93,041 research outputs found

    Modern views of ancient metabolic networks

    Get PDF
    Metabolism is a molecular, cellular, ecological and planetary phenomenon, whose fundamental principles are likely at the heart of what makes living matter different from inanimate one. Systems biology approaches developed for the quantitative analysis of metabolism at multiple scales can help understand metabolism's ancient history. In this review, we highlight work that uses network-level approaches to shed light on key innovations in ancient life, including the emergence of proto-metabolic networks, collective autocatalysis and bioenergetics coupling. Recent experiments and computational analyses have revealed new aspects of this ancient history, paving the way for the use of large datasets to further improve our understanding of life's principles and abiogenesis.https://www.sciencedirect.com/science/article/pii/S2452310017302196Published versio

    Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems

    Get PDF
    Summary 1. Significant advances in both mathematical and molecular approaches in ecology offer unprecedented opportunities to describe and understand ecosystem functioning. Ecological networks describe interactions between species, the underlying structure of communities and the function and stability of ecosystems. They provide the ability to assess the robustness of complex ecological communities to species loss, as well as a novel way of guiding restoration. However, empirically quantifying the interactions between entire communities remains a significant challenge. 2. Concomitantly, advances in DNA sequencing technologies are resolving previously intractable questions in functional and taxonomic biodiversity and provide enormous potential to determine hitherto difficult to observe species interactions. Combining DNA metabarcoding approaches with ecological network analysis presents important new opportunities for understanding large-scale ecological and evolutionary processes, as well as providing powerful tools for building ecosystems that are resilient to environmental change. 3. We propose a novel ‘nested tagging’ metabarcoding approach for the rapid construction of large, phylogenetically structured species-interaction networks. Taking tree–insect–parasitoid ecological networks as an illustration, we show how measures of network robustness, constructed using DNA metabarcoding, can be used to determine the consequences of tree species loss within forests, and forest habitat loss within wider landscapes. By determining which species and habitats are important to network integrity, we propose new directions for forest management. 4. Merging metabarcoding with ecological network analysis provides a revolutionary opportunity to construct some of the largest, phylogenetically structured species-interaction networks to date, providing new ways to: (i) monitor biodiversity and ecosystem functioning; (ii) assess the robustness of interacting communities to species loss; and (iii) build ecosystems that are more resilient to environmental change

    Species delimitation and the population genetics of rare plants : a case study using the New Zealand native pygmy forget-me-not group (Myosotis; Boraginaceae) : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Biology at Massey University, Manawatƫ, New Zealand

    Get PDF
    Myosotis L., the forget-me-nots, is a genus of about 100 species distributed in the Northern and Southern Hemispheres. There are two centres of diversity, Eurasia and New Zealand. The New Zealand species are a priority for taxonomic revision, as they comprise many threatened species and taxonomically indeterminate entities. This thesis includes a taxonomic revision of the native New Zealand Myosotis pygmaea subgroup, followed by an exploration of the genetic effects of rarity, and implications for conservation management. Species delimitation follows the general lineage model, in which multiple lines of evidence are analysed to identify evolutionary lineages. The morphological data collected from herbarium specimens and live plants grown in a common garden were used to delineate the M. pygmaea group and identify several groups within it that nearly matched the current taxonomy. High levels of plasticity were also uncovered. Microsatellite loci were developed as polymorphic markers for the M. pygmaea group for species delimitation and conservation genetics. Over 500 individuals were genotyped, mostly focusing on the M. pygmaea group but including several outgroup species for comparison. Several genetic clusters were identified showing morphological or geographic patterns. Considering both the genetic and morphological data, as well as novel ecological niche modelling, there is evidence for three main lineages within the M. pygmaea group which are formally recognised as M. antarctica, M. brevis and M. glauca. M. antarctica is further subdivided into two subspecies based on allopatry and morphology, namely subsp. antarctica and subsp. traillii (formerly M. drucei + M. antarctica and M. pygmaea, respectively). Using this new taxonomic framework to explore genetic variation relative to rarity shows very little difference among species. This is most likely due to the confounding effect of high levels of self-fertilization and low dispersal, which means that the majority of genetic variation within these species is partitioned between, rather than within populations. The implication for conservation is that each population is equally important in terms of their contribution to the genetic diversity of each species. This thesis represents a major increase in our knowledge of the evolution, systematics, taxonomy, rarity and conservation of New Zealand native forget-me-nots

    Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes

    Get PDF
    The study of the interplay between speciation and hybridization is of primary importance in evolutionary biology. Octocorals are ecologically important species whose shallow phylogenetic relationships often remain to be studied. In the Mediterranean Sea, three congeneric octocorals can be observed in sympatry: Eunicella verrucosa, Eunicella cavolini and Eunicella singularis. They display morphological differences and E.singularis hosts photosynthetic Symbiodinium, contrary to the two other species. Two nuclear sequence markers were used to study speciation and gene flow between these species, through network analysis and Approximate Bayesian Computation (ABC). Shared sequences indicated the possibility of hybridization or incomplete lineage sorting. According to ABC, a scenario of gene flow through secondary contact was the best model to explain these results. At the intraspecific level, neither geographical nor ecological isolation corresponded to distinct genetic lineages in E.cavolini. These results are discussed in the light of the potential role of ecology and genetic incompatibilities in the persistence of species limits.French National Research Agency (ANR) program Adacni (ANR) [ANR-12-ADAP-0016]CNRSHubert Curien 'Tassili' program [12MDU853]CCMAR Strategic Plan from Fundacao para a Ciencia e a Tecnologia-FCT [PEst-C/MAR/LA0015/2011,FEDERinfo:eu-repo/semantics/publishedVersio

    Terminal restriction fragment length polymorphism is an “old school” reliable technique for swift microbial community screening in anaerobic digestion

    Get PDF
    The microbial community in anaerobic digestion has been analysed through microbial fingerprinting techniques, such as terminal restriction fragment length polymorphism (TRFLP), for decades. In the last decade, high-throughput 16S rRNA gene amplicon sequencing has replaced these techniques, but the time-consuming and complex nature of high-throughput techniques is a potential bottleneck for full-scale anaerobic digestion application, when monitoring community dynamics. Here, the bacterial and archaeal TRFLP profiles were compared with 16S rRNA gene amplicon profiles (Illumina platform) of 25 full-scale anaerobic digestion plants. The α-diversity analysis revealed a higher richness based on Illumina data, compared with the TRFLP data. This coincided with a clear difference in community organisation, Pareto distribution, and co-occurrence network statistics, i.e., betweenness centrality and normalised degree. The ÎČ-diversity analysis showed a similar clustering profile for the Illumina, bacterial TRFLP and archaeal TRFLP data, based on different distance measures and independent of phylogenetic identification, with pH and temperature as the two key operational parameters determining microbial community composition. The combined knowledge of temporal dynamics and projected clustering in the ÎČ-diversity profile, based on the TRFLP data, distinctly showed that TRFLP is a reliable technique for swift microbial community dynamics screening in full-scale anaerobic digestion plants

    Using network centrality measures to manage landscape connectivity

    Get PDF
    We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood, and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch and the other for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree-, and betweenness centrality are widely spread, while patches with high subgraph- and closeness centrality are clumped together in dense clusters. This finding may enable multi-species analyses of single-species network models
    • 

    corecore