its swift real-time inference and multiple-object detection due to the incorporation of the FA module. The proposed MFNet-L with the focus module (Ablation study 2) demonstrates the most remarkable classification outcomes, boasting an average precision of 98.4\%, average recall of 96.6\%, average mean average precision (mAP) of 98.3\%, and average intersection over union (IoU) of 72.8\%. To encourage reproducible research, the dataset, and code for MFNet are freely available as an open-source project: github.com/ZeeshanKaleem/MultiFeatureNet.Comment: Paper accepted in IEEE TV

    SWAT model application to estimate runoff for ungauged arid catchments experiencing rapid urbanisation: Riyadh case study

    Get PDF
    The built-up area of Riyadh city increased from approximately 4.5 km² in 1950 to reach approximately 1,600 km² by 2022 spreading over vast areas of the Wadi Hanifah and Wadi As Silayy catchments. The rapid growth of the city has led to repeated urban flooding. There is an urgent need to study surface runoff and how it is affected by land-use/land-cover (LULC) change in the ungauged catchments of the city. This study addressed that knowledge gap and was the first attempt to calibrate, validate, and run a semi-distributed model to simulate runoff depths and discharge rates for Riyadh's main catchments and sub-basins using five historical and five future scenarios. The Soil Water Assessment Tool (SWAT) was used for the modelling. TerraClimate evapotranspiration (ET) data was used to calibrate the SWAT model owing to a dearth of observed runoff data across Riyadh city. The literature review revealed that the use of Terraclimate ET to calibrate SWAT models is still very limited so far. The only previous study found is Herman et al. (2020). Therefore, this study is fairly unique in that it uses Terraclimate ET to successfully calibrate and validate a SWAT model. A one-by-one sensitivity analysis was performed to evaluate the impact of changing parameter values on the runoff simulations. The results indicated that simulated runoff sensitivity to selected parameter values in the calibrated SWAT models was minimal in the study area, where the relationships between simulated annual runoff and max and min runoff resulted in a very strong R2 (0.9998). The calibrated and validated SWAT models were run monthly and daily to simulate runoff and to assess the impact of several LULC change scenarios on surface runoff for both historical and future periods. The results of SWAT models of the main catchments and sub-basins located within the built-up areas demonstrated the positive effect of Riyadh’s development on runoff and discharge values for historical LULC scenarios and LULC 2030 probabilities scenarios. But the increasing rates of simulated runoff were not the same for all sub-basins due to the different proportions of urbanisation in each sub-basin. On the contrary, simulation results showed that runoff depths and discharge rates in sub-basins outside the boundaries of the built-up areas of Riyadh did not have significant changes when using historical LULC scenarios or LULC 2030 probabilities scenarios. The increase in runoff depths and discharge rates in the sub-basins reflected the direct influence of the urbanisation process on surface runoff. The increase in simulated surface runoff and discharge can be attributed mainly to the potential decrease of relatively permeable barren lands and the increase of impervious urban surfaces. Limitations faced during the SWAT model development suggest further research should aim to get detailed and accurate runoff estimates in Riyadh city to sufficiently assist decision-makers and city officials to adopt runoff and flood hazard management schemes in the city

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems
    corecore