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Abstract

The  main  archive  of  life  sciences  literature  currently  contains  more  than 

18,000,000 references, and it is virtually impossible for any human to stay up-

to-date with this large number of papers, even in a specific sub-domain.

Not  every  fact  that  is  reported in  the  literature  is  novel  and distinct. 

Scientists report repeat experiments, or refer to previous findings. Given the 

large number of publications, it is not surprising that information on certain 

topics  is  repeated  over  a  number  of  publications.  From  consensus  to 

contradiction, there are all shades of agreement between the claimed facts in 

the literature, and considering the volume of the corpus, conflicting findings 

are not unlikely. Finding such claims is particularly interesting for scientists, as 

they  can  present  opportunities  for  knowledge  consolidation  and  future 

investigations.

In this thesis we present a method to extract and contextualise statements 

about molecular events as expressed in the biomedical literature, and to find 

those  that  potentially  conflict  each  other.  The  approach uses  a  system that 

detects event negations and speculation, and combines those with contextual 

features  (e.g.  type  of  event,  species,  and  anatomical  location)  to  build  a 

representational model for establishing relations between different biological 

events, including relations concerning conflicts. In the detection of negations 

and  speculations,  rich  lexical,  syntactic,  and  semantic  features  have  been 

exploited, including the syntactic command relation.

Different parts of the proposed method have been evaluated in a context 

of the BioNLP 09 challenge. The average F-measures for event negation and 

speculation  detection  were  63%  (with  precision  of  88%)  and  48%  (with 

precision of 64%) respectively. An analysis of a set of 50 extracted event pairs 

identified  as  potentially  conflicting  revealed  that  32  of  them showed some 

degree  of  conflict  (64%);  10  event  pairs  (20%)  needed  a  more  complex 



14 Abstract

biological interpretation to decide whether there was a conflict.

We also provide an open source integrated text mining framework for 

extracting events and their context on a large-scale basis using a pipeline of 

tools that are available or have been developed as part of this research, along 

with  72,314  potentially  conflicting  molecular  event  pairs  that  have  been 

generated by mining the entire body of accessible biomedical literature.

We conclude that,  whilst  automated conflict mining would need more 

comprehensive  context  extraction,  it  is  feasible  to  provide  a  support 

environment  for  biologists  to  browse  potential  conflicting  statements  and 

facilitate data and knowledge consolidation.
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Chapter 1 

Introduction

Text is the most common form in which human knowledge is stored. It is the 

primary  means  of  communication  among  scientists,  where  knowledge  is 

mainly communicated via research papers published in scientific journals and 

is widely available electronically.

Text is unstructured data. It relies on the readers’ prior knowledge of the 

language and the specific subject to convey information by means of natural 

language. Text mining methods are designed in order to extract concise and 

structured information  from natural  language  documents.  Some text  mining 

systems also aim to infer information that is not explicitly stated in the text.

Biomedical scientists use a particularly large and growing body of textual 

knowledge  (Hunter et al.  2006).  The main archive of life sciences literature 

currently contains more than 18,000,000 references and approximately 2,000 

are added to this archive every day.1 It is virtually impossible for any human to 

stay up-to-date with this large number of papers, even in a specific sub-domain.

With such a large and growing body of literature, and with the advances 

of technologies to store and process this data, life scientists are increasingly 

using  automated  technologies  to  access  related  work  in  their  discipline.  In 

addition  to  advanced  search  engines  to  search  for  and  retrieve  relevant 

documents, scientists have started to rely on text mining tools and methods to 

extract information from this pool of textual data.

The task of extracting information from text is done both manually and 

automatically,  with  various  speeds  and  accuracies.  Professional  curators 

annotate  biomedical  papers  and  commit  the  reported  facts  into  knowledge 

repositories.  But  with  the  vast  amount  of  biomedical  research  recorded  in 

1 MEDLINE Fact Sheet, retrieved 30 September 2011 

http://www.nlm.nih.gov/pubs/factsheets/medline.html

http://www.nlm.nih.gov/pubs/factsheets/medline.html
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textual  form, and with its  rate  of  increase,  automatic  text  mining tools and 

methods have become increasingly interesting to researchers.

The goal of text mining is to retrieve and extract information from text, 

and present it  in a more concise and structured way to the user. Its domain 

stretches from lexical and syntactic analysis (parsing, part-of-speech tagging, 

named  entity  recognition,  etc.)  to  semantic  analysis  (extracting  roles  and 

relations). The extracted information is typically inserted into databases (e.g. 

the STRING database  (Szklarczyk et al. 2011)), or used as an input to other 

tools, or as support for manual curation.

Besides  the  enormous volume of  the  literature,  the  challenges of  text 

mining particular to the biomedical domain include the language used by the 

scientists. Biomedicine is a dynamic area of science, and the language used in 

biomedical  discourse  evolves  along  with  the  development  in  methods  and 

changes in experiments. Qualitative and quantitative descriptions, observations, 

and  measurements  are  not  always  accurate  in  biomedical  experiments,  and 

accordingly,  appropriate  language  is  developed to  reflect  this  characteristic. 

Claims are highly context-dependent, and therefore are described in long and 

speculative sentences.  Other  issues involve the  variation in  the terminology 

amongst  individuals  and  across  research  groups,  and  the  ambiguity  of  the 

language used by them (Ananiadou et al. 2005).

It is a well-known fact that there is a bias in the research that is shared 

with the scientific community through publication  (Easterbrook et al. 1991); 

(Butler 2009). There is a tendency on the side of the researchers, editors, and 

pharmaceutical companies to handle the reporting of experimental results that 

are positive (i.e. showing a significant finding) differently from results that are 

negative (i.e. supporting the null hyphothesis) or inconclusive, leading to bias 

in the overall published literature. It has been found that statistically significant 

results are three times more likely to be published than papers affirming a null 

result (Dickersin et al. 1987).

This  effect,  referred  to  as  “publication  bias”,  subsequently  leads  to 
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different linguistic styles to be used to report positive and negative results. It is 

expected for negated information to predominantly be reported in comparison 

or  in  contrast  with similar  affirmative  information.  In  other  words,  when a 

negated statement is reported, it is likely that its significance is in comparison 

with other conflicting claims, or otherwise similar but slightly different positive 

claims.

The sentence in  Example 1.1 is a clear example of several affirmative 

and  negative  reports  of  the  production  of  three  genes/proteins  in  different 

populations. It also demonstrates the information-richness and the complicated 

structure of some of these sentences, and the complexity of reasoning required 

to infer all the meaning expressed in them.

Example  1.1. “Although  21  out  of  503  (4%)  CD4+ T  cell  clones  

produced IL 4, but not IFN-gamma or IL 2, and 208 (41%) produced IL 

2 and/or IFN-gamma, but not IL 4, a total number of 185 (37%) CD4+ 

clones  showed  the  ability  to  produce  IL  4  plus  IL  2  and/or  IFN-

gamma.”

(From PMID 2969818)

Of course, not every fact that is reported in the literature is novel and 

distinct.  Scientists  report  repeat  experiments,  or  refer  to  previous  findings. 

Given the large number of publications, it is not surprising that information on 

certain topics is repeated over a number of publications. However, not all the 

mentions of a topic agree on every contextual detail.

From  consensus  to  contradiction,  there  are  all  shades  of  agreement 

between the claimed facts in the literature, and considering the volume of the 

corpus, contrasting findings are highly expected to appear. Finding conflicting 

claims is particularly interesting for scientists, as they can present opportunities 

for future investigations and consolidation of knowledge. A conflict can be due 

to different experimental conditions, may suggest a potential contradiction, or 
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may  indicate  erroneous  results.  In  any  case,  these  are  potential  sources  of 

hypotheses  and  further  findings  or  inconsistencies  in  the  entire  body  of 

biological knowledge.

To  demonstrate  how  a  person  searches  for  and  interprets  relevant 

information, consider this example: a scientists, interested in the interactions 

between the HIV and host proteins, starts by using PubMed search engine’s 

web interface to search for all the MEDLINE documents that have all of the 

terms  HIV-1,  human,  protein,  and  interactions.  At  the  time  of  writing this 

document, PubMed comes up with 3,049 articles after performing a document 

retrieval task. If she further wants to know what exact proteins of the HIV-1 

virus  interact  with  what  proteins  of  the  host  and  what  the  types  of  those 

interactions are, she would need to perform an information extraction task to 

extract the desired information. For instance, one of the documents retrieved by 

the above search is the document with the PubMed ID (PMID) 11336643. In 

the abstract of this paper she reads:

“a  disulphide-bridged  peptide  mimicking  the  clade  B  HIV-1  gp120 

consensus V3 domain (V3Cs) binds specifically to CCR5 (the major co-

receptor of R5 HIV strains) on these cells.”

From the above sentence,  she  can infer  the  fact  that  the  HIV protein 

gp120 binds with the human protein CCR5. Furthermore, she can also conclude 

that  the specific receptor in  action is  receptor 5,  with  R5 mentioned in the 

brackets and also as a part of the protein name.

She then finds alternative (and preferably commonly accepted) names for 

the two proteins from one of the available databases,  such as UniProt.  The 

standard name for the HIV-1 protein gp120 mentioned in the abstract found in 

the UniProt database is “Envelope surface glycoprotein gp120”. Similarly, the 

name for the human protein would be  “chemokine (C-C motif) receptor 5”. 

After extracting this information, she then can summarise and represent this 
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fact as Table 1.1.

Interaction 

type

Protein 1 (HIV protein) Protein 2 (human 

protein)

Binding Envelope surface 

glycoprotein gp120

(UniProt ID: P03375)

Chemtokine (C-C 

motif) receptor 5

(UniProt ID: P51681)

Table 1.1: The representation of an event.

Suppose  now  she  wants  to  find  whether  any  other  publications  also 

support  this  interaction.  However  in  the  abstract  of  the  article  with  PMID 

22024519, she reads:

“N7K significantly increases the distance between V3 position 7 and  

sulphotyrosine at CCR5 position 14 (crucial for binding to gp120; from 

4.22 Å to 8.30 Å), thus abrogating the interaction between these two 

important residues.”

So, there are  cases reported in which this  known interaction does not 

happen,  perhaps after  treatment  or exposure to  certain  biological  processes. 

This could be a starting point for our biologist to look into this interaction in 

more detail.  Any systematic  way of helping her would facilitate knowledge 

acquisition and consolidation as well as hypothesis generation.

This scenario simplifies how a biologist would analyse the literature and 

interpret the statements to understand their meanings. A number of activities 

are assumed when a human performs natural language perception. The purpose 

of information extraction is to “break” the task down into algorithmic steps so 

that it can be done automatically.

In  this  research,  we  are  interested  in  finding  conflicts,  contrasts  and 

potential  contradictions in biomedical statements presented in literature. We 

use chemical interactions between certain types of organic molecules as a basic 
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unit of such biomedical facts. We refer to these interactions as “events”.

As intermediate steps in finding potential conflicts, we need to initially 

extract  these  units  of  information  from  text.  We  also  need  to  extract 

information  about  whether  these  facts  have  been  reported  affirmatively  or 

negatively,  and  whether  they  have  been  reported  speculatively  or  with 

certainty.

We apply these methods on large-scale biomedical literature and explore 

how to extract contrasts and potential contradictions from such data.

1.1 Hypothesis and research question

We hypothesise  that  automatic  extraction of  contextualised molecular  event 

information from textual  data  using state-of-the-art  methods can be used to 

identify conflicting statements. In particular, we hypothesise that the addition 

of negation and speculation context to extracted event information on a large 

scale  can  find  conflicting  statements  including  contrasts  and  potential 

contradictions  in  textual  research  reports.  This  will  be  the  main  research 

question which this thesis aims to address.

1.2 Aim and objectives

The aim of this thesis is to investigate the way text mining can extract non-

trivial  and useful information from the biomedical literature  by focusing on 

detecting  the  conflicting  statements  and  facts.  These  phenomena  are 

investigated at the event level.

Two event statements are contrasting when they state opposite but not 

necessarily inconsistent claims.  They are  contradictory when they also state 

inconsistent claims. We hypothesise that in at least one of the two contrasting 

or  contradictory statements there  appears  a  form of  negation.  Therefore,  as 

intermediate steps, we aim to detect negations and speculations.

More specifically, the objectives of this research are the following.

1. Effectively identify biological events and relations among entities with 
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their context;

2. Design  and  implement  a  system  that  will  be  able  to  automatically 

recognise negated and speculated statements in text, specifically in the 

domain of molecular interactions;

3. Develop  a  representation  model  for  establishing  relations  between 

different  biological  events,  including  relations  concerning  conflicts. 

This involves semantically representing a biological event.

4. Design and implement a system that will detect conflicting statements 

from a database of extracted claims;

5. Evaluate the proposed methodology through a case study on biomedical 

events;

6. Apply the method on the entire publicly available biomedical literature;

7. Provide the tools and data to the biomedical and text mining research 

communities,  including  the  contextualised  events  and  the  conflicts 

between them.

The main focus of this research will be on standardised molecular and 

chemical events involving genes and proteins as examples of biological events. 

However, the proposed methodology aims to be generic and applicable to any 

biological fact.

1.3 Contributions

In  this  thesis,  we  designed  and  evaluated  rule-based  and  machine  learning 

techniques to extract events and their context from the literature using publicly 

available  annotated  data.  We structure  this  extracted data  using  a  semantic 

representation form for the event and its context which is an extension of a 

commonly used representational model. Finally, we propose techniques to find 

conflicting and contrasting facts in the data extracted from a large scale corpus 

of publicly available biomedical knowledge.

The research presented in this thesis has made the following contributions.
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• A representational model  for bio-molecular  events and their  context, 

appropriate for the detection of conflicting facts.

• A hybrid machine learning and rule-based method for molecular event 

extraction using dependency parse trees.

• A novel method to detect negations and speculations, using machine 

learning  and  computationally  calculated  X-command  features  along 

with other lexical, semantic, and syntactic features.

• A method to identify conflicting statements on molecular events from 

literature.

• An  open  source  integrated  text  mining  framework  for  large-scale 

identification of conflicting biomedical information.

• The large-scale  data  resulting from this  analysis  freely available  for 

further biological explorations.

Intermediate  results  from  this  research  have  been  presented  and 

published in the following conferences and journals.

• Farzaneh  Sarafraz,  James  Eales,  Reza  Mohammadi,  Jonathan 

Dickerson,  David Robertson and Goran Nenadic.  “Biomedical  Event  

Detection  using  Rules,  Conditional  Random  Fields  and  Parse  Tree  

Distances”. Paper presented at  the Proceedings of the BioNLP 2009 

Workshop  Companion  Volume  for  the  Shared  Task  in  Event 

Extraction, 2009.

• Farzaneh  Sarafraz  and  Goran  Nenadic.  “Using  SVMs  with  the 

Command Relation Features to Identify Negated Events in Biomedical  

Literature”. The  Workshop on  Negation  and Speculation  in  Natural 

Language Processing, 2010.

• Farzaneh  Sarafraz  and  Goran  Nenadić.  “Identification  of  Negated 

Regulation  Events  in  the  Literature:  Exploring  the  Feature  Space”. 

Fourth International Symposium on Semantic Mining in Biomedicine 
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(SMBM), 2010.

• Farzaneh  Sarafraz,  Martin  Gerner,  Casey  Bergman,  Goran  Nenadic. 

“BioContext:  integrated  text  mining  for  large-scale  information

extraction in biology” (submitted.)

• Daniel  Jamieson,  Martin  Gerner,  Farzaneh Sarafraz,  Goran  Nenadic, 

David  Robertson. “Towards  semi-automated  curation:  using  text  

mining  to  recreate  the  HIV-1-human  protein  interaction  database” 

(accepted.)

BioContext  was  a  joint  project  with  Martin  Gerner  (Faculty  of  Life 

Sciences, University of Manchester).

All tools and references are available at http://gnode1.mib.man.ac.uk/.

1.4 Thesis structure

The rest of this thesis is organised in six chapters.

Chapter 2  presents the background and previous research on the topics 

related to our research. It introduces definitions of the concepts explored in this 

thesis.  It  critically  evaluates  tools,  methodologies,  and  resources  that  were 

available at the time of this research.

Chapter  3  describes  the  research  method used  for  the  extraction  and 

contextualisation of molecular events. It starts by the definitions of concepts 

that are used in the research. Section  3.3 describes the method developed for 

the automatic extraction of biomedical events from the literature. Sections 3.4 

and 3.5 describe the methods developed to extract information about negation 

and speculation of these events.

Chapter 4   starts with the introduction of the evaluation approach and 

presents  the  results  from  molecular  event  extraction  and  contextualisation 

described in Chapter 3, along with evaluation and discussion.

Chapter  5  is  mainly  concerned  with  methods  and  the  framework 

developed  for  aggregate  analysis  of  contextualised  biomedical  events  on  a 

http://gnode1.mib.man.ac.uk/
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large  corpus.  Section  5.1 describes  the  technical  details  of  the  text  mining 

framework and the event extraction pipeline. Section 5.4 introduces a method 

for mining conflicting statements from the aggregate data.

Chapter 6 presents the results and the data of the large-scale text mining 

and aggregate analysis presented in Chapter 5 . It also evaluates the results and 

discusses the achievements and limitations of the research, exploring ways in 

which it can be improved and expanded in future.

Chapter 7  is the summary and conclusion of the thesis.



33

Chapter 2 

Background

The aims and objectives of this research, introduced in Section 1.2, suggest that 

a wider background needs to be introduced and explored in order to put these 

objectives into context. In this chapter we introduce the context in which the 

objectives of this thesis are to be addressed.

Challenges  that  are  of  particular  relevance  to  this  research  will  be 

introduced in Sections  2.4 and  2.5, namely the recognition and extraction of 

negations,  contradictions,  and  contrasts  in  general,  and  in  biomedical  text 

mining in particular.

Before that, we shall provide a brief summary of the main challenges in 

the  field  of  biomedical  text  mining,  and  evaluate  some  of  the  existing 

approaches. In Section  2.1 we introduce information extraction as a general 

problem,  with  an  emphasis  on  relation  detection.  Section  2.2 presents  an 

overview of the biomedical literature, the domain which is used as a case study 

for  finding  conflicting  statements.  Section  2.3 explores  the  challenges  in 

biomedical  text  mining  that  are  considered  to  be  prerequisites  for  mining 

conflicting statements in the biomedical literature. In this section we introduce 

pre-processing steps such as tokenisation and parsing,  and critically  discuss 

previous approaches to the problems of named entity recognition and relation 

extraction in the biomedical literature.

In  recent years increasingly more gold standard corpora have become 

available  to  researchers.  A  selection  of  these  resources  are  introduced  in 

Section 2.6.  They have been used in previous approaches, and will be used in 

this thesis as well.

Finally,  in  Section  2.7,  we  define  a  number  of  common  evaluation 

measures and methods that are used in biomedical text mining.
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2.1 Information extraction

Natural language, including written text, is unstructured. Although generating 

and understanding it is intuitive for humans, it is a complicated and non-trivial 

task to perform computationally. It contains an immense amount of ambiguity 

ranging from word sense  ambiguity  where  a  single  word can  have  several 

unrelated meanings,  to phrase structure and grammatical  ambiguity where a 

word or phrase can have different grammatical roles or sometimes the whole 

sentence  can  have  different  syntactic  parses,  resulting  in  the  sentence 

conveying two or more different meanings. On the other hand, a single concept 

can be expressed with different synonymous words or expressions, or using 

different  grammatical  structures.  This  is  the  opposite  of  ambiguity,  and  is 

referred to as variability.

Information extraction (IE) refers to the task of extracting facts from text 

written in a  natural  language about  one or more predefined fact  types,  and 

representing those facts in a predefined form  (Ananiadou et al.  2005).  This 

“predefined  form”  is  usually  a  template  which  is  to  be  filled  in  with  data 

extracted from text. These templates have the benefit of being more structured, 

and despite  losing some of  the context  and thoroughness of  the knowledge 

represented in unstructured text, can be used for aggregate processing once in a 

database. The results of IE are usually stored in a database for subsequent data 

mining, integrated into knowledge bases for reasoning, or presented to users.

For example, a template for weather reports can have slots for weather 

temperature,  humidity,  wind direction and speed,  pressure,  and weather  felt 

temperature.  Similarly,  a  template  for  interacting  proteins  could  have  the 

participating molecules, their roles, the type of the interaction, the anatomical 

location, and other properties of interest.

The manual information extraction task demonstrated in Table 1.1 is an 

example of how such a template is filled with data extracted from text to form 

the representation of a fact. 

In the following sections we discuss how different parts of this task can 
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be done computationally.

2.2 Biomedical literature

The United States National Library of Medicine2 (NLM) maintains a database 

of biomedical and life sciences scientific literature. The database is known as 

Medical  Literature  Analysis  and  Retrieval  System Online  (MEDLINE)  and 

currently  provides  more  than  18  million  references  from  more  than  5,500 

journals in medicine, nursing, pharmacy, dentistry, veterinary medicine, health 

care and other areas of life sciences and biomedicine. The articles are indexed 

with NLM’s controlled vocabulary,  the Medical  Subject Headings (MeSH)3 

which contains terms for a wide range of biomedical concepts, from molecular 

biology to organisms, health care, technologies, people, and more.

The MEDLINE archives go back to the 1940s and cover more journals 

every year. Although it is not the only archive of life sciences literature (see 

below) it is considered to be the main one and 2,000 new titles are added to it 

every day.

The amount of biomedical research information stored in MEDLINE is 

astonishing compared to  most  other  areas of  human knowledge.  Figure  2.1 

shows the number of new articles added to  the database in each year since 

1965. More than 600,000 new articles were added to the MEDLINE database 

in the year 2009 and more are added every year. Figure 2.2 shows the growth 

in the total number of archived abstracts in MEDLINE since 1980 until May 

2010.

2 http://www.nlm.nih.gov/

3 http://www.nlm.nih.gov/mesh/
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Note that these figures show the number of references that are in English 

and contain a title and an abstract. If one includes articles in other languages as 

well as those that are only referenced without an abstract and sometimes even a 

title, we will have even a larger corpus.

Figure 2.1: Number of additions to MEDLINE

This figure shows the number of additions to MEDLINE since 1980 (in thousands).  
The slight decrease in the rate of increase at the end of the graphs is due to the  
release dates being May every year and therefore only containing a subset of the  
final year’s publications.
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There are many tools and services running on the MEDLINE database to 

provide  easier  and  more  efficient  ways  to  access  a  database  of  this  size. 

PubMed is the search engine to access the database, and is a part of the Entrez 

information retrieval system; both are provided by the NLM at the National 

Institutes  of  Health  (NIH)4.  Entrez  Programming  Utilities  provide 

programmatic access to the data outside the web query interface of PubMed.

PubMed also provides various tools and services from term counters and 

entity mappers to alternative formats such as XML. It also makes scripting and 

pipelining  platforms  available  for  further  development.  MEDLINE is  open 

access and freely available to everyone.

A number  of  other  literature  repositories  are  maintained  that  provide 

different ways and levels of access to the literature. PubMed Central (PMC)5 is 

another  biomedical  and  life  sciences  literature  repository  developed  and 

maintained by the US National Center for Biotechnology Information (NCBI)6 

4 http://www.nih.gov/

5 http://www.ncbi.nlm.nih.gov/pmc/

6 http://www.ncbi.nlm.nih.gov/
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in the National Library of Medicine. PubMed Central provides free and open 

access to full text articles as opposed to MEDLINE that only provides access to 

abstracts  and references.  However,  the  number of articles that  are  provided 

through PubMed Central is more limited compared to that of MEDLINE.

PubMed Central currently hosts 2.2 million full text articles. Most (but 

not all) of these articles have their abstracts provided by MEDLINE. Although 

these articles are free to access and read by the researchers, they are not open 

for automated text mining, data mining or aggregate analysis. Only about 10% 

of the PMC documents (234,000 articles as in May 2011) are fully available 

and accessible for text mining research under a creative commons or similar 

license.  Figure  2.3 shows the number of articles in  the open access part  of 

PMC, based on the publication year.

2.3 Biomedical text mining

As  opposed  to  data  mining  which  extracts  patterns  in  large  structured 

databases, text mining looks to extract new information and patterns from the 

data presented as texts written in a natural language.
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Among the definitions proposed for the term Text Mining, the one by 

Marti Hearst (Hearst 2003) is commonly cited (Zweigenbaum et al. 2007) as a 

strict and conservative definition:

“Text  Mining  is  the  discovery  by  computer  of  new,  previously 

unknown  information,  by  automatically  extracting  information  from 

different written resources. A key element is the linking together of the 

extracted information [. . .] to form new facts or new hypotheses to be 

explored further by more conventional means of experimentation.”

Although broadly used,  this definition requires text mining systems to 

return knowledge that is not stated (or at least not explicitly stated) in text.

This excludes some valuable  efforts  such as information extraction or 

abbreviation  handling  from  the  domain  of  text  mining.  There  are  later 

definitions proposed that allow a broader interpretation of text mining than that 

of Hearst, allowing the systems to merely extract and link information from the 

text, or perform functions that are contributory to extracting information from 

the text. It is becoming increasingly common to use text mining as a facilitating 

tool to aid manual curation and increase its speed and accuracy (e.g. (Penagos 

et al. 2007) and (Jaeger et al. 2008)).

Text mining has a huge overlap with the more general domain of natural 

language  processing (NLP),  and is  closely related to  tasks  like  information 

retrieval and information extraction.

The one goal of text mining in biology that we discuss in this thesis is to 

extract facts from text. There are other activities in biological text mining that 

are  not  directly  relevant  to  our  subject  of  discussion  here,  such  as  text 

summarizing, question answering, etc.

Information extraction methods are initially aiming to extract explicitly 

stated facts from the text, and as they get more sophisticated, they are able to 

assist  in what is known as literature-based discovery,  as literature  can be a 
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potential source of new hypotheses.

In this section, we introduce the key problems in this area, and discuss 

the previous efforts and achievements.

2.3.1 General overview of text mining work-flow

Most  information  extraction  systems  roughly  follow the  general  work-flow 

depicted in Figure 2.4 wholly or partially. The relevant documents are selected 

from  a  large  pool  of  documents  in  an  initial  document  retrieval  stage. 

Subsequently, pre-processing is performed on text, which can include anything 

from extracting the raw text from other formats like PDF to sentence splitting 

and  tokenisation.  Depending  on  the  application,  further  processing  is 

performed, potentially using a combination of tools and resources, to extract 

the  required  information  in  a  structured  way  and  store  them in  databases, 

provide them to the users, or feed them as the input of other systems.

In the next sections we will introduce different stages of this work-flow, 

and discuss the  ones that  are  most  closely related to  this  research in  more 

depth.

Figure 2.4: General TM work-flow

A schematic view of the general text mining work-flow.
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Information retrieval

Information retrieval (IR) is the task of retrieving the documents that satisfy 

certain criteria from a big pool of documents. Search engines are examples of 

IR  tools,  and  it  is  difficult  to  imagine  research  without  the  use  of  search 

engines. Besides general-purpose search engines such as Google and Yahoo!, 

there are specific search engines designed to perform information retrieval on 

the biomedical data.

One example of such search engines is PubMed which primarily accesses 

the  MEDLINE  database  of  citations  and  abstracts  of  biomedical  research 

articles. PubMed is an example of a freely available information retrieval tool, 

specifically designed to retrieve biomedical documents from a large database. 

It provides features for specialised queries using MeSH Terms or publication 

type and year amongst others.

Another information retrieval engine is Entrez, which provides a search 

interface to  many databases and resources including MEDLINE, PMC, and 

biological  databases containing information about  genes,  proteins,  pathways 

and interacting molecules.

Information  retrieval  systems  play  a  key  role  in  the  text  mining 

architecture.  A  text  mining  task  typically  starts  with  retrieving  documents 

which are  of interest  to  the task and then applying other processes such as 

classification and information extraction. It is a very vibrant area of research 

and specialised search engines  are  becoming more  powerful  and intelligent 

every day. However, although PubMed and other information retrieval systems 

are useful for retrieving documents of interest and narrowing the search, they 

do not at this point provide services for identifying and analysing relationships 

among biological entities.

Despite the recent advances in biomedical information retrieval, it is not 

yet considered a “complete” task as more development is still being done in 

this area. In 2010, one of the tasks in the BioCreative III  challenge was to 

retrieve documents ranked in order of relevance to the query of a given gene. 
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The best performing team achieved the F-score of 61.42% in the ranking task 

((Krallinger  et  al.  2010) (for  a  detailed  definition  of  F-score  and  other 

evaluation measures see section 2.7.1.)

Sentence splitting

One of the first steps before analysing text is to identify the units of analysis, 

also  known  as  segmentation.  These  units  of  analysis  or  segments  can  be 

sentences, phrases, words, etc. It is common in information extraction tasks to 

treat sentences as units of analysis, as they are the smallest syntactically and 

semantically self-contained unit of language.

Splitting  the  text  into  sentences,  however,  can  introduce  challenges. 

Rule-based methods that split the text based on more sophisticated versions of 

rules such as “period, followed by space, followed by capital letter” are widely 

used,  but  there  are  always  exceptional  cases  for  which  such  rules  are  not 

inclusive or exclusive enough.

Tokenisation 

Tokenisation is the process of breaking text into linguistic or semantic units 

(called tokens) that constitute a useful piece of data for processing (Manning et 

al. 2008). The tokens can be words, symbols, or collocations. Tokenisation is a 

usual preprocessing step in many Natural Language Processing tasks.

Tokenisation is a computationally non-trivial task. Breaking the string on 

spaces does not always result in the desired output, as many semantic entities 

such as “New York” contain a space. Symbols can play several different roles 

in the English text, and can cause extra complications. An expression as simple 

as “aren’t” can be tokenised in a number of different ways, and it is not clear 

which one is the desired one (Manning et al. 2008). Hyphens are used with or 

without white spaces on either side and can indicate orthographical variation 

(e.g.  “co-operation”),  have  a  grammatical  function  (“security-checked 

baggage”), or many other functions.

In  the  biological  language  these  ambiguities  and  variabilities  become 
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more pronounced.  Many common biological  entity  names are  composed of 

several words separated by a combination of white spaces, hyphens, and other 

symbols.  Examples  include  “NF-kappa  B”  and  “TCR-alpha/beta”.  Slash  is 

sometimes used to indicate “or”. It can be used to indicate a chemical bond 

between two entities as in “TCR/CD3 ligation”. It can also be a part of an 

entity name as is the case in “ERK1/2”.

To  address  some  of  these  complexities,  tokenisation  based  on  the 

semantic  entities—rather  than  simply  splitting  on  white  spaces—have  been 

considered by researchers for some applications. For example, Rinaldi et al. 

(2002) perform term extraction before tokenisation, and consider each term as 

a single token, regardless of the number of words contained in the term. Each 

such “semantic token” is then assigned the syntactic properties of the head of 

the  term.  Subsequently,  the  sentences  are  automatically  parsed,  processing 

multi-word terms as individual tokens. The authors show that this tokenisation 

improves the parsing process by 50% by removing the ambiguities and the 

complexities caused by the production of numerous possible parses.

Lemmatisation 

Lemmatisation is the process of mapping different inflectional forms to their 

common  base  form.  For  example,  expression,  express,  expresses,  and 

expressed could all be mapped to the same base form express. The word that is 

being  lemmatised  may  not  have  any  morphological  similarity  with  its 

lemmatised form, for example be is regarded as the lemma of am, is, and are. 

Stemming is an approximate computational method to achieve the same goal 

as  lemmatisation,  by  truncating  the  end  of  the  word  using  some  rules. 

Examples of such algorithms are (Lovins 1968) and (Porter 1980).

Part-of-speech tagging

Part-of-speech (POS) tagging refers to the process of marking tokens in text 

with their lexical categories. The main lexical categories or “parts of speech” 

are shown in the following list, but most tasks require more refined categories 
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to also be tagged.

• Noun (N): any abstract or concrete entity 

• Pronoun (P): any substitute for a noun or noun phrase 

• Adjective (J): any qualifier of a noun 

• Verb (V): any action or state of being 

• Adverb (RB): any qualifier of an adjective, verb, or other adverb 

• Preposition (IN): any establisher of relation and syntactic context 

• Conjunction (C): any syntactic connector 

• Interjection (UH): any emotional greeting (or "exclamation")

The Penn Treebank Project7 uses a list of 36 categories (including the 

above) to mark up the sentences.

In the English language it is very common for words to have more than 

one possible lexical category. A word like “fiction” can only be a noun, but 

“secret” could be an adjective, a noun, or a verb, depending on the context. 

There are also ambiguous sentences which cannot be POS tagged in a unique 

way, and which can mean different things depending on the POS tagging.

Due to these complexities, automatic POS taggers take into account the 

dictionary definition of words, as well as the context in which they appear.

2.3.2 Named entity recognition and identification

One of the essential tasks in IE is to recognise the borders of what defines a 

named  entity  in  text.  This  is  called  “Named  Entity  Recognition”  (NER) 

(Béchet 2011). For example, NER involves recognising the boundaries of the 

two protein name mentions, “HIV-1 gp120” (or “gp120”) and “CCR5” in the 

scenario on page 26. As was observed earlier, this is not always a trivial task 

and  needs  complicated  knowledge  of  the  language  as  well  as  the  specific 

domain.

Another  more  specific  and  advanced  task  is  “Named  Entity 

7 http://www.cis.upenn.edu/~treebank/
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Identification”  (also  know  as  “Normalisation”)  in  which  not  only  the 

boundaries of named entities are recognised, but the entity is “identified” by 

being mapped into a unique entry in a database of biological entities. This has 

immediate practical benefits and has received much attention lately (Morgan et 

al. 2007); (Hakenberg et al. 2008); (Huang et al. 2011). 

In other words, the aim of NER is to identify the boundaries of a sub-

string  in  text  and  the  aim  of  normalisation  is  to  map  the  sub-string  to  a 

predefined category which in biomedical text mining is usually a biological 

concept. 

NER  is  a  challenging  task  in  general,  and  biomedical  NER  is  in 

particular  challenging  due  to  the  properties  of  the  biomedical  literature 

(Ananiadou et al. 2006). Despite the efforts to gather and maintain the world’s 

scientific knowledge in databases, no complete database is yet  available for 

most  types  of  biological  entities.  Different  research  groups  have  different 

disciplines in the way they share their findings, funders do not always require 

the insertion of findings into databases, and institutes value textual publications 

in  peer-reviewed  journals  more  than  submission  of  the  data.  Numerous 

initiatives such as NCBI have tried to create comprehensive databases, using 

centralised or collective efforts, and releasing of data is becoming increasingly 

important. However, complete databases of biomedical knowledge on which 

specialists have consensus are not yet available.

Even  with  the  existence  of  complete  databases  and  dictionaries,  a 

different challenge will be word sense ambiguity, i.e. where the same word or 

phrase refers to different entities.  For example,  “cat” can be the name of a 

species of mammals (with the NCBI Taxonomy ID 9685), a human gene (with 

the  NCBI  gene  ID  847),  a  protein  (with  the  NCBI  protein  accession  ID 

NP_001743), and a tomography method (Computerised Axial Tomography). 

On the other hand, most biological entities have several names among different 

communities, and even within the same community. The biological entities can 

have multi-word names, or names containing a combination of upper and lower 
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case  letters  and  non-alphabetical  characters  such  as  numbers,  hyphens  and 

brackets. This adds to the complexity of word boundary recognition, overlap of 

the terms, and disjoint terms where the different parts of a term are separated 

by another word. For more discussion see (Chen et al. 2005).

Term recognition

Term recognition refers to recognising lexical units from text that correspond 

to domain concepts (Ananiadou et al. 2006). Single or multiple adjacent words 

that  commonly  appear  together  and  convey  a  certain  concept,  e.g.  “health 

care”, can be regarded as terms. 

Identification  of  semantic  concepts  are  important  in  information 

extraction tasks,  as they often have a very specific meaning with colloquial 

usage.  They  can  be  constructed  from  multiple  adjacent  words  where  the 

meaning of the term is not directly correlated with the meaning of its parts. In 

some  cases,  they  may  not  appear  in  common  word  lists,  and  specialised 

dictionaries need to be used to recognise them.

Automatic  Term  Recognition  (ATR)  systems  utilise  a  number  of 

approaches  to  extract  and  identify  terms.  Dictionary-based,  rule-based,  and 

machine learning  approaches have commonly been used in ATR software. A 

specific example of term recognition is named entity recognition, discussed in 

section 2.3.2. 

Gene name recognition and normalisation

Many biomedical text mining systems include a module to recognise mentions 

of  biological  entities,  concepts,  and  terms  in  text  (Ananiadou  et  al.  2005). 

Examples  of  the  categories  include  genes,  gene  products,  proteins,  disease 

names,  drugs,  species,  and  so  on.  Depending  on  the  particular  task,  these 

entities may then be identified by being linked to an ontology or knowledge 

base. Specifically, due to the varied and complex ways of writing about genes, 

and with the great number of genes researched and written about, gene name 

recognition  and identification  has  been  of  great  interest  to  biomedical  text 



2.3 Biomedical text mining 47

mining.

Several methods have been developed to tackle the task of NER. Earlier 

attempts  were  rule-based,  but  as  more  annotated  corpora  became  available 

various machine learning methods were applied to the task of NER. Lexicon-

based  approaches  have  been  used  for  the  subtasks  where  more  complete 

ontologies and terminologies are available. Combinations of the above methods 

in hybrid systems are also common.

Gene  name  recognition,  gene  normalization,  and  species  name 

identification were among the most researched tasks in the first, second, and 

Tool Task Availability Performance

Binary Source (license)

ABNER Gene NER ✓  (CPL)✓ F = 0.72

BANNER Gene NER ✓ (CPL)✓ F = 0.85

LingPipe Gene NER ✓  (own)✓ F = 0.56

GeniaTagger Gene NER ✓  (own)✓ F = 0.73

BioAnnotator Gene NER ✗ ✗ P = 0.94  R = 0.87

Whatizit General purpose 

NEI

✗ ✗ Depends on the underlying 

service that is called.

Moara Gene NEI ✓ ✗ F = 0.77 / 0.89 (Normalisation)

GeneTUKit Gene NEI ✓ ✗ TAP-5 = 0.48

GNAT Gene NEI ✓ (BSD)✓ P = 0.54  R = 0.47 (cross 

species)

P = 0.82  R= 0.82 (known 

species)

Prominer Gene NEI ✗ ✗ F = 0.80

TaxonGrab Species NER ✓ (BSD)✓ P = 0.96 R = 0.94

LINNEAUS Species NEI ✓ (BSD)✓ P = 0.97  R = 0.94

Table 2.1: Existing entity NER tools

Summary  of  the  existing  NER  tools  relevant  to  this  research.  The  performance  

numbers are reported on different corpora, using different methods of evaluation.
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third BioCreative  challenges  in  2004,  2006,  and 2010  (Cohen et  al.  2005); 

(Morgan et al. 2008); (Lu et al. 2010). The challenges were successful to elicit 

high performing systems from research groups around the world to the point 

that the state of the art in the gene name recognition is now determined by the 

output of some of the participating systems.

Although  the  applications  developed  for  BioCreative  and  similar 

challenges are useful to determine the state of the art, almost all of them were 

developed for the specific task and not many of them were later available to the 

public. Table  2.1 summarises the existing NER and NEI systems relevant to 

this  research,  mainly  gene/protein  and species  recognisers.  Overall,  F-score 

levels in the regions of up to 85% can be expected from most gene NER tools. 

Expectedly, gene normalisation is a more challenging task. For an evaluation 

of the existing systems and a summary of achievements see (Lu et al. 2010).

2.3.3 Parsing and syntactic analysis

Parsing  is  the  process  of  breaking  down  a  sentence  into  its  constructing 

components (e.g. words, phrases, clauses, etc.) and determining the relations 

between these components to analyse its grammatical structure (Manning et al. 

1999). Parsing  is  a  form of  syntactic  analysis  which  helps  determine  how 

words or other parts of a sentence (e.g. phrases) relate to each other (Chapman 

1988).

Different forms of syntactic representational models have been around 

for many centuries. Ancient grammarians that are known today include Pā iniṇ  

who wrote the formal grammar of Sanskrit around the 4th century BCE, the 

Greek  grammarian  Dionysius  Thrax  (2nd century  BCE),  and  the  Latin 

grammarian  Priscian  (5th century  AD).  The  first  formal  theories  of  Arabic 

grammar  (around  the  10th century  AD)  were  based  on  concepts  similar  to 

today’s dependency grammar which will be discussed later in this section.

Sentences  in  natural  languages  often  have  syntactic  and  semantic 

ambiguities. For example, there are at least two possible ways to interpret the 
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sentence in Example 2.1.

Example 2.1. “The chicken is ready to eat.”

It can be very difficult or sometimes impossible to produce a unique and 

correct parse tree for a given sentence (Aho et al. 1972). However, in order to 

get closer to understanding natural language sentences, much effort has been 

done to parse sentences automatically.  Several tools have been developed to 

parse natural language sentences independently or as a part of challenges and 

shared  tasks.  We will  introduce  some  of  these  efforts  in  this  section,  and 

discuss only the tools we have used in the present research.

Shallow parsing

Shallow parsing is perhaps the simplest form of phrase structure analysis. It 

identifies the boundaries of major syntactic constituents such as noun phrases 

and  verb  phrases,  but  does  not  specify  their  internal  structure,  or  the 

relationships between these phrases in the main sentence.

GENIATagger  (Tsuruoka  et  al.  2005) is  a  part-of-speech  tagger  and 

shallow parser specifically developed for the biomedical domain. The results of 

testing various trained models show an accuracy in the regions of 90% on the 

biomedical domain.

Noun Phrase Verb 

Phrase

Prepositional 

Phrase

Noun 

Phrase

Prepositional 

Phrase

Noun Phrase

Several DNA-binding 

complexes

were 

detected

on RAREs in undifferentiated 

cells

Table 2.2: Example of shallow parsing

The shallow parse of the sentence “Several DNA-binding complexes were detected 

on RAREs in undifferentiated cells” produced by GENIATagger.

Table  2.2 shows an  example  sentence together  with its  shallow parse 
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which is produced by GeniaTagger.

Dependency parsing

Dependency grammars were formally mathematically described by  (Duchier 

1999).  Dependency  grammars  assume that  syntactic  structures  consist  of  a 

lexicon and a set of rules called dependencies that relate these lexicals (Nivre 

2009); (Duchier 2000).

Dependency parsing refers to parsing in the framework of dependency 

grammars. It determines the grammatical type of the different elements (e.g. 

words) and the structural relationship between them. Dependency grammar is 

concerned about  how words  relate  to  each  other,  specifically  how pairs  of 

words depend on one another. Examples of such relationships include subject, 

object, compliment, pre-adjunct, and post-adjunct.

For example, in the sentence “John loves Mary”, “John”  depends on 

“love”  and the type of dependency is SUBJECT. Also,  “Mary”  depends on 

“love” and the type of dependency is OBJECT. This makes “love” the head of 

the sentence, and the root of the dependency parse tree as can be seen in Figure 

2.5.

Figure 2.5: Simple example of dependency parsing

The dependency parse tree of the sentence “John loves Mary.”

Types of dependency relations that are of interest in dependency parsing 

include relations such as subject (nominal or clausal subject),  object (direct, 

indirect,  or object of preposition), complement, prepositional modifier, noun 

phrase modifier, punctuation, etc.

The graph representing the dependency parse of a given sentence is in the 

form  of  a  tree,  as  the  dependency  relations  do  not  form  a  cycle.  The 
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dependency distance between two words (or tokens) is defined as the tree 

distance between the nodes of the tree.

Figure  2.6 shows the dependency parses of a sentence from the article 

with PMID 8877104 from the GENIA corpus.

GDep is a dependency parser specifically developed for biomedical text. 

It combines previously researched probabilistic models with machine learning. 

It is trained on the GENIA corpus and reports an accuracy of 89% (Sagae et al. 

2007b).

 

Figure 2.6: Example of a dependency parse tree

The  dependency  parse  of  the  sentence  “Several  DNA-binding  complexes  were 

detected on RAREs in undifferentiated cells.” produced by GDep.

Constituency parsing

Constituency parsing is another form of syntactic analysis of natural language 

sentences  which  represents  the  phrasal  structure  of  the  sentence.  In  a 

constituency parse tree, like other forms of phrase structure parse trees, only 

terminal nodes (leaves) are words, and the internal nodes of the parse tree are 

phrasal nodes. Internal nodes indicate phrases such as verb phrases (VP) and 

noun phrases (NP).
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The constituency relation, like the dependency relation, is not cyclic. The 

graph  denoting  the  constituency  parse  of  a  given  sentence  is  a  tree,  and 

constituency  parse  tree  distance is  defined  similarly  to  the  dependency 

distance.

Constituency trees indicate word order relations along with dominance 

relations (i.e. which part dominates which), whereas the nodes in a dependency 

tree  can  be  unordered.  Unlike  a  constituency parse  tree, all  the  nodes  in  a 

dependency parse tree are words, some of which are terminal nodes.

Figure 2.7 shows the constituency parse tree of the same sentence as in 

the previous figure (Figure 2.6).

The types of constituents that are of interest include sentence (S), noun 

phrase  (NP),  verb  phrase  (VP),  adjectival  phrase  (JJ),  prepositional  phrase 

(PP), determiner phrase (DT), conjunctive phrase (CONJP), etc.

McClosky-Charniak parser (McClosky et al. 2010) is a statistical parser 

that  recognises  the  constituency  phrase  structure  of  English  sentences  and 

performs with an F-score of 67% on the GENIA biomedical corpus.

Bikel (Bikel 2004) is another statistical constituency parser that is based 

on the Collins’ parsing model  (Collins 1999) which assigns a probability to 

each possible parse tree based on some properties of the phrase heads.

Enju is a probabilistic syntactic parser that produces constituency parse 

trees from English sentences.  It  has been trained and tested on the GENIA 

biomedical corpus and reports an accuracy of 87% (Hara et al. 2005). 
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For a thorough evaluation and comparison of state-of-the-art parsers, see 

(Miyao et al. 2008).

The command relation

Not every phenomenon within a sentence can be reduced to simple dependency 

or constituency relations, as the former only concerns simple binary relations 

between two tokens, and the latter discusses the structure of the building blocks 

of  the  sentence.  Phenomena  such  as  negation  and  anaphora  often  affect 

different and sometimes disjoint parts of the sentence, and run beyond sentence 

boundaries. Therefore, more in-depth sentence analysis is required in order to 

understand such phenomena.

The question of which parts of a syntactic structure affect the other parts 

has  been  extensively  investigated.  Langacker  introduced  the  concept  of 

command relation to  determine the  scope  within  a  sentence affected by an 

element (Langacker 1969). Langacker originally defined the command relation 

as follows.

In  a  tree,  and  more  specifically  in  the  constituency  parse  tree  of  a 

sentence, we say that node a ‘commands’ another node b if

Figure 2.7: Example of a constituency parse tree

The constituency parse tree of the same sentence as in the previous figure (Figure  

2.6)  produced by McClosky parser:  “Several  DNA-binding complexes were detected 

on RAREs in undifferentiated cells.”



54 Chapter 2 Background

1. neither a not b dominates (i.e. is an ancestor of) the other; and

2. the  S-node  that  most  immediately  dominates  a also  dominates  b.  In 

other words, the lowest ancestor of a with label S is also an ancestor of 

b.

Here,  S refers  to  the  sentence  node,  and  also  to  any  internal  node 

indicating  an  independent  clause.  Note  that  the  command  relation  is  not 

symmetrical. Langacker observed that when  a S-commands  b, then a affects 

the scope containing b.

We will refer to this notion of the command relation as “S-command’, 

and define a more general “X-command” relation similarly for any parse tree 

tag  X. For simplicity, we say “command” when we mean  S-command. Some 

later uses of the command relation such as (McCawley 1993) have chosen to 

allow the nodes to dominate each other, and therefore ignore the condition 1 

above. According to  (Barker et al. 1990), none of these authors gave definite 

motivation or strong support for this exclusion. Langacker has also observed 

that, in the case of anaphoric relations, condition 1 automatically holds, and is 

therefore redundant.

Figure 2.8 shows the command relation in a given parse tree. In this tree, 

node a S-commands node b, since the lowest ancestor of a with label S is also 

an ancestor of b. However,  b does not S-command a, as it is placed in a sub-

tree with a head labelled S which does not contain a.
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Figure 2.9 shows the (partial) parse tree of Example 2.2.

Example  2.2. “We now show that a mutant motif that exchanges the  

terminal 3' C for a G fails to bind the p50 homodimer [...]”

(From PMID 9442380)

This sentence contains the word  fails  that  indicates the existence of a 

negation. However, the sentence expresses several concepts, not all of which 

are affected by the negation cue. The concepts expressed by verbs  show  and 

exchanges are expressed affirmatively, whereas bind is negated.

Figure 2.8: The command relation on a sample parse tree.

Node a S-commands node b whereas node b does not S-command node a.
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Figure  2.9 shows that  the  word  fails VP-commands  the  sub-tree  that 

contains bind, but not the other parts of the sentence.

Variations of the command relation have been proposed to explain and 

categorise various linguistic phenomena. For example, (Lasnik 1976) explores 

the connection between the command relation and anaphora by proposing a 

“kommand” relation which was rephrased by Barker et al. as the intersection of 

S-command and NP-command, and suggested that it could be relevant for the 

description of the constraints on anaphora.

Klima argued that  assuming that  negation only affects  the  constituent 

where the cue appears would not explain the function of negation which is 

more complex (Klima 1964). He then introduced a relation between two nodes 

in a constituency parse tree which he refers to as “in construction with”, and 

which others refer to as the command relation. Klima shows that the command 

relation  explains  the  structure  of  numerous  expressions  of  negation. 

Specifically, he speculates that the part of the sentence which is affected by the 

negation cue is that which is commanded by it.

Figure 2.9: The command relation on a sentence.

The schematic parse tree of the example sentence “We now show that a mutant motif  

that exchanges the terminal 3' C for a G fails to bind the p50 homodimer [...]”  The 

word “fails” VP-commands the interaction trigger “bind” but not the other parts of the 

sentence.
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These  definitions  and  discussions  have  so  far  only  been  proposed 

theoretically, with no statistical evaluation reported to our knowledge.

2.3.4 Relation Extraction

As introduced in Section  2.1, in information extraction, we are interested in 

extracting facts from text. These facts are usually relations among entities, and 

are extracted in the form of templates that need to be filled (as in Table 1.1). 

The entities are either already known or are recognised in the previous NER 

stages (see Section  2.3.2).  This is an area which has attracted recent research 

(Cohen et al. 2005).

Many  biomedical  facts  and  functions  can  be  formulated  as  relations 

between  entities.  Interactions  between  proteins  (also  known  as  biomedical 

“events”) can be represented as tuples containing the interacting proteins and 

the  interaction  type.  Medical  treatments  can  be  represented as  drug-disease 

pairs,  probably  with  more  context  added  regarding  dosage,  side  effects, 

duration of treatment, mode of application, etc.

Relations as basic units of scientific facts are widely accepted. Extracting 

them by means  of  automatic  mining  have  been  increasingly  important  and 

several community challenges have been organised to address this problem.

In recent biomedical relation extraction studies, most emphasis has been 

on the relations between genes and proteins (Cohen et al. 2005). It is believed 

that  detecting  common  function  in  a  set  of  genes  is  useful  in  identifying 

functionally interesting ones (Raychaudhuri et al. 2002). Therefore a lot of text 

mining  research  has  been  around  grouping  genes  with  similar  functions 

according to the textual clues in the sentences they appear. There has also been 

research around specific relationships between genes and proteins. 

In the following section we discuss one such challenge that is closely 

related to this research. Subsequently, we study the methodologies used across 

the literature for the task of relation extraction.
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Extraction of molecular events—a community challenge

In  2009,  the  Genia  group8 together  with  the  BioInfer  group9 and  the  U-

Compare  initiative10 organised  a  shared  task  whose  main  aim  was  the 

extraction  of  bio-events  from  the  literature,  focusing  particularly  on  bio-

molecular events involving proteins and genes. The BioNLP’09 Shared Task 

(Kim et  al.  2009) was designed to  address  a  semantically  rich information 

extraction problem as a whole, divided into three subtasks.11 Task 1 required 

biomedical events and their participants to be detected in text, task 2 involved 

recognition of location entities and assigning these entities to the events, and 

task  3  involved  further  characterising  the  events  as  being  negated  or 

speculated.

The tasks assumed that named entity recognition was already performed 

on the text and for the purposes of the challenge, manual gold annotations for 

gene and gene product entities were provided.

The  challenge  defined  an  event as  a  structured  collection  with  the 

following properties:

1. Every event has a type which is the biological type of the process e.g. 

regulation or  gene  expression. A  total  of  nine  event  types  were 

considered.

2. Every event has a textual trigger which is the part of the sentence that 

indicates the expression of an event.

3. Events have one or more participants:

(a) Every event has at  least  one  theme,  which is usually the protein 

8 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

9 http://mars.cs.utu.fi/BioInfer/

10 http://u-compare.org/

11 More than 40 teams from research groups around the world expressed initial 

interest in participating in the Challenge. Final submissions were received from 24 

teams who completed task 1, and six teams completed each of tasks 2 and 3. The 

results and methodologies were presented in the BioNLP workshop as part of the 

North American Chapter of the Association for Computational Linguistics - Human 

Language Technologies (NAACL HLT) 2009 conference.
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entity that is affected by the process.

(b) Some events may have a cause, which is usually the protein entity 

that causes the process.

(c) Themes  and/or  causes  can  sometimes  be  other  events,  forming 

nested events.

The  following  nine  event  types  were  considered:  gene  expression, 

transcription,  protein  catabolism,  localisation,  phosphorylation,  binding,  

regulation,  positive  regulation,  and negative  regulation.  Depending  on  the 

event type, the task included the identification of either one (for the first five 

event  types  mentioned  above)  or  more  (for  binding)  themes.  Information 

requested for regulatory events was more complex: in addition to one theme 

(an  entity  or another  event),  these  events could also  have  a  cause (another 

entity or event.)

Tables  2.3 and  2.4 show  two  example  sentences  from  the  BioNLP 

corpus. The example in Table  2.3 is a simple event (class I)  of type “gene 

expression” which has one entity theme (IL-2).

Event Trigger Type Theme Cause

Event 1 “induction” Gene expression IL-2 -

Table 2.3: Representation of an event from the BioNLP’09 corpus

An example sentence from the BioNLP’09 training data with a gene expression event  

annotated: “The effect of this synergism was perceptible at the level of induction of the  

IL-2 gene.”

Amongst the four events annotated in the example in Table 2.4, two have 

participants that are biomedical entities (events 1 and 2) and the other two have 

participants that are events (events 3 and 4). Note that a sentence can express 

more than one molecular event, and a string can be the trigger of more than one 

event. There is no limit on the length of the trigger, and events can span across 

sentences.
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Event Trigger Type Theme Cause

Event 1 “transcription” Transcription FasL -

Event 2 “Overexpression” Gene expression ALG-4 -

Event 3 “Overexpression” Positive 

regulation

Event 2 -

Event 4 “induced” Positive 

regulation

Event 1 Event 3

Table 2.4: Representation of four event in a sentence from the BioNLP’09 data.

An example sentence from the BioNLP’09 training data with four events annotated, 

some referencing others:“Overexpression of full-length ALG-4 induced transcription of  

FasL and, consequently, apoptosis.”

The composition of the data sets is presented in Tables 2.14 and 2.15 in 

Section 2.6.

We can further categorise different event types into three event classes. 

Simple or class I events are those that have exactly one theme, and this theme 

is  a  named entity  (protein).  Events  of  types  gene  expression,  transcription, 

protein catabolism, localisation, and phosphorylation belong to this class. Class 

II events are events that have one or more theme. The only type in this class is 

binding.  Finally,  class  III  events  are  complex  events  with  a  theme and an 

optional cause, which can be an entity or another event. This class includes 

regulatory events: regulation, positive regulation, and negative regulation.

Studying the  BioNLP’09 training data  showed that  95% of  annotated 

events are fully contained within one sentence (Björne et al. 2009). Moreover, 

92% of the event triggers are a single token, and the other 8% are adjacent 

tokens (Björne et al. 2009). A token or a group of adjacent tokens in a sentence 

can act as the trigger for several events, possibly even of different types. The 

words that act as triggers cannot be recognised by a simple dictionary look-up 

as there is a high level of word sense ambiguity. The same word or group of 

words can be the trigger of an event in some cases and not a trigger in others. 

They can also indicate events of different types across the corpus, so the type 
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of the event does not directly correlate with the trigger lexicon.

For example (Björne et al. 2009) observed that only 28% of instances of 

the word “activates” in the corpus are triggers for an event, and the instances 

of the word “overexpression” are evenly distributed between gene expression, 

positive regulation, and no trigger.

BioNLP’09  task  2,  which  concerns  assigning  location  entities  to 

localisation events, is not directly relevant to the subject of this thesis and will 

not be discussed here. Task 3 requires further classification of the extracted 

events in task 1, by determining whether an event is affirmative or negative, 

and whether it  has been stated certainly or speculatively. We will introduce 

these concepts in more detail in Section 2.4.

To demonstrate the requirements of task 3, consider the  sentence from 

an abstract shown in Example 2.3.

Example 2.3. “In this study we hypothesized that the phosphorylation  

of TRAF2 inhibits binding to the CD40 cytoplasmic domain.”

The proteins  TRAF2  and  CD40  are already manually annotated in text 

with their indices (57, 62) and (88, 92). Task 1 required event annotation, in 

which the following events will be extracted:

Event Trigger Type Theme(s) Cause

Event 1 “phosphorylation” Phosphorylation TRAF2 -

Event 2 “binding” Binding TRAF2 / CD40 -

Event 3 “inhibit” Negative 

regulation

Event 2 Event 1

Table 2.5: Events from an example sentence, before negation/speculation

Annotations for the events extracted from the sentence “In this study we hypothesized 

that the phosphorylation of TRAF2 inhibits binding to the CD40 cytoplasmic domain.”  

Negation and speculation detection task has not yet been performed.

Task 3 required the marking of Event 3 (see Table  2.5) as speculated 

since it has been expressed as a hypothesis by the authors, and is not a certain 



62 Chapter 2 Background

fact. The output of performing this task on the example sentence is shown in 

Table 2.6.

Event Trigger Type Theme(s) Cause Negation Speculation

Event 

1

“phosphorylation” Phosphorylation TRAF2 - 0 0

Event 

2

“binding” Binding TRAF2 / 

CD40

- 0 0

Event 

3

“inhibit” Negative 

regulation

Event 2 Event 1 0 1

Table 2.6: Events from an example sentence, after negation/speculation

Annotations for the events extracted from the sentence “In this study we hypothesized 

that the phosphorylation of TRAF2 inhibits binding to the CD40 cytoplasmic domain.”  

Negation and speculation detection task has not yet been performed. Event 3 has  

been annotated as speculative.

Co-occurrence and statistical methods

The simplest way to detect relations between biomedical entities is to collect 

documents or sentences in which they co-occur. Co-occurrence statistics can 

provide high recall but typically have poor precision  (Kilicoglu et al. 2009), 

and  are  now  used  more  as  a  simple  baseline  method  against  which  other 

methods are compared (Cohen et al. 2008).

Statistical methods aim at detecting relations by looking for structures, 

terms, and patterns that co-occur more frequently in the desired expressions 

than would be predicted by pure chance. Lindsay et al. describe an example of 

a predominantly statistical approach in (Lindsay et al. 1999).

Albert et al. focused on a semi-automatic method of retrieving protein-

protein interactions (Albert et al. 2003). Their method was to retrieve the co-

occurrence of two protein names and one interaction term in one sentence and 

then manually checking the abstracts containing one such “tri-occurrence”.
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Rule-based methods

To  increase  the  precision,  several  rule-based  approaches  such  as  the  one 

described  by  Yu  et  al  were  generated  by  the  domain  experts  which  most 

commonly use regular expressions (Yu et al. 2002).

Other  methods  such  as  that  of  Friedman  et  al.  rely  on  the  thorough 

analysis and parsing of the text in order to extract the information from each 

sentence  according  to  the  linguistic  semantics  of  the  text  (Friedman  et  al. 

2001). These methods generally result in better accuracy especially on smaller 

corpora, but are costly in terms of the time taken for hand-crafting rules and 

still can miss out exceptional cases expressed in less common ways.

Spasic  et  al  created  a  rule-based  system  which  uses  morphological, 

lexical,  syntactic,  and  semantic  features  to  extract  information  about  the 

medication used by a patient from a medical report  (Spasic et al. 2010). The 

desired information contained name, dosage, route, frequency, duration, and 

reason of the drug administered. They manually created patterns in which this 

information appears, and combined them with heuristic context-sensitive rules.

A number of attempts have been made to extract other relations between 

genes,  proteins,  and  other  biological  entities  using  rules.  Rinaldi  et  al. 

constructed an event extraction system, OntoGene, that uses manually created 

patterns based on the syntactic parse of sentences  (Rinaldi et al. 2006). They 

initially  detect  these  syntactic  patterns.  Subsequently,  they combine various 

patterns  into  a  single  semantic  rule  that  represents  different  syntactic 

phenomena  (e.g.  passive  voice,  nominalisation,  etc.)  Finally  they  combine 

these rules with terms and ontologies to extract events.12

An example of such a  rule  is “A triggers the H of  B”  where H is  a 

nominalised verb, such as activation, and A and B are reported as participants. 

Their systems was evaluated on the GENIA corpus using post hoc validation of 

the output and reported a precision of around 90% on selected events. Like 

other post-hoc evaluations, precise recall measures were not reported, but was 

12 The system can be accessed at http://www.ontogene.org/
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estimated in the range of 38%-50%.

Kilicoglu  et  al.  used  a  rule-based  methodology  for  the  BioNLP’09 

Shared  Task  on  event  extraction  (Kilicoglu  et  al.  2009). They  construct 

patterns from the known trigger words, and defined a selection threshold to 

handle ambiguity and term variability.

To associate participants to the triggers to form events, they statistically 

analysed  the  dependency  paths  between  the  event  triggers  and  their 

participants. They observed that the distribution of these paths obeyed Zipf’s 

law, with 70% of the paths occurring only once. They constructed a total of 27 

hand-crafted  rules  involving  the  dependency  paths  for  the  most  common 

trigger terms. For example, one such rule was the existence of the direct object 

(dobj) dependency between verbal event triggers and themes.

Not  all  the  rules  involved dependency  paths.  For  instance,  NPs  with 

hyphenated adjectival modifiers, such as “LPS-mediated TF expression” were 

reported as a regulatory event with the NP as the cause. 

Overall,  they  achieved  P/R/F-score  of  61%/33%/43%  in  the  event 

extraction task.

Machine learning

With the provision of annotated training data, machine learning has become an 

effective method in all areas of text mining, including biomedical information 

extraction.

Support  Vector Machine is a statistical  learning method that has been 

widely used for relation extraction in biomedical text mining (Burges 1998). 

SVMs  have  been  used  by  many  researchers  to  extract  protein 

interactions. Mitsumori et al. used bag of words features around protein names 

(Mitsumori et al. 2006). Yakushiji et al. defined patterns on predicate argument 

structures on the syntactic dependency parse tree of the sentence and used them 

as SVM features to extract relations between interacting proteins (Yakushiji et 

al. 2006). Many researchers, including  (Sanchez 2007),  (Culotta et al. 2004), 
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(Kilicoglu et al. 2009) and (Swaminathan et al. 2010) have used the properties 

of  the  dependency  paths  between  protein  names  and  other  indicators  of 

molecular interactions to extract information about them.

Sanchez (2007) trained a maximum entropy model to classify pairs of 

protein names as to whether they interact or not. They used features including 

the protein name word forms, the stems of the words between the two protein 

names and surrounding them in a window of size 5, whether or not the trigger 

falls between the two proteins, and if so, one or more.

(Culotta et al. 2004) used SVM to detect and classify relations between 

entities in text.  They define a kernel function that returns a similarity score 

between two trees. They only consider the smallest sub-tree in the dependency 

tree that includes both of the entities in question, and use their defined kernel to 

train a classifier to detect relations such as roles, parts, location, etc. from news 

articles, and show that dependency tree kernel improves the F-score by 20% 

compared to the usual features such as POS and entity types.

(Kilicoglu  et  al.  2009) extracted molecular  events  in  the  form of  the 

BioNLP’09 Shared Task, using SVMs with features including the vertex walks 

on the dependency paths between the event trigger and the participants. They 

included dependency types and word forms, but blinding the trigger term and 

protein names. They reported P/R/F-score of 33%/52%/41% on the BioNLP’09 

test data set.

An important characteristic of the approaches using SVM is their choice 

of features.  Word form, stem, part-of-speech tag,  dependency path tags and 

distances,  character  and  token  n-grams,  token  position  and  length,  and 

membership in lexical and semantic dictionaries are only some of the features 

commonly used in relation extraction tasks.

Naïve Bayes methods have been used by  (Donaldson et  al.  2003) for 

extracting protein-protein interactions. A maximum entropy method was used 

by (Xiao et al. 2005) as a supervised learning approach to extracting protein-

protein interactions.
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Conditional  Random  Fields  (Lafferty  et  al.  2001) are  probabilistic 

models  for  predicting  a  collection  of  class  labels  (usually  a  sequence) 

simultaneously.  Unlike  Hidden  Markov  Models  (HMM)  and  Maximum 

Entropy Markov Models (MEMM), CRFs do not require  the instances in  a 

sequence  to  be  independent.  HMMs  and  MEMMs  try  to  assign  a  label 

sequence  Y =( y1 , y2 ,...) to  an  observation  sequence  X =( x1 , x2 , ...) by 

maximising the conditional probability  P ( y i∣x i) as  i  ranges over the data 

sequence.  These  methods  require  the  assumption  that  the  instances  in  the 

sequence are  independent,  and could be  observed in  any order.  This is not 

usually a correct assumption in the problem of token labelling, as tokens in text 

are  inherently  sequential  and  dependent.  CRF  addresses  this  issue  by 

maximising the conditional  probability  P (Y∣X ) for the sequence.  It  does 

that by modelling state transitions when predicting the sequence of labels as 

well as the overall probability of states.

CRFs  have  been shown to  be particularly  suitable  for  sequential  data 

such as  natural  language,  since  they take  into  account  features  and tags  of 

neighbouring tokens when evaluating the probability of a tag for a given token. 

They have  been  used in  identifying molecular  events  by  (MacKinlay et  al. 

2009),  among other  researchers.  (Yang et  al.  2008) used CRFs to,  given  a 

sentence  discussing  transcription  factors  (a  protein  that  is  involved  in  the 

molecular  event  transcription),  identify  transcription  factors  that  will  affect 

other proteins. They used features involving the phrase types, a dictionary of 

known  transcription  context  lexicon,  protein  and  gene  names,  interaction 

words, and other biological terms.

The  best results in the BioNLP’09 event extraction task were from the 

University of Turku (Björne et al. 2009) who achieved an overall P/R/F-score 

of 58.5%/46.7%/51.9%. These results  were also the highest  for each of the 

three classes of events, namely simple events (single theme), binding events 

(multiple themes), and regulation events (recursive, possibly having a cause as 

well  as  a  theme.)  The  highest  recall/precision/F-score  for  class  I  were 
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64.2/77.4/70.2, for class II they were 40.1/49.8/44.4, and for class III they were 

35.6/45.9/40.1.

Towards the conclusion of our research in 2010, the University of Turku 

researchers  made  an  improved  implementation  of  their  system  publicly 

available as an open source code. 

The Turku Event Extraction System (TEES) method of detecting triggers 

is effectively a token labelling problem, similar to named entity recognition. 

Each token is assigned to one of the nine types, or a negative class for tokens 

that  are  not  triggers  of  any  event.  TEES uses  multi-class  SVMs to  detect 

triggers.  They  used  token  features  (e.g.  punctuation,  capitalisation,  stem, 

character  bigrams  and  trigrams)  for  tokens  in  a  window  of  radius  1  and 

frequency features (e.g. the number of named entities in the sentence and near 

the token). They also included dependency features including the dependency 

types and the sequence of dependency types up to a depth of three from the 

token in question.

Once  the  triggers  are  extracted,  TEES uses  a  graph-based  method to 

assign participants to triggers. They use another multi-class SVM to classify 

any  possibly  edge  between  a  named  entity  and  a  trigger  or  between  two 

triggers in the case of nested events as either  theme, cause,  or neither. The 

edges are labelled independently, and then later pruned using rules based on 

the task constraints.

EventMiner (Miwa et al. 2010) is another system that was developed to 

extract events in the BioNLP’09 representation. It uses machine learning and 

dependency tree features to profile events, following a similar work-flow as 

TEES. EventMiner differentiates between the triggers that affect proteins and 

those  that  affect  other  triggers,  and  use  two  separate  multi-class  SVM 

classifiers to classify words as triggers. For features, they use lexical features 

such as capitalisation, numeric characters and punctuations, and character n-

grams.  They also  use  dependency features  such  as  n-grams of  dependency 

paths, n-grams of POS and base forms, and lengths of paths.
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Similarly  to  the  TEES  system,  to  assign  triggers  to  participants, 

EventMiner  also  prunes  the  trigger-participant  edges  using  two  SVM 

classifiers: one to assign triggers to other triggers in nested events, and another 

to assign triggers to named entities. In addition to the TEES features, they also 

use the confidence of participant prediction. In nested events,  they also add 

shortest  dependency  path  features  between  the  participant  trigger  and  the 

respective entity participants.

They  use  separate  classifiers  for  each  of  event  classes  I,  II,  and  III, 

participation types (theme and cause), and participant types (protein or event). 

They report F-scores of 70%/65%/47% for the extraction of events of classes 

I/II/III  using the approximate recursive matching.  For more details of these 

evaluation measures see Section 2.7.1.

As  this  thesis  was  being  written,  The  Stanford  Natural  Language 

Processing Group released their software that extracts molecular events from 

biomedical text, redefining the problem to be comparable with the problem of 

constructing dependency parse trees from the sentence (McClosky et al. 2011). 

Similar to the previous approaches, they use a multi-class classifier (logistic 

regression) to  detect the event triggers,  using features including word form, 

lemma, membership in a set of known interaction words, surface context of 

window size 1 on either side, dependency paths down to depth 2, and entity 

count. Secondly, the participants are being assigned using a method similar to 

forming the parse  tree of a  sentence,  based on the  conversion of the  event 

representation to a tree representation with nodes representing the event trigger 

and its participants, and with edges labelled with participation type  (theme or 

cause).

They  report  P/R/F-score  of  59%/49%/53%  on  the  BioNLP’09 

development data, and 57%/43%/49% on the test data.

Other approaches

In  addition  to  the  above  examples  that  predominantly  use  one  method  or 
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another, many applications use a combination of more than one technique to 

achieve the best performance.

Chiang and Yu’s MeKE system (Chiang et al. 2003) is an ontology-based 

system  that  uses  semi-automatically  constructed  patterns  to  extract  the 

functions of gene products. Their rule-based method is combined with sentence 

classification (Naïve Bayes) to determine the type of the function.

2.4 Recognition and extraction of negation and speculation

When  we  extract  information  from  text,  an  important  piece  of 

information  is  whether  the  information  is  expressed  in  text  as  negated  or 

affirmative. It is also important whether the information is stated certainly or 

speculatively. Negation and speculation in information extraction can affect the 

quality and accuracy of the extracted information, and has been the focus of 

much research in recent years. For example the  Workshop on Negation and 

Speculation  in  Natural  Language  Processing  (NeSp-NLP  2010)  brought 

together  researchers  working  in  this  field,  many  of  whom  with  particular 

interest  in  biomedical  information  extraction  (Morante  et  al.  2010b).  Many 

ontologies  are  currently  expanded  to  include  information  about  negated 

relations  as  well  as  affirmative  or  ‘realistic’  relations  (e.g.  (Ceusters  et  al. 

2007) and (Fleischhacker 2011)).

Negated and speculated statements in text are not trivial to extract and 

analyse. Negations and speculations are expressed in many forms, including 

highly complicated and ambiguous forms. Even words like not that may seem 

to  always indicate  negation can appear  in  phrases that  express no semantic 

negations. For example, in the phrase “not only A, but also B” both concepts A 

and  B  are  mentioned  as  present,  and  therefore  no  negation  or  absence  is 

expressed despite the appearance of the word not which we will later see that is 

a strong negation cue (See Figure 3.16).

Multiple  negations  in  a  sentence  can  also  introduce  more  layers  of 

ambiguity. It  is not unusual even for humans to have difficulty parsing and 
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understanding the meaning of a sentence due to the use of negated patterns in 

it.13, 14

2.4.1 Negation and speculation terminology, concepts, and 

definitions

There have been numerous contemplations on the concepts of negation and 

speculation. Here we adopt a definition of negation as given by the Cambridge 

Encyclopedia  of  Language  Sciences:  “Negation  is  a  comparison  between  a 

‘real’ situation lacking some element and an ‘imaginal’ situation that does not 

lack it” (Lawler 2010). The imaginal situation is affirmative compared with the 

negative real  situation.  The element whose polarity differs between the two 

situations is the negation target.

Negations in natural language can be expressed by the use of negating 

words such as  no,  not, or  never, or by specific expressions (e.g.  absence of, 

failure, etc.) The word or phrase that makes the sentence wholly or partially 

negative is typically referred to as the negation cue and the part of the sentence 

that is affected by the negation cue and has become negative is the negation 

scope.

Example 2.4. “Tandem copies of this 67-bp MnlI-AluI fragment, when 

fused  to  the  chloramphenicol  acetyltransferase  gene  driven  by  the  

conalbumin  promoter,  stimulated  transcription  in  B cells  but  not  in  

Jurkat T cells or HeLa cells.”

(From PMID 1986254 annotated by BioScope corpus annotators.)

In Example 2.4, the word “not” indicates a negation, and therefore is the 

13 Liberman, M., Why are negations so easy to fail to miss?, Language Log, February 

24, 2004.

14 Consider, for example, the sentence “There has never been a time when there has 

been no person in Cornwall without a knowledge of the Cornish language.” from 

Henry Jenner, Handbook of the Cornish Language (1904).
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negation  cue.  The  part  of  the  sentence  that  is  underlined  is  the  scope  of 

negation.

Example 2.5.  “In vitro translated hGR was capable of selective DNA 

binding even in the absence   of glucocorticoid  .”

(From PMID 1944294 annotated by BioScope corpus annotators.)

In Example 2.5, the word “absence” is the negation cue, and the human 

annotators have considered it as a part of the negation scope as well.

Speculative statements, on the other hand, are not necessarily explicitly 

asserted in the text (Light et al. 2004). They are to some extent true (or false) 

but there is not a definitive confirmation about their status, which makes them 

more  or  less  uncertain.  Many  authors  also  consider  statements  that  show 

insufficient  knowledge,  or  express  speculative  questions  or  hypotheses  as 

speculation  (Medlock  et  al.  2007);  (Szarvas  et  al.  2008).  Like  negation, 

speculation is often indicated by a cue, which could similarly affect all or part 

of a sentence, i.e. the speculation scope.

Example 2.6. “This zinc-finger region, which is   thought   to bind DNA   

in  a  sequence-specific  manner,  is  similar  (greater  than 80% on the  

amino acid level) to two previously described transcription factors pAT 

225/EGR1 and pAT 591/EGR2.”

(From PMID 1946405 annotated by BioScope corpus annotators.)

In Example 2.6, the word “thought” is a speculation cue, and the part of 

the sentence that is underlined is the scope which is affected.

The  term  hedging,  also  referring  to  speculative  expressions,  was 

originally introduced by (Lakoff 1973).
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2.4.2 Tasks and views on negation and hedging

Identification  of  negations  and speculations  in  the  literature  has  been 

widely explored by information extraction researchers (Hakenberg et al. 2009); 

(Morante  et  al.  2009);  (Kilicoglu  et  al.  2009).  We  categorise  different 

approaches based on their syntactic and semantic properties. The identification 

of negations and speculations can include either detecting the cue phrase and 

its scope or detecting the specific target (i.e. word, phrase, term, concept, or 

relation)  under  negation/speculation.  Furthermore,  some  approaches  aim  at 

assigning  polarity/modality  (negation/speculation)  at  the  sentence  level.  We 

also differentiate between approaches aiming at detecting affected concepts and 

those addressing the detection of affected events. A table summarising different 

tasks and prominent research can be seen on page 82 (Table 2.8).

Sentence polarity detection.  Perhaps the simplest approach to negation and 

speculation detection is to detect the polarity and modality of a whole sentence, 

based, for example, on whether or not the sentence contains a speculative or 

negated fragment. Although the results of these sentence-level approaches are 

valuable in the coarse filtering of the relevant sentences, they seldom provide 

information  on  the  individual  events  reported in  the  sentence,  especially  if 

several events and other facts are reported within a single sentence.

Medlock et al. (2007), for example, used a machine learning method to 

classify a sentence into speculative or non-speculative categories using lexical 

features  automatically  extracted  from  the  training  data.  They  applied  this 

method on a set of full text biomedical documents and reported an F-score of 

76% (equal precision and recall).

Shatkay et al. (2008) introduced a system performing multi-dimensional 

classification on a corpus of randomly selected sentences from full text articles, 

labelling every sentence for negation and speculation as well  as three other 

qualitative contexts (focus, evidence, and trend). The classification was at the 

sentence-level and achieved an F-score of 71% on detecting speculation and an 
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F-score of 97% on detection negations. The authors have calculated the F-score 

values  based  on  multi-class  classification,  with  all  correctly  predicted 

affirmative instances (true negative predictions of the negation detection task) 

also contributing towards the F-score.

The Computational Natural Language Learning (CoNLL) shared task in 

2010  (Farkas  et  al.  2010) involved the  recognition  of  sentence  level 

uncertainty.  CoNLL  best  performing  system  for  sentence  classification  on 

biological text (Tang et al. 2010) achieved P/R/F1 of 85%, 88%, 86% using a 

sequence labelling approach. The best performing system on Wikipedia articles 

involving uncertainty used a bag-of-word sentence classification and achieved 

P/R/F1 of 72%, 52%, 60% (Georgescul 2010).

Detecting scopes and targets. A number of approaches have been suggested 

for  the  detection  of  negated  targets  and  scopes  (  (Chapman  et  al.  2001b); 

(Chapman et al. 2001a);  (Szarvas et al. 2008);  (Ballesteros et al. 2011)). The 

following manually annotated examples show some examples of what these 

methods aim to achieve.

Example 2.7.  “Cotransfection studies with this cDNA indicate that   it   

can   repress basal promoter activity.  ”

(From PMID 1946405 annotated by BioScope corpus annotators.)

Example 2.7 shows two speculation cues with their scopes. The double 

under line shows where the two scopes overlap. The  sentence of Example 2.8 

contains both a negation and a speculation cue. The double under line shows 

where the scopes of the two cues overlap.

Example 2.8.  “Similarities between the effects of dexamethasone and 

RU486 suggest   that the antiglucocorticoid properties of RU486 do   not 

occur at the level of specific DNA binding.”
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(From PMID 1944294 annotated by BioScope corpus annotators.)

Many of  these  approaches rely  on task-specific,  manually  constructed 

rules of various complexities. (e.g. (Chapman et al. 2001a)) to patterns that rely 

on  shallow  parsing  (e.g.  (Leroy  et  al.  2003)).  They  differ  in  the  size  and 

composition of the list of negation cues, and in how these lists are utilised. 

Rule-based  methods  range  from simple  co-occurrence  based  approaches  to 

more complex rules.

The  approach  which  identifies  proximate  co-occurrences  of  negation 

cues  and terms  in  the  same  sentence,  is  probably  the  simplest  method for 

finding  negations  and  provides  a  useful  baseline  method  for  comparison. 

NegEx  (Chapman  et  al.  2001a),  for  example,  uses  two  generic  regular 

expressions that are triggered by phrases containing negation cue and target 

term such as:

<negation cue> * <target term>

<target term> * <negation cue>

where the asterisk (*) represents a  string of up to  five tokens.  Target 

terms  represent  domain  concepts  (e.g.  terms  from  the  Unified  Medical 

Language System (UMLS)). Given that NegEx was primarily developed for 

the clinical domain, the cue set comprises 272 clinically-specific negation cues, 

including those such as  “denial of” or  “absence of”.  Although simple,  the 

proposed  approach  showed  good  results  on  clinical  data  (78%  sensitivity 

(recall), 84% precision, and 94% specificity). Tolentino et al. (2006) show that 

using rules on just a very small set of only five negation cues (no, neither/nor,  

ruled  out,  denies,  without)  can  still  be  reasonably  successful  in  detecting 

negations in medical reports (F-score 91%).

Similarly, Negfinder  (Mutalik et al. 2001) use hand-crafted rules and a 

list of 60 negation cues in order to detect negated UMLS terms. Their list of 

cues includes single-word cues such as no, without, negative and phrases such 

as  “no  evidence  of”,  “could  not  be  currently  identified”.  They use  simple 
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conjunctive and disjunctive phrases (e.g.  “and” and “or”) to identify lists of 

concepts that are negated by a single cue. Therefore, the task is broken down 

into  finding  the  scope  of  negation,  and  determining  whether  the  terms  in 

question are located in that scope. In order to achieve the scope of negation, 

Mutalik et al. use a method similar to parsing, but without parsing the complete 

structure  of  the  sentence  (Mutalik  et  al.  2001). They  select  “negation 

terminators” from the list of prepositions, conjunctions, personal pronouns, and 

relative  pronouns,  based  on  some rules.  Finally,  UMLS concepts,  negation 

cues, negation terminators, and sentence terminators are located and negated 

concepts are identified by determining whether these concepts fall within the 

scope terminated by a negation terminator.

Negfinder is tested on a corpus of medical narratives (radiology reports) 

and report specificity/sensitivity of 92%/96%.

In addition to concepts that are explicitly negated by negation phrases, 

Patrick et al.  (Patrick et al.  2007) further consider so-called pre-coordinated 

negative terms (i.e. concept that semantically indicate a negative situation, e.g. 

“headache”).  These  concepts  have  been  collected  from  the  SNOMED  CT 

medical terminology.

Some of the methods rely on shallow parsing (e.g. (Leroy et al. 2003)) or 

various types of parse trees (e.g. (Sanchez 2007)). For example, (Huang et al. 

2007) introduced  a  negation  grammar  that  used  regular  expressions  and 

dependency  parse  trees  to  identify  negation  cues  and  their  scope  in  the 

sentence. They applied the rules to a set of radiology reports and reported a 

precision of 99% and a recall of 92%. Techniques developed for speculation 

identification  follow  similar  approaches  as  for  negation  detection  (Velldal 

2011); (Morante et al. 2010a).

Not many efforts have been reported on using machine learning to detect 

patterns in sentences that  contain negative expressions.  Still,  Morante  et  al. 

(2009),for example, used various classifiers (Memory-based Learners, Support 

Vector Machines, and Conditional Random Fields) to detect negation cues and 
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their scope. An extensive list of features included the token’s stem and part-of-

speech, as well as those of the neighbouring tokens. Separate classifiers were 

used for detecting negation cues and negation scopes. The method was applied 

to clinical text, biomedical abstracts, and biomedical papers with F-scores of 

80%, 77%, and 68% respectively.

An extended version of this system (Morante et al. 2010a) was applied to 

the speculation detection task on the cue and scope level which was the second 

shared task of the Computational Natural Language Learning (CoNLL) in 2010 

and achieved P/R/F1 of 60%, 55% and 57.3% on the biological data as the best 

performing system. The best performing system on the Wikipedia sentences 

(Tang et al. 2010) achieved 63%, 26%, 36%.

Özgür and Radev used machine learning (SVM) to detect  speculation 

cues, using common features such as stem and part-of-speech tag, and some 

other  features  that  we will  briefly  introduce  here  (Özgür  et  al.  2009).  The 

authors  used  certain  dependency  relations  such  as  clausal  complement  and 

auxiliary as binary features. They also used features indicating which position 

in the article the sentence has appeared in (e.g. title, abstract, etc.). Finally, they 

used features regarding word co-occurrence and the existence of negation cue 

in  the  sentence,  as  they  hypothesised  that  it  can  play  a  role  with  certain 

speculation cues.

Agarwal et at. used a biological and medical annotated corpus to train 

several  CRF models  to  detect  negations and their  scope  in  biomedical  text 

(Agarwal et al. 2010). They detect cues and their scopes independently, and 

replace words with their part-of-speech. Their system, BioNOT, was applied on 

a large scale corpus of biomedical abstracts and full text articles and was tested 

on the biological and medical corpus BioScope with F-Score of 92%.

For more discussion on the detection of negation and speculation cues 

and scopes see (Morante et al. 2011).

Detecting negated and speculated events. While many of the systems 
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mentioned  above  focused  on  identification  of  negated  terms,  several 

approaches have recently been suggested for the extraction of negated events, 

particularly in the biomedical domain. For example,  (Van Landeghem et al. 

2008) used a rule-based approach based on token distances in sentence and 

lexical  information  in  event  triggers  to  detect  negated  molecular  events. 

Kilicoglu et al. (2009), Hakenberg et al.  (2009), and Sanchez (2007) used a 

number of heuristic rules concerning the type of the negation cue and the type 

of the dependency relation to detect negated molecular events described in text. 

For example, a rule can state that if the negation cue is lack or absence, then 

the trigger has to be in the prepositional phrase of the cue; on the other hand, if 

the cue is unable or fail, then the trigger has to be in the clausal complement of 

the cue (Kilicoglu et al. 2009). As expected, such approaches typically suffer 

from lower recall (32%).

(MacKinlay et al. 2009), on the other hand, used ML, assigning a vector 

of  complex  deep  parse  features  (including  syntactic  predicates  to  capture 

negation scopes, conjunctions and semantically negated verbs) to every event 

trigger.

We have estimated that their system achieved an F-score of 36% on the 

same dataset as used in this paper (Sarafraz et al. 2010).

Task 3 of the BioNLP’09 challenge involved the identification of 

negations and speculations in biomedical abstracts. The evaluation is done on 

the performance of the whole pipeline, including event extraction stage and 

negation/speculation detection stage. The best performing team achieved 

recall/precision/F-score of 15.0/50.7/23.1 when applied their negation detection 

system to the automatically extracted events. Unfortunately we do not have 

access to the performance of the second stage alone, as the performance of the 

negation and speculation detection stage will inevitably be affected by less-

than-perfect performance of the first stage (i.e. event identification). However, 

by knowing the performance of the whole pipeline and the performance of the 

event detection (first stage), we can estimate the performance of the 
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negation/speculation detection (second stage.)

With overall event detection sensitivity of 33% (Kilicoglu et al. 2009) on 

the test dataset and pipeline recall of 15%, we can estimate that had all events 

been correctly identified, the recall of their negation detection approach could 

have been three times higher,  and reached 45%.  With pipeline precision of 

around  50%,  their  projected  F-score,  again  assuming  perfect  event 

identification, could have been in the region of 50%.

As part of the effort to add context to extracted events in (Sanchez 2007), 

negation and speculation information was extracted from sentences containing 

protein-protein  interactions.  Sanchez  identifies  a  number  of  categories  of 

negation and speculation patterns, and constructs heuristic rules mainly based 

on dependency parse of the sentence to determine whether a given interaction 

is negated or speculated. Examples of such rules can be seen in Table  2.7. A 

total of 7 cases for negation and 3 cases for speculation were categorised, and 

each case was addressed by up to a dozen rules.
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Type of negation / speculation 

pattern

Rule to detect negation

Adverbial negation

“not”

Trigger is a verb and is connected by a verb chain 

dependency to auxiliary verb

Negation cue and subject depend on auxiliary verb

Object depends on the trigger

Inability to interact

“cannot”, “unable to”, “inability”

If trigger is postmodifier of “able”

And “able” is complement of “to be” in negative 

form

→ Subject of “to be” and object of trigger verb are 

possibly negated

“No” and “lack of” Trigger is a noun, And

        “no” is a dependent determiner

        Or trigger appears in the prepositional 

complement of “lack of”

Not “have” evidence Trigger is a verb

Trigger is the object of “have”

Dependency distance between “not have” and 

trigger is no more than 4

Table  2.7:  Examples  of  rules  used  by  Sanchez  to  detect  negations  and 

speculations

The first  three examples show heuristic rules used by Sanchez to detect  negated  

events  and the last example is used to detect speculative events. Similar rules have  

been derived for other types of negation and speculation patterns including “fail to”,  

“does not exist”, “no effect on”, “not detect”, etc.

To demonstrate one of the above rules, consider Example 2.9.

Example 2.9. “The p46 isoform of JNL was not phosphorylated by 

ORF36.”

The diagram in Figure  2.10 shows the partial dependency parse of this 

sentence,  and  demonstrates  how  the  second  rule  in  Table  2.7 applies,  i.e. 

trigger is a verb and negation cue and subject depend on the auxiliary verb.
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To evaluate these heuristics, Sanchez et al. selected 185 sentences from 

Journal  of  Biological  Chemistry  articles  that  contained negation  words  and 

protein names. Amongst these sentences, 90 contained one or more negated 

events and the other 95 sentences contained no negated events. The notion of 

“event”  here  is  comparable  to  that  of  BioNLP’09  corpus,  as  it  refers  to 

molecular events between two proteins. However, the two cannot directly be 

mapped as the types and structures differ. They report precision/recall/F-score 

of 89%/67%/76% on data  with gold annotated proteins,  and 64%/61%/62% 

after automatically extracting proteins from the text using ABNER-UniProt.

These  results  cannot  directly  be  compared with other  research,  as the 

choice of the evaluation data set makes it rather contrived. On the one hand, by 

deliberately selecting sentences that contain protein names and negation cues, 

the task of finding negated events becomes a more difficult task, as there are 

plenty  of  false  clues  in  the  negative  instances.  On  the  other  hand,  as  the 

sentences have been picked to either do or do not have negated events, the task 

can be reduced to a sentence classification problem, which as we previously 

noted, is relatively less complicated. Moreover, there is no discussion on what 

proportion of the sentences without a negated event do contain an event. This, 

together with the performance of the automatic event extraction could affect 

Figure 2.10: Dependency parse satisfying rules for negation

Partial  dependency  parse  of  the  sentence  “The  p46  isoform  of  JNL  was  not  

phosphorylated by ORF36.” The rule for the negation type with “not” requiring that  

negation cue and subject depend on auxiliary verb applies.
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the results dramatically.

Tables 2.8 and 2.9 summarise the tasks, views, methods and approaches 

described here, in addition to a few other which we did not cover thoroughly.

This summary shows that the task of detecting negated and speculated 

events  from complex text  is  considerably  more  difficult  than  detecting cue 

scopes,  and  therefore  more  advanced  information  extraction  techniques  are 

required in order to be able to detect negations and speculation more accurately 

and reliably.
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Tool / 

research

Tasks View Approach Corpus Performance

Machine 

learning

Rule-

based

Medlock et 

al

Speculation Sentence 

polarity

Weakly 

supervised

learning

No Biomedical F = 76%

Shatkay et 

al

Negation, 

speculation

Sentence 

polarity

SVM No Biomedical F = 71%

Tang et al Speculation Sentence 

polarity

Yes No Biomedical F = 86%

NegEx Negation Scopes and 

targets

No Yes Medical F = 96%

Negfinder Negation Scopes and 

targets

No Yes Medical F = 96%

Morante et 

al

Negation, 

speculation

Scopes and 

targets

Memory-

based 

Learners, 

SVM, CRF

No Biomedical F = 57%

BioNOT Negation Scopes and 

targets

CRF No Medical, 

biomedical

F = 92%

Kilicoglu et 

al

Events No Yes Biomedical F = 43%

Sanchez et 

al

Negation Events No Yes Biomedical F = 77%

MacKinlay 

et al

Negation, 

speculation

Events Yes No Biomedical F = 35%

F = 30%

NegHunter 

(Gindl et al. 

2008)

Negation Targets No Yes Medical 

(practice 

guidelines)

P 59%

R 67%

Table 2.8: Summary of past efforts on negation and speculation detection

We conclude this section by briefly mentioning an effort in the detection 

of  negations  and  speculations  in  a  language  other  than  English.  Hagege 

(Hagege 2011) introduced a rule based method for finding negation in French 

clinical discharge summaries. They used a set of “negative seeds” which are 

phrases that indicate the absence of something. They focus on the detection of 
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seven classes of targets whose absence they are interested in, including viral 

disease,  diagnosis,  etc.  They also  use  more  than  100 nouns and verbs  that 

indicate  affirmation or negation,  e.g. existence  or absence.  They hand craft 

rules using “negative seeds” and negation indicators to determine whether any 

of the mentions of the targets are negated.

Method Properties Details

Machine learning Features Dictionary

Orthographical information about the token

Lemma or stem of the token

Part-of-speech (POS) tags

Syntactic chunk information

Dependency/constituency parsing

Position in document or sentence

Handling multiple cues together or 

independently

Definition of the ML 

problem

Sequence labelling (e.g. CRF)

Bag-of-word feature representation

Classifying every token in the sentence to 

detect cue phrase

Finding scopes: labelling tokens as 

inside/outside or begin/end

The ML engine used SVM

CRF

K-nearest neighbours

Entropy Guided Transformation Learning

Average perceptron

Rule-based systems hand-crafted rules, 

Regular expressions

Surface distances

POS tags

Dependencies distances

Table  2.9:  Summary  of  methodologies  used  in  negation  and  speculation  

detection

Summary of the methodologies with the most common properties and features.
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2.5 Extracting contrasts and contradictions from literature

As a mathematical  logical  concept,  contradiction is  abstract.  Contradiction 

happens when two logically opposite  statements are  true simultaneously.  In 

classical logic, the law of non-contradiction (NLC) is number two in Aristotle’s 

three classic laws of thought.

Philosophers and logicians tend to agree that although it is possible to 

define  contradiction as an abstract concept, no real contradiction can exist in 

the natural  world.  It  is also generally believed  that imagining contradiction, 

perhaps similar to imagining the 4th dimension, is impossibly difficult for the 

human brain, despite the fact that it is used as a basic tool in mathematics.

Contrast,  on  the  other  hand,  is  an  expression  used  to  describe  two 

different concepts. Oxford English Dictionary defines contrast as:

“Comparison  of  objects  of  like  kind  whereby  the  difference  of  their 

qualities  or  characteristics  is  strikingly  brought  out;  manifest  exhibition  of 

opposing qualities; an instance of this.”

In this section we review interpretations of the concepts of contrast and 

contradiction within the domain of biomedical text mining.

2.5.1 BioContrasts

BioContrasts (Kim et al. 2006), is a database containing pairs of proteins that 

have  appeared  in  contrasting  phrases.  It  focuses  on  expressions  such  as 

“protein1  but  not  protein2”  that  have  been  extracted  from  the  MEDLINE 

abstracts  and  contains  about  800,000  non-normalised  (~40,000  normalised) 

contrasting protein pairs. Both of the contrasting proteins appear in the same 

sentence. The contrast is explicitly expressed using phrases such as but not and 

in a context such as their interaction with a third protein.
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Figure  2.11 shows  the  work-flow  of  the  BioContrasts  information 

extraction  system.  It  extracts  contrasting  protein  pairs  using  a  rule-based 

algorithm based on the keyword not and the grammatical parse of the sentence. 

Examples of the rules that are used in the identification of contrasting patterns 

can be seen in Table 2.10.

The  rules  that  identify  contrastive  expressions  are  based  on  the 

identification of noun phrases and other grammatical entities such as verbs and 

prepositions. A POS tagger and a noun phrase identifier have specifically been 

developed  for  the  task.  The  rules  for  contrasting  expressions  were  also 

manually designed, presumably based on manual analysis of a training corpus 

of 166 abstracts.

Pattern type Grammatical pattern

A but not B NP but not NP

V NP but not V NP

V PREP but not PREP NP

not A but B not NP but NP

not V PREP but V PREP NP

not V NP but V NP

A, not B NP, not NP

PREP NP, not PREP NP

Table 2.10: Examples of patterns used by BioContrasts

Example patterns to extract contrasting protein pairs used by BioContrasts

Figure 2.11: Work-fow of the BioContrasts system.
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The  two  proteins  reported  as  contrasting,  contrast  in  a  “presupposed 

property” which is assumed to be the verb of the sentence in question. This 

identifies the event type in which the two proteins differ, but only if this event 

is expressed via the verb of the sentence. 

For an example that demonstrates this approach, consider the  sentence 

from an abstract shown in Example 2.10.

Example  2.10. “In contrast,  IFN-gamma priming did  not  affect  the  

expression  of  p105  transcripts  but  enhanced  the  expression  of  p65 

mRNA (2-fold).”

(From PMID 8641346)

The sentence is selected at the first stage because it contains the word 

not. After POS tagging and identification of noun phrases, we see that part of it 

matches the pattern “not V NP but V NP” from Table 2.10: 

not + affect  (V) + the expression of p105 transcripts  (NP) + but + 

enhanced (V) + the expression of p65 mRNA (2-fold) (NP)

Once the protein names have been identified, the system compares the 

verbs  in  order  to  determine  the  similarity  between  them  and  therefore 

determine whether the two phrases are contrastive. The authors use WordNet 

(Fellbaum 1998) and a hand-crafted list of similar biomedical verbs for this 

purpose. One of the limitations of this method is that  it  does not recognise 

interaction words that are not verbs as presupposed property. For example, the 

word “expression” in a phrase like “the expression of A but not B”.

Finally, they insert the two protein names that satisfy the aforementioned 

criteria in the database. In the case of  Example 2.10,  p105  and  p65 will be 

added as contrasting proteins.

They applied their system to a corpus of 2.5 million MEDLINE abstracts 

each containing the word “not”. They extracted contrasting protein pairs with 
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normalised protein names using the above method, and selected 100 pairs for 

post-hoc  evaluation.  They  reported  a  precision  of  97%.  As  other  post-hoc 

evaluations, the recall value was not reported, but it is expected to be lower 

than their previous, less strict system with 61% recall (Kim et al. 2006).

Another limitation of this approach is that no context is given beyond the 

fact  that  the  two proteins  are  reported to  differ  in  a  given  interaction.  The 

interaction type is not normalised and no more information about the event 

itself is reported. In addition, with very strict hand-crafted rules, the recall is 

expected to be relatively low, as contrasting proteins and interacting proteins in 

general can appear in many more patterns than investigated in this study.

Finally, the contrast is defined only between the pair of entities. To move 

towards contrasts between smallest pieces of self-contained information such 

as  events,  the  methods  would  need  to  expand  to  properties  of  biomedical 

events other that participating proteins.

2.5.2 An approach to contradicting events

(Sanchez 2007) has introduced the concept of contradiction in protein-protein 

interactions and has categorised them into explicit and implicit contradictions. 

According to her definitions, explicit contradiction refers to the situation when 

an author reports results and mentions that they contradict or are different from 

previous  findings.  An  implicit  contradiction,  on  the  other  hand,  are  two 

statements  possibly  in  different  documents,  one  reporting  a  protein-protein 

interaction event affirmatively, and the other reporting it either negatively or 

speculatively.

Sentences  that  contain  both  “contradiction”  phrases  and  “finding” 

phrases are identified and used for training and evaluation purposes. According 

to  their  definitions,  finding  phrases  concern  the  phrases  that  report  some 

finding in the literature. Contradiction phrases are those that express conflict, 

presumably with previous views. This is based on the hypothesis that these 

sentences are associated with explicit contrasts.
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Example 2.11. “An affinity of RRM3 for poly(U) appears to contradict 

previous reports of poly(A) binding by RRM3.”

In Example 2.11, the word “contradict” is a contradiction phrase, and 

the word “reports” is a finding phrase. See an extensive list of these phrases in 

Table 2.11. 

Contradiction words Finding words

contradict, contradiction, 

contradictory, conflict, negate, 

negation, disagree, disagreement, 

refute, refutation, differ, dissent, 

discrepancy, inconsistency, 

inconsistent, contrast, controversy

observation, report, notion, 

evidence, finding, research, 

hypothesis, knowledge, 

interpretation, conclusion, model, 

data, fact, study, inform, document, 

work, proposal, result, view, 

assertion, assay

Table 2.11: List of contradiction and finding phrases used by Sanchez. 

Note  that  in  the  original  thesis,  the  heading  of  the  left-hand  column  reads  

“CONTRAST WORDS”,  although everywhere else it  is  referred to as contradiction  

words or phrases.

To detect  explicit  contradictions,  Sanchez  looked at  the  dependency 

parse of the sentences containing both finding and contradiction phrases, and 

hypothesised that there may be an explicit contrasting event in the sentence if 

there is a dependency path between the two phrases that does not pass through 

the root and is at most of length 3, and a dependency path of maximum length 

10 between the contradiction word and the interaction trigger.

The sentence in Example 2.12 from the author will demonstrate this 

hypothesis.

Example 2.12. “Although the activation of AMPK by insulin would 

contradict previous observations (28,29), AMPK activation is known to 
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accelerate glucose uptake and utilization in the heart.”

A simplified dependency tree for Example 2.12 is shown in Figure 2.12. 

All the criteria for an explicit contradiction as defined by Sanchez are satisfied:

1. There is an event expressed in the sentence, with the trigger 

“activation”, possibly involving entities “AMPK” and “insulin”.

2. The dependency path between the finding word “observation” and the 

contradiction word “contradict” is 1 (less than 3).

3. The dependency path between the contradiction word “contradict” and 

the interaction trigger “activation” is 2 (less than 10).

Sanchez evaluated her method on 122 sentences containing contradiction 

phrases derived from 500 Journal of Biological Chemistry articles, manually 

annotated for explicit contradictions. Amongst these sentences, 61 contained 

explicit contradictions. Their method of detecting explicit contradiction from 

sentences containing contradiction phrases achieved recall/precision/F-score of 

36%/92%/52%.

Implicit contradictions. To find implicit contradictions, Sanchez 

introduced a semantic representation of events in order to introduce rules that 

Figure 2.12: Simplified partial example dependency tree

Part  of  the  dependency  tree  of  the  example  sentence,  specifically  the  part  that  

represents  the  application  of  the  criteria:  “activation  of  AMPL  by  insulin  would  

contradict  previous  observations”  In  this  tree,  ‘v-ch’  represents  a  verb  chain  

dependency.)
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make two different events contradictory. The semantic representation of an 

event involves the following attributes:

event type, trigger, participating proteins, polarity, direction, certainty,  

manner, organism and anatomical location.

Once the events are extracted, attributes of the semantic representation 

need to be determined. Two of these attributes, namely polarity (negation) and 

certainty (speculation) have already been discussed in the previous chapters.

To determine the direction of an event, Sanchez categorises all possible 

interaction words (around 50 of them, not including inflected forms) into 13 

categories. She then uses a look-up table assigning positive, negative, or 

neutral directionality to each class. For example, triggers belonging to the 

“attach” class (such as “bind” and “complex”) have a positive direction, 

whereas those belonging to the “inactivate” class (such as “block”, “down 

regulate”, and “suppress”) will have a negative direction. Trigger words such 

as “translocate” or “affect” have neutral direction.

The manner attribute is the adjective or adverb that affects the trigger. In 

addition to speculation extracted previously, manner words are also used to 

infer speculation (e.g. “there is a potential interaction”).

To demonstrate these attributes see Table 2.12 for an original example 

and its semantic representation.
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Semantic class inactivate

trigger inhibit

Protein 1 ATP

Protein 2 AMPK

Auxiliary 

molecule

-

Polarity Positive

Direction Negative

Certainty -

Manner Neutral

Organism -

Location -

Table  2.12:  Semantic  representation  of  an  event  according  to  Sanchez’s 

definition

Representation  of  the  event  expressed  by  sentence  “ATP inhibition  of  adenosine 

monophosphate-activated protein kinase.”

They combined the attributes direction, manner, and polarity to assign a 

single  number  to  every  event.  The  numbers  are  merely  labels  assigned  to 

different  combinations  of  these  three  attributes  and  do  not  represent  their 

numerical value. For example, “weak positive direction” is assigned state  2, 

and “negative polarity  and strong or neutral  negative direction” is  assigned 

state  9.  They  introduced  around  15  different  states  to  assign  to  different 

combinations of attributes of an event.

Subsequently, they manually constructed a decision table with pairs of states 

that constitute a contradiction and pairs of states that do not. From the table, we 

learn that there is a contradiction between states 3 and 7, i.e. “weak neutral 

direction” and “strong neutral direction”, but there is no contradiction between 

states 4 and 7, i.e. “neutral direction” and “strong neutral direction”.

Another example of a contradicting pair is states 3 and 11 , i.e. “weak 

neutral direction” and “negative polarity and weak neutral direction”. There are 

34 pairs of states that define contradictory or non-contradictory states, and the 

rest are defined as undecidable.
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To  demonstrate  how  this  method  works,  we  discuss  their  original 

example here:

Example 2.13.

Document A “Cells treated with hyperosmolar stress, UV-C, IR, or a 

cell-permeable form of ceramide, C2 ceramide, rapidly down-regulated 

PI(3)K activity to 10%-30% of the activity found in serum-stimulated 

control cells”

Document B “And fourth, C2-ceramide did not affect the amount of PI  

3-kinase activity in anti-IRS-1 precipitates.”

We show the semantic representations of these two events in Table 2.13. 

As we can see, the states of the two events in the sentences, in Example 2.13 as 

determined by their direction, manner (manner degree), and polarity, are 9 and 

5 respectively, which are “negative polarity and strong (or neutral) negative 

direction” and “negative polarity and neutral direction”. The pair (9,5) do not 

appear in the look-up table used to define contradiction pairs, meaning that we 

cannot say anything about whether the two events are contradictory or not.

In  none  of  the  publications  describing  this  work,  the  authors  have 

included  any  other  example  that  demonstrates  how  this  method  detects 

contradicting or non-contradicting events.
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Attribute Document A Document B

Event type Inactivate Cause

Protein 1 C2-ceramide C2-ceramide

Protein 2 PI-3K PI-3K

Trigger down-regulate affect

Polarity positive negative

Direction negative neutral

Manner rapidly -

Manner polarity neutral neutral

Manner degree neutral neutral

state 9 5

Table 2.13: Semantic representation of two events in the example sentences 

The ‘states’ of the events are determined based on a decision table as well as the 

values  of  direction,  manner  (manner  degree),  and  polarity.  Original  example  and 

semantic representation by Sanchez.

They applied their method on automatically extracted events as well as 

gold  annotated  events.  They  report  recall/precision  of  19%/60%  on  the 

automatically extracted events and recall/precision of 62%/50% and 80%/53% 

on gold annotated events against two different gold standard annotations.

They  also  evaluated  their  system  using  inter-annotator  agreement 

measure  kappa.  The agreement between biologists and their system was 0.39 

and  the  agreement  between  non-biologists  and  the  system  was  0.21.  See 

Section 2.7.1 for the definition of this measure.

This was one of the earliest computational approaches to contradictions, 

and  despite  the  limited  availability  of  annotated  data,  provided  an 

understanding of the phenomenon. However, there are a number of limitations 

in this work that we shall point out here.

• No generic definition of contradiction was given. The definition was by 

instance, and was not exhaustive.

• The decision table to assign a state to an event does not match the list of 

the state descriptions introduced earlier, and seems limited, ad-hoc, and 

anecdotal.
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• The numerical values assigned to different events have no numerical 

significance and are only used for coding different combinations of the 

four  attributes  contributing  to  the  value.  The  decision  table  is 

incomplete and does not contain every possible combination, including 

those of some of the examples discussed in the thesis.

• The table does not cover all possible combinations of these attributes. 

Some of the states are defined in a way that their instances can overlap, 

for example “neutral direction” (state 4) is a subset of “neutral direction 

or degree” (state 0). 

• No discussion on multi-event sentences are included. It would appear 

that despite the extensive sub-sentence rules and analysis, the problem 

is only approached on the sentence level.

• They have evaluated their method on the data specifically selected to 

pass the bag-of-words test,  some of which would have resulted in a 

false positive in a bag-of-words approach. Although this might result in 

a tougher evaluation set-up, the evaluation is still not on “natural” data, 

and is difficult to expand to a given set of documents.

• The method is composed of a number of very specifically tailored rules 

and extensive look-up tables. Although it is possible to trace every case 

and  how  it  is  classified  following  the  rules,  it  is  not  expandable, 

generic, or applicable to similar problems.

• Despite having access to organism and anatomical location information 

from the event extraction stage, they have not used these attributes in 

the characterisation of contradictions.

• They have  not differentiated between the contrast  expressed about a 

biological  concepts,  or  one  expressed  in  relation  to  a  finding.  For 

example, the  sentence of Example 2.14, taken from the corpus used in 

the study, contains the former type of contrast.

Example 2.14. “Moreover, in contrast with PMA, the effect of  

thrombin on the tyrosine phosphorylation of SH-PTP1 was hardly 
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affected by GF109203X, a specific protein kinase C (PKC) inhibitor. ”

In addition, it is worth noting that protein name normalisation was done 

manually,  and  no  large-scale  application  or  evaluation  of  the  method  was 

performed beyond the 500 JBC articles.

2.6  Resources

In  this  section we introduce the resources available  for the biomedical  text 

mining particularly related to this research. We introduce the publicly available 

annotated  corpora  which  is  a  requirement  for  many  information  extraction 

tasks, and specifically for machine learning approaches.

In  recent  years,  resources  that  provide  manually  annotated  data  are 

increasing in availability.  GENIA corpus  (Ohta et al. 2002) was perhaps the 

first, and the most widely used annotated corpora of biomedical abstracts. It 

contains  2000 MEDLINE abstracts  selected from the  search  results  for  the 

terms “human”, “blood cells”, and “transcription factors”.

The  abstracts  are  annotated  for  a  range  of  linguistic  and  biological 

information.  The  annotations  include  POS  tags,  shallow  parses,  and  co-

reference annotations. They also include term annotations for entities from 31 

different semantic classes including proteins, DNAs, RNAs, etc.  (Kim et al. 

2004).

Several types of molecular events are annotated in the GENIA corpus 

with  their  types,  themes,  and  causes  (Kim et  al.  2008).  Other  annotations 

include disease-gene association, cellular localisation, and pathways.

The  GENIA  corpus  annotators  have  assigned  “assertion”  and 

“uncertainty” attributes to every event. Assertion indicates whether the event is 

negated  or  affirmative  and the  possible  values  for  this  binary  attribute  are 

“exist” and “non-exist”. Uncertainty indicates the level of speculation in the 

reported event. However, unlike assertion, uncertainty is not a binary attribute, 

with the three possible values of “certain”, “probable”, and “doubtful”.

Challenges such as BioCreative and BioNLP also make valuable high 
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quality  manual  annotations  publicly  available.  As  a  result,  research  groups 

publish their results on these data sets and sometimes even release their tools, 

making  it  possible  to  compare  approaches  and  results  within  the  same 

framework.

A manually annotated corpus was released for the training and testing of 

the BioNLP’09 Shared Task. The entity annotations were limited to genes and 

gene products (proteins), manually selected from the following entity tags in 

the GENIA corpus: protein molecule, protein complex, DNA domain or region,  

and RNA  molecule.  Since  these  groups  contain  entities  such  as  protein 

complexes (e.g.  NF kappa B), genomic regions that are not genes (e.g.  third 

intron or gene), or other biological entities, the organisers have removed them 

in the construction of the BioNLP’09 corpus.

The events were selected from the subset of the GENIA corpus (Ohta et 

al. 2002) that can be considered as bio-events and involve gene and protein 

molecules. The following event types from the GENIA corpus were included in 

the BioNLP’09 corpus: Positive regulation, Negative regulation, Regulation,  

Gene  expression,  Binding,  Transcription,  Localization,  Protein  catabolism,  

Protein  amino  acid  phosphorylation,  and  Protein  amino  acid  

dephosphorylation.  The  last  two  event  types,  Protein  amino  acid 

phosphorylation, and Protein amino acid dephosphorylation, were merged into 

a single class, Phosphorylation.15 Events whose participants were not genes or 

proteins were excluded. In addition, a number of new events were also added 

manually by the curators of the BioNLP’09 corpus. A summary of the number 

of events in each category can be seen in Table 2.14.

15 For a biological definition of these event types please see Appendix A
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The data came in three data sets. The training and development data sets 

were available  to  the public  together with gold annotations for entities and 

events. The test dataset was used to evaluate the challenge participants and was 

only publicly available with gold annotations for entities. Table 2.15 shows the 

composition of the first two data sets.

Training data Development data

Abstracts 800 150

Sentences 7449 1450

Words 176146 33937

Entities 9300 2080

Events 8597 1809

Negated events 615 107

Speculated events 455 95

Table 2.15: The composition of the events in the BioNLP’09 data.

The number of words, events, and other statistics in the training and development 

data sets.

Event type Number of 

events in 

training data

Number of 

events in 

development 

data

Gene expression 1738 356

Localization 265 53

Transcription 576 82

Protein catabolism 110 21

Phosphorylation 169 47

Binding 887 249

Regulation 961 173

Positive regulation 2847 618

Negative 

regulation

1062 196

Total 8615 1795

Table 2.14: The distribution of the different event types in the BioNLP'09 corpus.
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In 2011, the BioNLP’11 shared task was organised with tasks and data 

along the same lines with BioNLP’09, in that it provided a representation of 

bio-molecular  events  and called for extracting relations from them. As this 

thesis was being written, new research groups are releasing tools that address 

the challenges posed by this commonly available data.

Bio  Information  Extraction  Resource  (BioInfer)  is  another  manually 

annotated  corpus  available  for  training  and  development  of  biomedical 

information extraction efforts. The corpus contains 1,100 sentences taken from 

biomedical  abstracts,  and  are  manually  annotated  for  named  entities, 

relationships between the named entities (e.g. equality, membership, anaphora, 

causal, etc.), and syntactic dependencies (Pyysalo et al. 2007).

A manually annotated corpus that provides annotations for negations and 

speculations of biomedical and clinical text is BioScope (Szarvas et al. 2008). 

It contains all the abstracts in the GENIA corpus, five full text articles from 

FlyBase (Tweedie et al. 2009), and a corpus of radiology reports used in other 

challenges.  The texts were annotated for  negation and speculation cues and 

their linguistic scope, i.e. the part of sentence that is affected by those scopes 

and has become negated or speculated. 

The  BioScope  corpus  has  been  used  in  a  number  of  attempts  to 

automatically detect negations and speculations. (Morante et al. 2009) used the 

BioScope corpus in a scope detector system which uses supervised sequence 

labelling.
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Resource Type Size Annotations

GENIA 

corpus

Biomedical abstracts 1000 

documents

substances and the biological locations 

involved in reactions of proteins, based 

on the GENIA ontology

BioNLP’09 Biomedical abstracts 950 

documents

Named entities, molecular events, 

localisation, negation, speculation.

BioInfer Biomedical abstracts 1100 

sentences

Relationships, named entities, syntactic 

dependencies

BioScope Medical free texts / 

biological full papers / 

biological abstracts

20,000 

sentences

negations and speculations and their 

linguistic scopes

CoNLL’10 Biomedical full-text 15 

documents

Speculation cues and their linguistic 

scopes (to be added to the  BioScope 

corpus)

Table 2.16: Summary of corpora related to this research

The  Computational  Natural  Language  Learning  shared  task  in  2010 

(CoNLL 2010) focused on the identification of sentences in biological abstracts 

containing uncertain  information  (Farkas et  al.  2010).  It  aimed at  detecting 

speculative  sentences  in  two  tasks.  One  task  was  defined  as  a  binary 

classification  problem  on  the  sentence  level,  distinguishing  factual  from 

uncertain sentences.  A second task was defined as detection of  speculation 

cues and their scope within the sentences. The CoNLL 2010 challenge also 

used the BioScope corpus as one of the two corpora included in the challenge 

(the other corpus was about Wikipedia weasels.)

2.7 Evaluation in text mining 

2.7.1 Evaluation methods

Many areas of computer science suffer to  various degrees from the lack of 

standard,  commonly  accepted,  thorough  and  reliable  bench  marks  and  test 

datasets that correspond with the up to date real world problems and IE and IR 

are no exceptions. However, there have been several “shared assessments” or 
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“challenges”  in  biological  text  mining  that  have  been  among  the  most 

influential assessments in the field  (Cohen et al. 2005) a selection of which 

were  introduced  in  the  previous  sections.  These  are  among  the  leading 

references to determine the state of the art in various biomedical IE tasks and to 

provide resources to be used as gold standard data in those areas.

Evaluation of IE and IR systems is important in order to compare the 

performance of the existent systems, measuring the progress of the field over 

time,  and  creating  a  shared  infrastructure  to  support  research.  Previous 

examples  have  shown  that  once  objective  common  evaluations  become 

available, there is real eagerness from the research communities to participate 

in new challenges and improve the solutions to existing problems (Cohen et al. 

2005).

In this section after introducing the baseline measure as the minimum 

requirement  for  any  system  to  be  worthwhile  of  studying,  we  describe 

precision, recall, and F-score measures that are commonly used with or without 

other specifically developed measures by the above groups.  Finally we will 

briefly introduce other types of measures for IE and IR.

Baseline measure

The baseline measure is the performance of a simple but not necessarily trivial 

method  against  which  other  innovative  methods  are  evaluated.  Random 

assignment  is  often  used  as  a  baseline  measure  for  comparing  with  more 

sophisticated information extraction methods.

An information extraction task can be simplified as finding items with 

certain properties in a  pool of items.  Assume, for example,  that  we have a 

document with a certain number of tokens, some of which are names of species 

and the rest are other types of words. The task of finding those species names 

amongst all the tokens is an NER task.

Reporting every token as a positive result, i.e. assigning them to the class 

of species names will result in 100% recall, as we are obviously finding every 
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species  name correctly.  However,  the  precision  would just  be  equal  to  the 

percentage of the species names (positive instances) in the pool.

Categorical  assignment  of  all  instances  to  one  class  is  the  simplest 

baseline measure and is specially useful when the sizes of positive and negative 

classes are very disproportionate and we are interested in the number of correct 

classifications in all classes.

An unsophisticated classifier with little discriminative functionality could 

randomly assign tokens to positive and negative classes. The precision, recall, 

and  F-score can then be computed,  given that we have enough information 

about the composition of the data, specifically, about the percentage of positive 

and negative instances in the dataset. 

In  the  case  when  we can  safely  assume more  specific  characteristics 

about  the  dataset,  we  can  improve  the  baseline  measure  to  reflect  the 

information we already have about the distribution of the different types of the 

instances. In the example above, an unsophisticated baseline classification is to 

randomly  label  half  the  tokens  as  species  names.  But  given  the  extra 

information that most tokens in text are articles, adjectives, and other types of 

linguistic “fillers”, and that terms or named entities are relatively rare, it would 

be logical to improve the precision of the baseline method to somehow assign a 

smaller proportion to the category of species names. Any system of species 

name  recognition  will  therefore  have  to  perform  better  than  this  baseline 

random classifier.

Common evaluation measures

Precision,  recall,  and  F-score  evaluate  the  performance  of  a  system  by 

comparing  its  output  with  a  gold-standard.  Recall  measures  how much the 

system  has  covered  the  desired  output,  i.e.  how  much  of  the  relevant 

information it has retrieved.

Recall is defined as the number of correct answers given (e.g. relevant 

documents  retrieved  by  the  system,  species  names  correctly  recognised) 
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divided  by  the  total  number  of  correct  answers  in  the  dataset  or  relevant 

documents in the pool:

Recall=
TP

TP+FN

where TP and FN stand for the number of true positive and false negative 

answers  given  by  the  system respectively.  On  the  other  hand,  precision  is 

defined as the number of correct answers divided by all the instances retrieved 

by the system:

Precision=
TP

TP+FP

where FP stands for the number of false positive answers given by the 

system.

For  any  system,  there  is  usually  a  trade-off  between  the  two  above 

measures.  The  more  specific  search criteria  are  and the  more  narrowly we 

search for the results to increase the precision, the more likely it is to miss 

some of the off-centre positive results, and therefore decreasing the recall. To 

be able to reflect both precision and recall in a single measure, the harmonic 

mean of  the  two measures  is  widely used as  an  evaluation measure  and is 

referred to as the F-score:

F 1=2×
Precision ×Recall
Precision+Recall

If,  depending  on  application,  we  intend  to  assign  times  as  much 

importance to recall as precision,we would use the general formula:

F=1
2
×

Precision×Recall


2 PrecitionRecall

Evaluation measures sensitivity and specificity can be used to measure 

the performance of a binary classification task. Unlike precision/recall where 

we are only interested in the retrieved information from a pool of data, and 

only evaluate the quality of the information extracted from that pool, here we 

are  interested  in  the  quality  of  the  discrimination  between  the  two  groups 
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without necessarily preferring one to the other. Sensitivity is defined similarly 

to recall, whereas specificity is defined as

Specificity=
TN

TN+FP

Specificity  measures  the  proportion  of  negative  instances  which  are 

correctly identified.

Cohen’s  kappa  coefficient  is  a  statistical  measure  of  inter-annotator 

agreement. It tests whether the agreement between several annotators exceeds 

that expected by chance. Kappa is defined as

=
Pr a−Pr e 

1−Pr e

where Pr(a)  is the relative observed agreement amongst annotators (i.e. 

the  proportion  of  time  that  the  annotators  actually  agree)  and  Pr(e) is  the 

hypothetical probability of chance agreement (i.e. the proportion of time they 

would have agreed if they were guessing based on chance alone.)

2.7.2 Inter-annotator agreement

Inter-annotator  agreement  studies  have  shown that  it  is  not  uncommon for 

human annotators to disagree on whether an event is negated or speculative. 

(Vincze et  al.  2011) have  shown that  after  trying to  map the  negation  and 

speculation  annotations  between  two  manually  annotated  corpora,  GENIA 

Event corpus and BioScope corpus,  the agreement rate  between is no more 

than 48%.

The  results  of  the  mapping  between  the  two  corpora  as  reported  by 

(Vincze et al. 2011) are shown in Table 2.17.

Agreement BioScope + / GENIA - BioScope - / GENIA +

Negation 1554 1484 569

Speculation 1295 3761 180

Table 2.17: Inter-annotator agreement between GENIA and BioScope corpora

Inter-annotator agreement after mapping the negation and speculation annotations 

between GENIA event and BioScope corpora.
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Sanchez also  compared the  annotations by  several  biologist  and non-

biologist annotators. They measured the agreement in finding what they define 

as “implicit contradictions”, introduced in the previous section.

The agreement amongst biologists was quite low (kappa = 0.38), which 

makes their system conceivably pass as an expert by agreeing with biologists 

more often than the biologists do with each other (kappa = 0.39).

But the agreement among non-biologists was predictably lower than that 

of biologists (kappa = 0.22), and the agreement between their system and non-

biologists was even lower (kappa = 0.21).

2.8 Conclusion

In this chapter we briefly introduced the general  area of text mining in the 

biological and biomedical domain and discussed some of the main challenges 

in this area. In particular, since the detection of conflicting statements relies on 

the  recognition  of  contextualised  event  information  including  polarity 

detection, we critically reviewed the background research in relation extraction, 

contextualisation  of  event  information  including the  extraction  of  negations 

and speculations, and the previous approaches to detecting various forms of 

contradictions from the literature.

We  showed  that  the  sentence  polarity  approach  to  negations  and 

speculations is too rough, as several pieces of information is usually conveyed 

within a single sentence, and not all are negated and speculated simultaneously.

We  also  discussed  the  scope-based  approaches  to  negation  and 

speculation  detection  and  showed  that  although  these  approaches  have 

relatively  high  performance,  they  do  not  directly  help  enrich  the  extracted 

information  since  even  when  a  negation  or  speculation  scope  is  correctly 

identified,  we still  cannot  directly  infer  whether  or  not  an  event  statement 

which partly falls within this scope is affected. Consider, for example, phrases 

in  which  participants  are  negated  such  as  “SLP-76” in  the  sentence  “In 

contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with  
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SLP-76.”

We noted that  the methods discussed in this  chapter mainly focus on 

finding negated triggers in order to detect negated events.

We  observed  that  molecular  events  between  genes  and  proteins  are 

meaningful pieces of information that are commonly described in text, and they 

can be expressed in a structured form. However, the performance of the current 

negation and speculation detection systems on the event level are not nearly as 

good  as  other  approaches  to  negation  detection  (sentence  polarity  and 

cue/scope detection).

Although event data  as used by event extraction systems contain rich 

semantic  information  regarding  event  types  and  participant  types,  this 

information has not been exploited to improve the results of event negation and 

speculation detection.

Syntactic  properties have always been amongst  the important features 

used  in  various  information  extraction  tasks.  However,  although  command 

relations  were  introduced  by  linguists  decades  ago  and  used  commonly  in 

theoretical linguistics, to the best of our knowledge they have not previously 

been exploited computationally for identification of negation and speculation.

No large-scale  analysis  of the negation and speculation extraction has 

been reported, and none of the best performing approaches have made their 

system publicly available.16

All the negation and speculation detection systems we are aware of have 

reported their performance as part of a text mining pipeline, and therefore an 

evaluation of the stand-alone system is not always reported.

A number of researchers have explored contradictions and contrasts in 

the biomedical domain. However, no general and comprehensive method has 

so far been proposed to detect explicit and implicit conflicting facts from the 

literature  which  could  potentially  lead  to  knowledge  discovery  and  data 

16 Only recently, as this thesis was in its final stages, a few recent attempts were 

made at large-scale extraction of biomedical events from all the available literature, 

some of which contain negation and speculation information.
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consolidation.

In  this  thesis  we aim to  address these  issues by taking the  following 

steps:

1. Effectively identify biological events and relations among entities with 

their context;

2. Design  and  implement  a  system  that  will  be  able  to  automatically 

recognise negated and speculated facts in text, specifically in the sub-

corpora of the GENIA event corpus interactions;

3. Develop  a  representation  model  for  establishing  relations  between 

different  biological  events,  including  relations  concerning  conflicts. 

This involves semantically representing a biological event.

4. Design and implement a system that will detect conflicting facts from a 

database of extracted facts;

5. Evaluate the proposed methodology through a case study on biomedical 

events;

6. Apply the method on the entire publicly available biomedical literature;

7. Provide the tools and data to the biomedical and text mining research 

communities,  including  the  contextualised  events  and  the  conflicts 

between them.
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Chapter 3 

Molecular event extraction and contextualisation

In  this  chapter  we  introduce  methodologies  to  extract  and  contextualise 

molecular events from large textual corpora of biomedical literature. The work-

flow in Figure 3.1 shows an overview of the tasks required to achieve the aims 

of this research. The boxes highlighted in darker blue represent tasks for which 

we  use  previously  existing  tools  with  some  modifications,  or  implement 

existing  methodologies.  These  tools  and  methods  have  been  introduced  in 

Chapter 2.

The novel tools and methodologies that were created to address some of 

the challenges of this research will be discussed in this chapter.  We start by 

defining the terms and concepts used in this thesis in section 3.1. In Section 3.2 

we introduce semantic tokenisation, a method to reduce parser errors. Section 

3.3 describes a hybrid machine learning and rule-based method developed to 

extract  molecular  events.  In  Section  3.4 we describe our methods to  detect 

negated events. Section 3.5 expands the negated detection method to the task of 

speculation detection of events.

Figure 3.1: An overview of the event extraction pipeline.

The shadowed boxes are tasks for which existing methods have been utilised. The  

lighter boxes are tasks for which we developed a method which will be described in  

more detail in the corresponding sections.
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3.1 Definition of terms and concepts

3.1.1 Events and their context

In this thesis we focus on bio-molecular events as described in BioNLP’09. 

Nine  event  types  are  considered,  namely,  Gene  expression,  Transcription,  

Localization,  Protein  catabolism,  Phosphorylation,  Binding,  Positive  

regulation, Negative regulation,  and Regulation. The first five of these event 

types have only one participant (theme) and we refer to them as class I events. 

Binding events  can  have  one  or  more  themes  (class  II  events).  Regulation 

events have a cause as well as a theme, and can be nested with other events 

acting as a participant, and are referred to as class II events.

An event is  minimally represented with four features:  event  type,  the 

cause of the event, the target (theme) of the event, and the lexical expression 

(trigger) that is used to describe the event in text. However, placing the event in 

a wider context is important from a biological perspective.

An expert biomedical scientist, reading the sentence “p53 is expressed in  

lung” in an article, would understand more from it than it appears to convey. 

She would use her expert background knowledge of the field as well as other 

facts stated in other parts of the document and maybe other documents, to put 

that statement into context and achieve what we think of as an understanding of 

its meaning.

In  an  ideal  automated information  extraction  task,  we would hope  to 

achieve similar levels of understanding to a human expert by combining vast 

amounts of background knowledge and mining as rich of a context as possible. 

This  is  an  ambitious  goal  that  more  recent  systems such as  IBM's  Watson 

(Ferrucci et al. 2010) and various Google services are aiming to achieve.

We  distinguish  between  implicit  and  explicit  statements.  We  aim  to 

extract only information that is explicitly stated in the natural language text. 

The Informatics for Integrating Biology and the Bedside (i2b2) challenge in 

2008 (Uzuner 2008) divided the information extraction task into two sub-tasks: 
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extracting information that is explicitly stated in text and that which can be 

inferred  from the  context.  The  distinction  has  also  been  recognised  by  the 

GENIA corpus, where the annotation guidelines require the annotators to only 

annotate information that is explicitly stated, and not use their own knowledge 

to infer from the text information that is only implied (Ohta et al. 2007).

As  discussed  in  more  detail  in  Chapter  2,  (Sanchez  2007) also 

distinguishes between two concepts that she refers to as implicit and explicit 

contradictions. However, by these she means contradictions that are explicitly 

talked  about  in  text  and  those  that  are  found  in  different  documents  (see 

examples on page 92). Therefore, even her implicit contradictions are still what 

we consider explicit as they do not take into consideration anything that is not 

explicitly stated in text.

In biomedical text mining and information extraction, it remains an open 

problem to extract all of what the authors intend to communicate from the text 

itself. This is because these texts are typically very rich in information, often 

with many shades and nuances in meaning. Experiments vary in a great deal of 

detail;  species,  anatomical  locations,  experimental  conditions  such  as 

temperature, and duration of experiments are only a few examples. Findings 

are reported with various levels of certainty, and are discussed thoroughly in 

comparison with the previous findings. It is very common that the meaning of 

whole sentences and paragraphs depend on the not-so-immediate context.

We primarily look at statements at the sentence level. Apart from a few 

exceptions in the anatomical NER module that will be discussed later, all the 

information extraction tasks are performed on the sentence level. This means 

that  information stated elsewhere in the text  is not taken into consideration 

when extracting facts and relations from a given sentence, and only what is 

explicitly stated in an isolated sentence will be considered.

According to this convention, if a sentence states that “p53 is expressed 

in lung” but it is evident from the rest of the document that it is in vivo lung of 

newborn rats subject to a certain medical procedure, we are in a situation where 
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we need to define precisely what we aim to extract. We do not aim to extract 

the  intra-sentence  context,  namely  “in  vivo”,  “new  born”,  “rat”,  and  the 

procedure. We limit our goal to extracting only the sentence-level information 

and therefore the only context we are concerned with is “lung”.

3.1.2 Event negations and speculations

Negated events. A negated event refers to an event that is reported in text as 

not happening. We treat negations as an attribute of the event.

According to this definition,  several  events can be expressed within a 

sentence, and not all are necessarily negated (or affirmative) simultaneously. 

The scopes of negation and speculation cues may vary or overlap. Moreover, 

the parts of the sentence stating a single fact are not always connected and 

independent. Therefore, sentence-based or scope-based definitions introduced 

in  Section  2.4.2 are  not  suitable  for understanding which facts  are  actually 

reported negatively or speculatively. This will also allow us to treat events as 

abstract  concepts  whose  expression  in  text  is  not  necessarily  with  a  self-

contained phrase or sub-string.

Example  3.1. “However,  while HUVECs contained endothelial NOS 

protein,  no  inducible  NOS  was  detected  in  either  tolerant  or 

nontolerant cells.”

(PMID 9915779, annotated by the BioNLP’09 corpus curators.)

In Example 3.1, the authors write that “no inducible NOS was detected”, 

effectively describing the lack of NOS expression in certain cells. In the same 

sentence,  the  word “contained”  is  referring to  the  expression  of  NOS in  a 

different location. Therefore, the same sentence describes two NOS expression 

events,  one  affirmative  (i.e.  expression  of  NOS in  HUVEC)  and the  other 

negated (induction of NOS in tolerant or nontolerant cells).
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Speculated  events. Speculations  (hedges)  are  defined  similarly  as  extra 

context on molecular events described in text. Sometimes the authors do not 

express with absolute certainty whether an event has happened or not. Rather, 

they speculate the existence of the event. This speculation may be in the form 

of expressing a hypothesis that they are later testing, or merely lack of enough 

evidence.  Hedges  classify  events  into  “speculated”  (or  “un-asserted”)  and 

“asserted”  categories  (see  Section  2.4),  depending  on  how  they  have  been 

described by the authors.

Example 3.2 shows a sentence which speculates the positive regulation 

(trigger: “participate”) of the regulation (trigger: “transcriptional regulation”) 

of “IL1-beta”.

Example 3.2. “These observations suggest that a so-far-unrecognized  

SP-1  site  in  the  human  IL-1beta  promoter  may  participate  in  the 

transcriptional regulation of this gene in keratinocytes.”

(PMID 8977297, annotated by the BioNLP’09 corpus curators.)

We also consider sentences like Example 3.3 as speculation.

Example  3.3. “Tumor  necrosis  factor  alpha  (TNF-alpha)  mRNA 

production was analyzed by polymerase chain reaction amplification in  

monocytic U937 cells and in a chronically HIV infected U937 cell line  

(U9-IIIB).”

(PMID 2204723, annotated by the BioNLP’09 corpus curators.)

In  Example  3.3,  the  authors  talk  about  the  “production” of  “Tumor 

necrosis factor alpha (TNF-alpha)”. However, they are not asserting whether 

the  production  did  or  did  not  happen.  Rather,  it  was  “analyzed”,  which 

suggests we can not infer the outcome of this analysis only from this sentence.

In  Example  3.4,  the  authors  are  declaring  that  a  certain  molecular 
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processes  “have not been studied”, and therefore, although the interaction is 

described in detail, neither its existence nor its absence can be inferred.

Example  3.4.  “However,  monocyte  interactions  with  activated 

endothelium in shear flow  following gene  transfer of the NF-kappaB 

inhibitor IkappaB-alpha have not been studied.”

(PMID 10339475, annotated by the BioNLP’09 corpus curators.)

3.1.3 Event representation

In this research we extend the template-based approach shared by BioNLP’09 

and BioNLP’11 to defining biomedical molecular events. This model formally 

represents a  molecular  event  with its  attributes as a  set  of  key-value  pairs. 

There  are  restrictions  on  the  valid  values  for  each  key.  For  example, 

participants of a relation can only be entities or other events. The restrictions 

on the values of some keys may vary depending on the values of other keys. 

The representational model is described in detail in Section 5.2.2.

We introduce two levels of event representation. On the semantic level, 

we identify every event that is biologically distinct by the following features:

1. its molecular type (any of gene expression, transcription, localization,  

protein  catabolism,  phosphorylation,  binding,  regulation,  positive  

regulation, or negative regulation);

2. the unique (database) identifiers of its cause and theme;

3. the unique identifier of the anatomical entity associated with the event 

(including the species that anatomical entity belongs to);

4. its polarity (negated or affirmative);

5. its certainty (speculated or asserted).

The representational model is depicted in Figure 3.2.
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Not  every  event  has  all  the  above  properties.  For  example,  only 

regulatory events could have a cause, and not all entities can be normalised by 

linking  to  database  entities.  In  such  cases,  we  use  the  best  approximation 

possible. We treat the ‘cause’ field optional in the unique identification of an 

event. We would consider the word form of the named entities (gene, protein, 

or anatomical entity mentions) if they cannot be normalised into their database 

entries.

For example, in  Example 3.5, the activation (i.e. positive regulation) of 

StatG by G-CSF in myeloid cells have been described.

Example 3.5. “We previously  demonstrated that  G-CSF activated a  

distinct  Stat3-like  protein  in  immature  and  mature  normal  myeloid  

cells, StatG.”

(From PMID 9823774 annotated by BioNLP’09 corpus annotators)

We further represent this interaction as in Figure 3.3.

In this case, neither of the two protein names, G-CSF and StatG, can be 

Figure 3.2: The event representational model.

Figure 3.3: The example of semantic representation of an event.
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normalised to  a  database  identifier  and therefore  are  represented with  their 

textual mentions.

An event can be triggered by a number of different triggers. For example, 

a  positive  regulation  event  can  be  triggered  by  “activate”,  “effect”,  

“regulate”, “depend”, “involve”, “role”,  or many other words. Despite this 

lexical  variation,  we expect  two positive  regulation  event  that  describe  the 

same  mothelecular  process,  using  different  terms  to  be  treated  as  equal. 

Similarly, named entities are referred to by various lexical terms. We would 

like this lexical variation not to affect the presentation of an event. In other 

words,  a  “regulation”  event  by  any  other  name  would  refer  to  the  same 

underlying molecular process.

In the case that any of the other features are not applicable (e.g. cause for 

any event type other than regulation) or do not exist (e.g. not mentioned in 

text),  we assign a null  value to that field.  If  an entity exists, but cannot be 

normalised to  a  database identifier,  the exact string of the term is recorded 

instead.

The feature “participant” encodes the the gene/protein as well as species 

(or organism) in the cases that the participant is a gene or protein and it is 

normalised. For example, the term “p53” appearing in an article that discusses 

human patients, will be resolved into a unique identifier referring to human p53 

(NCBI Entrez Gene ID 7157), which will be different from that of, say, mouse 

p53 (NCBI Entrez Gene ID 22059). For this reason, wherever we mention a 

normalised gene or protein, the species will be implicitly included. However, in 

this  research  we do  not  include  species  as  a  separate  column in  the  event 

representation at this stage, as the gene or protein is not always normalised.

This representation only selects a subset of the contextual attributes that 

could be associated with an event. It can be expanded to include a wide range 

of  contexts  related  to  the  reported  molecular  event  and  the  experimental 

settings, from population (including species) to features like  in vivo/in vitro, 

and the like. On the other hand, the minimum set of features that  gives an 
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identity  to  an  event  consists  of  the  event  type  (feature  1)  and  the  theme 

(included in feature 2). These features are not optional and must exist in every 

event.  “Event  type”  can  be  anything  from  an  event  ontology  entry  to  a 

predefined set of types. In our research we consider the nine BioNLP’09 event 

types as acceptable values for this field.

This representation differs from the  mention level representation of an 

event which concerns the syntactic attributes of the textual expression of the 

event such as the document and sentence it has appeared in, the exact terms 

used to describe the event and its participants, the terms used to assert or affirm 

the event, and the offset where these terms appear. An extensive list  of the 

attributes  that  we have  used  in  the  mention  level  definition  of  an  event  is 

shown in Table 5.2 on page 207.

Although we include the trigger term as an attribute in the mention-level 

representation, to prevent the representation of biologically distinct events from 

being affected by the lexical variability of trigger terms and entity names, we 

do not include such “surface” features in the this representational definition.

3.1.4 Conflicting statements

As discussed in Chapter 2, there is no consensus in the research community on 

the  definition  of  the  concepts  of  contrasts  and  contradictions,  so  here  we 

introduce our definition with relation to the aim of the conflict extraction task.

Contradictions. In this thesis,  we are interested in contradictory statements 

expressed in possibly different documents, possibly by different authors. We 

distinguish between the following types and degrees of contradiction.

1. Logical contradiction in biology

This  type  of  contradiction  would  mean  that  a  statement  p  and  its 

opposite are true simultaneously. For example, if the preposition “p53 

is expressed” is always true, then if a particular instance of p53 protein 

is not expressed we will have a contradiction of this type. We expect 
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this situation to never happen in nature in the same context.

2. Contradiction in the literature

This type of contradiction happens between two statements from the 

literature reporting facts about the same subject. In other words, when 

sentence A states that p is true (e.g. an event happening) and sentence B 

states that  ¬p is  true  (e.g.  an  event  not happening)  we will  have  a 

contradiction of this type. For example, when author A states that “p53 

is expressed in mouse lung tissue” and author B states that  “p53 is  

never expressed in mouse lung tissue”.

3. Contradiction in extracted data

This  type  of  contradiction  happens  between  statements  that  are 

generally  conflicting,  but  that  appear  to  be  contradictory  due  to 

underspecification  or  incomplete  context.  For  example  “p53  is  

expressed in mouse lung tissue at 36° C” and “p53 is not expressed in 

mouse lung tissue”. Here, one sentence states that an event happens in a 

certain temperature, and the other states that the same event does not 

happen in a different temperature. Failing to extract the context of the 

event that is related to the temperature, one might argue that the two 

events are contradictory. However, adding the relevant context to the 

extracted events would reveal that the two events are only contrasting 

as they differ in a contextual feature.

This  brings  us  to  our  definition  of  contradictory  events.  Amongst  an 

aggregate number of events extracted from a large body of literature, we say 

two events are  contradictory if they share features 1 (type), 2 (participants), 

and 3 (anatomical location) introduced in section 3.1.3, and are both assertive 

(feature 5), but differ in polarity (feature 4).

Example 3.6.

(a) “Positive  regulation of  CXCR4 expression  and  signaling  by 
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interleukin-7 in CD4+ mature thymocytes correlates with their capacity  

to  favor  human  immunodeficiency  X4  virus  replication.”

(From PMID 12719571, extracted by BioContext.)

(b) “In contrast, in intermediate CD4(+) CD8(-) CD3(-)  thymocytes,  

the other subpopulation known to allow virus replication, TEC or IL-7 

has  little  or  no effect on  CXCR4 expression  and  signaling.”

(From PMID 12719571, extracted by BioContext.)

The semantic representation of the two events in  Example 3.6 are shown in 

Figure 3.4.

It  can  be  seen  in  the  figure  that  the  two  events  have  everything  in 

common, except for their negation status. And as far as can be inferred from 

the sentences, they state contradictory claims.

Contrasts. We  say  two  events  are  contrasting if  they  share  all  of  the 

identifying features 1-5, except for either feature 2 (cause or theme) or feature 

3 (anatomical location). Similar to contradictory events, they also need to differ 

(a)

(b)

Figure 3.4: Semantic representation of the conflicting events in Example 3.6.

Note that the theme is an event, and is shown in the form of a recursive event. The 

complete recursive theme columns are not shown for simplification.
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in  their  polarity  (feature  4).  More  generally,  two  contrasting  events  have 

different polarities, but match in all but perhaps one contextual feature.

Example 3.7.

(a) “In addition, cloning efficiencies were acceptable (over 30%) when 

IL 2 produced spontaneously from the leukaemic cell Jurkat (M-N) was 

used.”

(From PMID 6278580, extracted by BioContext)

(b) “However, IL-2 is not normally synthesized by solid tumor cells.”

(From PMID 2190213, extracted by BioContext)

The  two  sentences  in  Example  3.7 refer  to  the  expression  of  IL-2. 

Sentence  (a) states that IL-2 is expressed in certain leukaemic cells, whereas 

sentence  (b) says that  it  is not expressed in tumor cells.  They differ  in  the 

anatomical  entity  (feature  3),  but  are  the  same  in  every  other  aspect.  The 

semantic representations are shown in Figure 3.5.

(a)

(b)

Figure 3.5: Semantic representation of the conflicting events in Example 3.7.

The two events match in all attributes except in their anatomical location (Jurcat vs.  

tumor cells).
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It is difficult to determine whether this contrast is a contradiction or not. 

We  need  expert  domain  knowledge  to  know  whether  leukaemic  cells  are 

actually  a  type  of  tumor  cells  or  not.  Tumor  cells  concern  cancer,  and 

leukaemia is a type of cancer, but inferring anything further than than is not 

easy for non-experts.

Contradictory  and  contrasting  events  are  special  cases  of  a  broader 

concept of  conflicting  statements: events that share  some characteristics that 

would justify comparing them, but are not necessarily in agreement with each 

other.

We also introduce the notions of  strict and  relaxed conflicts. In strict 

conflict, we require every field of an event representation to be filled (known) 

before  they  can  be  compared.  For  example,  if  the  cause  of  two regulatory 

events or their anatomical locations are not mentioned in the sentence and are 

therefore missing from the event representation, we cannot compare them in a 

strict way. On the other hand, in relaxed conflict, the missing or null fields are 

ignored when comparing two events. Obviously, two events that are strictly 

conflicting are more likely to represent an actual contradiction in the natural 

sense, due to the more complete context that is associated with it. On the other 

hand,  relaxed  conflicting  events  are  less  likely  to  be  contradicting  or 

contrasting.

In  the  following  sections  we  introduce  our  methods  for  extracting 

molecular events and detecting their negation and speculation.

3.2 Semantic tokenisation

Sentences that represent molecular events are typically long and complex. For 

example, the sentences in the BioNLP’09 corpus are on average 26 words long, 

and  there  are  outlier  sentences  that  are  more  than  130  words  long.  These 

sentences contain many biomedical named entities, many of which consist of 

multiple words (e.g.  tumor necrosis factor-alpha or  Homo Sapiens). Some of 

these  entities  can  even  be  parts  of  what  would  typically  be  considered  as 
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tokens.  For example,  a phrase like  “NFkappa B/Rel” refers to two entities: 

NFkappa  B and  Rel.  A  good  tokeniser  should  recognise  those  entities  as 

individual tokens, and not, for example, pick B/Rel as a token. 

This  is  a  challenging  task,  however,  due  to  the  biologically  and 

linguistically complex nature of the named entities. In turn, this may confuse 

the parser and cause it to produce a sub-optimal parse tree. In the first stage of 

our work (the event extraction task) this was one of the major problems that 

arose when trying to align the extracted event components with the parse trees. 

The  parse-tree-based  rules  mostly  concerned  individual  nodes  in  the  tree, 

whereas  an  entity  could  have  been  broken  up  across  several  nodes,  and 

depending on which node was treated as the head,  could result  in  different 

features. On the other hand, two entities could be grouped together in the same 

parse  node,  and  end  up  having  identical  parse  tree  features,  despite  their 

different roles.

To address this issue, we delay tokenisation and parsing until after the 

named  entities  are  extracted.  Tokenisation  then  takes  into  account  named 

entities  as  single  tokens  of  the  nominal  type  and  automatic  parsing  is 

performed on the sentences with semantically separated tokens. We refer to 

this  process  as  semantic  tokenisation.  We  hypothesise  that  semantic 

tokenisation would increase the quality of the parses, and therefore the feature 

extraction process.

To demonstrate the process of semantic tokenisation, consider  Example

3.8.

Example 3.8. “Tumor  necrosis  factor  (TNF)-alpha-induced  HIV-1 

replication in OM10.1 or Ach2 cells was significantly inhibited by non-

cytotoxic doses of AuTG [...]”

(PMID 10069412 from the BioNLP’09 corpus)

Figure  3.6 shows  part  of  this  sentence  before  and  after  semantic 
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tokenisation. Figure 3.6(a) shows the tokenisation as performed by GENIA and 

McClosky parsers and provided as part of the BioNLP’09 corpus. Figure 3.6(b) 

shows the same part of the sentence, but tokenised after the entity  “Tumor 

necrosis factor (TNF)-alpha” was recognised by the gene name recognisers17 

and was treated as a single noun. At this stage, the recognised named entities 

are replaced by a generic noun to make sure that the parses treat them as nouns.

Figure  3.7 shows the  partial  parse  tree  of  the  same  sentence,  as  the 

named  entity  is  treated  as  a  single-token  proper  noun.  As  this  figure 

demonstrates, the word “alpha” is part of the named entity  “Tumor necrosis 

factor  (TNF)-alpha” and  should  not  be  separated  from  the  rest  of  the 

compound named entity. However, as can be seen in Figure 3.7(a), the parser 

has  recognised  “Tumor  necrosis  factor  (TNF)”  as  a  noun  phrase,  and  has 

grouped  “alpha”  with  another  separated  noun  phrase.  Consequently,  if 

“Tumor  necrosis  factor  (TNF)-alpha” is  marked  as  a  named  entity,  and 

“alpha” is  treated  as  the  head  of  this  named  entity  (although  it  is  not 

technically the head of the phrase), the features extracted for this token will be 

generally  applied to  the  entire  named entity.  As this  example  shows,  those 

features could be very different from the features of any of the other tokens of 

the named entity. This issue is addressed in Figure 3.7(b) in which parsing has 

been  performed  after  the  semantic  tokenisation,  and  therefore  the  features 

extracted from the named entity will more likely be correct.

17 See section 5.1.3 for more details.

Figure 3.6: Example of semantic tokenisation.

Part  of  the  example  sentence  tokenised  (a)  in  the  default  tokenisation  of  the 

BioNLP’09 corpus and (b) using semantic tokenisation.
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Note that  in  this  example,  the  parser has tagged  “induced” as  a  past 

participle  form of a verb in Figure  3.7(b),  whereas the correct  grammatical 

structure  of  this  phrase  should  recognise  this  word  in  the  phrase  “Tumor 

necrosis factor (TNF)-alpha-induced” as an adjective.

(a)

(b)

Figure 3.7: Semantic tokenisation on the parse tree of a sentence.

Syntactic  parse  tree  of  the  example  sentence,  partially  shown  to  demonstrate  

semantic  tokenisation  (a)  without  semantic  tokenisation  and  (b)  with  semantic  

tokenization. The named entity  “Tumor necrosis factor (TNF)-alpha” is treated as a 

single-token proper noun in (b).

Replacing multi-token entities with place-holder nouns could potentially 
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affect the performance of the other tools.  For instance, sentence splitting is 

performed  after  named  entity  recognition,  and  capitalisation  is  one  of  the 

features  that  sentence  splitters  look  for  to  determine  the  beginning  of  a 

sentence. To prevent sentence splitters from missing the split where the next 

sentence starts with a multi-token named entity, we make sure that we maintain 

the  capitalisation  when  we  replace  the  named  entity  with  the  place-holder 

noun.

Another  issue  is  the  overlapping  entities.  Named  entities  recognisers 

often recognise entities that have overlapping spans. This can sometimes be an 

error, for example in  “Human Immunodeficiency Virus” at least three named 

entities  can  be  recognised,  namely  “Human”,  “Virus”,  and  “Human 

Immunodeficiency Virus”.  Failing to  recognise  the  longest  string,  the  entity 

mention could be resolved into an incorrect type, e.g.  “Human”. However, it 

does  not  always cause  an  error:  often  in  the  literature  entities  are  actually 

overlapping, as one named entity could have a sub-component which is also a 

named  entity  of  a  similar  type,  with  the  longer  entity  merely  being  more 

specified.  For  instance,  in  “fruit  fly”  or  “Persian cat”,  recognising entities 

“fly” or “cat” would not resolve into incorrect entities, but into underspecified 

entities.

In such cases, considering the union of the overlapping named entities 

would solve both underspecification and incorrect problems. Therefore we take 

the union of the overlapping named entities as one named entity and assign the 

normalised properties of the longest named entity of the group to the resulting 

string.

3.3 Extracting molecular events

At the time of this study, no suitable molecular event detection software was 

publicly available, so we developed an event detection system called Evemole 

that  uses  a  combination  of  machine  learning  and  rule-based  methods  and 

makes use of dependency parse-tree-based features. It takes an input a sentence 
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with the gene and protein named entities already recognised.

The system consists  of two main modules:  (1) event trigger and type 

detection,  and  (2)  event  participant  detection.  Each  module  has  a  post-

processing stage. Figure 3.8 shows an overview of the system.

The  following  sections  explain  the  two  main  phases  of  the  event 

extracting system, i.e. trigger and type detection, and participant association.

3.3.1 Event trigger and type detection

Our view of the event trigger and type detection modules was that each token 

in a sentence needed to be tagged either as a trigger for one of the nine event 

types, or as a non-trigger/event token. We therefore decided to identify event 

types and triggers in a single step by training a conditional random field (CRF) 

classifier that assigned one of ten (nine types plus non-trigger) tags to each 

token. CRFs have been shown to be particularly suitable for tagging sequential 

data such as natural language text, because they take into account features and 

tags  of  neighbouring tokens  when evaluating the  probability  of  a  tag for a 

given token (see Section 2.3.4).

Tokens and their part-of-speech (POS) tags were recognised using the 

GENIA Tagger  (Tsuruoka et al. 2005). Each stemmed token was represented 

using a feature vector consisting of the following features:

 A binary feature indicating whether the token is a protein (as identified 

by gene NER);

Figure 3.8: Overview of the event extraction system, Evemole.
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 A  binary  feature  indicating  whether  the  token  is  a  known  protein-

protein interaction word—we used a pre-complied dictionary of such 

words collected from the training data and the previous studies  (Fu et 

al. 2009); (Yang et al. 2008) (see Appendix B for the full list);

 The token's POS tag;

 The log-frequencies of the token being a trigger for each event type in 

the training data (nine features);

 The number of proteins in the given sentence.

Other features (e.g. separating the known interaction words according to 

the nine event types) were explored, but were not included in the final feature 

list since they increased the sparseness of the data and did not improve the 

overall  results.  Also,  the  high  level  of  ambiguity  among trigger  words and 

event types meant that they could not be effectively used as features. For a full 

list of all trigger terms and the frequency with which they represent events of 

different type, see Appendix B.

In the following examples, a numeric type has been assigned by the CRF 

module to every token in the sentence. Type 0 indicates that the token is not a 

trigger word. Types with tags other than 0 are event triggers, and the numeric 

value indicates the type of the event. Table 3.1 shows tagging of the tokens in 

the phrase  “I kappa B/MAD3 masks the nuclear localization” in which the 

word “masks” has been tagged as class 9, indicating that it is the trigger of an 

event of type Negative regulation.

tokens I kappa B/MAD3 masks the nuclear localization

tags 0 0 0 9 0 0 0

Table 3.1: Example tagging of a phrase by CRF

Tag 0 means that the token is not an event trigger. Tag 9 means that the token is the 

trigger of an event of type Negative regulation.
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The  performance  of  this  phase  was  studied  on  the  BioNLP’09 

development dataset: we noted a number of false-positive and false-negative 

results that were mostly due to the incorrect identification of a set of recurring 

triggers. We therefore decided to perform a post-processing step to improve the 

identification of event triggers and event types.

For this purpose, the output of the CRF module was overridden in cases 

where the triggers appeared in a list of negatively discriminated trigger words 

which was collected after the manual analysis of the false positive results on 

the training and development data. Similarly, in cases where the CRF missed a 

highly indicative trigger from a manually collected set for a given event type, 

the trigger was added during the post-processing step (see Appendix B for a 

complete list).

Finally, since triggers could consist of more than one consecutive token, 

a set of simple rules were applied to remove typical false-negative constituents 

identified by the CRF as part of triggers, namely removing ‘whereas’, ‘and’,  

‘or’, and ‘but’ if recognised as part of a multi-token trigger.

In  this  task  we  used  Monte  (Memisevic  2007) which  is  a  Python 

framework for building gradient based learning machines like neural networks 

and conditional  random fields.  It  provides  a  range  of  kernel  functions  and 

trainers including linear and sigmoid functions.

3.3.2 Locating event participants

After detecting potential triggers and associated event types, the next task was 

to locate possible participants (i.e. ‘themes’ and ‘causes’) for each event.

We hypothesised that the linguistic structure of the sentence corresponds 

to biological semantics that are conveyed by it. It was obvious that participants 

did  not  have  to  be  the  nearest  to  the  trigger  on  the  surface  level,  so  our 

approach was based on distances within the  parse trees associated with the 

sentences containing candidate events. Parse tree distances have been studied 

previously in clustering and automatic translation tasks (Emms 2008), as well 
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as  relation  extraction  tasks  as  discussed  in  Section  2.3.4.  Therefore,  we 

hypothesised  that  we  could  use  their  properties  to  identify  the  most  likely 

participants.

The BioNLP’09 training data was analysed for the proximities between 

the triggers and the (correct) event participants in the dependency parse tree of 

the sentence. This analysis demonstrated that it was more likely for a theme to 

appear in the sub-tree of the corresponding trigger, with 70.5% of all single 

theme events (class I) having a theme which appeared in the sub-tree of the 

trigger.  Figure  3.9 shows the proportions of event participants that are in the 

sub-tree vs non-sub-tree of the event trigger, for different classes of events.

Figures  3.10,  3.11,  and  3.12 present  detailed density  functions  of  the 

dependency tree distances when the participants are or are not in the trigger’s 

sub-tree,  together  with  the  cumulative  distributions  of  these  functions. 

(ignoring non-protein nodes). The analysis showed that the theme was usually 

amongst the nearest proteins to the  trigger in terms of dependency parse tree 

distances: for example, in 60% of all class I events (i.e. single theme events e.g. 

gene  expression,  localization,  etc.)  the  correct  protein  participant  was  the 

trigger’s nearest or second nearest protein in the parse tree.

Figure 3.9: Sub-tree vs. non-sub-tree distribution of event participants

The proportions of event participants that are in the sub-tree vs non-sub-tree of the  

event trigger, for different classes of events.

Class I: simple

Class II: binding

Class III: regulation

0 1000 2000 3000 4000 5000 6000 7000

Participant not 
in subtree
Participant in 
subtree



128 Chapter 3 Molecular event extraction and contextualisation

(a)

(b)

Figure 3.10: PDF and CD for participants in sub-tree of trigger

(a)  Probability  density  function  (PDF)  and  (b)  cumulative  distribution  (CD)  of  the  

dependency distances between the trigger and the participant in the parse tree, when  

the participant is in the trigger’s sub-tree.
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(a)

(b)

Figure 3.11: PDF and CD for participants not in the sub-tree of the trigger

(a)  Probability  density  function  (PDF)  and  (b)  cumulative  distribution  (CD)  of  the  

dependency distances between the trigger and the participant in the parse tree, when  

the participant is not in the trigger’s sub-tree.
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(a)

(b)

Figure 3.12: PDF and CD of the participant distances from trigger

Overall (a) probability density function (PDF) and (b) cumulative distribution (CD) of  

the dependency distance between the trigger and the participants in the parse tree.
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The same pattern was observed in other event classes as well. Specific 

analyses  of  the  parse  trees  associated with the  class  II  (i.e.  binding events 

which may have more than one theme) suggested a linear relationship between 

the  parse  tree  distance  and  binding  event  participant  number  (the  first 

participant is the nearest, the second participant is the second nearest, etc.). In 

Figures 3.10, 3.11, and 3.12 the third theme of binding events stands out as it 

most commonly appears in the third relative place.

We used this distributional analysis (derived from the BioNLP’9 training 

data)  to  design  a  rule-based  method  for  the  identification  of  participating 

themes. The rules were manually derived for each of the nine event classes, by 

defining:

 a threshold for the maximum distance to the trigger in the sub-tree for 

the given event type;

 a threshold for the  difference between the maximum distance in  the 

whole tree and the given sub-tree for the given event type;

 the number of nearest proteins to be reported for each trigger.

The thresholds  were  chosen  experimentally  to  maximise  performance, 

and are comparable to those used in previous studies.

Table 3.2 contains an algorithm demonstrating the rules that were used to 

assign  participants  to  events  of  different  types.  All  entities  that  satisfied  a 

distance-based  rule  for  a  given  trigger  were  selected  as  the  corresponding 

theme(s) and/or cause. For example, if the event type was binding, then up to 

the second closest protein in the sub-tree, and the first closest protein in the rest 

of the tree are reported as themes.
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 0. The trigger is already found with CRF

 1. Make a list of all the proteins in the sentence in which the 

trigger is found, sorted by the parse tree distance between 

the protein and the trigger

 2. Depending on the type of the trigger apply one of these 

algorithms

 2.1. If the trigger is of types Transcription, Localization, 

Phosphorylation, or Protein catabolism

• Iterate over the sorted list until the distance between 

the protein and the trigger minus the distance 

between the nearest protein to the trigger and the 

trigger is more than a threshold. Return all such 

proteins.

 2.2. If the trigger is of type Gene Expression

• Iterate over the sorted list until some threshold on 

the distance, returning only the proteins in the sub-

tree.

 2.3. If the trigger is of type Binding return the proteins which 

are

• In the sub-tree of the trigger and have a distance 

less than a looser threshold; or

• Have a distance less than a tighter threshold

 2.4. If the trigger is any of the Regulation types

• If there is an event already detected in the same 

sentence, return the event

• Otherwise return the nearest protein

 3. Report all proteins/events found in step 3 as the participants 

of the event

Table 3.2: Algorithm to to associate entities with triggers

The  algorithm  used  to  construct  events  by  associating  entities  as  participants  to 

triggers with already assigned types.

Engineering  such  rules  for  non-regulatory  events  was  relatively 

straightforward.  However,  regulatory  events  could  have  different  kinds  of 
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participants (a protein or an event). Therefore, this would require a number of 

recursions  in  the  application  of  the  rules  to  represent  nested  regulatory 

processes. Still, the regulation events were specially complicated to detect, and 

particularly  because  the  type  of  participant  (theme/cause)  had  to  be 

distinguished, so we aimed for a high recall and reported all the combinations 

of the entities in the sentence.

In the case of the participant being an event, we locate the nearest trigger 

for the event (being regulated) in the parse tree.  For example, in Figure 3.13, 

the nearest option to the regulation trigger (“secretion”) was the trigger of the 

two localization events, and both events should be reported as the themes of 

two regulation events.

To  further  demonstrate  the  method  we  study  the  sentence  shown  in 

Example 3.9.

Example 3.9. “Monocyte tethering by P-selectin  regulates monocyte  

chemotactic protein-1 and tumor necrosis factor-alpha secretion.”

Figure 3.13 shows the parse tree of Example 3.9 which contains multiple 

events. 
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Figure 3.13: The parse tree of Example 3.9

The detected triggers are shown in boxes. Entities are numbered and are shown by  

italic T.

The  words  “regulates” and  “secretion” are  correctly  identified  as 

triggers for a  regulation and a  localization event in the first phase. Using the 

rules  for  localization,  we would then  correctly  identify  the  themes for  two 

localization  events  from  the  sentence  parse  tree  as  proteins  T2  and  T3 

(“monocyte  chemotactic  protein-1” and  “tumor  necrosis  factor-alpha”.)  It 

correctly ignores T1 (“P-selectin”) since it did not appear in the trigger’s sub-

tree.

The nearest option to the regulation trigger is  “secretion”, which is the 

trigger of the other events. Therefore both events would correctly be reported 

as  the  themes  of  the  two  regulation  events.  Figure  3.14 shows  the 

representation of these four events.
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It can be seen that a number of recursions in the application of the rules 

would be required to represent higher-order regulatory events. For the purposes 

of this study, only regulations up to the second “order” were detected, allowing 

other events to act as themes and causes as well as proteins.

Similar to the previous stage,  here we also performed post-processing 

based on studying the output of the system on the BioNLP’09 development 

data.  In  this  phase,  we  forced  highly  indicative  regulation  triggers  (if  not 

previously  identified)  to  be  associated  with  an  event  by  assigning  proteins 

appearing  in  the  sentence  to  them,  even  when  no  protein  in  the  sentence 

satisfied  the  theme  or  cause  criteria.  This  was  aimed  at  improving  the 

extremely low recall for regulatory events.

3.4 Extracting negation

Negation and speculation are defining features in extracting conflicting events. 

Figure 3.14: Representation of the events with participants

The events are extracted using parse-tree rules.
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We introduce a method, called Negmole, that uses machine learning to classify 

molecular  events  as  negated  or  speculated.  We  further  build  a  pipeline  to 

integrate  several  text  mining  tools,  including  Negmole,  to  extract  and 

contextualise molecular events from the available body of scientific literature. 

We use the event data that is extracted by this system to find conflicting events 

across  the  literature,  and  classify  them  as  candidates  for  contrasts  and 

contradictions.

We primarily focus on (and design our method for) negation detection, 

but  also  adjust  the  method  for  speculation  detection  with  some  minor 

modifications. At this stage, we assume that entity mentions, event triggers, 

types, and participants have already been extracted, so this data can be used as 

the input.

Initially, we implemented the NegEx algorithm (see Section  2.4.2) as a 

baseline  and applied  it  on  the  union  of  training  and development  data,  by 

considering  the  event  triggers  as  the  terms  required  by  the  algorithm.  The 

P/R/F-score achieved by this method was 36%/37%/36%. Analysing NegEx’s 

FP  and  FN  predictions  (after  leaving  the  development  data  unseen)  we 

identified the following patterns contributing to the errors.

It  is  a  common  characteristic  of  the  biomedical  literature  abstracts 

describing  protein  interactions  that  more  than  one  event  or  interaction  is 

expressed in a sentence. Amongst those sentences that do express an event, an 

average  of  2.6  event  triggers  appear,  and  the  number  of  events  actually 

described  can  be  higher,  as  the  event  trigger  does  not  repeat  when  the 

participants  of  different  events  are  joined  by  a  conjunction.  Example  3.10 

shows a sentence describing a number of events.

Example 3.10. “In  this  study,  we  demonstrate  that  Tax-stimulated 

nuclear expression of NF-kappa B in both HTLV-I-infected and Tax-

transfected human T cells is associated with the phosphorylation and 

rapid proteolytic degradation of I kappa B alpha.”
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(From PMID 7935451)

The NegEx algorithm implicitly assumes the occurrence of one idea per 

sentence.  In  the  case  where  several  events are  expressed in  the  sentence—

whether they are separated by conjunctions or not—NegEx fails to detect the 

correct scope. See Example 3.11, for instance.

Example 3.11. “We also demonstrate that the IKK complex, but not  

p90 (rsk), is responsible for the in vivo phosphorylation of I-kappa-B-

alpha mediated by the co-activation of PKC and calcineurin.”

(From PMID 10438457)

More specifically, when there is a contrast expressed in the sentence as in 

Example  3.11,  NegEx  fails  to  determine  which  one  of  the  contrasting 

statements are negated and which one is affirmed. This could happen in cases 

where no conjunction appears, as in Example 3.12.

Example 3.12. “In contrast, NF-kappa B activity was not detected in  

the  nucleus  following  long-term  expression  of  Tax  in  Jurkat  T 

lymphocytes.”

(From PMID 1964088)

As there are more than two interaction words per sentence for sentences 

that  describe an interaction,  for any method to  be able  to  effectively detect 

negations, it should be able to link the negation cue to the specific token/event 

trigger/entity name in question.

Figure  3.15 shows  an  overview  of  the  negation  detection  system, 

Negmole,  that  uses  detected  entities  and  events  as  input.  We  construe  the 

negation detection problem as a classification task where the aim is to classify 

the previously detected events as affirmative or negative. The same applies to 
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the  speculation  detection  task  (see  Section  3.5).  To  extract  negated  and 

speculated  events,  we  use  machine  learning  with  lexical,  syntactic,  and 

semantic features. Lexical features include negation cues, part-of-speech tags, 

and surface  distances between key elements  of  an  event.  Syntactic  features 

include the relationship between those elements within the constituency parse 

tree of the sentence. Semantic features involve the biological characteristics of 

the events, such as the types of the events or their participants. These will be 

explained in the following sections.

Figure 3.15: An overview of Negmole

The requirements of Negmole are specified.

About  95%  of  the  annotated  events  in  the  BioNLP’09  corpus  are 

encompassed in a single sentence (Björne et al. 2009), so we limit our attention 

to  events  that  have  their  components  (trigger  and  participants)  within 

sentences.  Negmole then classifies each event using the features engineered 

from  an  event-representing  sentence.  The  following  sections  describe  the 

details of the system.

3.4.1 Detecting negation and speculation cues

Detecting  negation  cues  (see  Section  2.4)  can  be  generally  construed  as  a 
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named entity recognition problem. Compared to other entities discussed so far, 

words  and  phrases  indicating  negation  and  speculation  are  relatively  less 

ambiguous and have less term variability. Previous approaches that have used 

dictionary look-up methods report a reasonable performance (see Section 2.4), 

and thus here we also use a similar dictionary-based approach.

We  built  the  cue  dictionaries  semi-automatically  by  analysing  the 

BioNLP’09  training  data.  For  both  negation  and  speculation,  we  first 

considered exact matches between tokens and cues in the dictionaries. In later 

experiments, we used stemming to also detect inflected forms of the cues.

Negation cues

We used two different cue sets,  a smaller,  stricter  set,  and a larger set  that 

included  the  first  set.  The  small  cue  set  was  largely  composed  of  general 

linguistic cues, whereas the larger one also contained domain-specific cues that 

would  not  necessarily  have  been  considered  a  negation  cue  in  a  different 

domain. Words such as “inhibit”, “unchanged”, and “block” do not indicate a 

negation  in  natural  language  sentences  per  se.  However,  they  commonly 

indicate the absence of the biomedical event that is being discussed. The two 

sets of negation cues as well as the negation cues with stemming are listed in 

Table 3.3.

The distribution of the most frequent of these cues in the BioNLP’09 

training data is shown in Figure 3.16. This figure only shows the occurrence of 

these  cue  words  in  the  corpus  and  not  whether  these  words  indicate  any 

negated event. As the negation cues are not annotated in this corpus, it is not 

possible to infer with certainty what has been the exact clue for the annotators 

to mark a given event as negated. In fact, many of these occurrences, e.g. the 

occurrences  of  “inhibit” may  indicate  affirmative  down  regulation  events. 

Others may refer to other negated concepts not related to molecular events. On 

the other hand, some negated events may have been marked as negated due to a 

cue that is not included in this list.
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Small negation cue 

set  without 

stemming

no, not, none, negative, without, absence, fail, fails, 

failed, failure, cannot, lack, lacking, lacked

Large negation cue 

set without 

stemming

no, not, none, negative, without, absence, fail, fails, 

failed, failure, cannot, lack, lacking, lacked, inactive, 

neither, nor, inhibit, unable, blocks, blocking, preventing, 

prevents, absent, never, unaffected, unchanged, 

impaired, little, independent, except, exception

Final negation cue 

set (stemmed)

absenc, absent, block, cannot, except, fail, failur, impair, 

inact, independ, inhibit, lack, littl, neg, neither, never, no, 

none, nor, not, prevent, unabl, unaffect, unchang, without

Table 3.3: The negation cue sets used in different experiments.

The experiments using the different cue sets differed slightly in precision 

and recall, but overall the F-score was not affected. More detailed results and 

analysis will be presented in Chapter 4.

Figure 3.16: Distribution of negation cues in the BioNLP’09 training data

Showing  the  most  frequent  negation  cue  word  occurrences,  but  not  necessarily  

indicating a negated event.
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Speculation cues

Similarly to the negation cues, we used a set of stemmed speculation cues as 

the  reference  dictionary to  detect  speculation cues.  After  some experiments 

with the stems selected from the training data, we discovered that three of the 

stems,  namely  “thought”,  “confirm”,  and  “delin” (stem for  delineate)  are 

having an adverse effect on the performance of the speculation detection task 

when tested on the development data. The initial and final speculation cue sets 

with stemming are listed in Table 3.4.

Initial set of speculation 

cues, composed from 

the training data 

(stemmed)

mai, can, could, might, mayb, thought, suggest, hypothes, 

investig, ask, found, find, possibl, confirm, seem, appear, 

examin, like, unclear, evid, must, probabl, undefin, clear, 

implic, observ, postul, determin, analys, analyz, partial, 

propos, assume, whether , delin

Final set of speculation 

cues, after removing 

some cues 

experimentally 

(stemmed)

mai, can, could, might, mayb, suggest, hypothes, investig, 

ask, found, find, possibl, seem, appear, examin, like, 

unclear, evid, must, probabl, undefin, clear, implic, observ, 

postul, determin, analys, analyz, partial, propos, assume, 

whether 

Table 3.4: The set of speculation cues used in different experiments.

Note that both sets contain stemmed cues.

The distribution of the most frequent of these speculation cues in the 

BioNLP’09 training data is shown in Figure 3.17. The same considerations as 

the negation cue distribution apply here as well, as this figure can only be an 

approximation of the speculation cues that have in fact caused the event to be 

speculated. Note the difference in scale between Figure 3.16 and Figure 3.17. 

The  top  negation  cue  appeared  more  than  3500  times,  whereas  the  most 

frequent speculation cue appeared only under 400 times.
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Handling multiple cues

It  is  common  in  general  and  specifically  in  the  BioNLP’09  corpora  for 

sentences to contain more than one negation or speculation cue. Analysing the 

training and development data sets shows that amongst the sentences that do 

contain a negation or speculation cue, on average they contain 1.44 cues. It was 

interesting that the distribution of the two cue types as well as the averages 

were quite similar, with the average number of negation cues per sentences 

with negation cues being 1.22 and the same statistic for speculation cues being 

1.27.

Figure 3.18 shows the number of sentences in the combined BioNLP’09 

training and development data sets for a given number of cues on a logarithmic 

scale. In this data set, there were two sentences with five speculation cues (as 

given in Example 3.13).

Figure 3.17: Distribution of speculation cues in the BioNLP’09 training data

Showing the most  frequent speculation cue word occurrences, but not  necessarily  

indicating a speculative event.
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Example 3.13.

(a) “We therefore  investigated whether the activation of  the IL-1RI-

associated protein  kinase  could be a target for redox regulation and  

whether an altered activity of the kinase could influence IL-1-mediated 

NF-kappa B activation.”

(From PMID 9394832, speculation cues detected by Negmole.)

(b) “Because this region of Stat3alpha is involved in transcriptional  

activation, our findings suggest the possibility that Stat3gamma may be 

transcriptionally inactive and  may compete with Stat3alpha for Stat3  

binding sites in these terminally differentiated myeloid cells.”

(From PMID 9823774, speculation cues detected by Negmole.)

There was also one sentence in the corpus which contained five negation 

cues. This sentence and another example with four negation cues are shown in 
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Negation
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Figure 3.18: Distribution of sentences containing any cues

The number of sentences in the BioNLP’09 training and development data sets with a  

given number of negation or speculation cues, displayed on a logarithmic scale. Note  

that there was one sentence with five negation cues, which cannot be shown here.  

There are no sentences with six or more cues.
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Example 3.14.

Example 3.14.

(a) “However,  plasma  membrane-proximal  elements  in  these 

proinflammatory cytokine pathways are apparently  not involved since 

dominant negative mutants of the TRAF2 and TRAF6 adaptors, which  

effectively  block signaling through the cytoplasmic tails  of  the TNF-

alpha and IL-1 receptors, respectively, do not inhibit Tax induction of  

NF-kappaB.”

(From PMID 9710600, negation cues detected by Negmole.)

(b) “This inhibition was not mediated through Nef phosphorylation on 

Thr-15 or GTP-binding activity because mutations in critical sites did 

not alter this inhibition”

(From PMID 7917514, negation cues detected by Negmole.)

Note that not all the cues in Example 3.14 indicate linguistic negation, as 

some of them refer to negative biological concepts, or down-regulation.

As we can see from these examples, the number of cues in a sentence can 

be  an  indication  of  how  strongly  the  sentence  expresses  negation  or 

speculation. Therefore, we use the number of cues in the sentence as a feature.

We choose one of the cues in the sentence as the main cue. Since our 

approach is event-oriented, we propose a way to identify the main cue for an 

event and not for the whole sentence. We hypothesise that the main cue is the 

cue which is responsible for the negation of an event, and we aim to extract 

relevant  features  from  it.  The  main  cue  is  selected  for  each  event 

independently,  rather than selecting a main cue for the whole sentence. For 

every event, the cue that has the shortest constituency parse tree path to the 

event trigger is selected as the main cue. Using this method, the main cue in a 

sentence can be different for every event.

To demonstrate how cue distances are calculated, consider Example 3.15.
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Example 3.15.

“Structure  and function  analysis  of  the  human myeloid  cell  nuclear  

differentiation antigen promoter: evidence for the  role of Sp1 and not 

of c-Myb or PU.1 in myelomonocytic lineage-specific expression. ”

(From PMID 9136080 annotated by the BioNLP’09 corpus annotators)

This sentence contains two molecular events:  a regulation event (with 

trigger  “role”) and a gene expression event (with trigger  “expression”). The 

regulation event is negated, whereas the gene expression event is affirmative.

Figure  3.19 shows  the  partial  parse  tree  of  the  sentence.  It  can  be 

observed that the constituency parse tree distance between the negation cue 

“not” and the trigger of the regulation event  “role” is equal  to 4,  and the 

constituency parse tree distance between the negation cue and the trigger of the 

gene expression event “expression” is equal to 5.

Figure 3.19: Partial constituency parse tree showing the trigger-cue distance

Partial constituency parse tree of the sentence in  Example 3.15. The negation cue 

“not” has  a  distance  of  4  with  trigger  “role”,  and  a  distance  of  5  with  trigger 

“expression”.

There  is  only  one  negation  cue  in  this  sentence,  therefore  it  will  be 

considered as the main cue for both of the events. However, the features of the 

two  events  with  regard  to  negation  will  be  different,  as  their  trigger-cue 
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distances are not the same.

Note  that  since  negation  and  speculation  detection  is  performed 

completely independently,  it  does  not  cause  any complexities  if  a  sentence 

contains a mixture of negation cues and speculation cues.

3.4.2 Negations with command rules

The command relation was introduced in Section  2.3.3. In this research, we 

only  require  condition  2  for  command  relation  to  hold,  namely,  node  a 

‘commands’ another node b if  the S-node that most immediately dominates a 

also dominates b.

We hypothesised that if a negation cue has some command relationship 

with an event component, then the associated event could be negated. To test 

this hypothesis, we developed a rule-based system and experimented with three 

possible  rules.  An  event  is  considered  negated  if  either  of  the  following 

conditions hold.

 the negation cue commands any event participant in the parse tree; or

 the negation cue commands the event trigger in the tree; or

 the negation cue commands both.

To determine whether token a X-commands token b, given the parse tree 

of a sentence, we use an algorithm introduced by (McCawley 1993), tracing up 

the branches of the constituency parse tree from a until a node that is labelled 

X is reached. If  b is reachable by tracing down the branches of the tree from 

that node, then a X-commands b; otherwise, it does not.

Figure 3.20 displays a parse tree of Example 3.16.

Example 3.16. “We now show that a mutant motif that exchanges the  

terminal 3’ C for a G fails to bind the p50 homodimer [...]”

(From PMID 9442380)
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This figure shows how the command relation can signal the affected part 

of  the  sentence.  The negation cue,  “fails”,  VP-commands the  event  trigger 

bind,  and therefore indicates that  the associated event is negated.  However, 

another event trigger in the sentence, “exchanges”, is not affected by this cue 

and therefore is not negated. The main verb of the sentence, show, is also not 

commanded by the cue and is therefore affirmative, as can be easily verified.

The results of this rule-based approach will be presented in Chapter 4.

3.4.3 Extracting negations—a machine learning approach

Here  we  explain  another  approach  to  negation  detection,  using  machine 

learning to increase the performance of the rule-based method.

Given  a  sentence  that  describes  an  event,  we  further  construe  the 

negation detection problem as a classification task: the aim is to classify the 

event as affirmative or negative. For this purpose, we use an SVM (support 

Figure 3.20: Command relation detecting a negated event

The simplified parse tree of the sentence “We now show that a mutant motif  that  

exchanges the terminal 3’ C for a G fails to bind the p50 homodimer.” The negation  

cue “fails” VP-commands one of the event triggers, “bind” and therefore causes that  

event to be negated. There was no such command relation between the other trigger,  

“exchanges”, and therefore the respective event is not affected.
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vector machine) classifier.  In recent years, many machine learning algorithms 

have been implemented into efficient and customisable tools and have been 

made publicly available. These tools have been exploited for a wide range of 

applications in the areas of text mining and data mining.

The machine learning tools that have been helpful to our research are

• SVM light:  Support  Vector Machine implementation in  C  (Joachims 

1999)

• SVM  perf:  an  optimisation  of  the  SVM,  specifically  for  binary 

classification (Joachims 2006)

We explore two approaches: (1) using a single SVM classifier modelling 

negation for all events together; and (2) using three separate SVM classifiers, 

each one modelling negation for each of the event classes I, II, and III.

In the first experiment, the following features were engineered from an 

event-representing sentence. These features are common across all classes.

Lexical features:

1. Whether the sentence contains a negation cue from the cue list;

2. The negation cue stem (if present);

3. The part-of-speech (POS) tag of the negation cue;

4. The POS tag of the event trigger;

5. The POS tag of the theme of the event; if the theme is another event, 

the POS tag of the trigger of that event is used

Syntactic features:

6. The constituency parse node type of the lowest common ancestor of the 

trigger and the cue (i.e. the type of the smallest phrase that contains 

both the trigger and the cue, e.g. S, VP, PP, etc.);

7. Whether  or  not  the  negation  cue commands any of  the  participants; 

nested  events  (for  Class  III)  are  treated  as  above  (i.e.  as  being 

represented by their triggers);
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8. Whether or not the negation cue commands the trigger;

9. The constituency parse-tree distance between the event trigger and the 

negation cue.

Semantic feature:

10. Event type (one of the nine types as defined in BioNLP’09);

Note that only one feature depends on the event type. We use a default 

value (null) where none of the other values apply (e.g. when there is no cue in 

feature 3 and 4). When there are more than one cue in the sentence, the main 

cue as described above (i.e. the cue that has the shortest constituency distance 

to  the  event  trigger  in  the  syntactic  parse  of  the  sentence)  is  considered. 

Therefore, different events in the same sentence might be affected by different 

negation cues.

In the first experiment, we train a single classifier on the whole training 

set,  adding  features  incrementally  and  observing  the  effect  of  every  added 

feature.  Once the best  set  of features have been identified,  we evaluate  the 

trained model on each class separately.

In the second experiment, we train different models on the same common 

features for each class. Finally, we train three separate classifiers with class-

specific feature sets.

Negation in regulation events

The structure of the regulatory events allows different number and types of 

participants (entities and events), as well as different participation type (theme 

and  cause).  They  are  the  most  common  events  in  the  literature  and  any 

improvement in the detection of negated and speculated regulatory events will 

have a considerable impact on the overall performance of the system. For these 

reasons, and to explore class-specific features in our approach, we decided to 

further  analyse  the  regulation  events  and  explore  the  effects  of  different 
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features on the detection of the negated events.

For  this  purpose,  we  designed  the  following  experiments  on  the 

regulation events (class III). 

Our target events are regulatory processes and causal relations between 

different biomedical entities and processes. Each regulatory event expressed in 

text is identified by:

 regulation  type—we  consider  three  regulation  sub-types:  positive 

regulation  and  negative  regulation,  in  addition  to  regulation  events 

where there is no indication if it is positive or negative;

 regulation theme represents an entity or event that is regulated;

 regulation cause—a protein or event that causes regulation;

 event  trigger—a token(s)  that  indicates  presence  of  the  event  in  the 

associated sentence.

Lexical features are based on a list of negation cues and part-of-speech (POS) 

tagging  of  the  associated  sentence.  We  also  consider  the  surface  distance 

between the negation cue and trigger, theme and cause. More precisely, the 

lexical features include:

1. Whether the sentence contains a negation cue from the cue list;

2. The negation cue itself (if present);

3. The POS tag of the negation cue;

4. The POS tag of the trigger;

5. The POS tag of the theme; if the theme is another event, the POS tag of 

the trigger of that event is used;

6. The POS tag of the cause; if the cause is another event, the POS tag of 

the trigger of that event is used;

7. Surface distance between the trigger and cue;

8. Surface distance between the theme and cue;

9. Surface distance between the cause and cue;
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Syntactic  features are  based  on  the  results  of  constituency  parsing  of  the 

associated sentence and the command relation. We explored various types of 

X-command, including S-command (for sentence or sub-clause), NP-command 

(noun  phrase),  VP-command  (verb  phrase),  PP-command  (prepositional 

phrase), etc. We also consider the distances of the event components within the 

tree. Specifically, the syntactic features include:

10. The type of the  lowest  common ancestor  of the trigger  and the  cue 

(either S, VP, PP, NP, JJ or PP); 

11. Whether or not the negation cue X-commands the trigger (X is S, VP, 

NP, JJ, PP)

12. Whether or not the negation cue X-commands the theme (X is S, VP, 

NP, JJ, PP)

13. Whether or not the negation cue X-commands the cause (X is S, VP, 

NP, JJ, PP)

14. The constituency parse-tree distance between the event trigger and the 

negation cue.

15. The  constituency  parse-tree  distance  between  the  theme  and  the 

negation cue.

16. The  constituency  parse-tree  distance  between  the  cause  and  the 

negation cue.

Semantic  features introduce  known  characteristics  of  the  regulation 

participants and the sub-type of regulation (if known):

17. Regulation sub-type (positive, negative, none);

18. Theme type,  which can be either a protein or one of the nine event 

types as defined in BioNLP’09: gene expression, transcription, protein 

catabolism, localization, phosphorylation, binding, regulation, positive 

regulation, and negative regulation;

19. Cause type is defined analogously to the theme type.
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The above features have been used to  train a number of binary SVM 

(support  vector  machine)  classifiers  that  aim to  identify  negated  regulation 

events.

3.5 From negations to hedges

In the BioNLP’09 corpus, slightly more than 5% of the events are annotated as 

speculated.  Two instances are given in  Example 3.17.  Note that  the second 

sentence is both negated and speculated.

Example 3.17.

(a)  “However,  it  was  not  possible  to  ascertain  whether  Bcl-2 

upregulation was a specific consequence of LMP1 expression.”

(From PMID 7520093 annotated by the BioNLP’09 corpus annotators)

(b) “CD28-dependent elevation of c-jun mRNA does not appear to be  

mediated at the level of mRNA stability.”

(From PMID 7989745 annotated by the BioNLP’09 corpus annotators)

The question of whether an event is reported speculatively in text has 

several characteristics in common with that of negated events. They can both 

be  construed as  classification problems;  they both have  a  cue,  and the  cue 

affects a part of the sentence (scope) within which the event may be expressed. 

If some part of an event is described in the part of the sentence that falls in the 

scope of the negation or speculation cue, the event would probably be negated 

or speculated.

Negmole was mainly developed and tested for the detection of negations 

of the molecular events expressed in text. However, we hypothesised that the 

negation detection methods were not specific only to this task, and could be 

expanded to detect similar semantic characteristics about these events, such as 

speculation.

To  test  this  hypothesis,  similarly  to  negation,  we  construed  the 
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speculation detection problem as a classification problem that would classify 

extracted molecular events into speculative and assertive categories. We noted 

that an event can be independently speculated or negated, so the results of one 

classifier need not affect the other.

We  chose  the  experimental  setting  with  the  best  negation  detection 

results  and  modified  it  for  speculation  detection.  We  used  separate  SVM 

models  with  class-specific  feature  sets  to  train  on  speculation  data,  as  this 

setting resulted in the highest performance for negation detection (see Section 

4.4.1).

We used  the  same  syntactic  and  semantic  features  in  the  speculation 

detection  task  as  the  negation  detection  task.  The  lexical  features  were 

customised by adding a speculation cue list to replace the list of negation cues 

(See Table 3.4).

3.6 Summary

In this chapter we presented methods for event extraction (Evemole), a 

hybrid  rule-based  and  machine  learning  approach  for  detecting  molecular 

events.

We also  presented  Negmole  to  detect  negated  molecular  events.  The 

negation  extraction  system  was  expanded  to  detect  information  regarding 

statements and findings that are reported speculatively.
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Chapter 4 

Evaluation of event extraction and contextualisation

In  this  chapter  we  describe  the  evaluation  approach  used  to  evaluate  the 

methods for molecular event extraction and negation and speculation detection. 

Subsequently, the results and evaluation of these methods are presented and 

discussed.

4.1 Evaluation method

4.1.1 Evaluation metrics and approach

The standard metrics precision, recall and F1-measure (introduced in Section 

2.7.1) were used to evaluate the results of the methods which were presented in 

Chapter 3 . In the event extraction task, a true positive instance represents an 

event  that  is  correctly  identified.  For  this  purpose,  we  need  to  determine 

whether  the  manually  annotated  event  corresponds  to  the  event  extracted 

automatically.  Due  to  the  complex  nature  of  the  events,  event  equality  as 

previously discussed in Section 3.1.3 is not trivially defined.

In  the  BioNLP’09  Shared  Task,  a  number  of  definitions  for  event 

equality was used by the organisers to provide different levels of flexibility in 

the evaluation. In all cases it was required for the extracted event and the gold 

event to share the same type, trigger, participants, and participation type (i.e. 

theme/cause). If a participant is another event, those events should also match 

recursively. In the strictest evaluation case, for the two triggers to be the same, 

it was required that their textual boundaries exactly match. In a more relaxed 

evaluation methods, approximate span matching, the extracted triggers need 

only fall within an extension of the gold trigger span, by one word to either 

side of the trigger.

As regulation events can take other events as arguments and therefore 
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defining  recursive  equality  can  become  very  complicated,  approximate 

recursive matching was defined to let the arguments of a regulation event to 

be only partially correct  if they are  event themselves.  For partial  matching, 

only theme arguments (as well as trigger and type) were considered. Cause 

arguments  could be  missing,  incorrectly  assigned,  or  redundantly  extracted. 

Here, we also use approximate span matching, allowing the gold and extracted 

sub-strings  to  overlap.  But  we  report  exact  boundary  evaluation  wherever 

appropriate.

In the evaluation of Evemole (introduced in Chapter 3 ) we consider an 

extracted event as a true positive instance if all of the following criteria hold:

1. The extracted trigger matches the gold trigger, approximately matching 

boundaries;

2. The extracted event type is the same as the gold event type;

3. The participation types match (theme or cause); and

4. If any of the participants is an event, it must also be a true positive, 

defined recursively.

Moreover, we require the matches to happen at the mention level. So, for 

example, if a sentence contains more than one mention of a certain entity, and 

the gold standard annotations consider one of these mentions as the participant 

of an event, we require the exact same mention of the entity (with correct start 

and end indices) to be assigned to the extracted event.

Example 4.1. “Nuclear  run-on  assays  and  mRNA  stability  studies  

demonstrated  that  M-CSF  regulates  c-jun expression by  both  an 

increase in  transcription rate and a prolongation in the half-life of  c-

jun transcripts.”

(From PMID 1712226 annotated by the BioNLP’09 corpus annotators)

In  Example 4.1, the gene “c-jun” is mentioned twice. Also, two events 
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involving  c-jun are reported. One is the expression of  c-jun, indicated by the 

trigger “expression”, and the other is its transcription, indicated by the trigger 

“transcription”. However, although these facts may be sufficient information 

extraction  for  a  biologist,  in  this  NLP  evaluation  we  require  the  correct  

mention of c-jun to be associated with the extracted events. Specifically, for the 

events  to  be  considered  true  positive,  the  first  mention  of  c-jun must  be 

detected  as  the  participant  of  the  gene  expression  event,  and  the  second 

mention as that of the transcription event.

4.1.2 Evaluation corpora

The  corpus  used  for  the  evaluation  of  event  extraction,  negation,  and 

speculation is the BioNLP’09 gold annotated development corpus, described in 

Section  2.6.  The  corpus  is  derived  from  the  GENIA  corpus,  with  some 

modifications to restrict the data to molecular events between gene or protein 

entities (see Section 2.6).

However, as part of the BioNLP’09 Shared Task, the organisers reported 

the results of system evaluations on another “test” data set.  The BioNLP’09 

Shared Task test data set was a set of 260 abstracts from a subset of the GENIA 

corpus without publicly available gold annotations for events. The test data set 

was used to test the performance of the participants of the Shared Task.

The BioNLP’09 assessment was based on the output of the system when 

applied to this test dataset of 260 previously unseen abstracts. This data set, 

similarly to the training and development data sets, had manual annotations for 

gene and protein entities.

We  use  this  corpus,  along  with  the  other  two  BioNLP’09  corpora 

(training  and  development  data  sets)  in  the  evaluation  of  event  extraction 

methods described in Chapter 3.

4.2 Evaluation of event extraction

The  overall  F-score  of  Evemole  on  the  unseen  test  data  was  30.35% with 

48.61% precision using approximate boundary matching for the triggers (see 
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Table 4.1). The best performing event types were phosphorylation (the best F-

score  and  the  best  recall)  and  gene  expression  (the  best  precision  with  a 

reasonably good F-measure).

Event Class #Gold R P F-score

Localisation 174 44.83 53.06 48.60

Binding 347 12.68 40.37 19.30

Gene expression 722 52.63 69.34 59.84

Transcription 137 15.33 67.74 25.00

Protein catabolism 14 42.86 50.00 46.15

Phosphorylation 135 78.52 53.81 63.86

Non-regulatory total 1529 41.53 60.82 49.36

Regulation 291 3.09 19.15  5.33

Positive regulation 983 1.12 8.87 1.99

Neg. regulation 379 12.4 20.52 15.46

Regulatory total 1653 4.05 16.75 6.53

All total 3182 22.06 48.61 30.35

Table 4.1: Evaluation of Evemole on the BioNLP’09 test data 

The evaluation is reported on 260 abstracts, using approximate boundary matching 

criteria. #Gold refers to the number of instances in the gold standard data set.

An analysis of the results was performed on the development data, which 

had around 5% higher overall F-score than the test data (9% for non-regulation 

events, see Table 4.2 for details).

The CRF parameters were adjusted for maximum performance on the 

development corpus, including the choice of training algorithms (chain CRF 

linear, conjugate gradients, back propagation and other neural network models, 

etc.), the number of training steps, the size of the window within which the 

tokens can affect any given token, and the number of training abstracts used in 

each training step. It was interesting to observe that there were no significant 
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improvements in the performance after training on 100, 400 or 800 abstracts 

from the training set, suggesting that the model is already stable after training 

on the first 100 examples (data not shown).

Event Class #Gold R P F-score

Localization 53 67.92 46.75 55.38

Binding 312 21.47 63.81 32.13

Gene expression 356 64.61 76.33 69.98

Transcription 82 53.66 89.80 67.18

Protein catabolism 21 90.48 67.86 77.55

Phosphorylation 47 91.49 53.09 67.19

Non-reg total 871 50.4 68.44 58.05

Regulation 172 5.23 33.33 9.05

Positive regulation 632 3.48 21.36 5.99

Neg. regulation 201 9.45 15.08 11.62

Regulatory total 1005 4.98 19.53 7.93

All total 1876 26.07 54.46 35.26

Table 4.2: Evaluation of Evemole the BioNLP’09 development data 

The evaluation is reported on 150 abstracts using approximate boundary matching 

criteria.  #Gold refers to the number of instances in the gold standard data set.

4.3 Event extraction discussion

The overall F-score for Evemole was 30.35% with 48.61% precision on the 

previously unseen test  data (see Table  4.1 for details).  The best  performing 

event types were  phosphorylation (the best  F-score and the best  recall)  and 

gene expression (the best precision with a reasonably good F-measure).

While  the  results  for  non-regulatory  events  (classes  I  and  II)  were 

encouraging,  they were low for regulatory events (class III).  Among the 24 

teams submitting the test results, our results were ranked 12th for the overall F-
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score  and  8th for  the  F-score  of  non-regulation  events,  suggesting  that 

improvement in  the  detection of class III  events could result  in  the  overall 

improvement of the system. A summary of the results of all the participating 

teams can be found in Table 4.3.

Team R P F

UTurku 46.73 58.48 51.95

JULIELab 45.82 47.52 46.66

ConcordU 34.98 61.59 44.62

UT+DBCLS 36.9 55.59 44.35

VIBGhent 33.41 51.55 40.54

Utokyo 28.13 53.56 36.88

UNSW 28.22 45.78 34.92

Uzurich 27.75 46.6 34.78

ASU+HU+BU 21.62 62.21 32.09

Cam 21.12 56.9 30.8

Uantwerp 22.5 47.7 30.58

UNIMAN (Evemole) 22.06 48.61 30.35

SCAI 25.96 36.26 30.26

Uaveiro 20.93 49.3 29.38

Team 24 22.69 40.55 29.1

Uszeged 21.53 36.99 27.21

NICTA 17.44 39.99 24.29

CNBMadrid 28.63 20.88 24.15

CCP-BTMG 13.45 71.81 22.66

CIPS-ASU 22.78 19.03 20.74

Umich 30.42 14.11 19.28

PIKB 11.25 66.54 19.25

Team 09 11.69 31.42 17.04

KoreaU 9.4 61.65 16.31

Table 4.3: The results of all the teams in the BioNLP’09 Shared Task

An analysis of our results was performed on the development data, which 

had around 5% higher  overall  F-score than  the test  data  (9% for events of 

classes I and II, see Table 4.2 for details).

To further explore the factors affecting the results, we define the lexical 
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variability of each event type to be the number of different word stems used to 

describe that event divided by the total number of mentions in the text that 

trigger that event. This measure is akin to the well-know measure of  lexical 

variation of a document which refers to the number of word types divided by 

the number of word tokens in a document.

For example, there are a total number of 47 phosphorylation events in the 

development  data,  triggered  by  40  different  mentions.  The  reason  for  the 

disparity is that sometimes, as in  Example 4.2, one mention triggers several 

events. The sentence in Example 4.2 is counted three times in the total number 

of events, but only once in the total number of triggers.

Example 4.2. “Phosphorylation of the IkappaB cytoplasmic inhibitors,  

IkappaBalpha,  IkappaBbeta,  and  IkappaBepsilon,  by  these  kinases  

triggers  proteolytic  degradation  and  the  release  of  NF-kappaB/Rel  

proteins into the nucleus.”

(From PMID 9804806, annotated by the BioNLP’09 corpus annotators)

Phosphorylation  events  have  been  described  in  the  development  data 

using the  following forms:  phosphorylation,  phosphorylate,  phosphorylates,  

phosphorylation  sites,  underphosphorylated  form,  and  the  capitalised 

Phosphorylation.  There  are  5  different  terms—ignoring  the  capitalised 

variation—triggering the event phosphorylation. If we bundle up all of those 

mentions which have the same stem, we will end up with only the following 3 

stems: phosphoryl, underphosphoryl form, and phosphoryl site.

To  calculate  the  lexical  variability  of  an  event  type,  we  divide  the 

number of different stems of the triggers by the total number of mentions for 

that event type.

V [ type]=
number of different trigger stems

number of trigger mentions
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The lower this number is, the less lexically variable the triggers for that 

event  type  are.  The  lexical  variability  of  different  types  are  calculated and 

presented in Table 4.4.

Type # Events # Trigger mentions # Distinct 

triggers 

# Distinct 

trigger 

stems

Lexical 

variability  

Confusion

Gene expression 356 282 49 37 0.13 0.122833

Transcription 82 68 22 18 0.26 0.259023

Protein 

catabolism

21 19 4 3 0.16 0.020202

Localisation 53 40 15 13 0.33 0.112195

Phosphorylation 47 40 5 3 0.08 0

Binding 249 180 51 33 0.18 0.01037

 Regulation 173 138 63 43 0.31 0.097902

 Positive 

regulation

618 462 164 111 0.24 0.059021

Negative 

regulation

196 153 86 62 0.41 0.008011

Table 4.4: The lexical variability of the triggers with respect to interaction type

In order to measure how characterisable an event type is with regard to 

the  triggers  that  are  used  to  express  events  of  that  type,  we  consider  the 

different types a specific trigger can refer to as different senses of the trigger, 

and use a weighted sum of the word sense entropy of the trigger to define the 

characterisability of the type. 

Shannon’s  entropy  H of  a  discrete  random  variable  X  with  possible 

values  { x1,... , xn }  and  probability  mass  function  p  is  defined  as  the 

following.

H [X ]=∑
i=1

n

pX i log2
1

p X i


We define the word sense entropy of a given trigger based on Shannon’s 
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entropy as the following.

H [ trigger ]=− ∑
all types


# trigger , type
# trigger ,*

. log2
#trigger , type
#trigger ,*



In this equation,
# (trigger , type)
# (trigger ,*)

 refers to the number of times that a 

trigger is used to refer to an event of a certain type divided by the total number 

of  times it  is  used for  all  different  event  types.  The  asterisk  represents  all 

different event types.

Moving on from the above definition of the entropy for every trigger, we 

define the entropy of a type as a weighted sum over the triggers of that type.

H [ type]= ∑
trigger∈type

H [ trigger ] .
# (trigger , type)
# (* ,type)

And finally, we introduce the following, with a similar idea as tf-idf, as a 

measure  of  confusion,  or  how un-characterisable  a  class  is  with  regard  to 

trigger term.

C [type ]= ∑
trigger∈type

(
# (trigger ,*−type)
# (trigger ,*)

.
# (trigger , type)
# (* ,type)

)

The confusion measures as described above for the 9 event types are 

displayed  in  the  last  column  of  Table  4.4.  As  can  be  seen  in  Table  4.4, 

phosphorylation  triggers  have  the  lowest  lexical  variability,  and  zero 

confusion. This observation explains the high quality of trigger detection for 

this type despite the relatively small number of training instances. Low lexical 

variability  means  that  there  is  a  relatively  low  chance  of  a  word  with  a 

previously  unseen  stem  act  as  the  trigger  of  a  phosphorylation  event  and 

therefore  be  missed,  resulting  in  a  false  negative  instance.  Low  confusion 
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means that there is a relatively low chance that a word that could potentially be 

the  trigger  for  a  different  event  type  (or  a  non-trigger),  be  mistakenly 

recognised as a phosphorylation trigger, resulting in a false positive instance.

Gene expression is the most frequent event type. Despite the relative high 

confusion  measure  of  the  gene  expression  trigger  terms,  the  low  lexical 

variability  together  with  the  high  frequency  of  instances  could  have  been 

responsible  for the higher accuracy of the trigger identification by the CRF 

module.

The type-specific performance could be inversely related to the lexical 

variability and confusion of the trigger terms as well as the low frequency of 

the type. Specifically, analysing our trigger recognition results suggests that 

recall  is  negatively  correlated  with  the  lexical  variability  and  precision  is 

negatively  correlated  with  confusion.  Figures  4.1 and  4.2 show  such 

correlations in our trigger evaluation results.

An  analysis  of  the  overall  results  of  the  other  teams18 showed  some 

correlation between the average recall and lexical variability (R2 = 0.68) but no 

such correlation between confusion and the average precision (R2 = 0). The 

coefficient of determination, R2, is the square of the correlation coefficient, and 

is used as a measure of correlation (Mendenhall et al. 2009).

We  do  not  have  access  to  the  trigger-only  evaluation  of  the  other 

systems, and therefore cannot measure the exact correlation. Future work is 

needed to generalise these finding, and find more accurate measures involving 

other factors such as term frequencies.

18 A summary of the results of all the teams can be accessed at http://www-

tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/results/results-master.html
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These correlations can potentially  be used to  predict  the results  of an 

information extraction task before accomplishing it, and set theoretical upper 

and lower bounds on the results of a tested system on new data, without having 

to apply the system to the data, and only by looking at the distribution and the 

properties of the data.

Figure 4.1: Correlation between recall and lexical variability for event types

The linear regression equation and the correlation coefficient are shown as f(x) and 

R.
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We will now show that the accuracy of the trigger detection is directly 

related with the overall performance of the event extraction.

In  order  to  assess  the  effects  of  different  steps  in  our  approach,  we 

evaluated the performance of the event trigger and event participant detection 

steps  separately.  The  results  presented  in  Table  4.5 show  the  trigger-only 

evaluation  before  the  participants  are  associated  to  form the  events.  These 

results indicated that the performance of the trigger detection (CRF) module 

was not much better than the overall performance of the system (an F-score of 

43% vs.  35%),  suggesting  that  the  CRF  module  for  trigger  detection  was 

mostly responsible for the errors, by both missing triggers and falsely reporting 

them. This was particularly the case with class I and even class II events, but 

less so for class III events.

Conversely,  when  considering  only  those  events  whose  triggers  were 

correctly identified, their participants were also correctly recognised in most 

Figure 4.2: Correlation between precision and confusion for event types

The linear regression equation and the correlation coefficient are shown as f(x) and  

R.
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cases.  Overall,  the  analysis  suggested  that  the  parse  tree  distance  method 

performed reasonably well, despite a reduction in recall of approximately 12%.

Event Class #Gold R P F-score

Localisation 40 77.50 47.69 59.05

Binding 180 33.33 54.55 41.38

Gene expression 282 76.60 58.54 66.36

Transcription 68 58.82 18.60 28.27

Protein catabolism 19 84.21 88.89 86.49

Phosphorylation 40 97.50 81.25 88.64

Non-reg total 629 63.91 48.73 55.30

Regulation 138 13.04 62.07 21.56

Positive regulation 462 13.85 54.24 22.07

Negative regulation 153 29.41 45.92 35.86

All total 1382 38.28 49.44 43.15

Table 4.5: Trigger-only evaluation on the BioNLP’09 development data

The performance of only trigger and type detection on the development data. #Gold 

refers to the number of instances in the gold standard data set.

There  are  a  number  of  possibilities  for  improvements.  We  believe 

applying the CRF model for trigger detection in two stages would be a better 

approach to detect events: first identify triggers (binary classification) and then 

classify  them  into  different  types.  In  addition,  the  rules  employed  for 

determining themes need to be more specific to reflect both event type and 

grammatical structure.

In the case of class III events, however, significantly better results were 

noticed  in  the  trigger  detection  part  when  compared  to  the  overall  scores, 

indicating that  it  was  difficult  to  identify  regulatory participants,  as  any of 

those participants could be either a protein or another event, and our rules did 

not  clearly  discriminate  between  the  participation  type  (theme  and  cause) 
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which resulted in incorrect output.

Overall, the results achieved by Evemole suggest that combining parse 

tree results, rules and CRFs is a promising approach for the identification of 

non-regulatory events in the literature, while more work would be needed for 

regulatory events.

4.4 Evaluation of negation and speculation detection

Our method for negation and speculation detection was initially developed and 

analysed for  negation  extraction  only,  and later  was  adopted to  also  detect 

speculations by training a  new model  on speculation data  and using a  new 

dictionary of speculation cues (see Section  3.4.1). In this section we present 

detailed  evaluation  and  analysis  on  the  negation  detection  task,  and  also 

provide a performance report on the speculation detection task.

4.4.1 Evaluation of negation detection

We use the BioNLP’09 training and development corpora for the evaluation of 

Negmole. To be able to evaluate the negation detection system as a separate, 

stand-alone system, we use the gold annotations for entity mentions (genes and 

proteins) and gold annotated molecular events. Sentences that report molecular 

events are  annotated with the  corresponding event  type,  textual  trigger  and 

participants. Every event in both training and development data sets has been 

tagged  as  either  affirmative  (reporting  a  specific  interaction)  or  negative 

(reporting  that  a  specific  interaction  has  not  been  observed).  We  use  this 

information to train and test our system.

Table  4.6 provides an overview of the two BioNLP’09 data sets with 

regard to negated and speculated events.
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Event 

class

Training data Development data

total negated speculated total  negated speculated

Class I 2,858 131 106 559 26 15

Class II 887 44 29 249 15 8

Class III 4,870 440 320 987 66 71

Total 8,615 615 455 1,795 107 95

Table 4.6: Negated and speculated events in BioNLP’09 corpus

Overview of the composition of the negated and speculated events in the training and  

development datasets of the BioNLP’09 corpus

Baseline methods

To compare Negmole, we considered two baseline methods and calculated the 

precision,  recall,  F-score  and  specificity  (see  Section  2.7.1)  for  them.  The 

analysis  was  done  using  the  gold-annotated  events  on  the  BioNLP’09 

development data set.

As can be inferred from Table 4.6, only around 6% of the gold annotated 

events are negated. Therefore, if no negation detection at all was performed, a 

specificity of 94% would be achieved. We considered the case where any event 

described in a sentence with a negation cue is marked as negated. In addition, 

we implemented the NegEx algorithm (see Section 2.4.2) using event triggers 

as the list of terms. The results of the two baseline methods are shown in Table 

4.7.

Approach P R F1 Specificity

Any negation cue present 20% 78% 32% 81%

NegEx 36% 37% 36% 93%

Table 4.7: Baseline measures

Two different baseline measures evaluated on the BioNLP’09 development data.

The first  baseline method (bag-of-words)  has a  high recall,  indicating 
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that 78% of the negated events have a negation cue somewhere in the sentence. 

However, as expected, the precision of such a method is low, as the presence of 

a negation cue does not necessarily indicate that every event in that sentence is 

negated. NegEx has a lower recall, which is due to missing the instances where 

the trigger has a longer surface distance from the negation cue. The F-score of 

both baseline methods are in the range of 30%.

Rule-based method

Here we present the results of our rule-based experiments with the command 

relation.  First  we  only  considered  the  S-command  relation  as  it  was 

Langacker’s  original  definition  of  the  command  relation.  We  marked  as 

negated any event where the negation cue in the sentence S-commanded any of 

the participants. Then we marked as negated any event where the negation cue 

S-commanded the event trigger. Finally, we required both conditions to hold in 

order for an event to be marked as negated. The results are shown in Table 4.8. 

The highest F-score was achieved in the third case, but the differences were 

small.

Approach P R F1 Specificity

Negation cue commands any 

participant

23% 76% 35% 84%

Negation cue commands the trigger 23% 68% 34% 85%

Negation cue commands both 23% 68% 35% 86%

Table 4.8: Evaluation of negation rules on the BioNLP’09 data

Performance is reported on the BioNLP’09 development data set when only the S-

command relation is used. The numbers are rounded.

These  results  show  that  using  the  command  relation  as  a  rule 

dramatically  increases  the  recall  compared  to  NegEx,  suggesting  that  the 

command  relation  can  successfully  reach  beyond  the  scope  of  NegEx. 

However, the relatively lower precision means that the F-score is at a similar 

level  (or  lower)  compared  to  NegEx.  The  precision  is  lower  than  that  of 
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NegEx, and stays the same over the applications of different rules. This shows 

that there are many cases in which a command relation between the negation 

cue and components of the event exists, but other factors make the event not 

affected by the cue.

These observations suggest  that  although the command relation is not 

very affective as a stand-alone rule, it could work as a predictor of negated 

events  if  combined  with  other  features.  Furthermore,  they  suggest  that 

participants of an event play as important a role as the trigger in the negation of 

the event as a whole. This bring us to the following experiments where we used 

these findings to design a series of machine learning experiments using the 

command relation as a feature along with other features.

Machine learning experiments for negation detection

As explained in Section 3.4.3, initially we combined all the features that were 

not class-specific and trained a single classifier on the whole training dataset. 

Secondly, we used the common features, but trained different classifiers for the 

three different classes of events and acquired three different models (one for 

each  class).  Finally,  we  added  class-specific  features  to  the  classifiers  and 

trained three different models with different number and types of features. We 

report the results of these experiments, as well as the effects of each group of 

features on the regulatory events (class III). All the evaluations are reported on 

the BioNLP’09 development data set. For a summary of the experiments and 

the features used in each one, see Table 4.9.
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Experiment Classifier Features

Experiment 1 Single classifier 1. Whether the sentence contains a negation cue from 

the cue list;

2. The negation cue stem (if present);

3. The part-of-speech (POS) tag of the negation cue;

4. The POS tag of the event trigger;

5. The POS tag of the theme of the event; if the theme 

is another event, the POS tag of the trigger of that event 

is used

6. The parse node type of the lowest common ancestor 

of the trigger and the cue (i.e. the type of the smallest 

phrase that contains both the trigger and the cue, e.g. 

S, VP, PP, etc.);

7. Whether or not the negation cue commands any of 

the participants; nested events (for Class III) are treated 

as above (i.e. as being represented by their triggers);

8. Whether or not the negation cue commands the 

trigger;

9. The parse-tree distance between the event trigger 

and the negation cue;

10. Event type (one of the nine types as defined in 

BioNLP’09).

Experiment 2 3 class-specific 

classifiers on 

common features

Same as Experiment 1

Experiment 3 Class-specific 

classifiers on class-

specific features:

Classes I and II use 

features 1-8, 10-12, 

14, 15.

Class III uses all 

the features.

1. Whether the sentence contains a negation cue from 

the cue list;

2. The negation cue itself (if present);

3. The POS tag of the negation cue;

4. The POS tag of the trigger;

5. The POS tag of the theme; if the theme is another 

event, the POS tag of the trigger of that event is used;

6. The POS tag of the cause; if the cause is another 

event, the POS tag of the trigger of that event is used;

7. Surface distance between the trigger and cue;

8. Surface distance between the theme and cue;

9. Surface distance between the cause and cue;

10. The type of the lowest common ancestor of the 

trigger and the cue (either S, VP, PP, NP, JJ or PP);
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11. Whether or not the negation cue X-commands the 

trigger (X is S, VP, NP, JJ, PP);

12. Whether or not the negation cue X-commands the 

theme (X is S, VP, NP, JJ, PP);

13. Whether or not the negation cue X-commands the 

cause (X is S, VP, NP, JJ, PP);

14. The parse-tree distance between the event trigger 

and the negation cue;

15. The parse-tree distance between the theme and the 

negation cue;

16. The parse-tree distance between the cause and the 

negation cue;

17. Regulation sub-type (positive, negative, none);

18. Theme type, which can be either a protein or one of 

the nine event types;

19. Cause type is defined analogously to the theme 

type.

Table 4.9: Summary of the experiments and the features used

A single classifier for all classes of the events (Experiment 1)

Table  4.10 shows the performance of a single classifier trained on the entire 

data, with common features added incrementally.

Feature set P R F1 Specificity

Features 1-6 and 10 43% 8% 14% 99.2%

Features 1-7 and 10 73% 19% 30% 99.3%

Features 1-8 and 10 71% 38% 49% 99.2%

Features 1-10 76% 38% 51% 99.2%

Table  4.10: Evaluation of Experiment 1; the single SVM classifier method for 
negation detection on BioNLP’09

In this table, features 1-7 are lexical and POS-tag-based features. Feature 7 models  

whether the cue S-commands any of the participants. Feature 8 is related to the cue 

S-commanding the trigger. Feature 9 is the parse-tree distance between the cue and  

trigger. Feature 10 is the semantic feature related to the event type.



4.4 Evaluation of negation and speculation detection 173

Table  4.11 shows  the  results  of  this  method  applied  on  each  class, 

together with the micro-average across the entire development corpus.

Event class
Number of 

instances
P R F1 Specificity

Class I 26 82% 54.00% 65% 97%

Class II 15 100% 7% 13% 94%

Class III 66 73% 41% 52% 95%

Micro Average 107 79% 39% 50% 96%

Table 4.11: Class-specific evaluation of a single classifier for negation detection  

on BioNLP’09

The results of training a single classifier for negation detection on all classes using  

common features, but evaluated on individual classes. The evaluation is reported on 

the BioNLP’09 development data set.

Different models for each class, common features (Experiment 2)

Table 4.12 shows the results of training three classifiers with the same features 

as  above,  but  on  different  classes  separately.  We note  an  increase  in  both 

precision (88%) and recall (49%) over the single-classifier approach. 

Event class
Number of 

instances
P R F1 Specificity

Class I 26 94% 65% 77% 99.8%

Class II 15 100% 33% 50% 100%

Class III 66 81% 44% 57% 99.2%

Micro Average 107 88% 49% 63% 99.4%

Table  4.12: Evaluating separate classifiers trained on each class for negation 

detection on BioNLP’09

Here, again, common features have been used.
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Class-specific features in different classifiers (Experiment 3)

Finally, we trained three classifiers with class-specific feature sets. Tables 4.13 

and 4.14 show the results without and with semantic tokenisation. We note that 

there was some drop in the performance, both in terms of precision and recall.

Event class
Number of 

instances
P R F1 Specificity

Class I 26 80% 62% 71% 97%

Class II 15 75% 43% 57% 96%

Class III 66 79% 39% 53% 95%

Micro Average 107 79% 45% 58% 96%

Table  4.13:  Evaluating separate  classifiers  without  semantic  tokenisation  for  

negation detection on BioNLP’09

The results of training different negation classifiers with class-specific features on each  

class; without semantic tokenisation.

Event class
Number of 

instances
P R F1 Specificity

Class I 26 88% 54% 67% 97%

Class II 15 57% 29% 38% 95%

Class III 66 67% 46% 55% 95%

Micro Average 107 70% 46% 55% 94%

Table  4.14:  Evaluating  separate  classifiers  with  semantic  tokenisation  on 

BioNLP’09

The results  of  training different  negation classifiers  with  class-specific  features  on  

each class; with semantic tokenisation.

Amongst the three classes, the highest F-score was achieved on class I 

which contains the simplest event structures. The data set of class II events, 

with only 44 training instances and 15 test instances, was not large enough for 

making any specific conclusions.
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Class III, however, was the largest and most complex of all three classes, 

and showed relatively lower results. To further explore the feature space and 

investigate  the  effect  of  each  feature,  we  analysed  several  class-specific 

features on the regulation events. We chose that class due to its complex nature 

as well as frequency of mention and its biological prominence.

Evaluation on the regulation events

The training set contained a total of 4,870 regulation events, 440 of which are 

reported as negated. The test set contained 987 regulation events, of which 66 

are negated. The training data was used for modelling and all the results refer 

to the methods applied on the development dataset using 10-cross validation.

Impact of lexical and other shallow features

The results of using lexical features only are presented in Table 4.15. Features 

1-6  concern  word  forms  and  POS  tags,  whereas  features  7-9  are  surface 

distance features. See Table 4.9 and Section 3.4.3 for an extensive list.

As  expected,  surface  distances  to  the  negation  cue  are  not  good 

indicators, and do not improve the performance of standard lexical and POS 

features—on the contrary, they reduce precision. Overall, precision is relatively 

high but recall is low.

Lexical features Precision Recall F1

Features 1-6 

(no surface distances)
75.00 22.73 34.88

All lexical features 71.43 22.73 34.48

Table 4.15: Evaluation of negation detection on regulatory events using lexical  

features only

Impact of syntactic features

The  results  of  using  syntactic  features  only  are  presented  in  Table  4.16. 
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Features 10-13 are command-related features, and features 14-16 are parse-tree 

distance features. See Table 4.9 and Section 3.4.3 for an extensive list.

As opposed to surface distances, parse-tree distances are more suitable 

features, improving the overall performance significantly (F1 improving from 

11% to  36%).  There  were  no  significant  differences  in  performance  when 

different types of X-command relations are used. Focusing only on S- and VP-

command  provides  the  same  levels  of  accuracy  as  using  all  the  other  X-

command features, with no statistically significant differences.

Syntactic features Precision Recall F1

Features 10-13

(no parse-tree distances)
80.00 6.06 11.27

All syntactic features 60.71 25.76 36.17

Table  4.16:  Evaluation  of  negation  detection  on  regulatory  events  using  

syntactic features only

Impact of semantic features

The performance of the models based on the lexical and syntactic features were 

approximately  the  same,  with  no  significant  differences  between  the  best 

performing feature subsets of each category. However, semantic features on 

their  own resulted  in  very  low  performances,  virtually  missing  all  negated 

regulatory events (data not shown). This was comparable to the baseline model 

in which no negation detection was performed.

Combining features

Table  4.17 shows the  results  when features of  various types are  combined. 

Combining several feature types (lexical, syntactic and semantic) proved to be 

beneficial.  Surface  distances  still  reduce  the  overall  precision,  but  overall 

improve  recall.  It  is  interesting  that  adding  semantic  features  (which 

characterise the participants involved in the regulation) significantly improves 

precision (by 20% when compared to the lexical and syntactic feature sets). On 

the other hand, command relations improve recall (by almost 20%). 
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Features Precision Recall F1

Lexical + syntactic 66.67 39.39 49.52

Lexical + semantic 50.00 15.15 23.26

Syntactic + semantic 72.22 19.70 30.95

All with no surface distances 73.68 42.42 53.85

All with no X-command on theme and cause 78.12 37.88 51.02

All features 78.79 39.39 52.53

Table  4.17: Evaluation of negation detection on regulatory events combining 

different features 

We note that some feature subsets (e.g. features 10-13, Table  4.16) do 

not  provide  a  balance  between  precision  and  recall;  depending  on  the 

application,  the classification threshold could be adjusted to  produce higher 

recall or precision.

To conclude, training separate classifiers on different classes showed the 

best  results.  Although  exploring  the  feature  space  provides  insight  into  the 

effects of each type of feature, these experiments performed slightly worse than 

the  previous  ones.  This  could  be  due  to  implementational  differences,  the 

modest data size, or the use of semantic tokenisation.

4.4.2 Evaluating speculation detection

We adopted  the  method  used  for  negation  detection  to  classify  speculated 

events. As using class-specific features and separate classifiers for each event 

class  showed  the  best  performance  in  negation  detection,  we  applied  this 

method to extract speculations. The results are shown in Table 4.18, and with 

semantic tokenisation in Table 4.19.
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Event class
Number of 

instances
P R F1 Specificity

Class I 15 50% 29% 36% 97%

Class II 8 14% 14% 14% 95%

Class III 72 73% 43% 54% 95%

Micro Average 95 64% 38% 48% 95%

Table  4.18:  Evaluating  separate  speculation  classifiers  without  semantic  

tokenisation on BioNLP’09

The results of training different speculation classifiers with class-specific features on 

each class; without semantic tokenisation

Event class
Number of 

instances
P R F1 Specificity

Class I 15 70% 50% 58% 98%

Class II 8 17% 14% 15% 95%

Class III 72 64% 41% 50% 94%

Micro Average 95 61% 40% 48% 95%

Table  4.19:  Evaluating  separate  speculation  classifiers  with  semantic  

tokenisation on BioNLP’09

The results of training different speculation classifiers with class-specific features on  

each class; with semantic tokenisation

4.5 Negation and speculation detection discussion

Negation  and  speculation  detection  are  challenging  problems.  There  are 

numerous  ways  to  express  negation  and  speculation  in  language,  both 

grammatically and lexically. Typically a given sentence bears several concepts, 

any number of which can be negated or speculated. Not all of these concepts 

are of interest or relevant to a given IE task, and some only serve as a figure of 
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speech,  without claiming any negative or speculated claims.  Still,  failing to 

detect  negated  and  speculated  facts  in  IE  could  affect  the  quality  of  the 

extracted information.

We introduced a negation detection system, Negmole, for the biomedical 

domain.  The method performs at  the event level,  addressing the issues that 

other  approaches  with  higher  granularity  are  faced  with.  The  event-level 

approach assigns negation as an attribute to the smallest  unit of meaningful 

information that can be extracted as a statement or a fact. It is a necessary step 

for performing reasoning (e.g. conflict detection) on the extracted data.

Negmole  made  use  of  an  underlying  linguistic  phenomenon,  the 

command relation, that had previously been suggested to be related to negation. 

We experimented with variations of this relation used in a rule-based setting 

and observed that, when regarded as a rule, the command relation performs at 

least as well as previously existing methods. This observation suggested that 

the command relation could serve as a highly indicative feature in a machine 

learning setting.

4.5.1 Cue detection

The BioNLP’09 data does not include annotations for negation and speculation 

cues. There are other data sets available that have such cues annotated, but they 

include  all  negation  words,  independently  of  what  they  are  negating.  For 

example,  in  Example 4.3,  the  word  not indicates some negative concept (a 

property not being restricted to a cell type) but not a negated molecular event. 

It is correctly identified by Negmole as a negation cue that does not indicate a 

negated event.

Example 4.3. “This shows that  transcription of both  IL4 forms is not  

restricted to T cells and can be induced in other cell types as well.”

(From PMID 8603435, event and context extracted by BioContext)
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Figure  4.3 shows the parse tree of  Example 4.3. As can be seen in this 

figure, the word “not” is situated in the VP phrase “is not restricted to T cells” 

and only VP-commands the tokens inside that phrase. Therefore, as long as the 

relation VP-command is concerned, this word cannot affect any of the other 

parts  of  the sentence,  including the  event  trigger  “transcription” and event 

participant “IL-4”.

Tagging only  negation  words  is  a  relatively  easier  task,  as  it  can  be 

construed as an NER task with relatively low levels of ambiguity and variation, 

and  dictionary-based  methods  have  previously  shown  reasonably  high 

performance.

In the current task, our approach involves detecting only the events that 

are negated, rather than any negation within the sentence, and therefore not all 

negation cues are of interest. Cues could affect any concept expressed in text, a 

Figure 4.3: The parse tree of the example sentence

This parse tree shows that the negation cue word “not” is situated in the verb phrase  

“is not restricted to T cells” and therefore does not VP-command any other part of the  

sentence outside this verb phrase.
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small proportion of which are bio-molecular events.

Despite  not  being  able  to  formally  evaluate  the  performance  of  cue 

detection, manual examination of some examples shows that the method used 

to find the “main cue” amongst the group of cues in the sentence with more 

than one cue (see Section 3.4.1) performs as desired.

Example 4.4.

(a) “However, neither induction of p53 in MCF-7 cells nor induction of  

p21 in either cell line was detected, suggesting that tamoxifen-induced 

RB dephosphorylation and apoptosis are independent of the p53/p21 

pathway.”

(b) “However, neither induction of p53 in MCF-7 cells nor induction of  

p21 in either cell line was detected [...]”

(From PMID 9751262, extracted automatically by BioContext)

The  event  in  Example  4.4(a) is  the  positive  regulation  (trigger: 

“induction”) of p53 in MCF-7 cell line, and the event in Example 4.4(b) is the 

positive regulation (trigger: second mention of “induction”) of p21 in the same 

cell  line.  They  are  both  reported  as  negated  and  detected  by  Negmole  as 

negated. Note that the negation cues that have affected each of the two events 

are not the same. The sentence has two negation cues:  “neither” and  “nor”. 

The first one, i.e. “neither”, has the shortest parse tree distance to the trigger of 

the first event (i.e. the first mention of “induction”), so is assigned as the main 

cue in  the  feature  vector  of  that  event.  Similarly,  “nor” is  assigned to  the 

second event.

Figure  4.4 shows the  partial  parse  tree  of  Example  4.4,  showing the 

single noun phrase containing  “neither induction of p53 in MCF-7 cells nor  

induction  of  p21  in  either  cell  line”.  The  parse  tree  distances  of  the  two 

negation cues  “neither” and  “nor”  with the two event triggers  “induction” 

(two mentions) are shown in Table 4.20.
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“neither” “nor”

First mention of “induction” 2 4

Second mention of “induction” 6 4

Table 4.20: An example of parse tree distances between multiple negation cues 

and triggers.

The negation cue “neither” is associated with the first mention of the trigger “induction” 

and  therefore  with  the  first  event  (the  positive  regulation  of  “p53”).  Similarity,  the 

negation cue “nor” is associated with the second mention of the trigger “induction” and  

therefore with the second event (the positive regulation of “p21”).

The detection of the negation and speculation cues were performed using 

a  dictionary  of  cue  stems  derived  from  the  training  data.  However,  the 

distinction between a semantically negative event (e.g. negative regulation) and 

a negated event (e.g. a negated regulation event or a negated positive regulation 

event) is not always clear. Expert annotators have not been entirely consistent 

in differentiating between the two, and words such as  “block” have served 

both as a trigger for a negative regulation event, and as an indication of a non-

existent or negated event.

Although we have included such domain-specific  ambiguous terms as 

Figure 4.4: Parse tree of a phrase with two negated events.

The phrase sub-string appears in a single noun phrase: “ neither induction of p53 in 

MCF-7 cells nor induction of p21 in either cell line”
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“block” and “inhibit” amongst the negation cues, comparing the negation cue 

distributions  (Figures  3.16 and  6.7)  shows  that  there  was  little  confusion 

between  the  two  senses  of  these  words.  Figure  3.16 shows  that  the  word 

“inhibit”,  for  instance,  is  the  second  most  common  negation  cue  in  the 

BioNLP’09 data. Figure  6.7 (which summarises negation cue distribution on 

the  entire  MEDLINE  and  PMC  corpora)  shows  that  not  very  often  this 

presumably common word has been detected as the negation cue and caused an 

event  to  be  negated.  On  the  other  hand,  the  type-specific  event  extraction 

results show that detecting negative regulation events are not particularly more 

challenging than other event types in class III.

Although  it  is  very  common  for  a  sentence  to  have  more  than  one 

negation  or  speculation  cue,  previous  event-based  approaches  have  not 

explicitly addressed the issue of handling multiple cues in a sentence. Negmole 

detects the specific cue mention responsible for the negation or speculation of 

an  event,  based  on  the  parse-tree  distances.  Although  no  gold  annotated 

evaluation data existed to evaluate this approach, Example 4.4 showed cases in 

which the correct negation cue has been associated with the event. Another 

such example where the negation cue is correctly identified amongst several 

cues in the sentence is shown in Example 4.5.

Example 4.5. “In contrast, there was no significant difference in force 

generation between old striae fibroblasts and normal fibroblasts with  

cells expressing no alpha-smooth muscle actin.”

(From PMID 15883849, events and negation extracted by BioContext)

There are, of course, other cases in which an incorrect cue was assigned 

to the event, but the negation was still detected correctly. One such example is 

shown in Example 4.6.

Example 4.6. “CD4 and CD8, gamma/delta TCR bearing T cells and 
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CD45R0 on CD4+ T cells  as a marker for memory cells,  on TL no 

differences  could be  detected between patients  with  or  without anti-

TPO. ”

(From PMID 8750571, events and negation extracted by BioContext)

In  Example  4.6,  the  word  “no” appearing before  the  gene  extraction 

event  trigger  “detected” is  causing  the  event  to  be  negated.  But  the  word 

“without” has been incorrectly marked as negation cue. This was an example 

of an error that does not lead to a false results.

Some of the errors were due to incorrectly identified negation cues. In 

Example 4.7, we see one such example that has contributed towards a false 

result.

Example  4.7. “Taken together, it  may be concluded that  NO down-

regulates  IFN-gamma production  mainly  by  inhibiting  T-cell 

proliferation.”

(From PMID 8806814, events and negation extracted by BioContext)

Here  the  word  “NO” which  is  an  abbreviated  form of  the  chemical 

Nitrous Oxide has been incorrectly marked as negation cue due to its lexical 

similarity with “no”, specially after normalisation and stemming. Errors of this 

type could be addressed with the application of post processing rules, but as 

any other word sense disambiguation task, the solution will not be perfect.

We  observed  examples  of  events  correctly  reported  as  affirmative, 

despite the existence of a negation cue (in some cases several)  in the same 

sentence. See Example 4.8.

Example 4.8. “None of these changes were associated with any visible  

redistribution of  actin, intermediate  filaments or microtubules, and no 

nuclear involvement was detected.”
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(From PMID 6318692, events and negation extracted by BioContext)

Example  4.8 shows a  sentence  containing at  least  two negation cues: 

“no” and  “none”.  Some  consider  the  word  “any” as  a  highly  indicative 

negation  feature  as  well.  However,  although  there  are  negated  concepts 

expressed, the main event in question (i.e. the transcription of actin in filaments 

triggered by  “redistribution”) is not reported negatively. This is an example 

which other approaches would have failed to detect correctly. Depending on 

the exact rules used, many bag-of-words, sentence-level, or surface distance 

approaches could have reported this event as negated.

4.5.2 Error analysis

We analysed the false positive and false negative results reported by Negmole 

on  both  negated  and  speculative  events.  The  relatively  small  number  of 

instances in the evaluation sets makes both interpretation of the results and 

error  analysis  difficult  and  limited.  However,  after  analysing  FP  and  FN 

results, we were still able to identify the following categories of errors. 

One  of  the  major  sources  of  FNs  was  the  issue  of  identification  of 

contrasting patterns,  usually  causing an  affirmative and a  negative  event  to 

appear  in close proximity in the same sentence.  This causes problems with 

identifying the boundaries of the negation scope.  Example 4.9 illustrates the 

common issues.

Example 4.9.

(a) Negated, FN:  “T cells lack active NF-kappa B but express Sp1 as  

expected.” 

(b) Negated,  FN:  “Unlike  TNFR1,  LMP1 can  interact  directly  with  

receptor-interacting protein (RIP) and stably  associates with  RIP in  

EBV-transformed lymphoblastoid cell lines.” 

(c) Negated, FN: “Nmi interacts with all STATs except Stat2.” 
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In instance  (b) of  Example 4.9, a negated interaction is expressed, but 

there is no sign of a negation cue or negative sentence structure. Still, we can 

infer  that  TNFR1 cannot  interact  directly  with RIP;  it  may also  imply  that 

TNFR1 does not stably associate with RIP in certain cell lines. The negation 

therefore can only be inferred by taking the following steps: 

1. Recognising the presence of a contrasting pattern in the sentence; 

2. Identifying the contrasting entities (in this example TNFR1 and LMP1); 

3. Extracting the explicitly stated event (LMP1 interacts with RIP in this 

case); 

4. Identifying the scope of contrast; this can be ambiguous, as in Example

4.9 it  is  not  clear  whether  the  two  entities  also  contrast  in  “stably 

associates with RIP”, or only in “interact directly with RIP”. 

Contrasting  patterns  are  not  uncommon.  There  are  125  phrases 

expressing  contrast  in  the  training  data  (in  800  abstracts)  and  32  in  the 

development data (150 abstracts) using only the patterns “unlike A, B”, “B, 

unlike A”, and “A; in contrast B”. In these cases, the negation is usually not 

linguistically explicit, and has to be inferred by analysing the contrasts. Future 

work could explore  a  rule-based framework that  would identify  contrasting 

patterns  and  entities,  and  treat  such  expressions  separately  from  explicit 

negations, for which a ML approach could still be useful. 

At present, if a sentence contains more than one negation or speculation 

cue, we only extract the features concerning the “main cue”, i.e. the one with 

the smallest parse-tree distance to the trigger. This causes the production of 

wrong results in some of the more complicated sentences containing double 

negation in particular.

Furthermore,  a  number  of  these  double  negation  cases  contain  one 

linguistic  negation and one biological  negation.  In  Example  4.10,  the  word 

“suppress” indicates a biological negation,  but paired with the negation cue 
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“nor”, makes the overall sentence affirmative.

Example 4.10.

Negated, FN: “In contrast, neither the RA-stimulated, RARE-mediated 

transcription nor the induced RAR-beta expression was suppressed by  

VitD3.” 

A more correct annotation would have been to interpret “suppress” as 

negative regulation, which is negated by the cue “nor”; this negative regulation 

event  was  instead  annotated  as  a  negation  by  the  annotators.  Confusion 

between  negated  regulation  and  negative  regulation—even  by  human 

annotators—has also resulted in a number of errors.

A number  of  errors  were  due  to  negation/speculation  cues  that  were 

missing from the  cue lists  which were  created semi-automatically  from the 

training data. For example, “potential”, “unknown”, and “possibility” did not 

appear in the training data and were missing from the speculation cue lists.

Finally,  a  number  of  errors  originate  from  potentially  subjective, 

inconsistent,  or  simply  incorrect  annotation  by  the  human  annotators.  See 

Example 4.11.

Example 4.11.

(a) Negated,  FP:  Negmole  (correctly)  found this  event  as  a  negated 

localization  event,  whereas  the  annotators  have  reported  it  as  an 

affirmative localization event:

“[...] failure of p65 translocation [...]” 

(b) Speculated, FP: The following event was (correctly) classified by 

Negmole  as  speculation,  whereas  the  annotators  did  not  consider  it 

speculative:

“Proliferation,  as  measured  by  the  percentage  of  cells  in  cycle  

appeared  normal,  as  did  rearrangement  and expression of  the  TCR 
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beta-chain.”

(c) Speculation, FN: The following event was (correctly) not caught by 

Negmole as speculation:

“Analysis of the regulation of the p40 gene promoter revealed that ASA  

inhibited NF-kappaB activation and binding to the p40-kappaB” 

Some examples suggest that classification may not always be a correct 

construction of the negation and speculation detection problem. In  Example

4.12,  an  affirmative  and  a  negative  event  are  stated,  each  observed  in  a 

different population. If the population context is not extracted, the two events 

would be recognised as a single event, and therefore assigning a single polarity 

value to them would be incorrect.

Example 4.12. “Interleukin-2 production was diminished in the patient  

but not in the healthy twin.”

(From PMID 6239872)

In  this  research we addressed the problems of  negation detection and 

speculation  detection  independently.  It  will  be  interesting  to  investigate 

whether one could help as a feature in the detection of the other, or whether the 

combination of the two could add richer context to the extracted information. 

With less than 0.1% of the events in the evaluation corpus being both negated 

and speculative, we did not have enough data at this stage to further investigate 

these questions. 

The  same  observation  can  be  made  about  the  inferred  events.  The 

occurrence of the event components in a conjunctive structures can be used as 

an additional feature in the detection of negations and speculations.

While in minority, the number of negated and speculative events in the 

BioNLP’09 corpus is still significant (7% and 5%, respectively). Using these 

results,  we  extrapolate  that  by  applying  Negmole  to  a  large-scale  corpus, 
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around 1.56 million negated events and 1.24 million speculated events could be 

identified. This data could provide a very useful resource both for academics 

searching for previously reported results that are related to or conflict with their 

own,  for  data  miners  aiming  to  detect  interesting  patterns,  and  for 

bioinformaticians who wish to perform large-scale in silico experiments.

Although  Negmole  extensively  uses  semantic  features  related  to  the 

molecular events, it does not rely on any characteristic exclusive to biomedical 

events  per  se.  We  have  demonstrated  the  extensibility  of  the  method  by 

applying  it  with  minimal  modifications  to  the  similar  task  of  speculation 

detection. Whilst not evaluated, the lexical, syntactic, and semantic features are 

generic enough to be applied to other types of relations extracted from domains 

other than the domain of the biomedical literature.

4.5.3 Further discussion

As expected, approaches that focus only on event triggers and their surface 

distances  from  negation  cues  proved  inadequate  for  biomedical  scientific 

articles. Low recall was mainly caused by many event triggers being too far 

from the negation cue on the sentence level to be detected as within the scope.

Furthermore,  compared  to  clinical  notes  for  instance,  sentences  that 

describe  molecular  events  are  significantly  more  complex.  This  is  partly 

demonstrated by the occurrence of on average 2.6 event triggers in the event-

describing  sentences  in  the  training data,  and  higher  number  of  events  per 

sentence, sometimes with opposite polarities.

Consider for example the  sentence shown in Example 4.13.

Example 4.13. “We also demonstrate that the  IKK complex, but not  

p90 (rsk), is responsible for the in vivo phosphorylation of I-kappa-B-

alpha mediated by the co-activation of PKC and calcineurin.” 

(From PMID  10438457,  BioNLP’09 corpus annotations expanded by 

adding protein complexes.)
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Here,  the trigger (phosphorylation)  is linked with one affirmative and 

one negative regulatory events with two different entities (as well as participate 

as the theme of two regulatory events) hence triggering two events of opposite 

negations. 

These  findings,  together  with  previous  work,  suggested  that  for  any 

method to effectively detect negations, it should be able to link the negation 

cue to the specific token, event trigger or entity name in question. Therefore, 

more  complex  models  are  needed  to  capture  the  specific  structure  of  the 

sentence as well as the composition of the interaction and the arrangement of 

its trigger and participants. 

By combining several feature types (lexical, syntactic and semantic), the 

machine learning approach proved to provide significantly better results. In the 

incremental  feature addition exploration process,  adding the cue-commands- 

participant  feature  had  the  greatest  effect  on  the  F-score,  suggesting  the 

significance of treating event participants. We note, however, that many of the 

previous attempts focus on event triggers only, despite the fact that participants 

do play an important role in the detection of negations in biomedical events 

and thus should be used as negation targets instead of or in addition to triggers. 

It  is  interesting  that  adding  the  feature  concerning  the  parse-tree  distance 

between the trigger and negation cue improves precision by 5% (see Table 

4.10).

Differences  in  event  classes  (in  the  number  and type  of  participants) 

proved to be important. Significant improvement in performance was observed 

when individual classifiers were trained for the three event classes, suggesting 

that  events  with  different  numbers  or  types  of  participants  are  expressed 

differently in text, at least when negations are considered. Class I events are the 

simplest (one participant only), so it was expected that negated events in this 

class would be the easiest to detect (F-score of 77%). Class II negated events 

(which can have multiple participants), demonstrated the lowest recall (33%). 
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It  is surprising that negated regulation events (Class III)  were not the most 

difficult to identify, given their complexity. 

We applied the negation detection on the type, trigger and participants of 

pre-identified  events  in  order  to  explore  the  complexity  of  negations, 

unaffected  by  automatic  named  entity  recognition,  event  trigger  detection, 

participant identification,  etc.  As these  steps are  typically  performed before 

further contextualisation of events, this assumption is not superficial and such 

information can be used as input to the negation detection module.

The best F-score for negation and speculation detection in BioNLP’09 

were in the region of 23-25%, with a reported recall of up to 15%, but with 

overall event detection sensitivity of 33%  (Kilicoglu et al. 2009) on the test 

dataset (different from that used in our evaluation). These systems did not use 

gold-standard event data, and this makes it difficult to directly compare their 

results to our work.

Using their precision and recall values for event extraction, it is however 

possible to provide some rough estimates of what their results would have been 

if  applied  on  gold-standard  event  data.  Had  all  events  been  correctly 

recognised, their negation detection approach could have reached 45% recall 

(compared to 49% in our case). With precision of around 50%, their projected 

F-score, again assuming perfect event identification, could have been in the 

region of 50% (compared to 63% in our case).

The approaches that focus on sentence-level modality  annotation (e.g. 

(Shatkay et al. 2008)) have reported F-measures above 70%, but a meaningful 

comparison of the results between such systems and the current study is not 

possible.  We also note  that,  for both negations and speculations,  the major 

issue  is  improving  recall  by  highlighting  the  variability  of  the 

negation/speculation expressions.

The experiments with rules that were based on the command relations 

have proven to be generic, providing high recall (76%) but with poor precision 

(23%). Although only the results with S-command relations have been reported 
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here (see Table  4.8), we examined other types of command relation, namely 

NP-,  PP-,  SBAR-,  and  VP-command.  The  only  variation  able  to  improve 

prediction accuracy was whether the cue VP-commands any of the participants, 

with an F-score of 42%, which is higher than the results achieved by the S-

command (F-score of 35%).

In the machine learning approach, applying the method on all the classes 

shows that  the  best  micro-averaged  results  for  negated  event  detection  (F-

measure of 63%) have been achieved when separate classifiers were trained 

with the identical set of shared features. Sparsity of data is a likely reason for 

the  drop  in  performance  when  additional  class-specific  data  was  used  for 

training.

(MacKinlay  et  al.  2009) used  gold  annotations  as  input  for  negation 

detection, and reported an (estimated) precision, recall, and F-score of 68%, 

24%, and 36% respectively on the same dataset (compared to 88%, 49% and 

63% in our case) by using an ML with features comprising complex deep parse 

features.

As expected, negated events from class I (only one participant) were the 

easiest to detect (F-measure 67% to 77%). On the other hand, class III negated 

events,  although the  most  complex between all  event  types,  were  easier  to 

detect than class II negated events (possibly multiple participants). However, 

we note that the testing data had very few negated events of class II (only 15). 

When  the  same  model  was  applied  to  speculation  detection,  there  was  a 

significant  drop  in  the  quality  of  results  (F-measure  of  48%).  Still,  it  is 

interesting that precision between 64-73% was achieved on class III speculated 

events, which are the most complex and also most frequent in the training set. 

With semantic tokenisation, the precision of class I speculated event detection 

reached  70%.  Class  II  events  proved  to  be  challenging,  although  any 

conclusions are limited by the small number of testing examples (only 8).

Using semantic tokenisation was beneficial in avoiding common errors 

while aligning multi-token and sub-token entities to the nodes of the parse tree 
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of the sentence in order to extract syntactic features. However, the results of the 

two pairs of experiments that only differ in the use of semantic tokenisation 

(Tables 4.13 and 4.14, and also Tables 4.18 and 4.19), do not provide enough 

evidence  that  it  affected  the  results  significantly.  The  effects  of  semantic 

tokenisation on the quality of information extraction will need to be further 

investigated.

4.6 Summary and conclusion

In  this  chapter  we  evaluated  the  methods  proposed  and  developed  for 

molecular event extraction (Evemole) and negation and speculation detection 

(Negmole). 

At the time of developing Evemole, no other reliable event extraction 

system was available. We showed that Evemole can detect events with simple 

structures  (events  of  classes  I  and  II),  but  has  room  for  improvement  on 

regulation events. Although Evemole was later outperformed by other state-of-

the-art purpose-built systems, its performance is comparable with these.

Negmole, on the other hand, detects the negated events with competitive 

performance,  and was successfully expanded to detect  speculative events as 

well. This suggests that it can serve as a key component in a larger text mining 

pipeline to detect conflicting statements.



194

Chapter 5 

Large-scale consolidation of molecular event data

In this chapter we describe an approach to facilitate data consolidation in the 

domain  of  molecular  events  by  finding  conflicting  claims  of  facts  in  the 

literature. For this purpose, it is useful to integrate all possible outputs from all 

types of tools. In particular, since different tools report many non-overlapping 

sets of entities, events, or other information, by integrating them we can aim 

for higher recall or precision and use them for data mining.

We propose a way to aggregate, analyse, and consolidate the extracted 

data  to discover potential conflicts, contrasts, and contradictions.  To achieve 

this, we merge events from different gene and protein named entity recognisers 

and normalisers. Moreover, we modify and merge the outputs of two state-of-

the-art event recognition tools, namely TEES and EventMiner which became 

publicly available in the later stages of this research.

At this stage, we decided not to include the output from Evemole in the 

final  integrated  results,  given  that  other  reliable  and  high-performing  tools 

were  now  available,  and  that  event  extraction  was  not  the  focus  of  this 

research,  but  merely  a  means  of  meeting  our  goal  of  mining  conflicts. 

However,  the  modular  nature  of  the  integration  pipeline  means  that  it  is 

possible to merge the results of any other tool, or replace any of the existing 

tools  with  new ones.  We provide  a  wrapper  for  Evemole,  which  makes  it 

possible to integrate its output with the other tools. 

The rest of this chapter is structured as follows. Technical details on the 

implementation of the text mining framework will be presented in Section 5.1. 

Section  5.2 introduces the strategy of representing event mentions in text as 

well  as representing biologically  distinct  events.  As a  way of valuating the 

events,  we assign confidence values to  the extracted events.  The method to 

derive and assign these values are described in Section 5.3.
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The method of mining the extracted data to find conflicts is described in 

Section  5.4.  Finally,  Section  5.5 explains  how  the  data  and  code  can  be 

accessed for download or to browse through a web interface.

The text mining framework and the large-scale experiments were parts of 

a larger joint project with Martin Gerner (Faculty of Life Sciences, University 

of Manchester).

5.1 Framework for TM result integration and consolidation

In order to construct a unified system for consolidation of text mining 

results,  it  was necessary to integrate a number of different components that 

perform event extraction and contextualisation. For this purpose, we designed 

and implemented an integrated text  mining system, called  BioContext,  that 

extracts,  expands  and  integrates  mentions  of  molecular  events  from  the 

literature and facilitates data analysis and consolidation. The system relies on 

TextPipe,  a  framework for text  mining result  integration and consolidation 

(see also (Gerner 2011)).

5.1.1 TextPipe

In  order  to  facilitate  the  integration  of  tools  and  merging  of  data,  we 

constructed a lightweight framework called TextPipe. While other text mining 

frameworks like UIMA19 and GATE (Cunningham et al. 2011) are available, 

we designed a system which was more light-weight and,  more importantly, 

could  be  easily  modified  and  optimized  for  any  stability  or  performance 

problems we might (and did) encounter.

TextPipe  makes  extensive  use  of  modularisation,  parallel  processing, 

database optimisation, error handling and recovery to address various practical 

challenges when applying a diverse set of tools to large sets of documents, and 

in our case, abstracts and full-text articles. It is written in Java, but allows tools 

written in any language to be integrated as components.

Any tool can become a component in a system deploying TextPipe in 

19 http://uima.apache.org/
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order to benefit from the functionalities that it provides. Tools are wrapped as 

TextPipe components (treated as black boxes internally) by implementing two 

simple methods: one to specify the output fields of the tool, and another to call 

the main method of the tool. Data is communicated in the form of lists of key-

value pairs, similar to the model used in Google’s MapReduce  (Dean et al. 

2008).

TextPipe components are either applied directly to documents or run as 

services. They do not need to provide a list of dependencies. Instead, during 

run-time they connect directly to other components, providing the document 

(or documents, if run in batch mode) that need to be processed, and fetching 

the output of those components to use as their required input. Computed results 

can be stored in databases for later re-use to avoid multiple processing of the 

same documents.

To  summarise,  TextPipe  offers  the  following  features  as  a  tool 

integration framework.

• Capability to input and process a diverse range of textual formats;

• Ability to be deployed as a web service;

• Incorporation  of  any  tool  with  a  simple  wrapper,  and  providing  an 

interface between tools;

• Provision of methods for large-scale processing of documents;

• Support for concurrency;

• Use of databases for storage and retrieval of computed data;

• Use of caching.

5.1.2 BioContext overview and components

Figure  5.1 shows  an  overview  of  the  integrated  system.  Processing  is 

performed  in  four  stages:  named  entity  recognition  and  normalisation, 

grammatical  parsing,  event extraction,  and context  extraction.  Each stage  is 

composed  of  several  components.  In  some  cases,  outputs  from  multiple 

components are merged prior to use by other components. These processing 
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stages and their components are described below. 

The  numbered  circles  in  Figure  5.1 show  the  places  where  data 

integration is performed. The output of gene NER modules are merged in the 

circle numbered 1. The combined identified entities with the additional entities 

related to the anatomical locations and species names are replaced by place-

holder nouns in circle numbered 2 and semantic tokenisation is performed as a 

preprocessing step for parsers.

The event extraction tools use the output of these parsers as their input, 

and  produce  independent  sets  of  events,  which  is  later  merged  in  circle 

numbered  3.  The  merged  data  is  further  processed  by  adding  context,  i.e. 

information  regarding  negation,  speculation,  and  anatomical  location 

associated with every event.

Figure 5.1: An overview of BioContext

The  diagram shows  how the  different  components  of  the  system are  connected.  

Circles represent merging and post-processing of data. Different stages are shown on  

the bar above. The numbered circles show the places at which data integration or  

merging happens.

The  following sections  will  describe  the  components  we  used  in  the 

construction of BioContext in more detail.
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5.1.3 NER

In the first stage we perform recognition and normalisation of any entities that 

are needed in later stages of the system.

Named  entity  recognition  for  genes  and  proteins  are  performed  by 

GeneTUKit (Huang et al. 2011) and GNAT (Hakenberg et al. 2011); (Solt et al. 

2010). To the best of our knowledge, these tools are the only tools available 

that are capable of normalisation and are applicable to large-scale datasets from 

a practical point of view. GeneTUKit normalises genes and proteins from any 

species, while GNAT can only normalise genes and proteins from 30 of the 

most  frequently  discussed  organisms).  GNAT  uses  species  NER  as  input, 

which was performed by LINNAEUS (Gerner et al. 2010b). Both tools were 

configured to use BANNER (Leaman et al. 2008) for recognition to improve 

coverage.

We used a modified version of GNAT that reports not only the mentions 

that could be normalized to database identifiers,  but also any mentions that 

were recognized by BANNER but could not be normalized. GNAT relies on 

species NER, which was performed by LINNAEUS (Gerner et al. 2010b). Data 

extracted using these non-normalized entities will  have limited context,  and 

will not be as reliably assigned to their correct distinct group. However, leaving 

them out would have caused errors in the other components, specifically the 

event extractors, as they rely on entities to be marked in the sentence. In the 

absence of recognised entities, they will miss the event altogether, or report an 

unrelated entity appearing elsewhere in the sentence as the participant. The first 

case lowers the recall, and the second case affects the precision.

The  output  from  both  gene/protein  NER  systems  are  merged  after 

production. If the two tools have identified overlapping spans, then we create a 

new  span  with  the  union  of  their  coordinates.  If  the  tools  have  assigned 

different Entrez Gene identifiers in the original overlapped spans, then priority 

is given to the GeneTUKit normalisation.

NER of  anatomical  locations  (e.g.  “brain”,  “T cells”)  and  cell-lines 
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(acting  as  proxies  for  anatomical  locations,  e.g.  “HeLa” for  cervical  cells) 

were performed by the anatomical NER system from GETM  (Gerner et  al. 

2010a) which  relies  on  a  comprehensive  dictionary  of  anatomical  locations 

collected from 13 OBO ontologies.

5.1.4 Grammatical parsing

In the second stage, a number of deep and shallow grammatical parsers process 

the  texts.  In  order  to  increase  the  accuracy of  the  parsers  when applied to 

sentences  with  long  and  complex  entity  names,  we  performed  semantic 

tokenisation (see Section 3.2). Using this, we ensured that multi-word entities 

were not tokenized into multiple tokens. This was performed by replacing any 

entities recognized in the first stage with place-holders (generic terms tagged as 

nouns) prior to parsing. After parsing, the place-holders were replaced with the 

original strings again.

We used the McClosky-Charniak constituency parser  (McClosky et al. 

2006), the Gdep dependency parser  (Sagae et al. 2007b), and the Enju parser 

(Sagae et al. 2007a) to parse every sentence in the corpus.

In addition to the McClosky-Charniak parser, we also experimented with 

the constituency parse trees automatically produced by the parser reported in 

(Bikel  2004).  No  significant  differences  were  observed  in  the  results  of 

Negmole, one of the components requiring constituency parse trees. Therefore 

all the results and processes are reported using the McCloslky-Charniak parser.

5.1.5 Event extraction and integration

For the extraction of events, we chose to use two systems: the Turku event 

extraction  system  (TEES)  (Björne  et  al.  2009),  and  EventMiner  from  the 

University  of  Tokyo  (provided  by  Makoto  Miwa,  currently  unpublished). 

TEES  was  the  highest-scoring  system  in  the  BioNLP’09  event  extraction 

challenge (see Section 2.3.4), and evaluation results for EventMiner presented 

as  a  keynote  talk  at  BioCreative  III  showed  it  as  having  higher  accuracy 

(unpublished). To the best of our knowledge, these are the only systems that 
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are both accessible and maintained. Both systems use gene/protein NER results 

from the first stage. In addition, TEES also uses output from the McClosky-

Charniak parser and EventMiner uses results from Enju and Gdep.

In order to take advantage of these tools we have designed a method to 

merge several  event extraction outputs.  The integrated results  can be useful 

when deciding the balance between precision and recall, depending on how the 

data will be used (see Section 5.2).

The  output  from the  two  systems,  which  is  merged after  production, 

consists of information about the event type, the event trigger and the event 

participants. The results are reported in the BioNLP’09 format, with each event 

referencing the entities or the other events by their  IDs.  So,  each extracted 

event is stored in the database with its components spread over several rows, 

each referencing the others.

The  events  extracted  from  the  two  tools  are  compared  to  determine 

whether they refer to the same mention of an event. Two events extracted from 

a  given  sentence  match  if  their  type  and  participants  match  (we  used 

approximate  boundary  matching  conditions,  allowing  overlap  for  the 

participant mentions). If the event involves other events, the matching criteria 

is examined recursively. Note that here we do not require the triggers to match, 

as they do not convey any biological information.

After  studying  a  sample  of  the  merged  output  from  the  large-scale 

MEDLINE event  extraction,  we  noticed  recurring  patterns  that  contributed 

towards many incorrectly extracted events.

To  increase  the  precision,  we  designed  post-processing  methods  that 

negatively discriminated (i.e. removed probable false positives) against those 

events that followed these patterns. The rules were based on the event trigger 

and  the  event  structure,  as  explained  below.  We  also  consider  improving 

coverage by inferring additional events (see Section 5.1.7).
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Negative discrimination based on the event trigger

Events whose triggers indicate that the events are wrong are removed. Very 

short triggers (one or two characters, mostly consisting of punctuation, single 

letters or abbreviations) were removed. We also compiled a white list of 11 

short words (“/”, “-”, “is”, “by”, “as”, “on”, “up”, “at”, “be”, “do”, and 

“if”) that  could be triggers, and a blacklist  of 15 longer words which were 

common  English  stop  words  (  “the”,  “and”,  “in”,  “of”,  “cells”,  “to”,  

“when”, “patients”, “are”, “mice”, “from”, “both”, “that”, “mouse”,  and 

“what”) and were often recognised incorrectly as event triggers. Events that 

had a  trigger  from the  white  list  were  not  removed,  and events  that  had a 

trigger from the blacklist were removed.

In addition, events with capitalised triggers which were not situated at the 

beginning of a sentence were removed, as many of these capitalised words 

turned out to be proper nouns, and seldom functioned as an interaction trigger. 

For  example,  an  event  with  the  trigger  “Expression” from  the  sentence 

“Expression of the argA gene carried by a defective lambda bacteriophage of  

Escherichia coli.” (extracted from PMID 130376) would be retained since it 

was in the beginning of the sentence, but an event with the (incorrect) trigger 

“E.P.” from the sentence “[...] primary visual E.P. in Medial Laternal gyrus 

[...]” (PMID  142561)  would  be  removed,  since  “E.P.” was  not  in  the 

beginning of the sentence.

Negative discrimination based on the event structure

The event  extractor  components  identify  nested  regulatory  events  in  which 

either or both of the participants may be other events. However, they are likely 

to  report  events  that  are  circularly  nested  (e.g.  E1  causes  E2,  which  itself 

causes E1) or in a very long chain (e.g. E1 causing E2 causing E3 and so on.) 

In one instance TEES found a chain of 211,769 connected events. We noticed 

that there are very few instances in the training data where events are nested 

deeper than two levels, and there are no circularly nested events. In addition to 
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making little biological sense, none of the cases of circular or long chain events 

that  were  manually  examined  were  correct.  Therefore,  we  categorically 

removed all the events that were nested any deeper than two levels.

5.1.6 Adding context

In the final stage, further context is extracted and is associated with the events 

that were extracted in the previous stage. This information includes associated 

anatomical locations and whether extracted processes have been reported as 

speculative or negated.

Negation and speculation association

We use Negmole to determine whether the events are described negatively or 

speculatively.  The  input  of  Negmole,  in  addition  to  the  extracted  events, 

contains constituency parse trees from the McClosky-Charniak parser. 

The methodology and design principles of Negmole have been described 

in detail in Sections 3.4 and 3.5. It  takes as input text, named entities marked 

with offsets, parse trees of the sentences and the extracted events (trigger, type, 

and participants.)  Negmole  classifies  each  event  as  negated/affirmative  and 

speculated/asserted. The flowchart in Figure 3.15 on page 138 summarises the 

operation and requirements of this system.

The input formats are those of the BioNLP’09 Shared Task. The Java 

implementation comes with a wrapper to function as a module in the TextPipe 

framework and uses the same unified input and output format as any other 

TextPipe module: a map of string to string.

We used the features extracted from the BioNLP’09 training set to train 

an SVM model which was used in the SVM classification algorithm to classify 

each  of  the  test  instances.  Negmole  extracts  features  from  the  inputs  and 

creates  feature  files  to  be  used as  the  input  to  the  SVM machine  learning 

system. We used SVMperf as the choice of the SVM engine.
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Species and anatomical association

Anatomical locations are associated with events using an expanded version of 

the method described in  (Gerner et al. 2010a). It relies on Gdep dependency 

trees to link events and associated anatomical entities. The tool was integrated 

as a TextPipe component with a wrapper interfacing the framework.

We used LINNAEUS (Gerner et al. 2010b) to extract mentions of species 

names  (e.g.  “human”,  “dog”,  “mus  musculus”,  etc.)  and  mentions  of 

anatomical locations (e.g. “blood”, “vein”, “epithelium”, or cellular locations 

such as “lymphoid tissue” or “nucleus”).

The anatomical entity IDs come from 13 different ontologies from The 

Open Biological and Biomedical Ontologies (OBO) foundry20, some of which 

are species-specific, and others refer to higher taxonomic orders such as genus, 

class, etc. The mentions were normalised based on their string equality as well 

as  the  LINNAEUS’s  native  dictionary  matching  method.  Moreover,  the 

anatomical entities were associated with a certain species whenever possible. 

The  anatomical  locations  were  assigned  unique  internal  identifiers  that 

reflected the anatomical location as well as the species it exists in.

5.1.7 Inferring additional events from enumerated entity mentions

Mining conflicting events in the literature is a task that requires large-scale 

extracted  data.  In  order  to  increase  the  number  of  events  that  have  been 

extracted, we infer further events from enumerated entity mentions.

We noted that a relatively large number of gene/protein and anatomical 

entities in MEDLINE are part of “enumerations”, i.e. lists of more than one 

entity connected within a conjunctive phrase (for example, three anatomical 

entities are enumerated in the phrase “amniserosa, dorsal ectoderm and dorsal  

mesoderm”). We hypothesize that wherever event extractors or the anatomical 

association method associate an event with a gene/protein or anatomical entity 

which is part  of such an enumerated group, we can  infer additional events, 

20 http://www.obofoundry.org/
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where  the  original  entity  is  replaced  with  each  of  the  other  entities  in  the 

enumeration.

For example, in Example 5.1 gene expression events should be extracted 

for all three Dorsocross genes, and each of those events should be associated 

with each of the anatomical locations mentioned. If any of these nine events are 

not extracted, the event inference based on enumeration will be able to infer the 

event(s) that were missed by the event extractors.

Example 5.1.  “In the present  study,  we describe three novel  genes, 

Dorsocross1,  Dorsocross2 and  Dorsocross3,  which  are  expressed 

downstream  of  Dpp  in  the  presumptive  and  definitive  amnioserosa,  

dorsal ectoderm and dorsal mesoderm.”

(From PMID 12783790)

Since  each event  is  initially  only associated with  a  single  anatomical 

location,  this  method  makes  it  possible  to  infer  additional  events  for  the 

anatomical locations that were not associated to the original events.

In order to implement this method, we used regular expression patterns 

(see Table 5.1) to detect groups of enumerated entities. The regular expressions 

are applied recursively, causing any number of entities to match. For example, 

in the phrase “T1, T2, and T3” the first two entities (T1 and T2) will be in the 

same group by applying the first regular expression, and T2 and T3 will be in 

the same group by applying the second rule. Finally, the groups are merged to 

form a perfect partitioning of the entities, and therefore, T1, T2, and T3 would 

belong to the same entity group. If T1 and T2 belong to the same entity group 

and an event E1 is extracted with T1 as the participant, we construct a new 

event E2 with the entity T2. Except for T1, all other properties of E1 will be 

duplicated in E2.
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Patterns to match Regular expression to match the 

sub-string between T1 and T2

T1, T2

T1/T2

"^[,/] ?$" 

T1, and T2

T1 and T2

"^,? and $" 

Table 5.1: Regular expressions used to enumerate named entities

The regular expressions are applied recursively, causing any number of entities to  

match. 

 

5.2 Event representation

5.2.1 Event mention representation

We are mainly concerned with the event-level information about biomedical 

processes. Therefore we would like to extract, represent, modify, and analyse 

the data on the level of events. For that purpose, we designed a model that is 

represented as a denormalised table where every record is one instance of an 

event  mention in  a  document.  We  populated  the  table  with  the  extensive 

mention-level information about each extracted event. Cross references to the 

other events in nested events were expanded and added as attributes to the 

parent  event  record.  The  columns  of  the  denormalised  table  and  a  brief 

description of each column are listed in Table 5.2.

Attribute 

Type

Name Values  Description

G document ID PMID or PMC 

unique 

identifier

The MEDLINE or PMC document in which the 

event was mentioned

G sentence string The sentence that mentions the event

G sentence offset integer The character offset of the sentence in the 

document
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E confidence real The confidence of event extraction

E type enum (nine 

possible 

values)

The biological type of the event; one of the nine 

types used by the BioNLP’09 corpus

E level integer Indicates whether the event is simple (i.e. has 

entity participants) or nested (has other events 

as participants)

E trigger term string The textual trigger of the event

E trigger start, 

trigger end

integer The character offsets of the start and end of the 

textual trigger

E TEES boolean Whether the event was extracted by TEES

E Tokyo boolean Whether the event was extracted by EventMiner

E inferred gene boolean Whether the event was inferred based on 

enumerated gene/proteins

E inferred 

anatomy

boolean Whether the event was inferred based on 

enumerated anatomical entity

E negated boolean Whether the event is negated

E negation cue string The textual cue for negation

E negation cue 

start, end

integer The character offsets of the start and end of the 

negation cue

E speculated boolean Whether the event is speculated

E speculation cue string The textual cue for speculation

E speculation cue 

start, end

integer The character offsets of the start and end of the 

speculation cue

E anatomical 

location

string The anatomical entity which has been assigned 

as the location of the molecular event

E anatomical 

entity ID

Internal ID Internal ID linked to OBO Foundry ontology 

identifiers

E anatomical 

entity start, end

integer The character offsets of the start and end of the 

anatomical entity mention

R participants multiple 

columns

The participants of the event. This spans over 

several columns as each participant may be an 

entity or another event. There are separate 

columns for ‘theme’ participants and ‘cause’ 

participants.

R participant type boolean Whether the participant is an event or a 

gene/protein entity

R entity term string The actual text that refers to the entity that 

participates in the event

R entity ID Entity ID in The normalised ID of the gene/protein entity in 
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NCBI the NCBI Entrez Gene reference database. This 

could be null if the entity cannot be normalised.

R entity start, end integer The character offsets of the start and end of the 

protein/gene mention

R GNAT + 

BANNER

boolean Whether the entity was found by GNAT + 

BANNER

R GeneTUKit boolean Whether the entity was found by GeneTUKit

R shallow match boolean Set if both GeneTUKit and GNAT overlap, but 

map the entity to different IDs.21

R gene 

confidence

real The confidence of gene extraction

Table 5.2: The attributes of mention level event representation

Each row of this table shows a column of the denormalised table identifying each  

event mention and its attributes. The attributes of type G are general attributes, type E  

are event level attributes, and type R are recursive attributes and are repeated as  

needed.

The left-most column in Table 5.2 shows the type of each of the columns 

of the denormalised database table. The G columns are the general attributes 

and every record has exactly one of each one of them. The E columns are 

event-specific attributes. Since every record represents an event, each row will 

have  all  the  E  records  that  refer  to  that  event.  However,  some  of  the 

participants of the event can be other events. Therefore, R (recursive) attributes 

can be repeated or recursively repeated as required. For example, if a binding 

event involves two genes, we will have two sets of all the R attributes, one for 

every gene.

If a regulation event has a theme that is itself an event, we will repeat all 

the E attributes in that record, once for the event itself, and a second time for its 

theme that is also an event. The same principle applies to other types of nested 

events or events with multiple participants.

An example of an event represented in this manner can be seen in Table 

21  GeneTUKit is prioritised over GNAT, since it was the best performing tool in the 

BioCreative III challenge.



208 Chapter 5 Large-scale consolidation of molecular event data

5.5.

5.2.2 Distinct event representation

The denormalised table contains every  mention of an event anywhere in the 

corpus, and may contain many similar events that are reported or discussed in 

the literature. In order to analyse the distinct events contained in the literature, 

and  specifically  as  a  way  of  normalising  event  mentions  into  equivalence 

classes, we use the concept of distinct events introduced in Section 3.1.3.

We chose the columns that are essential in defining an event and use 

them  to  construct  a  hash  function  that  assigns  an  integer  (hash)  to  a 

combination of attributes, ignoring extrinsic attributes such as all G attributes, 

index and offset attributes,  terms (e.g.  trigger term, entity terms, and cues). 

Instead, we include attributes that are intrinsic to the event such as event type, 

participating entity IDs, and negation information.

Specifically,  the attributes  that  are  used to  identify distinct  events are 

displayed in Table  5.3. Note that these are a subset of the attributes in Table 

5.2.

Attribute 

Type

Name

E type

E negated

E speculated

E Anatomical entity ID

R Participants

R Participant type

R Entity ID

Table 5.3: The attributes of every distinct event in the collapsed table. 

The R columns are recursive, and are repeated for every participant, and therefore  

are in fact multiple columns.

The hash is calculated from the string containing these attributes (in the 
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most  possible  normalised  form)  and  also  added  to  every  record  in  the 

denormalised table. The importance of the hashes lies in their definition of the 

“identity” of an event. The information incorporated in the hash is the essential 

information about an event, and corresponds with the distinct representation of 

an event introduced before.

We use the hash to collapse the denormalised table by grouping together 

the events that are likely referring to the same biological process, regardless of 

the document in which they have been mentioned, and of the words with which 

they have been described. The columns of the collapsed table are shown in 

Table  5.3. Similar to the denormalised table, the R columns are recursively 

repeated, for every participant. They include a copy of the E columns for each 

of the participants that is an event.

5.3 Ranking the events by text mining confidence

Not all the extracted events have the same quality. In a pipeline comprised of 

many modules, the quality of the final output is affected by the precision of 

every stage that affects the input. For example, the precision of the gene and 

protein  NER  stage  which  is  one  of  the  earlier  stages  of  the  pipeline  is 

propagated through all the other stages that use the NER output as one of their 

inputs.

We use a method of confidence assignment to calculate the confidence 

level of every event as it is extracted by the system and stored in the database. 

We identify the precision level of every stage that the extraction of an event 

involves and use it as a factor to determine the confidence of the event.

For example, if two gene NER tools agree on an entity, the confidence of 

the extraction of that entity will be higher than when only one of them has 

detected the entity. The confidence will be proportionate to the precision of 

each tool.
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NER BANNER + GNAT 0.8

GeneTUKit 0.72

Intersection 0.82

Event extraction EventMiner Binding 0.27

Gene expression 0.47

Localization 0.36

Negative regulation 0.32

Phosphorylation 0.61

Positive regulation 0.35

Protein catabolism 0.8

Regulation 0.22

Transcription 0.48

TEES Binding 0.34

Gene expression 0.58

Localization 0.67

Negative regulation 0.41

Phosphorylation 0.6

Positive regulation 0.44

Protein catabolism 0.62

Regulation 0.25

Transcription 0.51

Intersection Binding 0.49

Gene expression 0.7

Localization 0.76

Negative regulation 0.6

Phosphorylation 0.7

Positive regulation 0.61

Protein catabolism 0.92

Regulation 0.45

Transcription 0.73

Inference Gene enumeration 0.44

Anatomical entity 

enumeration

0.34

Table 5.4: Coefficients that determine the confidence

The numbers in bold are the maximum in each category and are used to normalise the 

coefficients in every stage.
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In every stage, we normalise the confidence coefficient by dividing all of 

the coefficients belonging to that stage by the highest coefficient for that stage. 

Table 5.4 shows the coefficients of every stage, and how they are normalised. 

The  numbers  are  derived from the  precision  evaluation  results  that  will  be 

presented in Chapter 6 .

Table  5.5 shows an example from the extracted events.  Note that  the 

confidence is not very high (0.00136), which is expected for an event of level 

1. It is interesting to observe that, apart from the event-participant association 

which is incorrect, the other attributes of the main event and the nested event, 

including the negation of the main event, the negation of the nested event, and 

the anatomical association by inference to the main event have been identified 

correctly.

Attribute 

Type

Name Values

G document ID PMC2727658

G sentence For example in the liver and skin, there was no activation of toll-like 

receptors (which could play a role in pathogen recognition), no change 

in known antimicrobial peptide genes (although not all AMPs were 

represented on our chip because some sequences were shorter than our 

60-mer probes), and no change in MHC class I or II genes, or genes 

involved in antigen presentation (e.g., LMP7, TAP1 and 2, 

cathepsines). 

G sentence offset 27983

E confidence 0.001360

E type Regulation

E level 1

E trigger term “change”

E trigger start, 

trigger end

28283, 28289

E TEES FALSE

E Tokyo TRUE

E inferred gene FALSE

E inferred anatomy TRUE

E negated TRUE
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E negation cue “no”

E negation cue 

start, end

28280, 28282

E speculated -

E speculation cue -

E speculation cue 

start, end

-

E anatomical 

location

“liver”

E anatomical entity 

ID

anat:184

E anatomical entity 

start, end

28002, 28007

R0 participant type Event

R0 participation type Theme

R0 type Positive regulation

R0 level 0

R0 trigger term “activation”

R0 trigger start, 

trigger end

28031, 28041

R0 TEES FALSE

R0 Tokyo TRUE

R0 inferred gene FALSE

R0 inferred anatomy FALSE

R0 negated TRUE

R0 negation cue “no”

R0 negation cue 

start, end

28028, 28030

R0 speculated FALSE

R0 speculation cue FALSE

R0 speculation cue 

start, end

-

R0 anatomical 

location

“skin”

R0 anatomical entity 

ID

anat:115

R0 anatomical entity 

start, end

28012, 28016

R1 participant type Entity

R1 entity term “toll-like”
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R1 entity ID 37272

R1 entity start, end 28045

R1 GNAT + 

BANNER

TRUE

R1 GeneTUKit TRUE

R1 shallow match FALSE

R1 confidence 0.014760

Table 5.5: Example event representation

The main event represented here is a Regulation event whose only participant is a  

positive regulation even with a theme role. It is extracted automatically using the event 

extraction pipeline, BioContext.

5.4 Finding conflicting statements

We focus on strict contrasts, as allowing some of the fields to be empty results 

in events that have less context extracted and therefore are likely to have less 

implicit context in common. We select a subset of the events that satisfy the 

following criteria:

1. The events have an associated anatomical location;

2. If they are binding events, two themes are present;

3. If they are regulatory events, they have causes;

4. The entity participants are normalised to standard entries;

5. The events are not speculative.

For  every unique event satisfying the above criteria,  we calculate  the 

hash  for  a  hypothetical  event  that  matches  it  in  every  aspect,  but  has  the 

opposite negation attribute. We then search the database for any event with this 

given hash.

This method allows us to find pairs of events that  are common in all 

aspects (type, participants, and anatomical locations), and their only difference 

is the fact that one is affirmative and the other is negated.

We assign a score to every pair to indicate how prominent that pair is. To 

compute this score, we start by calculating the cumulative confidence of each 

one  of  the  two  hashes  in  the  pair.  Cumulative  confidence  is  equal  to  the 
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number  of different documents in which the distinct event corresponding to 

that hash (which we refer to as the  supporting event for the hash) appears, 

regardless of the number of times it has appeared in a single document. The 

aim is to remove the bias caused by the repeated appearance of the same event 

in a document. In other words, the cumulative confidence of a hash is defined 

as:

cumh= ∑
d i∈Documents

max jc ij h

where  c ij h is the confidence of the  jth occurrence of an event with 

hash  h in  document  i,  and the  max function  runs on different  values  of  j.  

Assume that a number of mentions of a given event have been extracted from 

document i. Not all of these events are of equal confidence, and it is possible 

that some of them are false positive instances. However, regardless of those 

lower quality mentions, we consider the maximum score, i.e. max jcij h in 

the above equation. Considering this event to denote the appearance of this 

particular event in document i prevents the lower quality of the other (possibly 

more complex) mentions from adversely affecting the notion of document-level 

confidence. By adding these document-level confidences, we take into account 

how  commonly  a  distinct  event  is  reported.  We  only  use  this  cumulative 

confidence  score  for  ranking  purposes,  and  therefore  we  do  not  consider 

applying a logarithmic function on the sum.

Using this measure for how commonly and confidently a distinct event is 

reported,  we  define  the  score  of  a  pair  of  events  as  the  minimum  of  the 

cumulative confidences of the two corresponding hashes.

score h1 , h2=mincum h1 ,cumh2

This is a measure that favours pairs that have a combined high frequency 

and confidence. Here we chose to use the minimum as the way to combine the 
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scores of the two events in a pair. Other ways of combining two scores such as 

various averages would have caused the more prominent event to dominate the 

overall score for the pair. We expect the pairs that are not in fact conflicting to 

have a very low score on one of the events of the pairs. For example, if it is a 

well-known fact that p53 is expressed in lung, we expect the cases of p53 not 

expressing  in  lung  to  be  rare  or  with  low  confidence  (likely  to  be  false 

positives)  and therefore  to  have  a  low score.  On the  other  hand,  the  event 

“expression of p53 in lung” would have a very high score, and could dominate 

the score of the pair, despite the fact that the pair is not very likely to represent 

a conflict.

To address this issue, we would like the score of the pair to depend solely 

on the score of the event with the lower score. This will guarantee that a pair 

will be scored highly if both components have at least a minimum confidence 

score. The score will be used in ranking and evaluation of conflicting pairs, and 

in estimating the confidence of a pair. Using this ranking, we can present to a 

user all  conflicting statements that  have a minimum confidence or satisfy a 

certain filter.

5.5 Exploring the data

We applied  BioContext,  our  integrated  system,  to  extract  events  and  their 

context, to MEDLINE (2011 baseline files, containing 10.9 million abstracts) 

and to  the  open-access  subset  of  PMC (downloaded May  2011,  containing 

235,000 full-text articles). In this section we describe access to the data as well 

as the source code of BioContext and its components.

5.5.1 Browsing the data

We provide a web interface for browsing the data,  and for performing web 

searches22. It is implemented in Python, and runs server calls to the database 

containing the results.

The  interface  is  simple,  allowing  the  user  to  enter  any  of  the  two 

22 The web interface can be accessed at http://www.boicontext.org/

http://www.boicontext.org/
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participants, and the anatomical location they are interested in, and select any 

number  of  the  nine  event  types.  The  input  strings  are  processed  by  entity 

recognisers and normalised. This will allow all the events involving the same 

entity to be fetched, regardless of the term used to refer to the entity.

When the query is submitted,  the events matching the criteria will be 

returned in tabular form, with full context and citation information concisely 

displayed. The results can also be downloaded in structured text files from this 

page.

The following screen shots demonstrate the design and features of the 

web interface.  On the  first  page (Figure  5.2)  the  user can enter  the  theme, 

cause, and the anatomical location they are interested in, or leave any of them 

blank. If any of the fields are left empty, events with all possible values for 

those  attributes  will  be returned.  We use  the  word “Target”  for  theme and 

“Regulator”  for  cause,  as  these  terms are  more  comprehensible  and appear 

more natural to biologists. The event types that are of interest can be selected 

with check boxes. By default all the check boxes are selected.
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Figure 5.2: BioContext web interface: the first page

The query returns events of any type with IL-2 as the target (theme).

The queries are parsed by entity recognisers and are normalised to the 

relevant identifiers, possibly belonging to a certain species. For example, if one 

enters “rat IL-2” into the target box, the results related to IL-2 in rats will be 

returned.

After filling in the Target field with the query “IL-2”, we see a summary 

of the affirmative and negated cases of each type of event involving this gene. 

Clicking on any of these numbers will show the details of the extracted events 

(Figure 5.3).
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Figure 5.3: BioContext web interface: summary of the query results

The list of events involving the human version of the gene/protein after submitting the 

query with IL-2 in the “Target” field. The count for affirmative and negated mentions 

are displayed separately. Clicking on the link indicated with ‘here’ will show the list of  

homologs of the entity in other species.

By default, if the species is not specified, human results are displayed. 

However, we could also choose other homologs (same entities in other species) 

by clicking on the appropriate link. A list of resolved entities for the IL-2 gene 

in other species are displayed, and will display the specific events occurring in 

those species (Figure 5.4).
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Figure 5.4: BioContext web interface: list of homologs

If  the entity from the search query (IL-2 in our  case)  exists in  species other  than 

human, a list of homologs can be accessed. The links will direct the user to the list of  

events involving the specified entity.

On the same page, we also see a list of all the distinct events involving 

the queried gene. Here, a distinct event can be selected for the viewing of the 

individual mentions (Figure 5.5).
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The affirmative or negated cases of a distinct event can be selected for 

display.  The  empty  columns  indicate  incomplete  context.  The  citations  are 

extracted and formatted, and are linked to the original document. Figure  5.6 

shows the list of affirmative mentions of this particular event. The sentences 

from the same document are grouped together, and can be viewed individually 

by selecting the plus sign next to the document citation information (compare, 

for example, the third row with with rows 5 and 6 in Figure  5.6.) The open 

access PMC articles are indicated by a lock sign next to the reference.

Figure 5.5: BioContext web interface: list of the distinct events

List of distinct events, regardless of the document or sentence they have appeared in,  

which involve the queried entity in the specified role.
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Similarly, negative cases can be viewed in a list with references to the 

original documents in MEDLINE or PMC (Figure 5.7). The negation cues are 

highlighted,  as  well  as  the  speculation  cues  wherever  they  cue  an  affected 

event. The cues that do not affect events are left without highlighting.

Figure 5.6: BioContext web interface: list of affirmative cases of the given event

Individual affirmative mentions of the IL-2 expression, with highlighting on the original  

sentence and link to the source document.
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Figure 5.7: BioContext web interface: list of negated cases of the given event

Individual negated mentions of the IL-2 expression, with highlighting on the original  

sentence  and  link  to  the  source  document  similar  to  the  affirmative  cases.  The  

negation cue responsible for negating the even is highlighted in each case.

5.5.2 Availability of data and the code

In  addition to  the data  that  can be accessed for browsing and downloading 

through the web interface, we also provide the data produced as the output of 

this system, as well as all the intermediary data freely available. It is accessible 

on the web,  and also  available  through the supplementary materials  of this 

thesis23.

All the code written for the BioContext, the wrappers for several tools, 

and the tools that we developed will be available at http://www.biocontext.org/.

23 Available at www.cs.man.ac.uk/~sarafraf/thesis-supplementary.html
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Appendix D provides a list of data and code from each stage. For more 

details about the size of each data set, see Chapter 6 .
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Chapter 6 

Large-scale event extraction: data and evaluation

We applied  BioContext,  our  integrated  system,  to  extract  events  and  their 

context, to MEDLINE (2011 baseline files, containing 10.9 million abstracts) 

and to  the  open-access  subset  of  PMC (downloaded May  2011,  containing 

235,000 full-text articles). In this chapter we present, evaluate, and discuss the 

data resulted from this experiment.

To  evaluate  the  pipeline  of  text  mining  tools,  we  also  evaluate  the 

performance of each of these components individually, in order to measure the 

impact that each of the more complex components have on the data as it moves 

through the pipeline.

6.1 Evaluation method

6.1.1 Evaluation metrics and approach

From  an  NLP  perspective,  it  is  important  whether  the  textual  elements 

indicating the event are correctly identified. There are several ways to assess 

the equality of these elements. The  textual boundaries of the extracted event 

triggers and participants could match those of the gold standard ones either 

approximately or exactly. The nested events could be evaluated recursively, or 

only based on the highest level event. 

From a  biological  perspective,  mention  level  evaluation  might  not  be 

very  useful,  as  it  is  only interesting to  know whether  a  particular  event  is 

described in a document, regardless of the exact phrase used to describe it. 

Textual triggers may be of little importance, and the terms used to refer to the 

biological entities involved in an event are variable.

To  compromise  for  these  considerations,  we  use  slightly  different 

methods  for  evaluating  the  event  extraction  task  than  for  the  aggregate 



6.1 Evaluation method 225

analysis. In the event extraction task (Chapter 3), we count an extracted event 

as a true positive if its type, trigger and all participants are correctly identified. 

Similarly,  in  the  negation  and  speculation  extraction  task,  a  true  positive 

represents  a  correctly  identified  negated  (or  speculated)  event  and  a  false 

negative is a negated (or speculated) event reported incorrectly as affirmative 

(or  asserted).  Here  we present  an  aggregate  analysis  of  results  obtained  as 

described in Chapter 5. We focus on the biological significance of the data, and 

allow the textual triggers of the event to vary. 

6.1.2 Evaluation corpora

In  the  evaluation  of  BioContext  using  automatically  extracted  entities  as 

opposed to gold standard entities, we noticed that many false positive results 

are created by entities missing in the BioNLP’09 corpus. The obvious thing to 

do  was to  consider  these  entities as  false  positive  instances from the  NER 

stage, but on closer examination we found that many of these entities are also 

present  in  the  original  GENIA  corpus  (see  Section  2.6 for  the  differences 

between the two corpora).

The  removal  of  those  entities  in  the  construction  of  the  BioNLP’09 

corpus was based on the argument that they do not strictly meet the “gene or 

gene product” definition. Many of these entities are protein complexes (such as 

NF kappa B) or other entities that behave (both biologically and linguistically) 

similarly  to  ordinary  genes  and  proteins.  Furthermore,  these  entities  are 

typically detected by gene recognition systems, and participate in molecular 

events which are described in the biomedical literature using similar linguistic 

expressions, and are potentially interesting to biologists.

We therefore constructed a new corpus, referred to as  the  B+G corpus 

hereafter, combining the BioNLP’09 gold annotations with the subset of the 

GENIA  corpus  that  most  closely  resembles  the  BioNLP’09  construction 

criteria, but also accounts for the omitted protein complex entities.  The B+G 

corpus includes all the entities from the BioNLP’09 corpus plus the entities 
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from the GENIA corpus with the  protein molecule  and  protein complex  tags 

(see Section 2.6).

The  events  included  in  the  B+G  corpus  are  all  the  events  in  the 

BioNLP’09 corpus, in addition to a subset of the GENIA events. To construct 

this  subset,  we  select  any  GENIA  event  whose  participants  are  already 

included in the B+G corpus (be it an entity or an event) and whose type is one 

of the following GENIA event types: Positive regulation, Negative regulation,  

Regulation,  Gene  expression,  Binding,  Transcription,  Localization,  Protein  

catabolism,  Protein  amino  acid  phosphorylation,  and  Protein  amino  acid 

dephosphorylation.  The  last  two  event  types,  Protein  amino  acid 

phosphorylation,  and  Protein  amino  acid  dephosphorylation, together 

construct the event class Phosphorylation in the BioNLP’09 corpus.

There are a number of cases where mapping an event from the GENIA 

corpus to its derived event in the BioNLP’09 corpus is not straightforward. For 

example, in a number of cases, the original and the derived events differ in 

their trigger mention and therefore could be two different events. So, strictly 

speaking, both events should appear in the B+G corpus. However, upon further 

manual investigation of all the respective sentences, we realised that the two 

seemingly different events are  in fact  the same, and the BioNLP’09 corpus 

creators have moved the trigger of a GENIA event to a different word. In such 

cases, only one of the events are included in the B+G corpus, with priority 

given to the BioNLP’09 corpus.

Every  event  in  the  GENIA  corpus  has  “assertion”  and  “uncertainty” 

attributes. Assertion is a binary attribute with possible values of “exist” and 

“non-exist”  which  corresponds  to  our  definition  of  negation,  whereas 

uncertainty is a tertiary attribute corresponding to speculation, with the three 

possible  values  of  “certain”,  “probable”,  and “doubtful”.  In  the  BioNLP’09 

corpus, an event can be “negated”, corresponding to the “non-exist” attribute in 

the GENIA corpus. Independently, it can be “speculated”, corresponding to the 

union of probable and doubtful events. We stay with the binary classification 
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of the BioNLP’09 corpus, grouping the probable and doubtful events.

Table  6.1 shows  the  distribution  of  event  types  in  the  B+G  corpus. 

Compared  to  the  statistics  for  the  combined  BioNLP’09  training  and 

development  corpora,  of  the  14,781  events  in  the  corpus,  a  total  of  2,607 

belong  to  the  set  of  abstracts  appearing  in  the  development  set  of  the 

BioNLP’09 corpus.

Event type Number of events in the 

BioNLP’09 training + development 

data sets

Number of events in 

the B+G corpus

Gene expression 2,094 2,399

Localization 318 497

Transcription 658 683

Protein catabolism 131 146

Phosphorylation 216 252

Binding 1,136 1,711

Regulation 1,134 1,608

Positive regulation 3,465 5,457

Negative regulation 1,258 2,028

Total 10,410 14,781

Table 6.1: Summary of the events in the B+G corpus

To  evaluate  and  compare  the  event  extraction  tools,  we  use  the 

BioNLP’09 corpus wherever the gold annotated entities are used as input. But 

when the tools are using automatically extracted entities as part of a pipeline, 

the B+G corpus is used for evaluation. In the following sections we report the 

results of the different tasks on the above corpora.

As no gold annotated corpus exists for anatomical and species named 

entities  on  a  mention  level,  we  randomly  selected  100  events  that  are 

associated with entity names by methods described in Section  5.1.6 for post-

hoc evaluation. Similarly, we selected 100 events that were inferred from the 

extracted events (see Section 5.1.7) for post-hoc evaluation of event inference 

methods.
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6.2 NER

Table 6.2 shows the number of gene/protein entities (both entity mentions and 

distinct entities) extracted from the MEDLINE and PMC data sets. We also 

consider entities recognised by both (intersection) or either (union) of the two 

recognisers.  The  two  corpora  (MEDLINE  and  PMC)  have  an  overlap, 

consisting of the articles whose abstracts are listed in the MEDLINE corpus, 

and  whose  full  text  is  present  in  the  PMC corpus.  Throughout  the  results 

reported in this chapter, wherever joint MEDLINE + PMC results are reported, 

this overlap has been taken into account, and only reported once.

GNAT was additionally adapted to also return non-normalized entities 

whenever  those  were  detected  by  BANNER  but  could  not  be  linked  to 

identifiers. In both the GeneTUKit and the intersecting data, all entries were 

normalised  (since  GeneTUKit  only  reports  normalised  mentions).  Of  the 

80,003,072 extracted gene mentions in the union set, 10,261,208 (12.8%) were 

not normalised, all of which were produced by GNAT. Both the GeneTUKit 

data  and  the  intersecting  data  contain  only  normalised  entities,  linking  a 

mention to its database identifier.

We  also  report  the  number  of  distinct  gene/protein  names  that  were 

recognised. For this purpose, the gene mentions that could not be normalised 

were grouped together based on surface string equality.
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Tool  Gene entity mentions Distinct entities

MEDLINE PMC MEDLINE

+ PMC

MEDLINE PMC MEDLINE

+ PMC

GNAT 35,910,779 12,729,471 48,050,830 227,809 129,244 253,929

GeneTUKit 47,989,353 19,217,778 66,431,789 258,765 143,706 287,218

Intersection 26,281,266 8,638,823 34,479,547 224,604 125,763 249,932

Union 57,618,866 23,308,426 80,003,072 261,412 146,552 290,557

Table 6.2: Gene and gene product recognition counts in MEDLINE and PMC

The  number  of  gene  mentions  and  distinct  genes  recognized  by  GNAT  and  

GeneTUKit in MEDLINE and PMC. In the MEDLINE + PMC columns, the overlap is  

only reflected once.

The  evaluation  results  for  the  gene/protein  named  entity  recognition 

systems on the B+G corpus are shown in Table 6.3. Both precision and recall 

are  in  the  same  range  as  what  has  previously  been  reported  for  common 

recognition  tools  (BANNER:  85%  P,  79%  R;  ABNER:  83%  P,  74%  R 

(Leaman et al. 2008)). Studying the FP and FN errors suggested that some of 

the more common categories of errors include incorrect dictionary matches due 

to  acronym ambiguity,  incomplete  dictionaries,  and incomplete  or  incorrect 

manual annotations of the gold-standard data.

We note that  there  is currently no gold-standard corpora available  for 

mention-level gene normalisation.

P R F1

GNAT 79.8% 83.7% 81.7%

GeneTUKit 72.2% 79.1% 75.5%

Intersection 82.8% 70.4% 76.1%

Union 71.4% 92.0% 80.4%

Table 6.3: Entity recognition performance on the B+G corpus

Gene/protein named entity evaluation results on exactly 3,000 instances in the B+G 

corpus.

We used  LINNAEUS to  recognise  anatomical  location  mentions  and 
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species name mentions from the articles. A summary of the number of entities 

extracted from MEDLINE and PMC can be found in Table 6.4. These results 

have not been evaluated. For the evaluation of LINNAEUS see (Gerner et al. 

2010b).

Tool MEDLINE PMC MEDLINE

+ PMC

Anatomical location 47,002,254 9,656,994 56,659,248

Species names 33,187,566 3,771,333 36,958,899

Table  6.4: Species and anatomical entity recognition counts in MEDLINE and 

PMC

The number of species and anatomical location mentions recognized by LINNAEUS in  

MEDLINE and PMC.

6.3 Event extraction

In  this  section  we  summarise  the  results  and  evaluations  of  TEES  and 

EventMiner  as  well  as  the  union  and  intersection  of  their  outputs.  The 

evaluation  on  a  corpus  with  gold-standard  gene  and  protein  entities  are 

reported in (Kim et al. 2009), where TEES achieved precision/recall/F-score of 

58%/47%/52%, and these measures for EventMiner were 54%/28%/37%. Here, 

we  evaluate  these  systems  in  a  real-world  situation  using  automatically 

extracted genes/proteins as input. For this purpose, we define a true positive as 

before (as presented in Section 4.1.1), but with one additional condition:

5. The  entity  participants  are  true  positives,  and  approximately  match 

boundaries with the gold participants.

6.3.1 TEES

We executed the Turku Event Extraction System (TEES) on the B+G corpus 

(introduced in section 4.1.2), using genes that were extracted by the integrated 
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gene NER system (union). The results of that evaluation can be seen in the 

Table 6.5.

Number of true positives (TP) 655

Number of false positives (FP) 1142

Number of false negatives (FN) 1949

Precision 36.4%

Recall 25.1%

F-score 30.0%

Table 6.5: Evaluation of TEES as deployed locally on the B+G corpus

Table  6.6 shows the  event-type  specific  evaluation  of  the  TEES data 

filtered by our automatically extracted gene and protein entities.

Type TP FP FN p (%) r (%) F (%)

Gene expression 340 188 78 64.3 81.3 71.8

Localization 58 23 23 71.6 71.6 71.6

Phosphorylation 49 14 11 77.7 81.6 79.6

Transcription 60 31 25 65.9 70.5 68.1

Protein catabolism 22 4 4 84.6 84.6 84.6

Class I total 529 260 141 67.0 78.9 72.5

Binding (Class II) 136 246 249 35.6 35.3 35.4

Regulation 98 129 149 43.1 39.6 41.3

Positive regulation 511 554 499 47.9 50.5 49.2

Negative regulation 135 196 184 40.7 42.3 41.5

Class III total 744 879 832 45.8 47.2 46.5

All 1409 1385 1222 50.4 53.5 51.9

Table 6.6: Type-specific evaluation of the TEES data on B+G

This  event  extraction  evaluation  corresponds to  the  second  column of  Table  6.7,  

showing the break-down of the TEES performance using automatically extracted gene  

and protein entities as part of this research.

The Department of Information Technology in the University of Turku 

have also provided a database of the events (Björne et al. 2009). extracted from 
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the MEDLINE abstracts.  From this database, we selected only the abstracts 

that are included in the B+G corpus. We evaluated the data, once filtering those 

events that  reference any gene/protein  entities that  are  not  in  our extracted 

genes, and a second time just evaluating the data as presented. The results of 

both evaluations can be found in Table 6.7.

Note  that  by  filtering  out  the  events  referring to  the  entities  that  are 

missing  from  our  extractions,  we  are  missing  a  small  number  of  events. 

Because  of  this,  recall  is  reduced  slightly.  However,  it  does  not  have  a 

significant effect on the precision or the F-score.

TEES data on 

extracted 

genes

Original TEES data

Number of true positives (TP) 1409 1433

Number of false positives (FP) 1385 1427

Number of false negatives (FN) 1222 1192

Precision 50.4% 50.1%

Recall 53.6% 54.6%

F-score 51.9% 52.2%

Table 6.7: Evaluating the data released by TEES developers

The evaluation was performed on the B+G corpus. The second column shows the  

evaluation statistics when the original data was filtered based on the automatically 

extracted  genes.  The  third  column  shows  the  evaluation  of  the  TEES  data  as 

presented in the original database.

 

6.3.2 Evaluation of EventMiner

The source code of EventMiner has been provided by the developers for the 

purpose of the development of this project. Providing automatically extracted 

gene and protein entities for the software and running it on the B+G corpus we 

achieved the results summarised in Table 6.8. Table 6.9 shows the event-type 
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specific evaluation of this data. Despite using automatically extracted entities, 

the results of this improved version of the system are higher than those 

reported as part of the BioNLP’09 Shared Task (overall F-score 46% vs. 

34.6%). But it should be noted that the evaluation datasets are different: our 

results are evaluated on the B+G corpus that are effectively the same abstracts 

and BioNLP’09 development corpus which was also used for training and 

tuning of the systems; the Shared Task evaluation was performed on the 

BioNLP’09 test corpus, which is not publicly available.

Number of true positives (TP) 1201

Number of false positives (FP) 1428

Number of false negatives (FN) 1438

Precision 46%

Recall 45%

F-score 46%

Table 6.8: Evaluation of EventMiner on the B+G corpus

The evaluation is performed on the B+G corpus using automatically extracted genes.
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Type TP FP FN p (%) r (%) F (%)

Gene expression 326 240 89 57.5 78.5 66.4

Localization 62 30 21 67.3 74.6 70.8

Phosphorylation 47 31 13 60.2 78.3 68.1

Transcription 54 52 32 50.9 62.7 56.2

Protein catabolism 22 13 4 62.8 84.6 72.1

Class I total 511 366 159 58.2 76.2 66.0

Binding (Class II) 140 269 258 34.2 35.1 34.6

Regulation 56 160 193 25.9 22.4 24

Positive regulation 390 485 619 44.5 38.6 41.4

Negative regulation 104 148 209 41.2 33.2 36.8

Class III total 550 793 1021 40.9 35.0 37.7

All 1201 1428 1438 45.7 45.5 45.6

Table 6.9: Type-specific evaluation results for the EventMiner data on the B+G 

corpus

This  event  extraction  evaluation  shows  the  break-down  of  the  EventMiner  

performance using automatically extracted gene and protein entities as part of this 

research.

6.3.3 Merging the outputs

The evaluation scores achieved by the two event extractors (see Table  6.10) 

show the best precision of 66% (for intersection) and the best recall of 62% 

(for union).

TEES still provides the best balance between precision and recall (52%). 

Still, these results differ from previously reported precision levels for TEES at 

64%  (Björne et  al.  2010).  However,  the  evaluation methods were different, 

making comparisons difficult:  in the evaluation of Björne et al.,  100 events 

were  selected randomly for  post-hoc  manual  verification,  rather  than  being 

compared  to  a  gold-standard  corpus.  Their  definition  of  “entity”  was  also 

slightly different, allowing “cells, cellular components, or molecules involved 

in biochemical interactions” to be counted as true positive, but not necessarily 

contributing  to  false  negative,  as  recall  is  not  considered  in  post-hoc 
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evaluation. Indeed, many FP and FN errors by the event extractors were due to 

incorrect entity recognition that propagated to event FPs or FNs, sentences that 

were  particularly  complex  linguistically  or  semantically,  and  incomplete 

manual annotation of the corpora.

P R F1

TEES 50.4% 53.6% 51.9%

EventMiner 45.6% 45.5% 45.5%

Intersection 66.2% 36.6% 47.1%

Union 41.3% 62.0% 49.6%

Table 6.10: Overall event extraction evaluation

Evaluation on the B+G corpus with 2,607 instances.

Type TP FP FN p (%) r (%) F (%)

Gene expression 295 103 114 74.1 72.1 73.1

Localization 53 16 28 76.8 65.4 70.6

Phosphorylation 44 12 15 78.5 74.5 76.5

Transcription 48 22 37 68.5 56.4 61.9

Protein catabolism 20 1 6 95.2 76.9 85.1

Binding 81 96 302 45.7 21.1 28.9

Regulation 44 30 204 59.4 17.7 27.3

Positive regulation 294 149 697 66.3 29.6 41.0

Negative regulation 70 55 241 56 22.5 32.1

All 949 484 1644 66.2 36.6 47.1

Table 6.11: Evaluating the intersection of event extraction outputs

Type-specific event extraction evaluation results on the intersection data.
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Type TP FP FN p (%) r (%) F (%)

Gene expression 370 340 54 52.1 87.2 65.2

Localization 67 39 16 63.2 80.7 70.8

Phosphorylation 52 33 9 61.1 85.2 71.2

Transcription 66 61 20 51.9 76.7 61.9

Protein catabolism 24 15 2 61.5 92.3 73.8

Binding 195 419 205 31.7 48.7 38.4

Regulation 110 264 138 29.4 44.3 35.3

Positive regulation 606 895 422 40.3 58.9 47.9

Negative regulation 171 292 150 36.9 53.2 43.6

All 1661 2358 1016 41.3 62.0 49.6

Table 6.12: Evaluating the union of event extraction outputs

Type-specific event extraction evaluation results on the union data.

Table 6.13 presents the number of events extracted from the corpora. In 

addition  to  the  number  of  event  mentions,  we provide  an  estimate  for  the 

number of distinct events. For this purpose we define two events to be the same 

if:

 The events are of the same type.

 They  involve  the  same  normalised  gene  entities.  If  non-normalised 

genes are involved, the gene mention strings must match. If more than 

one entity is involved, all pairs must match.

 Either no anatomical entity is associated with either of the two events, 

or if one event is associated with an anatomical entity, the other event 

should  also  be  associated  with  an  entity  normalised  to  the  same 

anatomical location. In the case of non-normalised anatomical entities, 

the entity mention strings must match.

 They are both affirmative, or both negated.

 They are both asserted, or both speculative.

 If any of the participants of the events is another event, those nested 
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events should also match recursively.

Tool Event mentions Distinct events

MEDLINE PMC MEDLINE

+ PMC

MEDLINE PMC MEDLINE

+ PMC

TEES 19,406,453 4,719,648 23,856,554 6,570,824 1,804,846 7,797,604

Eventminer 18,988,271 4,010,945 22,737,258 6,502,371 1,588,178 7,539,364

Intersection 9,243,903 1,331,456 10,455,678 3,080,900 2,676,257 3,424,372

Union 29,150,821 7,399,137 36,138,134 9,635,566 573,903 11,442,462

Table 6.13: Literature-scale event extraction counts

The number of event mentions and distinct events extracted by TEES and Eventminer  

in MEDLINE and PMC . In the MEDLINE + PMC columns, the overlap is only reflected  

once.

Each  distinct  event  represents  a  number  of  event  mentions  in  the 

literature, referred to as supporting mentions for that distinct event (see also 

Section 5.2). The sentence in which this event occurs is called the supporting 

sentence. For example, for the distinct event of “negated positive regulation of 

the  expression  of  IFN-gamma  caused  by  IL-2”,  the   sentences  shown  in 

Example 6.1 will be a supporting sentence each.

Example 6.1.

(a)  “Neither IL 1  nor IL 2 alone  induced IFN-gamma production in  

purified T lymphocyte cultures.”

(From PMID 3086435, events extracted by BioContext)

(b) “IL 2 had the ability to restore lytic activity to PMA-treated cells  

but did not induce IFN gamma production.”

(From PMID 3930891, events extracted by BioContext)

Some events are  commonly reported and will  have a high number of 

supporting  mentions  and  supporting  sentences,  whereas  others  are  only 

reported a  few times across  the  literature.  Table  6.14 shows the  maximum 
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number of supporting mentions as well as the average for each event type.

Type Total event 

mentions

Percentage 

of total 

events

Distinct 

events

Maximum 

count of the 

supporting 

mentions for a 

single event

Average 

number of 

supporting 

mentions 

per event

Gene expression 9,636,642 26.4% 1,785,161 25,561 5.40

Localization 2,051,035 5.6% 488,738 18,721 4.20

Phosphorylation 747,083 2.0% 141,436 8,069 5.28

Protein catabolism 348,031 1.0% 105,945 2,011 3.29

Transcription 732,827 2.0% 247,994 2,322 2.96

Binding 5,392,795 14.8% 1,900,223 6,868 2.84

Regulation 3,686,616 10.1% 749,889 8,658 4.92

Positive regulation 8,948,707 24.5% 1,293,502 18,011 6.92

Negative regulation 5,006,222 13.7% 754,930 12,014 6.63

Total 36,549,958 100% 7,467,819 - 4.89

Table 6.14: Supporting mention counts extracted by BioContext

Number  of  event  mentions  and  distinct  events,  and  the  number  of  supporting 

mentions for each distinct event in the extracted data (the union set).

We compared the composition of the automatically extracted data from 

the entire available literature with that of the B+G corpus with regard to the 

distribution of the event types. Figure 6.1 shows this comparison broken down 

by type, and shows that the distribution of different types in the B+G corpus is 

reflected in the large-scale event extraction results. 
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Figure 6.1: Type-specific comparison between the B+G corpus and the 
extracted events

6.3.4 Event inference

Of the 80 million gene/protein mentions in the MEDLINE and PMC union 

sets, 11.3 million (14%) were part of enumerated groups as detected by our 

patterns  (see  Table  5.1),  i.e.  joined  with  a  conjunctive  structure,  and 

presumably contributed towards inferring events associated with each of the 

entities in the enumerated group.

Of the 36.1 million events in the MEDLINE and PMC union sets, 1.05 

million (2.9%) were created through the event inference methods (see Section 

5.1.7). While the percentage of events inferred is low, the absolute number of 

events is still large enough to show the utility of the method.
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Post-hoc  manual  inspection  of  100 randomly  selected  inferred  events 

showed a precision level of 44%. Most false positive results were due to the 

original entities being wrong in the first place, or an incorrect event detection, 

rather than an error in the enumeration detection. Example 6.2 shows one such 

FP  instance  (incorrect  entity  “factor”)  as  well  as  a  TP  instance  of  event 

inference based on enumeration. The underlined entities have been recognised 

as belonging to the same enumerated group.

Example 6.2

TP: “Many  cartilage  matrix  proteins  or  domains  such  as  collagen 

types II,  IX, and XI,  GP39,  AG1,  VG1, and LP are potential antigens 

that might induce polyarthritis in susceptible animals.”

(From PMID 12951872)

FP: “Somatostatin was first identified as a hypothalamic factor which  

inhibits  the  release  of  growth  hormone  from  the  anterior  pituitary  

(somatotropin release inhibitory factor, SRIF).”

(From PMID 11430867)

A total of of 57.1 million anatomical mentions were found in the union 

set  of  MEDLINE and PMC.  Out  of  this  number,  4.0  million  (7.0%)  were 

enumerated.  Example  6.3 shows  an  instance  of  an  inferred  event  (gene 

expression  of  Neurturin)  that  was  initially  associated  with  “retina”,  and 

through the event inference method also reported in “photoreceptor”.

Example 6.3

TP: “Neurturin  mRNA  expression  was  modulated  through  normal 

postnatal retinal development and was localized primarily to the inner  

retina and photoreceptor outer segments..”

(From PMID 10067959)
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6.3.5 Confidence evaluation

To evaluate how well our confidence scoring (see Section 5.3) corresponds to 

the actual quality of extraction, we measure the confidence of extraction on the 

BioNLP’09 data,  and compare it  to  the precision of extraction against  gold 

annotations.

Since  we  calculated  the  confidence  scores  based  on  the  precision  of 

different components in the first place, we expect to see such a correspondence 

anyway.  However,  since the  formula to  calculate  confidence from different 

precision measures was simple and heuristic, it is reasonable to evaluate how 

well it reflects the quality of the extracted data.

We ran the event extraction pipeline on the 950 abstracts of the collective 

BioNLP’09 data sets (training + development), and calculated the confidence 

for every extracted event. The graph in Figure  6.2 shows the distribution of 

different confidence scores.

As we can see in this graph, there are very few events (although not zero) 

having a confidence of above 0.8. We will subsequently see that this sparseness 

of data within the high-end confidence area causes some irregularities in that 

region.

We expect a steady increase in precision when we look at the precision 

of  the  events  in  intervals  with  increasing  confidence.  We  calculate  the 

Figure 6.2: The number of events against the confidence scores

This is reported on the training and development gold annotated BioNLP’09 data  

sets.
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precision of the extracted event amongst events that fall in the same confidence 

neighbourhood. The interval size in which we calculate  the precision is 0.1 

confidence points, and the intervals are 0.01 confidence points apart.

The graph of Figure  6.3 shows the precision of every interval. As we 

noted earlier, the data with confidences above 0.8 is very sparse, and therefore 

does not strictly follow the increasing pattern of the precision. But we are still 

observing  the  correlation  between  the  confidence  levels  and  the  precision, 

suggesting that we can assume the extracted events of higher confidence values 

to have better quality.

We also calculate the cumulative precision, recall, and F-scores as we 

start by only considering the extracted events of the highest confidences, and 

gradually adding those with lower qualities. The cumulative graphs are shown 

in Figure  6.4.  As expected,  the precision decreases as lower quality data is 

added, whilst recall increases, as more FN results are detected by adding more 

data.

Figure 6.3: Precision against confidence scores

The precision of the events of confidence falling within a window of 0.1 precision  

points. The intervals are overlapping, with a midpoint every 0.01 interval point. This  

is reported on the training and development gold annotated BioNLP’09 data sets.
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It  is interesting to  note that  the F-score is constantly  increasing,  even 

beyond the P/R balance point. This indicates that that the increase in recall is 

large enough to compromise the decrease in precision, and therefore if a high 

F-score is desirable, it is beneficial to include all the extracted results in the 

system output, even those with lower confidences.

6.3.6 Discussion

As  a  part  of  this  research,  we  have  presented  an  integrated  text  mining 

framework,  BioContext,  and the  data  produced by it  after  applying to  10.9 

million abstracts in MEDLINE and 235,000 full-text articles in the open-access 

subset of PMC. The data contains 36.1 million event mentions, which represnt 

11.4 million distinct events discussing biomedical processes involving genes 

and proteins.  The event participants are linked to  the Entrez Gene database 

whenever  such  a  normalisation  was  possible.  The  data  contains  contextual 

information about the events including the associated anatomical locations and 

whether they are reported as negated or speculative.

In  addition  to  the  gene/protein  entities and the  events,  the  process  of 

extracting events from MEDLINE and PMC also produced large volumes of 

other intermediary data that should prove useful to the biomedical text-mining 

Figure 6.4: Quality of extracted data against cumulative confidence

Precision, recall, and F-scores of extracted data as we cumulatively add events of  

decreasing confidence.
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community.  This  data  includes  70.9  million  LINNAEUS  species  entity 

mentions,  57.1  million  anatomical  entity  mentions,  and  133 million  parsed 

sentences from each of the Gdep, Enju and McClosky-Charniak parsers.

Compared  to  the  previously  released  dataset  of  19.2  million  events 

extracted from MEDLINE by TEES (Björne et al. 2010);  (Van Landeghem et 

al. 2011), the data set described here provides additional data in a number of 

ways, including the addition of full-text PMC corpus, negation and speculation 

detection, anatomical association, and normalisation of genes and proteins to 

species-specific identifiers.

We observed that locally running and evaluating a publicly available tool 

for  event  extraction  (TEES)  results  in  significantly  lower  results  than 

evaluating  the  data  resulting  from  running  the  same  tool  provided  by  the 

developers, as we were unable to reproduce the levels of precision and recall 

that was originally reported.  This could be due to the exceptional termination 

of the tool in around 20% of the documents when run locally, caused by any 

configuration disparity between our system and the developers’.

Evaluations performed using the B+G corpus are limited by the fact that 

it was derived from the set of MEDLINE abstracts containing the MeSH terms 

“humans”,  “blood  cells”,  and  “transcription  factors”  by  the  BioNLP’09 

corpus  curators.  Because  of  this,  evaluation  results  may  not  be  completely 

representative  for  MEDLINE  as  a  whole.  Despite  this  discrepancy,  the 

distribution of event types in the two corpora are  similar.  The inferred and 

anatomically  associated  events  used  for  evaluation  of  those  stages  were 

selected completely randomly,  and while  the  sample  size  was limited,  they 

should provide a representative sample.

Looking at the evaluation results as the data moves through the different 

stages  of  the  pipeline,  the  impact  of  the  multi-tiered  nature  of  the  system 

becomes  evident.  Many  FPs  and  FNs  that  occur  in  the  NER  stage  are 

propagated  to  the  event  extraction  stage,  and  additional  FPs  and  FNs 

introduced there  are  in  turn  propagated to  the  context  association  stage.  In 
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other words, errors (in particular those occurring early in the pipeline) can have 

a large impact on the final results.

Some  text-mining  systems  are  evaluated  as  part  of  challenges  that 

eliminate  these issues by providing gold-standard data for the earlier  stages 

(typically  NER).  This allows researchers  to  focus on a  particular  task (e.g. 

event extraction) rather than having to divide their attention between both NER 

and event extraction. However, it also means that any evaluation result coming 

out of these challenges needs to be adjusted for more realistic constraints when 

used  for  information  extraction  on  a  large  scale  where  gold  data  is  not 

available. We note the drop in precision and recall when applying these tools in 

a realistic environment.

A common theme in the evaluation of text mining tools is the balance 

between precision and recall. Applications prioritise and value precision and 

recall differently. Looking specifically at the evaluation results for gene/protein 

NER and event extraction, the utility of merging data from multiple similar 

tools  becomes  evident:  by  applying  multiple  different  tools  and  creating 

datasets from both the intersection and the union of the extracted data, we can 

shift  this  balance  between  precision  and  recall  in  different  directions, 

depending on how the data is used.

In addition, the use of multiple tools for the more challenging aspects 

(gene/protein  NER  and  event  extraction),  allows  users  to  handle  data 

differently depending on whether it was extracted by e.g. both event extractors 

or whether only a single tool found it.  The differences between the tools is 

evident from the difference between the union and intersection data sets.

After performing the large-scale data extraction experiments, it is clear 

that text-mining on this scale comes with a range of challenges, beyond the 

technically  relatively  simple  matter  of  having  access  to  powerful  enough 

computational systems. Here, we mention a few of these challenges, and our 

approach to addressing them.

Most text-mining software operates on plain-text files. Because of this, it 
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can be tempting to store documents as text files, but it quickly became clear 

that if this is done, the file system becomes too much of a bottleneck in the 

computational process due to the huge number of files.

We stored the data in a databases running on a powerful server instead of 

the  file  system which mitigated the  problem, but was not perfect  as it  still 

remained the bottleneck for some tools. Distributing the documents on multiple 

database servers each having local storage should provide further mitigation for 

the problem.

While  the  documents  in  MEDLINE  and  PMC  are  generally  well-

structured, there are always exceptions. Although these outliers are very rare in 

relation to the total number of documents, the very large number of documents 

in  MEDLINE  and  PMC  still  means  that  odd  outliers  become  significant 

problems. Examples we have found include documents over 300 pages long 

(causing some tools to crash when running out of memory, and others never to 

terminate due to inefficient algorithms), documents containing programming 

source code (causing every single grammatical parser to crash), and seemingly 

“innocent” documents that for some reason give rise to hundreds of thousands 

false positive events, which in turn crashes downstream tools. Document issues 

that are more common include PMC documents with embedded TeX code or 

non-ASCII characters as the parsers typically cannot handle either.

We  have  implemented  robust  general  error  detection  and  recovery 

methods within TextPipe to address problems with unusual processing time, 

frequent  crashes  and  other  external  problems,  such  as  network  connection 

time-outs or machine failures.

We note that processing for the number of tools and documents described 

in  this  research is  computationally  very heavy. For  such a  large-scale  task, 

processing time requirements depend on a range of factors such as the speed of 

the  computational  hardware  available,  potential  database  or  network 

bottlenecks, etc., making such estimates difficult to make. We estimate that a 

matter of months would be a fairly accurate approximation, using a cluster of 
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100 processing cores. This assumes that everything works flawlessly and no re-

computation is necessary, which may not be the case in practice.

It is unfortunate that only roughly 2% of MEDLINE entries have full-text 

articles that are available for text-mining. If the open-access subset of PMC is a 

representative sample of all full-text articles, we would expect that about 400 

million further events are mentioned in full-text articles, but unavailable for 

automatic extraction due to copyright restrictions.

This work provides a foundation for future work: Protein complexes are 

currently  not  linked to  any protein  complex  knowledge bases.  Additionally 

filtering of results based on the journal or document subject area could improve 

the performance.

6.4 Context association

6.4.1 Anatomical association evaluation

Of the 36.1 million events in the MEDLINE and PMC union sets, 13.5 million 

events (37.5%) could be associated with an anatomical entity.

Post-hoc manual inspection of 100 randomly selected events associated 

with anatomical  entities showed a  precision  of  34%. Here,  we consider  an 

event  a  true  positive  only  if  all  the  components  were  extracted  correctly. 

Therefore this precision refers to the cumulative precision of all the automated 

components, and not only to the precision of the anatomical entity association 

phase.

While not evaluated, this value is expected to be higher if the events are 

constrained to the intersection set, similar to the precision levels in Tables 6.11 

and 6.12 that were higher for the intersection set than for the union set.

Although not theoretically considered a comprehensive way to evaluate 

the performance of a system, post-hoc manual examination of predictions have 

been used by researchers in the absence of gold-standard annotations. In this 

method,  a  (usually  small)  number  of  predictions are  randomly selected and 

analysed to  calculate  the  percentage  of  the  false  positive  results.  With this 
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method only the precision and not recall can be approximated, as it does not 

take into account any false negative instances. In addition, the error analysis in 

this  method can  only  include  the  false  positive  and not  the  false  negative 

instances. 

Moreover,  post-hoc  examination  of  the  predictions  introduces  bias 

towards the automatically extracted information by considering instances that 

may look reasonable and are considered as true positive whereas—had they 

been annotated independently—they would not have been annotated as positive 

instances. This effect will be stronger if several properties of the gold and the 

predicted instances have to match in order to be considered true positive. In the 

case of the events, these properties include trigger word boundaries, event type, 

theme and cause mentions,  and the association between them. Amongst the 

related previous work,  (Björne et al. 2010) have used this method to evaluate 

the precision of their system by manual examination of the predictions. 

6.4.2 Negation and speculation extraction as part of context 

extraction

Evaluation  of  event  extraction  results  after  performing  negation  and 

speculation detection by Negmole can be seen in Table 6.15. Here, events are 

required to have both their negation and speculation status correctly identified 

to be classified as a true positive.

P R F1

Intersection 62.6% 34.6% 44.6%

Union 38.8% 58.3% 46.6%

Table 6.15: Evaluation of event extraction after processing by Negmole

Evaluated on 2,607 instances, on the B+G corpus.

Relatively small differences in data quality are observed before and after 

applying Negmole. This is expected, since only a small subset of events are 

affected by negation and/or speculation.  Table  6.16 shows the numbers and 
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percentages of negated and speculated events for each event type. Interestingly, 

regulation events show specially high ratios of negation and speculation.

Of the 36.1 million events in MEDLINE and PMC, 1.49 million (4.1%) 

are  negated,  and  1.25  million  (3.5%)  are  speculative.  The  negation  and 

speculation ratios are slightly lower than those of the combined BioNLP’09 

training and development sets (6.8% and 5.3%, respectively).

Event type Number of 

negated 

events

% of negated 

events

Number of 

speculated 

events

% of speculated 

events

Gene expression 335,774 3.47% 297,992 3.09%

Localization 31,175 1.51% 41,244 2.01%

Phosphorylation 11,406 1.52% 8,606 1.15%

Protein catabolism 5,898 1.69% 5,488 1.58%

Transcription 21,429 2.91% 25,222 3.44%

Binding 172,068 3.14% 132,316 2.45%

Regulation 478,383 12.86% 352,139 9.55%

Positive regulation 351,368 3.86% 298,939 3.34%

Negative regulation 80,001 1.59% 91,187 1.82%

Total 1,487,502 4.06% 1,253,133 3.43%

Table  6.16: The number and percentage of negated and speculated events in  

MEDLINE and PMC

It has been observed previously (Cohen et al. 2010) that the incidence of 

negation  (measured  by  the  distribution  of  the  words  “no”,  “not”,  and 

“neither”) is significantly different between the full-text articles and abstracts. 

They reported a higher incidence of these words (5.3 per thousands tokens of 

text)  in  article  bodies,  compared  to  their  incidence  in  abstracts  (3.8  per 

thousands tokens of text).

Table  6.17 shows the distribution of negated and speculated events in 

MEDLINE and PMC. There are very few events that  are  both negated and 

speculated.  Therefore,  these  events  hardly  affect  any  aggregate  analysis 

presented in this chapter.
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Polarity & 

certainty of 

events

MEDLINE % MEDLINE PMC %PMC Total % Total

Affirmative & 

certain

26,406,361 92.16 7418250 93.94 33,824,611 92.54

Negative & 

certain

1,203,376 4.20 268838 3.40 1,472,214 4.03

Affirmative & 

speculated

1,032,393 3.60 205452 2.60 1,237,845 3.39

Negative & 

speculated

10,946 0.04 4342 0.05 15,288 0

Total 28,653,076 100 7896882 100 36,549,958 100

Table  6.17:  Distribution of  negated and speculated events  on  MEDLINE and 

PMC

Figure  6.5 shows the frequency distribution of negated and speculated 

events for all event types. Due to the small numbers of events that are both 

negated and speculated, we have grouped them together with the speculated 

category. Others have previously considered the three-class categorisation of 

events  into  ‘affirmed  and  certain’,  ‘negated  and  certain’,  and  ‘speculated’ 

categories (Elkin et al. 2005).
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Our analysis shows that 4.2% of the events reported in MEDLINE are 

negated, as opposed to only 3.4% of the events in the the PMC corpus. The 

difference  is  statistically  significant  (p<0.0001).  This  finding  seems  to 

contradict  the  previous findings  that  there  is  more negation  in  the  body of 

journal articles compared to the abstract. However, Cohen et al. only analysed 

the occurrence of negation cues, which we have seen that does not necessarily 

indicate the reporting of negative results. This difference could be due to the 

article body text using less direct  and more elaborate  prose style,  including 

more use of figurative negation, but not necessarily reporting more negative 

results. On the other hand, of the total negative results reported in the literature, 

a higher proportion of them are likely to be highlighted in the abstract of the 

Figure 6.5: The frequency distribution of negated and speculated events on 
MEDLINE + PMC

The speculated events contain both polarities. These numbers have been grouped  

together because of the negligible size of the set of events that are both speculated  

and negated.
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articles.

The proportion of speculated events in MEDLINE (3.6%) is significantly 

higher (p<0.0001) than that of PMC (2.6%). This shows that authors speculate 

about their own or others’ findings in the abstract more often than they do in 

the body of the articles, possibly because the article body presents speculated 

findings  in  the  context  of  established facts.  These  results  confirm previous 

findings that the composition and characteristics of full text scientific literature 

differs from that of the abstracts,  and as text mining on scientific literature 

moves from abstracts towards more full text approaches, these discrepancies 

will cause challenges and opportunities for further findings.

It is worth noting that with such large numbers of instances, almost any 

trend that is observed would have statistical significance. On the one hand, this 

is meaningful, since the observation is done on the entire available data, as 

opposed to a sample. On the other hand, care should be taken when analysing 

such statistically significant trends, and the effect of the large data size should 

not be overlooked.

Figure  6.6 shows  the  percentages  of  negated  and  speculated  events, 

normalised for the  size of each event  type.  Although the  proportions differ 

across all event types, regulation events (but not positive regulation or negative 

regulation  events)  are  dramatically  more  frequently  detected  as  negated  or 

speculative.  This  could indicated that  the  authors  tend to  refer  to  an  event 

simply as negated when they speculate or report the lack of that event, whereas 

if the event certainly exists, it would be explicitly reported as upregulation or 

downregulation.
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Figure 6.6: Normalised distribution of negated and speculated events for each 
type on MEDLINE and PMC

Figure 6.7 shows the distribution of the most common negation cues that 

affected  some  extracted  event  in  the  data  set.  Figure  6.8 shows  the  same 

statistics for the most common speculation cues. We observe that the trends are 

quite dissimilar, with negation cues “not” and “no” dominating the set of cues, 

whereas  there  are  more  variation  amongst  the  speculation  cues,  showing a 

more gradual decrease in the frequency of the most frequent speculation cues.
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Figure 6.7: The distribution of the most common negation cues

This distribution is reported on the entire extracted data from MEDLINE and PMC.  

Note that the cues with the same stem are grouped together, and a representative  

member of every stem class is shown.

These trends corresponds to those of the BioNLP’09 data, displayed in 

Figures  3.16 and  3.17. However, the ranks at which each cue appears differ 

from the BioNLP’09 data. This is due to the fact that the distributions in the 

BioNLP’09 data only refer to the incidence of the cues, regardless of whether 

these cues have affected any event. As discussed in Section 3.4.1, this shows 

that words with ambiguous function such as  “inhibit” have not affected the 

performance of negation detection. This word is the second most frequent cue 

in Figure  3.16, but much further down the ranked list (not shown) in Figure 

6.7.

The cues in Figures 6.7 have been stemmed. However, Figure 6.8 shows 

speculation  cues  before  and  after  stemming.  Since  most  high-ranked 

speculation  cues  are  words  with  possible  verb,  noun,  and  other  forms,  the 

effects  of  stemming on the  cues can be  noticeable.  However,  this  does not 
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change the order of the cues in the frequency-based ranking.
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Figure 6.8: The distribution of the most common speculation cues

This distribution is reported on the entire extracted data from MEDLINE and PMC. In  

(a) the cues are not stemmed or otherwise normalised. In (b) the cues with the same 

stem are grouped together,  and a representative  member of  every stem class is  

shown.
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6.5 Temporal analysis

With information extracted from the entire available life sciences literature, and 

specially  with  storing  the  data  in  a  denormalised  format,  we  can  perform 

temporal analysis on the reported claims. Figure 6.9 shows the increase in the 

number of the reported events as well as the number of negated and speculated 

events since the beginning of the recorded literature on a logarithmic scale.

Figure 6.9: Event numbers in the literature over time

The total number of events and the total number of negated and speculated events 

extracted from the MEDLINE and PMC corpora over time, on the logarithmic scale.

It is interesting to compare Figure 6.9 with Figure 2.1 which shows the 

total growth of the literature. Notice that the sudden increase in the number of 

reported events around year  1975 corresponds to  the  rise  in  the number of 

additions to MEDLINE around the same time (see Figure 2.1).

To test the hypothesis that papers are reporting more molecular events 

over  time,  we  calculate  the  ratio  of  the  number  of  events  reported  per 

publication over time (see Figure  6.10). As can be inferred from this figure, 

with  the  growth  in  the  volume  of  scientific  publications,  the  number  of 

molecular events reported and discussed in the literature increases even more 
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dramatically,  suggesting  that  not  only  there  are  increasingly  more  papers 

published in life sciences domain, but also these papers have become much 

richer in content over time with regard to reporting molecular events. This can 

be  attributed  to  the  growth  in  molecular  biology  research  in  the  last  few 

decades.

It is interesting to see in Figure  6.10 how the reporting of negated and 

speculated events has changed over time. An analysis, summarised in Figure 

6.11, shows that while the ratio of the reporting of negated events are generally 

higher than that of the speculated events, this ratio has been decreasing over 

time. This suggests that scientists report their findings more speculatively than 

they  used  to,  and  use  less  assertive  tone,  whether  strongly  negative  or 

affirmative.  It  also  shows that  scientists  publish fewer negative events than 

they used to.

The fluctuations prior to 1975 in Figures 6.10 and 6.11 are probably due 

to small data sizes (see Figure 6.9).

Figure 6.10: The number of events reported per publication over time

Note that the ratio is displayed on a logarithmic scale. 
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6.6 Mining conflicting statements

6.6.1 Results

Using  the  methods  described  in  Section  5.4,  we  found  72,314  potentially 

conflicting  pairs  in  the  set  of  events  extracted  from the  literature  that  had 

sufficient associated data  which qualified them for strict  conflict  extraction. 

Table  6.18 summarises this data. It shows the number of event mentions that 

were  sufficiently  rich  in  context  to  be  included in  the  analysis,  number  of 

distinct events included, and the number of conflicting pairs detected in the 

data.

The  majority  of  conflicting  pairs  are  gene  expression  events  (78%) 

followed by localization (8%) and transcription (4%).

Figure 6.11: Ratio of negated and speculated events over time

The  proportion  of  events  that  are  negated  or  speculated,  compared  to  the  total  

number of events mined from the literature over time.
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Type Event 

mentions

Distinct 

events

Conflicting 

pairs

Gene expression 3,450,494 1,089,937 56,367

Localization 773,844 285,420 5,584

Phosphorylation 172,482 74,558 1,238

Protein catabolism 102,520 48,168 720

Transcription 260,385 149,066 3,199

Binding 420,758 288,030 2,239

Regulation 148,737 129,150 817

Positive regulation 326,800 268,792 2,047

Negative regulation 82,961 72,860 103

Total 5,738,981 2,405,981 72,314

Table 6.18: Summary of the events extracted in the conflict analysis.

Only a subset of the entire extracted events were included in the conflict analysis. The 

numbers of these events as well as the conflicting pairs extracted are shown.

Each extracted pair has a score associated with it which is a measure of 

how common and how confident the supporting mentions of that pair are (see 

section 5.3).

While  these  pairs  should  have  their  implicit  potential  in  exploring 

biological  claims,  we also  looked at  how accurate  they  are  from a  textual 

perspective.

To evaluate the extracted conflicts, we manually examined a selection of 

conflicting pairs  from the highest  ranks.  We selected the  10 top rank gene 

expression pairs, and 5 top rank pairs from each of the other 8 types for manual 

investigation. The numbers were chosen due to the relatively larger size of the 

gene expression type. Overall, a total of 50 event pairs were selected.

For  each  of  these  pairs,  we  selected  a  maximum  of  five  supporting 

sentences  containing  affirmative  supporting  mention,  and  five  supporting 

sentences containing a negative supporting mention. In total, a maximum of 

500 supporting sentences would have been selected. However, since some of 

the  events  had fewer than  5 supporting sentences,  a  total  of  434 sentences 
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where included in the analysis. The full list of the pairs and sentences that were 

used for evaluation can be found in Appendix C.

We manually  inspected  every  one  of  these  434  sentences  to  initially 

determine  whether  the  event  extraction  and  contextualisation  has  been 

performed  correctly,  and  secondly  to  determine  whether  any  two  of  the 

supporting sentences are actually reporting conflicting events.

A summary of the results of this evaluation can be seen in Table 6.19. It 

classifies the number of sentences with correct extraction, as well as the source 

of error in the others.

On several occasions, the actual cause of these errors might have lied 

within other text mining stages, from the sentence splitter to parsers, but we 

have not included those errors in our analysis, as evaluating them would have 

been  difficult.  We  only  concentrate  on  the  first  point  at  which  our  event 

extraction pipeline is affected.

Number of 

events

Percentage

Correct information extraction 206 47%

Gene name recognition or 

normalisation error

33 8%

Event extraction error 61 14%

Anatomical entity recognition or 

anatomical association error

94 22%

Negation detection error 39 9%

Speculation detection error 1 <0%

Total number of events 434 100%

Table 6.19:The summary of the conflicting pairs evaluation

Table 6.19 shows that in almost half (47%) of the cases the information 

extraction was performed without error. Most of the errors (41% of the errors) 

were due to the anatomical location association. In the sample studied, this was 

mostly due to the fact that the anatomical association method did not require 

the anatomical entity to differ from the other components of the event (trigger 
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and participants). Due to the high ambiguity between trigger terms, gene and 

protein  entity  names,  and  anatomical  location  names,  many  of  them could 

overlap  in  a  sentence.  Since  the  anatomical  location  association  method is 

effectively  a  distance-based  method,  it  commonly  associates  one  of  the 

components (trigger or participant) as the anatomical location, resulting in an 

error. Event extraction errors happen in only 14% of the pairs, but constitute 

27% of all the errors in the sentences.

Amongst  the  50  event  pairs  examined,  32  showed  some  degree  of 

conflict  between  the  stated  claims,  8  were  definite  errors,  and  10  were 

undecidable by the non-biologist annotator. Projecting these results over the 

entire set of extracted conflicting pairs, more than 46,000 of the event pairs 

would show some degree of contrast.

Of course, not all the 32 positive cases were real contradictions. Most of 

them  were  conflicts  due  to  underspecified  context.  Several  contrasting 

statements were in the presence/absence of drugs or auxiliary molecules, some 

were  due  to  some  procedures  or  treatments,  and  others  were  in  different 

populations,  affecting  different  types  of  the  same  entity,  or  happening  in 

different types of the same cell line. Alas, these contextual information has not 

been  captured  in  our  current  setting.  Nevertheless,  even  if  they  had  been 

extracted, these sentences would still be indicating some form of conflict. A 

handful, however, hinted at a true contradiction. Example 6.4 is one such pair.

Example 6.4. Regulation of leptin by insulin in plasma

Affirmative supporting sentences

1. 9568685: Whether insulin acutely regulates plasma leptin in humans is 

controversial.

2. 9398728:  In  animal  models,  insulin and  agents  that  increase 

intracellular cAMP have been shown to similarly affect plasma leptin in 

vivo. 

Negative supporting sentences
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1. 8954052: These results suggest that  insulin does  not acutely regulate 

plasma leptin concentrations in humans.

2. 11832440:  Insulin and  pentagastrin  did  not modify  plasma leptin, 

whatever HSV status.

3. 10856891: Adrenaline, insulin and glucagon do not have acute effects 

on  plasma leptin levels in sheep: development and characterisation of 

an ovine leptin ELISA.

All  of  these  sentences  hint  at  the  fact  that  the  event  in  question  is 

somehow controversial and that there seems to be no consensus about it. The 

affirmative supporting sentence number 2 is in direct contradiction with the 

negative supporting sentence number 3, as one states that in animal models 

insulin affects plasma leptin, and the other states that it does not have such an 

effect in sheep.

Obviously, the procedure that is required to infer that sheep is indeed an 

animal would rely on some background knowledge (e.g. an ontology) and was 

not  implemented  in  our  method,  but  this  example  demonstrates  that  even 

without  knowledge  and  inference  integration,  the  results  of  the  conflict 

detection can be beneficial and a good starting point for the researchers.

In Example 6.5, event extraction and contextualisation in all but the last 

one of the affirmative supporting sentences is correct. In the positive sentence 

number  5,  a  negated  event  is  missed,  as  the  authors  express  that  certain 

conditions were not sufficient for the desired regulation to happen.

Similarly,  the  events  and  their  context  in  all  but  the  last  one  of  the 

negative instances also seem to be correctly identified. In the negative sentence 

number 5, negation is incorrectly assigned to the regulatory event in question.

Example 6.5. Positive regulation of IgE caused by IL4 in B cells

Affirmative supporting sentences

1. 10887336:  IL-4 is  important for  B-cell production  of  IgE,  and  the 
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human  IL-4  receptor  alpha  chain  (hIL-4Ralpha)  is  crucial  for  the 

binding  and  signal  transduction  of  IL-4,  so  hIL-4Ralpha  may  be  a 

candidate gene related to atopy. 

2. 7722171: In contrast,  terminally differentiated, IgE-producing B cells 

no  longer  express  functional  IL-4R  because  DAB389IL-4  only 

modestly inhibited ongoing IgE synthesis by B cells from patients with 

hyper-IgE  states  and  only  minimally  affected  IL-4-induced IgE 

synthesis in normal B cells when the toxin was added at day 7. 

3. 2172384:  We  demonstrate  here  that  EBV  and  IL-4 induced the 

synthesis of  IgE by surface IgE-negative  B cell precursors isolated by 

cell sorting. 

4. 2967330: Like  IL-4-containing SUP, rIL-4 also showed the ability to 

induce IgE production  in  B  cells from  both  atopic  and  nonatopic 

donors. 

5. 2789139: However, a combination of IL4, IL5 and IL6 (with or without 

IL1)  at  optimal  concentrations  could  not  induce  IgE  synthesis  by 

purified  normal  B  cells,  indicating  that  cytokine-mediated  signals, 

although essential, are not sufficient for the IL4-dependent induction of 

IgE synthesis. 

Negative supporting sentences

1. 2172384: IL-4 failed to induce IgE synthesis in established EBV B cell 

lines  and  failed  to  induce  2.0-kb  mature  C  epsilon  transcripts  but 

induced 1.8-kb germ-line C epsilon transcripts. 

2. 2789139:  Recombinant IL4 could  induce IgE synthesis by peripheral 

blood mononuclear cells and autologous T/B cell mixtures, but not by 

highly purified B cells. 

3. 1383379: In contrast to these observations with MNC,  IL-4 failed to 

induce IgE and IgG4 production by purified B cells. 

4. 1382870: IgE production was not induced by IL-4 in purified B cells. 

5. 1904400:  Similarly,  DSCG  did  not  enhance  IgG2,  IgG3  or  IgG4 
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production  from  sIgG2-,  sIgG3-  or  sIgG4-  B  cells,  respectively, 

Interleukin-4 (IL-4) or interleukin-6 (IL-6) also enhanced Ig production 

except IgG4 from large activated B cells. 

Overall, the first set of sentences in Example 6.5 seem to suggest that the 

regulation in question happens under certain conditions, whereas the second set 

seem to discuss some cases where it does not happen. Although some of the 

sentences offer more context such as an auxiliary molecule, the others do not 

explicitly mention such context and seem to be contrasting on the sentence 

level. Further document-level analysis is required in future work to determine 

whether these events are truly contradictory.

An interesting example (see Example 6.6) was when the event extractors 

made  an  error  in  virtually  every  aspect  of  the  event  extraction  and 

contextualisation, but as the errors were identical in every supporting sentence, 

the resulting sentences still  presented contrasting information,  however in  a 

completely different realm than molecular events:

Example 6.6. Transcription of Angiotensin-converting enzyme (ACE) 

in heart

Affirmative supporting sentences

1. 8461246:  Angiotensin-converting  enzyme (ACE)  inhibitors  are  now 

widely prescribed for the treatment of hypertension and heart failure. 

2. 9562936:  Patterns  of  angiotensin-converting  enzyme inhibitor 

prescriptions,  educational  interventions,  and  outcomes  among 

hospitalized patients with heart failure. 

3. 9562936:  BACKGROUND:  Among  hospitalized  patients  with  heart 

failure,  we  describe  characteristics  associated  with  prescription of 

angiotensin-converting  enzyme (ACE)  inhibitors  in  the  doses 

recommended by clinical practice guidelines. 
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Negative supporting sentences

1. 10908091:  Therefore,  we  recommend  that  physicians  continue  to 

prescribe ACE inhibitors for patients with  heart failure based on the 

target doses used in the placebo-controlled trials and not on the "high" 

dose target used in ATLAS. 

2. 11831455:  Captopril,  enalapril,  and  lisinopril  are  angiotensin-

converting  enzyme  (ACE)  inhibitors  widely  prescribed for 

hypertension and heart failure. 

3. 11052861:  Although  most  primary  care  physicians  stated  they 

prescribe ACE inhibitors in heart failure, this was for only 47-62% of 

patients, and at doses below those identified as effective in trials. 

4. 9491949:  BACKGROUND:  Angiotensin-converting  enzyme (ACE) 

inhibitors  were  underprescribed for  patients  with  congestive  heart 

failure (CHF)  treated  in  the  community  setting  in  the  early  1990s 

despite convincing evidence of benefit.

In  Example 6.6,  there  have been a  number of errors in the collective 

information extraction pipeline. “Angiotensin-converting enzyme (ACE)” is the 

name of a blood enzyme, which has been correctly recognised as a gene or 

protein  name,  despite  the  ambiguity  of  the  acronym  ACE.  The  word 

“prescription” referring  to  the  medical  prescription  of  a  drug  has  been 

confused with the molecular event transcription, as it is often used as a term in 

expressing this type of event (again, word sense ambiguity). The disease name 

“heart failure” has caused both Negmole and anatomical association to report 

erroneous results, as  “failure” has been marked as negation cue and “heart” 

has  been  reported  as  the  location  in  which  the  event  has  occurred.  Using 

domain-specific  negation  cues  or  semantic  tokenisation  for  disease  names 

could have addressed this error.

However, these errors seem to be generally consistent amongst all the 

supporting sentences, perhaps with the exception of “failure” that has not been 
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consistently  recognised  as  an  indicator  of  a  negated  event.  Therefore,  the 

sentences  that  have  been  grouped  together  still  refer  to  the  same  concept, 

although not a molecular event, as expected. As a result, these sentences reveal 

a disputed subject in medicine (i.e.  whether ACE inhibitor drugs should be 

prescribed for heart failure, and whether they are prescribed in reality).

The results of the strict contrast extraction evaluation show that in many 

cases,  incomplete  or incorrect text  mining causes the  resulting pair  to  only 

contain a contrast in the relaxed sense. Based on this observation, we decided 

not  to  evaluate  the  method  on  the  relaxed  conflicting  pairs.  However,  the 

relaxed pairs are available to download for browsing on the web interface, and 

can be evaluated independently.

6.6.2 Discussion

Here we present a model to identify conflicting statements across the literature. 

Although  a  relatively  new  problem,  the  problem  of  finding  contrasts, 

contradictions,  and  conflicts  in  the  literature  has  been  explored  by  many 

researchers  in  this  area.  Our  review  of  the  previous  research  in  this  area 

revealed that there has not been a consensus over the definition of the main 

terms and concepts related to this area. Some (e.g. BioContrasts) have explored 

contrasting  entities,  whereas  others  (e.g.  Sanchez  et  al.)  have  considered 

implicit and explicit contradictions between statements.

Our  conflict  mining  methodology  addresses  many limitations  that  the 

previous  conflict  detection  systems  were  subject  to.  We  have  investigated 

conflicts at the event level. This level of investigation is finer than some of the 

previous sentence-level or scope-level approaches, focusing on the exact claim 

that is being affected. At the same time, it is not too fine-grained not to contain 

the  smallest  piece  of  self-contained  information,  as  some  of  the  previous 

methods  that  only  concerned contrasting  entities  have  done  by  considering 

contrasts on the entity level.

Although  this  research  does  not  incorporate  any  ontological  relation 
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among the biological events, it uses a widely accepted and commonly used set 

of  relations  as  the  basis  of  molecular  events.  Some  previous  research  has 

included ontological information about the events they study. However, they 

lack enough biological justification for the ontology they introduce. Moreover, 

they do not use this ontological information in a computationally useful way.

By addressing the  problem at  the  event  level,  and finding conflicting 

events  across  the  literature,  we  have  eliminated  the  need  to  differentiate 

between events that are described in the same document or even in the same 

sentence and those appearing in different documents.

By  evaluating  our  method  on  the  large-scale  corpus  of  the  entire 

available biomedical literature, we have demonstrated that the output contains 

potentially useful conflicts and potential contradictions, even despite the text 

mining errors occurring in  the  previous stages.  We observed that  often  the 

errors are  duplicated in both affirmative and negative cases,  still  leading to 

potentially valid examples of contrasting output.

In  the  conflict  analysis,  we  focused  on  the  events  with  “complete” 

context,  discarding  any  event  that  did  not  have  every  contextual  attribute 

extracted. Also, we treated all the regulatory events as if they are first level 

events, reducing higher order events to first level by assuming their indirect 

nested  participants  are  direct  participants.  These  simplifications,  although 

presumably led to more accurate conflict results, discarded much higher quality 

data  (as  text  mining  accuracy  decreases  by  the  addition  of  contextual 

information.)

In many cases, this incomplete context was not even mentioned in the 

sentence that was being examined, and could only be inferred from the entire 

document. An approach that heuristically derives context from the document 

and assigns it to the events that miss sentence-level context could help enrich 

the events and include them in the conflict analysis.

Studying  the  sample  of  detected  conflicts  showed  that,  although 

thousands of conflicting pairs were mined in certain event types (such as Gene 
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expression),  others  (such  as  regulation  events),  despite  having  high  overall 

frequency, showed relatively low numbers of conflicting pairs. This was due to 

the larger attribute set of these events which had to exist and match in order to 

be  considered  as  a  pair.  This  resulted  in  lower  numbers  of  supporting 

sentences,  to  the  point  that  even  the  top rank pairs  did not  always have  a 

maximum of five sentences of each polarity for manual examination.

This shows that simply including regulatory events of higher orders will 

not  necessarily  lead  to  the  discovery  of  more  contrasts,  since  the  more 

attributes need to  be matched,  the fewer supporting mentions there will  be. 

Therefore,  for  higher  order  regulation  events,  more  sophisticated  contrast 

extraction  rules  are  required  in  order  to  mitigate  the  sparseness  of  highly 

specified data.

Analysis of the results shows that in many cases, compatible instances 

were  reported  as  conflicting  due  to  incomplete  context  extraction,  either 

because the context was not explicitly mentioned in the sentence, or because it 

was  not  included  in  the  model.  To  explore  this  further,  we  categorise  the 

missing context into UMLS categories. As a small case study, we consider the 

gene  expression  events  of  IgM  in  the  anatomical  location  blood.  As  a 

prerequisite for conflict extraction, these events have to be asserted (i.e. not 

speculated). Table 6.20 shows affirmative and negative cases of this event. The 

missing context is highlighted in each case,  and the UMLS category of the 

missing  context  is  displayed  in  the  left-hand  column.  In  conclusion,  more 

comprehensive context modelling is important and necessary for more accurate 

conflict detection.
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Type of context (UMLS) Example negation

Population / Species Dogs treated with UV-irradiated blood did not 

produce anti-donor PBL antibody, or IgG, IgM and 

C3 determined by the indirect Coombs test. 

negative

Gel diffusion analysis of sera from 73,569 

healthy volunteer blood donors revealed 

apparent lack of IgA in 113 (1:650) samples, all 

with normal levels of IgG and IgM.

affirmative

Dichotomy between immunoglobulin synthesis by 

cells in gut and blood of patients with 

hypogammaglobulinaemia. 

affirmative

[absence of] Disease  Pokeweed mitogen (PWM)-induced 

immunoglobulin (Ig) synthesis by peripheral blood 

mononuclear cells (PBL) from 33 patients with 

systemic lupus erythematosus (SLE) was 

compared to that synthesized by PBL from 22 

normal individuals.

affirmative

Temporal Spontaneous immunoglobulin production by 

peripheral blood lymphocytes was increased 

during the acute phase of illness. 

affirmative

Phenomena / 

Environmental 

We have quantified the levels of IgG, IgA and IgM 

in Nigerian cord blood samples during the dry 

and the wet seasons.

affirmative

Human-caused 

phenomenon / Environment

The levels of IgG, IgA and IgM were measured in 

the blood serum of uranium miners in a minin-

district, where after a geological disturbance 

exposure to a high level of ionizing radiation 

took place. 

affirmative

Population / Age group In vitro immunoglobulin production in mitogen-

stimulated cultures of peripheral blood and bone 

marrow cells from young and old adults, and 

cases of benign monoclonal gammopathy. [...] 

Comparing the age-related increase in Ig 

synthesis in peripheral blood lymphocytes, PWM-

induced Ig synthesis of bone marrow cells was 

only slightly increased.

affirmative

The distribution of antibodies to HHV-6 compared 

with other herpesviruses in young   children  . [...] 

HHV-6-IgM was not detected in 235 cord blood 

samples.

negative
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Quantitative attribute of 

protein

Low molecular weight IgM is the monomeric 

subunit of pentameric IgM and is not generally 

found in the blood of healthy individuals.

negative

Population (case report) A second blood donor (Donor B) had a low 

level of B19 DNA but was IgM negative. 

negative

Biological process With all three proteases, no changes in the 

relative rates of MAO-A and MAO-B inactivation 

were observed after disruption of the 

mitochondria.

negative

Clinical drug: causes other 

than gene/ protein

Pyrazidol did not affect significantly the type B 

MAO in bovune liver and kidney tissues, although 

the latter enzyme catalyzed deamination of 

serotonin. 

negative

Table 6.20: Examples of missing context

Examples of supporting sentences from which a gene expression event of “IgM” in the  

anatomical location “blood” has been extracted. Although eight affirmative and five 

negative  supporting  sentences  are  listed,  the  conflicts  are  not  necessarily  

contradictions. The contexts that could have been extracted to enrich the events and 

emphasize the differences are highlighted. The first column shows the type of context  

in terms of UMLS categories.

We make the important observation that events are not static concepts, 

and different degrees and qualities of events are reported at different times, in 

different populations, and in different experimental settings. We conclude that 

the addition of further context could improve the accuracy and usefulness of 

the extracted contrasts. 

To  capture  these  nuances  in  the  reporting  of  molecular  events,  we 

identify  the  following  additional  contextual  information  regarding  the 

experimental settings that can be added to the extracted events.

• Temporal information

• Population type (patients, species, etc.)

• Interventions (therapeutic e.g. drugs or surgery, or diagnostic e.g. tests)

• Exposure  (the  main  variable  that  is  being  examined  or  researched, 
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including a disease

• Co-variates  (e.g.  gender,  environmental  factors,  existing  treatments, 

age, etc.)

• Environment (experimental environment e.g. temperature, etc.)

• Other exposures

We also note that the event representational model is a simplification, 

and  cannot  represent  every  molecular  biology  phenomenon  that  is  being 

reported.  A  more  complex  representation  is  needed  if  a  systems  biology 

perspective is taken (e.g. formal models, pathways, etc.)

It remains future work to combine the sum of all knowledge, not only 

from elsewhere in the document, but from other documents and resources to 

add richer context to the extracted information. Currently, we try to extract as 

much context as possible from the sentence to enrich the extracted information 

without compromising the quality of the data or producing overly specified, 

sparse data, and to compensate for the information which is lost due to this 

local perspective.

An immediate next step can be to extract context from a level beyond the 

sentence containing the statement, and determine the type of context that can 

be minimally added to the events in order to improve the likelihoods of correct 

conflict detection.

Another issue to have in mind when comparing automatically extracted 

strict  and  relaxed  events  is  the  likelihood  of  correct  extraction.  As  more 

contextual information is extracted, the precision inevitably drops, due to the 

extra layers of sub-optimal automatic processing that is required.

The  identification  of  conflicting  findings  should  prove  useful  for 

biologists. For any particular interaction or process a biologist is interested in, 

the results of this research would enable her to quickly identify not only the 

papers that discuss that particular process, but also what context it has appeared 

in,  and whether the findings support,  conflict  with,  or merely speculate  the 
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process.  It  allows  her  to  actively  discover  whether  the  process  has  been 

reported to be observed or not. Subsequently, this would reduce the effects of 

confirmation  bias  in  the  scientific  literature  by  highlighting  negated  or 

conflicting findings.

The language of scientific literature is typically formal and neutral, and 

authors rarely express their personal opinions explicitly.  Therefore, methods 

used  for  sentiment  analysis  in  other  domains  do  not  directly  apply  to  the 

domain  of  scientific  literature.  By  mining  conflicting  statements,  more 

controversial  areas of science and areas in which scientists have conflicting 

views are highlighted and brought to the attention of the research community. 

This can be investigated with regard to publication year, journal, species, etc.

We briefly explored a few temporal trends in the reporting of biomedical 

events. Using the data produced as part  of this research,  more sophisticated 

trends can be easily studied. For example, a biologist interested in a particular 

event  can  ascertain  when  the  finding  was  first  reported,  and  how  the 

speculative and negated reports of the finding are spread throughout history 

compared to the affirmative findings.

Investigation of the reports of specific events and processes in aggregate 

would enable the readership to judge how reliable a particular finding is, how 

often it has been reported or refuted, in what experimental contexts it has been 

studied, and how much agreement there is amongst the scientific community 

regarding  that  event.  Finally,  it  could  point  towards  new  areas  for  future 

research.

The  results  of  this  research  can  be  integrated  with  scientific  search 

engines, and in particular PubMed, to annotate the articles with useful metadata 

and enable the users to find relevant or conflicting information from across the 

literature.  Finding  this  information  through  mere  keyword  search,  if  at  all 

possible, would require a lot of time, effort, skill, and thought.
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6.7 Summary

In this large-scale analysis, we extracted 36 million events and enriched them 

with contextual information. This was achieved by combining several entity 

identifiers,  parsers,  event  recognisers  and  context  extractors  in  an  event 

extraction  pipeline.  By  mining  the  resulting  data,  we  identified  interesting 

patterns  regarding  the  reporting  of  negated  and  speculated  findings  in  the 

scientific literature. Specifically, by mining the normalised form of this data, 

we  identified  72  thousands  conflicting  pairs,  potentially  2/3  of  which  give 

some notion of conflict as indicated by manual analysis of 50 event pairs.

With more accurate event extraction and more comprehensive context 

association  (including  experimental  settings  such  as  population,  drug,  etc.) 

more accurate conflict extraction can be achieved, leading to the discovery of 

contradictory findings in the literature.
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Chapter 7 

Conclusion

Biomedical literature is growing at the rate of 2,000 new documents every day. 

Automatic systems are needed to access the knowledge that is contained in this 

vast body of textual information. Many articles in the biomedical domain make 

claims that have been found experimentally, and/or refer to claims that have 

been  reported  previously.  Specifically,  molecular  events  have  been  of 

increasing importance to scientists since the discovery of genes and their role 

in biological processes.

With such large numbers of claims reported in the literature, conflicts or 

inconsistencies  are  highly  probable.  Finding these  conflicts  are  of  value  to 

researchers as they can be a source for hypothesis and future investigations, as 

well as a method to facilitate data and knowledge consolidation.

7.1 Summary of contributions

In  this  thesis  we  sought  to  address  the  problem  of  mining  conflicting 

statements from the literature at the level of molecular events. As a preliminary 

step  for  finding  conflicts,  it  was  necessary  to  extract  biomedical  events 

enriched with context that can be used to indicate inconsistent claims.

We  have  shown  that  automatic  extraction  of  contextualised  event 

information  from  textual  data  can  facilitate  identification  of  conflicting 

statements. Specifically, we have shown that negation is a key contextual clue 

that contributes towards mining conflicts. This was the main research question, 

i.e. whether it is possible to use negations and speculations as clues to detecting 

conflicting and contrasting information in the biomedical literature. 

The contributions of this thesis are listed below. They show that every 

objective set at the beginning of this thesis has been met.
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1. Proposing  a  general  event  representational  model  suitable  for  the 

purposes of this  study,  and in particular for conflict  detection at  the 

molecular event level, which is also expandable to other similar tasks.

2. Design,  implementation,  and  evaluation  of  a  method  for  event 

extraction  (Evemole)   using hybrid rule-based and machine learning 

methods with an overall F-score of 35% (58% for the non-regulatory 

events).  The  method  uses  dependency  trees,  and  was  expanded  to 

extract various event context attributes such as anatomical locations and 

species.

3. Design,  implementation,  and  evaluation  of  a  negation  extraction 

method (Negmole) with an overall F-score of 63% and specificity of 

99%.  Negmole  uses  the  command  relation  as  a  feature,  which  was 

previously suggested by linguistics as having a link with negations. It 

considers  every  event  component  (trigger  or  participants)  that  is 

affected  by  negation  as  an  indication  of  a  negated  event.  Lexical, 

syntactic, and semantic features were used and the effects of each group 

of features were analysed.

4. Adaptation of the negation extraction system with minor modifications 

to  detect  information  regarding  statements  and  findings  that  are 

reported speculatively.

5. Design and producing a text mining framework, TextPipe, upon which 

an  information  extraction pipeline  was built  to  combine  several  text 

processing  modules  in  order  to  extract  and  contextualise  molecular 

events from the literature.

6. The pipeline was applied to the entire accessible biomedical literature 

and  more  than  36  million  events  reported  in  the  literature  were 

extracted,  38%  of  which  are  associated  with  a  species-specific 

anatomical location.  The participants of these events are  a subset of 

over  80 million  extracted gene  and protein entity  mentions,  87% of 

which  were  normalised and linked to  their  species-specific  database 
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identifiers.

7. Proposing  a  method  that  benefited  from  the  event  representational 

model  to  analyse  the  automatically  extracted  event  data  in  order  to 

detect potentially conflicting statements in the literature. Over 72,000 

potentially conflicting pairs of events were detected, each pair having 

an average of five supporting event mentions per each event in the pair. 

This information could be used as a means for biomedical scientists to 

explore  disputed  areas  of  research,  and  find  relevant  contrasting  or 

conflicting findings in the literature.

8. Providing  the  data  regarding  biomedical  events,  negations  and 

speculations, and conflicting pairs from the entire MEDLINE and the 

open access part of PMC at www.biocontext.org both for download and 

for browsing through a web search interface.

9. In addition to the molecular event data, which is intended primarily for 

biologists  and  bioinformaticians,  we  also  provide  the  entire 

intermediary data including the syntactic parse trees,  genes, proteins, 

species,  and  anatomical  location  named  entities,  as  well  as  the 

integration  framework,  TextPipe,  which  can  be  used  either  for  new 

projects or to reproduce or modify the system described in this thesis.

10. Constructing  gold  standard  corpora  and evaluation  data,  including  a 

manually annotated corpora derived from the GENIA corpus and the 

BioNLP’09 corpus, which includes protein complexes as well as genes 

and gene products. We manually examined the anatomical association 

and event inference methods on two sets of 100 sentences each. We 

also analysed a set of 50 extracted conflicting event pairs and manually 

evaluated 10 supporting sentence per each pair for the quality of text 

mining as well as conflicting facts.

The contributions numbered 5, 6, and 8–10 are outcomes of a larger joint 

project  with  Martin  Gerner  (Faculty  of  Life  Sciences,  University  of 

http://www.biocontext.org/
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Manchester). The design and implementation of TextPipe was led by Martin, 

and he contributed to a greater proportion to the framework. The design and 

implementation of BioContext and the database was performed collaboratively, 

and the web interface was an expansion of one of Martin’s earlier projects, 

GETM.

We manually examined the anatomical association and event inference 

methods on two sets of 100 sentences each. To evaluate the conflict detection 

method, a selection of the events with the highest  extraction accuracy were 

manually examined. As a result, we found that 64% showed some degree of 

conflict.  Moreover,  we  found  that  many  of  the  conflicts  were  due  to 

underspecification  and  incomplete  data,  rather  than  indicating  a  true 

contradiction.

The  process  of  generating  and  integrating  this  large  volume  of  data 

proved challenging,  as  the  results  of  individual  tools  are  not  always easily 

reproducible on a large scale. Still, the integrated results proved to be useful 

when deciding the balance between precision and recall, depending on how the 

data will be used.

7.2 Future work and open questions

Although  each  component  in  the  pipeline  performed  with  state-of-the-art 

accuracy, aggregating the results meant that the quality of the extracted data 

was still  far  from perfect.  Even relatively simple modules such as sentence 

splitting  often  produced  errors  early  in  the  pipeline  which  was  propagated 

through all the later stages, resulting in errors in the final results.

With more training data and further feature engineering, the performance 

of negation and speculation detection could be improved. Examples of feature 

that  could have been helpful  include the  occurrence of  certain  adverbs and 

conjunctions that might be predictive of negations and speculations, such as 

“however”, “nonetheless”, etc.
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It remains a question how expandable the method used in Negmole is if 

applied to other similar tasks. One such task could be the detection of manner 

in  events,  with  cue  words  such  as  “slightly”,  “rapidly”,  “strongly”,  

“partially” or “under” in terms such as “under-expressed”. The generalisation 

of  the  method  to  relations  between  entities  in  domains  other  than  the 

biomedical domain can also be investigated.

Our  proposed  event  representation  model  regards  events  as  atomic 

concepts. A more sophisticated representation is needed to allow more in-depth 

analysis,  including the  study  of  pathways,  or  other  studies  from a  systems 

biology or ontological perspective.

Adding further context to the events, possibly from beyond the sentence 

boundaries would improve the quality of conflict detection and would help us 

move from merely detecting conflicts amongst statements towards detecting 

more reliable contradictions amongst claims of facts.

In this research we treated the nine event types as independent concepts. 

However,  it  is  possible  to  imagine  that  they  are  semantically  related.  For 

example, positive regulation and negative regulation can be regarded as types 

of regulation, and can be considered opposites. In this sense, the two claims “A 

upregulates B” and “A downregulates B” could be considered conflicting by 

biologists,  and  therefore  may  be  of  interest.  We  have  not  included  such 

semantic conflicts in our analysis of conflicting events.  However, accessing 

this information is straightforward through the web interface as well as in the 

data downloads. It remains future work to systematically integrate background 

knowledge  and  semantic  relations  between  the  concepts  into  the  conflict 

analysis.

Not many of the errors were due to the “double negation” phenomenon, 

possibly because it is not very common in scientific discourse. However, any 

complete negation detection method should systematically address this as well 

as other complicated guises of negations.

We used speculations as a way to filter out claims that are not asserted 
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from the  analysis  of  conflicting  statements.  By  capturing  more  nuances  in 

speculative  language,  we  could  improve  the  conflict  detection  model  to 

accommodate for wider shades of tone and certainty. This could prove useful 

for biomedical literature exploration and knowledge consolidation.

It would be useful to detect and integrate explicit conflicts appearing in 

the  same  sentence  with  our  conflict  detection  method.  This  could  include 

contrasting entities similar to the BioContrasts database  (Kim et al. 2006) or 

“explicit contradictions” as studied by Sanchez (2007).

We  briefly  analysed  temporal  patterns  in  the  reporting  of  molecular 

events.  However,  temporal  text  mining would be  beneficial  in  finding how 

claims change over time. Such temporal perspective would particularly shed 

light on the nature of some of the conflicts that have been detected.

We used molecular events as a case study for our methods. Expanding 

the relation extraction, negation and speculation detection, and finally conflict 

detection  methods  to  relations  in  the  literature  other  than  molecular  events 

would be a future step for this research.

7.3 Conclusions

As a result of this research we have contributed towards the understanding of 

the  phenomenon  of  contradictions  and  contrasts  within  the  biomedical 

literature  by defining and focusing on the conflicting events.  We proposed, 

implemented, and evaluated a novel way for automatic mining of conflicting 

statements from large-scale corpora of biomedical literature.

We  found  that  conflicts  do  exist  among  the  claims  made  in  the 

biomedical literature, and that text mining could provide useful support for the 

scientists  to  explore  the  biological  knowledge  by  focusing  on  potentially 

conflicting statements.

Detection of negations proved to be an essential step in finding conflicts. 

Although not every pair  of conflicting claims necessarily contain a negated 
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claim  (e.g.  semantic  conflicts),  the  simplest  and  potentially  most 

straightforward way to express conflicting claims is through negations.

Finding  conflicting  statements  in  the  literature  does  not  mean  that 

biology as a science is self-contradictory. Rather, it  emphasises the areas in 

which  experts  have  expressed  conflicting  opinions  or  where  experimental 

evidence  has  been  found  to  support  conflicting  hypotheses.  This  provides 

support  for  researchers  by  highlighting  a  very  specific  area  of  literature, 

assisting further investigations, data exploration, and knowledge consolidation.
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Appendix A 

Definitions of biological event types

Definitions of biological events, partly from their respective Wikipedia articles.

Gene expression is the process by which information from a gene is 

used in the synthesis of a functional gene product. These products are often 

proteins,  but  in  non-protein  coding genes  such  as  ribosomal  RNA (rRNA), 

transfer RNA (tRNA) or small nuclear RNA (snRNA) genes, the product is a 

functional RNA. 

Transcription is the process of creating a complementary RNA copy of 

a sequence of DNA. 

Localization refers to the location where a protein resides in a cell. The 

study of proteins in vivo is often concerned with the synthesis and localization 

of  the  protein  within  the  cell.  Although  many  intracellular  proteins  are 

synthesized in the cytoplasm and membrane-bound or secreted proteins in the 

endoplasmic reticulum, the specifics of how proteins are targeted to specific 

organelles or cellular structures is often unclear. 

Phosphorylation is the addition of a phosphate (PO4
3-) group to a protein 

or  other  organic  molecule.  Phosphorylation  activates  or  deactivates  many 

protein enzymes. 

Protein catabolism is the breakdown of proteins into amino acids and 

simple derivative compounds,  for transport  into the cell  through the plasma 

membrane and ultimately for the polymerisation into new proteins via the use 

of ribonucleic acids (RNA) and ribosomes. Protein catabolism, which is the 

breakdown of macromolecules, is essentially a digestion process. 

Binding occurs  when  two  or  more  proteins  form  a  chemical  bond 

together,  often  to  carry  out  their  biological  function.  Many  of  the  most 

important molecular processes in the cell such as DNA replication are carried 

out by large molecular machines that are built from a large number of protein 
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components organised by their protein–protein interactions. 

Negative regulation or downregulation is the process by which a cell 

decreases the quantity of a cellular  component, such as RNA or protein, in 

response to an external variable. An increase of a cellular component is called 

positive regulation or upregulation. The external variable responsible for this 

change is known as ‘cause’. Regulation is a more general term referring to a 

change not necessarily in any of the above directions.
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Appendix B 

List of known trigger terms

This appendix contains the list of triggers used in the event extraction task.

Triggers to positively discriminate

Gene expression:
Transfection
coexpressed
low levels
Overproduction
Cotransfection
co-transfected
overexpression
allele-specific expression
allele specific expression
biallelic expression
positive staining
transduced
Biosynthesis
stably transfected
Paternal expression
maternal expression

Localization:
secretion
translocation
mobilization
retention
release
localized

Transcription:
transcription
inducibility
transcriptional activity
gene transcription
mRNA expression
induction
abundance of mRNAs

Binding: 
recruit
form complexes
association
ligitation
form heterodimers
exist in separate hetero-

complexes

Phosphorylation:
underphosphorylated 

form

Positive regulation:
transcriptional induction

Triggers to negatively discriminate

Transcription:
gene expression
lack
have
expression

level
expressed
absence
transcriptional induction

List of trigger stems and their distributions amongst event types

This  data  contains word stems and the  frequency of  their  incidence  as  the 

trigger for each event class. The first few stems are displayed fully with the 

frequencies,  and  the  rest  are  just  listed  without  the  frequencies  for  space 

constraints. The full list can be found in supplementary materials available at 

www.cs.man.ac.uk/~sarafraf/thesis-supplementary.html.

http://www.cs.man.ac.uk/~sarafraf/thesis-supplementary.html
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+ 1 0 0 0 0 0 0 0 0
- 0 0 0 1 0 0 0 0 0
: 0 0 0 1 0 0 0 0 0
aberr 0 0 0 0 0 0 1 0 0
aberr in the regul 0 0 0 0 0 0 1 0 0
abnorm 0 0 0 0 0 0 0 0 1
abnorm low level 0 0 0 0 0 0 0 0 1
abolish 0 0 0 0 0 0 0 0 18
abrog 0 0 0 0 0 0 0 0 7
absenc 1 0 1 1 0 1 1 0 5
absent 1 0 1 0 0 0 0 0 1
absent or detect at a veri low 

level
0 0 0 0 0 0 0 0 1

abund 0 2 2 0 0 0 0 0 0
acceler 0 0 0 0 0 2 0 0 0
accompani 0 0 0 0 0 1 1 0 0
accompani by upregul 0 0 0 0 0 1 0 0 0
accomplish 0 0 0 0 0 1 0 0 0
account 0 0 0 0 0 0 1 0 0
account for 0 0 0 0 0 1 0 0 0
accumul 0 4 0 0 0 19 0 0 0
act 0 0 0 0 0 3 3 0 0
act as a cofactor by sustain 0 0 0 0 0 1 0 0 0
act as enhanc 0 0 0 0 0 1 0 0 0
act upon to mediat 0 0 0 0 0 1 0 0 0
activ 1 0 0 0 0 234 1 0 0
activ cooper 0 0 0 0 0 1 0 0 0
activ pathway 0 0 0 0 0 1 0 0 0
advers affect 0 0 0 0 0 0 0 0 1
affect 0 0 0 0 0 1 38 0 1
affect the half-liv 0 0 0 0 0 0 1 0 0
affin 0 0 0 3 0 0 0 0 0
after 0 0 0 0 0 9 0 0 0
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at 
at the level of transcript 
at the mrna level 
at the transcript level 
attenu 
attenu function 
attribut 
augment 
autoinduc 
autoregul 
autoregulatori control 
be 
be a key molecular 

mechan 
be induc 
be the predomin subunit 
be true 
be undetect 
becaus of 
becom capabl 
becom transcript activ 
behav as an authent 

enhanc 
bind 
bind activ 
bind affin 
bind complex 
bind genotyp 
bind interact 
bind mutant 
bind partner 
bind protein 
bind site 
bind specif 
bind studi 
bind subunit 
biosynthesi 
block 
blunt 
bnormal low level 
breakdown 
bright focus 
by 
by mean of 
by stimul with 
by the altern use of 
can not 
capabl of control 
capabl of form function 

heterodim 
caus 
caus an increas 

central role 
chang 
cis-activ 
cleav 
cleavag 
co-activ 
co-express 
co-loc 
co-transfect 
coactiv 
coengag 
coexpress 
coimmunoprecipit 
colig 
combin 
comigr 
compar level 
compet 
competit 
complet degrad 
complex 
complex bind 
complex form 
complex format 
compos 
concentr 
confer 
confer direct transcript 

control 
confer strong transcript 

activ 
confin 
conjug 
consequ 
constant 
contain 
contain a bind site 
contain function promot 

activ 
content of ap-1 
continu to 
contribut 
control 
control at transcript and 

post-transcript level 
cooper 
cooper effect 
cooper in augment 
cooper to mediat 
coregul 
costimul 
cotransfect 

coupl 
critic 
critic role 
cross-link 
cross-react 
crosslink 
crucial 
culmin 
cytokin product 
de 
declin 
declin in the level 
decreas 
decreas number 
defect 
defici 
defin as a respons 

element 
degrad 
degrad loss 
delay 
delet 
demonstr 
depend 
deplet 
depress amount 
depriv 
deregul 
derepress 
deriv 
desensit 
despit 
destabil 
detect 
determin 
development regul 
dimer 
dimeriz 
diminish 
direct 
dispens 
display dispar effect 
display low level 
disrupt 
distinct from that regul 
distribut 
domin negat regul 
domin negat regulatori 

effect 
domin role 
down regul 
down-regul 
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downmodul 
downregul 
downstream effector 
drive 
due 
due to 
dure 
dysregul 
ec50 valu 
effect 
effect on the half-lif 
efficaci 
elev 
elev level 
elicit 
elimin 
enabl 
enforc 
engag 
enhanc 
enhanc and prolong 
equival 
essenti 
essenti and suffici 
essenti in the control 
essenti role 
establish 
evolv independ 
excess 
exclus 
exert 
exert a posit effect 
exert a stimulatori effect 
exhibit 
explan 
export 
expos to 
express 
express and transcript 
express at the transcript 

level 
express level 
express mrna 
facilit 
fail 
fail to interact 
failur 
find 
follow 
for 
forc 
form 

form a complex 
form specif dna-protein 

complex 
form the function core 
format 
from 
function 
function activ 
function in promot 
function role 
gene activ 
gene express 
gene transcript 
gene transfer 
general role 
generat 
generat by 
have a promin increas 
have a silenc effect 
have littl if ani effect 
have no effect 
have similar effect 
have the high bind affin 
heterodim 
heterodimer 
heterodimer bind complex 
heterodimeriz 
heteromer complex 

format 
high 
high affin 
high express 
high level 
high stabil 
high-level 
higher-affin site 
hindranc 
homodim 
homodimer 
hybrid signal 
hyperphosphoryl 
hyporespons 
identifi 
immobil 
immun modul effect 
immunoreact 
impair 
imped 
implic 
import 
import factor 
import for regul 

import or essenti 
in 
in concert to regul 
in favor of 
in respons 
in respons to 
in the amount 
in the case of 
in the presenc of 
in transcript activ 
inactiv 
includ 
increas 
increas level 
increas number 
increas stabil 
increas the proport 
independ 
indispens for the activ 
induc 
induc a down-regul 
induc an enhanc 
induc complex 
induc hyper 
induc the format 
induct 
induct be obtain 
ineffect 
influenc 
influenc the level 
inhibit 
inhibit effect 
inhibitor 
inhibitori 
inhibitori capac 
inhibitori effect 
inhibitori role 
initi 
insuffici 
intact 
intens 
interact 
interact receptor-ligand 

pair 
interact to exert differ 

effect 
interfer 
intermediari link 
into 
introduc 
invers 
involv 
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involv in regul 
involv in the regul 
it specif receptor 
joint requir 
key enzym 
key role 
lack 
larg amount 
lead 
lead to an enhanc 
lead to synergist enhanc 
lead to the prevent 
lead to their acceler 
less 
less import 
level 
level peak 
level stay low 
liber 
ligand 
ligat 
limit 
link 
linkag 
local 
localiz 
lose 
loss 
low 
low amount 
low level 
lower 
lower-affin site 
maintain 
mainten 
make 
mask 
maxim 
maxim express 
measur 
mechan 
mediat 
mediat a reduct 
migrat 
mimic the effect of the 

lectin 
mobil 
modif 
modifi 
modul 
more 
mrna 

mrna accumul 
mrna express 
mrna level 
mrna synthesi 
mrna transcript 
multim 
mutual exclus 
necessari 
necessari and suffici 
necessari but not suffici to 

mediat 
need to revert 
negat 
negat autoregul 
negat effect 
negat regul 
negat regulatori 
negat regulatori role 
negat transcript effect 
negat transcript regul 
neutral 
non-express 
nonexpress 
nonproduc 
nonrespons 
nonsecret 
normal level 
not 
not affect 
not lead to detect activ 
not requir 
not transcrib 
number 
observ 
occup 
occupi 
occur 
oligomer 
oper 
oppos 
opposit 
optim induct 
over 
over-express 
overcom 
overexpress 
pair 
particip 
particip in the regul 
pathway synerg 
pattern 
perpetu 

persist 
pg490 
phosphoform 
phosphoryl 
phosphoryl form 
phosphorylation-defect 

form 
physic associ 
physic interact 
play a critic role 
play a key role in defin 
play a major role 
play a role 
poor 
posit 
posit autoregul 
posit control 
posit induct 
posit regul 
posit regulatori 
posit regulatori role 
posit role 
post-transcript 
posttranscript effect 
posttranscript regul 
potent 
potenti 
potenti role 
preced 
preform 
presenc 
present 
preserv 
prevent 
primari sourc 
process 
produc 
product 
prolong the stabil 
promin 
promot 
promot activ 
promot function 
protect effect 
protein level 
protein secret 
proteolysi 
proteolyt 
proteolyt degrad 
provid 
provid costimulatori signal 
provid high level 
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reach a maximum 
reach a peak 
react 
reactiv 
read through 
receptor 
recogn 
recognit 
recov 
recruit 
reduc 
reduc level 
reduc the level 
reduct 
regain 
regardless of 
regul 
regulatori 
releas 
relief 
remain constant 
remain elev 
remov 
replac 
replenish 
repress 
repress effect 
repressor 
requir 
requir to induc 
reservoir 
resist 
respond 
respons 
respons element 
respons for enhanc 
restor 
restrict 
result 
result in a reduct 
result in abnorm 
result in an increas 
result in increas 
result in peak level 
result in up-regul 
result in veri limit 
resynthes 
resynthesi 
retarget 
return 
return to baselin level 
revers 

rise 
rna 
rna transcript 
role 
screen 
secret 
select 
sensit 
serv as mediat 
serv to target 
show 
show an earli peak and 

more activ 
shuttl 
signal 
signal role 
signific role 
similar effect 
simultan engag 
slow migrat form 
sourc 
specif 
specifi 
spontan express 
squelch 
stabil 
stabiliz 
stimul 
stimul the activ 
stimulus 
strong 
subject 
subsequ to 
suffici 
suffici for bind 
suffici for the up-regul 
suffici to respond 
super 
super-induc 
superinduc 
superinduct 
support 
suppress 
suscept 
sustain 
switch 
synerg 
synergist action 
synergist activ 
synergist effect 
synergist induc 
synergist induct 

synergist regul 
synergist transactiv 
synthes 
synthesi 
target 
the cdna hybrid 
through 
to diminish 
to induc 
to inhibit 
tran activ 
tranfect 
trans-activ 
transactiv 
transactiv pathway 
transcrib 
transcript 
transcript activ 
transcript blockad 
transcript complex 
transcript control 
transcript induct 
transcript inhibit 
transcript inhibitor 
transcript initi 
transcript level 
transcript mediat 
transcript rate 
transcript regul 
transcript repress 
transcript repressor 
transcript stimul 
transcript up-regul 
transcriptionally-act 
transfect 
transfer 
transfer of tyrosin 

phosphoryl group 
transloc 
treat 
trigger 
trigger signal cascad 
trigger the activ 
tripl autoregulatori loop 
turn 
ubiquitin-proteasom 

pathway 
unabl to induc 
unaffect 
unalt 
unchang 
under 
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under the control 
under transcript control 
undergo 
underli 
underli the abil 
underphosphoryl 
undetect 

up-regul 
upon 
upregul 
upstream 
use 
util 
vari 

via 
when 
with 
without 
without stimul 
yield constitut repressor 

that escap 
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Appendix C 

Sentences selected for conflict evaluation

1 Gene expression
Affirmative:

• 3138231: We have described a human tumor T cell line, IARC 301, which 
constitutively  expresses high  affinity  interleukin  2 (IL2)  receptors,  and 
showed  that  after  binding  to  its  receptors,  IL2  is  endocytosed  and 
degraded. 

• 1975810: To produce a molecule that will kill activated T cells as well as 
lymphomas and leukemias  expressing interleukin  2  (IL2)  receptors,  we 
have created a recombinant chimeric protein in which IL2 is attached in 
peptide linkage to a truncated mutant form of Pseudomonas exotoxin (PE) 
(Lorberboum-Galski, H., FitzGerald, D.J.P., Chandhary, V.K., Adhya, S., 
and Pastan, I. (1988) Proc. 

• 1975810: Our results indicate that IL2-PE664Glu should be evaluated as 
an  immunosuppressive  agent  for  the  treatment  of  human  immune 
disorders  in  which  activated  T  cells expressing the  IL2 receptor  are 
prominent. 

• 6255556: TCGF production for cloning and growth of functional human T 
lymphocytes. 

• 6255556:  In  an  effort  to  increase  the  potency  of  T  cell growth  factor 
(TCGF),  several  variables  were  examined  for  their  effects  on  the 
production of TCGF. 
Negative:

• 3491139: The sarcoid lung T cells, however, did not express the IL 2 gene 
constitutively; when placed in culture with no stimulation and evaluated 
after  24 hr,  they demonstrated down regulation of  the amounts of  IL  2 
mRNA transcripts, despite the fact that they were capable of re-expressing 
the IL 2 gene and releasing more IL 2 in response to added activation 
signals. 

• 2990687: Resting T-cells do not express IL-2 receptors, but receptors are 
rapidly expressed on T-cells following interaction of antigens, mitogens, or 
monoclonal antibodies with the antigen-specific T-cell receptor complex. 

• 2990687: Normal resting T-cells and most leukemic T-cell populations do 
not express IL-2 receptors; however, the leukemic cells of the 11 patients 
examined who had human T-cell lymphotropic virus-associated adult T-cell 
leukemia expressed the Tac antigen. 

• 3918105: In the resting state,  the T3-positive, human  T cell line Jurkat 
does  not synthesize detectable amounts of either interleukin 2 (IL 2) or 
gamma-interferon (IFN-gamma). 

• 3918105: In the resting state,  the T3-positive, human  T cell line Jurkat 
does  not synthesize detectable amounts of either  interleukin 2 (IL 2) or 
gamma-interferon (IFN-gamma). 

2 Gene expression
Affirmative:
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• 2311095: Expression of desmin gene in skeletal and smooth muscle by in 
situ hybridization using a human desmin gene probe. 

• 2311095: We have used a probe encoding for the human desmin gene to 
study the expression of the desmin gene in skeletal and smooth muscle by 
in situ hybridization. 

• 3300387: The intermediate filament typing of skeletal and smooth muscle 
tumors  has  shown  that  these  neoplasms  are  characterized  by  the 
combined expression of desmin and vimentin intermediate filaments. 

• 1697612: From these results, we suggest that the large tumor cell of IDF is 
a myofibroblast  and may originate from or  differentiate toward vascular 
smooth  muscle  cells,  because  only  this  type  of  smooth  muscle can 
coexpress desmin, vimentin and cytokeratin. 

• 2024709:  Using  light  and  electron  microscopic  immunolocalization 
techniques, a series of 207 normal and pathologic human liver specimens 
were evaluated for the expression of alpha smooth muscle (SM) actin and 
desmin in this and other nonparenchymal cell types. 
Negative:

• PMC1878495:  The  neoplastic  cells  were  positive  for  vimentin,  alpha 
smooth muscle actin, osteonectin, CD99, and S100 in the chondroblastic 
portion, but negative for cytokeratin, epithelial membrane antigen, desmin, 
myogenin, CD34, and c-kit. 

• PMC2975002:  Mesenchymal  markers  including  S100 protein,  a-smooth 
muscle actin, CD34, myoglobin and  desmin were  absent in the present 
tumor, indicating that it was not a sarcoma but a carcinoma and that these 
antigens  did  not  emerge  during  the  spindle  cell  transformation  of  the 
adenocarcinoma of the present case. 

• PMC2895884:  Markers  for  epithelial  membrane  antigen  (EMA),  CD34, 
desmin, smooth muscle actin and keratin cocktail were negative. 

• 1317998: The tumor cells were immunoreactive for alpha-smooth muscle 
actin, vimentin, laminin, and type IV collagen, but did not express desmin. 

• 8291651:  Others  were  negative:  S-100,  MAC387  (L1  antigen),  LeuM1 
(CD15), desmin, smooth muscle-specific actin, and QBEND10 (CD34). 

3 Gene expression
Affirmative:

• 301152: The necessity for T cell help for human tonsil B cell responses to 
pokeweed  mitogens:  induction  of  DNA synthesis,  immunoglobulin,  and 
specific  antibody  production  with  a  T  cell helper  factor  produced with 
pokeweed mitogen. 

• 68013: One line (JM)  expressed T cell characteristics and complement 
receptors. 

• 381769:  T-helper  cells  produce a  T-cell replacing  Factor  (TRF)  upon 
mitogenic or antigenic stimulation. 

• 89129:  The  THI  and  the  deficient  production of  T  cell--helper  factor 
resolved after the age of 20 to 24 mo. 

• 315319:  Requirements  for  the  mitogen-dependent  production of  T  cell 
growth factors. 
Negative:

• 6461917: Hydrocortisone abrogates proliferation of T cells in autologous 
mixed lymphocyte reaction by rendering the interleukin-2 Producer T cells 
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unresponsive to interleukin-1 and unable to  synthesize the T-cell growth 
factor. 

• 6220110: AMLR killer activity was virtually eliminated by treatment with C' 
and  9.6  or  4F2,  but  the  cytotoxic  cells  did  not express NK-specific 
antigens, OKM1 and Leu-7, nor cytolytic  T lymphocyte-specific antigens, 
9.3 and OKT8. 

• 6607843: We found that T-cell-associated antigens were  not expressed 
on  Tdt+  bone  marrow  cells  and  that  T  cells  in  bone  marrow  have  a 
phenotype similar if not identical to peripheral-blood T cells. 

• 6232854:  Lymphomas  from  28  patients  (31%)  did  not express 
immunoglobulin or T-cell antigens but commonly expressed the B-lineage 
antigen B1; and the remaining 9 cases generally expressed Ia antigens, 
common ALL antigens, or both. 

• 3081578:  A  T  cell surface  membrane-associated  glycoprotein,  Tp40 
(40,000 mol wt), also designated as CD-7, was  not expressed by the  T 
cells of a patient with severe combined immunodeficiency. 

4 Gene expression
Affirmative:

• 8047166:  Cells  expressing  the  expanded  V  beta  s  predominantly 
expressed the CD8 T-cell differentiation antigen and mediated HIV-specific 
cytotoxicity. 

• 12660941:  In  this  in  vitro  study,  in  a  human  autologous  CD8(+)  T 
cell/dendritic  cell  (DC)  coculture  system,  thalidomide  and  a  potent 
thalidomide analogue were shown to enhance virus-specific CD8(+) T cell 
cytokine production and cytotoxic activity. 

• 15371918: CD4+CD8+ human small  intestinal  T cells are decreased in 
coeliac patients, with CD8 expression downregulated on intra-epithelial T 
cells in the active disease. 

• 15371918:  Cell  yield  and  viability  were  assessed  and  flow  cytometric 
analysis  was  used  to  examine  CD4CD8  T  cells and  to  quantify  CD8 
expression. 

• 15371918: Levels of CD8 expression by CD4CD8 T cells in the epithelial 
layer were decreased significantly in patients with active coeliac disease. 
Negative:

• 1335323: Both the CD4 and CD8 T cell subsets, and a hitherto undefined 
T lineage lacking CD4/CD8 expression have been involved. 

• 2978114: Whereas the majority of T cells use alpha and beta chains to 
form their T-cell receptor, a small minority of T cells, which do not express 
the CD4 or  CD8 surface markers, use other chains termed gamma and 
delta to form their receptor. 

• 2467704:  The  T-cell surface  antigens  CD5 and/or  CD2 and focal  acid 
phosphatase were additional markers of this subgroup traditionally called 
pre-T ALL,  whereas  thymocyte antigen CD1 as  well  as  CD4 and  CD8 
antigens were not expressed. 

• 8750571: CD4 and CD8, gamma/delta TCR bearing T cells and CD45R0 
on CD4+ T cells as a marker for memory cells, on TL no differences could 
be detected between patients with or without anti-TPO. 

• 8977296: Here, we analyzed both early (intracellular Ca2+ mobilization), 
and late (interleukin-2 production) signal transduction events induced by a 
cognate peptide or  a  corresponding altered peptide ligand using  T cell 
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hybridomas expressing or not the CD8 alpha and beta chains. 

5 Gene expression
Affirmative:

• 2552810:  Cells  expressing the  CD4 and  CD8  antigens  were  both 
increased in number, with the former accounting for approximately two-
thirds of the T lymphocytes. 

• 19943952: RESULTS: Here we report that, in a virus-free mouse model, 
conditional  ablation  of  activated  CD4(+)  T  cells,  the  targets  of 
immunodeficiency  viruses,  accelerates  their  turnover  and  produces 
CD4(+) T cell immune deficiency. 

• 17892128: Flow cytometry was used to detect the expression of CD4 and 
CD25 molecules of the T cells which came from the tumor-bearing mice. 

• 10929051: In addition to the recognized phenotypic distinctions of resident 
vaginal  T lymphocytes, we recently provided evidence by fluorescence-
activated cell sorter (FACS) that murine vaginal CD4+ T lymphocytes, are 
differentially  recognized  by  two  epitope-distinct  anti-CD4  antibodies, 
suggesting  that  the  CD4  protein on  vaginal  CD4+  cells  is  atypically 
expressed. 

• 10553102: We have recently reported that all "conventional Ag" reactive 
CD4+  T  cells are  contained  within  the  subpopulation  expressing high 
levels of the CD4 molecule, termed CD4high. 
Negative:

• 7876540:  The  IEL  compartment  from  SCID  mice  injected  with  highly 
purified CD4+/CD45RBhigh T cells or CD4+  T cells contained significant 
numbers of T cells that expressed both CD4 and CD8 alpha, but not CD8 
beta. 

• 9317137: Here we show that a CD4 minigene comprising a combination of 
these  elements  is  specifically  expressed in  mature  CD4+  T  cells of 
transgenic mice, but not in CD4+CD8+ double positive thymocytes. 

• 8350060:  A  small  subset  of  T  cells  of  mature  phenotype  express the 
alpha/beta T cell receptor, but not CD4 and CD8 coreceptors (alpha/beta 
double-negative [DN] cells). 

• PMC2585832: The earliest T cells express neither CD4 nor CD8 and are 
known as double-negative (DN) cells. 

• PMC1636060:  The  gating  on  CD3+  T  cells removes  the  monocytes 
(expressing CD4 but not CD3 on their cell surface) from the gate. 

6 Gene expression
Affirmative:

• 3878829: Such PtLN cells exhibited augmented proliferative responses to 
T cell mitogens and exogenous interleukin 2 (IL 2) and showed a great 
ability to produce IL2, which suggests an increase in mature T cells in the 
PtLN. 

• 1717798: Lymphocyte proliferation and IL2 production in response to a T 
cell mitogen are greatly diminished during the whole life of the animals, on 
the contrary B cell proliferation in the presence of lipopolysaccharide is not 
modified. 

• 2439327:  Expression of  the  gene  for  the  T-cell growth  hormone, 
interleukin   2   (IL2), is subject to at least two types of control. 

• 2439327:  Expression of  the  gene  for  the  T-cell growth  hormone, 
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interleukin 2 (IL2), is subject to at least two types of control. 
• 3918306:  By  assaying  the  supernatant  fluid,  IL-2  cDNA  clones  that 

express T-cell growth-factor (TCGF) activity were identified. 
Negative:

• 2568931: The results obtained show that mature T cell growth in vivo is 
not accompanied by expression of high-affinity interleukin 2 (IL2) receptor 
in the majority of activated cells, is not abrogated by in vivo administration 
of  anti-IL2  receptor  antibodies  or  enhanced  by  the  in  vivo  injection  of 
recombinant  IL2,  and  that  in  vivo  growing  T  cells do  not produce 
detectable amounts of  IL2,  as evaluated functionally  by limiting dilution 
assays or the presence of IL2 mRNA, detected by Northern blots or in situ 
hybridization. 

• 2412742: Autoimmune mice bearing the single autosomal recessive gene 
1pr are unable to produce the T cell growth factor, interleukin-2 (IL-2). 

• 2788724:  The  antigen-reactive  T  cell line  produces neither IL-2 nor 
inhibiting  factors  such  as  neutralizing  factors  against  preformed  IL-2 
activity and IL-2 production inhibiting factors, thus the cells are exclusive 
IL-2 acceptor. 

• 3293056: Spleen cell populations enriched for T lymphocytes and depleted 
of tumor cells by density gradient centrifugation in Ficoll were  unable to 
produce IL-2. 

• PMC2526191: The conclusion that Blimp-1 represses IL-2 transcription is 
supported by several observations: (a) Blimp-1â€“expressing cells do not 
express IL-2 protein  at  detectable  levels;  (b)  Blimp-1  mRNA induction 
correlates with IL-2 mRNA down-regulation; (c) IL-2 protein and steady-
state  mRNA are elevated in  Blimp-1â€“deficient  CD4+ T cells;  and (d) 
endogenous Blimp-1 specifically  binds  to  a  regulatory  region  in  the Il2 
gene in activated primary CD4+ T cells. 

7 Gene expression
Affirmative:

• 9767468: Thus, long-term T-lymphocyte responses and the production of 
IFN-gamma can be generated using a single inoculation of PPD-pulsed 
DC. 

• 3142782: In the IFN-gamma-producing cells, the expression of the major 
histocompatibility  complex  class  I  genes  was  augmented;  this 
augmentation was remarkable in T cell lines tested in this work, regardless 
of their poor IFN-gamma production. 

• 12900519:  We  then  used  bone  marrow  chimeras  and  fetal  liver 
reconstitutions to create mice with an intact gammadelta T cell repertoire 
but  one  that  was  specifically  deficient  in  the  capacity  to  produce IFN-
gamma. 

• 12900519: Moreover, genetic deficiency of gammadelta T cells resulted in 
impaired  IFN-gamma production by tumor antigen-triggered alphabeta  T 
cell upon immunization with tumor lysate. 

• 11292707:  IFN-gamma mRNA was  also  detected in  brains  of  infected 
SCID  mice  depleted  of  NK  cells  by  treatment  with  anti-asialo  GM1 
antibody, and such animals did not develop TE after receiving immune T 
cells. 
Negative:

• 15893298: Nylon wool-purified "T cells", however,  failed to produce IFN-
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gamma in response to Con A in vitro, while the production was restored by 
the addition of neutrophils. 

• 2512260:  The  C57Bl/6-derived  T  cell line,  L12-R4,  produced murine 
interferon-gamma (IFN gamma) in response to mitogenic stimulation by 
phorbol myristate acetate (PMA) or concanavalin A (Con A), but  not by 
staphylococcal enterotoxin A (SEA). 

• 12414157:  Moreover,  by  3  weeks  post-infection  splenocytes  from  the 
susceptible BALB/c mice failed to produce IFN-gamma and relied on TNF-
alpha as well as CD8 T cells to control infection until the end of the plateau 
phase  around  6  weeks  post-infection  when  IFN-gamma  production 
resumed and clearance began. 

• 8806814: Taken together, it  may be concluded that  NO down-regulates 
IFN-gamma production mainly by inhibiting T-cell proliferation. 

• 2969818: Although 21 out of 503 (4%) CD4+ T cell clones produced IL 4, 
but  not IFN-gamma or IL 2, and 208 (41%)  produced IL 2 and/or  IFN-
gamma, but not IL 4, a total number of 185 (37%) CD4+ clones showed 
the ability to produce IL 4 plus IL 2 and/or IFN-gamma. 

8 Gene expression
Affirmative:

• 7699322: As previously documented in mature CD8+ alpha/beta  T cells 
and  natural  killer  cells,  HHV-6  infection  induced  gamma/delta  T 
lymphocytes to  express de novo  CD4 messenger RNA and protein, as 
detected  by  reverse  transcriptase-polymerase  chain  reaction  and 
fluorocytometry, respectively. 

• 7699322: Whereas purified CD4- gamma/delta T cell populations were per 
se  refractory  to  HIV  infection,  they  became  susceptible  to  productive 
infection by HIV-1, strain IIIB, after induction of CD4 expression by HHV-6. 

• 12663814: With a novel intervention designed for increased potency, we 
have more accurately deduced the half-lives of virus-producing CD4(+) T 
cells, 0.7 day, and the generation time of HIV-1 in vivo, approximately 2 
days, confirming the dynamic nature of HIV-1 replication. 

• 12204972:  CD4(+) CD25(+)  T-cell production in healthy humans and in 
patients with thymic hypoplasia. 

• 11762998: Although CD4 T cell production is impaired in patients infected 
with HIV, there is now increasing evidence that the primary basis of T cell 
depletion is accelerated apoptosis of CD4 and CD8 T cells. 
Negative:

• 10950773: In contrast, HIV-1-specific proliferative responses were absent 
in  most  individuals  with  progressive  HIV-1  infection,  even  though 
interferon-gamma-producing HIV-1-specific  CD4(+)  T  cells were 
detectable by flow cytometry. 

• 10692049:  Upon  administration  of  these mAbs  to  mice  that  express a 
human  CD4 transgene,  but  not mouse  CD4  (HuCD4/Tg  mice), 
clenoliximab and keliximab exhibited similar kinetics of  binding to CD4, 
and induced the same degree of CD4 modulation from the cell surface, 
although only keliximab mediated CD4+ T-cell depletion. 

• PMC1828063:  This  is  not unexpected,  as  monocytes  express surface 
CD4, but clearly suggests that for optimal purities CD4+ T cells should be 
isolated from a monocyte-depleted sample. 

• 8555467: Notably, the nuclei of reactive CD3+/CD4+ T cells nearby to and 
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rosetting  around L&H cells  in  NLPHD were  also  strongly  BCL-6+,  but 
lacked CD40 ligand (CD40L) expression. 

• 9209651: Notably, the nuclei of reactive CD3+/ CD4+ T cells near to and 
rosetting  around  L&H  cells  in  NLPHD  were  also  strongly  bcl-6+,  but 
lacked CD40 ligand (CD40L) expression. 

9 Gene expression
Affirmative:

• 6403360: The cell  producing IFN-gamma, both spontaneously and after 
UCHT1 antibody stimulation, is an OKT3+,4+,8-,HLA-DR-T lymphocyte as 
determined at the single cell level. 

• 11548832: BACKGROUND: Gamma interferon (IFN-gamma) is  produced 
by activated natural killer and T cells under pathologic circumstances. 

• 11548832: BACKGROUND: Gamma interferon (IFN-gamma) is produced 
by activated natural killer and T cells under pathologic circumstances. 

• 11174142: Specific cell-mediated immune responses, determined by T cell 
stimulation and IFN-gamma production, were evoked following stimulation 
with trichophytic antigens. 

• 9393632: It was found that IFN-gamma was produced in response to both 
PPD and Leishmania stimulant by T cells in the cultures. 
Negative:

• 3137203: These results indicate that  the myelomonocytic HBL-38 cells, 
not a T-cell line, can also produce IFN-gamma identical to the product of 
normal human PBL. 

• 9267102: Because IFN gamma is synthesized by activated T cells, but not 
by keratinocytes, these results suggest that Fas may only be effective in 
apoptosis occurring in T-cell mediated inflammatory skin diseases. 

• 6434688:  A  parallel  production  of  gamma  interferon  (IFN-gamma)  is 
induced by recombinant IL-2 (rIL-2), and NK cells appear to be the major 
producer cells, whereas T cells are unable to produce IFN-gamma under 
these experimental conditions. 

• 9420133:  In  vitro  studies  using  the  technique  of  cloning  lymphocytes 
demonstrated  that  a  great  proportion  of  T-cell clones  derived  from 
bronchial mucosa of subjects with TDI-induced asthma produced IL-5 and 
interferon-gamma, but not IL-4, upon in vitro stimulation. 

• 10352314:  The proliferating  T cells produced IFN-gamma but  not IL-4, 
indicating a bias toward a type 1 immune response. 

10 Gene expression
Affirmative:

• PMC2872609: Short-term memory in gene induction reveals the regulatory 
principle  behind  stochastic  IL-4 expression Combining  experiments  on 
primary  T  cells and  mathematical  modeling,  we  characterized  the 
stochastic expression of the interleukin-4 cytokine gene in its physiologic 
context, showing that a two-step model of transcriptional regulation acting 
on chromatin rearrangement and RNA polymerase recruitment accounts 
for  the  level,  kinetics,  and  population  variability  of  expression.A  rate-
limiting step upstream of transcription initiation, but occurring at the level of 
an individual allele, controls whether the interleukin-4 gene is expressed 
during antigenic stimulation, suggesting that the observed stochasticity of 
expression  is  linked  to  the  dynamics  of  chromatin  rearrangement.The 
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computational  analysis  predicts  that  the  probability  to  re-express  an 
interleukin-4 gene that has been expressed once is transiently increased. 

• PMC2872609: Short-term memory in gene induction reveals the regulatory 
principle  behind  stochastic  IL-4  expression  Combining  experiments  on 
primary  T  cells and  mathematical  modeling,  we  characterized  the 
stochastic  expression of the interleukin-4 cytokine gene in its physiologic 
context, showing that a two-step model of transcriptional regulation acting 
on chromatin rearrangement and RNA polymerase recruitment accounts 
for  the  level,  kinetics,  and  population  variability  of  expression.A  rate-
limiting step upstream of transcription initiation, but occurring at the level of 
an individual allele, controls whether the interleukin-4 gene is expressed 
during antigenic stimulation, suggesting that the observed stochasticity of 
expression  is  linked  to  the  dynamics  of  chromatin  rearrangement.The 
computational  analysis  predicts  that  the  probability  to  re-express  an 
interleukin-4 gene that has been expressed once is transiently increased. 

• PMC2872609: Short-term memory in gene induction reveals the regulatory 
principle  behind  stochastic  IL-4  expression  Combining  experiments  on 
primary  T  cells and  mathematical  modeling,  we  characterized  the 
stochastic expression of the interleukin-4 cytokine gene in its physiologic 
context, showing that a two-step model of transcriptional regulation acting 
on chromatin rearrangement and RNA polymerase recruitment accounts 
for  the  level,  kinetics,  and  population  variability  of  expression.A  rate-
limiting step upstream of transcription initiation, but occurring at the level of 
an individual allele, controls whether the  interleukin-4 gene is  expressed 
during antigenic stimulation, suggesting that the observed stochasticity of 
expression  is  linked  to  the  dynamics  of  chromatin  rearrangement.The 
computational  analysis  predicts  that  the  probability  to  re-express  an 
interleukin-4 gene that has been expressed once is transiently increased. 

• PMC2872609: Short-term memory in gene induction reveals the regulatory 
principle  behind  stochastic  IL-4  expression  Combining  experiments  on 
primary  T  cells and  mathematical  modeling,  we  characterized  the 
stochastic expression of the interleukin-4 cytokine gene in its physiologic 
context, showing that a two-step model of transcriptional regulation acting 
on chromatin rearrangement and RNA polymerase recruitment accounts 
for  the  level,  kinetics,  and  population  variability  of  expression.A  rate-
limiting step upstream of transcription initiation, but occurring at the level of 
an individual allele, controls whether the interleukin-4 gene is expressed 
during antigenic stimulation, suggesting that the observed stochasticity of 
expression  is  linked  to  the  dynamics  of  chromatin  rearrangement.The 
computational  analysis  predicts  that  the  probability  to  re-express an 
interleukin-4 gene that has been expressed once is transiently increased. 

• PMC2872609: Short-term memory in gene induction reveals the regulatory 
principle  behind  stochastic  IL-4  expression  Combining  experiments  on 
primary  T  cells and  mathematical  modeling,  we  characterized  the 
stochastic expression of the interleukin-4 cytokine gene in its physiologic 
context, showing that a two-step model of transcriptional regulation acting 
on chromatin rearrangement and RNA polymerase recruitment accounts 
for  the  level,  kinetics,  and  population  variability  of  expression.A  rate-
limiting step upstream of transcription initiation, but occurring at the level of 
an individual allele, controls whether the interleukin-4 gene is expressed 
during antigenic stimulation, suggesting that the observed stochasticity of 
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expression  is  linked  to  the  dynamics  of  chromatin  rearrangement.The 
computational  analysis  predicts  that  the  probability  to  re-express  an 
interleukin-4 gene that has been expressed once is transiently increased. 
Negative:

• 10511099:  IL-4 was not detected in the serum of CD4+ T-cells-depleted 
mice. 

• 11777945:  This  IL-4 was  not produced by  T  cells,  but  soluble  factors 
secreted by the recall Ag-activated T cells, including IL-3, triggered cells of 
the innate immune system, primarily mast cells, to secrete IL-4. 

• 10424447:  Purified  CD8+  T  cells from  uninfected  or  flu  infected  IL-4 
transgenic (tg) animals  produced no detectable  IL-4 or IL-5 after in vitro 
stimulation on anti-CD3 coated plates. 

• 9120259: However, splenic T cells from SM/J and B10.SM (H-2v, neu-1a) 
strain mice, deficient in neu-1 sialidase activity, failed to produce IL-4 but 
produced normal levels of IL-2 following activation. 

• 18491378: IL-4 was not detected in any sample, but IL-13 levels were also 
comparable  between  normal  and  T-cell-deficient  mice  indicating  Th2-
polarized T-cells are not the sole source of this cytokine. 

1 Localization
Affirmative:

• 11600182:  Cell  mixing  experiments  suggested  that  the  DES-induced 
increase in IFN-gamma secretion is due to hormonal effects on T cells but 
not on APC. 

• 17275143:  IFN-gamma secreting T cells specific for survivin was found 
after  temozolomide  (TMZ)  treatment  in  C57BL/6  mice  intracranial  (i.c.) 
inoculated with GL26 cells. 

• 19280632:  Immunogenicity  studies  in  mice  have  shown  that  antigen-
specific antibody titers and  T-cell proliferative responses, as well as the 
secretion of  IFN-gamma, were significantly enhanced for ovalbumin after 
formulation with PEG-b-PLACL-based emulsions. 

• 8964609: Allergen-activated draining lymph node cells (LNC) isolated from 
mice exposed topically to the contact allergen oxazolone mount vigorous 
proliferative  responses  and  secrete substantial  amounts  of  interferon-
gamma  (IFN-gamma)  when  cultured  with  the  T  lymphocyte mitogen 
concanavalin A (con A). 

• 8964609: Allergen-activated draining lymph node cells (LNC) isolated from 
mice exposed topically to the contact allergen oxazolone mount vigorous 
proliferative  responses  and  secrete substantial  amounts  of  interferon-
gamma (IFN-gamma)  when  cultured  with  the  T  lymphocyte mitogen 
concanavalin A (con A). 
Negative:

• 8932272:  We  demonstrate  that  the  transplantation  of  polarized  type  2 
murine T cells (i.e., cells secreting IL-4 but not IFN-gamma) together with 
T-cell-depleted bone marrow results in a significant  increase in survival 
(P<0.001)  after  bone  marrow  transplantation  across  minor 
histocompatibility barriers (B10.BR-->CBA/J). 

• 9767466:  Analysis  by  reverse  transcription-polymerase  chain  reaction 
revealed that, in contrast to mouse, rat NK T cells secrete exclusively IFN-
gamma and  not IL-4 after anti-CD3 stimulation, and use a wider TCR-
Vbeta repertoire, suggesting that rat NK T cells are not essential for the 
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development of Th2-type CD4+ T-cell responses. 
• 10527383: In this study we report that a single, subcutaneous injection of 

the peptide emulsified in IFA gave rise to the development of male-specific 
CD8+  T cells which displayed H-Y-specific proliferative response in vitro 
and showed a Tc1-type pattern of cytokine production (i.e. they secreted 
IFN-gamma and IL-2, but not IL-4 and IL-10). 

• 10678966:  These  primed  IFN-gamma-secreting LACK-reactive  T  cells 
were  not  detected  ex  vivo  after  day  7  of  immunization  but  could  be 
recruited and detected 15 days later in the draining lymph node after an L. 
major footpad challenge. 

• 10692034: Splenic T cells isolated from mice inoculated with pCACJ1 i.m. 
secreted interferon-gamma (IFN-gamma), but not interleukin (IL)-4, in vitro 
upon  stimulation  with  Cry  j  1  as  well  as  with  p277-288,  a  peptide 
corresponding to the T-cell epitope of Cry j 1. 

2 Localization
Affirmative:

• 6403360:  Stimulation  of  these  cells  with  concanavalin  A, 
phytohemagglutinin, or the UCHT1 monoclonal anti-human T cell antibody 
significantly increased the number of IFN-gamma-secreting cells. 

• 6403360:  Finally,  cyclosporin  A,  a  potent  and  selective 
immunosuppressive  drug for  T  cells,  strongly  inhibited the  secretion of 
IFN-gamma as assayed at the cell level. 

• 2506311:  IFN-gamma, also called immune interferon, is regarded as an 
important immunoregulator secreted by T-lymphocytes. 

• 8661175:  T  lymphocytes  (T  cells)  and  their  secreted lymphokine 
interferon-gamma  (IFN-gamma)  play  important  mediator  roles  in 
endotoxin-induced inflammation. 

• 8661175:  T  lymphocytes  (T  cells)  and  their  secreted lymphokine 
interferon-gamma (IFN-gamma)  play  important  mediator  roles  in 
endotoxin-induced inflammation. 
Negative:

• 9272363: In an investigation of cell-mediated immunity against Bordetella 
pertussis, we found that B. pertussis infection in infants and in mice was 
associated with the induction of antigen-specific T cells that secrete IFN-g 
and IL-2, but not IL-4 or IL-5. 

• 12435401:  Productively  stimulated  nai;ve  T  cells  expressed  IL-2  to 
differentiate into T helper 1 (Th1) cells, secreting interferon-gamma (IFN-
gamma) upon secondary antigen stimulation;  T cells primed with an APL 
did  not secrete  either interleukin-4 (IL-4) or  IFN-gamma, but  expressed 
TGF-beta1 and Tob, a member of the anti-proliferative gene family. 

• 6436035:  It  is  evident  that  IFN-gamma is  not the  only  macrophage 
activator released by T lymphocytes responding to microbial antigen, and 
may  not  even  be  the  main  one  to  enhance  antimicrobial  activity  in 
infections such as tuberculosis. 

• 3096401: T lymphocytes did not release these activities in the absence of 
PHA with or without HuIFN gamma. 

• 10358144: We conclude that in a microenvironment in which allogeneic 
EC are in close contact with infiltrating CD8+ T cells, such as within a graft 
arterial  intima,  CTL subsets  may emerge that  display  EC selectivity  or 
express CD40L and secrete little IFN-gamma after Ag contact. 
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3 Localization
Affirmative:

• 2531154:  None  of  the  generated  T  cell hybridomas  exhibited  antigen-
specific  IL-2 secretion when  stimulated  with  autologous  thyrocytes, 
although 60% of the hybridomas expressed CD3 antigen and the T cell 
receptor alpha/beta heterodimer. 

• 2448378: Surface IL-2 epitopes were also detected on the Jurkat tumor 
cell line which secretes IL-2 upon stimulation and on another T cell tumor 
line MOLT 4. 

• 2448378: Although it is possible that the epitopes seen were present on a 
distinct molecule independent of secreted IL-2, the distribution on a variety 
of  T cells and regulation via cellular activation suggest  that the surface 
expression  of  IL-2  epitopes  is  in  some  way  related  to  the  soluble 
lymphokine. 

• 6213706: Mitogen stimulation led to secretion of equivalent amounts of IL 
2 from  both  the  major  T  cell subsets;  in  contrast,  after  allogeneic 
activation, IL 2 was produced predominantly from the T4+ subset. 

• 6215193:  In  order  to  release Il-2,  the OKT4 positive  T  cell requires  a 
stimulus,  such  as  allogeneic  cells  or  the  lectin  phytohaemagglutinin  A 
(PHA). 
Negative:

• 12946104: Stimulation of T cells in the presence of CB sera increased the 
frequency of IL-2 producing cells (p < 0.005) (but not the amount of IL-2 
secreted) and resulted in a higher expression of CD25 (p < 0.05). 

• 6601235: Blood T cells from the same patients did not release interleukin-
2. 

• 2967331: We identified human T cell clones which secrete IL-4 but not IL-
2 or  IFN-gamma,  and  which  appeared  to  correspond  to  murine  Th2 
clones. 

• 1921263: It also revealed through the use of an in vitro assay utilizing the 
human IL-2 dependent cell line, Sez 627, that  none of these T cell lines 
secrete IL-2 in detectable volumes. 

• PMC2935971:  That  said,  the  failure of  IL-2 to  expand IL-17  producing 
CD4+  T cells while increasing T-reg populations may augur well for IL-2 
use  in  auto-immunity,  diseases  characterized  by  depleted  T-reg 
populations, and elevated IL-17 expression. 

4 Localization
Affirmative:

• 9352159:  In  addition,  HGF excretion tended  to  correlate  with  disease 
severity as higher levels were observed in patients with oliguric ATN. 

• 19423096: Estradiol-induced HGF secretion by uterine stromal fibroblasts 
may have a significant effect on uterine cancer and endometriosis. 

• 17765959:  CONCLUSION:  Irradiation-enhanced  HGF secretion in  all  3 
tested glioma cell lines (up to 7 times basal levels). 

• 17765959:  It  is  tempting  to  associate  the  radiation-enhanced  HGF 
secretion with an increased angiogenic potential of the tumor, which may 
be a factor in radioresistance. 

• 10448071: Levels of  HGF released to culture media and of  HGF mRNA 
increased  when  cultures  were  exposed  to  NE,  or  to  other  adrenergic 
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agonists. 
Negative:

• 8391878: TPA stimulated HGF release from the cells through an activation 
of C-kinase, but not through a formation of reactive oxygen species. 

• 11145707: Hepatocyte growth factor (HGF) is a potent paracrine mediator 
of stromal/epithelial interactions, which is secreted as a matrix-associated 
inactive precursor  (pro-HGF)  and locally  activated  by  tightly  controlled 
urokinase cleavage. 

• 9062512: Using immunohistochemistry,  HGF localized to the villous core 
compartment with no localization to the trophoblast. 

• 7683665: HGF is homologous to plasminogen and is first synthesized and 
secreted as an  inactive single-chain precursor  and then activated to a 
heterodimeric form by endoproteolytic processing. 

• 11145707: Hepatocyte growth factor (HGF) is a potent paracrine mediator 
of stromal/epithelial interactions, which is secreted as a matrix-associated 
inactive precursor  (pro-HGF)  and locally  activated  by  tightly  controlled 
urokinase cleavage. 

5 Localization
Affirmative:

• 2402594:  Interleukin  1,  but  not  interleukin  1  inhibitor,  is  released from 
human monocytes by immune complexes. 

• 2402594:  Interleukin  1,  but  not  interleukin  1 inhibitor,  is  released from 
human monocytes by immune complexes. 

• 2402594: This investigation shows that tetanus toxoid-human anti-tetanus 
toxoid IC induce human monocytes to release IL-1. 

• 6334697: Furthermore, alveolar macrophages  released significantly less 
IL-1 than blood monocytes (26 +/- 11 vs. 128 +/- 21 U/10(6) cells X 24 h, 
respectively, after stimulation with 10 micrograms/ml of LPS, P less than 
0.001). 

• 3875766: An intracellular monocyte derived protein possessing interleukin 
1 (IL-1) activity has been compared with the secreted from of IL-1. 
Negative:

• 2026475: The mechanisms of IL-1 beta release by carbonyl-iron or sheep 
red blood cells may be related to their phagocytosis, as non-phagocytic 
monocytes did not release IL-1 beta. 

• 3496273:  Peritoneal  M  phi  preparations  from  women  in  the  pre-luteal 
phase did not release detectable IL-1, whereas those from women in the 
post-luteal phase released as much as monocytes. 

• 3496273: Cultured monocytes  failed to  secrete IL-1 and expressed less 
DQ than fresh monocytes. 

• 8228247:  Human blood  monocytes synthesize  but  do  not secrete IL-1 
beta in response to low doses of bacterial cell-wall products. 

• 3484775:  The  results  demonstrate  that  when  blood  monocytes are 
prepared  under  low  endotoxin  conditions,  they  do  not spontaneously 
secrete IL-1 activity. 

1 Transcription
Affirmative:

• 18024275: The expressions of HGF mRNA and protein were confirmed in 
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the transfected BMSCs. 
• 8054485: Moreover, HGF mRNA was detected in high HGF producers by 

Northern blot analysis. 
• 10421795: Transcription of HGF and its receptor, c-met, was detected by 

reverse transcription-polymerase chain reaction (RT-PCR). 
• 9716011: HGF and c-met mRNAs were detected by reverse transcriptase-

polymerase chain reaction (RT-PCR) and Northern blotting. 
• 9705867: Cultured adult and fetal human RPE expressed mRNA for HGF 

and c-Met by RT-PCR. 
Negative:

• 10452684: The intensity of EGFR expression was consistent, and  HGF 
mRNA was not detected during induction experiments in any cell type. 

• 7629039: Although c-met protein was expressed in the cytotrophoblast, 
this  receptor  was  not  detectable  in  the  syncytiotrophoblast  by 
immunohistochemical  methods.  c-met  mRNA was detected in  placental 
cell line (tPA30-1) and 4 choriocarcinoma cell lines (BeWo, Jar, Jeg-3, and 
NUC-1), but HGF mRNA was absent in these cells. 

• 7720876:  The  active  form  of  HGF was  not detected under  our 
experimental conditions after these operations. 

• PMC2911419: We also found that  neither HGF mRNA nor protein was 
expressed,  suggesting  a  ligand-independent  mechanism  of  Met 
phosphorylation. 

• 11768718:  HGF and  c-met  mRNAs  were  clearly  detected in  HLMECs 
before and after treatment with IL-1beta, but not in HUVECs. 

2 Transcription
Affirmative:

• 8844635: The age-related decline in IL-2 production has been shown to 
arise from a decline in IL-2 transcription, and a recent study suggests that 
the transcription factor NFAT (nuclear factor of activated T cells) may play 
a role in the decline in IL-2 transcription. 

• 8844635: The age-related decline in IL-2 production has been shown to 
arise from a decline in IL-2 transcription, and a recent study suggests that 
the transcription factor NFAT (nuclear factor of activated T cells) may play 
a role in the decline in IL-2 transcription. 

• 11897658: The normally repressed IL-2 gene is transcribed in nuclei from 
quiescent human T cells and from various non-T-cell lines. 

• 3135859: CsA also prevents the constitutive secretion of IL-2 in this T-cell 
line by blocking transcription of the IL-2 gene. 

• 11699390:  Triptolide  inhibits  both  Ca(2+)-dependent  and  Ca(2+)-
independent  pathways and affects  T cell activation through inhibition of 
interleukin-2 transcription at a site different from the target of cyclosporin 
A. 
Negative:

• 2785866:  The  following  similarities  in  the  functional  biological 
characteristics of  T cell and B cell IL-2 suggest that B cell IL-2 is not a 
factor which mimics IL-2 activity in the CTLL-2 assay: (i) neutralization of 
IL-2 by anti-IL-2 monoclonal antibody (DMS-1); (ii) elution of IL-2 following 
its  adsorption  to CTLL-2 cells;  (iii)  determination  of  the MW of  IL-2 by 
SDS-PAGE and Western blot  analysis;  and (iv)  ability  of  B cell  IL-2 to 
support  T  cell  proliferation  and  blocking  of  this  activity  by  anti-tac 
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monoclonal antibody. cDNA probes for T cell IL-2, however, did not detect 
IL-2 mRNA in B cells. 

• 2899602:  In  these  cell  lines,  IL-2  mRNA was  not detectable in  RNA 
extracted from whole adult  T cell leukemia cell  populations because of 
dilution by other RNA species from the vast majority of cells that do not 
contain IL-2 mRNA. 

• 9311917: In the absence of costimulation,  T cells activated through their 
antigen receptor become unresponsive (anergic) and do not transcribe the 
gene encoding interleukin-2 (IL-2) when restimulated with antigen. 

• 9311917: In the absence of costimulation,  T cells activated through their 
antigen receptor become unresponsive (anergic) and do not transcribe the 
gene encoding interleukin-2 (IL-2) when restimulated with antigen. 

• 16806475:  In  the  absence of  IL-2,  human  CD4(+)  T  cell  blasts  were 
sensitive to both FasL and Apo2L/TRAIL, but human CD8(+) T cell blasts 
died, with no additional effect of death receptor ligation. 

3 Transcription
Affirmative:

• 2439327:  To  study  the  regulation  of  the  murine  IL2  gene  in  T-cell 
populations  of  differing  stages  of  maturation,  we have used a  calcium 
ionophore in conjunction with the phorbol ester, TPA, to stimulate IL2 gene 
transcription while  bypassing  the  requirement  for  triggering  through  a 
mature cell surface receptor. 

• 8342142:  CONCLUSIONS:  These  results  suggest  that  the  principal 
cellular  abnormalities  that  result  in  altered  T  cell activation  and  IL-2 
production  after  thermal  injury  lie  downstream  of  the  initiating  signal 
transduction events and before IL-2 gene transcription. 

• 17096403: Of the T cell cytokines assessed, there was a marked reduction 
in the mRNA  expression of  interleukin-2 (IL-2) in Nude mice compared 
with wildtype animals. 

• 17096403: Of the T cell cytokines assessed, there was a marked reduction 
in the mRNA  expression of  interleukin-2 (IL-2)  in Nude mice compared 
with wildtype animals. 

• PMC2526191:  Previous  studies  show  that  IL-2  production  is  tightly 
regulated (20, 21), and that even under optimal conditions not all T cells in 
a population will  acquire the competence to  transcribe the  Il2 gene and 
synthesize IL-2 upon primary stimulation (22). 
Negative:

• 15937196: These results identify a discrete new domain of IL2 regulatory 
sequence marked by dimethylated histone H3/K4 in expression-permissive 
T-cells even when they are  not transcribing IL2, setting boundaries for 
histone  H3  and  H4  acetylation  when  the  IL2  gene  is  transcriptionally 
activated. 

• 8878449: We could not detect human T cell leukemia virus type I (HTLV-I) 
mRNA or interleukin 2 (IL-2) mRNA in either the tumor cells growing in 
mice or the original leukemic cells. 

• 8878449: We could not detect human T cell leukemia virus type I (HTLV-I) 
mRNA or  interleukin 2 (IL-2) mRNA in either the tumor cells growing in 
mice or the original leukemic cells. 

• PMC1142491:  These  results  identify  a  discrete  new  domain  of  IL2 
regulatory sequence marked by dimethylated histone H3/K4 in expression-
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permissive  T-cells even  when  they  are  not transcribing IL2,  setting 
boundaries  for  histone  H3  and  H4  acetylation  when  the  IL2  gene  is 
transcriptionally activated. 

• 3115639: Anti-CD3-MoAb, in the  absence of  IL-2, induced IL-2 receptor 
expression on purified T cells, and anti-IL 2 receptor antibodies inhibited T 
cell proliferation in the presence of this growth factor. 

4 Transcription
Affirmative:

• 8461246: Angiotensin-converting enzyme (ACE) inhibitors are now widely 
prescribed for the treatment of hypertension and heart failure. 

• 8461246: Angiotensin-converting enzyme (ACE) inhibitors are now widely 
prescribed for the treatment of hypertension and heart failure. 

• 9562936:  Patterns  of  angiotensin-converting  enzyme inhibitor 
prescriptions, educational interventions, and outcomes among hospitalized 
patients with heart failure. 

• 9562936: BACKGROUND: Among hospitalized patients with heart failure, 
we describe  characteristics  associated  with  prescription of  angiotensin-
converting enzyme (ACE) inhibitors in the doses recommended by clinical 
practice guidelines. 

• 9562936: BACKGROUND: Among hospitalized patients with heart failure, 
we describe  characteristics  associated  with  prescription of  angiotensin-
converting enzyme (ACE) inhibitors in the doses recommended by clinical 
practice guidelines. 
Negative:

• 10908091:  Therefore,  we  recommend  that  physicians  continue  to 
prescribe ACE inhibitors for patients with heart failure based on the target 
doses used in  the placebo-controlled trials  and not  on the "high"  dose 
target used in ATLAS. 

• 11831455:  Captopril,  enalapril,  and  lisinopril  are  angiotensin-converting 
enzyme  (ACE)  inhibitors  widely  prescribed for  hypertension  and  heart 
failure. 

• 11052861: Although most primary care physicians stated they  prescribe 
ACE inhibitors in heart failure, this was for only 47-62% of patients, and at 
doses below those identified as effective in trials. 

• 9491949:  BACKGROUND:  Angiotensin-converting  enzyme (ACE) 
inhibitors were  underprescribed for patients with congestive heart failure 
(CHF)  treated  in  the  community  setting  in  the  early  1990s  despite 
convincing evidence of benefit. 

• 9491949:  BACKGROUND:  Angiotensin-converting  enzyme  (ACE) 
inhibitors were  underprescribed for patients with congestive heart failure 
(CHF)  treated  in  the  community  setting  in  the  early  1990s  despite 
convincing evidence of benefit. 

5 Transcription
Affirmative:

• 3876332:  Induction  of  interleukin  2  (IL2)  mRNA  synthesis in  human 
tonsillar lymphocytes was studied by quantifying the relative levels of IL2 
mRNA in the lymphocytes stimulated under various conditions by the dot 
hybridization method. 

• 3876332:  Induction  of  interleukin  2 (IL2)  mRNA  synthesis in  human 
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tonsillar lymphocytes was studied by quantifying the relative levels of IL2 
mRNA in the lymphocytes stimulated under various conditions by the dot 
hybridization method. 

• 1964589: Further study demonstrated that the rate of degradation of 32P-
labeled IL-2 mRNA, which was prepared by cell-free  transcription of  IL-2 
cDNA,  in  the  polysomal  fraction  obtained  from  PDB-stimulated 
lymphocytes was  decreased  compared  with  that  obtained  from 
unstimulated lymphocytes. 

• 7685613:  Concomitant  with  the  inhibition  of  lymphocyte activation  and 
interleukin 2 (IL-2) production,  transcription of  the  IL-2 message is also 
reduced in a time-dependent manner. 

• 1601521: In contrast, tumor-infiltrating lymphocytes (TIL) in the stroma of 
ovarian carcinomas or most  ductal  breast tumors only rarely  expressed 
mRNA for TNF alpha, IL2 or IFN gamma. 
Negative:

• 2788180:  Patients'  lymphocytes whose  IL-2  responsiveness  was 
decreased still expressed Tac antigen (low-affinity  IL-2 receptors) but, in 
contrast to the patients' original lymphocytes, did not absorb or respond to 
IL-2,  suggesting  the  loss  of  high-affinity  IL-2  receptors  (p55/p75)  from 
these cells. 

• 3928744:  Furthermore,  IL  2-specific mRNA was  not detected in  TCD-
stimulated PBL, demonstrating that IL 2 was not required for TCD-induced 
T cell proliferation. 

• 8181865: A primary tumor cell line was generated and cultured TIL were 
induced to  transcribe IL-2 and IFN-gamma genes by incubation with the 
autologous  irradiated  tumor  cell  line,  but  not with  autologous  EBV-
transformed cells. 

• 1973607:  After  2-3  weeks  under  immunosuppressive  treatment  with 
prednisolone and azathioprine, however, BP lymphocytes did  not exhibit 
any IL2 receptors. 

• 1356393: In contrast, LNL not adjacent to the tumor in involved LN, as well 
as those in tumor-uninvolved LN, did not express mRNA for cytokines or 
IL2 receptor.

1 Protein catabolism
Affirmative:

• 17482444: These studies thus demonstrate that betanin induces apoptosis 
in K562 cells through the intrinsic pathway and is mediated by the release 
of cytochrome c from mitochondria into the cytosol, and PARP cleavage. 

• 10986477:  Apoptosis  is  often  associated  with  PARP cleavage and 
caspase activation. 

• 10986477: Fibres did not cause PARP cleavage or activation of caspase 3 
further confirming previous results about relatively low apoptotic potential 
of asbestos fibres. 

• 10200351: As a logical link with DNA fragmentation analyses and TUNEL 
assay,  cleavage of the 116 kDa  PARP protein was accompanied by the 
appearance of a characteristic 85 kDa fragment of PARP in a population of 
floating cells after both treatments. 

• 10726984:  Apoptosis  was  researched  by  DAPI  staining,  annexin  V-
binding, electron microscopy, DNA fragmentation and PARP cleavage. 
Negative:
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• 15309525: Cell morphology and Western blot analyses revealed that the 
antibody-induced  cell  death  lacked some typical  features  of  apoptosis 
such as chromatin condensation or poly-ADP-ribose polymerase (PARP) 
cleavage. 

• 12954616:  Furthermore,  overexpression  of  caspase-9  did  not enhance 
PARP or caspase-7 cleavage after UV treatment. 

• 18678619:  ASA and NaS at  1  mM did  not induce  PARP cleavage or 
caspase-3 and at 5 mM, ASA but not NaS increased apoptosis. 

• 11002424: The caspase inhibitors Z-VAD-FMK and Z-DEVD-FMK blocked 
apoptosis  induced  by  CD437  in  DU145  and  LNCaP  cells,  in  which 
increased caspase-3 activity and PARP cleavage were observed, but not 
in PC-3 cells, in which CD437 did  not induce caspase-3 activation and 
PARP cleavage. 

• PMC1665652: Synchronized cells, in the absence of Vpr expression, did 
not display PARP cleavage after release (unpublished data). 

2 Protein catabolism
Affirmative:

• 10589695: The cytosolic proteins of the parathyroids were used to study 
PTH mRNA protein binding by ultraviolet cross-linking and the degradation 
of the PTH transcript in vitro. 

• 1001258: The similarities found in the sites of hormone proteolysis and in 
the kinetics of hormone metabolism in the rat and dog, coupled with the 
less direct evidence indicating that similar cleavages are also present in 
man  and  bovine,  are  consistent  with  the  view  that  proteolysis of 
parathyroid  hormone is  peripheral  tissues  is  specific,  at  least  in 
mammalian  species,  and  may  be  a  critical  step  in  controlling  the 
availability of biologically active hormone. 

• 6994557: These studies, however, coupled with (1) further investigations 
of intracellular degradation of parathyroid hormone, if this indeed operates 
in vivo; (2) the proteolytic conversion of secreted hormone in peripheral 
tissues;  and  (3)  analysis  of  transcriptional  control  of  biosynthesis  of 
parathyroid hormone, using radioactive cDNA for hybridization studies of 
mRNA  production  and  turnover,  hold  great  promise  for  further 
understanding  of  critical  regulatory  factors  central  to  expression  of  the 
actions of parathyroid hormone. 

• 8467581:  Particular  emphasis  is  given  to  the  calcium-stimulated 
degradation of  parathyroid hormone within the parathyroid as one of the 
major  pathways  by  which  circulating  levels  of  bioactive  hormone  are 
controlled. 

• 9608898:  The  pathogenesis  of  renal  osteodystrophy  is  related  to 
phosphate retention, and its effect on calcium and calcitriol metabolism, in 
addition to roles played by metabolic acidosis, cytokines, and degradation 
of parathyroid hormone. 
Negative:

• 10589695:  With  uremic  parathyroid proteins,  the  PTH mRNA was  not 
degraded at all at 120 min and was moderately decreased at 180 min. 

• 7428706:  These  membranes  were  unable to  degrade parathyroid 
hormone (PTH), bovine PTH-(1-84) [bPTH-(1-84)], or bPTH-(1-34). 

• 1236605: Biologically active, labelled parathyroid hormone was degraded 
to fragments by rat kidney membranes, but not by chick kidney. 4. 
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• 7428706:  These  membranes  were  unable to  degrade parathyroid 
hormone (PTH), bovine PTH-(1-84) [bPTH-(1-84)], or bPTH-(1-34). 

3 Protein catabolism
Affirmative:

• 5796358:  Finally,  a  three  pool  model  was  formulated  to  describe  the 
kinetics  of  plasma  insulin  disappearance  in  man,  representing  plasma 
(pool 1), interstitial fluid (pool 2), and all tissues in which insulin is utilized 
and degraded (pool 3). 

• 3532665:  Insulin degradation is  unaffected  by  pregnancy  and  the 
proinsulin  share  of  the  total  plasma insulin  immunoreactivity  does  not 
increase in pregnancy. 

• 1102319: The fact that MCR did not fall in the OC group with increasing 
plasma insulin concentrations whereas it did in normal subjects, suggested 
that OC leads to the loss of saturable component of  insulin degradation 
that is present in normal subjects. 

• 11217151:  Analysis  of  plasma 123I-insulin  immunoreactivity  and 
trichloroacetic  acid  precipitate  showed  that  insulin degradation did  not 
occur as in normal controls. 

• 3888744:  Insulin degradation is unaffected by human pregnancy and the 
proinsulin  share  of  the  total  plasma insulin  immunoreactivity  does  not 
increase in pregnancy. 
Negative:

• 403392: With the use of a specific enzyme which degrades insulin but not 
proinsulin, postprandial plasma proinsulin values have been measured in a 
large number of  subjects  under a variety  of  physiologic and pathologic 
conditions. 

• 403392: With the use of a specific enzyme which degrades insulin but not 
proinsulin, postprandial plasma proinsulin values have been measured in a 
large number of  subjects  under a variety  of  physiologic and pathologic 
conditions. 

• 6445191: The plasma membranes do  not degrade insulin significantly in 
the  absence  of  reduced  glutathione,  and  over  99%  of  the  cellular 
degradative capacity is found in the postmicrosomal supernatant (cytosol). 

• 3283938:  Epstein-Barr  virus-transformed  lymphocytes  from  this  patient 
synthesize an insulin receptor precursor that is normally glycosylated and 
inserted into the plasma membrane but is not cleaved to mature alpha and 
beta subunits. 

4 Protein catabolism
Affirmative:

• 9493967:  PARP cleavage in  the  apoptotic  pathway  in  S2  cells  from 
Drosophila melanogaster. 

• 9493967:  Further  experiments  must  be  conducted  and  the  peptide 
fragments  must  be  sequenced  to  relate  protease  activities  with  PARP 
cleavage. 

• 9987014: We conclude that HI injury or traumatic injury to the developing 
rat forebrain leads to PARP cleavage in directly affected areas and in sites 
distant from the primary injury that precedes the appearance of cells with 
apoptotic morphology. 

• 15196974: In the 'moderately' exposed neurons, ATP depletion to 59+/-6% 
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of control  was associated with a decrease in the cell  counts,  apoptotic 
morphology, and cleavage of PARP. 

• 11120353:  Serum-starved SHE cells  were  compared  to  the  etoposide-
treated  HL60  cell  line  as  a  control  for  typical  apoptosis-related  PARP 
cleavage. 
Negative:

• 10497198: In vitro experiments showed that PARP cleavage by caspase-
7, but  not by caspase-3, was stimulated by its automodification by long 
and branched poly(ADP-ribose). 

• 9781697:  Taken  together,  in  vivo  phosphorylation  of  PARP  might  be 
independent of the activation or cleavage of PARP. 

• 14559808:  However,  E1A  did  not induce  PARP cleavage but  rather 
suppressed PARP expression at the transcriptional level. 

• PMC2880028:  In  our  analysis,  cleavage of  PARP  is  the  key  output; 
because the process  is  all-or-none,  if  >50% of  PARP is  cleaved,  it  is 
eventually all cleaved and thus a simulated cell is deemed dead at 50% 
cleaved PARP (see Methods). 

• 9973225: These drugs also did not increase caspase-3 or PARP cleavage 
when combined with TRAIL. 

5 Protein catabolism
Affirmative:

• 11809529: Treatment of KB cells with an apoptosis-inducing concentration 
of  [6]-dehydroparadol  caused  induction  of  proteolytic  cleavage of  pro-
caspase-3. 

• PMC2949386:  TP187  decreases  the  number  of  proliferating  cells  and 
induces caspase-3 cleavage in tumor xenografts 

• 10049561: This inhibition correlated with the absence of the Gas2 peptide 
and pro-caspase-3 cleavage. 

• 11872639: Topical genistein completely inhibited  cleavage of PARP and 
caspase-3. 

• 16014577: Apoptosis was preceded by cleavage of caspase-3 (4-6 h) and 
caspase-8 (6-8 h) and their respective substrates, alpha-fodrin and Bid. 
Negative:

• PMC2775411:  Indeed,  there  were  no  increase  of  DEVDase  (effector 
caspase)  activity,  no proteolytic  cleavage of  caspase-3,  no  DNA 
fragmentation, and no apoptotic bodies on histological examination. 

• 9708735:  Moreover,  the  cytochrome  c-mediated  cleavage of  Casp3 is 
absent in the cytosolic extracts of  Casp9-deficient  cells  but  is  restored 
after addition of in vitro-translated Casp9. 

• 11470470: Western blot analysis confirmed that in cardiomyopathies  no 
cleavage of caspase-3 and caspase-7 occurred. 

• PMC2858442: The inhibitor may bind caspase-8 only after the so-called 
substrate switch that is necessary for caspase-3 and Bid cleavage but not 
for p43/p41 and p43-FLIP formation (Hughes et al, 2009). 

1 Phosphorylation
Affirmative:

• 8945479: Activated Lck phosphorylates T-cell receptor zeta-chains, which 
then recruit the ZAP70 kinase to promote T-cell activation. 
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• 17100647:  We  report  the  successful  expression  and  detection  of  a 
phosphorylated form  of  human  T  cell tyrosine  kinase,  Lck,  in 
Saccharomyes cerevisiae, which leads to growth suppression of the yeast 
cells. 

• 2481585: Within minutes after activation of a human  T cell-derived line 
(Jurkat)  via  stimulation  of  either  the  TcR-CD3  complex  or  the  CD2 
glycoprotein, we observed a hyperphorphosylation of p56lck. 

• 16107303: Furthermore in Jurkat  T cell extracts, a recombinant intron B 
plus SH3 p56lck domain fails to interact with some TCR-induced tyrosine 
phosphorylated polypeptides and known p56lck partners such as Sam68 
and c-Cbl. 

• 1535787: Triggering of T cells with a combination of anti-CD3 mAbs which 
activate T cells but not p56lck and gp160 greatly potentiated the increase 
of p56lck autophosphorylation and kinase activity. 
Negative:

• 8183556: Recently, we found that p50csk specifically  phosphorylates the 
negative regulatory Tyr-505 of the T cell-specific src-family kinase p56lck, 
and thereby suppresses its catalytic activity. 

• 9581568: Thus CD45 is intrinsically a much more active phosphatase than 
RPTPalpha,  which  provides  one  reason  why  RPTPalpha  cannot 
effectively dephosphorylate p56(lck) and substitute for CD45 in T-cells. 

• 8663155: In contrast to the T cell protein tyrosine kinase, Lck, ZAP-70 did 
not phosphorylate the cytoplasmic portion of the TCRzeta chain or short 
peptides  corresponding  to  the  CD3epsilon  or  the  TCRzeta 
immunoreceptor tyrosine-based activation motifs. 

• PMC2994893:  As  in  primary  T  cells,  in  Hut-78  cells,  Lck  Tyr505 was 
basally phosphorylated and not dephosphorylated upon TCR stimulation. 

• 8663155: In contrast to the T cell protein tyrosine kinase, Lck, ZAP-70 did 
not phosphorylate the cytoplasmic portion of the TCRzeta chain or short 
peptides  corresponding  to  the  CD3epsilon  or  the  TCRzeta 
immunoreceptor tyrosine-based activation motifs. 

2 Phosphorylation
Affirmative:

• 2108026:  When  a  non-platelet aggregatory  deoxyphorbol  (12-
deoxyphorbol  13-phenylacetate  20-acetate)  was  combined  with  a 
subthreshold dose of the Ca2+ ionophore,  A23187, a large increase in 
phosphorylation of p47 and a fourfold decrease in Ka was observed. 

• 7559410:  Phosphatidylinositol  (3,4,5)-trisphosphate  stimulates 
phosphorylation of pleckstrin in human platelets. 

• 7559410: In such platelets, serine- and threonine-directed phosphorylation 
of  pleckstrin also  occurs  and  has  been  attributed  to  protein  kinase  C 
activation. 

• 7559410:  Pleckstrin phosphorylation in  response  to  thrombin  receptor 
stimulation  is  progressively  susceptible  to  inhibition  by  wortmannin,  a 
potent and specific inhibitor of platelet PI 3-kinases. 

• 7559410:  Synthetic  PtdIns(3,4,5)P3,  when  added  to  saponin-
permeabilized  (but  not  intact)  platelets,  causes  wortmannin-insensitive 
phosphorylation of pleckstrin. 
Negative:

• 2849942:  Human  platelet smg p21 was  not phosphorylated by  protein 
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kinase C. 
• 7608115:  Thus,  human  platelet tubulin  is  not phosphorylated either  in 

unstimulated platelets or in thrombin-stimulated platelets. 
• 2547793:  However,  a  crude  platelet kinase preparation  phosphorylated 

ABP  in  the  presence  of  cAMP,  but  not in  the  presence  of 
Ca2+/phosphatidylserine. 

• 2391768: Furthermore, Con A was shown to stimulate the protein kinase C 
activity of  platelets, which  phosphorylates a 40-kDa  platelet protein; the 
Con  A  effects  were  antagonized  by  alpha-methyl-D-mannoside, 
staurosporine and K-252a, but not by KT5720. 

3 Phosphorylation
Affirmative:

• 1546747:  Immunocytochemical  studies  with  antibodies  against  alpha 
tubulin,  tau,  and  phosphorylated subunits of  neurofilament  polypeptides 
did not disclose differences in the staining of neurons with fragmented or 
normal Golgi apparatus, suggesting that the alteration of the organelle is 
not secondary to a gross lesion of the cytoskeleton. 

• PMC2228393: Neurofibrillary tangles consist of  hyperphosphorylated Tau 
proteins  that  aggregate inside  neurons along neurites â€“  observed as 
neuropil threads â€“ and finally in the soma. 

• 8336148: Okadaic acid induces early changes in microtubule-associated 
protein 2 and  tau phosphorylation prior to neurodegeneration in cultured 
cortical neurons. 

• 8395566:  Microtubule-associated  protein  tau is  known  to  be 
hyperphosphorylated in  Alzheimer  disease  brain  and  this  abnormal 
hyperphosphorylation is associated with an inability of tau to promote the 
assembly of microtubule in the affected neurons. 

• 7689658:  We  show  here  that  tau can  be  phosphorylated in  cultured 
hippocampal neurons by the MAP kinase p44mpk, and phosphorylation of 
tau compromises its functional ability to assemble microtubules. 
Negative:

• 17028556:  At  the  same time,  Tau-P301LxGSK-3B mice  have dramatic 
forebrain tauopathy, with "tangles in almost all neurons", although without 
hyper-phosphorylation of Tau. 

• 19190923:  Importantly,  we  detected  a  few  neurons that  contained 
abundant truncated tau but were lacking hyperphosphorylation, and these 
neurons exhibited remarkable nuclear condensation. 

• 8317268:  Furthermore,  the  pretangle  neurons can  readily  be 
immunolabeled for abnormally phosphorylated tau but not for ubiquitin. 

4 Phosphorylation
Affirmative:

• 12688680:  Phosphorylation, but not overexpression, of  epidermal growth 
factor receptor is associated with poor prognosis of  non-small  cell  lung 
cancer patients. 

• 14734462:  Because the ErbB receptors  play  an  important  role  in  lung 
cancer  progression,  we  analyzed  the  expression  of  epidermal  growth 
factor receptor (EGFR), phosphorylated EGFR, transforming growth factor 
alpha (TGFalpha), and HER2-neu as potential prognostic factors in stage I 
NSCLC. 



 Appendix C Sentences selected for conflict evaluation 311

• 14734462:  Because the ErbB receptors  play  an  important  role  in  lung 
cancer  progression,  we  analyzed  the  expression  of  epidermal  growth 
factor receptor (EGFR), phosphorylated EGFR, transforming growth factor 
alpha (TGFalpha), and HER2-neu as potential prognostic factors in stage I 
NSCLC. 

• 14734462:  Because the ErbB receptors  play  an  important  role  in  lung 
cancer  progression,  we  analyzed  the  expression  of  epidermal  growth 
factor receptor (EGFR), phosphorylated EGFR, transforming growth factor 
alpha (TGFalpha), and HER2-neu as potential prognostic factors in stage I 
NSCLC. 

• 19235531:  Phosphorylated epidermal  growth  factor  receptor and 
cyclooxygenase-2 expression in localized non-small cell lung cancer. 
Negative:

• 18585821: Although antibodies against phophorylated EGFR have been 
used in vitro,  phosphorylated EGFR has yet  not been examined well in 
resected non-small cell lung cancers (NSCLCs). 

• 16373402:  EGFR and  its  downstream  proteins  were  constitutively 
phosphorylated in  the  PC-9  cells  without any  ligand  stimulation  as 
compared with A549 lung cancer cells expressing wild-type EGFR. 

• 16505275:  High  predictive  value  of  epidermal  growth  factor  receptor 
phosphorylation but  not of  EGFRvIII  mutation in  resected stage I  non-
small cell lung cancer (NSCLC). 

5 Phosphorylation
Affirmative:

• 17334396: However, it has been proposed that tyrosine phosphorylation of 
p120 may contribute to cadherin-dependent junction disassembly during 
invasion. 

• 16904204: p120 catenin and phosphorylation: Mechanisms and traits of an 
unresolved issue. 

• 15684660: This role is probably regulated by signaling events that induce 
p120 phosphorylation,  but  monitoring  individual  phosphorylation  events 
and their consequences is technically challenging. 

• 15684660:  Previously,  we  used  phospho-tryptic  peptide  mapping  to 
identify eight major sites of p120 serine and threonine phosphorylation. 

• 17719574: In contrast to growth factor-stimulated tyrosine phosphorylation 
of  p120, its relatively constitutive serine/threonine phosphorylation is not 
well understood. 
Negative:

• 17334396: In contrast, p120 knockdown impairs epidermal growth factor-
induced A431 invasion into three-dimensional matrix gels or in organotypic 
culture, whereas re-expression of siRNA-resistant p120, or a p120 isoform 
that cannot be phosphorylated on tyrosine, restores the collective mode of 
invasion employed by A431 cells in vitro. 

• 11382764: Changing all of these sites to phenylalanine resulted in a p120 
mutant,  p120-8F, that could not be efficiently  phosphorylated by Src and 
failed to interact with SHP-1, a tyrosine phosphatase shown previously to 
interact selectively with tyrosine-phosphorylated p120 in cells stimulated 
with epidermal growth factor. 

• 15107817:  In  addition,  p120(ctn)  connected  with  N-cadherin  was 
phosphorylated  at  tyrosine  residues,  whereas  the  isoform  linked  to  E-
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cadherin was not phosphorylated. 

1 Binding
Affirmative:

• 10433099: Apoptotic cell death mediated by an interaction of Fas with Fas 
ligand  (FasL)  could  be  a  mechanism  by  which  MHC class  II-negative 
pancreatic beta-cells are destroyed by CD4+ T lymphocytes. 

• 15814689: Interaction of Fas with Fas ligand (FasL) is known to play a role 
in peripheral tolerance mediated by clonal deletion of Ag-specific T cells. 

• 7512035: In addition, activated  T cells from gld/gld homozygous animals 
are  not  capable  of  binding to  a  Fas.Fc  fusion  protein  at  high  levels, 
whereas  activated  T cells  from normal  and lpr/lpr  animals  bind  Fas.Fc 
efficiently. 

• 15153474: However, in the context of an extensive tumor burden, chronic 
stimulation of such CD4(+) T cells often leads to the up-regulation of both 
Fas and Fas ligand, and coexpression of these molecules can potentially 
result in activation-induced cell death and the subsequent loss of effector 
activity. 

• 12920696: Apoptotic cell death may be induced by either cytotoxic T cells 
through the release of proteases, such as perforin and granzyme B, or the 
interaction of Fas ligand (FasL/CD95L), expressed by T lymphocytes, with 
Fas (Apo-1/CD95) on epithelial cells. 
Negative:

• 12153509: Taken together with the fact that DN T cells massively express 
Fas ligand (FasL), this study implied that FasL overexpressed on DN cells 
may be involved in the accumulation of DN T cells in LN, LN atrophy and 
wasting syndrome, and that lprcg  Fas, which can  bind to  Fas ligand but 
not transduce apoptosis signal into cells, may modulate these pathological 
conditions by interfering with the binding of FasL to Fas. 

• 16133864:  In  this  model,  islet  grafts  from C3H mice  that  carry  the lpr 
mutation,  and  therefore  lack the  ability  to  undergo  apoptosis  through 
CD95-CD95L  interaction,  were  completely  protected  when  grafted  in 
autoimmune diabetic mice despite periinsulitis (infiltration of T cells) which 
however did not progress to islet destruction. 

• 16133864:  In  this  model,  islet  grafts  from C3H mice  that  carry  the lpr 
mutation,  and  therefore  lack the  ability  to  undergo  apoptosis  through 
CD95-CD95L  interaction,  were  completely  protected  when  grafted  in 
autoimmune diabetic mice despite periinsulitis (infiltration of T cells) which 
however did not progress to islet destruction. 

• 12232795: T cell apoptosis was observed at relatively low concentrations 
of  kynurenines,  did  not require  Fas/Fas ligand  interactions,  and  was 
associated with the activation of caspase-8 and the release of cytochrome 
c from mitochondria. 

• 12232795: T cell apoptosis was observed at relatively low concentrations 
of  kynurenines,  did  not require  Fas/Fas ligand  interactions,  and  was 
associated with the activation of caspase-8 and the release of cytochrome 
c from mitochondria. 

2 Binding
Affirmative:

• 2522840: Rather, the binding of CD4 MoAb to CD4+ T cells interferes with 
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a late event because it is capable of abolishing the proliferative activity of 
fully activated CD4+ T cells. 

• 8102120: Surface Ig levels of  CD4+ T cells were closely  associated with 
the CD4 cell number in HIV-infected patients of all stages of disease (r = 
-0.67, P = 0.00005). 

• 9630922: The exocyclic derived from CDR3 (residues 82-89) of human 
CD4, which specifically associated with CD4 on the T cell surface to create 
a heteromeric CD4 complex, blocked IL-2 production and antagonized the 
normal function of the CD4 receptor. 

• 1460417: CD4+ CTL were shown to recognize not only the infected cells 
within these acutely infected cultures but also noninfected  CD4+  T cells 
that had passively taken up gp120 shed from infected cells and/or free 
virions. 

• 1701034: In normal T cells,  surface  association of  CD4 molecules with 
other  CD4 molecules or other  T-cell surface proteins, such as the T-cell 
antigen  receptor,  stimulates  the  activity  of  the  p56lck  tyrosine  kinase, 
resulting  in  the  phosphorylation  of  various  cellular  proteins  at  tyrosine 
residues. 
Negative:

• 1699999:  In  contrast  to  these  results  on  class  II-dependent  T  cell 
proliferation, MHC-independent T cell activation (via CD3 antibodies) was 
largely  resistant  to  inhibition  with  the  same  dose  range  of  CD4 mAb 
(provided that CD3 and  CD4 reagents could  not compete for the same 
class of FcR). 

• PMC2405786:  We  also  did  not observe  any  significant  association 
between  CD4+ and CD8+  T-cell proliferation to anti-CD3 and SEB with 
CD4 count change (Table 1). 

• PMC2718810:  In  line  with  this,  only  the  interaction of  CD8  depleted 
(CD4+), but not CD4 depleted (CD8+) T cells with monocytes resulted in 
the secretion of IL-2 and IL-10 into the cell culture supernatant (Figure 7E), 
consistent with MHC class II dependency of these two cytokines as shown 
in Figure 6B. 

• PMC2959493: Hence, zanolimumab exerts its action through inhibition of 
CD4+ T cell signaling in concert with the induction of Fc-dependent ADCC 
and CD4 down-modulation (Fig. 2). 

3 Binding
Affirmative:

• 17097690:  The  aim  of  this  study  is  to  investigate  the  effect  of  three 
cucurbitacins (Cuc) E, D and I  on the bilirubin-albumin binding,  both in 
human serum albumin (HSA) and in plasma. 

• 10365540: The purpose of this study was to examine the displacement 
effect  of  valproate  (VPA)  on  bilirubin-albumin binding in  human  serum 
albumin (HSA) and human plasma. 

• 17364966:  Peroxynitrite  mild  nitration  of  albumin and  LDL-albumin 
complex naturally  present  in  plasma and tyrosine nitration rate-albumin 
impairs LDL nitration. 

• 9425126:  Here we present  evidence that  in  blood  plasma peroxynitrite 
induces  the  formation  of  a  disulphide  cross-linked  protein  identified  by 
immunological (anti-albumin antibodies) and biochemical criteria (peptide 
mapping) as a dimer of serum albumin. 
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• 18948018:  It  was  shown that  albumin derived  from a  chromatographic 
process,  which  had a  bilirubin:albumin ratio  similar  to  that  observed in 
plasma, had a vibrant yellow appearance. 
Negative:

• 7415075: When albumin is prepared from human blood plasma by the cold 
ethanol method, nonesterified long chain fatty acids present in the plasma 
do not strictly copurify with albumin. 

• 2794522: The antibody, raised in mice immunized with nonenzymatically 
glycated  albumin  isolated  from  human  plasma,  recognizes  glycated 
epitopes residing in  albumin but not in other  plasma proteins, and does 
not react with unglycated albumin. 

• 6164224: It  is concluded that loss of  albumin through the gut does  not 
account for the depressed plasma albumin concentration in these patients. 

4 Binding
Affirmative:

• 11602735:  The  anti-gp120(CD4BD)  MAbs  complexed with  gp120 
suppressed gamma interferon production as well as proliferation of gp120-
specific CD4 T cells. 

• 17157668:  Gp120 binding to human  CD4+  T cells was analyzed by flow 
cytometry. 

• 17157668:  Physiologically  relevant  concentrations  of  EGCG  (0.2 
micromol/L) inhibited binding of gp120 to isolated human CD4+ T cells. 

• 17157668: CONCLUSION: We have demonstrated clear evidence of high-
affinity binding of EGCG to the CD4 molecule with a Kd of approximately 
10 nmol/L and inhibition of gp120 binding to human CD4+ T cells. 

• 1614536: A large number of antibodies have been raised against CD4, the 
receptor  on  T cells for  the envelope glycoprotein  gp120 of  the human 
immunodeficiency virus, and the site at  which  gp120 binds to  CD4 has 
been delineated. 
Negative:

• 10779509:  In  this  report,  coreceptor  functions  of  mutant  human  CD4 
molecules, which have no or reduced affinity to an HIV envelope protein, 
gp120, were assessed in a murine T cell receptor/class II MHC recognition 
system. 

• 1701034:  No T-cell tyrosine  protein  kinase  signalling  or  calcium 
mobilization after CD4 association with HIV-1 or HIV-1 gp120. 

• 9443108:  Intact  Fn  and  Fn-CTHBD  strongly  inhibit the  interaction of 
gp120/160 with soluble CD4 and, under low serum conditions, are capable 
of neutralizing the infectivity of HIV-1 for CD4-positive T cells. 

• 9719434: Reagents which block the interaction of HIV-1 gp120 with CD4+ 
T cell are of therapeutic interest. 

5 Binding
Affirmative:

• 14580119:  These  include  reorganization  of  the  actin and  microtubule 
cytoskeleton,  dynamic  interactions between  microtubules  and  actin 
filaments, effects of axon guidance molecules, actions of actin regulatory 
proteins, and dynamic changes in intracellular calcium signaling. 

• 2775532: It is believed generally that  actin filaments are attached to the 
cell  membrane  through  an  interaction with  membranous  actin-binding 
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proteins. 
• 2901417: The results suggest that ADP-ribosylated actin acts as a capping 

protein  which  binds to  the  barbed  ends  of  actin filaments to  inhibit 
polymerization. 

• 6893988: From these results it appears that the formation of bundles of 
actin filaments in microvilli and in cones is a two-step process, involving 
actin polymerization to  form  filaments,  randomly  oriented  but  in  most 
cases having one end in contact with the plasma membrane, followed by 
the zippering together of the filaments by macromolecular bridges. 

• 2402158: Examples include the formation of  spindle  fibers  from tubulin 
during cell division and the polymerization of actin into the actin filaments 
of the pseudopod in chemotaxis. 
Negative:

• 11889122: Our measurements show that the slow spatial homogenization 
of the actin filament network, not actin polymerization or the formation of 
polymer overlaps, is the rate-limiting step in the establishment of an elastic 
actin network and suggest that a new activity of F-actin binding proteins 
may be required for the rapid formation of a homogeneous stiff gel. 

• 8281943:  The  protease-treated  actin was,  however,  neither  able  to 
spontaneously  assemble  into  filaments nor to  copolymerize with  intact 
actin unless its tightly bound Ca2+ was replaced with Mg2+. 

• 9147130: The enzymatically modified actin could form actin filaments after 
treatment  with  ADP-ribosylhydrolase  but  not after  treatment  with 
phosphodiesterase. 

• 7107709: Hence,  95K protein is a rod-shaped, dimeric,  Ca++- and pH-
regulated  actin binding protein that cross-links but does  not sever actin 
filaments. 

• 2162826:  A  74-kDa  protein  (adseverin)  derived  from  adrenal  medulla 
severs  actin filaments and nucleates  actin  polymerization  in  a  Ca2(+)-
dependent  manner but  does  not form an EGTA-resistant  complex with 
actin monomers, which is different from the gelsolin-actin interaction. 

1 Positive regulation
Affirmative:

• 2138708:  Human  interleukin  4  (IL-4)  upregulates Fc  epsilon  R2/CD23 
expression on the surface of B lymphocytes. 

• 2138708:  Human  interleukin  4 (IL-4)  upregulates Fc  epsilon  R2/CD23 
expression on the surface of B lymphocytes. 

• 2136716:  Furthermore,  IL-4 induces Fc  epsilon-receptor (CD23) 
expression  on  30%  of  unstimulated  human  B  cells,  whereas  BCAF-
containing  supernatants  from  clone  P2,  that  do  not  contain  detectable 
amounts  of  IL-4,  promote  B  cell  proliferation  without  inducing  CD23 
expression. 

• 9509417:  While  CD23(a)  is  constitutively  expressed  in  B  cells,  the 
expression  of  CD23(b)  is  specifically  induced by  interleukin-4 (IL-4)  or 
selected mitogenic stimuli. 

• 9509417:  While  CD23(a)  is  constitutively  expressed  in  B  cells,  the 
expression  of  CD23(b)  is  specifically  induced by  interleukin-4  (IL-4)  or 
selected mitogenic stimuli. 
Negative:

• 8218946: However, in contrast to normal  B cells,  IL-4 did  not increase 
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CD23 membrane expression on RPMI-8226 cells. 
• 1709049:  Thirdly,  CD19  monoclonal  antibody,  which  inhibits  B  cell 

proliferation  in  response to  IL-4  plus  anti-Ig,  was found to  inhibit  IL-4-
induced CD23 but not sIgM expression. 

• 2136716:  Furthermore,  IL-4 induces  Fc  epsilon-receptor  (CD23) 
expression  on  30%  of  unstimulated  human  B  cells,  whereas  BCAF-
containing  supernatants  from  clone  P2,  that  do  not  contain  detectable 
amounts  of  IL-4,  promote  B  cell  proliferation  without inducing CD23 
expression. 

• 1388135:  An  antibody  to  CD72  (BU40)  has  been  found  to  mimic 
interleukin-4 (IL-4) both in its ability to activate resting B cells into the early 
G1  phase  of  cell  cycle  and  to  augment  the  expression  of  major 
histocompatibility complex (MHC) class II antigen; unlike IL-4, the CD72-
clustered antibody fails to induce the expression of CD23. 

2 Positive regulation
Affirmative:

• 2789139: However, a combination of IL4, IL5 and IL6 (with or without IL1) 
at  optimal  concentrations  could  not  induce  IgE  synthesis  by  purified 
normal  B  cells,  indicating  that  cytokine-mediated  signals,  although 
essential,  are  not  sufficient  for  the  IL4-dependent  induction of  IgE 
synthesis. 

• 10887336: IL-4 is important for B-cell production of IgE, and the human IL-
4 receptor alpha chain (hIL-4Ralpha) is crucial for the binding and signal 
transduction of IL-4, so hIL-4Ralpha may be a candidate gene related to 
atopy. 

• 7722171: In  contrast,  terminally  differentiated,  IgE-producing B cells  no 
longer  express  functional  IL-4R  because  DAB389IL-4  only  modestly 
inhibited ongoing IgE synthesis  by B cells from patients with hyper-IgE 
states and only minimally affected IL-4-induced IgE synthesis in normal B 
cells when the toxin was added at day 7. 

• 2172384: We demonstrate here that EBV and IL-4 induced the synthesis 
of IgE by surface IgE-negative B cell precursors isolated by cell sorting. 

• 2967330: Like IL-4-containing SUP, rIL-4 also showed the ability to induce 
IgE production in B cells from both atopic and nonatopic donors. 
Negative:

• 2172384:  IL-4 failed to  induce IgE synthesis in established EBV  B cell 
lines and failed to induce 2.0-kb mature C epsilon transcripts but induced 
1.8-kb germ-line C epsilon transcripts. 

• 2789139: Recombinant IL4 could induce IgE synthesis by peripheral blood 
mononuclear  cells  and autologous T/B cell  mixtures,  but  not by  highly 
purified B cells. 

• 1383379:  In  contrast  to  these  observations  with  MNC,  IL-4 failed to 
induce IgE and IgG4 production by purified B cells. 

• 1382870: IgE production was not induced by IL-4 in purified B cells. 
• 1904400: Similarly, DSCG did not enhance IgG2, IgG3 or IgG4 production 

from sIgG2-, sIgG3- or sIgG4- B cells, respectively, Interleukin-4 (IL-4) or 
interleukin-6 (IL-6) also  enhanced Ig production  except IgG4 from large 
activated B cells. 

3 Positive regulation
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Affirmative:
• 6434688:  A  parallel  production  of  gamma  interferon (IFN-gamma)  is 

induced by recombinant IL-2 (rIL-2), and NK cells appear to be the major 
producer cells, whereas T cells are unable to produce IFN-gamma under 
these experimental conditions. 

• 6429853: IL-2 is required for the optimum expression of IL-2 receptors on 
activated  T  lymphocytes and for  maximum synthesis  of  IFN-gamma in 
vitro. 

• 6434688:  A  parallel  production  of  gamma  interferon  (IFN-gamma)  is 
induced by recombinant IL-2 (rIL-2), and NK cells appear to be the major 
producer cells, whereas T cells are unable to produce IFN-gamma under 
these experimental conditions. 

• 15271977: IL-2 is another key immunoregulatory cytokine that is involved 
in T helper differentiation and is known to induce IFN-gamma expression 
in natural killer (NK) and T cells. 

• 2147201: The lymphokines IL-2 and IL-4 promoted the growth of human 
PHA-triggered T cells, but only IL-2 induced the production of IFN-gamma 
and TNF. 
Negative:

• 3086435:  Neither IL 1 nor  IL 2 alone  induced IFN-gamma production in 
purified T lymphocyte cultures. 

• 1907764: The addition of  interleukin-2 (IL-2) or phorbol-12-myristate-13-
acetate to T cells stimulated with PHA, IL-1 and IL-6 did  not restore the 
production of IFN-gamma to an extent comparable to that produced by T 
cells stimulated in the presence of accessory cells. 

• 2147201: IL-6 did  not influence  IFN-gamma or TNF production or  T cell 
proliferation induced by PHA-IL-2 and did not modulate IL-1-induced IFN-
gamma production. 

4 Positive regulation
Affirmative:

• 6292303: These results indicate that whereas classical polyclonal B cell 
activators (PWM, EBV) fail to induce IgE synthesis by normal B cells, IgE 
synthesis is readily induced by an IgE-specific helper factor released by T 
cells from patients with hyper-IgE states. 

• 3485112: IgE-binding factors from three of four HIE patients enhanced IgE 
synthesis by  B cells from patients with perennial allergic rhinitis, or with 
seasonal  allergic rhinitis  (SAR) and recent  pollen exposure, but did not 
enhance IgE synthesis  by B cells  from nonatopic  donors  or  from SAR 
patients with no recent pollen exposure. 

• 2533179: Recombinant 37-kD IgE-BFs increase the IL4-induced synthesis 
of  IgE by peripheral blood lymphocytes, as well as the IL4-independent, 
ongoing synthesis of IgE by either in vivo activated B cells from allergic 
patients or by in vitro IL4-preactivated B cells. 

• 2533179: Recombinant 37-kD IgE-BFs increase the IL4-induced synthesis 
of IgE by peripheral blood lymphocytes, as well as the IL4-independent, 
ongoing synthesis of  IgE by either in vivo activated B cells from allergic 
patients or by in vitro IL4-preactivated B cells. 

• 6237918: These results suggest that a subset of human T cells bearing an 
Fc  epsilon  R  secretes  an  IgE-binding  glycoprotein  which  selectively 
enhances IgE synthesis by IgE-bearing B cells. 
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Negative:
• 3485112: IgE-binding factors from three of four HIE patients enhanced IgE 

synthesis by  B cells from patients with perennial allergic rhinitis, or with 
seasonal allergic rhinitis (SAR) and recent pollen exposure, but did  not 
enhance IgE synthesis  by  B cells  from nonatopic  donors or  from SAR 
patients with no recent pollen exposure. 

• 2976801:  These  cells  secrete  IgE  binding  factors  which  enhance  IgE 
synthesis but  not IgG synthesis by preactivated IgE bearing B cells from 
allergic subjects but not resting B cells from normal donors. 

5 Positive regulation
Affirmative:

• 10944420:  IFN-gamma alone  or  combined  with  LPS  induced iNOS 
expression  and increased nitrite  production  in  iNOS(+/+)  macrophages, 
but not in iNOS(-/-) macrophages. 

• 12417260: UVB light, which is used therapeutically to treat inflammatory 
dermatosis,  was  found  to  suppress  IFN-gamma-induced expression  of 
NOS2 mRNA and protein, and nitric oxide production in both keratinocytes 
and macrophages. 

• 9753237:  IFN-gamma-induced iNOS mRNA  expression  is  inhibited  by 
rebamipide in murine macrophage RAW264.7 cells. 

• 16883061: JAK inhibitors AG-490 and WHI-P154 decrease  IFN-gamma-
induced iNOS expression and NO production in macrophages. 

• 17689680: BACKGROUND: We hypothesized that acetylation of the Stat1 
regulates  interferon-gamma  (IFN-gamma)  mediated macrophage 
expression of inducible nitric oxide synthase (iNOS). 
Negative:

• 9193655:  Murine  macrophages possess  the  capacity  to  express  the 
inducible NO synthase (iNOS) which is  not constitutively expressed but 
induced at  the  transcriptional  level  by  interferon  gamma (IFN-gamma) 
alone or synergistically with LPS. 

• 9193655:  Murine  macrophages possess  the  capacity  to  express  the 
inducible NO synthase (iNOS) which is  not constitutively expressed but 
induced at  the  transcriptional  level  by  interferon  gamma  (IFN-gamma) 
alone or synergistically with LPS. 

• 11694524: In contrast to islets, dsRNA + IFN-gamma fails to induce iNOS 
expression or nitric oxide production by macrophages isolated from IRF-
1(-/-) mice; however, dsRNA + IFN-gamma induces similar levels of IL-1 
release by macrophages isolated from both IRF-1(-/-) and IRF-1(+/+) mice. 

• 17035338:  IFN-gamma induces NO production,  inducible  NO synthase 
(iNOS) protein, and promoter expression in mouse macrophage cells. 

1 Regulation
Affirmative:

• 9568685: Whether  insulin acutely  regulates plasma leptin in humans is 
controversial. 

• 9398728: In animal models,  insulin and agents that increase intracellular 
cAMP have been shown to similarly affect plasma leptin in vivo. 
Negative:

• 8954052:  These results  suggest  that  insulin does  not acutely  regulate 
plasma leptin concentrations in humans. 
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• 11832440: Insulin and pentagastrin did not modify plasma leptin, whatever 
HSV status. 

• 10856891: Adrenaline, insulin and glucagon do not have acute effects on 
plasma leptin levels  in  sheep:  development  and characterisation  of  an 
ovine leptin ELISA. 

2 Regulation
Affirmative:

• 2946861: The autologous mixed lymphocyte reaction (AMLR) and in vitro 
influence of interleukin 1 (IL-1) and interleukin 2 (IL-2) on the AMLR were 
also studied. 

• 3106694:  Role of  interleukin-2 (IL-2) and IL-2 receptor expression in the 
proliferative  defect  observed  in  mitogen-stimulated  lymphocytes from 
patients with gliomas. 

• 7493771:  Co-operative  effect between  insulin-like  growth  factor-1  and 
interleukin-2 on  DNA  synthesis  and  interleukin-2 receptor-alpha  chain 
expression in human lymphocytes. 

• 8839133: In addition, we studied the proliferative response of lymphocytes 
to  mitogens  or  interleukin-2 (IL-2)  alone  or  in  combination  with 
immunomodulating drugs or interleukin-4 (IL-4). 
Negative:

• 2874115: The culture supernatant from these cell  lines showed no  IL-2 
activity  toward  Con-A-stimulated  human  peripheral  blood  lymphocytes, 
and their growth was not affected by additional IL-2 in cultures. 

• 2474592: Normal lymphocytes stimulated with Df expressed Tac antigen 
(low-affinity IL-2 receptor) but, in contrast to the patients' lymphocytes, did 
not absorb nor respond to IL-2. 

3 Regulation
Affirmative:

• 10828498: The aim of this work was to study the effect of centrally applied 
ANF or CNP on plasma ANF. 

• 10841438:  The  current  project  sought  to  study  the  effect of  the  NOS 
inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microg x min(-
1), sc for 7 days) on plasma volume, plasma atrial natriuretic factor (ANF), 
plasma  endothelin-1  (ET),  and  plasma renin  activity  (PRA)  during 
gestation in conscious rats. 

• 2960617: Infusion of ANF at doses expected to change plasma ANF levels 
minimally decreased arterial pressure in hypertensive rats over 7 days. 

• 9112384: Neither ANP nor CNP infusion had any effect on plasma IR-NT-
ANP levels under basal conditions. 
Negative:

• 7848625: YT-146 had  no effect on  plasma renin activity (PRA), plasma 
aldosterone, vasopressin (ADH), and atrial natriuretic peptide (ANP) in the 
acute study.

• 1826031:  Neither SQ 28,603 nor  C-ANF(4-23)  affected MAP or  plasma 
ANF in the normotensive rats. 

4 Regulation
Affirmative:

• 1636698:  Proinsulin had a significantly weaker  effect than  insulin, at the 
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lowest infusion dose, in percent suppression of plasma nonesterified fatty 
acids,  blood glycerol,  and  beta-hydroxybutyrate  levels  (all  P  less  than 
0.05). 

• 11194244: RESULTS:  Insulin aspart and buffered regular human  insulin 
were both  effective in controlling average daily  blood glucose levels (8.2 
+/- 1.9 and 8.5 +/- 2.1 mmol/l, respectively) (mean +/- SD) and maintaining 
serum fructosamine (343 +/- 25.7 and 336 +/- 27.4 micromol/l) and HbA1c 
(6.9 +/- 0.6 and 7.1 +/- 0.6%) levels. 

• 2692943:  The  effect of  human  biosynthetic  proinsulin (PRO)  on  blood 
glucose  (BG)  control  and  glucose  excursions  was  studied  in  a 
nonrandomized  design  in  eight  patients  with  unstable  type  1  diabetes 
mellitus and compared with that of human NPH insulin. 

• PMC2993798: A reduced ability of insulin to activate glucose transport into 
cells, i.e., insulin resistance, is marked by high glucose and high  insulin 
levels in circulating  blood, and aberrant  insulin-regulated gene functions 
[10]. 
Negative:

• 10078556:  Blood glucose and serum  insulin levels were  not affected by 
intranasal insulin. 

5 Regulation
Affirmative:

• 16845238: Basal-prandial  insulin regimens that use a long-acting  insulin 
analogue to  control the fasting  plasma glucose level  and a short-acting 
insulin  analogue  for  post-meal  glucose  excursions  replace  insulin  in  a 
manner that most closely approximates normal physiologic patterns. 

• 4351804: Various lines of evidence indicate that the insulin receptor on the 
plasma membrane, in addition to the insulin coupled to the agarose, was 
responsible for the observed binding. 

• 1100459:  Effect of intracisternal  insulin on  plasma glucose and insulin in 
the dog. 

• 7522843:  Circulating  insulin-like  growth  factor  II/mannose-6-phosphate 
receptor  and  insulin-like  growth  factor  binding  proteins  in  fetal  sheep 
plasma are regulated by glucose and insulin. 
Negative:

• 6999134:  Concentration  of  plasma insulin  was  elevated  15  minutes 
following the 6 mU insulin treatment for the concentrate and forage ration, 
while 1 mU insulin did not affect plasma insulin. 

• 668977: Glucose and  insulin injections given during lethargy showed  no 
effects on  plasma insulin and glucose respectively but confirmed a very 
low plasma clearance of glucose and insulin. 

• 1874929:  Although  ambient  plasma TG  and  FFA  concentrations  fell 
significantly,  plasma  glucose,  insulin,  HGP,  concentrations  fell 
significantly,  plasma glucose,  insulin,  HGP,  and  glucose  MCR did  not 
change. 

• 16554011: High nutrient intake resulted in significantly elevated maternal 
plasma concentrations  of  insulin,  leptin,  prolactin  and  glucose,  no 
significant  changes in fetal  insulin, leptin or non-esterified fatty acids and 
attenuated fetal prolactin concentrations. 

1 Negative regulation
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Affirmative:
• 1328039: The molecular mechanisms by which human interleukin-4 (IL-4) 

down-regulates tumour necrosis  factor-alpha (TNF-alpha)  production by 
monocytes remain unknown. 

• 1328039: The molecular mechanisms by which human interleukin-4 (IL-4) 
down-regulates tumour necrosis  factor-alpha (TNF-alpha)  production by 
monocytes remain unknown. 

• 1328039: IL-4 reduced TNF-alpha production by monocytes when IL-4 and 
lipopolysaccharide (LPS) were added concomitantly, or upon subsequent 
activation by LPS 16 hr after first exposure to IL-4. 

• 2785566:  IL-4 down-regulates IL-1 and  TNF gene expression in human 
monocytes. 

• 11991671: With addition of IFNalpha-neutralizing antibodies, the ability of 
IL-4 to  suppress LPS-induced  TNFalpha production  with  prolonged 
monocyte culture was restored. 
Negative:

• 9558115: Studies with Abs to gammac and an IL-4 mutant that is unable to 
bind to gammac showed that  IL-4 can  suppress IL-1beta but  not TNF-
alpha production by LPS-stimulated monocytes in the presence of little or 
no functioning gammac. 

• 11991671:  Like  MDMac,  interferon  alpha (IFNalpha)-treated  monocytes 
expressed  less  IL-4  receptor  gamma  c  chain,  reduced  levels  of  IL-4-
activated  STAT6  and  IL-4 could  not suppress LPS-induced  TNFalpha 
production. 

• 7690805: In contrast to the response by blood monocytes, the response to 
IL-4  by  synovial  fluid  cells  was  selective;  IL-4 did  not significantly 
suppress LPS-induced  TNF-alpha production,  but  decreased  CD14 
expression to a similar extent in the two cell populations. 

2 Negative regulation
Affirmative:

• 2754338:  When added to  murine  adipocytes in  culture,  tumor necrosis 
factor (TNF) decreases the levels of lipoprotein lipase (LPL). 

• 2754338:  When added to  murine  adipocytes in  culture,  tumor necrosis 
factor (TNF) decreases the levels of lipoprotein lipase (LPL). 

• 2754338:  When added to  murine  adipocytes in  culture,  tumor necrosis 
factor (TNF) decreases the levels of lipoprotein lipase (LPL). 

• 2754338:  When added to  murine  adipocytes in  culture,  tumor necrosis 
factor (TNF) decreases the levels of lipoprotein lipase (LPL). 

• 12526099:  TNF also  suppressed the  lipoprotein lipase (LPL) activity  of 
3T3-L1 adipocytes. 
Negative:

• 2198021: TNF did not decrease LPL activity in isolated adipocytes. 

3 Negative regulation
Affirmative:

• 12765949:  Analysis  using  phospho-specific  antibodies  revealed  that 
insulin decreases phosphorylation of sites 3a + 3b in human muscle, and 
this  was  accompanied  by  activation  of  Akt  and  inhibition  of  glycogen 
synthase kinase-3alpha. 
Negative:
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• 12765949:  Insulin did  not decrease phosphorylation of  sites 2 + 2a in 
healthy human muscle, whereas in diabetic muscle insulin infusion in fact 
caused a marked increase in the phosphorylation of sites 2 + 2a. 

4 Negative regulation
Affirmative:

• 15337697: Although serum levels of MIP-1alpha were not suppressed by 
TRX-1 until day 21, both an in vitro chemotaxis chamber assay and an in 
vivo air  pouch model  showed that  TRX-1 significantly  suppressed MIP-
1alpha- or MIP-2-induced leukocyte chemotaxis. 
Negative:

• 15337697: Although serum levels of MIP-1alpha were not suppressed by 
TRX-1 until day 21, both an in vitro chemotaxis chamber assay and an in 
vivo air  pouch model  showed that  TRX-1 significantly suppressed MIP-
1alpha- or MIP-2-induced leukocyte chemotaxis. 

5 Negative regulation
Affirmative:

• 11673527: IFN-gamma- and IFN-beta-mediated inhibition of MMP-9 gene 
expression is dependent  on the transcription factor  STAT-1alpha,  since 
IFN-gamma and IFN-beta fail  to suppress MMP-9 expression in STAT-
1alpha-deficient primary astrocytes and human fibrosarcoma cells. 
Negative:

• 11673527: IFN-gamma- and IFN-beta-mediated inhibition of MMP-9 gene 
expression is dependent  on the transcription factor  STAT-1alpha,  since 
IFN-gamma and IFN-beta  fail to  suppress MMP-9 expression in STAT-
1alpha-deficient primary astrocytes and human fibrosarcoma cells. 

• 11673527: IFN-gamma- and IFN-beta-mediated inhibition of MMP-9 gene 
expression is dependent  on the transcription factor  STAT-1alpha,  since 
IFN-gamma and IFN-beta  fail to  suppress MMP-9 expression in STAT-
1alpha-deficient primary astrocytes and human fibrosarcoma cells.
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Appendix D 

BioContext data and code availability

We provide the data produced as the output of BioContext, as well as all the 

intermediary  data  freely  available.  It  is  accessible  on  the  web,  and  also 

available  through  the  supplementary  materials  of  this  thesis  available  at 

www.cs.man.ac.uk/~sarafraf/thesis-supplementary.html.  All  the  code  written 

for  the  BioContext,  the  wrappers  for  several  tools,  and  the  tools  that  we 

developed will be available at http://www.biocontext.org/ .

Here we list the data and code from each stage. For more details about 

the size of each data set, see Chapter 6 .

NER

The gene,  protein,  and protein complexes,  species,  and anatomy NER from 

GeneTUKit, GNAT, BANNER, and LINNAEUS, provided for MEDLINE and 

the open access part of PMC.

A  majority  of  these  named  entities  are  normalised  to  their  database 

identifiers. We also provide the union and intersection sets on the outputs of 

the above tools.

Parses

The dependency parse trees and constituency parse trees of all the sentences in 

MEDLINE and open access PMC, computed by McClosky parser, GDep, and 

Enju.

Events

Biomedical  events  extracted  by  TEES and EventMiner,  and  the  union  and 

intersection sets of their outputs.

http://www.biocontext.org/
http://www.cs.man.ac.uk/~sarafraf/thesis-supplementary.html


324 Appendix D BioContext data and code availability

Context extractors

The python implementation of Negmole is standalone and can be downloaded 

from the Google Code project page (http://code.google.com/p/negmole/). The 

anatomical  association  is  a  part  of  the  GETM  system  and  is  available  on 

SourceForge (http://getm-  project.sourceforge.net/  ).

The results of context association to the events are provided in tables, 

with rows referencing other tables. To effectively use this data, large database 

joins are required. Alternatively, the denormalised table can be used.

Denormalised event data

The denormalised  table,  containing  stand-alone  event  information  including 

every mention of the text mined events.  Each row contains complete  event 

information  as  described  in  5.2.1 including  the  normalised  named  entity 

references,  negation  and  speculation  information,  anatomical  location, 

confidence, HTML formatted sentences highlighting the event attributes, etc. 

The filtered events do not appear in this table.

Collapsed event data

This  data  contains  distinct  event  mentions,  ignoring  the  repeated  mentions 

across the literature. It also provides the number of mentions for each distinct 

event, and the sum of their document-level confidences. The document-level 

confidence is the maximum confidence of a specific event in a document.

Conflicting pairs

This data contains pairs of contrasting hashes. The two hashes in a conflicting 

pair represent two distinct events that are contrasting in a strict sense: They are 

asserted (not speculated), they have complete context extracted, and they are 

similar in all contextual attributes except for negation.

http://getm-project.sourceforge.net/
http://getm-project.sourceforge.net/
http://code.google.com/p/negmole/
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