950,800 research outputs found

    Molecular Dynamics Simulations

    Full text link
    A tutorial introduction to the technique of Molecular Dynamics (MD) is given, and some characteristic examples of applications are described. The purpose and scope of these simulations and the relation to other simulation methods is discussed, and the basic MD algorithms are described. The sampling of intensive variables (temperature T, pressure p) in runs carried out in the microcanonical (NVE) ensemble (N= particle number, V = volume, E = energy) is discussed, as well as the realization of other ensembles (e.g. the NVT ensemble). For a typical application example, molten SiO2, the estimation of various transport coefficients (self-diffusion constants, viscosity, thermal conductivity) is discussed. As an example of Non-Equilibrium Molecular Dynamics (NEMD), a study of a glass-forming polymer melt under shear is mentioned.Comment: 38 pages, 11 figures, to appear in J. Phys.: Condens. Matte

    Fermionic Molecular Dynamics

    Get PDF
    A quantum molecular model for fermions is investigated which works with antisymmetrized many-body states composed of localized single-particle wave packets. The application to the description of atomic nuclei and collisions between them shows that the model is capable to address a rich variety of observed phenomena. Among them are shell effects, cluster structure and intrinsic deformation in ground states of nuclei as well as fusion, incomplete fusion, dissipative binary collisions and multifragmentation in reactions depending on impact parameter and beam energy. Thermodynamic properties studied with long time simulations proof that the model obeys Fermi-Dirac statistics and time averaging is equivalent to ensemble averaging. A first order liquid-gas phase transition is observed at a boiling temperature of T5MeVT \approx 5 MeV for finite nuclei of mass 16...4016...40.Comment: 61 pages, several postscript figures, uses 'epsfig.sty'. Report to be published in Prog. Part. Nucl. Phys. 39. More information available at http://www.gsi.de/~schnack/fmd.htm

    Phase changes in 38 atom Lennard-Jones clusters. II: A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical

    Get PDF
    We study the 38-atom Lennard-Jones cluster with parallel tempering Monte Carlo methods in the microcanonical and molecular dynamics ensembles. A new Monte Carlo algorithm is presented that samples rigorously the molecular dynamics ensemble for a system at constant total energy, linear and angular momenta. By combining the parallel tempering technique with molecular dynamics methods, we develop a hybrid method to overcome quasi-ergodicity and to extract both equilibrium and dynamical properties from Monte Carlo and molecular dynamics simulations. Several thermodynamic, structural and dynamical properties are investigated for LJ38_{38}, including the caloric curve, the diffusion constant and the largest Lyapunov exponent. The importance of insuring ergodicity in molecular dynamics simulations is illustrated by comparing the results of ergodic simulations with earlier molecular dynamics simulations.Comment: Journal of Chemical Physics, accepte

    Langevin molecular dynamics derived from Ehrenfest dynamics

    Full text link
    Stochastic Langevin molecular dynamics for nuclei is derived from the Ehrenfest Hamiltonian system (also called quantum classical molecular dynamics) in a Kac-Zwanzig setting, with the initial data for the electrons stochastically perturbed from the ground state and the ratio, MM, of nuclei and electron mass tending to infinity. The Ehrenfest nuclei dynamics is approximated by the Langevin dynamics with accuracy o(M1/2)o(M^{-1/2}) on bounded time intervals and by o(1)o(1) on unbounded time intervals, which makes the small O(M1/2)\mathcal{O}(M^{-1/2}) friction and o(M1/2)o(M^{-1/2}) diffusion terms visible. The initial electron probability distribution is a Gibbs density at low temperture, derived by a stability and consistency argument: starting with any equilibrium measure of the Ehrenfest Hamiltonian system, the initial electron distribution is sampled from the equilibrium measure conditioned on the nuclei positions, which after long time leads to the nuclei positions in a Gibbs distribution (i.e. asymptotic stability); by consistency the original equilibrium measure is then a Gibbs measure.The diffusion and friction coefficients in the Langevin equation satisfy the Einstein's fluctuation-dissipation relation.Comment: 39 pages: modeling and analysis in separate sections. Formulation of initial data simplifie

    Ab-Initio Molecular Dynamics

    Full text link
    Computer simulation methods, such as Monte Carlo or Molecular Dynamics, are very powerful computational techniques that provide detailed and essentially exact information on classical many-body problems. With the advent of ab-initio molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method and the recently devised efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics, which unifies best of both schemes are discussed. The predictive power of this novel second-generation Car-Parrinello approach is demonstrated by a series of applications ranging from liquid metals, to semiconductors and water. This development allows for ab-initio molecular dynamics simulations on much larger length and time scales than previously thought feasible.Comment: 13 pages, 3 figure
    corecore