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Palavras-chave Web semântica, integração de dados, extração de informação,
bioinformática, bases de conhecimento, interoperabilidade, doenças
raras.

Resumo Nas últimas décadas, o campo das ciências biomédicas proporcionou
grandes avanços científicos estimulados pela constante evolução das
tecnologias de informação. A criação de diversas ferramentas na
área da bioinformática e a falta de integração entre novas soluções
resultou em enormes quantidades de dados distribuídos por diferentes
plataformas. Dados de diferentes tipos e formatos são gerados
e armazenados em vários repositórios, o que origina problemas de
interoperabilidade e atrasa a investigação. A partilha de informação
e o acesso integrado a esses recursos são características fundamentais
para a extração bem sucedida do conhecimento científico.
Nesta medida, esta tese fornece contribuições para acelerar a
integração, ligação e reutilização semântica de dados biomédicos. A
primeira contribuição aborda a interconexão de registos distribuídos e
heterogéneos. A metodologia proposta cria uma visão holística sobre
os diferentes registos, suportando a representação semântica de dados
e o acesso integrado. A segunda contribuição aborda a integração
de diversos dados para investigações científicas, com o objetivo de
suportar serviços interoperáveis para a partilha de informação. O
terceiro contributo apresenta uma arquitetura modular que apoia a
extração e integração de informações textuais, permitindo a exploração
destes dados. A última contribuição consiste numa plataforma web
para acelerar a criação de sistemas de informação semânticos. Todas
as soluções propostas foram validadas no âmbito das doenças raras.





Keywords Semantic web, data integration, information extraction, bioinformatics,
knowledge bases, interoperability, rare diseases.

Abstract In the last decades, the field of biomedical science has fostered
unprecedented scientific advances. Research is stimulated by the
constant evolution of information technology, delivering novel and
diverse bioinformatics tools. Nevertheless, the proliferation of new and
disconnected solutions has resulted in massive amounts of resources
spread over heterogeneous and distributed platforms. Distinct
data types and formats are generated and stored in miscellaneous
repositories posing data interoperability challenges and delays in
discoveries. Data sharing and integrated access to these resources
are key features for successful knowledge extraction.
In this context, this thesis makes contributions towards accelerating
the semantic integration, linkage and reuse of biomedical resources.
The first contribution addresses the connection of distributed and
heterogeneous registries. The proposed methodology creates a
holistic view over the different registries, supporting semantic
data representation, integrated access and querying. The second
contribution addresses the integration of heterogeneous information
across scientific research, aiming to enable adequate data-sharing
services. The third contribution presents a modular architecture to
support the extraction and integration of textual information, enabling
the full exploitation of curated data. The last contribution lies
in providing a platform to accelerate the deployment of enhanced
semantic information systems. All the proposed solutions were
deployed and validated in the scope of rare diseases.
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Chapter 1

Introduction

Bioinformatics has been one the most active areas of computer science. Since the
Human Genome Project (HGP) revolution to decode human genetic code [1], the union of
life and computer sciences has fostered unprecedented advances in several multidisciplinary
areas. Sequence decoding, genetic studies and drug advances are just sample areas where
the efficient collaboration between computer scientists and biologists has been beneficial
for scientific innovation.

Over the years, this successful partnership has introduced great modifications on how
researchers access and use computation tools for scientific discovery. These changes are
so significant, that today it is almost unfeasible to conceive a successful biomedicine
project without computational technology. This setting directly implies that bioinformatics
advances are highly dependent on computational technology innovation, being crucial to
explore novel software and hardware tools.

Nowadays, that strong relationship is still driving scientific research to a higher
level of automation, increasingly stimulating the development of specialized tools and
revolutionizing all biomedical research fields. The outcome of this revolution has been
an infinite number of computer-based resources to deal with. Indeed, many services,
databases, systems and applications have attempted to solve existing research issues.
Although the increase of such resources appears to be logically beneficial, the effects of
having such a variety are questionable. The cost of maintaining this research field is
high due to non-integrated software with too many competing models and architectures.
Making the situation even more challenging, biomedical research has yet to deal with the
disparity of user and data interfaces. Different formats, styles or contents are an issue for
the solutions developed, hindering resource linkage and delaying the advance of research
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CHAPTER 1. INTRODUCTION

on life sciences.

With these challenges in mind, this research effort introduces newly interoperable
solutions to keep bioinformatics applications at the boundaries of computer science
innovation.

1.1 Motivation

The latest biomedicine advances have brought exceptional changes in how biomedical
resources are handled. Extensive and large-scale scientific discovery methodologies
revolutionized the way that bio-resources are studied, moving most scientific efforts into
data-intensive science-oriented research. For instance, the vision of studying datasets
individually loses strength towards a fresh paradigm of assessing them as a global
and connectable structure through the many different fields of biomedicine: genomics,
proteomics, metabolomics, pharmacogenomics, among others. Although this provides a
new way of analyzing the whole biological spectrum, it rapidly led to an exponential
increase in the amount of data and repositories to explore over different levels. Exploring
this huge amount of resources consumes expensive and valuable resources, both human
and technical, and acquiring new insights into the existing disconnected knowledge is
challenging.

On the one hand, unstructured information, such as articles, books and technical reports
are challenging to analyze. At the same time, high amounts of data are increasing day by
day. The MEDLINE database, for instance, shows continuous annual growth [2], and in
2015 contained a total of 23 million references to journal articles in fields related to the life
sciences (Figure 1.1).

The lack of more concise knowledge makes it harder than ever for researchers to find and
assimilate all the information relevant to their research. For instance, extracting biomedical
associations or hypotheses from narrative documents is not a trivial task and requires highly
trained data curators that create and update annotation resources, a time-consuming and
expensive task. This situation triggered various research efforts trying to automate and
summarize the knowledge scattered across multiple publications and store it in a structured
form. Regarding the biomedical domain, significant progress has been made in the use of
computerized solutions to aid in the analysis, extraction and storage of relevant concepts,
and their respective attributes and relationships (Figure 1.2).

Although full natural language understanding is far from complete through these
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Figure 1.1: MEDLINE bibliographic database growth.

solutions, they provide good assistance to assimilate the high rate of new publications
[3], and to discover indirect associations between important biomedical elements. These
computerized solutions have been increasingly applied to assist bio-curators, allowing the
extraction of relevant information regarding biomedical concepts such as genes, proteins,
chemical compounds or diseases [4], and thus reducing curation times and cost [5].

Several text-mining algorithms and technologies have appeared to offer more effective
mining solutions, exploring complex relation extraction processes, life-science terminology
normalization and information fusion [6]. These challenges transcend many disciplines,
which makes it more difficult to find and integrate all the relevant information from different
research communities. Nonetheless, these efforts are still hindered by a lack of standardized
ways to process the vast amount of data generated [7]. This concern can be split into two
major challenges. First, there are interoperability issues between information extraction
components for concept recognition and relation extraction methodologies. Second, there is
no unified way to access the mined information through large-scale applications. Typically,
different data models are adopted, hindering a simplified access mechanism and integration
with external knowledge bases. This fragmentation is not desirable, and text-mining
research should encourage the use of modern data exchange standards, allowing researchers
to leverage a common layer of interoperability.

Furthermore, the research community has witnessed an impressive growth of biological
and biomedical data, collected from multiple research experiments and generated from
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Figure 1.2: Sample extraction of textual information using a computerized web tool (Neji
[8]).

daily clinical practice. A significant contribution to these data comes from the
increasing availability of sophisticated laboratory equipment. For instance, the use of
Next-Generation Sequencing (NGS) technologies, mapping human genetic sequences to
digital data, has grown steadily, producing enormous amounts of data [9]. Therefore,
it is crucial to make sense of these data to grasp the vast potential for custom drug
development and personalized medicine. Their understanding lies in the expertise in several
life science fields and connects researchers with distinct requirements and expectations,
from gene curators to pharmaceutical researchers and medical clinicians. For those reasons,
bioinformatics software solutions must be focused not only on analysis of the raw data, but
also on their representation, integration and interoperability, for further use.

In life sciences, most of the available data are fragmented, disregarding good practices
for integration. In particular, the integration of heterogeneous data types is currently a very
active field of research, where hybrid approaches try to improve data usage and scientific
discovery [10]. In that way, data integration remains an open challenge, in which complexity
increases with the heterogeneity of data sources. Assorted data sources are difficult
to link, connect and share, making it more arduous to interconnect distinct bio-related
domains. For instance, connecting distributed information is particularly important in
the rare diseases domain, where data needs to be combined from several labs to generate
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substantial statistical conclusions. This raises the demand for novel and computer-aided
research methods to analyze and connect collected knowledge, reducing human efforts to
interpret and understand the information gathered.

In recent years, Semantic Web (SW) [11] has been identified as a common framework
to create accessible and shareable information across application and database boundaries.
Its adoption by the life science community allows better standards and technologies to be
delivered, helping to solve common problems such as data heterogeneity, format diversity
and repository distribution. It aims to locate data anywhere on the web, representing a
vision in which computers, as well as people, can find, read, understand and use data over
the World Wide Web to accomplish useful goals [12]. When independent systems share
this type of representation, interoperability and effective data integration across knowledge
domains are achieved.

Several semantically-powered databases and services have appeared during the last
decade, trying to bring the advantages of SW to the life science community [12], and
making the interconnection and exploration of several biological databases possible. One
of the earliest projects was the Bio2RDF [13], which collected and converted a variety of
biological data, e.g. genes, proteins and pathways, into an accessible triplestore. Recently,
the EMBL-EBI RDF Platform [14] was launched, aggregating several biological triplestores
including UniProt, ChEMBL, and Reactome. Combined, these triplestores supply a vast
amount of semantically-structured information, in which federated inquired mechanisms
can easily be applied [15, 16].

In this way, the SW paradigm involves a broad set of modern technologies that are a
perfect fit for life sciences’ innate connectedness, being able to tackle traditional data issues
such as heterogeneity, distribution and interoperability and providing an interconnected
network of knowledge.

1.2 Research goal

The main objective of this thesis is to investigate computational methods that
facilitate the semantic integration and reuse of biomedical resources. It aims
to advance interoperable solutions, supported by SW concepts and features, with special
focus on the development of personalized tools for research on rare diseases. To attain this
global purpose, several goals were carefully defined:

- Architect software solutions to integrate and gather knowledge from several

5



CHAPTER 1. INTRODUCTION

biomedical data sources.

- Research enhanced methodologies for data interoperability, reusability and access.

- Develop improved methods for information distribution and exchange.

- Contribute to international research projects by applying the developed solutions in
a specific area, i.e. rare disease research.

- Collaborate with international research groups to promote knowledge sharing and
partnerships.

1.3 Methodology

To achieve the main objective of this thesis, five separate tasks were defined:

1. Investigate current challenges associated with biomedical resources’
diversification. In recent years, we have witnessed an explosion of diverse
biomedical data sources, resulting largely from the demands of life science research.
The vast majority of these data are freely available via diverse bioinformatics
platforms in several formats, including biological databases, technical reports
and obviously, in the scientific literature information systems. The integration
of that heterogeneous information into an interoperable, reusable and shareable
infrastructure remains an open challenge, in which complexity increases with the
heterogeneity of data sources. Indeed, novel interoperable systems and services
are needed to mitigate this problem and to enable innovative knowledge discovery
methods.

2. Enhance current software solutions for data migration. Biomedical research
requires technical infrastructures to deal with assorted data sources. By adopting
SW standards and concepts, we are limitless in exploring these data and shaping
associations with external resources, avoiding traditional interoperability problems.
This results in a flexible transition from traditional systems to an information system
sustained by a fully semantic software stack.

3. Efficient methodologies for information distribution and exploration. Novel
and machine-based strategies are needed to explore the evident value of biomedical
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research data interconnection and to enable proper data attribution mechanisms.
The development of flexible and effortless data sharing solutions are current requests
from the research community, to allow information access and further exploration.

4. Research flexible and optimized software solutions. Given the increasing
amount of data being published, and the increasing standardization efforts in
knowledge representation and exchange, it is vital to develop software solutions
that are compliant with SW features and services. Additionally, these solutions
require flexible and optimized deployments for the creation of future interoperable
bioinformatics platforms.

5. Validate research methods in a biomedical related domain. Evaluation of
the proposed methods requires the implementation and validation of uses cases in
specialized fields. This thesis is specifically focused on Neurodegenerative (NDD) and
Neuromuscular (NMD) rare diseases, in which the identified technological weaknesses
are underestimated and the connection of distributed resources is vital for medical
and research discoveries.

1.4 Contributions

During this research, several computational solutions were investigated to fulfill the
main research goal, applying new techniques and following innovative approaches to solve
or minimize existent concerns in the biomedical community.

The first contribution resulted in the implementation of a semantic layer that
allows connecting distributed and heterogeneous rare disease patient registries, giving
the opportunity to answer challenging questions across disperse labs [15, 17]. The
interconnection between those registries using SW technologies allows queries through
multiple instances according to the researcher’s needs. Furthermore, the developed Linked
Registries web-based platform [18] creates a holistic view over a set of anonymized
registries, supporting semantic data representation, integrated access and querying.

The second contribution is focused on the enhancement of COEUS [19], a SW
framework for biomedical data integration [20]. The tool is targeted to support the
integration of heterogeneous life science data, providing an intelligent resource combination
mechanism. Through advanced developed algorithms, the information can be ported to
the semantic level using existing ontologies and models, promoting distributed information
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access [21–27]. The conceived web platform performs automated integration of biomedical
resources enabling adequate data sharing mechanisms and an efficient attribution process
for knowledge exchange.

The third contribution of this thesis is related to the inexistence of a unified strategy to
integrate information extraction results into a reusable, shareable and searchable structure
[28, 29]. As an outcome of this research, a novel and modular architecture for textual
information integration using SW features and services is proposed [30]. Supported by the
Ann2RDF solution [31], it allows the migration of annotated data into a common model,
providing a suitable transition process, in which multiple annotations can be integrated
and shared across semantic knowledge bases.

The last contribution is a data migration tool to allow fast and easy transition from
traditional information systems to the SW level. Targeted at the biomedical domain,
SCALEUS [32] is a web-based platform that offers straightforward data migration and SW
services. Furthermore, it enables the fast deployment of new semantic-based information
systems by including, in a single package, the essential tools needed to contribute to the
knowledge federation layer being established across life science research. The solution offers
high-performance queries across established networks, delivering a baseline foundation for
the creation of shareable and interoperable bioinformatics platforms.

1.5 Document structure

The thesis is organized in six more chapters described in Figure 1.3. The main scientific
output is also shown for each section.

Chapter 2 provides a state-of-the-art description of the subjects that are most relevant
for this work. Strategies for biomedical data integration and distribution are introduced,
providing an overview of current methodologies and associated challenges.

Chapter 3 addresses the connection of distributed and heterogeneous rare disease
patient registries. The proposed methodology creates a holistic view over the patient
registries, supporting semantic data representation, integrated access and querying.

Chapter 4 describes an automated platform to integrate heterogeneous scientific
outcomes following adequate guidelines. This results in seamless integration to make data
accessible and citable at the same time, without extra scripting methodologies.

Chapter 5 presents a modular architecture to support the integration of text-mined
information from independent systems. The presented architecture provides a seamless
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Figure 1.3: Thesis structure, highlighting the main scientific contributions.
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transition from unstructured information to the SW level, enabling the full exploitation of
curated knowledge according to modern standards.

Chapter 6 presents an open-source platform to facilitate the creation of new semantically
enhanced information systems. This web-based system provides rapid data migration
methods to foster the adoption of SW technologies.

Finally, chapter 7 presents the final remarks of this thesis, highlighting some directions
for future work.
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Data integration and interoperability

In recent years, we have witnessed an explosion of biomedical resources resulting largely
from the demands of life science research. The vast majority of these resources are
freely available via diverse bioinformatics platforms, including relational databases, search
engines and scientific literature repositories. The conventional method of individually
accessing these resources has achieved great results in the past, but it is unfeasible to
support the new paradigm of interoperable open science. Assets need to be integrated
and shared among different, scattered sources, reducing the overwhelmingly heterogeneous
landscape in the current life sciences ecosystem. This creates novel opportunities to
develop methods and technologies to fully extract connected knowledge and fosters the
establishment of a linked network of biomedical resources.

2.1 Biomedical resources

Current biomedical research benifits from a great availability of biomedical resources.
Consequently, the overwhelming growth of bio-related data sources results in more
databases, applications, platforms and services. For instance, the Nucleic Acids Research
(NAR) Journal yearly tracks the most relevant biosciences database metrics. Examining
the Figure 2.1, we can notice the continuous growth of databases in the last 5 years.
Moreover, this progression shows not only the development of new databases but also
the publication of peer-reviewed articles to describe them in detail. According to a
NAR journal report of 2016 [33], there are a total of 1685 different databases that are
publicly accessible online. This estimate of publicly accessible databases can be considered
conservative. In fact, there are many more online services without complementary
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publication in peer-reviewed journals or being developed by commercial companies,
making them underrepresented in the scientific community [34].
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Figure 2.1: Growth of new developed databases and their related publications according
to NAR Journal yearly metrics.

Biological databases aggregate vast amounts of omics data, serving as vital resources
and becoming increasingly indispensable for scientists, from wet-lab biologists to in silico
bioinformatics. They are developed for diverse purposes, covering various types of data
and curated at different levels with miscellaneous methodologies. Table 2.1 includes a
summarized collection of human-related databases including gene, disease, pathways, drugs
and protein databases widely used and currently accessible via the Web. Curation processes
are an important part of these databases, involving standardization procedures, quality
controls and enhanced data consistency.
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Table 2.1: Publicly available biomedical databases.

Database Content

Comparative Toxicogenomics Database (CTD) [35] chemicals, genes,
diseases, pathways

DrugBank [36] drugs

Entrez Gene [37] genes

Expert Protein Analysis System (ExPASy) [38] proteins

GenBank [39] nucleotide
sequences

HUGO Gene Nomenclature Committee (HGNC) [40] genes

Human Metabolome Database (HMDB) [41] small molecule
metabolites

Kyoto Encyclopedia of Genes and Genomes (KEGG) [42] genes, genomes

Medical Dictionary for Regulatory Activities (MedDRA) [43] medical
terminology

Medical Subject Headings (MeSH) [44] medical
terminology

NCBI BioSystems [45] biological systems

Online Mendelian Inheritance in Man (OMIM) [46] genes, genetic
disorders

Pharmacogenomics Knowledge Base (PharmGKB) [47] genes, diseases,
drugs

Protein Data Bank (PDB) [48] proteins

RxNorm [49] drugs

Systematized Nomenclature of Medicine (SNOMED) [50] clinical health
terminology

Toxicology Data Network (TOXNET) [51]
chemicals,
environment,
toxicology

Universal Protein Resource (UniProt) [52] proteins
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The availability of a vast number of biological databases and related assets poses a
major challenge for connecting data sources. Typically, they are physically distributed
and heterogeneous in data type and format, requiring specific applications to ease data
exchange and sharing. Hence, resource diversification and distribution issues have been
key elements slowing down the exploration of biomedical data. Additionally, systems are
continuously built disregarding interoperable interfaces, expanding bioinformatics science
to a more and more fragmented landscape. This scenario is not desirable, and future
software development should be carefully rethought to allow an easy interconnection of
bio-related resources.

2.1.1 Data diversity

Nowadays, scientists access a wide variety of biomedical resources. Diverse databases,
services and applications are accessed through the internet, supporting scientific methods
and fomenting life science innovation. To simplify these tasks, data needs to be assembled
and processed.

Hence, connecting data sources plays a central role in scientific discovery. In most
cases, the task of accessing or integrating multiple data sources is difficult to achieve due
to a variety of reasons, e.g. databases do not follow a single model or notation, biological
concepts are represented in distinct models and with different identifiers, several types of
data formats and structures, among others.

This diversity can be split in 4 main levels. Table 2.2, summarizes those levels’
complexity, organizing resource dependencies from data storage heterogeneity to the
various access methods.

Table 2.2: Biomedical resources diversity, from data storage heterogeneity to the various
access methods.

Storage Formats Models Access

Relational Database
Object-oriented Database
Textual File
Binary File
. . .

HTML
CSV
XML
TXT
Excel
JSON
. . .

Structure
Ontology
Semantics
. . .

Local
Access
Remote APIs
Web Service
FTP Server
Web Pages
. . .
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Data Storage

Data is stored in many different types of repositories, e.g. in a relational database,
NoSQL database, binary file, or usually, in the textual form. These dissimilar repositories
have different access boundaries, making resource integration complex and arduous to
perform. For instance, accessing data in a relational database such as MySQL is totally
different from accessing a remote flat file from a File Transfer Protocol (FTP) server:
different interfaces need to access different methods to get the desired content.

Data Formats

Even if data storage is performed in the same physical format, such as flat file, these
files can vary in data formats. Accessing procedures are distinct for the examination
of a Comma-Separated Values (CSV) and Extensible Markup Language (XML) file, for
instance. This generates great heterogeneity in read/write operations, making it necessary
to assimilate different types of syntax to allow data integration.

Data Models

At the data model level, there can also be structure or schema heterogeneity. For
instance, exploring the XML standard, several concerns can be found with available format
structures: although there are normalization processes for read and write procedures,
different structures can be found, diverging from application to application. These issues
can be resolved by adopting some information mapping techniques, usually requiring extra
complex and demanding tasks.

Data Access

Finally, data access methods are also challenging to integrate if different Web
services or protocols are used. For instance, using different protocols such as Hypertext
Transfer Protocol (HTTP) and FTP requires different methods for remote data access,
making it necessary to adapt data requests. Generally, resource heterogeneity requires
the development or adaption of integrative software systems to foment interoperability
demands.
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2.1.2 The rare disease landscape

A rare disease is a particular health condition affecting almost 1 in 2000 people. [53].
According to the Orphanet inventory (www.orpha.net), there are approximately 6000 to
8000 rare diseases, of which about 80% have a genetic origin. Complex health implications
behind rare diseases are seldom considered in medical or social care. Due to the rarity of
each individual disease and their often complex nature, this group is underrepresented in
research and treatment developments. At the patient level, the diagnosis of a rare disease
generally means more difficulty in finding both clinical and psychological support [54].
The existence of a small number of cases for each disease creates additional barriers in the
translational research pathway, as it is difficult to identify and coordinate a substantial
cohort [55, 56]. Nevertheless, altogether rare disease patients comprise an estimated 6 to
8% of the EU population [57].

During the last decade, several small disease-specific databases have been developed,
related, for instance, to neurological disorders or muscular problems [58]. While they
provide high quality information and resources, their coverage is small and typically
with a regional or national scope. To achieve greater statistical evidence, we need
extensive cohorts of patients with similar features, from a worldwide population. Hence,
discovering rare disease-causing genes and mutations can have an impact on all medical
treatment stages, from clinical diagnostics to insights gained into biological mechanisms and
common diseases [59]. In addition to long-term patient care improvements, understanding
gene-disease associations is a fundamental goal for bioinformatics research, especially
in rare diseases where genotype-phenotype connections are typically limited to one or
a few genes [60, 61]. Moreover, it is in these particular conditions that the strongest
relations between genotypes and phenotypes are identified. Hence, to fully understand the
underlying causes of diseases, we need to connect knowledge that is widespread throughout
miscellaneous registries.

Patient registries

The collection and maintenance of patient registers has assumed a key role in the
identification of new treatments and in the improvement of care. In particular, personal
genetic records are of growing interest. These data are increasingly important for diagnosis,
resolution and therapeutic treatment of rare diseases. Hence, databases with information
about the human genome, such as the Human Gene Mutation Database (HGMD) [62] or
the 1000 Genomes Project [63], are increasingly relevant. Moreover, it is important to reuse
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these data in novel biomedical software to enable their use in daily medical workflows.

The value of individual data increases when it is aggregated and presented in a
unified way, both for humans and computers [64]. Orphanet provides a public portal, for
professionals and patients, with the most up-to-date information about rare diseases and
orphan drugs [65]. It also displays information on specialized consultations, diagnostics,
research projects, clinical trials and support groups. Diseasecard [66] is another platform
that aggregates genotype-to-phenotype information regarding rare diseases, pointing to key
elements for both the education and the biomedical research field. While these systems
do not provide repositories for patient-level data, they are useful resources for sharing and
disseminating existing knowledge and expertise.

Besides the important role of these specialized repositories, the integration of knowledge
that can be extracted from distinct Electronic Health Record (EHR) is also a major
challenge to support personalized medicine. Data from gene sequences, mutations,
proteomics and drug interactions (the genotype) can now be combined with data from
EHRs, medical imaging, and disease-specific information stored in patient registries
(the clinical phenotype). Hence, it is crucial to start exploring patient-level data from
rare disease registries, which often include personal data, diagnosis, clinical features,
phenotypes, genotypes, treatments and clinical follow up.

According to Orphanet, there are over 600 rare disease registries just in Europe, with
different aims and objectives, with access to different resources and collecting different
datasets. Registries have traditionally been developed to accelerate the translational
research pathway helping to move therapies from bench to bedside as quickly as possible.
They provide a tool for the feasibility and planning of clinical trials as well as a means to
identify and recruit patients for research. However, the purpose and utility of registries
have a much broader reach, providing a source of natural history data and a basis for
hypothesis generation that can advance research in a given field.

A single researcher or a clinician with an interest in a particular field can set up a
registry, or a disease network, or - as is increasingly common - a patient organization. The
variety in origin explains the variety of funding schemes (sustainability models) and data
collection techniques [67].

The most developed registries (e.g., Cystic Fibrosis [68, 69]) act as detailed studies, with
data collected at fixed time points in the clinical setting and stored in bespoke software
solutions. However, many registries are online self-report systems, with patients entering
data through a web portal.
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There are also examples of a combined approach: patients initiate registration,
while physicians verify details through the same web portal. This disparity in data
collection increases the complexity of a unified system. The data items themselves are
not standardized across all rare diseases though a significant amount of effort has been
applied in this area. Some consensus has been reached in certain disease areas, such as
Duchenne Muscular Dystrophy (DMD), where a federated registry system exists under the
umbrella of TREAT-NMD (www.treat-nmd.eu) [70, 71].

Towards harmonization

One step towards harmonisation can come in the form of international medical
classifications or languages, such as Unified Medical Language System (UMLS) [72] or
SNOMED-CT [73]. More recently, the use of phenotype ontologies, such as Human
Phenotype Ontology (HPO) [74], has been proposed for phenotype standardization.
Ontologies are a structured representation of knowledge using a standardized controlled
vocabulary for data organization, searching, and analysis. The use of ontologies to identify
and annotate data in patient registries ensures interoperability and common access, and it
also enables cross-cohort comparisons and filtering. Importantly, it allows the development
of new bioinformatics tools, covering the automated and systematic matching of clinically
similar representations of phenotypes to assist in differential diagnosis, among others.

These patient-centric databases offer unique specialized views over their internal
datasets. However, while there are huge amounts of data scattered throughout multiple
stakeholders, they are extremely difficult to obtain or access. The main reasons are the
lack of semantic compatibility and the evident low motivation of data owners to share
and spread data, and thus, individual efforts remain isolated. This is a critical obstacle
in rare disease research, where a sole center may collect only a small number of patients
with a certain disease. The outcome of this is that, in the end, there is not enough data
to generate statistically meaningful conclusions. As such, we cannot discover or infer new
knowledge because there is no access to a minimal amount of patient data.

To cope with these challenges we need a platform that offers a unique holistic view
promoting the collaboration of multiple entities towards the study of rare diseases and
assessment of patients’ evolution [75]. According to our study, only one related exchange
platform was developed regarding the rare disease domain: The Matchmaker Exchange
[76]. This platform provides a systematic approach to create a federation network
of genotypes and phenotypes databases through a common Application Programming
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Interface (API). This helps in the process of finding common genotype/phenotype pairs
in multiple individuals. However, this approach requires depositing the data in the main
database or the setup of local instances, always ensuring a set of services and end user
agreement. Indeed, generic solutions supporting the creation of independent systems that
can be plugged into any existing patient registry without changing it are a better milestone
towards semantically interoperable rare disease knowledge.

2.2 Semantic web

The first generation of the Web, which started during the 90s, is very different from the
Web of 2017. In the beginning, it was mostly about publishing static Hypertext Markup
Language (HTML) pages into a server, using rudimentary edition mechanisms.

The second generation of the Web was driven by a more dynamic and interactive
content: people search on the Web, discover answers to complex problems, find friendship
and communities, and more [77]. Web 2.0 influenced millions of people, creating new
research and business opportunities and initiating the era of social networks and online
advertising.

The third generation, the Semantic Web (SW) [11], is all about improvements in the
connectedness of Web 2.0, aiming to make data located anywhere on the web accessible
and understandable, both to people and to machines. In this way, it stands for a vision in
which computers, as well as people, can find, read, understand and use data over the World
Wide Web (WWW) to accomplish useful goals for users [12]. Overall, it is based on a new
technology that helps to reuse and repurpose data on the Web in new ways, following a
set of key characteristics:

• Ubiquitous networking - Data needs to be connected irrespective of its physical
location. Networks must remain open. Open data, open services, open APIs, open
protocols, and formats are the vision of the Web 3.0.

• Adaptive information - Data and resources are becoming increasingly more connected
and more dynamic, which implies reassembling on demand.

• Adaptive services - The Semantic Web movement requires the publication and
consumption of data as a service [78] hosted via Web protocols.

• Federated Data - Data needs to be stored and retrieved from different locations during
a single query.
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• Web Intelligence - Semantic networks make available description logic algorithms,
such as reasoning, to the Web. The logical formalism in the SW allows the extraction
of useful meaning from the data, automating the way people interact with it.

While SW is just a data recombination paradigm over the Web, a lot of work still needs
to be done to take full advantage of it and to allow a world-wide linked Web.

2.2.1 Linked Data

The web has advanced from an overall information space of connected pages to one
where both pages and content are linked, enabling a truly distributed knowledge network.
In this evolution process, a set of principles and standards were defined to enable structured
data publishing on the web. In 2006, Tim Berners-Lee [79] outlined four of these best
practices:

• Use Uniform Resource Identifier (URI)s as names for things;

• Use HTTP URIs so that people and machines can search for those names;

• When someone looks up a URI, it provides useful information;

• Include links to other URIs so that they can discover more things.

Despite being somewhat vague, following these principles allows an easily navigable
distributed data graph. Thus, the term Linked Data is simply about creating links between
diverse resources [80]. One relevant example is the Linked Open Data (LOD) [81], an
initiative which aims to deliver Linked Data under an open license. In recent years, the
project has grown considerably forming a global data space containing billions of assertions,
the Web of Data. DBpedia [82], one such initiative, is a central hub that provides a huge
knowledge base with data extracted fromWikipedia, and currently includes over 400 million
facts describing 3.7 million things.

By publishing on the web according to these best practices, data became incorporated
into a global space allowing them to be discovered and used by several applications.

2.2.2 General concepts

The fundamental unit of the Semantic Web (SW) knowledge is a statement, or triple,
a single piece of metadata formed through the union of three elementary components: a

20



CHAPTER 2. DATA INTEGRATION AND INTEROPERABILITY

subject, a predicate and an object. Examples of statements are: "P05067 - is a - Protein",
"Pedro - lives in - Aveiro" and "Bragança - is located in - Portugal". The subject is
the element where we will apply something new (e.g. P05067, Pedro, Bragança), the
predicate is the meaning of the relationship established (e.g. is a, lives in, is located
in), and the object is the explicit target (e.g. Protein, Aveiro, Portugal). Based on
this relation, statements can be linked together, forming successive chains of links. The
possibility to create such numerous relationships and interactions is the SW’s main added
value. Connecting millions of statements together can form a rich knowledge base, even if
the information remains distributed. These relationships are commonly understood as a
graph, as shown Figure 2.2 with a small set of statements regarding the P05067 protein.

Figure 2.2: A set of statements related with the UniProt P05067 protein.

Each resource must be uniquely identified in a specific namespace, an identity
space on the Internet, based on the URI definition [83] to identify unique resources
across the entire web. For instance, the "Amyloid beta A4" protein can be identified
through the combination of UniProt namespace (http://www.uniprot.org/uniprot/)
with the protein accession number P05067, resulting in http://www.uniprot.org/unip

rot/P05067.

RDF

The Resource Description Framework (RDF) is a standard model for representing
information in the web [84]. For instance, the contact information of a person can be
represented using the following RDF sample:
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<?xml ve r s i on ="1.0" encoding="utf−8"?>
<rd f :RDF xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"

xmlns : f o a f="http :// xmlns . com/ f o a f /0 .1/"
xmlns : r d f s="http ://www.w3 . org /2000/01/ rdf−schema#">

<f o a f : Person rd f : about = "http ://www.w3 . org /People /EM/ contact#me">
<f o a f : name>Eric Mi l l e r </ f o a f : name>
<f o a f : phone rd f : r e s ou r c e=" t e l :+1−(617)−258−5714"/>
<f o a f :mbox rd f : r e s ou r c e="mai l to :em@w3. org"/>

</ f o a f : Person>
</rd f :RDF>

In this case, the information contact of Eric Miller, one of the leaders of the World
Wide Web Consortium (W3C) SW initiative, is shown. To define the RDF vocabulary, a
Friend Of A Friend (FOAF) ontology (http://xmlns.com/foaf/spec/) is used, with it
being possible to express metadata about people such as name (e.g. foaf:name), phone
number (e.g. foaf:phone) and email address (e.g. foaf:mbox ).

According to W3C, the design of RDF was intended to meet the following goals [85]:

• Simple data model : the underlying structure of any expression in RDF is a collection
of triples.

• Formal semantics and provable inference: RDF has a formal semantics providing a
basis for defining reliable rules of inference in RDF data.

• Extensible URI-based vocabulary : the vocabulary is fully extensible, being based on
URIs with optional fragment identifiers, i.e. RDF references. URI references are used
for naming all kinds of things in RDF.

• XML-based syntax : RDF has a recommended XML serialization form.

• XML schema datatypes : RDF can use values represented according to XML schema
datatypes, thus assisting the exchange of information between RDF and other XML
applications. Datatypes are used in the representation of values such as integers,
floating point numbers and dates.

• Anyone can make statements about any resource: to facilitate operation at the
Internet scale, RDF is an open-world framework that allows anyone to make
statements about any resource.
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Following these goals, there is no limit to exploring data and connecting them with
external resources without the traditional interoperability issues. For instance, RDF has
features that facilitate data merging even if the underlying schemas differ. This is one of
the major advantages of using RDF graphs, facilitating data combination and allowing this
to be shared across the web.

Ontologies

Ontologies define the collection of terms and relations between terms that are adequate
for a given topic [86]. These relationships, often designated axioms, establish connections
between terms that mimic the real world. An ontology provides the means to classify the
"things", to give classification names and labels, and to define the kind of properties and
relationships that can be assigned. In practical terms, ontologies are used to assert facts
about resources described in RDF and referenced by a URI.

The Web Ontology Language (OWL) [87] is the W3C ontology standard, extending
the RDF schema. It is designed for use by applications that need to process the content
of information instead of just presenting information to humans. OWL offers greater
machine interpretability of web content, providing additional vocabulary along with formal
semantics. In this way, ontologies are OWL documents, that can be published to the
WWW, defining resources and their relationships. For instance, the FOAF ontology
already mentioned is used to describe people and social relationships. FOAF is devoted
to linking people and information, integrating social networks of human collaboration,
friendship and associations. In FOAF descriptions, there are several kinds of things and
links, i.e. properties. The types of the things are named classes. FOAF is therefore defined
as a dictionary of terms, each of which is either a rdfs:Class or a rdf:Property. Additionally,
other projects can provide other sets of classes and properties, many of which are linked
with those defined in FOAF (e.g. owl:equivalentClass). As an example, an overview of the
FOAF ontology used to describe the Eric Miller contact information is shown below:
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<rd f :RDF
<!−− RDF namespaces −−>
xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns : r d f s="http ://www.w3 . org /2000/01/ rdf−schema#"
xmlns : owl="http ://www.w3 . org /2002/07/ owl#"
xmlns : f o a f="http :// xmlns . com/ f o a f /0 .1/"
. . . >
<!−− FOAF Ontology d e f i n i t i o n −−>
<owl : Ontology rd f : about="http :// xmlns . com/ f o a f /0 .1/"
dc : t i t l e ="Friend o f a Friend (FOAF) vocabulary "
dc : d e s c r i p t i o n="The Friend o f a Friend (FOAF) RDF vocabulary ,
de s c r ibed us ing W3C RDF Schema and the Web Ontology Language . " >

</owl : Ontology>

<!−− FOAF c l a s s e s ( types ) −−>
<rd f s : Class rd f : about="http :// xmlns . com/ f o a f /0 .1/ Person"
r d f s : l a b e l="Person" r d f s : comment="A person . " >
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#Class " />
<owl : equ iva l en tC la s s rd f : r e s ou r c e="http :// schema . org /Person" />
<rd f s : subClassOf>
<owl : Class rd f : about="http :// xmlns . com/ f o a f /0 .1/Agent"/>

</rd f s : subClassOf>
. . .
</rd f s : Class>
. . .

<!−− FOAF prop e r t i e s −−>
<rd f : Property rd f : about="http :// xmlns . com/ f o a f /0 .1/name"
rd f s : l a b e l="name"
rd f s : comment="A name f o r some th ing .">
<rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#
DatatypeProperty"/>

<rd f s : domain rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ owl#Thing"/>
<rd f s : range rd f : r e s ou r c e="http ://www.w3 . org /2000/01/ rdf−schema#
L i t e r a l "/>

<rd f s : i sDef inedBy rd f : r e s ou r c e="http :// xmlns . com/ f o a f /0.1/"/>
<rd f s : subPropertyOf rd f : r e s ou r c e="http ://www.w3 . org /2000/01/
rdf−schema#l a b e l "/>

</rd f : Property>
. . .

</rd f :RDF>
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Regarding the biomedical domain, there are also ontologies for terminology description.
To exemplify, Table 2.3 includes a summarized collection of biomedical ontologies currently
available on the web.

Table 2.3: Some publicly available biomedical ontologies.

Ontology Content

Cell Ontology (CL) [88] cells

Chemical Entities of Biological Interest (ChEBI) [89] chemicals

Disease Ontology (DO) [90] diseases

Drug-Drug Interactions Ontology (DINTO) [91] drug-drug interactions

Gene Ontology (GO) [92] genes

Protein Ontology (PRO) [93] proteins

Sequence Ontology (SO) [94] genomic annotations

Unified Medical Language System (UMLS) [72] biomedical terminology

2.2.3 Storage

RDF stores have key distinguishing features compared to the relational databases [95].
Firstly, they are more flexible than relational models, which need to be reorganized if
the database schema changes. Second, RDF resources are identified by a unique URI,
making it possible to create references between two different RDF graphs, even in different
namespaces, therefore enabling data linkage. Third, the relational model does not have the
notion of hierarchy, which makes it difficult to apply Structured Query Language (SQL)
queries for reasoning purposes. In opposition, this type of query is natively supported in
RDF Schema (RDFS) and OWL. As a result, RDF repositories offer easier data integration
of diverse sources as well as more analytical power.

25



CHAPTER 2. DATA INTEGRATION AND INTEROPERABILITY

Triplestore

A triplestore is a type of graph database that allows storage and retrieval of facts
through semantic queries. Being a graph database, a triplestore stores data as a network
of objects with materialized links between them, i.e. triples. This makes triplestores the
preferred choice for managing highly interconnected data. They are also capable of handling
powerful semantic queries and using inference to uncover new information. Due to the
ability to manage unstructured and structured data in several domains, such as life sciences,
these RDF databases are growing very fast [95]. Usually, they differ in characteristics
such as scalability, performance, data management methods, reasoning capabilities and
licensing, among others.

The first proposed triplestores based their data storage mechanism on top of traditional
Relational Database Management System (RDBMS). Initially, this approach allowed faster
development with little programming effort. However, the flexibility of the RDF model is
poorly suited to traditional relational storage models which, for efficiency reasons, rely
on well-defined structural models [96]. One of the difficulties in implementing triplestores
on SQL databases is that, while it is possible to store the triples, it is very difficult to
implement efficient queries on a RDF-based graph over traditional SQL queries. Some of
the solutions that follow the relational-based approach are Virtuoso [97], COEUS [98] and
Sesame [99].

Therefore, the trend in managing RDF data has moved away from the relational
approach to other storage schemas. These new triplestores avoid dependence on rigid
SQL schema, and are better suited to the flexible structure of the RDF data. Native
triplestores including AllegroGraph [100], BlazeGraph (https://www.blazegraph.com/)),
Fuseki (http://jena.apache.org) or Sesame (which has a hybrid approach), are built
from the ground up as database engines, allowing exploitation of the RDF data model to
store and access RDF data efficiently and showing higher overall performance. In this way,
several RDF stores are currently available and each of them may be more suitable in specific
cases, depending on the requirements of the scenario [101]. For instance, Table 2.4 presents
a brief comparison of several systems currently available for the creation and management
of RDF repositories. This overview was assessed by informally measuring the installation
and configuration effort (i.e. setup), type of API, storage method, inference support and
type of license.
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Table 2.4: Synopsis of some available SW applications for triplestore creation and
management.

APP Setup API Storage Inference License
Virtuoso Complex REST/SOAP RDBMS RDFS Open Source

Sesame Complex REST Native /
RDBMS

RDFS +
Rules Open Source

COEUS Complex RESTstyle RDBMS No Open Source
Fuseki Complex REST Native No Open Source

Allegrograph Complex REST Native RDFS Commercial
Blazegraph Easy REST Native RDFS Open Source

SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) [102] is the standard query
language for RDF. It enables users to query information from databases or any data source
mapped to RDF. It is similar to SQL query language, allowing the user to retrieve and
modify data. SPARQL syntax is also very similar to SQL and enables five distinct types:
SELECT, CONSTRUCT, ASK, UPDATE and DESCRIBE.

SELECT statements are similar to SQL selections where we bind variables in our
query to the results we expect to obtain from the database. The basic structure of
a SELECT query comprises the prefix declarations, for abbreviating URIs, the result
clause, to identify what information to return from the query, and the query pattern, to
specify what to query in the underlying database. For instance, the following query shows
an example of how to retrieve the name(s) and email(s) of a RDF database using SPARQL:

# pr e f i x d e c l a r a t i o n s
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
# r e s u l t c l au s e
SELECT ?name ?mbox
# query pattern
WHERE {

? person f o a f : name ?name .
? person f o a f :mbox ?mbox

}

Additionally, CONSTRUCT queries can be performed instead of SELECT statements,
providing an alternative result clause, i.e. instead of returning a table of result values,
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it returns a RDF graph. ASK queries evaluate the existence of a particular resource or
relationship, returning a boolean value. Finally, UPDATE queries allow updating data
in a knowledge base graph, while DESCRIBE queries return all known relationships
for the given resource. SPARQL queries are directed to a SPARQL endpoint, a service
that accepts queries and returns the results in one or more machine-processable formats.
Besides being the SW query language, SPARQL is also the protocol for setting up
HTTP connections from clients to endpoints. SPARQL endpoint becomes the main
preference to access data because it is a flexible way to interact with the Web of Data,
by formulating queries like SQL in a traditional database. In contrast to SQL, SPARQL
queries are not constrained to work within one database. Based on data source location,
the infrastructure for querying Linked Data can be divided into two main categories:
central and distributed repositories. The central repository has the same characteristic of
data warehousing, where the data are collected in advance in a single repository before
regular query processing. In contrast to query distributed repositories, federations-based
solutions must be adopted [103]. With these federation systems, the data is discovered
by following HTTP URIs of distributed endpoints, each distinct repository providing a
wide and heterogeneous query engine that supports the principles of Linked Data. This
type of federation strategy has been the topic of recent research in the SW research
community [16]. For instance, we can use the SPARQL Federated Query specification
(https://www.w3.org/TR/sparql11-federated-query/) to execute distributed queries
over different SPARQL endpoints. This is performed by using the SERVICE keyword
to instruct a federated query processor to invoke a portion of a SPARQL query against
a remote SPARQL endpoint. The next example shows how to query a remote SPARQL
endpoint (to find the names of the people we know) and join the returned data with the
data from a local RDF database:

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ?name
FROM <http :// example . org /myfoaf . rdf>
WHERE
{

<http :// example . org /myfoaf / I> f o a f : knows ? person .
SERVICE <http :// people . example . org / sparq l> {

? person f o a f : name ?name .
}

}
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The growing number of SPARQL query services offer data consumers an opportunity
to merge data distributed across the Web. These services allow effective use of data
in a universal and machine-understandable way. For that reason, users must cooperate
and deploy such interoperable services avoiding future deep modifications to satisfy data
integration demands. Nevertheless, this cooperation can only bring successful results if
well-described and controlled content is provided.

2.2.4 Technology adoption

Life science research is continuously pushing forward novel strategies capable
of significantly improving the research workflow. To cope with current demands,
bioinformatics researchers are adopting emerging SW [11] technologies to achieve better
solutions to represent and analyze biological and medical processes. The complex
relationships behind such processes are easily mapped onto semantic graphs, enabling
greater understanding of collected knowledge. Latest advances in the area cover the
research and development of new algorithms to further improve how we collect data,
transform data into meaningful knowledge assertions, and publish connected knowledge.

The majority of life science data are scattered through closed independent systems,
disregarding any good practice for integration and interoperability features [104].
Moreover, the overwhelming scale and intrinsic complexity of the data generate information
overload, requiring additional efforts to gather insights from the available knowledge
[105, 106]. Additionally, the role of bioinformatics researchers is affected due to
the use of heterogeneous tools to attack each specific problem. The use of different
systems and applications creates communication issues, resulting in a significant ecosystem
fragmentation.

With adoption of the SW paradigm, new standards and technologies allow the solution
of common problems, from information heterogeneity to knowledge distribution [107]. From
a technological standpoint, the SW can be seen as an "intelligent" data network, enabling
meaningful relationships amongst data. As such, the SW emerges as a next-generation
software development paradigm able to combine life science characteristics with integration
and interoperability demands, providing improved computational features to exchange
and accurately interpret knowledge [108]. As with the majority of new technologies,
updating or migrating existing systems to a new working environment are cumbersome
tasks. Likewise, moving systems from relational repositories, or even from flat files, to
semantic infrastructures has been the subject of extensive research [109–111]. Evolving
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such systems to the SW ecosystem is a trend that seems likely to continue in the coming
years. Overall, major emphasis has been given to the development of translation languages
and algorithms, enabling the mapping from data connections to the SW graph.

Combining biomedical data with SW features allows the extension of existing relational
connections, enriching their meaning and expressiveness. Regarding this subject, two
approaches are common: some mappings are dedicated to forming new triple sets from
existing relational databases, whereas other languages enable publishing semantic views
over relational data. These languages are complemented with translation applications,
using the newly mapped model to provide a semantic data version. Triplify [112] and
D2R server [113] are examples that allow semantic views over existing relational data.
Despite these advances in migration technology, the resulting systems are just a semantic
version of pre-existing relational data. For this reason, other systems explore different
challenges in the integration and transition process. For instance, Bio2RDF [13] was one
of the first to successfully integrate heterogeneous resources from the most relevant life
science databases, from genes to proteins up to pathways and publications, and deliver
semantic services to access this information. A more recent example is COEUS [20],
an open source framework whose target is to streamline the development cycle of SW
applications. The framework provides a single package including advanced data integration
and triplification tools, base ontologies, a web-oriented engine and a flexible exploration
API. Resources can be integrated from heterogeneous sources, including CSV and XML
files or SQL query results, and mapped directly to one or more ontologies. With the
same decision-support goals as traditional warehouse systems, these applications adopt
advanced Extract-Transform-and-Load (ETL) techniques to triplify existing data into a
semantic format, storing them in triplestores.

2.3 Information extraction

The continuous growth of scientific literature repositories demands the exploration of
automated information extraction tools to access relevant information contained in millions
of textual documents and to support translational research [114]. In the biomedical domain,
progress has been outstanding [115], producing reliable text-mining tools and innovative
text-processing algorithms. The combination of these techniques has been increasingly
applied to assist bio-curators, allowing the extraction of biomedical concepts such as
genes, proteins, chemical compounds or diseases, and thus reducing curation times and
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cost [5]. The manual curation of these data is a demanding task, and the latest strategies
use computerized text-mining solutions to aid in the analysis, extraction and storage of
relevant concepts and their respective attributes and relationships. Recently, interactive
solutions have attracted more attention due to the added benefits of including automatically
extracted information in the manual curation processes. With these solutions, the curation
time is improved and possible mistakes from computational information extraction results
are minimized. Brat [116], MyMiner [117], Argo [118] and Egas [119] are examples of
interactive solutions, aiming to simplify the annotation process. For instance, Egas splits
the document text into highlighted sentences to simplify visualization and promotes focused
text analysis and improved information extraction processes (Figure 2.3). Accordingly, it
also supports in-line information annotation of concepts and relations.

Figure 2.3: Egas tool [119] annotating concepts and relations in a sample text document.

Indeed, biomedical information extraction aims to extract information from text
documents, such as abstracts, articles, documents and reports. To do so, state-of-the-art
solutions usually follow a combination of pre-defined and sequential processes, illustrated
in Figure 2.4.
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Figure 2.4: Main processing steps currently applied in biomedical information extraction.

2.3.1 Corpora and evaluation

To evaluate biomedical information extract systems, it is fundamental to compare
them with existing solutions. Usually, this is performed by comparing the automatic
annotations output with the annotated corpus provided by expert curators. An annotated
corpus, by definition, is a set of documents that usually contains annotations of specific
domains. Table 2.5 shows some biomedical annotated corpora that can be used to evaluate
biomedical IE solutions.

Table 2.5: Some publicly available biomedical corpora.

Corpus Purpose

CRAFT corpus [120] concept recognition

GENIA corpus [121] concept recognition

Gene Regulation Event Corpus (GREC) [122] event extraction

MSH WSD data set [123] word sense
disambiguation

To measure performance, some specific metrics of the predicted annotations should be
calculated. Predicted annotations can be classified as true, if they agree with the correct
annotations, or false, if they are not in compliance with the correct annotations. Also,
predicted annotations can be classified as positive, if the system provides an annotation,
or negative, if the system does not provide any annotation, that is, there is no annotation.

Therefore, predictions can belong to four distinct classes:
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• True Positive (TP) = correctly identified;

• False Positive (FP) = incorrectly identified;

• True Negative (TN) = correctly rejected;

• False Negative (FN) = incorrectly rejected.

Several metrics are normally used to evaluate the performance of this classification
problem: precision, recall, accuracy, and F-measure. These metrics assume values between
0, in the worst case, and 1, in the best case. The precision is given by the ratio between
the correct predicted annotations, TP, and the amount of predicted annotations, TP+FP
(Equation (2.1)).

Precision =
TP

TP + FP
(2.1)

The recall, or sensitivity, is defined as being the ratio between the correct predicted
annotations and total curated annotations (Equation (2.2)).

Recall =
TP

TP + FN
(2.2)

The accuracy is defined as the ratio between the true predictions and the total number
of predictions (Equation (2.3)).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

Finally, the F-measure, or F-score, is the harmonic mean of precision and recall metrics
(Equation (2.4)).

F -measure = 2 · Precision ·Recall

Precision+Recall
(2.4)

2.3.2 Text pre-processing

Natural Language Processing (NLP) is a field of computer science concerned with
the processing of natural language data. NLP began in the 1950s as the intersection of
artificial intelligence and linguistics [124] studying problems associated with the automatic
generation of text, or speech, and the understanding of human language. Nowadays,
NLP techniques can be effectively accomplished by computerized systems, which split
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documents into meaningful components, such as sentences and tokens, assign grammatical
categories (a process named part-of-speech tagging), and apply linguistic parsing to
identify the structure of each sentence. The pipeline can be illustrated by the Figure 2.5,
which contains several linguistic tasks.

Figure 2.5: Different NLP tasks with respective dependencies considering the sentence
"Down-regulation of interferon regulatory factor 4 gene expression in leukemic cells" [125].

Sentence splitting goal is to break a given text in the respective sentences. This is
acquired using punctuation symbols, such as the period (.), the exclamation mark (!), the
question mark (?), and others. The best performing solutions can achieve an accuracy of
around 99% using Conditional Random Field (CRF) models [126].

Tokenization aims to identify and separate the words from a text, or from the split
sentences (if the text was split into sentences firstly). Each separated word, or set of
words, is called a token. Barrett and Weber-Jahnke [127] built a biomedical tokenizer
that combines regular expressions and ML techniques, achieving accuracies around 92%.
A comparison of 13 distinct tokenizers using MEDLINE abstracts was made by He and
Kayaalp [128].

A Stop words process can be used to remove common words that do not give any
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relevant information in the text (e.g., “and”, “so”, ...).
The part-of-speech (PoS) tagging labels each word according to its lexical category

(also named word category or word class). Examples of these categories are: nouns, verbs,
adjectives and adverbs. Part-of-speech taggers for biomedical texts, can achieve a precision
of 97% [129].

The stemming process goal is to remove the suffixes from the words (e.g.,
“cars” → “car”, “heroine” → “hero”, “running” → “run”) and the Lemmatization process
aims to transform every word into the respective lemma. Lemma is the base form of a
word that can be consulted in a dictionary (e.g., “better” → “good”). Lemmatization tools
can reach accuracies of 97% in biomedical articles [130].

Text chunking, also known as shallow parsing, groups consecutive and syntactically
correlated tokens into chunks, assigning labels to them. After the PoS tagging, chunking
makes use of these tags to group words in higher order grammatical units, such as noun
phrases (NPs), and verb phrases (VPs). A study of 6 chunkers for the biomedical domain
using the GENIA corpus [121] obtained the F-scores, around 90% for NP chunking and
96% for VP chunking [131].

Dependency parsing is concerned with the analysis of the sentence structure, focusing
on the relations between the words. A binary asymmetric relation between two tokens is
called a dependency. An analysis of the outputs of several dependency parsers scored top
accuracies of 90% [120].

2.3.3 Concept recognition

Concept recognition is the task that aims to automatically extract concepts (e.g. person
names, diseases names, ...) from the text. Usually, the concept recognition task involves
three main subtasks: Named Entity Recognition (NER), Normalization and Word Sense
Disambiguation (WSD).

Named Entity Recognition (NER) aims to identify chunks of text and associate them
with their specific concept type. This task can be performed by different approaches,
such as dictionary matching [132], rule-based [133] or machine learning solutions [134].
Generally, the feasibility of each approach depends on the linguistic characteristics of
the concepts being identified. Applying one of the described techniques, it is possible
to automatically extract biomedical names from a massive amount of information. A brief
comparison of some available NER tools is available in [8]. According to the authors, the
best performing solution can achieve values of F-measure around 92% and 95%.
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The goal of normalization and Word Sense Disambiguation (WSD) is to attribute each
identified chunk of text to a unique concept from a curated knowledge base. This procedure
is performed by associating a unique concept identifier, from databases or ontologies with
each previously recognized concept. For instance, “Alphaproteobacteria” is an organism that
is defined by the MeSH database, and its unique identifier is “D020561”. To apply this
type of association, the creation of standards and ontologies for concept name definitions
plays an important role in concept recognition tasks. The normalization task starts by
associating the recognized name with any name on the biomedical knowledge scope. If
there is no associated identifier, there is no option to assign an identifier to this concept,
so it may be discarded as an entity name but if there is only one identifier associated, it is
immediately endorsed. Otherwise, the entity name can be associated with more than one
identifier. If this case occurs, it is considered ambiguous. Due to the biomedical domain
complexity and extensibility, ambiguity is usual. For example, the term "cold" could
refer to the temperature or a virus, depending on the context. Dealing with biomedical
ambiguity problems is essential in order to achieve the correct identification of the concept
names. To solve ambiguity, most of the WSD systems use machine learning techniques
[135] and established knowledge solutions [136].

Figure 2.6 shows a recognition example, in which biomedical entities are identified and
linked to curated resources, e.g. the MeSH database [44].

Insecticides are pesticides designed to eliminate insects that are harmful to humans.

MeSH ID: D007306

MeSH ID: D010575

MeSH ID: D007313

MeSH ID: D006801

Chemicals and Drugs Organisms

Figure 2.6: A recognition example of biomedical entities linked to the MeSH database [44]
with their unique identifiers.

2.3.4 Relation mining

Biological systems involve interactions between entities, such as gene transcription or
protein binding, elucidating the roles that biomolecules play in the biological processes.
These relationships are usually described in the literature and are a good challenge for
text-mining systems that apply relation mining techniques to extract and classify the
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context and type of such relationships. The recognition of these interactions is an important
step in biomedical information extraction [137], identifying diverse biological associations
and involved entities.

Traditional relation mining solutions are focused on investigating and extracting direct
associations between two concepts (e.g. genes, proteins, drugs, etc.) [138]. The study of
these associations has generated much interest, especially in relation to protein-protein
interactions (PPIs) [139], drug-drug interactions (DDIs) [140], and relations between
chemicals and target genes [141]. As a consequence, the growing attention allied with
the complexity of biological processes has generated new strategies to detect even more
multifaceted interactions from text. Such complex interactions are typically distinguished
in the literature as events.

Event extraction techniques became more common with the introduction of BioNLP
shared tasks [142], a community-wide trend in text-mining for biology. In general,
event mining aims to extract not only relations between concepts, but also relations
between concepts and another relations, and even relations between relations allowing
the construction of complex conceptual networks. Relation extraction is typically referred
to as the task of extracting binary relations between concepts, and the event extraction as
complex relation extraction involving verbs or normalized verbs to characterize the event
type (i.e. trigger).

Figure 2.7 depicts a representation of a common relation extraction process between
entities (a) and the respective event extraction process (b) of the same sentence. On the one
hand, a) detects the protein and associates normalized relations (location) with the cells’
components. On the other hand, in b) the localization event (translocation) captures the
identification of the target (theme) entity (p65), the source (cytoplasm) and the destination
(nucleus).

Overall, event representations capture the association of multiple participants with
variable semantic roles [122] determined by domain requirements. Due to the complexity
of the extraction process, most solutions only identify events and relations in a single
sentence and not across sentences or papers.

In terms of performance, simple rule-based approaches can achieve an F-measure of 49%
for biomedical event extraction [143]. For medical relation extraction, they can already
achieve an F-measure of 67% [144].

37



CHAPTER 2. DATA INTEGRATION AND INTEROPERABILITY

Figure 2.7: Analysis of the same sentence for relation and event extraction techniques.

2.3.5 Annotation formats

The results of text-mining solutions are typically kept in text files, using distinct data
formats. Commonly called annotations, they are generated following a specific structure
dependent on the extraction system.

Diversity

Several data formats have been proposed to represent biomedical information extraction
outcomes. IeXML [145] was one of the first XML-based implementations to define
an exchange format for annotations. More recently, BioC [146] has emerged as a
community-supported format for encoding and sharing textual annotations. This simplified
approach streamlines data reuse and sharing methods, achieving interoperability for the
different text processing tasks. Figure 2.8 shows a BioC file extraction, containing a
sample annotation of the Alzheimer Disease concept recognition. Although BioC provides
interoperability between text-mined components, it is still a verbose format, not being
designed to support data exploration and sustainability.
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Figure 2.8: BioC file extraction showing an annotation of the Alzheimer Disease concept.

Another possible organization for textual annotations is the Standoff format, in which
annotations are stored separately from the annotated document text (Figure 2.9). For
each text document, there is a corresponding annotation file. The two are associated with
the file name. However, this simplified organization also hinders its wider use, namely if
wanting to analyze the associations between the extracted data. Although there are several
formats to represent biomedical textual annotations, its organization in a SW compliant
format allows easier exploration of this information.

Integration

Emerging SW standards and concepts are currently seen as the standard paradigm
for data integration and distribution on a web-scale, focused on the semantics and the
context of data [147]. It allows the construction of rich networks of linked data, offering
advanced possibilities to retrieve and discover knowledge (e.g. reasoning). With the

39



CHAPTER 2. DATA INTEGRATION AND INTEROPERABILITY

Figure 2.9: Standoff file extraction showing an annotation of the Alzheimer Disease
concept.

increasing adoption of this paradigm to tackle traditional data issues such as heterogeneity,
distribution and interoperability, novel knowledge-based databases and systems have been
built to explore this technology’s potential. Essentially, they facilitate the deployment of
well-structured data and deliver information in a usable structure for further analysis and
reuse.

In this way, approaches combining the benefits of information extraction methods with
these semantic systems represent a growing trend, allowing the establishment of curated
databases with improved availability [148]. Coulet et al. [149] provide an overview of such
solutions, and describe a use case regarding the integration of heterogeneous text-mined
pharmacogenomics relationships on the SW. Another case study is described by Mendes
et al. [150], presenting a translation method for automated annotation of text documents
to the DBpedia Knowledge Base [82]. The developed strategy represents ongoing efforts
striving to integrate the existing knowledge in text documents into the Linked Open Data
network. A different approach is proposed through the PubAnnotation [151] prototype
repository. The notion was to construct a sharable store, where several corpora and
annotations can be stored together and queried through SPARQL.

In this perspective, there is a clear trend to combine text-mined information with SW
technologies, resulting in improved knowledge exchange and representation. Taking into
account these approaches, there is a clear tendency towards workflow construction systems
for annotation distribution. However, limitations in the development processes and the
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existence of software dependencies in the source platforms [152] represent a barrier to
adapting and reusing existing solutions for the distribution of distinct annotation structures
and formats. The great heterogeneity of biomedical annotations makes it challenging to
aggregate results obtained from different tools and systems, with innovative solutions being
necessary for the combination and distribution of multiple annotations.

2.4 Representation of scientific knowledge

The continuous increase of biomedical data has provided good opportunities for
scientific achievements. Yet, at the same time, its management is challenging for the
research community. Information from studies needs to be adequately processed and
shared between stakeholders [153] to enable an incremental understanding of biological and
medical processes. Although several methods are used, the most common is the publication
of scientific articles in international peer-reviewed journals. Traditionally, the evaluation
of researchers’ scientific output is based on this process. Over the years, this methodology
has persisted mostly due to its ability to attribute credit to the authors. However, it is
still unclear how academic credit is established for biomedical data sharing, and traditional
journals can provide semi-structured information that is coherent and a valuable addition
to scientific knowledge.

Furthermore, we cannot exclude existing methods that also contribute to the scientific
field. Examples of these include the submission to, or curation of, biological databases
[154]. In these particular cases, there is no effective way to credit authors’ work.

Additionally, the biomedical field has faced concerns due to an excessive amount of
information [155]. Most of this material is cumulative and finding the desired data
and related connections, including provenance details, requires considerable efforts. To
tackle these challenges, novel methodologies are needed to effectively summarize and credit
scientific knowledge.

2.4.1 Available strategies

One of the earliest practical demonstrations of the “microattribution” concept occurred
in 2011 with the publishing of a set of locus-specific databases for publishing genetic
variation related data [156]. From that moment, the concept itself as an alternative
reward method for scientific contributions has generated a lot of interest in the scientific
community.
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With the dawn of the SW paradigm [11], the nanopublication notion [157] has emerged
to solve most data credit issues. Several prototypes have been developed using the
nanopublication format to obtain credit for the shared content. These cover several
areas, including public and commercial drug discovery research [158], human gene-disease
associations [159], human proteins [160] and specific rare diseases [161].

Sample first-generation nanopublications were produced from the Leiden Open-Access
Variation Database (http://www.lovd.nl) [162], encouraging the submission of human
genomic variant data for sharing within the scientific community [154]. A more generic
conversion approach is provided by Prizms [163]. According to the authors, the tool
converts several formats into a nanopublication model called "datapub", to describe the
integrated datasets. A proof-of-concept demo with 330 melanoma datasets is available
at http://data.melagrid.org. A different and interactive approach is provided by
the Nanobrowser portal (http://nanobrowser.inn.ac). Nanopublications are created
through a manual process using sentences to characterize underspecified scientific claims
[164]. The sentences are built using the AIDA (Atomic, Independent, Declarative,
Absolute) semantic scheme providing a similar and summarized representation of scientific
assertions [165].

2.4.2 Nanopublications

Nanopublications allow authors to interconnect and exchange data while receiving
credit for shared content. The idea is that they are more suited than traditional
papers to represent the relationships that exist between research data, providing an
efficient mechanism for knowledge exchange [166]. They are built through SW concepts
and strategies, allowing knowledge summarization with proper attribution mechanisms.
This normalizes how provenance, authorship, and related publication information can be
attributed, reusing information whenever possible. Serializable on the RDF interoperable
format, it facilitates knowledge exchange methodologies fostering retrieval and use.
Furthermore, it provides the possibility of being cited and the impact tracked with the
universal nanopublication identifiers, boosting compliance with open SW standards.

Model

Currently, the nanopublication community (http://nanopub.org) is developing this
standard through an incremental process. Several efforts are underway to produce
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guidelines and recommendations for the ultimate schema (http://nanopub.org/nschema).
Figure 2.10 presents the fundamental structure according to the nanopublication model.

The basic nanopublication structure comprises four main components, in which the unique
nanopublication Identifier is associated with the Assertion, Provenance and Publication
Information. Both fields comprise a set of RDF triples describing the nanopublication
metadata. Regarding the Assertion graph, one assertion at least must be included to
be valid: an assertion is the smallest unit of thought, expressing a relationship between
two concepts. Supporting metadata about the assertion context are provided through the
Provenance graph. This includes methods that were used to generate the assertion and
attribution metadata such as, DOIs, URLs, timestamps, authors and related information.
Supplementary metadata about the nanopublication itself is enclosed in the Publication
Information graph. Attribution, generated time, keywords or tags are sample metadata
that can be added to offer provenance information regarding the nanopublication itself.

Figure 2.10: Anatomy of a nanopublication. The different fields of the nanopublication
structure (left) with corresponding example (right) in TriG syntax (http://www.w3.org/
TR/trig/).

Opportunities

The nanopublication strategy offers not only a great opportunity to improve and publish
conventional paper research data, but also to explore positive and negative data studies.
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Experimental data studies can also be published in a standard format, such as RDF triples,
instead of archived as supplementary information in an arbitrary format or independent
databases. Research Objects (RO) [167] are a possibility for the aggregation objects that
bundle experimental studies’ resources. However, in contrast to nanopublications, RO
encapsulate elements for an entire investigation, as opposed to individual claims [168].
With the nanopublication strategy, researchers can access more quickly not only the more
relevant information but also the supporting data and related metadata. It also intends to
reduce the publishing time and the search period, streamlining the investigation procedure.
For these reasons, deploying data as nanopublications will improve similar studies, saving
time and unnecessary costs. In a sense, they are a natural response to the increasing number
and complexity behind scientific communications. As a result, the aim is to overcome the
inconsistency, ambiguity and redundancy of classical publications, enhancing information
extraction and analysis.

However, even with the adoption of standards, some data sharing issues persist. The
major reason is the lack of expertise to convert local data into accepted data standards
[163]. The inexistence of adequate tools and systems are obstacles to data-publishing
as nanopublications. Current solutions are developed for specific scenarios and based on
hand-scripted processes, which limits their applicability.

In this way, they fail to address three important features. First, they are
produced by hand-scripted processes, the main functionality being missing: an automated
transformation from several legacy data formats to nanopublications, following the latest
schema (http://nanopub.org/nschema). Second, they do not follow an interactive
approach. Cooperative solutions that are easy to set up by non-informaticians and able
to effortlessly perform this transition are crucial to overcome the limited deployment
of nanopublications. Third, they are based on specific use cases, with reproduction or
adaptation being unfeasible. Therefore, researchers clearly need an easy set-up procedure
that allows them to publish and share their scientific outcomes through a reliable system
[26].

2.5 Summary

SW is becoming a common bridge across biomedical silos of disconnected standards.
The true value behind this technology lies in how easy it is to access and exchange
knowledge between independent systems toward making software easier to connect in the
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future. In this way, a shift of traditional resources to this modern paradigm is vital to
better promote, express and infer biomedical knowledge.

Despite several efforts to drive biomedical resources into the SW ecosystem, there is still
a need to provide seamless integration of diverse information such as omic data, scientific
literature and many other data sources (e.g. databases, spreadsheets, etc.).

Following the problems highlighted in the current state-of-the-art, four solutions will be
presented and discussed to enable interoperability across biomedical resources. First, the
connection of distributed resources is addressed. Second, the integration of semi-structured
data formats is investigated. Third, the semantic integration will be mainly focused on
unstructured data. Finally, a higher level of semantic integration will be discussed for fast
deployment of new, modern and high-performance information systems.
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Chapter 3

Connecting rare disease patient
registries

Patient registries are an essential tool to increase current knowledge of rare diseases.
Understanding these data is a vital step to improve patient treatments, and to create
the most adequate tools for personalized medicine. However, the growing number
of disease-specific patient registries also brings new technical challenges. Usually,
these systems are developed as closed data silos, with independent formats and
models, lacking comprehensive mechanisms to enable data sharing. To tackle these
challenges, we developed a semantic web-based solution that allows connecting distributed
and heterogeneous registries, enabling the federation of knowledge between multiple
independent environments1. This semantic layer creates a holistic view over a set of
anonymized registries, supporting semantic data representation, integrated access and
querying. The implemented system gave us the opportunity to answer challenging questions
across disperse rare disease patient registries. The interconnection between those registries
using Semantic Web technologies benefits our final solution in the way that we can query
single or multiple instances according to our needs. A web-based entry point is available
at http://bioinformatics.ua.pt/linked-registries-app/. This strategy allows a
holistic view through connected registries, enabling state-of-the-art semantic data sharing
and access. The outcome is a unique semantic layer, connecting miscellaneous registries
and delivering a lightweight holistic perspective over the wealth of knowledge stemming
from linked rare disease patient registries.

1 This chapter is largely based on the paper by P. Sernadela, L. González-Castro, C. Carta, E. van
der Horst, P. Lopes, et al., "Linked Registries: Connecting Rare Diseases Patient Registries through a
Semantic Web Layer", BioMed Research International, vol. 2017, pp. 1–13, Oct. 2017.
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3.1 Overview

Rare disease patient registries are typically fragmented by data type and disease.
Furthermore, these systems have poor interoperability due to the high complexity and
heterogeneity of data types and the lack of standards in data models and data descriptions.
Due to strict data-protection requirements, access to patient registries is restricted,
converting these valuable, distributed sources in closed data silos. This is a barrier to
linking patient-centric electronic records across registries and diseases. To tackle these
barriers to integration, we started the study by looking for relevant questions difficult to
answer without an infrastructure of integrated patient data from several registries. The
motivating questions were, for instance:

1. Given a set of phenotypes that are relevant for neuromuscular (e.g. DM, FSHD,
LGMD2I) and neurodegenerative diseases (e.g. HD, Ataxia), can we find patients in
a disease non-specific way?

2. More specifically, based on "Ambulation", "Age", and "Country", can we get the
number of patients?

Answering this kind of question requires data of a disparate nature and from multiple
sources. To harmonize these data into a semantic layer we need an integration platform
capable of converting any data format into RDF. This implies abstracting registry concepts
and their attributes, such as: Patient (sex, date of birth, country); Disease; Phenotype
(motor, ambulation); and Genetic Variation, and then, representing them in a graph data
model in which the semantics of the objects and their relationships can be described
with standard or widely adopted ontologies. Finally, patient registry data should be
aggregated by concept. In each concept, data elements, or instances that represent the
same entity but have different text mentions in each registry, must be mapped to an
ontology term. For example, Orphanet Rare Disease Ontology (ORDO) for diseases,
and the Human Phenotype Ontology (HPO) for phenotypes can be used to make data
interoperable and linkable in the Web of data. The use of domain-specific and commonly
used ontologies adds value to data, through an integrated knowledge base that is searchable
and comparable by users and machines [169]. Furthermore, interlinking patient registry
data with external linked datasets allows enrichment of current knowledge in rare disease
research. In this work, we have developed a new semantic layer on top of existing patient
registries, to allow extracting anonymised data from the original datasets, translating them
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to a common shared exchange model and making them available to the research community
(available at http://bioinformatics.ua.pt/linked-registries-app/). The solution
addresses three key requirements from the patient registries research community: 1) data
model agnostic; 2) distributed and encapsulated; and 3) knowledge-oriented. Firstly, data
harmonization strategies are data model agnostic and work regardless of registries’ data
format and internal structure. This is clearly important as we are dealing with systems
featuring assorted characteristics, from relational databases and service endpoints, up to
Excel spreadsheets. Next, the solution is distributed and encapsulated. When dealing with
rare disease patients, it is imperative to ensure data anonymity and privacy. Hence, we
need tools that extract meaningful data while maintaining hidden all the attributes that
may disclose patients’ identification. Finally, our approach takes advantage of semantic
web technologies to improve how we publish, access, express and share knowledge across
the Web. From a technological perspective, the system was built on top of COEUS [20],
an application framework that streamlines data integration with semantic representation.
As patient registries are shared within this platform, researchers and developers are able
to perform federated queries, covering miscellaneous databases, just as they would query a
single local dataset. In summary, we explore a semantic web approach and a non-intrusive
strategy to interconnect, enrich and federate data from multiple patient registries, allowing
extension of the knowledge contained in these distributed repositories.

3.2 Architecture

Semantic data integration is, in itself, a complex data engineering issue, if we have to
code every component of the software solution [170, 171]. Building on previous results
[17], we use COEUS as the baseline framework of our platform. Exploring its flexible
integration engine enables simplifying the overall platform architecture through the
creation of a comprehensive dependency-based resource integration network. Figure 3.1
presents the platform’s distributed architecture, which is organised in four levels: 1)
Patient, 2) Semantic, 3) Federation, and 4) Research. At the patient level we gather
information from the distributed and heterogeneous patient registries, which can be stored
in multiple formats and using various technologies (e.g., relational databases, text files,
spreadsheets, etc.). Patient registries can be integrated in the framework regardless of
their location, and their quantity. At the second level we include additional semantics in
patient registry data. This is done using COEUS, which acts as the main abstraction,
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storage and publishing engine. Here, we manage the anonymised patient data, translating
from their primitive format to common biomedical ontologies. The third level provides
the knowledge federation and data exploration capabilities, i.e. SPARQL queries can
be forwarded to several patient registry endpoints. COEUS acts here as a middleware
component between the patient registry triplestore and the public knowledge federation
layer. Finally, at the upper level researchers can perform general queries that combine
data from one or more patient registries. In a sense, query federation enables performing
SQL-like UNIONs or JOINs across multiple knowledge bases. This allows knowledge
inference and reasoning queries to go beyond what is currently possible.

1
Patient Level

2
Semantic Level

3
Federation Level

4
Research Level

KNOWLEDGE FEDERATION LAYER

COEUS

CSV

Patient
Registry

FileDB

Patient
Registry

Excel

Patient
Registry

COEUS COEUS

RD

Figure 3.1: Knowledge federation architecture, integrating distributed patient registries
via COEUS.

3.3 Workflow

Publishing anonymized patient registry data in a semantic way requires a comprehensive
workflow. Figure 3.2 describes the key steps in this semantic integration and translation
pipeline: 1) ontology mapping; 2) COEUS setup; 3) semantic translation and 4) data
publishing. The first step consists of defining the best ontologies to map common patient
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data. HPO [74], UMLS [172], ICD [173] or ORDO [65] are the most widely used ontologies
in the field of rare diseases. One of the great advantages of using semantic web technologies
is that any external ontology can be used to complement or extend COEUS internal
model. As long as clinicians understand the new predicates, any number of properties can
be included, semantically mapping concepts or entities to existing ontologies, or adding
further properties to describe entities or concepts. Moreover, we may combine multiple
ontologies, i.e., the same data element can be mapped to terms from more than one
ontology, optimising its expressiveness and enriching the way it can be used in future
research environments. In this step, semi-automated annotation tools such as SORTA [138]
and EGAS [119] among human curation experts play an important role in the annotation of
biomedical data (e.g. phenotypes, diseases, etc). The second step of the pipeline consists of
the configuration and deployment of a new COEUS instance. The setup involves defining
how data will be extracted and mapped in the selected ontology terms. Using COEUS
connectors we have to specify where the data comes from (Excel, CSV or XML files;
SQL databases; or SPARQL / Linked Data endpoints), and how we will map it to the
ontologies. For instance, for a patient registry available as a CSV file, we need to specify
the file location and, for each mapped ontology term, the column containing the actual
data elements. In the following stage, the semantic translation process, knowledge base
elements and their data and object properties are created in real-time from the integrated
data. This step elevates data in primitive formats to a new semantic abstraction level. The
process is complete when all data are imported into a new triplestore, making it available
for external use through the various data publishing endpoints.

3.4 Implementation

COEUS framework is focused on helping researchers in the construction and publishing
process of new semantically enhanced systems. It offers a good starting point to integrate
disparate data due to the advanced ETL (Extract-Transform-Load) processes in its engine.
These algorithms facilitate the “triplification” process, in which all data are converted to
a simple subject-predicate-object model. Moreover, it makes the integrated information
available through a hierarchical model establishing relationships between data in an
"Entity-Concept-Item" structure (e.g. Protein-Uniprot-P51587 ). To create each registry’s
knowledge base according to this organized model, we must fulfill some initial requirements.
Essentially, there are three main steps to achieve the final solution: the first is data
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Figure 3.2: Simplified registry publication workflow.
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selection, the second is the data sources’ configuration and last one is the data integration
process.

In the first step, we have applied a pre-selection process to all registries’ data. In
this process, we select the desired information for our study avoiding sensitive data and
considering only non-identifiable data. Patient registries have a lot of information, but
some is redundant and incomplete. Therefore, applying this initial filtering process is vital
to build a consistent database. This process was only possible due to the involvement of
respective data owners who translated what their data mean. In the final stage of this
initial filtering process, we exported the files of the distinct registries. Each dataset was
imported to a separated COEUS instance, as we plan to have four distributed systems.

In the second step, we define the data sources’ attributes for each registry. This
starts by creating one Resource (Figure 3.2, block 1 – Ontology Mapping) in the
knowledge base that contains the respective data elements such as Endpoint location
(i.e., the registries’ file location), Publisher (i.e., CSV file), CSV Starting line (i.e., 1
as the registry file has headers) and Method (i.e. cache as we will load the entire file
onto the system). Additionally, for each Resource, a combination of parameters (i.e.,
Selectors) must also be included to establish the mapping between the information to be
extracted from the registry (e.g. for each column) and the respective formal ontology
terms that connect it. For instance, we can make use of the Human Disease Ontology
[90] term doid:has_symptom to establish the connection between a Facioscapulohumeral
muscular dystrophy (FSHD) patient and the identified symptoms: coeus:Patient_X
doid:has_symptom obo:HP_0001324 (i.e. Patient X has a muscle weakness symptom).
Likewise, we link each patient to its respective identifier by creating a Selector that makes
the linkage between the CSV first column (with the patient IDs) in the parameter query
and the property dc:identifier from the Dublin Core Ontology [174]. Establishing all these
mappings in the registries’ records allows the foundation of an interconnected network
of relationships between patients and respective features. An overview of the knowledge
base model is available in Figure 3.3, showing a simplified view of Facioscapulohumeral
Muscular Dystrophy Type 1 (omim:158900 ) patients’ relationships.
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Figure 3.3: Patient registry model overview. Facioscapulohumeral Muscular Dystrophy patients share concepts and
relationships, creating a fully-connected network.
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After these configurations, the last process encompasses the automatic integration and
semantic mapping of data sources. To expose data, we provide several interoperability
features such as SPARQL endpoint and a Linked Data interface. The SPARQL endpoint
works as a federated query system, in which we can perform complex queries across patient
registries. The Linked Data interface provides easy access to patient information through
the Web Browser or similar applications. All the processes described are managed through
COEUS Web user interface, which provides an easy set-up solution for the installation and
configuration process.

3.5 Results

Neurodegenerative and neuromuscular diseases are amongst the most frequent rare
diseases, affecting the life and mobility of more than 500,000 patients and families in
Europe (http://rd-neuromics.eu/). We used the proposed architecture to integrate four
patient registries in the neuromuscular and neurodegenerative disease area. These registries
collected patient data from ten different countries (United Kingdom, Italy, Spain, Denmark,
France, Netherlands, Sweden, Austria, United States and Germany), and information
related to four rare diseases: Myotonic Dystrophies (DM), Facioscapularhumeral muscular
dystrophy (FSHD), Fukutin Related Protein (FKRP) related conditions (e.g., LGMD2I)
and Huntington’s Disease (HD).

3.5.1 Exploring rare disease patient registries

To guide the development of our solution and also, at the end, to allow its validation,
several questions were initially elaborated:

1. Can we find more than ten males and ten female patients that share a set of
phenotypes and live in different countries?

2. To build a trial/research data set, how many patients have the desired
conditions/requirements for the study and live closest to the clinical/research setting?

3. What are the phenotypes associated with Myotonic Dystrophies (DM) and
Facioscapularhumeral muscular dystrophy (FSHD) diseases?

4. Are there patients treated with different therapies diagnosed with the same disease?
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5. Are there patients treated with the same therapy but diagnosed with different
diseases?

6. Can we find patients diagnosed with a certain disease with different states of
morbidity?

7. Are there patients with this specific set of phenotypes?

8. Are there patients sharing phenotypes and diagnosed with different neuromuscular
and neurodegenerative diseases?

To find answers to these questions researchers and clinicians need to look for patient
data that are fragmented in different registries and combine data across registries and
across diseases. Without an infrastructure of integrated patient registries, this is not
straightforward because each patient registry is designed, described and technically
implemented in a particular way, and data are not connected. This means that to answer
any of these questions a considerable amount of time will be spent understanding each
registry data model, to access and retrieve the necessary data from each registry, aggregate
all registries’ data in a meaningful way, and finally, to query-answer over the harmonized
data to extract the information. These are rather inefficient, impractical propositions.
Thus, to gain a complete view of a specific disease and patient population of interest, and
to retrieve the desired information to answer these questions, the linking of registries’ data
sets is an essential step. The described research questions involved the collaboration of
data owners and database managers, who participated actively in the data selection and
harmonization processes, and provided continuous feedback for the final solution.

3.5.2 The Linked Registries solution

The interconnection between disperse patient registries using COEUS facilitates our
final solution in the way that we can query single or multiple instances according to
our needs. However, to better access and enhance user interaction, we provide a single,
web-based entry point to access the aggregated information available in each instance.

The entry point is available at http://bioinformatics.ua.pt/linked-registrie

s-app/ and is based on a combination of SPARQL federation queries templates with
pre-defined variables. In each template question, variables can be adjusted according
to the knowledge base values automatically. All queries are generated in real-time by
the application and can be edited or adjusted (by using the advanced mode) for more
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accurate examination. Using this solution, users have the opportunity to find answers to
the previously defined questions across disperse patient registries. For instance, to answer
the first question we created a template federated query to retrieve results from all the
registries. As we store countries’ information in each COEUS instance using the same
model, we are able to retrieve common characteristics from each instance. Therefore,
finding a cohort sharing a set of phenotype information and based in different countries
can be a straightforward process (Figure 3.4).

Figure 3.4: Linked Registries web application interface.

In order to answer this type of question, we searched for male and female patients that
have both "fatigue" (i.e. obo:HP_0012378 ) and “muscle weakness” (i.e. obo:HP_0001324 )
phenotypes. Querying our system, we retrieved male patients from six different countries,
and female patients from four. Therefore, for our particular set of registers, the number of
patients (either male or female) living in different countries and sharing those phenotypes
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is under ten. Concerning question 2, filtering patient characteristics according to some
conditions, such as the use of a gastric tube on a Myotonic dystrophy type 1 (MD1)
patient, can be successfully performed. However, to discover patients living closest to
their clinical/research setting is not a trivial task to perform due to the limitation of
our registries’ data, which only covers country-related information. It is also possible
to answer enquiries similar to question 3. For instance, we can query the two remote
databases (e.g. FKRP and FSHD) through their SPARQL endpoint and search for all
shared phenotypes that have been registered for patients suffering from Limb Girdle
Muscular Dystrophy 2I (LGMD2I) and Facioscapulohumeral muscular dystrophy (FSHD)
diseases to answer this question. The SPARQL query is as follows:

PREFIX doid : <http :// pur l . obo l i b r a ry . org /obo/doid#>
PREFIX ogdi : <http :// pur l . b ioonto logy . org / onto logy /OGDI#>
PREFIX omim : <http :// pur l . b ioonto logy . org / onto logy /OMIM/>

SELECT DISTINCT ?phenotype {

SERVICE <FKRP−REGISTRY−SPARQL−ENDPOINT>
{

?patient_FKRP ogdi : hasDisease omim:607155 .
?patient_FKRP doid : has_symptom ?phenotype

}

SERVICE <FSHD−REGISTRY−SPARQL−ENDPOINT>
{

?patient_FSHD ogdi : hasDisease omim:158900 .
?patient_FSHD doid : has_symptom ?phenotype

}

FILTER ( isURI (? phenotype ) )
}

In our case, the result of this query returned the respective shared phenotypes for
both diseases: "fatigue" (obo:HP_0012378 ), "muscle weakness" (obo:HP_0001324 ) and
“rigidity” (obo:HP_0002063 ). The same occurs for questions 4) and 5) as we have collected
information regarding patients’ diagnosis. This information was integrated according to
the specifications for each disease. However, we are able to cross information between
therapies and diseases due to our standardization strategy based on community-shared
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and common ontologies in all patient registries. For instance, if we query the different
registries looking for patients treated with “ACE inhibitors” (i.e. ndfrt:N0000029130 ), we
can easily find a correlation between DM (omim:160900 ) and LGMD2I (omim:607155 )
diseases:

PREFIX snomedct : <http :// pur l . b ioonto logy . org / onto logy /SNOMEDCT/>
PREFIX ogdi : <http :// pur l . b ioonto logy . org / onto logy /OGDI#>
PREFIX nd f r t : <http :// pur l . b ioonto logy . org / onto logy /NDFRT/>

SELECT DISTINCT ? d i s e a s e WHERE {
{

SERVICE <EHDN−REGISTRY−SPARQL−ENDPOINT>
{
?patient_EHDN snomedct : uses_substance nd f r t : N0000029130 .
?patient_EHDN ogdi : hasDisease ? d i s e a s e

}
} UNION {

SERVICE <DM−REGISTRY−SPARQL−ENDPOINT>
{

?patient_DM snomedct : uses_substance nd f r t : N0000029130 .
?patient_DM ogdi : hasDisease ? d i s e a s e

}
} UNION {

SERVICE <FKRP−REGISTRY−SPARQL−ENDPOINT>
{

?patient_FKRP snomedct : uses_substance nd f r t : N0000029130 .
?patient_FKRP ogdi : hasDisease ? d i s e a s e

}
} UNION {

SERVICE <FSHD−REGISTRY−SPARQL−ENDPOINT>
{

?patient_FSHD snomedct : uses_substance nd f r t : N0000029130 .
?patient_FSHD ogdi : hasDisease ? d i s e a s e

}
}}

However, answering questions such as 6 is very complex. The difficulty resides in
finding structured patient states of morbidity in each registry. Disease states are usually
stored and described as long plain-text fields without suitable structure, which makes the
task of finding similarities in that information more complex. Additionally, not all patient
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registries have this type of information, creating barriers to the crossing of information
among different registries. Therefore, we do not integrate different states of morbidity
of each patient into our system. In contrast, the two following questions, 7 and 8, can
be more easily answered due to the structured information available about different
diseases and respective patient phenotypes. To give an example for question 7, we can
randomly choose phenotypes such as "fatigue" (obo:HP_0012378 ) and "muscle weakness"
(obo:HP_0001324 ), and simply count how many patients share both:

PREFIX doid : <http :// pur l . obo l i b r a ry . org /obo/doid#>
PREFIX obo : <http :// pur l . obo l i b r a ry . org /obo/>

SELECT (COUNT(DISTINCT ? pa t i en t ) as ? count ) WHERE {
{

SERVICE <EHDN−REGISTRY−SPARQL−ENDPOINT>
{

? pat i en t doid : has_symptom obo : HP_0012378 .
? pa t i en t doid : has_symptom obo : HP_0001324

}
} UNION {SERVICE <DM−REGISTRY−SPARQL−ENDPOINT>
{

? pat i en t doid : has_symptom obo : HP_0012378 .
? pa t i en t doid : has_symptom obo : HP_0001324

}
} UNION {SERVICE <FKRP−REGISTRY−SPARQL−ENDPOINT>
{

? pat i en t doid : has_symptom obo : HP_0012378 .
? pa t i en t doid : has_symptom obo : HP_0001324

}
} UNION {SERVICE <FSHD−REGISTRY−SPARQL−ENDPOINT>
{

? pat i en t doid : has_symptom obo : HP_0012378 .
? pa t i en t doid : has_symptom obo : HP_0001324

}
}}

Using this schema allows us to find up to forty-one patients spread over the different
databases. To answer question 8, we can also make a federated query to all registries to
retrieve a list of associations between phenotypes and diseases. Therefore, we are able to
detect the most common associations by counting the number of patient occurrences in
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which the phenotype-disease association was identified:

PREFIX doid : <http :// pur l . obo l i b r a ry . org /obo/doid#>
PREFIX ogdi : <http :// pur l . b ioonto logy . org / onto logy /OGDI#>

SELECT ?phen ? d i s e a s e (COUNT(DISTINCT ? pa t i en t ) as ? count ) WHERE {
{

SERVICE <EHDN−REGISTRY−SPARQL−ENDPOINT>
{

? pat i en t doid : has_symptom ?phen .
? pa t i en t ogdi : hasDisease ? d i s e a s e

}
} UNION {SERVICE <DM−REGISTRY−SPARQL−ENDPOINT>
{

? pat i en t doid : has_symptom ?phen .
? pa t i en t ogdi : hasDisease ? d i s e a s e

}
} UNION {SERVICE <FKRP−REGISTRY−SPARQL−ENDPOINT>
{

? pat i en t doid : has_symptom ?phen .
? pa t i en t ogdi : hasDisease ? d i s e a s e

}
} UNION {SERVICE <FSHD−REGISTRY−SPARQL−ENDPOINT>
{

? pat i en t doid : has_symptom ?phen .
? pa t i en t ogdi : hasDisease ? d i s e a s e

}
}

FILTER ( isURI (? phen ) )
FILTER ( isURI (? d i s e a s e ) )

}
GROUP BY ?phen ? d i s e a s e ORDER BY ? count

By querying our system, we are able to detect, for instance, that phenotypes such
as "muscular weakness" (hp:0001324 ) and "fatigue" (hp:0012378 ) are more common
in muscular dystrophy (omim:607155 ) diseases and phenotypes such as "Myotonia"
(hp:0002486 ) and "fatigue" (hp:0012378 ) are more representative in myotonic dystrophy
type 1 (omim:160900 ) diseases.
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3.6 Discussion

The International Rare Diseases Research (IRDiRC) consortium defined several
overarching objectives, to achieve by 2020 [175]. Some of these goals include, for instance,
making data accessible to the research community, or promoting tools and standards that
simplify networking between data centres. The present solution was built upon these
general needs, offering an opportunity to access patients’ distributed data in a common web
platform. The semantic layer approach offers a technological solution that enables data and
metadata sharing, following common ontologies and standards, as described throughout
the document. In our research, we identified how these semantic web technologies can be
tailored to the patient registry integration scenario. Although our results are successful,
they highlight two major issues.

First, identifying the proper common ontology to be used across patient registries
is a cumbersome task. While COEUS allows this process at the technical level, there
still has to be an agreement between stakeholders on what ontologies will be used and
how their data will be properly mapped to them. This introduces a new challenge, as
distinct ontologies need to be adequately mapped [176]. At this point, it is important to
highlight that the creation of mappings between patient registry elements and ontologies is
a critical point for data quality and reliability. Rare disease registry researchers frequently
need to extract the primary clinical information and translate it into the registry data
elements. This process is the key to the validity of outcomes in the scope of the registry.
Both phenotypic information and final diagnosis have to be derived from the clinical
examination, genetic, histo-pathological and other laboratory tests and radiological images,
among some other specific sources, which are all challenging due to their heterogeneity
and complexity. In addition, standardization of the primary sources of information is an
important issue for registries, but in some situations, it is not possible. The translational
process from the real clinical status of the patient to the information saved and stored
in the registry database implies a potential risk of introducing some biased information.
The establishment of mappings between information based on ontological terms could lead
us to obtain standardized data, but not valid results. Thus, when phenotypic data are
not well defined or are incorrectly translated into the database elements, this phenotypic
information might be linked to wrong ontological terms. Likewise, ontological terms
are not always as comprehensive as free text, and therefore, the ability of an ontology
to cover all phenotypic traits of specific diseases is another limiting factor. In this
regard, collaboration is needed with ontology developers in order to expand with further

62



CHAPTER 3. CONNECTING RARE DISEASE PATIENT REGISTRIES

ontological terms and thereby align ontology representations with the current knowledge.
This active translational dialogue among the actors in clinical and research domains is
important to both stimulate the use of standards in patient registries and to ensure an
appropriate description of the current domain knowledge in biomedical ontologies. In
this challenging scenario, the mapping of clinical terms has to be undertaken according
to quality procedures. Nevertheless, several organizations are publishing common data
element models in order to solve the interoperability problem among different patient
registries. Although these efforts ensure interoperability within the selected domain,
interoperability across application domain boundaries is not automatically possible [177].
There are over 600 rare disease registries in Europe alone, the majority not currently using
a specific ontology. Despite the overall desire in the community to increase harmonization,
there is a lack of time and resources to change established procedures.

Furthermore, it is not easy to convince data owners of the true value of sharing their
registry data. In addition to privacy and security issues, data owners fail to realize the
incentives underlying the sharing of their data. To overcome this in the future, financing
projects should include clear guidelines to mandate the anonymous sharing of data for
research purposes. Including these policies would shed new light on the benefits of sharing
patient data on rare diseases to a broader community, truly unlocking its potential.

3.7 Summary

This work introduces a semantic web-based layer that provides a holistic perspective
over the wealth of knowledge stemming from linked patient registries supported by the
growing number of research projects.

Our results are significant in at least three major respects: 1) The use of a model
agnostic system, which enables the mapping of patient registries’ data from any format
to a common shared ontology. 2) The creation of an independent system that can be
plugged into any existing patient registry without changing it. This enables the extraction
of relevant data elements while maintaining patients’ data privacy and security. 3) The
adoption of Semantic Web technologies to promote better translation, interpretation,
federation and discovery of new knowledge acquired from linked patient registry datasets.

Finally, this solution allows distributed queries to a federated system of linked patient
registries. As a result, researchers can easily access a broad set of patient registries just
as they would access a single system. We believe this is a milestone towards semantically
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interoperable knowledge about rare diseases and will bring us one step closer to personalized
medicine.
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Chapter 4

An automated platform to integrate
and publish biomedical data

Publishing, analysing or properly accessing the abundant information resulting largely
from experimental studies in the biomedical domain are current challenges for the research
community. Problems with the extraction of relevant information, redundant data, and
lack of associations or provenance are good examples of main concerns. The innovative
nanopublication publishing strategy tries to overcome these issues by representing the
essential pieces of publishable information on the SW. However, existing methods to create
these RDF-based data snippets are based on complex scripting procedures, hindering their
use by the community. Therefore, new and automated strategies are needed to explore the
evident value of nanopublications and to enable data attribution mechanisms, an important
feature for data owners. To solve these challenges, we introduce the second generation of the
COEUS open-source application framework (http://bioinformatics.ua.pt/coeus/), an
automated platform to integrate heterogeneous scientific outcomes into nanopublications1.
This results in seamless integration to make data accessible and citable at the same time.
No additional scripting methods are needed. A validation of a nanopublishing pipeline is
described to demonstrate the system’s functionalities, integrating and publishing common
biomedical achievements into the SW ecosystem.

1 This chapter is largely based on the paper by P. Sernadela and J. L. Oliveira, "COEUS 2.0: An
automated platform to integrate and publish biomedical data as nanopublications" IET Software, vol. 11,
Dec. 2017.
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4.1 COEUS

The COEUS framework was designed to support the integration of heterogeneous life
science data, providing an intelligent resource combination mechanism. Moreover, the
combined information can be ported to the semantic level using a unique and common
data model benefiting distributed information access, as explored in Chapter 3.

Due to its proven features, this framework has been used in diverse scientific projects.
For instance, in the rare disease domain, it has been applied to integrate distinct and related
resources offering a semantic network for rapid information access [66], to support the
creation of new SW tools for distributed knowledge access [75], and also to enable federation
strategies from dispersed patient registries and biobanks [15]. In the healthcare context, it
has been applied to support the storage and access of semantic radiology annotations
[29] and also to enable semantic search over Digital Imaging and Communications in
Medicine (DICOM) repositories [178]. Additionally, it has been used in the integration
of heterogeneous text-mining annotations for further exploration [28].

In this way, these sample use-case scenarios place COEUS as an essential framework
for the scientific community to make traditional data accessible through SW standards.
Overall, the new update aims to enable data publishing according to modern data citation
strategies, emerging as a vital requirement to make data both accessible and citable for
further exploration [26].

4.2 COEUS 2.0

The SW paradigm introduces multiple technologies and strategies that are suitable
to represent real-world relationships in digital information systems, namely in the life
sciences. Moreover, SW standards tackle challenges in the most diverse domains, from data
heterogeneity to service interoperability [179], enabling knowledge modelling, sharing and
integration [180]. The concept of nanopublications illustrates one of the recent strategies to
implement machine-readable knowledge assertions. With this standard still in its infancy,
the available transition processes are based on custom scripting solutions that transform
original data into the nanopublication format. To automate this process, we redesigned
COEUS algorithms and interfaces, offering a more generic, easier and customizable data
publishing framework. COEUS 2.0 novel contribution is focused on the development
of 4 main components: 1) Implementation of nanopublication generation algorithms; 2)
Adaptation of existing methods for data integration; 3) Web-based system development to
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support both data integration and nanopublication generation processes; 4) Development
of a specialized nanopublication store. Next, we describe these major modifications,
streamlining the nanopublication generation and publishing process.

4.3 Architecture

The COEUS first generation framework was designed to make traditional data formats
accessible through SW standards. It provides a variety of connectors to combine data
from diverse sources, providing generic and essential data loading mechanisms for the data
publishing architecture. In addition, the integration process is carried out through an
organized ontology model (e.g. Protein-Uniprot-P51587 ), simplifying data transformation
and access, as data are always available through a hierarchical and well-organized model.
Likewise, COEUS has services that are currently fundamental to deliver SW applications.
Examples of these are the SPARQL endpoint and the Linked Data methods [81]. The
SPARQL endpoint works as a query system, in which we can perform complex queries.
The Linked Data interface provides easy access to the information through the Web
Browser. Both services will also support the query and retrieve mechanism in the final
nanopublication solution.

Figure 4.1 shows the overall nanopublishing architecture, illustrating the main steps of
the workflow: from generic data to nanopublications. The pipeline starts by combining the
input data, creating one or more resources and their data endpoints (Figure 4.1, block 1).
Next, the engine will integrate, generate and store the final output (Figure 4.1, block 2).
In the first engine phase, the data will be integrated based on advanced ETL features. The
second phase will deal with the transformation process to generate each nanopublication
record. The last engine phase will store the nanopublications generated into a named
graph store following the nanopublication guidelines. Every nanopublication created will
be made publicly accessible by several services (Figure 4.1, block 3). The combination
of these steps enables a new nanopublishing pipeline where the tasks are automated. By
adopting this architecture, the framework is able to make data usable and citable at the
same time.

4.3.1 Data integration

The implemented pipeline generates nanopublications from the integrated data. To
support data integration our pipeline is based on COEUS ontology model. This is organized
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Figure 4.1: Nanopublishing workflow: from generic data to nanopublications. 1)
Miscellaneous data studies’ formats can be imported. 2) Advanced ETL features integrate
information and generate nanopublications. 3) Advanced services are enabled for data
query and retrieve.

in a tree-based model: data connections are mapped to Entity-Concept-Item structures,
which are connected to Resources, supporting integration and exploration settings,
respectively. To better understand this organization, the ontology model represented
in Figure 4.2 and available online at http://bioinformatics.ua.pt/coeus/ontology/

must be taken into account. This ontology defines Entities, Concepts and Resources used
in the data integration process. Additionally, the content is used to support the framework
instance configuration, from the management of external resources in the connectors to
the labelling rules for each individual Item. Essentially, a Seed can have several Entities,
and each Entity can be associated with one or more Concepts. Concepts aggregate
exclusive Items and are linked to Resource information. The data import process uses
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Resources’ properties to load and filter data for the integration layer. This abstraction
layer aims to transform the data being integrated into a common model-independent
format. In practice, the developed process produces a network for each new Item,
mapping the configured predicates to the values from the external resources. In this
data abstraction layer, the triplification process enables the creation of triple statements
from the abstracted data model for further storage in the knowledge base. Further
information about the integration process is available in COEUS’ website documentation
(http://bioinformatics.ua.pt/coeus/documentation/).

SPARQL

SQL

CSV

RESOURCE

Item

Item

Item

Item

SEED

ENTITY

CONCEPT

*

1

*

1

...

11*

JSON

XML

Figure 4.2: COEUS ontology overview.

4.3.2 Nanopublication generation

The triplified data are organized in a hierarchical tree structure that the engine must
traverse. For this process, the different data and related connections are collected (type
of coeus:concept) based on the root concept. With this information and associated data
(optional), the nanopublications are created.
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The COEUS engine adopts the N-Triples (http://www.w3.org/TR/n-triples/)
structure (subject-predicate-object) to build its internal Knowledge Base. According to
the nanopublication guidelines, each nanopublication must include an associated context
(subject-predicate-object-context) – N-Quads (http://www.w3.org/TR/n-quads/). For
that reason, we extended the COEUS engine to support N-Quads in an independent store:
in the generation process we retrieve the triples data from the concept items and associate
it with the nanopublication Assertion field (context).

Also, we make use of the same organisation for the Provenance and Publication
Info graphs of the Nanopublication (Figure 2.10). To complete the Provenance and
Publication Info sections, users have the opportunity to manually insert informative
data (using ontologies to describe input information). Additional information is
automatically generated, making use of the PROV Namespace (http://www.w3.
org/ns/prov#) to provide a provenance interchange mechanism in each generated
nanopublication. In summary, it includes the system responsible for the assertion’s
information content (prov:wasDerivedFrom), and additional metadata regarding the
creation time (prov:generatedAtTime) and authorship (prov:wasAttributedTo).

When the nanopublication field structure has been adequately generated, the creation
pipeline ends with the formation of the nanopublication itself and consequent identifier
attribution. Finally, the linkage between the list of nanopublications and their
respective concept is completed through the prov:generated and prov:wasGeneratedBy
object properties attribution.

As mentioned, to present data, COEUS has several interoperability features. These
include REST services, LinkedData interfaces and a SPARQL endpoint. The formation of a
novel nanopublication store required the adoption of a specific approach to retrieve data. In
this way, the platform contains a specific exporting format option (represented in Figure 4.1
as "Nanopub RDF"), concordant with the nanopublication schema and accessible through
a URI.

4.4 Results

In this section, we test the feasibility of COEUS 2.0 as a nanopublishing platform. The
presented case study aims to provide the Gene Reference Into Function (GeneRIF) dataset
and associated information as nanopublications.
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4.4.1 Case study

The National Library of Medicine (NLM) started a Gene Indexing initiative in April
2002 with the goal of linking any article about the basic biology of a gene or protein
to the corresponding Entrez Gene entry [181]. The result is a growing database entitled
GeneRIF (Gene Reference Into Function) within the Entrez Gene database. Each GeneRIF
entry is a concise and short phrase (up to 255 characters in length) describing a function
related to a specific gene, supported by a publication identifier, the PubMed ID [182].
The publication provides evidence for the assertion text. GeneRIFs can be viewed
as "a type of low-compression, single-document, extractive, informative, topic-focussed
summary" [142] and public access to this information can be obtained through FTP at
ftp://ftp.ncbi.nih.gov/gene/\gls{generif}/. Ten thousand GeneRIF-mined entries
were used to validate our final solution with the goal of integrating and delivering this
dataset as nanopublications. To completely assess our integration pipeline, we defined four
key goals:

1. Integrate the CSV GeneRIF dataset (Gene ID, PubMed ID, GeneRIF text, taxonomy
ID and last update timestamp) into COEUS knowledge base.

2. Extract additional information from PubMed (publication title, journal title,
abstract, etc.) and link this information with the GeneRIF content.

3. Link each PubMed ID to the PubMed website.

4. Generate nanopublications for the collected information.

4.4.2 Validation

To provide an easy set-up solution we have developed a web user interface (Figure 4.3),
supporting the creation of nanopublications for a broader research community. The
employed approach is based on an HTML and Javascript Web Interface (on the client side)
that interacts through a REST API layer with the deployed framework (on the server side).
The new interface is a vital feature for all stakeholders due to miscellaneous improvements
to the installation (e.g. database setup, ontologies used in the mapping process, etc.) and
configuration process (e.g. creation of the data integration hierarchical model, ontology
property mapping, nanopublication generation, etc.).

Guided by the user interface, two tasks need to be performed to accomplish the
objectives mentioned: data integration (Figure 4.4, block 1) and nanopublication
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Figure 4.3: Platform web interface overview. This provides a more agile setup for new
COEUS installations. Users can now explore the framework without relevant know-how
regarding ontologies’ creation and management.

generation (Figure 4.4, block 2). A complete user tutorial description of these tasks,
i.e. step-by-step guide, is available at http://bioinformatics.ua.pt/coeus/assets/fi
les/nanopub_tutorial.pdf.

In the integration task, data are extracted from the GeneRIF dataset, and through an
advanced "triplification" process, generated knowledge is stored in a triple store. Next,
a combination procedure is applied to integrate additional information from the PubMed
website. The result of this integration is the availability of well-structured data according
to the COEUS ontology. The integration phase converted and stored the ten thousand
GeneRIFs entries and associated information in the KB, generating about three hundred
thousand triples.

The second task was nanopublication generation. This stage starts with the selection of
data Concepts (the GeneRIF Concept is selected as Concept root) in the nanopublication
web interface. The selected data will be mapped to the np:Assertion field automatically.
For the np:Provenance and np:PublicationInfo field the information can be added manually.
A list of object properties will be suggested when the user starts typing to make the
semantic conversion. At this stage, the user can include information about additional
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Figure 4.4: Nanopublication generation from GeneRIFs. 1) From the GeneRIF dataset,
data are integrated along with PubMed information. 2) The aggregated data are mapped
to the assertion field to form the nanopublication corpus. Likewise, information about
provenance or additional metadata can be added to further enrich the nanopublications.

provenance and identification such as research ID or email address. However, as
mentioned, some properties are automatically included, such as prov:generatedAtTime and
prov:wasDerivedFrom. The nanopublication generation process resulted in ten thousand
GeneRIF nanopublications, as expected.

After the two tasks, data are available for query and retrieval using the
framework services. Additionally, a nanopublication-specific service is enabled for each
nanopublication at "/nanopub/id". This service is accessible via its URI and allows
exporting in N-Quads and TriG format, compliant with the nanopublication schema.

The following SPARQL query establishes the link between GeneRIF text and the
PubMed article title and website link, included in the nanopublication:
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PREFIX coeus : <http :// b i o i n f o rma t i c s . ua . pt/ coeus / r e s ou r c e/>
PREFIX np : <http ://www. nanopub . org /nschema#>
PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX dcterms : <http :// pur l . org /dc/ terms/>
PREFIX prov : <http ://www.w3 . org /ns/prov#>

SELECT ? gene r i f_tex t ? pubmed_title ?pubmed_link ?nanopub
?prov ?derivedFrom{

GRAPH ?g {
?nanopub np : hasAsse r t i on ? a s s e r t i o n .
?nanopub np : hasProvenance ? provenance .

} .

GRAPH ? a s s e r t i o n {
?pubmed_item \ g l s { rd f } s : s eeAlso ?pubmed_link .
?pubmed_item dc : t i t l e ? pubmed_title .
? gener i f_item dc : d e s c r i p t i o n ? gene r i f_tex t .

} .

GRAPH ? provenance {
? a s s e r t i o n dcterms : provenance ?prov .
? a s s e r t i o n prov : wasDerivedFrom ?derivedFrom

} .
}
LIMIT 100

The output, available for testing at http://bioinformatics.ua.pt/coeus/sparq

ler/ shows where the data came from and who was responsible for generating the
nanopublication. Retrieving the provenance of the assertion is important to evaluate its
trustworthiness.

Moreover, the gene identifier contained in each GeneRIF nanopublication can be
mapped to the associated PubMed article. The next SPARQL query describes such
interaction associating the gene and the respective article title, i.e. getting the original
source for the assertion:

74

http://bioinformatics.ua.pt/coeus/sparqler/
http://bioinformatics.ua.pt/coeus/sparqler/


CHAPTER 4. AN AUTOMATED PLATFORM TO INTEGRATE AND PUBLISH BIOMEDICAL DATA

PREFIX coeus : <http :// b i o i n f o rma t i c s . ua . pt/ coeus / r e s ou r c e/>
PREFIX np : <http ://www. nanopub . org /nschema#>
PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>

SELECT ? gene ?pubmed_title ?nanopub {

GRAPH ?g {
?nanopub np : hasAsse r t i on ? a s s e r t i o n .

} .

GRAPH ? a s s e r t i o n {
?pubmed_item dc : t i t l e ? pubmed_title .
? gener i f_item dc : r e l a t i o n ? gene .
? gene coeus : i sAssoc ia tedTo ? gener i f_item

}
}
LIMIT 100

4.5 Discussion

The interactive platform described in this paper aims to improve on currently
available hand-scripting tools to create and automatically publish RDF content consistent
with the nanopublication standard. This is achieved by following a combination of
semi-automated ETL processes where each step is now faster and less error-prone, allowing
the transformation of heterogeneous data sources. The generation of each nanopublication
follows an automated strategy that requires no manual modelling of the assertions. To
model the Provenance and Publication Info graphs, our extension includes customizable
interfaces that can be completed with user-desired ontologies. Implemented features are not
available in any state-of-the-art tool, which are usually based on scripting solutions for each
different problem. Our solution substantially augments the ability of non-informatician
researchers to produce nanopublications from their data studies, while maintaining the
respective credit. At same time, they can promote data-sharing standards using adequate
mechanisms such as SPARQL and Linked Data interfaces, making their nanopublications
discoverable and accessible through multiple methods. Regarding these features, we believe
that our second version framework will improve current publishing methodologies making
data both citable and accessible through modern standards.
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4.6 Summary

The great evolution of scientific data produced year by year, including experimental
data, begs for new approaches to grasp novel scientific results. The nanopublication
standard is the SW solution to this issue, allowing the summarization and linkage of
scientific outcomes, while ensuring the appropriate data attribution. The rise of this
prominent standard quickly triggered the need for new data transformation tools. However,
most of the available solutions are prototype and scripting solutions, each one targeting
a specific domain. In contrast, the second generation of COEUS introduces a novel
automation level, enabling the generation of nanopublications from generic data sources.
This new version makes the modelling effort feasible for researchers, reducing errors and
encouraging them to publish and integrate their results as nanopublications. Moreover,
it includes customizable options that can be combined with external ontologies providing
additional mapping to each structured field that composes the nanopublication. Study
results, such as GeneRIF, available in common formats, can be easily incorporated into
this framework. With our new nanopublishing workflow, users can translate their data
into our engine, selecting and mapping the essential structured fields easily. Likewise, it
provides an attribution system with proper recognition of the authors, enabling appropriate
data-sharing mechanisms, according to Linked Data principles. As such, our renewed
platform will benefit the research community and promote data-sharing standards.
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Chapter 5

Semantic-based architecture for
biomedical literature annotation

Knowledge extraction from the biomedical literature plays an important role since most
of the relevant information from scientific findings is still maintained in text format. In this
endeavour, computational annotation tools can assist in the identification of biomedical
concepts and their relationships, providing faster reading and curation processes, with
reduced costs. However, the separate usage of distinct annotation systems results in
highly heterogeneous data, as it is difficult to efficiently combine and exchange this
valuable asset. Moreover, despite the existence of several annotation formats, there is
no unified way to integrate miscellaneous annotation outcomes into a reusable, sharable
and searchable structure. Taking up this challenge, we present a modular architecture
for textual information integration using Semantic Web (SW) features and services1. The
solution described in this chapter allows the migration of curation data into a common
model, providing a suitable transition process in which multiple annotation data can be
integrated and enriched, with the possibility of being shared, compared and reused across
semantic knowledge bases.

5.1 Architecture

In the Chapter 2, we have discussed several alternative methodologies to represent
text-mining annotations. Although major contributions have been made in this area, it is

1 This chapter is largely based on the paper by P. Sernadela and J. L. Oliveira, "A semantic-based
workflow for biomedical literature annotation", Database, vol. 2017, p. bax088, Jan. 2017.
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still challenging to adapt and link the output of these distinct tools. To address this issue,
we implemented a modular architecture able to support the integration of annotations from
multiple extraction tools into the SW ecosystem (Figure 5.1).

The proposed approach aims to provide a seamless transition from unstructured
information to the SW level. The overall architecture is based on a modular and
pipelined approach, divided into three interconnected, though independent, components:
1) knowledge discovery; 2) semantic integration; and 3) semantic services.

5.1.1 Knowledge discovery

In this component, textual documents are examined using state-of-the-art text-mining
methods for the identification of relevant concepts, respective attributes and relationships.
These extraction techniques can be applied by one or a combination of automated
text-mining tools. This means that the architecture does not rely on a single text-mining
solution to perform information extraction, with it being possible to aggregate results
from several systems. However, each text-mining solution must be delivered as a RESTful
Web service to be compliant with the implemented architecture. The deployment of those
resources through Representational State Transfer (REST) services allows us to standardize
how HTTP requests can be performed within the architecture. Service invocations are
made through HTTP POST requests, accepting text/plain as content type. This simplifies
communication between the components developed and facilitates the configuration process
for additional text-mining tools and systems integration. The implemented architecture
supports NER systems, complete concept recognition systems, and relation extraction
systems. In the section 5.2, a setting with two distinct text-mining solutions is assessed,

Figure 5.1: Semantic-based architecture for scientific information integration.
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dealing with different formats and results.

5.1.2 Semantic integration

Information extraction tools produce several annotation formats. The migration of
this data into SW format and services provides additional value regarding the share
of knowledge. To allow this transition, we have developed the Ann2RDF system [31].
Ann2RDF (http://bioinformatics-ua.github.io/ann2rdf/) is based on the creation
of modular integration algorithms to deal with the different formats resulting from
text-mining tools. The ability to acquire data from several and miscellaneous annotation
formats benefits developers, allowing each one to implement and integrate their format in
a common interface. Developed algorithms are based on Object Relation Mapping (ORM)
techniques for mapping different data structures to a single representation and on ETL
procedures to select and extract annotations’ content based on regular expressions and
data parsers such as XML Path Language (XPath). Currently, the system supports the
integration of most BioNLP (http://bionlp.org) formats out-of-the-box such as the BioC
and Standoff formats, with it also being possible to additionally customize new formats.

After this selection and extraction processes, annotations’ objects are semantically
enriched by using ontology mapping procedures: the system makes use of an external
JSON-based configuration file to assist the ontology mapping process. In this configuration
file, the mappings between classified concept categories and relation properties (i.e.
associations between concepts) are defined to the respective ontology terms. This allows
standardization of annotations’ content, e.g. "A relatedWith B" to "A dc:relation B",
using for instance, the Dublin Core Ontology [183].

Next, there is the possibility of normalizing the detected concepts. Due to the
existence of many NER tools that do not include concept normalization tasks, the system
offers an optional normalization service. The invocation is also performed in the same
configuration file, declaring external HTTP POST requests. For this invocation, two
properties are needed: the service location and the regular expression to apply to select
the desired output. With this external support, services such as BioPortal Annotator
[184] (e.g. service: "http://data.bioontology.org/annotator?apikey=XXXX", query :
"[*].annotatedClass.@id" ) or BeCAS [179] (e.g. service: "http://bioinformatics.ua.
pt/becas/api/text/annotate", query : "*.*.refs") can be easily integrated, providing an
enhanced incorporation of the annotated data and improved simplification for the semantic
integration process.
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Finally, harmonization methods are responsible for performing an adequate linkage
between extracted content and the respective structured model. To represent the processed
data, our architecture model is based on Annotation Ontology (AO) [180], an open
representation model for representing interoperable annotations in RDF which is currently
being used by the W3C community (https://www.w3.org/TR/annotation-vocab/). It
provides a robust set of methods for connecting web resources, for instance, textual
information in scientific publications, to ontological elements, with full representation of
annotation provenance, contextual metadata describing the origin or source [181, 182].
By linking new scientific content to computationally defined terms and entity descriptors,
AO helps to establish semantic interoperability across the biomedical field. Through this
model, existing domain ontologies and vocabularies can be used, creating rich stores of
metadata on web resources.

Concept Model

We reuse the AO core ontology components to describe generated annotations. In
Figure 5.2, we present the adopted core model, using a sample annotation regarding
identification of Alzheimer’s disease. The central point of the representation includes
the URI (e.g. ann2rdf:T1 ), the document source (e.g. Pubmed ID 25766617 ), and the
respective annotated data (e.g. Alzheimer Disease). The text selectors are used to identify
the string detected on the document: the ao:exact data property represents the linear
sequence of characters, i.e. the subject of the annotation, the ao:offset data property
indicates the distance from the beginning of the document up to a given element or position,
and the ao:range data property represents the number of characters starting from the offset.
Information about the annotation itself is connected through two different properties: the
ao:body representing the annotated resource and the ao:hasTopic indicating the semantic
identifier of the detected resource (e.g. OMIM ID 104300 ). The identifier is attributed
by the normalization service to represent "Alzheimer Disease" annotation due to the
inexistence of such information on the previously annotated data. If the annotation data
already contemplate a semantic identifier, it is extracted and connected to the annotation
graph. Moreover, the annotations are linked to the respective document source through the
object property ao:onSourceDocument providing a provenance interchange mechanism. By
using this simplified model, entity annotations can be easily mapped to a SW-compliant
format.
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Figure 5.2: Annotation model: sample extraction of the integration and representation of
an annotation related to "Alzheimer disease" using two distinct data formats.
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Relation Model

Researchers typically refer to relation extraction as the task of identifying binary
relations between concepts, and to event extraction as the identification of more complex
relationships, involving verbs or normalized verbs (i.e. trigger) to characterize the event
type. Event extraction techniques started to become more common with the introduction
of BioNLP shared tasks [142], allowing the construction of complex conceptual networks.

We introduced new relationships to allow the representation of annotation interactions.
To represent the relations (Figure 5.3), our model essentially connects the binary entities
through one additional annotation. The relation is not directly established between the two
entities involved due to the possible existence of different specificity in the object property
linkage between relations. For this reason, a new annotation is created to associate the
two annotations and a respective descriptive relation type is attributed through the ao:body
property. Regarding the representation of events, our model achieves a similar structure
of the relation annotations but with some adjustments, i.e. instead of only representing
the binary relation it can represent multiple associations between annotations. Using the
representations described, the outcomes of text-mining tools can be easily integrated into
a unified model providing SW interoperability features for the mined resources.

5.1.3 Semantic services

The SW has gained an increasing role as a suitable environment to solve knowledge
representation and interoperability problems, creating accessible and shareable information
across application and database boundaries. Its adoption by the life science community
allows better standards and technologies to be delivered, making the interconnection across
knowledge domains possible and effective. Taking those benefits into account, our flexible
solution enables the deployment of several semantic-based systems and services. Developed
to support the current need of semantic-web services [147], existing systems explore the
potential behind SW technology, enabling the quick creation of new knowledge bases for
further exploration. COEUS [20], Scaleus [32] and SADI [108] are some examples of these
systems, which can be used along our modular solution.

However, this work is only focused on the implementation and exploration of services
residing in the Scaleus web system (described in Chapter 6). With this adoption, we take
advantage of several services, including a database management system with simplified
APIs, a SPARQL query engine supporting real-time inference mechanisms, and optimized
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Figure 5.3: Relation model: sample extraction of the integration and representation of a
relatedTo annotation relationship using two distinct data formats.

text searches over the knowledge base. Inference on the SW is one of the most useful tools
to enhance data integration quality, automatically analyzing the content of the data and
discovering new relationships. In the deployed system, the SPARQL query engine plus
user-defined rules makes it possible to generate new relationships from existing triples, and
therefore increase reasoning capabilities by inferring or discovering additional facts about
the stored data. Regarding the text-search feature, it offers the ability to perform free-text
searches within SPARQL queries. The support of SPARQL Federated Query (https:
//www.w3.org/TR/sparql11-federated-query/) is also an available feature allowing
the execution of distributed queries over different SPARQL endpoints. In this way,
the deployment of these semantic services with the combination of existing life science
knowledge bases such as the Bio2RDF [13] or the EMBL-EBI RDF Platform [14] provides
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a well-structured network, in which federated inquiring mechanisms can be easily applied
[15, 16]. Scaleus detailed features will be described in chapter 6.

5.2 Results

The developed architecture involves a diverse combination of systems and technologies,
lying in the intersection of knowledge discovery and SW methods. Due to its modularity,
several components can be used, providing greater freedom for end-users and offering
distinct possibilities for information integration and access.

Regarding the contribution, this work is focused on the implementation of a modular
semantic-web workflow for the integration and reuse of multiple text-mined results. To
allow this, three main components were developed: 1) Development of literature extraction
methods based on RESTfull APIs; 2) Improvement and adaptation of Ann2RDF algorithms
for annotations’ integration and enrichment. 3) Development and deployment of a Scaleus
instance, for annotations’ exploration (available at http://bioinformatics.ua.pt/dmd

/scaleus/). In the next sections, we explore and evaluate these components towards a
unified workflow for data integration and distribution.

5.2.1 Information extraction

To demonstrate the feasibility of the implemented solution, we explored a combination
of two distinct text-mining solutions.

The first solution is Neji [8], a modular framework for biomedical natural language
processing. This open-source framework allows the integration in a single pipeline, as
dynamic plugins, of several state-of-the-art methods for biomedical natural language
processing, such as sentence splitting, tokenization, lemmatization, part-of-speech,
chunking and dependency parsing. The concept recognition tasks can be performed using
dictionary matching and machine learning techniques with normalization. This framework
implements a very flexible and efficient concept tree, where the recognized concepts are
stored, supporting nested and intersected concepts with one or more identifiers. The
architecture of Neji allows users to configure the processing of documents according to
their specific objectives, providing very rich and complete information about concepts.

The second tool used in this example is cTAKES [185], an open-source NLP system
for information extraction from free text of electronic medical records. The system was
designed to semantically extract information to support heterogeneous clinical research.
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It consists of a sequence of modular components (including sentence boundary detector,
tokenizer, normalizer, part-of-speech tagger, shallow parser and named entity recognition)
that process clinical free-text, contributing to a cumulative annotation dataset. cTAKES
was already optimized to explore the characteristics of clinical narratives. By exploring
both tools, we expect to maximize coverage in the biomedical and healthcare fields.

Neji and cTAKES services were both deployed with end-user web interfaces and REST
APIs, simplifying the test and validation of our architecture (Figure 5.4). The dictionaries
used in both solutions were retrieved from the 2014 version of UMLS Metathesaurus
database [186], which contains key terminology, classification and coding standards
assigned to terms. Each term has a Concept Unique Identifier (CUI), to be assigned
to each identified concept. Both solutions can perform concept recognition through REST
services.

Additionally, the cTAKES annotator can execute relation extraction techniques
between identified concepts. These binary relations are recognized using a rule-based and
machine learning components, making it possible to detect interactions such as the degree
of (e.g. degree of pain) or location of (e.g. location of pain).

Figure 5.4: cTAKES and Neji developed web interfaces.
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5.2.2 Evaluation

To validate our architecture, we conducted a case study aimed to create a semantic
repository from a dataset related to Duchenne Muscular Dystrophy (DMD), a rare disease
condition affecting 1 in 5000 males at birth. For this case study, we collected a dataset
containing 2783 DMD related abstracts, obtained by accessing the Entrez Programming
Utilities interfaces in the NCBI database.

Figure 5.5 shows our modular workflow. The workflow demonstrates that we take
advantage of several annotation tools to extract concepts and relations from the textual
information. In this case, the cTAKES delivers respective annotations in the standoff
format (http://2013.bionlp-st.org/file-formats), where the annotations are stored
separately from the annotated text, and the Neji system supplies annotations in the BioC
format, a verbose XML format for data exchange.

Using Ann2RDF [31], all the resulting annotations can be integrated into a common and
sharable interface. Concepts and relations are independently extracted from the annotation
data through advanced ETL processes. Ontology mapping procedures can also be used to
enrich the integrated data through configuration properties - annotation tag mappings

Figure 5.5: Validation workflow overview. 1) Dataset is extracted from the NCBI database.
2) Neji and cTAKES API services were used for information extraction, generating diverse
outputs and formats. Additional annotation services can be used. 3) Annotations are
forwarded and integrated into a unified model and stored in an accessible knowledge base.
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(i.e. classified concept categories, not concept semantic identifier) and property mappings
(i.e. associations between concepts) are supported. For instance, if an entity term is
recognized as a Gene_expression tag, the system allows this linkage to be enriched by
adding new mappings to terms available in an adequate ontology (e.g. Gene Regulation
Ontology - http://purl.bioontology.org/ontology/GRO#GeneExpression). Moreover,
it is possible to configure external services to enrich the detected entities with normalization
and disambiguation features.

These integration mechanisms are responsible for performing an adequate linkage
between the information extracted by the text-mining tools and the respective adopted
model. The entire workflow generated a unified knowledge base with more than 3.5 million
triples of concepts, relations and respective provenance information (Figure 5.6).

Finally, the integrated information can be combined with existing and related
knowledge due to its compatibility with SW standards and queried over SPARQL engines.
For instance, it is very straightforward to find the documents where a specific concept was
identified (e.g. Skeletal muscle atrophy):

PREFIX ao : <http :// pur l . org /ao/>
PREFIX umls : <http :// l i n k e d l i f e d a t a . com/ re sou r c e /umls/ id/>

SELECT DISTINCT ? source {
? annotat ion a ao : Annotation .
? annotat ion ao : hasTopic umls : C0234958 .
? annotat ion ao : onSourceDocument ? source .

}

The knowledge base from this example can be explored through a set of semantic
services available at (http://bioinformatics.ua.pt/dmd/scaleus/). Access is provided
through a SCALEUS [32] instance, offering a public SPARQL endpoint with data federation
capabilities and supporting real-time inference mechanisms. Optimized text searches over
the knowledge base are also available.
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5.3 Discussion

In recent years, the number of biomedical information extraction systems has been
growing steadily. The latest approaches use computational tools to help in the extraction
and storage of relevant concepts, as well as their respective attributes and relationships.
The product of these complex workflows provides valuable insights into the overwhelming
amount of biomedical information being produced. However, interoperability issues in this
domain are critical. In this manuscript, we propose an architecture to unify document
curation results and enable their proper exploration through multiple interfaces geared
towards bioinformatics developers and general life science researchers. This enables a
unique scenario where heterogeneous results from annotation tools are harmonized and
further integrated into rich semantic knowledge bases.

Compared to existing techniques, our approach integrates several main features:

• The possibility to use and combine text-mined information from different and
independent annotation tools.

• The adoption of a unique and effective ontology model that is currently being used
by the W3C community.

• The provision of enriched information resulting from the ontological terms mapping
process and the combination of text-mined results.

• Fast creation of semantic-powered knowledge bases.

• Information sharing mechanisms are simplified by using SW standards and adequate
provenance methods.

• Finally, it enables the exploration of a multitude of SW technologies and services
such as reasoning capabilities, Linked Data and SPARQL query endpoints.

Taking advantage of these features, we have implemented a case study regarding
Duchenne Muscular Dystrophy (DMD) disease, resulting in the integration of results
from two text-mined solutions. The outcome is a fully-connected knowledge base
of annotations allowing the exploration of complex interactions between the identified
concepts. Additional semantic services combination empowers our final results, delivering
enhanced information sharing and discovery methods.

Ultimately, the approach developed envisages providing a modular architecture
for textual information integration, normalizing access and exploration. Moreover,
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the possibility to combine information from several annotation tools allows enhanced
forthcoming quality controls, resulting in a fast strategy to identify gaps between the mined
information. Using this approach, information can be easily compared, differentiated and
measured according to the user’s needs.

Finally, the general architecture of the solution allows its application in the most diverse
life science scenarios. For instance, our approach was also used to convert 16 thousand
textual radiology reports into a knowledge base with more than 6.5 million triples [29].
In that case, narrative reports were extracted from a SQL database and processed with
just one text-mined solution. The outcome was a radiology knowledge base of clinical
annotations, currently being used for medical decision support purposes.

5.4 Summary

Information extraction systems have been increasingly adopted to facilitate the
processing of textual information. The heterogeneity of these tasks, regarding the
extraction process, generates a vast quantity of miscellaneous data, which are dependent
on the systems used and, in most cases, are not interoperable.

Despite current research efforts, advanced exploration, integration or comparison of
these valuable data have been left outside the research path. We proposed a modular
framework where these limitations can be overcome. Our solution resides in a fast
mechanism to integrate knowledge extracted from several text-mining solutions, enabling
the easy creation of semantic-powered databases. The ability to process annotations
from several, miscellaneous annotation formats benefits accessibility methods, allowing
the integration of heterogeneous formats into a common and interoperable model. This is
the major outcome of the implemented solution.

To validate our system, we extracted annotations from the scientific literature, using
two different text-mining solutions, leading to the creation of a unified semantic knowledge
base. Data exploration methods can be easily applied through several services, making
the analysis of extracted knowledge feasible. The repository created follows Linked Data
standards, facilitating the application of modern knowledge discovery mechanisms (e.g.
reasoning).
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Chapter 6

Semantic Web services integration for
biomedical applications

Recent years have witnessed an explosion of biological data resulting largely from the
demands of life science research. The vast majority of these data are freely available via
diverse bioinformatics platforms, including relational databases and conventional keyword
search applications. This type of approach has achieved great results in the last few years,
but proved to be unfeasible when information needs to be combined or shared among
different and scattered sources. In recent years, many of these data distribution challenges
have been solved with the adoption of the semantic web. Despite the evident benefits of
this technology, its adoption introduced new challenges related to the migration process,
from existent systems to the semantic level. To facilitate this transition, we have developed
Scaleus, a Semantic Web migration tool that can be deployed on top of traditional systems
in order to bring knowledge, inference rules and query federation to the existent data1.
Targeted at the biomedical domain, this web-based platform offers, in a single package,
straightforward data integration and semantic web services that help developers and
researchers in the process of creating new semantically enhanced information systems.
Scaleus is available as open source at http://bioinformatics-ua.github.io/scaleus/.

1 This chapter is largely based on the paper by P. Sernadela, L. González-Castro, and J. L. Oliveira,
"SCALEUS: Semantic Web Services Integration for Biomedical Applications", Journal of Medical Systems,
vol. 41, no. 4, p. 54, Apr. 2017.
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6.1 Architecture

Scaleus is a semantic web migration tool designed to be simple to deploy and use. The
solution is tailored to help users in the creation of new semantic web applications from
scratch. Through it, users have access to a set of semantic services for data integration,
management and respective exposure according to the Linked Data principles [81]. In a
single package, we include a triplestore supporting multiple independent datasets, simplified
API and services for data integration and management, and a SPARQL query engine,
supporting real-time inference mechanisms and optimized text searches over the knowledge
base. The solution was built focused on the development of vital components regarding
semantic web application deployment. These components are divided into three main
layers: knowledge base, abstraction and services (Figure 6.1). The knowledge base layer
is powered by a Transactional Database (TDB) for RDF storage. This provides a high
performance and transactional triplestore capable of handling efficient queries by means of
a native store. When accessed using transactions, data are protected against corruption,
unexpected process terminations and system crashes. The storage mechanism also supports
multiple independent datasets providing a structural way to organize several graphs in a
single system application. Each dataset backed by the TDB is stored in a single directory
in the file system. Likewise, an index directory is recorded beside each dataset to allow
even more efficient text search queries. Regarding the abstraction layer, we support
our system with Apache Jena (jena.apache.org), an open-source Java framework for
building SW and Linked Data applications. The abstraction layer implements the required
methods to manage the semantic datasets, including the provision of several data loading
and query mechanisms. Finally, the services layer implements a HTTP REST interface,
which provides an easy and scalable boundary across the RDF store and the user web
interface (Figure 6.2). The API provides several methods for triples management as well
as a standard SPARQL engine for querying the RDF models, supporting federated queries
over different endpoints. These features are orchestrated by a Jetty application server in
embedded mode for fast and easy deployment, without compromising the system’s overall
performance.

6.1.1 REST API

Scaleus is powered by a JSON-based RESTful API for data management. A
complete list of the methods can be found on the website documentation page (available
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Figure 6.1: Scaleus architecture overview divided into 3 main layers: Knowledge Base,
Abstraction and Services. The SPARQL endpoint enables query federation through
multiple Scaleus instances.

at https://github.com/bioinformatics-ua/scaleus#documentation). Compared to
implementation of other existing triplestores, it does not use the W3C standard SPARQL
Update Language [187] for graph/triples management, adopting a simpler approach to
insert, update or remove RDF triples through the REST API. Despite this simplification,
the API maintains full compliance with the SPARQL 1.1 Query Language specification
[188].
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Figure 6.2: Scaleus web interface. The dashboard view shows the complete list of datasets
available. Datasets are managed using the left sidebar, including several services for data
loading and querying.

6.1.2 Data Integration services

Considering the increasing availability of data, there is a clear need for improved
user-friendly tools and services targeting the integration of heterogeneous datasets [10].
These tasks are, in most cases, not easy to achieve without the development of complex
data integration tools that are unsuitable for adoption by most of the research community.
Furthermore, the requirements of Linked Data and associated ontology models makes the
transition to a common and sharable structure adaptable to each life science domain even
more difficult. With Scaleus, we attempt to simplify these migration tasks by providing
a set of data connectors and interfaces that help in the translation process to a user
pre-defined model. By offering this, users have greater freedom to define their own
mappings and models, creating new semantic web information systems by integrating their
datasets. These can be imported from a semantic web compliant format such as Resource
Description Format or even from some miscellaneous source formats, such as tabular files
or spreadsheets. In the spreadsheet case, the user has access to a set of tools to normalize
the data and the possibility to create mappings by joining column data. These mappings
are further converted into simple and connected triple patterns that are redirected to
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the knowledge base through the API. This feature enables the transition from several
spreadsheet formats to the semantic level by using a transparent layer and a user-friendly
web-based interface (Figure 6.3).

Figure 6.3: Web-based interface for multiple spreadsheet integration.

6.1.3 Inference support

As more complex and sophisticated ontologies are developed, the greater the need to
develop systems to perform efficient queries that handle inference and deductive reasoning.
Inference support indicates whether the proposed approach allows arbitrary deduction rules
for inferring new knowledge, rather than the simple recording of facts. The inference on the
SW is one of the most useful tools to enhance data integration quality, by discovering new
relationships, automatically analyzing the content of the data, or managing knowledge on
the Web in general. Hence, the inference ability is a key feature of many triplestores.
However, while most triplestores’ capabilities are limited to performing basic RDFS
inference, only a few solutions, such as Sesame, allow specification of user-defined rules
that can generate new relationships from existing triples, and therefore increase reasoning
capabilities by inferring or discovering additional facts about the stored data.

In our system, we provide two different types of inference, one based on the RDFS
classes and properties and another based on user-defined rules. The first supports the
RDFS axioms and entailments described by the RDF Core working group, including
the transitive closure of subPropertyOf and subClassOf relations and the domain or
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range entailments. In this type of approach, we can infer facts without any pre-defined
configuration, for instance, we can simply determine that: if the prototype for a class A
can be deduced as being a member of class B, then we conclude that A is a rdfs:subClassOf
B. The last implements a general rule-based inference mechanism giving more freedom to
establish desired constraints. The rule-based inference mechanism can run in two modes:
forward and backward chaining. The forward chaining engine is based on the standard
RETE algorithm [189] and the backward chaining on logic programming, with similar
execution to the Prolog engines. By using one of these modes, we can simply compose
inference rules that, for instance, create new connections from our knowledge base such as:
if A is related with B and B is related with C then we can assume that A is related with
C. This case can be translated to the system syntax by using the Dublin Core metadata
[174] and the following simple rule:

[ r u l e 1 : ( ?A dc : r e l a t e d ?B) , (?B dc : r e l a t e d ?C) −> (?A dc : r e l a t e d ?C) ]

Thus, an inference rule is defined by a list of body terms (premises), a list of head
terms (conclusions), and an optional rule name and optional direction (chaining strategy).
Each term is either a triple pattern, an extended triple pattern, or a call to a built-in
primitive. The system also accepts a combination of a set of rules. This Scaleus rule-based
inference feature works through real-time SPARQL queries over the selected dataset graph
(Figure 6.4).

6.1.4 Text search index

This extension allows the combination of SPARQL query mechanisms and free-text
search. In other words, it offers the ability to perform free-text searches within SPARQL
queries. By using this extension, literals are tagged and indexed by an Apache Lucene (ht
tp://lucene.apache.org) engine. This combined solution allows faster search on object
literals than just relying on use of the SPARQL match or filter expressions. Essentially,
the text index is used to provide a reverse index mapping query strings to URIs. When
data are loaded, any properties matching the description cause an entry to be added from
analyzed text to the triple object and mapping to the subject. To retrieve the related
subject, users can specify the target property and the respective string to search (native
Lucene query language can be used). A separated Lucene index is created with each new
dataset, storing all relevant information to perform free text search. This configuration is
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Figure 6.4: Scaleus SPARQL query engine supporting both RDFS and rule-based real-time
inference.

passed to a Lucene IndexWriter structure for indexing. Furthermore, the text is examined
by a text analyzer (i.e. the default Lucene StandardAnalyzer) that splits it into tokens
and executes additional transformations such as the removal of stop words. The stemming
and lemmatization processes are also applied to decrease inflectional forms and occasionally
derivationally related formats of a word to a common base form. In this way, this extension
takes advantage of all Lucene search library features. A web interface is provided to use
this feature (Figure 6.2, Text Search option) and no initial configuration is needed.

6.2 Results

Scaleus aggregates several semantic-based mechanisms in a single package, providing
the easy creation of new semantic web applications. The deployment of these services is
suitable in a variety of life science scenarios. Nonetheless, the first use case implementation
was focused on the rare disease domain.
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6.2.1 Case Study

A common challenge in the field of rare diseases is the lack and complex nature of
data. Studies are normally rare, heterogeneous, and distributed over different research
centres and clinical labs. To allow identification of potential treatments, researchers
need not only to identify a proper patient’s cohort, but also to collect and combine
relevant data from a wide range of repositories so that statistical significance can be
obtained at the end. Nevertheless, as rare disease data is usually collected and maintained
by different stakeholders in diverse and dedicated data warehouses, they are typically
non-interoperable. To tackle these issues, we developed a Scaleus-based demonstrator
that supports cross-resource queries over traditional rare disease resources, including
biobanks (biological sample data), patient registries, genomic data and public repositories
of biological relations. The demonstrator application (available at http://bioinforma

tics.ua.pt/rd-connect-demo/) was built in the context of the RD-Connect project
[75] through an ELIXIR (www.elixir-europe.org) implementation study. In particular,
the demonstrator enables queries across rare disease resources related to the "Ring14
syndrome", a very rare chromosomal abnormality [190], following the FAIR data principles
[191]. It uses real resource metadata and data types, but the actual data have been
obfuscated for the demonstrator proof-of-principle. According to the involved partners,
Scaleus was essential in the provision of 3 main features: 1) the easy setup mechanism of
a SW infrastructure without requiring demanding configurations; 2) easy data migration,
using both simplified API and Graphical User Interface (GUI); and 3) the availablility of
"out-of-the-box" key semantic services.

With the adoption of our approach during the semantic translation of registries, such as
ID-CARD (http://catalogue.rd-connect.eu), general questions like "Which registries
have data on patients with a diagnosis Ring14?", or more specific questions like "Give
me blood specimens for patients that have a short neck" can now feasibly be answered.
Furthermore, the demonstrator adopts a simple, tailored software platform, which offers
a user-friendly query interface that sends automatically-generated SPARQL queries to
the Scaleus middleware. First, users have to select a query template from a list, and
subsequently, the interface offers a dropdown autocomplete widget to select specific values
for required parameters. Then the system automatically generates a query that is solved
by a Scaleus instance. Results are shown in a table that is marked with links to additional
information. All of this is possible without requiring technical skills or even knowledge
about SPARQL query language.
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6.2.2 Evaluation

The platform assessment was performed through two distinct methodologies. Firstly,
we measured the system performance against similar solutions. Secondly, we performed a
user evaluation to validate implemented system features.

Scaleus was developed based on a native triplestore to offer fast query performance
and improved scalability for the integrated datasets. In this case, we evaluate and
compare four systems’ query performance by analyzing two datasets of different sizes.
The first dataset is the Orphanet [65] with around 400.000 triples. This dataset contains
information on rare diseases and orphan drugs aiming to contribute to improvement of
the diagnosis, care and treatment of patients with rare diseases. The second dataset is
the GO Annotation (GOA) [92] with around 100.000.000 triples, containing high-quality
Gene Ontology (GO) [192] annotations to proteins in the UniProt knowledge base [193]
and International Protein Index (IPI) [194]. To evaluate the query performance, we used a
load testing tool called locust (http://locust.io). With this open-source framework we
simulate users’ behaviour exploiting a suitable rate of 100 requests per second. Different
queries were used to eliminate possible database cache mechanisms. Figure 6.5 shows the
maximum response time for 50%, 75% and 95% of the requests. The results obtained
show that our solution has greater performance in the majority of cases compared to the
tested systems (i.e. Fuseki, Blazegraph and COEUS). The dataset dimension only delays
our system response time by 2 milliseconds, if we observe 95% of the requests. In 75% of
requests performed, our solution response time is not affected with either dataset. Being
the only RDBMS-backed triplestore tested, COEUS achieved a maximum response of 44
milliseconds using the Orphanet dataset.

Regarding end-users’ evaluation, we collected users’ feedback during a hackathon
organized for that propose. During one day, 10 participants (including biologists,
bioinformatics researchers and software engineers) from 4 different European institutions
were enrolled in the meeting. Thereafter, we conducted a survey to evaluate the user’s
satisfaction regarding several topics, such as the quality of documentation, setup effort,
relevance of the implemented features (e.g. inference support, spreadsheet integration, text
search, etc.), system’s global performance, and the ability to access distributed data and
overcome interoperability issues. These topics, were evaluated on a Likert scale, ranging
from 1 (i.e. poor) to 5 (i.e. excellent). Figure 6.6 shows the results of this assessment,
highlighting that the solution is very simple to instantiate and use for most users. According
to this evaluation, features such as Inference support, Spreadsheet integration and Text
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Figure 6.5: SPARQL query performance distribution evaluating four different triplestores’
time response (lower is better) and showing the influence of two datasets of different sizes.

Search were demonstrated to be crucial for this type of system. Regarding the ability
to access distributed data and solve interoperability issues, the users generally considered
Scaleus as a very reliable platform to overcome these challenges. In terms of the overall
rating, all users ranked Scaleus as very good or excellent, which suggests the tool is well
accepted for the creation of new semantically interoperable repositories.

6.3 Discussion

Biomedical translational research requires technical infrastructures to deal with assorted
data sources. By adopting SW technologies, we are limitless in exploring these data and
shaping associations with external resources, avoiding traditional interoperability problems.
Due to these characteristics, several data repositories and systems are gradually adopting
semantic features, contributing to the comprehensive network being established across
the research community. Despite this initial paradigm shift, few solutions provide easy,
streamlined migration and deployment. This influences the delay in adapting existing
datasets and applications to the semantic web environment.
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Figure 6.6: User evaluation overview.

In contrast, our solution was designed to offer an easy installation process with
painless configuration, empowering life science applications with a streamlined semantic
web deployment tool. This results in a flexible transition from traditional systems to an
information system sustained by a fully semantic software stack. Furthermore, the majority
of semantic conversion strategies depend on enabling mappings from relational connections,
through real-time access such as D2R server [113], or based on pre-defined data integration
ontologies such as COEUS [20]. These advances denote outstanding mapping algorithms,
but are unsatisfactory when the goal is to provide a fast, customizable and native solution.
Furthermore, the existence of fixed models for publishing datasets on the web is not suitable
for most large-scale research projects as they need flexibility to test and spread their own
prototype solutions. For those cases, Scaleus represents a better option as it can be used
with any existing ontology and afterwards completed with information from traditional
spreadsheets, for instance. If a custom integration is needed, the simplified REST API
offers total freedom to insert new triples. This greatly increases adoption by biologists
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or bioinformatics researchers since they do not need to acquire complex skills to deploy a
semantic-based infrastructure.

Although Scaleus packs critical semantic features in a single system, its use cannot
be separated, for instance, from data normalization tools. In other words, it can provide
the foundation for the integration and distribution of conventional datasets but, in some
specific cases, the alignment of annotation tools such as SORTA [195] or EGAS [119] with
human experts’ knowledge is required to map unstructured data beforehand. By offering
robust data standardization methods, these semi-automated tools provide a perfect fit to
be used in conjunction with our solution. In a sense, Scaleus provides essential baseline
features to migrate to an empowered infrastructure exploiting a quicker path to publishing
datasets through modern technologies.

6.4 Summary

In the past decades, biomedical research has generated a vast amount of miscellaneous
information. Exploring these data is vital, and therefore, current computational systems
need to be adjusted to assimilate and integrate this diversification.

The semantic web concept arises as a suitable environment for solving, at the same
time, most data heterogeneity and interoperability challenges. Despite the evident features,
transition to this paradigm and the respective establishment of semantic-based innovative
bioinformatics tools is being delayed due to the lack of simplified and rapid migration
solutions.

In this context, we developed Scaleus, a web-based open-source data migration tool
to foster the adoption of semantic web technologies. Whilst it does not aim to provide
a complete replacement infrastructure for existent systems, its side-by-side use offers a
multitude of semantic features such as knowledge, inference rules and query federation
of the available data. By delivering semantically-enhanced results, Scaleus dramatically
increases the overall performance seamlessly across semantic networks, delivering a baseline
foundation for the creation of sharable and interoperable bioinformatics platforms.

Summarizing, our solution enables the fast deployment of new semantic-based
information systems by including, in a single package, the essential tools needed to
contribute to the knowledge federation layer being established across life science research.
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Chapter 7

Conclusions and future directions

Data integration is a key topic in the areas of computer science and biomedical
informatics. Current computational solutions try to support data-intensive tasks to take
advantage of the increasing information generated by both research and clinical practice.
Nevertheless, data is growing at an unprecedented scale, in size and complexity, posing
challenges for scientific innovation. Indeed, available infrastructures are not ready to
assimilate and standardize the current nature of biomedical resources, delaying knowledge
discovery advances. This creates a good opportunity to investigate novel methods towards
an interoperable biomedical data network.

This document reports our efforts to tackle these challenges, providing enhanced
methodologies to deal with the overwhelming data sources across the biomedical
community.

7.1 Outcomes

We introduced our research discussing current data integration challenges at different
levels and arguing about the benefits of making data interoperable across research
and clinical institutions. Moreover, we examined available state-of-the-art strategies,
identifying the gaps in existing methods and proposing enhanced solutions. Throughout
this research process, several outcomes were achieved, contributing to the scientific
endeavor in the distinct areas of knowledge.

The first contribution, the Linked Registries platform [18], was developed to simplify
networking between data centres. The solution presented offers an opportunity to
access patients’ distributed data in a common web platform, supporting semantic data
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representation, integrated access and querying. The connection between integrated patient
registries using SW technologies allows federated inquires through multiple instances.
Moreover, this contribution highlights our involvement in the RD-Connect project (http:
//rd-connect.eu), innovating in the creation of interoperable European-wide rare disease
cohorts.

As a second contribution, we highlight the development of the second version of
COEUS [19]. The level of automation introduced in this open-source platform makes
the integration of data from multiple resources feasible, requiring minimal knowledge
of the technologies involved. This significantly increases the usability and applicability
of developed algorithms across the scientific community. In addition, this new version
offers fast and efficient knowledge summarization, following the nanopublication standard.
This enhances current scripting methodologies, augmenting the ability of non-informatician
researchers to produce nanopublications.

The third contribution is focused on the production of information extraction workflows.
Supported by the Ann2RDF tool [31], we introduced an interoperable architecture
to unify text-mining outcomes and to enable proper exploration through multiple
semantic-based interfaces [30]. This allows the harmonization of heterogeneous annotation
results, enabling the easy creation of semantic-powered databases. The possibility to use
and combine text-mined information from different and independent annotations is one
of the main features of the implemented solution. The ability to process annotations
from several, miscellaneous annotation formats benefits accessibility methods, allowing the
integration of heterogeneous formats into a common and interoperable model.

Lastly, we underline the development of SCALEUS, a semantic web migration tool
[32]. The lack of simplified and rapid migration solutions in the life sciences delays
existing datasets and applications’ adaptation to the semantic web environment. In
this situation, our tool plays an important role, empowering life science applications
with a streamlined semantic web deployment tool. The implemented solution facilitates
the creation of new semantic web applications from scratch, presenting several semantic
services for data integration and management. The package includes a native and
high-performance triplestore supporting multiple independent datasets and a SPARQL
query engine, supporting real-time inference mechanisms and optimized text searches over
the knowledge base. The developed solution can be deployed in a large number of scenarios,
offering wide applicability for the interdisciplinary field of biomedicine. This is a major
outcome of our research, as it is possible to reuse our solutions to advance new specialized
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applications.

7.2 Future work

This thesis introduced novel methods and architectures that can be deeply explored in
different scenarios. Additionally, we can identify some research lines for further exploration
in the future.

A first challenge that can be addressed is related to the enhancement of web interfaces
for data exploration. During our research, we developed several services for knowledge
bases’ integration and access. Some of these services, such as SPARQL, require knowledge
about their main functions to be effectively used. This is a critical point for the adoption
of semantic web information systems, and further research should be more concerned with
user usability and functionality aspects.

Another future line of research could be the exploration of data analytics tools.
Semantic web-based repositories make data interoperable, offering additional and
important insights into the data collected. However, most of the available systems are
oriented to information retrieval, lacking user-assisted methods for data analysis. Adding
more complex data analysis features will offer additional opportunities for exploring these
valuable data networks.
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