71 research outputs found

    Text Mining and Gene Expression Analysis Towards Combined Interpretation of High Throughput Data

    Get PDF
    Microarrays can capture gene expression activity for thousands of genes simultaneously and thus make it possible to analyze cell physiology and disease processes on molecular level. The interpretation of microarray gene expression experiments profits from knowledge on the analyzed genes and proteins and the biochemical networks in which they play a role. The trend is towards the development of data analysis methods that integrate diverse data types. Currently, the most comprehensive biomedical knowledge source is a large repository of free text articles. Text mining makes it possible to automatically extract and use information from texts. This thesis addresses two key aspects, biomedical text mining and gene expression data analysis, with the focus on providing high-quality methods and data that contribute to the development of integrated analysis approaches. The work is structured in three parts. Each part begins by providing the relevant background, and each chapter describes the developed methods as well as applications and results. Part I deals with biomedical text mining: Chapter 2 summarizes the relevant background of text mining; it describes text mining fundamentals, important text mining tasks, applications and particularities of text mining in the biomedical domain, and evaluation issues. In Chapter 3, a method for generating high-quality gene and protein name dictionaries is described. The analysis of the generated dictionaries revealed important properties of individual nomenclatures and the used databases (Fundel and Zimmer, 2006). The dictionaries are publicly available via a Wiki, a web service, and several client applications (Szugat et al., 2005). In Chapter 4, methods for the dictionary-based recognition of gene and protein names in texts and their mapping onto unique database identifiers are described. These methods make it possible to extract information from texts and to integrate text-derived information with data from other sources. Three named entity identification systems have been set up, two of them building upon the previously existing tool ProMiner (Hanisch et al., 2003). All of them have shown very good performance in the BioCreAtIvE challenges (Fundel et al., 2005a; Hanisch et al., 2005; Fundel and Zimmer, 2007). In Chapter 5, a new method for relation extraction (Fundel et al., 2007) is presented. It was applied on the largest collection of biomedical literature abstracts, and thus a comprehensive network of human gene and protein relations has been generated. A classification approach (Küffner et al., 2006) can be used to specify relation types further; e. g., as activating, direct physical, or gene regulatory relation. Part II deals with gene expression data analysis: Gene expression data needs to be processed so that differentially expressed genes can be identified. Gene expression data processing consists of several sequential steps. Two important steps are normalization, which aims at removing systematic variances between measurements, and quantification of differential expression by p-value and fold change determination. Numerous methods exist for these tasks. Chapter 6 describes the relevant background of gene expression data analysis; it presents the biological and technical principles of microarrays and gives an overview of the most relevant data processing steps. Finally, it provides a short introduction to osteoarthritis, which is in the focus of the analyzed gene expression data sets. In Chapter 7, quality criteria for the selection of normalization methods are described, and a method for the identification of differentially expressed genes is proposed, which is appropriate for data with large intensity variances between spots representing the same gene (Fundel et al., 2005b). Furthermore, a system is described that selects an appropriate combination of feature selection method and classifier, and thus identifies genes which lead to good classification results and show consistent behavior in different sample subgroups (Davis et al., 2006). The analysis of several gene expression data sets dealing with osteoarthritis is described in Chapter 8. This chapter contains the biomedical analysis of relevant disease processes and distinct disease stages (Aigner et al., 2006a), and a comparison of various microarray platforms and osteoarthritis models. Part III deals with integrated approaches and thus provides the connection between parts I and II: Chapter 9 gives an overview of different types of integrated data analysis approaches, with a focus on approaches that integrate gene expression data with manually compiled data, large-scale networks, or text mining. In Chapter 10, a method for the identification of genes which are consistently regulated and have a coherent literature background (Küffner et al., 2005) is described. This method indicates how gene and protein name identification and gene expression data can be integrated to return clusters which contain genes that are relevant for the respective experiment together with literature information that supports interpretation. Finally, in Chapter 11 ideas on how the described methods can contribute to current research and possible future directions are presented

    Discovering lesser known molecular players and mechanistic patterns in Alzheimer's disease using an integrative disease modelling approach

    Get PDF
    Convergence of exponentially advancing technologies is driving medical research with life changing discoveries. On the contrary, repeated failures of high-profile drugs to battle Alzheimer's disease (AD) has made it one of the least successful therapeutic area. This failure pattern has provoked researchers to grapple with their beliefs about Alzheimer's aetiology. Thus, growing realisation that Amyloid-β and tau are not 'the' but rather 'one of the' factors necessitates the reassessment of pre-existing data to add new perspectives. To enable a holistic view of the disease, integrative modelling approaches are emerging as a powerful technique. Combining data at different scales and modes could considerably increase the predictive power of the integrative model by filling biological knowledge gaps. However, the reliability of the derived hypotheses largely depends on the completeness, quality, consistency, and context-specificity of the data. Thus, there is a need for agile methods and approaches that efficiently interrogate and utilise existing public data. This thesis presents the development of novel approaches and methods that address intrinsic issues of data integration and analysis in AD research. It aims to prioritise lesser-known AD candidates using highly curated and precise knowledge derived from integrated data. Here much of the emphasis is put on quality, reliability, and context-specificity. This thesis work showcases the benefit of integrating well-curated and disease-specific heterogeneous data in a semantic web-based framework for mining actionable knowledge. Furthermore, it introduces to the challenges encountered while harvesting information from literature and transcriptomic resources. State-of-the-art text-mining methodology is developed to extract miRNAs and its regulatory role in diseases and genes from the biomedical literature. To enable meta-analysis of biologically related transcriptomic data, a highly-curated metadata database has been developed, which explicates annotations specific to human and animal models. Finally, to corroborate common mechanistic patterns — embedded with novel candidates — across large-scale AD transcriptomic data, a new approach to generate gene regulatory networks has been developed. The work presented here has demonstrated its capability in identifying testable mechanistic hypotheses containing previously unknown or emerging knowledge from public data in two major publicly funded projects for Alzheimer's, Parkinson's and Epilepsy diseases

    Mineração de informação biomédica a partir de literatura científica

    Get PDF
    Doutoramento conjunto MAP-iThe rapid evolution and proliferation of a world-wide computerized network, the Internet, resulted in an overwhelming and constantly growing amount of publicly available data and information, a fact that was also verified in biomedicine. However, the lack of structure of textual data inhibits its direct processing by computational solutions. Information extraction is the task of text mining that intends to automatically collect information from unstructured text data sources. The goal of the work described in this thesis was to build innovative solutions for biomedical information extraction from scientific literature, through the development of simple software artifacts for developers and biocurators, delivering more accurate, usable and faster results. We started by tackling named entity recognition - a crucial initial task - with the development of Gimli, a machine-learning-based solution that follows an incremental approach to optimize extracted linguistic characteristics for each concept type. Afterwards, Totum was built to harmonize concept names provided by heterogeneous systems, delivering a robust solution with improved performance results. Such approach takes advantage of heterogenous corpora to deliver cross-corpus harmonization that is not constrained to specific characteristics. Since previous solutions do not provide links to knowledge bases, Neji was built to streamline the development of complex and custom solutions for biomedical concept name recognition and normalization. This was achieved through a modular and flexible framework focused on speed and performance, integrating a large amount of processing modules optimized for the biomedical domain. To offer on-demand heterogenous biomedical concept identification, we developed BeCAS, a web application, service and widget. We also tackled relation mining by developing TrigNER, a machine-learning-based solution for biomedical event trigger recognition, which applies an automatic algorithm to obtain the best linguistic features and model parameters for each event type. Finally, in order to assist biocurators, Egas was developed to support rapid, interactive and real-time collaborative curation of biomedical documents, through manual and automatic in-line annotation of concepts and relations. Overall, the research work presented in this thesis contributed to a more accurate update of current biomedical knowledge bases, towards improved hypothesis generation and knowledge discovery.A rápida evolução e proliferação de uma rede mundial de computadores, a Internet, resultou num esmagador e constante crescimento na quantidade de dados e informação publicamente disponíveis, o que também se verificou na biomedicina. No entanto, a inexistência de estrutura em dados textuais inibe o seu processamento direto por parte de soluções informatizadas. Extração de informação é a tarefa de mineração de texto que pretende extrair automaticamente informação de fontes de dados de texto não estruturados. O objetivo do trabalho descrito nesta tese foi essencialmente focado em construir soluções inovadoras para extração de informação biomédica a partir da literatura científica, através do desenvolvimento de aplicações simples de usar por programadores e bio-curadores, capazes de fornecer resultados mais precisos, usáveis e de forma mais rápida. Começámos por abordar o reconhecimento de nomes de conceitos - uma tarefa inicial e fundamental - com o desenvolvimento de Gimli, uma solução baseada em inteligência artificial que aplica uma estratégia incremental para otimizar as características linguísticas extraídas do texto para cada tipo de conceito. Posteriormente, Totum foi implementado para harmonizar nomes de conceitos provenientes de sistemas heterogéneos, oferecendo uma solução mais robusta e com melhores resultados. Esta aproximação recorre a informação contida em corpora heterogéneos para disponibilizar uma solução não restrita às característica de um único corpus. Uma vez que as soluções anteriores não oferecem ligação dos nomes a bases de conhecimento, Neji foi construído para facilitar o desenvolvimento de soluções complexas e personalizadas para o reconhecimento de conceitos nomeados e respectiva normalização. Isto foi conseguido através de uma plataforma modular e flexível focada em rapidez e desempenho, integrando um vasto conjunto de módulos de processamento optimizados para o domínio biomédico. De forma a disponibilizar identificação de conceitos biomédicos em tempo real, BeCAS foi desenvolvido para oferecer um serviço, aplicação e widget Web. A extracção de relações entre conceitos também foi abordada através do desenvolvimento de TrigNER, uma solução baseada em inteligência artificial para o reconhecimento de palavras que desencadeiam a ocorrência de eventos biomédicos. Esta ferramenta aplica um algoritmo automático para encontrar as melhores características linguísticas e parâmetros para cada tipo de evento. Finalmente, de forma a auxiliar o trabalho de bio-curadores, Egas foi desenvolvido para suportar a anotação rápida, interactiva e colaborativa em tempo real de documentos biomédicos, através da anotação manual e automática de conceitos e relações de forma contextualizada. Resumindo, este trabalho contribuiu para a actualização mais precisa das actuais bases de conhecimento, auxiliando a formulação de hipóteses e a descoberta de novo conhecimento

    Development of a text mining approach to disease network discovery

    Get PDF
    Scientific literature is one of the major sources of knowledge for systems biology, in the form of papers, patents and other types of written reports. Text mining methods aim at automatically extracting relevant information from the literature. The hypothesis of this thesis was that biological systems could be elucidated by the development of text mining solutions that can automatically extract relevant information from documents. The first objective consisted in developing software components to recognize biomedical entities in text, which is the first step to generate a network about a biological system. To this end, a machine learning solution was developed, which can be trained for specific biological entities using an annotated dataset, obtaining high-quality results. Additionally, a rule-based solution was developed, which can be easily adapted to various types of entities. The second objective consisted in developing an automatic approach to link the recognized entities to a reference knowledge base. A solution based on the PageRank algorithm was developed in order to match the entities to the concepts that most contribute to the overall coherence. The third objective consisted in automatically extracting relations between entities, to generate knowledge graphs about biological systems. Due to the lack of annotated datasets available for this task, distant supervision was employed to train a relation classifier on a corpus of documents and a knowledge base. The applicability of this approach was demonstrated in two case studies: microRNAgene relations for cystic fibrosis, obtaining a network of 27 relations using the abstracts of 51 recently published papers; and cell-cytokine relations for tolerogenic cell therapies, obtaining a network of 647 relations from 3264 abstracts. Through a manual evaluation, the information contained in these networks was determined to be relevant. Additionally, a solution combining deep learning techniques with ontology information was developed, to take advantage of the domain knowledge provided by ontologies. This thesis contributed with several solutions that demonstrate the usefulness of text mining methods to systems biology by extracting domain-specific information from the literature. These solutions make it easier to integrate various areas of research, leading to a better understanding of biological systems

    Serviços de integração de dados para aplicações biomédicas

    Get PDF
    Doutoramento em Informática (MAP-i)In the last decades, the field of biomedical science has fostered unprecedented scientific advances. Research is stimulated by the constant evolution of information technology, delivering novel and diverse bioinformatics tools. Nevertheless, the proliferation of new and disconnected solutions has resulted in massive amounts of resources spread over heterogeneous and distributed platforms. Distinct data types and formats are generated and stored in miscellaneous repositories posing data interoperability challenges and delays in discoveries. Data sharing and integrated access to these resources are key features for successful knowledge extraction. In this context, this thesis makes contributions towards accelerating the semantic integration, linkage and reuse of biomedical resources. The first contribution addresses the connection of distributed and heterogeneous registries. The proposed methodology creates a holistic view over the different registries, supporting semantic data representation, integrated access and querying. The second contribution addresses the integration of heterogeneous information across scientific research, aiming to enable adequate data-sharing services. The third contribution presents a modular architecture to support the extraction and integration of textual information, enabling the full exploitation of curated data. The last contribution lies in providing a platform to accelerate the deployment of enhanced semantic information systems. All the proposed solutions were deployed and validated in the scope of rare diseases.Nas últimas décadas, o campo das ciências biomédicas proporcionou grandes avanços científicos estimulados pela constante evolução das tecnologias de informação. A criação de diversas ferramentas na área da bioinformática e a falta de integração entre novas soluções resultou em enormes quantidades de dados distribuídos por diferentes plataformas. Dados de diferentes tipos e formatos são gerados e armazenados em vários repositórios, o que origina problemas de interoperabilidade e atrasa a investigação. A partilha de informação e o acesso integrado a esses recursos são características fundamentais para a extração bem sucedida do conhecimento científico. Nesta medida, esta tese fornece contribuições para acelerar a integração, ligação e reutilização semântica de dados biomédicos. A primeira contribuição aborda a interconexão de registos distribuídos e heterogéneos. A metodologia proposta cria uma visão holística sobre os diferentes registos, suportando a representação semântica de dados e o acesso integrado. A segunda contribuição aborda a integração de diversos dados para investigações científicas, com o objetivo de suportar serviços interoperáveis para a partilha de informação. O terceiro contributo apresenta uma arquitetura modular que apoia a extração e integração de informações textuais, permitindo a exploração destes dados. A última contribuição consiste numa plataforma web para acelerar a criação de sistemas de informação semânticos. Todas as soluções propostas foram validadas no âmbito das doenças raras

    Event extraction from biomedical texts using trimmed dependency graphs

    Get PDF
    This thesis explores the automatic extraction of information from biomedical publications. Such techniques are urgently needed because the biosciences are publishing continually increasing numbers of texts. The focus of this work is on events. Information about events is currently manually curated from the literature by biocurators. Biocuration, however, is time-consuming and costly so automatic methods are needed for information extraction from the literature. This thesis is dedicated to modeling, implementing and evaluating an advanced event extraction approach based on the analysis of syntactic dependency graphs. This work presents the event extraction approach proposed and its implementation, the JReX (Jena Relation eXtraction) system. This system was used by the University of Jena (JULIE Lab) team in the "BioNLP 2009 Shared Task on Event Extraction" competition and was ranked second among 24 competing teams. Thereafter JReX was the highest scorer on the worldwide shared U-Compare event extraction server, outperforming the competing systems from the challenge. This success was made possible, among other things, by extensive research on event extraction solutions carried out during this thesis, e.g., exploring the effects of syntactic and semantic processing procedures on solving the event extraction task. The evaluations executed on standard and community-wide accepted competition data were complemented by real-life evaluation of large-scale biomedical database reconstruction. This work showed that considerable parts of manually curated databases can be automatically re-created with the help of the event extraction approach developed. Successful re-creation was possible for parts of RegulonDB, the world's largest database for E. coli. In summary, the event extraction approach justified, developed and implemented in this thesis meets the needs of a large community of human curators and thus helps in the acquisition of new knowledge in the biosciences

    Exploiting Latent Features of Text and Graphs

    Get PDF
    As the size and scope of online data continues to grow, new machine learning techniques become necessary to best capitalize on the wealth of available information. However, the models that help convert data into knowledge require nontrivial processes to make sense of large collections of text and massive online graphs. In both scenarios, modern machine learning pipelines produce embeddings --- semantically rich vectors of latent features --- to convert human constructs for machine understanding. In this dissertation we focus on information available within biomedical science, including human-written abstracts of scientific papers, as well as machine-generated graphs of biomedical entity relationships. We present the Moliere system, and our method for identifying new discoveries through the use of natural language processing and graph mining algorithms. We propose heuristically-based ranking criteria to augment Moliere, and leverage this ranking to identify a new gene-treatment target for HIV-associated Neurodegenerative Disorders. We additionally focus on the latent features of graphs, and propose a new bipartite graph embedding technique. Using our graph embedding, we advance the state-of-the-art in hypergraph partitioning quality. Having newfound intuition of graph embeddings, we present Agatha, a deep-learning approach to hypothesis generation. This system learns a data-driven ranking criteria derived from the embeddings of our large proposed biomedical semantic graph. To produce human-readable results, we additionally propose CBAG, a technique for conditional biomedical abstract generation
    corecore