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Abstract  

Narrative information in Electronic Health Records (EHRs) contains a wealth of 

clinical information about treatments, diagnosis, medication and family history. In 

addition, the scientific literature represents a rich source of information that 

summarises the latest results and new research findings relevant to different diseases. 

These two textual sources often contain different types of valuable phenotypic 

information that may be complementary to each other. Combining details from each 

source thus has the potential to be useful in uncovering new disease-phenotypic 

associations. In turn, these associations can help to identify patients with high risk 

factors, and they can be useful in developing solutions to control the causes 

responsible for the development of different diseases. However, clinicians at the 

point of care have limited time to review the large volume of potentially useful 

information that is locked away in unstructured text format. This in turn limits the 

utility of this “raw” information to clinical practitioners and computerised 

applications. Accordingly, the provision of automated and efficient means to extract, 

combine and present phenotype information that may be scattered amongst a large 

number of different textual sources in an easily digestible format is a prerequisite to 

the effective use and comprehensive understanding of details contained within both 

the records and the literature.  The development of such facilities can in turn help in 

deriving information about disease correlations and supporting clinical decisions. 

This thesis is the first comprehensive study focussing on extracting and integrating 

phenotypic information from two different biomedical sources using Text Mining 

(TM) techniques. In this research, we describe our work on (1) extracting phenotypic 

information from both EHRs and the biomedical literature; (2) extracting the 

relations between phenotypic information and distilling them from EHRs using an 

event-based approach; and (3) using normalisation methods to link the phenotypic 

information found in EHRs with associated mentions found in the literature as a first 

step towards the automatic integration of information from these heterogeneous 

sources. 
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 Introduction 

Advances in health care are dependent upon the use, integration and organisation of 

massive amounts of genomic, phenotypic, pharmacological, biological and clinical 

information. The ability to rapidly access and integrate information gathered by 

biomedical scientists from multiple fields constitutes the first step towards keeping 

researchers aware of the latest advances and innovations in their field of interest [1].  

    Human phenotypic information constitutes the observable traits of human beings 

(e.g., height, eye colour, etc.) resulting from genetic make-up and environmental 

influences. A more contemporary definition of phenotypes includes the measurable 

biological, behavioural or cognitive markers that distinguish individuals with specific 

medical conditions from the general population [2]. More precisely in this research 

phenotypic information refers to the causes, risk factors, signs or symptoms of a 

given disease.  

    A greater understanding of phenotype-disease correlations is essential to improve 

disease prevention measures. Such an understanding can help to allow a better 

evaluation of an individual’s risk of developing a disease, and can assist in 

controlling the disease’s causes and risk factors [3]. Acquiring a detailed knowledge 

of phenotypic information for complex diseases such as cancer, asthma and 

cardiovascular disease can help to provide patients with personalised medical 

treatments, by allowing an individual’s therapeutic response to be determined and by 

offering better treatment for patients, based on their phenotypic profile [3, 4].  

    The primary source of biomedical scientific information which describes new 

findings and results of experimental studies is text [5]. Various biomedical 

information is published in different biomedical resources including the biomedical 

literature (e.g., original reports and summaries in journals, books etc.), biological 

databases (e.g., annotations in genes, protein, disease databases), web pages and 

EHRs (e.g., clinical narrative reports).  

    In this introductory chapter we provide an overview of the primary textual sources 

for phenotypic information i.e., biomedical literature and EHRs. We also provide an 

overview of the motivation for this research. This is followed by an outline of the 

research aims, hypotheses, objectives and contributions.  
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1.1 Biomedical literature 

The biomedical literature constitutes a major and reliable repository of knowledge, 

which has been constructed by thousands of scientists over decades of 

experimentation, analysis and discovery. Human phenotypes comprise a very 

important part of this knowledge [6]. The goal of biomedical research is to discover 

new knowledge. Clinicians use findings from research to improve their methods of 

disease diagnosis, treatment and prevention to deliver optimum clinical care to 

patients [7]. Medical Literature Analysis and Retrieval System Online (MEDLINE) 

is the U.S. National Library of Medicine’s (NLM) database of bibliographic 

references and it is well known to bioinformaticians. MEDLINE currently contains 

over 23 million citations which focus on biomedicine [8]. This abundance of 

biomedical information is constantly expanding, in line with the rapid creation and 

publication. With such exponential growth in published information, it is extremely 

challenging for clinicians to keep abreast of all the new findings and discoveries 

within their own specialist fields. This is particularly the case, given that the majority 

of new knowledge is locked away in the unstructured text of scientific articles, which 

makes the information difficult to use and integrate with other sources (e.g. 

biological databases) [6, 9].   

1.2 Electronic Health Records 

The last decade has seen a remarkable uptake of the adoption of Information 

Technology (IT) in health care settings.  An increase in the awareness of the utility of 

transforming medical records from paper into fully digitised records has resulted in a 

rapid shift towards the use of EHRs in healthcare settings [10, 11]. 

    EHRs are written by clinicians and describe patients’ personal, social and medical 

histories. EHRs contain structured (name-value pairs) and unstructured (narrative) 

information. Unstructured narrative texts are written using natural language. 

Examples include: progress notes, discharge summaries as well as test reports from 

radiology, electroencephalography (EEG) and pathology. In contrast to structured 

data, narrative reports allow clinicians to freely express information about a patient’s 

conditions, without constraints of space or vocabulary. They can explain why drugs 
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were given or discontinued,  describe the results of physical examinations or provide 

other information important for patient care [12]. Furthermore narrative text usually 

includes valuable predictive information, which is usually not available in structured 

parts of EHRs [13]. Examples of information found in free text are family history, 

risk factors and signs or symptoms (e.g., ejection fraction is a strong indicator of 

congestive heart failure) [14]. This kind of clinical data constitutes a rich source of 

information that is used in the formulation of appropriate healthcare plans. For 

example, it allows clinicians to compare the characteristics of patients with similar 

medical histories. Such information is also useful for clinical research. For example, 

combining and comparing information from different clinical records in large 

repositories can help researchers to find answers to questions such as: “How many 

patients with stage 2 adenocarcinoma who were treated with tamoxifen were 

symptom-free after 5 years?”. Such information forms the basis for generating new 

hypotheses, which can subsequently be explored and validated in clinical trials [12].  

1.3 Problem definition 

Clinicians at the point of care face an information overload problem when dealing 

with the overwhelming volume of narrative information in EHRs and searching for 

relevant information in the biomedical literature. The vast amount of information 

locked away within biomedical literature repositories can make it virtually 

impossible to make connections between pieces of biomedical knowledge dispersed 

within many different articles. However, such connections are vital to facilitate 

advances in clinical care [15]. As a consequence, there is evidence of  a 13−17 year 

gap between the time when research findings are reported in the literature and when 

they are put into practice in the context of clinical care [16]. Encoding the clinical 

information contained within free text resources in a structured format increases the 

feasibility of developing a wide range of clinical applications that will become 

invaluable tools for clinicians and researchers [7].  

    According to the above, there has been a surge of interest in developing methods 

that can aid clinicians in making more efficient use of existing biomedical 

knowledge and in helping them to make practical usage of this knowledge. While 

manual curation and indexing can assist clinicians in searching for and locating 
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appropriate literature, MEDLINE indexing and Medical Subject Headings (MeSH) 

vocabulary cannot represent all the concepts of interest for the clinicians, mainly 

because MeSH is a manually curated resource that is not expressive enough to 

capture all biomedical concepts [7]. Furthermore, the full-text of the biomedical 

literature contains a wealth of information that is neither mentioned in abstracts nor 

encoded in MeSH terms, and thus may not be captured by curators [7]. This can 

mean that a large amount of relevant information is overlooked by clinical 

researchers.  

    In response, there has been a large amount of research in the Natural Language 

Processing (NLP) field to develop systems that analyse biomedical free text, in order 

to extract and structure relevant information [17]. This collaboration between the 

NLP and biomedical communities forms a research area known as Biomedical 

Natural Language Processing (BioNLP). NLP tools can be combined together into 

pipelines to carry out different text mining (TM) tasks, which involve the processes 

of discovering and extracting knowledge from unstructured textual data. TM 

comprises three major tasks: 1) Information Retrieval (IR), to collect relevant 

documents;  2) Information Extraction (IE),  to extract key information from these 

documents and convert it into structured knowledge; and 3) data mining, to find 

associations between entities extracted from different texts, and thus aid in the 

discovery of new knowledge [17, 18]. TM systems help clinicians to manage the vast 

amount of information available in the literature. Well-established information 

retrieval techniques allow the search space to be reduced by an initial query. TM 

methods move a step further by subsequently applying IE  techniques to identify and 

structure specific types of information contained within these documents [6, 19]. IE 

includes tasks such as Named Entity Recognition (NER), which corresponds to the 

automatic recognition and semantic categorisation of named entities, such as gene, 

protein, disease and drug names in free text, and Relation Extraction (RE), which 

attempts to extract binary associations between named entities, for example, 

recognising Protein-Protein Interactions (PPIs) and the relations between drugs, 

genes and cells. Recently, there has been a shift in biomedical IE from identifying 

binary relations, to the more ambitious task of Event Extraction (EE), which deals 

with extracting and semantically categorising complex n-ary and nested relations, 

such as gene expression and regulation and protein binding [20]. 
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    Over the past few years, biomedical TM has seen dramatic progress in the 

development of increasingly complex high-performance NLP techniques that are 

able to better address the information needs of biomedical researchers than 

traditional IR techniques [17]. A major driving force behind the progression of the 

field has been the organisation of shared tasks. Some of these tasks have focussed on 

processing biomedical literature, while others have been concerned with the 

extraction of information from medical records. As a result, current BioNLP tools 

and resources can be broadly categorised according to whether they handle 

biomedical or clinical text. The focus of biomedical shared tasks has been the 

extraction of named entities such as gene, protein, diseases and drugs names, 

classifying binary relations between two entities (e.g., extracting the relations 

between genes and diseases) and extracting complex n-ary relations or events. These 

shared tasks facilitate the benchmarking of methods proposed by different research 

groups. As a result of these shared tasks, a large number of robust IE tools have been 

developed, e.g., NER tools such as ABNER [21] and NEMine [22], relation 

extractors such as AkanePPI [23] and OpenDMAP [24] and event extractors such as 

the Turku Event Extraction System [25] and EventMine [26]. This is because PPIs 

and other molecular-level relationships are a central theme of modern translational 

and genomic research, which are frequently described in the biomedical literature. 

Thus the automatic extraction of such information is a priority for biomedical TM 

researchers.  

    However, clinical shared tasks focussing on IE have appeared more recently and 

have been less numerous than the biomedical shared tasks. The first clinically 

focussed IE shared task took place in 2006, as part of the Information Biology and 

Bedside (i2b2) [27] challenge. This was followed by ShARe/CLEF  in 2013 [28] and 

SemEval in 2014 [29]. Most of the available NLP tools and resources for the clinical 

domain have been developed as a result of these shared tasks. Examples of these 

resources include corpora and systems to determine different health problems at the 

document level (e.g. smoking status [30], obesity and its co-morbidities [31], etc.), 

recognising disease names in clinical notes and normalising them by mapping each 

mention to a clinical concept in Unified Medical Language System (UMLS), a large 

scale terminological resource of biomedical terminology [28], and 

identifying/classifying relations between clinical concepts (e.g., between medical 

problems, treatments and tests) [32].  
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    Less attention has been given to the application of TM techniques to recognise 

phenotypic information. This is mainly because there is no available annotated 

corpus for phenotypes. Furthermore, there is no comprehensive dictionary covering 

phenotype names. For example, although the UMLS Metathesaurus [33] is an 

extremely comprehensive biomedical resource, which integrates more than 100 

terminologies and ontologies, it does not contain a semantic type that corresponds 

directly to phenotypic information. Other resources, such as the Online Mendelian 

Inheritance in Man (OMIM) [34] and Human Phenotype Ontology (HPO) [35] are 

more specifically focussed on phenotypes.  However, they are manually constructed 

which makes them difficult to update and maintain. Although HPO is specialised for 

disease phenotypes, it only covers a subset of human diseases. Furthermore, its 

coverage of synonyms is not exhaustive. For example, it includes endocrine 

abnormality, but it does not include the synonym endocrine disorder. Additionally, 

phenotypic information is highly expressive. There are often different ways to 

describe the same phenotypic concept. For example, adjectives and other modifiers 

are added to phenotype names to give more information about them (e.g., right 

ventricular enlargement  is in the HPO, but an automatic system would not suggest 

that mild to moderate right ventricular enlargement  is a phenotype simply by 

searching in the HPO). However, HPO is not sufficiently comprehensive to cover all 

of these expressions [36]. 

    Narrative information in EHRs and literature articles often include detailed 

phenotypic information for specific diseases. Since the use of TM tools has been 

previously shown to provide an efficient automated means to extract and integrate 

vital information hidden within the vast volumes of biomedical text, it is important to 

develop tools and resources that can better support the application of TM techniques 

to extract phenotypic information for textual resources. Extracting phenotypic 

information from heterogeneous sources, i.e., EHRs and literature articles constitutes 

a first step towards the automatic integration of complementary information. This 

integration can help to improve healthcare applications, including Clinical Decision 

Support Systems (CDSS) and Evidence-based Medicine. 

    Our research focusses specifically on Congestive Heart Failure (CHF). We chose 

CHF as it is a life-threatening disease and according to the World Health 

Organisation (WHO), cardiovascular diseases represent the highest cause of death 

globally [37, 38]. In the United Kingdom, for example, about one in six men and one 
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in ten women die from heart disease [39]. Having access to detailed CHF phenotype 

information can identify low and high-risk CHF patients, save the life of many others 

and advance patient recruitment for clinical trials and case control studies. Our 

research focus is additionally motivated by the fact that more than one third of 

patients with chronic kidney disease (CKD) develop symptoms of heart failure. CHF 

is also a common contributor to the progression of CKD. Thus, a vicious circle exists 

between these two diseases [40]. Therefore, renal failure or renal insufficiency may 

be more than a marker for heart failure severity and instead may play a causative role 

in the progression of heart failure. Understanding and managing the interaction 

between these two diseases is an evolving challenge for clinicians [41]. 

1.4 Research Aims, Hypotheses and Objectives 

 Aims 

Our overall research aims are defined as follows: 

A1 To extract phenotypic entities from heterogeneous biomedical sources (EHRs 

and literature articles). 

 

A2 To extract n-ary relations between phenotypic entities in EHRs. 

 

A3 To study the variability between the two biomedical text types. 

 

A4 To investigate challenges arising from the integration of phenotypic 

information from the literature and EHRs.  

 Hypotheses 

In line with the four fundamental research aims, we formulate the following 

hypotheses: 

H1 Existing text mining techniques can be adapted to extract phenotypic 

information from the overwhelming volume of information in the literature 

and EHRs and to discover hidden knowledge and associations that may occur 

across texts of different types.   
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H2 N-ary relations between phenotypic entities can be cast as events, and they 

can be extracted using an event-based approach. 

 

H3  Normalising various types of phenotypic information that appear in both 

EHRs and literature articles can act as a first step towards the automatic 

integration of knowledge that is dispersed within these two text types. 

 Objectives 

Based on the proposed hypotheses, we establish 6 research objectives: 

 

O1 To conduct a comprehensive review of existing resources, annotated corpora 

and approaches for clinical NER. 

 

O2 To apply NER techniques at a large scale to extract phenotypic information 

from both EHRs and literature articles.  

 

O3 To conduct a comprehensive review of existing corpora and approaches for 

clinical relation extraction. 

 

O4 To adapt TM tools currently used to extract relations and events from full 

papers and abstracts and make them suitable for extracting the relations 

between phenotypic entities in EHRs. 

 

O5 To develop a novel method to normalise phenotypic concept mentions from 

heterogeneous textual sources (i.e., EHRs and literature articles) and to map 

them to UMLS concepts. 

 

O6 To integrate information extracted from both text types using the 

normalisation approach. 

1.5 Contributions of this thesis  

The contributions of this research are summarised in the following points: 
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C1 Extraction of phenotypic information from narrative text within EHRs, 

integrated with information extracted from the vast amounts of available 

literature.   

 

C2 Construction of a gold standard, semantically annotated corpus (PhenoCHF) 

for the purposes of training and testing various TM techniques on clinical 

texts dealing with the CHF disease. The corpus consists of texts drawn from 

two sources: discharge summaries from EHRs and scientific articles. The 

annotation in PhenoCHF is concerned with the identification of phenotype 

information, i.e. entities and relationships between them.  

 

C3 Adaptation of machine learning NER algorithms to the clinical domain to 

extract phenotypic information from EHRs and the literature. 

 

C4 Adaptation of an event extraction algorithm to the clinical domain to extract 

relations between phenotypic entities. 

 

C5 Development of normalisation methods to link the phenotypic information 

found in EHRs with associated mentions found in the literature. 
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 Literature review 

Clinical knowledge is growing constantly as new discoveries are made. 

Advancements in health care are dependent on the use, integration and organisation 

of massive amounts of genomic, phenotypic, pharmacological and clinical 

information. This important information is usually expressed as free text within a 

number of sources, including articles from the scientific literature and clinical  

narrative reports form EHRs [1]. The high rate of publication in the biomedical 

literature has made it impossible for researchers and clinicians to keep abreast of the 

new findings on their own field of interest, since there are simply too many articles 

to read.  However, knowledge about different disease characteristics from disparate 

textual sources can be automatically extracted and integrated into a structured format 

(e.g. a database), which can help to facilitate a greater understanding of the various 

characteristics of diseases (e.g. treatment and symptoms) that may be overlooked in 

unseen literature articles. Having ready access to up-to-date information about 

diseases (e.g., detailed disease profiles) can be valuable for a variety of applications, 

including decision support (e.g., recommending treatments), quality assurance (e.g., 

inter- and intra-institutional review), clinical information needs (e.g., answering 

clinical questions), information retrieval (e.g., finding relevant documents), and data 

mining (e.g., hypothesis discovery). 

    In this chapter, we present a review of the state-of-the-art in clinical IE. Since the 

focus of this research is on IE methods for documents from heterogeneous 

biomedical sources (i.e., biomedical literature and clinical records), we review 

notable resources and techniques that have been applied to both text types. 

2.1 Biomedical text mining 

Biomedical TM accelerates knowledge discovery by automatically extracting 

knowledge that is hidden in text and presenting this knowledge to researchers in a 

concise and easily understandable format. Therefore, the results of TM analysis can 

provide efficient access to required facts and the associations between them [1]. 

Biomedical TM is partly inspired by the work of Swanson [42], in which it was 
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demonstrated that extracting and linking facts from different literature articles can 

lead to the generation of new scientific hypotheses [43]. 

    Over the last decade, there has been an impressive increase in biomedical TM 

research, leading to significant advances. Research in the area includes work on 

producing increasingly high-performance tools that are able to carry out the 

fundamental IE tasks introduced in chapter 1 as well as more complex tasks such as 

automatic summarisation and question answering. Developing TM solutions to 

address such complex tasks is becoming increasingly straightforward, thanks to the 

development of TM workflow platforms, such as U-Compare [44], Argo [45] and 

General Architecture for Text Engineering (GATE), which allow heterogeneous text 

processing tools to be flexibly combined into different processing pipelines.  Further 

important research outcomes include evaluation methodologies and an increasing 

availability of resources that are important both for developing and evaluating tools. 

However, a number of unsolved problems and challenges remain. These continue to 

present themselves to the biomedical text mining community and provide great 

potential for interesting research [9].  

    Most biomedical TM systems are broadly aimed at handling text belonging to one 

of two main types, i.e. biomedical scientific text or clinical text  (e.g. narrative 

reports from EHRs) [43].  As mentioned previously in Section 1.3, the majority of IE 

tools that have been developed for the biomedical domain focus on identifying bio-

entities (such as genes and proteins) and relationships (such as proteins and their 

binding sites) among them [9]. Examples of such tools include ABNER [21], 

BANNER [46] and the GENIA Tagger [47]. Despite the advances in the automatic 

processing of biomedical literature, progress on processing clinical data has been 

relatively slow. There are only a small number of research teams working on clinical 

TM, which is partly due to the greater challenges in accessing and processing this 

type of text compared to biomedical literature [20].   

 Challenges of processing clinical reports 

EHRs are one of the most important healthcare innovations of the last decade [48]. 

The introduction of EHRs is particularly promising, since they facilitate increased 

accessibility of clinical information, which in turn can lead to improvements in 

clinical research [1].  EHRs are written by clinicians and describe patients’ personal, 

social and medical histories. Information within these records has the potential to 



27 
 

improve health care outcomes. Possible secondary uses of the data include tracking 

performance of drugs, optimising resources, appraising treatments and alerting the 

community about potential post-marketing adverse drug effects. However, a barrier 

to the effective use of data from EHRs in clinical research and computerised 

applications is that most information in EHRs is in the form of narrative text [1].  

Only by structuring the narrative clinical information it can be used to aid in the 

development of a wide range of clinical applications that will be invaluable for 

clinicians and researchers [1]. Manual encoding/structuring of all important clinical 

information contained within the records is infeasible, because it is costly and time 

consuming.  

    Automatically adapting and extending existing NLP techniques to identify, extract 

and structure relevant information in EHRs can significantly increase the potential to 

carry out better, novel, clinical studies [1]. 

    A major hurdle to be overcome is the fact that information contained within EHRs 

is confidential. In order to make such information available for research use, personal 

identifying information (e.g., names, addresses, telephone numbers, etc.) must be 

removed from the records to comply with laws protecting patient confidentiality.  

The automatic detection of personal information is a difficult task that often requires 

manual review and sometimes even after removing personal information, it is still 

possible to identify patients according to rare characteristics [27]. Even after the 

removal of Personal Health Information (PHI), approval to access to the records must 

still be obtained from an Institutional Review Board and from institutional 

administrators.  

    The HIPAA (Health Insurance Portability and Accountability Act) and the 

European Union Data Protection Directive protect the confidentiality of patient data 

by requiring the consent of the patient and the approval of the Institutional Review 

Board in order for patient data to be used for research purposes. However, these 

requirements may be waived if PHI is de-identified, i.e., all personal identifying 

information is removed.  

    Another challenge is that there is no standardised format for writing clinical 

reports. Rather, the nature of these reports can be highly heterogeneous; the text 

often does not conform to grammatical conventions and can be full of domain 

specific idiosyncrasies, acronyms and abbreviations, as well as spelling and other 

typographical errors. Indeed the rate of misspelling in medical records (around 10%) 
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is very high compared to other text genres [43]. Furthermore, the vocabulary used in 

clinical reports can be very wide-ranging, while sentences can be very long and 

highly complex [49]. Punctuation is often missing and new lines may be used instead 

of full stops to indicate the end of the sentences. A further characteristic is the 

frequent use of highly ambiguous abbreviations, e.g. “PE” may refer to ‘physical 

examination’, ‘pleural effusion’ or ‘pulmonary embolism’, amongst others [1]. 

Another example of ambiguous abbreviation is “RA” which may refer to ‘right 

atrium’, ‘rheumatoid arthritis’, ‘refractory anemia’, ‘renal artery’ or one of several 

other concepts. 

 Semantic analysis of biomedical text 

Three major subtasks of information extraction are particularly relevant for 

processing biomedical text: 1) NER, 2) relation extraction and 3) event extraction. 

Although each of these subtasks is distinct in the type of information it aims to 

extract, they each achieve their goals by employing similar methods, which include 

machine learning, statistical analysis and other techniques of NLP. Challenges and 

approaches to the subtasks of biomedical information extraction are discussed below.  

 Named entity recognition (NER) 

a)  Dictionary-based approaches 

 

The first methods aimed at extracting medical concepts from clinical notes relied 

solely on the application of string matching techniques to administrative billing 

codes such as those contained within the International Classification of Diseases 

version 9 (ICD-9). However, ICD-9 coding is aimed specifically at billing purposes 

and therefore, the ICD-9 classification system cannot accurately capture the nuances 

of phenotypic characteristics, such as family history, signs and symptoms or known 

risk factors for a disease that are typically embedded in narrative text. Thus, a 

number of studies have shown that the use of ICD-9 coding alone has performance 

limitations in terms of sensitivity, and thus is not sufficient to reliably identify 

patients suffering with a particular disease or having specific risk factors [50-52].  

    Over the last two decades, there have been many efforts to apply NLP 

technologies to clinical text. The Linguistic String Project [53, 54] and the Medical 

Language Extraction and Encoding System (MedLEE) are a few of the earliest NLP 
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systems developed for application to text within the clinical domain. UMLS is the 

world’s largest medical knowledge source and it has been widely used as a dictionary 

for the identification of medical named entities in clinical reports. Advances in 

natural language and semantic processing techniques have contributed towards the 

development of many dictionary-based methods to extract medical concepts that are 

typically mentioned in narrative text. Systems such as Clinical Text Analysis and 

Knowledge Extraction System (cTAKES), the Health Information Text Extraction 

(HITEx) system and MetaMap use a variety of NLP tools (e.g., part-of-speech  POS 

taggers and shallow parser) to identify all the noun phrases in a given text and map 

them to medical concepts of various types within knowledge resources (e.g., UMLS) 

[55].  

    In the following section, we provide an overview of some of the major clinical 

NLP systems. 

1) cTAKES 

cTAKES is a natural language processing system developed at the Mayo clinic to 

process and  extract information from the free text in EHRs [56].  cTAKES is a 

modular, pipelined system of NLP components, built using the OpenNLP1 toolkit. 

The employment of the Unstructured Information Management Architecture (UIMA) 

framework [57] in constructing the pipeline ensures it can be reconfigured and/or 

extended with additional tools in a straightforward manner. The components within 

the cTAKES pipeline are specifically adapted for application to clinical texts. These 

components create rich linguistic and semantic annotations that can be utilised by 

clinical decision support systems and in clinical research. The current pipeline of 

components consists of a sentence boundary detector, tokeniser, normaliser, POS 

tagger, shallow parser, named entity recogniser, co-reference resolver, temporal 

relation detector, semantic role labeller and clinical question answerer.  

    The NER component implements a dictionary look-up algorithm within a noun 

phrase window. Each named entity identified through dictionary lookup is mapped to 

a concept in the terminology (a subset of UMLS which includes the Systematized 

Nomenclature of Medicine Clinical Terms (SNOMED CT) and RxNorm 

vocabularies). Each term in the terminology belongs to one of the following semantic 

                                                           
1 http://opennlp.sourceforge.net/projects.html 

https://en.wikipedia.org/wiki/OpenNLP
https://en.wikipedia.org/wiki/UIMA
https://en.wikipedia.org/wiki/UIMA
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types:  disorders/diseases (with a separate group for signs/symptoms), procedures, 

anatomy and drugs. Each recognised named entity has attributes including: 1) a span 

attribute, corresponding to the text span associated with the named entity, 2) a 

concept attribute, which denotes the UMLS identifier to which the named entity 

maps, 3) a negation attribute, indicating whether or not the named entity is negated 

and 4) a status attribute, corresponding to one of the following values: current, 

history of, family history of, possible. This attribute aims to capture whether the 

mentioned disorder is considered a present condition of the patient under discussion, 

whether it is found in the context of the patient’s personal or family medical history, 

or whether there is speculation about the disorder.  

    However, the NER component in cTAKES does not resolve ambiguities that result 

from the identification of multiple terms in the same text span. A further limitation of 

cTAKES is its inability to correctly handle the interpretation of coordinated 

structures. For example, the phrase “ovarian and breast cancers” should be 

interpreted as “ovarian cancer” and “breast cancer”. However, cTAKES currently 

incorrectly recognises this as “ovarian” and “breast cancer”. 

    cTAKES has been used by many research groups to process and extract 

information from EHRs. For example, it was used by Savova et al. [58] to classify 

radiology notes as positive, negative, probable and unknown cases for peripheral 

artery disease. The overall accuracy of cTAKES, compared to the gold standard was 

0.93. cTAKES  was also extended to participate in the first and second i2b2 NLP 

challenges, to classify smoking status [59] and recognise obesity and its co-

morbidities [59]. It achieved F-scores of 0.60 and 0.73 for the tasks of classifying 

smoking status and recognising obesity, respectively.  

2) HITEx 

HITEx was developed in response to the i2b2  project on extracting factors 

contributing to asthma exacerbation and hospitalisation project [60]. HITEx uses the 

GATE as the development platform to adapt different NLP modules which are then 

assembled into pipelines to carry out different tasks [61]. GATE is an open source 

NLP framework that contains a Collection of REusable Objects for Language 

Engineering (CREOLE).  CREOLE consists of a set of NLP modules that perform 

common NLP tasks, such as tokenising, POS tagging and syntactic chunking. The 

GATE framework can be viewed as a backplane for plugging in CREOLE 
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components, and it provides various services to the components such as 

bootstrapping, loading and reloading, management and visualisation of data 

structures and process execution.  

    HITEx consists of the following 11 components: a section splitter, section filter 

(selects the subset of sections based on the selection criteria, e.g., category name, 

section name, etc.), sentence splitter, tokeniser, POS tagger, noun phrase finder, 

UMLS concept mapper, negation finder, n-gram tool and classifier (to determine the 

smoking status of a patient). These modules are assembled into different pipelines 

according to the task to be undertaken. For example, a pipeline to extract diagnoses 

from clinical notes is constructed through the sequential combination of the 

following:  section splitter, section filter, sentence splitter, sentence tokeniser, POS 

tagger, noun phrase finder, UMLS concept mapper, and negation finder [62].  

    HITEx has been used to extract principal diagnoses, co-morbidities and smoking 

status information from discharge summaries for patients with a known history of 

asthma or Chronic Obstructive Pulmonary Disease (COPD) [60]. The accuracy of 

HITEx was 0.82 for extracting principal diagnoses, 0.87 for co-morbidities and 0.90 

for smoking status. 

3) MetaMap  

MetaMap is a general biomedical NLP system developed by Aronson et al. [63]  at 

NLM. Although MetaMap was originally developed to map entities of interest (e.g., 

diseases, drugs, etc.) mentioned in the biomedical literature to concepts in UMLS 

[64, 65], it has also been widely used by many researchers to extract information 

from clinical text within EHRs. For example, Meystre and Haug [66] evaluated the 

ability of MetaMap to extract medical problems from EHRs and recorded a recall of 

0.74 and a precision of 0.76. 

    MetaMap uses a minimal commitment parser, the UMLS SPECIALIST lexicon 

and a POS tagger, all developed at the NLM.  Firstly, MetaMap finds all noun 

phrases and for each phrase, a set of lexical variants is generated. The candidate set 

of all UMLS terms containing at least one of the variants is retrieved. Each candidate 

UMLS term is assigned a score that is a measure of how strongly the actual term is 

mapped to the UMLS vocabulary. Complete mappings are constructed by combining 

candidates involved in disjoint parts of the phrase, and the strength of the complete 

mappings is computed just as for candidate mappings. The complete mapping with 
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the highest score represents the best MetaMap match for the original phrase. The 

process also incorporates a word-sense disambiguation mechanism, recently 

enhanced with a statistical context-sensitive method. 

4) MedLEE 

MedLEE was developed by Friedman et al. [67]  at Columbia University, initially to 

process and encode information in radiology reports. The system was subsequently 

expanded to handle and process information in reports from a variety of clinical sub-

domains, including pathology reports and discharge summaries. It has been applied 

to many clinical information extraction problems and has showed promising results. 

Examples of the diverse range of tasks that it has been used to address include 

adverse event detection, automated trend discovery and acquisition of disease-drug 

associations. 

    MedLEE consists of several modular components with different functions  (i.e., 

pre-processor, parser, phrase regulariser and encoder)  [68]. The pre-processor is the 

first component. It separates complete reports into sentences, and then identifies 

phrases within sentences. Subsequently, it assigns words and multiword phrases to 

semantic categories. The second component is the parser, which uses grammar rules 

that combine semantic and syntactic patterns to recognise relevant clinical 

information and modifier information (i.e., negation, temporal information, family 

history etc.), and to generate target forms. For example, the output of the parser for 

the sentence “enlarged heart noted” would be [problem, enlarged heart, [certainty, 

‘high certainty’]]. The phrase regulariser formulates a multiword phrase after the 

parsing stage if the sentence contains a non-contiguous phrase (e.g., “heart was 

enlarged”). For example, “enlarged heart” is defined in the lexicon as a phrase. If the 

words in the phrase are non-contiguous, the output of the parser would be composed 

of the individual words and not the complete phrase (i.e., [problem, enlarged, 

[bodyloc, heart], [certainty, ‘high certainty’]]).  The purpose of the phrase regulariser 

is thus to “reconstruct” non-contiguous phrases into single units.  This is achieved by 

using a compositional table containing the phrases and their corresponding 

compositional structures, such that both contiguous and non-contiguous phrases have 

the same final structure (i.e., [problem, enlarged heart, [certainty, ‘high certainty’]]). 

     The flexible design of MedLEE means that it is straightforward to adapt for use in 

different domains by changing the underlying knowledge sources and grammar 
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patterns. For example, MedLEE has been adapted to extract phenotypic information 

(e.g., cellular body functions and model organism anatomy) from 300 randomly 

chosen journal articles from the biomedical literature by changing the semantic and 

syntactic grammar. On this task, the system achieved 64% precision and 77.1% recall 

[69]. The GENIES system, which extracts biomolecular interactions from the 

biomedical literature was also adapted from  MedLEE, by replacing the lexicon with 

one relevant for the biological domain and by utilising a new set of grammar patterns 

[70].  

    Presented in Table 2.1 is a summary of the features of the clinical dictionary-based 

systems discussed above.   

    A primary problem with the use of purely dictionary-based methods arises from 

the fact that it is impossible to cover the names of all clinical entities in a single 

resource, or even in a combination of resources, due to the frequent appearance in 

text of new clinical concepts and/or new variant forms describing existing concepts.  

Although the more generalised patterns encoded by rules can recognise a potentially 

wider range of entities, formulating such patterns by hand is very time-consuming, 

and it would still be impossible for a hand-crafted set of rules to account for all 

possible entity-indicating patterns that may occur in text [71].  

    Another weakness, particularly of dictionary-based approaches, is their inability to 

handle ambiguous surface forms. The ambiguity between domain-specific concepts 

and general English words can lead to the identification of many false positives, 

especially if the context of terms is not taken into account. For example, the 

abbreviation “BE” for “Bacterial Endocarditis”, could be confused with the verb  

“be” [72]. A further example is the abbreviation “HD” could refer to  various 

different conditions, e.g., ‘Heart Disease’, ‘Hansen Disease’, ‘Hodgkin disease’, 

‘Huntington Disease’, or it may refer to the temporal expression ‘Hospital Day’ [73]. 

    A further drawback of dictionary-based approaches is that they cannot account for 

the fact that, especially within clinical records, certain entity types, such as sign or 

symptoms, may include long descriptive phrases, e.g. “subtle decrease flow signal 

within the sylvian branches”, may incorporate modifiers, e.g. “normal blood 

pressure” or may be expressed using various structures, e.g. clauses, rather than the 

more typical noun phrases, e.g. “blood pressure was normal” [73]. 
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Table 2.1 Comparison of Clinical NLP Systems 

System  Document Type 
Knowledge 

source 
Specific Features Availability 

MedLEE [68] EHRs 
MedLEE lexicon 

+UMLS 

Abbreviation 

resolution, 

Disambiguation 

component 

 

currently 

unavailable 

cTAKES [56] EHRs 

Subset of UMLS 

(i.e. SNOMED 

CT and 

RxNORM) 

Family history and 

negation detection 
public 

MetaMap[63] 
Biomedical 

literature + EHRs 
UMLS 

Disambiguation 

component, 

Negation detection 

 

public 

HITEx [60] EHRs UMLS 
Family history and 

negation detection 
licensed 

 

b) Rule-based approaches 

In order to overcome the problems of low recall that are inherent in a purely 

dictionary-based approach, a possible solution is to couple basic dictionary lookup 

with other methods, such as hand-crafted rules. Compared to the purely dictionary-

based approach, rules can be advantageous in that they can  recognise false negatives 

[55], can account for context to help to reduce ambiguity problems, and can make it 

easier to recognise entities having different structures or incorporating descriptive 

information. However, a drawback of rule-based methods is that they frequently 

over-fit the corpora used for their development, because the linguistic patterns 

encoded in the rules are often highly sensitive to the corpus features. Thus, while the 

rules may work well on documents within this development corpus, they are likely to 

perform poorly when applied to other corpora or different text types.  Since the 

construction of rules is time consuming and requires significant human effort, they 

do not constitute an ideal approach for NER [74]. 

    Examples of rule-based approaches include the Acquiring Medical and Biological 

Information from Text (AMBIT) system [75], which is adapted from the Protein 

Active Site Template Acquisition (PASTA) system [76] to extract diseases, drugs and 

genes. AMBIT has been used to mine radiology reports for lung cancer signs (e.g., 

mass, collapse), locations in the lung (e.g., upper lobe, basal region) and the 

relationships between these signs and locations. AMBIT was evaluated on a gold 
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standard of 83 radiology reports to extract lung cancer signs and locations. It 

achieved a precision and recall of 0.69 and 0.83, respectively [75]. 

    Another example of a purely rule-based system was developed by Yang [77]. The 

rules made use of several different linguistic features (e.g., lexical, orthographic, 

morphological) to extract medication-related information (e.g., drug names, dosages, 

modes of administration, frequencies, durations, reasons). After terms had been 

extracted using the rules, a further set of context-based rules was employed to filter 

out terms that were not directly related to the medications of the patient under 

discussion (e.g., by detecting negated contexts and information relating to family 

members).  Their system was evaluated on 547 discharge summaries, and obtained 

an encouraging performance (a micro-averaged F-score of 0.80 [77, 78]). 

    Childs et al. [79] used ClinREAD, a proprietary healthcare-domain oriented, rule-

based NLP system (Lockheed Martin, Bethesda, Maryland, USA) to recognise 

clinical records  mentioning obesity and its co-morbidities. The rules consist of 

patterns generated by medical experts, which make use of combinations of different 

types of keywords (e.g. disease names, their synonyms and symptoms). They 

weighted and combined the evidence for each class of each disease.  The system 

achieved a micro-averaged F-score of 0.95 [31, 79].  

c) Machine learning approaches 

The rapid growth in the biomedical literature makes the process of NER more 

difficult compared to other domains. Clinical text also poses a challenge for NER 

techniques that have been designed to operate on formal styles of text, largely due to 

the fact that clinical records often employ a more informal linguistic style [80]. On 

one hand the above issues mean that dictionary-based methods are frequently 

inadequate to recognise the wide-ranging and sometimes novel variants of concepts 

that may appear in both the biomedical literature and in clinical text. On the other 

hand, hand-crafted rules are usually highly sensitive to the features of the text to 

which they are to be applied. Accordingly, it is difficult to create sets of rules that can 

be applied robustly to the recognition of concepts in clinical texts, whose linguistic 

features can vary considerably.   

     Recent interest has moved away from dictionary and rule-based methods to 

machine learning algorithms, such as statistical or Machine Learning (ML) 

techniques.  ML techniques recognise instances of specific classes of interest by 
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learning automatically from annotated corpora. They exploit the distinctive features 

associated with positive and negative examples to automatically recognise entities in 

previously unseen text [81]. 

    The performance of ML methods is highly dependent on the features employed, 

e.g., orthographic, morphological, lexical and semantic features. It has been 

established in previous work that the selection of the most appropriate features is 

equally as important as choosing the best algorithm [82]. 

    Supervised ML methods learn how to recognise entities of different types through 

evidence in annotated corpora.  Such corpora consist of samples of documents in 

which the target information (e.g., entities of interest) has been marked-up manually 

by domain experts. ML algorithms are able to use this annotated evidence to learn 

patterns related to different types of entities and their contexts. Once trained, the ML 

systems can predict the occurrence of entities in previously unseen texts. Supervised 

ML methods have become popular, owing to the encouraging levels of performance 

that they have demonstrated. Most previous work on developing ML-based NERs 

has utilised either hidden Markov models (HMMs) [83, 84], support vector machines 

(SVMs) [85], or conditional random fields (CRFs) [46, 86, 87],  the latter of which 

has been shown to achieve particularly reliable performance when applied to texts in 

the biomedical domain.  

    de Bruijn et al. [84] developed a discriminative semi-Markov HMM using high-

dimensional bags of features, derived from both the text and external sources. From 

the training data, a combination of features was extracted, including token features 

(e.g., word shape, character n-gram), context features (e.g., token features from four 

tokens before to four tokens after the word), sentence features (e.g., sentence length) 

as well as syntactic and semantic features obtained from external tools and 

sources (i.e., UMLS and cTAKES). They observed that the utilisation of external 

sources to generate semantic and syntactic features is beneficial, and improves the F-

score by 1.5 percentage points (i.e., from 0.836 to 0.852).  

    Tang et al. [88] developed the Structural Support Vector Machines (SSVMs) 

model to extract disorder entities from clinical records. Their model is based on a 

wide range of features generated from both training texts and external knowledge 

sources (e.g., bag-of-words, POS, type of notes, section information and semantic 

categories from UMLS). The ML model achieved an F-score of 0.750. 
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    Pathak et al. [87] proposed a CRF-based model to extract clinical concepts (i.e., 

problems, tests and treatments) from discharge summaries and progress notes. The 

model utilised domain knowledge features (i.e., standard section headers such as 

chief complaints, past history, lab data, medicines and current diagnosis), 

morphological features, orthographic features (e.g., capitalisation) and linguistic 

features (e.g., POS, chunks, NP head). They observed that using domain knowledge 

in the form of features is very effective towards achieving high performance (an F-

score of 0.84). 

    The drawback of supervised ML methods, however, is the need for manually-

annotated corpora which can be expensive and time-consuming to produce.  

d) Hybrid approaches 

Some proposed approaches to clinical NER are based on a combination of different 

methods [20].   

    Jiang et al. [89]  proposed a hybrid clinical entity extraction system by combining 

an ML-based named entity recogniser with post-processing rules. Their system 

utilised a CRF model with various features including: orthographic information (e.g,  

prefixes and suffixes), syntactic (e.g., POS tags), lexical and semantic information 

obtained from NLP systems such as MedLEE and knowledgeMap [90] (e.g., UMLS 

semantic types). The post-processing rules use heuristic patterns to correct possible 

errors (e.g., false negatives) and further improve the performance. The system 

achieved an F-score of 0.83 and the study revealed that semantic features derived 

from existing medical knowledge bases can significantly enhance the performance of 

clinical NER.  

    Wang and Akella [91] proposed a hybrid approach to disorder extraction, which 

integrates supervised ML (SVM), rule-based annotation, and dictionary-based 

(MetaMap) methods. SVMs utilised rich sets of features, including bag-of-words 

(BOW), orthographic, morphological, syntactic (POS) and semantic features (e.g., 

semantic type obtained from SNOMED CT and other semantically related term 

features obtained from parents and/or children nodes in the ontology). The SVM 

model integrating all types of features achieved a 0.64 F-score. By incorporating a 

rule-based annotator, the system performance increased to 0.76 F-score. Finally, with 

the assistance of MetaMap, the final integrated system achieved an F-score of 0.77.  
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Comparison 

In Table 2.2, we summarise the details of some of the various reported approaches to 

clinical NER that have been introduced above, categorised into dictionary-based, 

rule-based, ML based and hybrid types.  

    It should be noted that the approaches listed in Table 2.2 are not directly 

comparable in terms of their performance, since they were evaluated on different 

data sets or corpora; thus, the tabulation of the different performance levels should be 

treated only as an indication of the general performance trends when different 

methods are applied to the problem of clinical NER. In chapter 5, however, we 

provide a direct comparison of the performance of different NER approaches, with 

the aid of our novel domain-specific annotated corpus. 
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Table 2.2 Comparison of systems to clinical NER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approach System  Key idea Eval. Corpus Precision Recall F1 

Dictionary –based 

 

Gundlapalli et al.[50] 

 

string matching against 

ICD-9 

 

76,500 clinical records 

 

0.50 0.27 0.35 

MedLEE 0.35 0.77 0.48 

Rule-based 

AMBIT [75] 

lexical, morphological 

and syntactic features   

83 radiology reports 

annotated for lung 

cancer signs and 

locations 

0.69 0.83 0.75 

Yang [77] 

lexical, orthographic and 

morphological features 

i2b2 medication 

extraction challenge 

test set 

0.89 0.74 0.81 

Childs et al.[79] 

keywords (disease 

names) their synonyms, 

symptoms and patterns 

generated by medical 

experts 

i2b2 recognising 

obesity challenge 

0.97 0.97 0.97 

ML 

de Bruijn et al.[84] 

HMM: token, context 

and sentence features, as 

well as features from 

knowledge sources 

(UMLS and cTAKES) 

i2b2 concept extraction 

challenge test data set 

0.86 0.83 0.85 

Tang et al.[88] 

SSVM: BOW, POS, type 

of notes, section 

information, semantic 

categories from UMLS 

ShARe/CLEF 2013 test 

data set 
0.80 0.70 0.75 

Pathak et al.[87] 

CRF: domain knowledge 

features , morphological  

features and orthographic 

features (e.g., 

capitalisation) , linguistic 

features 

i2b2 concept extraction 

challenge test data set 

0.88 0.81 0.84 
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                                                                   Comparison of systems to clinical NER (Continued from previous page) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approach System  Key idea Eval. Corpus Precision Recall F1 

Hybrid 

Jiang et al.[89] 
CRF coupled with post 

processing rules 

i2b2 concept extraction 

challenge test data set 
0.86 0.81 0.83 

Wang and Akella [91] SVM coupled with rules 

and MetaMap 

ShARe/CLEF 2013 test 

data set 
0.81 0.74 0.77 
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 Relation extraction 

Many IE tasks go beyond simply identifying entities; in addition they involve 

detecting predefined relations between identified entities [92]. In their simplest form, 

associations between biomedical entities are binary; the detection of such 

associations forms the focus of this section. However, biomedical relations can 

involve more than two entities. These more complex associations, often referred to as 

events, are discussed below in the event extraction section.  

    The goal of relation extraction is to automatically recognise occurrences of 

relations holding between pairs of given entities. Much work has been carried out on 

extracting relations from the biomedical literature. Examples of associations of 

interest include gene-gene interactions [93], interactions between proteins and point 

mutations [94], proteins and their binding sites [95], genes and diseases [96-98], and 

genes and their phenotypic context [99]. In the current genomic era, a rich body of 

work has focussed on automatically extracting relations between genes and proteins. 

In particular, the detection of Protein-Protein Interactions (PPIs) and gene-disease 

associations [97, 98] have been the most widely researched topics in biomedical IE 

[100], due to their critical roles in understanding biological processes.  

    The extraction of relationships from clinical notes has so far received much less 

attention [101]. One focussed effort to extract relationships from clinical text was 

facilitated by the i2b2 NLP shared task, whose goal was to extract and classify 

relationships between medical problems, treatments and tests, e.g., to determine 

relations between pairs of medical  problems, or to determine that a test can be used 

to diagnose a medical problem etc. [32]. The Clinical E-Science Framework (CLEF) 

project aimed to extract clinically significant entities such as drugs, devices and 

medical conditions, along with relationships between them, such as medical 

conditions indicated by a device or treated by a drug [102, 103]. 

    In a similar way to NER, biomedical relation extraction faces many challenges. 

Once again, the difficulties in producing high-quality annotated corpora for relations 

can inhibit the training and evaluation of ML-based relation extraction systems.  

    Several methods have been employed to extract such relations from biomedical 

text. These include the following:  
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a) Co-occurrence statistics approaches 

 

The simplest method of extracting relations between entity pairs is through the use of 

co-occurrence statistics. If two entities are repeatedly mentioned together (e.g., in the 

same sentence or document), then there is a high probability that they are related  

[20]. Various statistical measures are used to decide whether or not the two co-cited 

entities are in a relation  (e.g., Chi-Square and Log-Likelihood Ratio) [104]. 

    Wang et al. [105] used co-occurrence association to extract two types of relations 

(diseases-symptoms and diseases-adverse drug) from 25,074 discharge summaries. 

They apply a contextual filter to certain sections of the reports to improve 

performance and reduce the amount of potentially confounding information. The 

contextual filter allows relations to be disregarded if they occur in certain textual 

contexts and/or sections of the reports. Examples include co-occurrence of the 

related entities with modifiers corresponding to particular certainty values (e.g., 

negation, low certainty) or those that denote past events. Certain sections, such as 

family history, are avoided to try to ensure that the extracted relations are concerned 

only with the specific patient under discussion, and which describe novel (current) 

information, rather than information about the patient’s past history. Subsequently, 

extracted disease-symptom and disease-adverse drug event pairs were ranked based 

on their frequency of occurrence with the disease. A subset of 11 discharge 

summaries was used as a gold standard to evaluate their method. The evaluation 

indicated that applying the contextual filters improved recall for disease-symptom 

relations from 0.85 to 0.90 and that of disease-adverse drug events from 0.43 to 0.75. 

The filters improved precision from 0.82 to 0.92 for disease-symptom relations and 

from 0.16 to 0.31 for disease-adverse drug events.  

    Co-occurrence metrics usually identify statistically significant associations without 

distinguishing between different types of semantic relations. Since they only depend 

on statistical strength of association, the relationships identified may not be of 

medical significance or importance. For example, associations between diseases and 

symptoms could represent any of the following relations: direct manifestation 

relations, in which the symptom is a manifestation of the disease (e.g., heart attack, 

chest pain), or indirect manifestation relations, in which the symptom is 

manifestation of another disease that is highly associated with the disease of interest 

(e.g., there is a manifestation relation between ‘angina’ and ‘diabetes’, because heart 
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disease and diabetes are highly associated). As a further example, relations between 

drugs and symptoms may represent treat or cause relations, each of which has very 

different semantics. In a treat relation, the drug is used to treat the symptom, whereas 

in a cause relation, the drug causes the symptom [105]. 

b) Rule-based approaches 

 

Rule-based approaches attempt to go a step further than simple co-occurrence, by 

patterns which indicate that particular relation types are being described. In a similar 

way to NER rules,  relation extraction rules are usually developed manually by 

domain experts [106]. An important advance in RE methods is the use of information 

obtained from dependency parsing trees as features. Dependency parse trees 

represent the grammatical relations between phrases and words. In dependency 

parsing, syntactic analysis is commonly enriched with semantic role labelling, which 

encodes the semantic contributions of words or phrases in the sentence and 

represents this information within the Predicate Argument Structure (PAS). 

    The RelEx [107] system used  three rules based upon dependency parse trees to 

identify associations between genes and proteins from a large set of one million 

MEDLINE abstracts. Their system achieved a performance of 0.79 precision and 

0.78 recall based on small hand curated benchmark sets. Miyao et al. [108], 

described a relation extraction system that utilises deep parsing and term recognition 

tools to annotate MEDLINE abstracts for PAS and ontological identifiers. The 

system performs structural matching, i.e., it exploits the PAS to detect relationships 

between the identified entities. 

    SemRep [109, 110] is a rule-based NLP system, which extracts semantic 

predications (i.e., subject-relation-object triples) from biomedical text, supported by 

domain knowledge obtained from the UMLS Metathesaurus. The system uses 

MetaMap [63] to extract UMLS concepts from text and defines linguistic and 

semantic rules specific to each relation. Each semantic relation extracted by SemRep 

is based on an ontological predication contained within the UMLS Semantic 

Network, whose arguments are UMLS semantic types. Examples of relations that 

SemRep is able to extract are DIAGNOSES, CAUSES, LOCATION_OF, ISA, 

TREATS and PREVENTS [111]. SemRep has been used in a wide range of 
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applications in biomedical informatics, including automatic summarisation and 

Literature-Based Discovery (LBD) [112, 113].   

    While SemRep was originally designed for processing documents from the 

biomedical literature, it has also been applied to process and extract relations from 

clinical records [114]. For example, Bejan and Denny [114] used SemRep to extract 

958  treatment relations between medication or procedure  and disease entries  from 

6,864 discharge summaries, with an F-score of 0.72. 

    The types of relations that SemRep can recognise are inherently restricted, since 

the system uses a predefined predicate ontology that is based on the UMLS Semantic 

Network. 

     Recently, Nguyen et al. [115] introduced PASMED, which uses PAS patterns 

(focusing on verb and preposition predicates) to extract a much broader range of 

semantic relations from the literature, using a single extraction framework. 

PASMED uses the UMLS Semantic Network as a constraint to filter out relations 

that are likely to be spurious (i.e., relations are only extracted between pairs of 

entities that correspond to concepts in UMLS). The performance of PASMED was 

compared with that of SemRep on the task of extracting relations from a random 

selection of 500 sentences from MEDLINE. The results were evaluated by two 

annotators, who determined the number of correct relations extracted by each system. 

SemRep and PASMED extracted 346 and 781 correct relations, respectively. The 

reason that SemRep recognises a far lower number of relations is because its 

relations are limited to those expressed using a fixed set of verbs defined within the 

Semantic Network. In contrast, although PASMED also relies upon the Semantic 

Network, it does so in a less restrictive manner.  

    PASMED patterns were also evaluated in terms of their ability to extract PPIs 

from well-known corpora in the biomedical domain. Evaluation of PPI extraction 

using the BioInfer [116] and LLL [117] corpora revealed that PASMED could 

achieve a precision and recall of  0.51 and 0.44 on the BioInfer corpus, and 0.87 and 

0.81 on the LLL corpus. These results are attributed to the fact that NP pairs of 

PASMED cover over 82% of the entities in the annotated relations in LLL, whereas 

PASMED patterns only cover a small portion (i.e., 46%) of the BioInfer corpus.  

PASMED was also applied to the whole MEDLINE corpus and extracted more than 

137 million semantic relations. The most frequent type of semantic relations is 

between “Amino Acid, Peptide or Protein” entities, which count up to 3.4 million. 
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The range of relations extracted from MEDLINE provides an insight into the kinds 

of semantic relations that are actually described in the literature, and which are  

ultimately extracted by  type-specific relation extraction systems [115]. 

     Manually defined rules require large amounts of human effort and, given that the 

textual patterns that they model can vary between domains. Accordingly, rules can 

be difficult to port to different domains. Additionally, since language use can be 

highly creative, it is not realistic to expect that an exhaustive set of rules covering all 

possible ways of expressing important information can be produced.  

c) Machine learning approaches 

 

With the growing availability of biomedical corpora annotated with relations, 

approaches to relation extraction that employ supervised ML techniques are widely 

used. This task requires the determination of a set of features that can be used to 

accurately predict whether or not a given pair of entities is semantically related. A 

wide range of features has been explored, including orthographic and lexical features 

of the words that occur between the two entity mentions [118, 119]; syntactic 

features such as POS, other shallow syntactic features of these words [120] and 

dependency parse information regarding the grammatical relations that hold between 

the entity mentions [121]. 

     In [122], Rink et al. used a multi-class SVM to discover 8 different relations 

between medical problems, treatments and tests mentioned in EHRs from the corpus 

of the i2b2 relation extraction challenge. The relations in this corpus are fine-grained; 

for example, a number of different relations can hold between a treatment and a 

medical problem (e.g., a treatment may improve a medical problem, or it may cause 

a medical problem). The system relies on the use of a wide range of features, 

including lexical features (e.g., both the surface forms and the lemmas of the words 

contained within each of the entities involved in the relation, the latter extracted 

using WordNet), contextual features (e.g., sequences of words, bigrams and phrase 

chunk types occurring between the two arguments of the relation) and similarity 

features (Levenshtein distance was used to find other relations with the most similar 

sequences of  POS tags, chunk tags, shortest dependency paths and word lemmas for 

the span beginning two words before the first relation argument and ending with the 

second word after the second argument). Other features were derived from external 
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knowledge sources such as Wikipedia to provide further information about the likely 

strength of association between the two potentially related concepts. For example, 

one such feature determines whether links between the Wikipedia articles correspond 

to the two relation arguments. Their proposed method was evaluated on the i2b2 

relation extraction challenge data sets and achieved the highest score of all systems 

participating in the challenge, i.e., an F-score of 0.73. It was observed that the use of 

contextual and similarity features had the biggest impact of the overall performance 

of the system. 

     Roberts et al. [103] extracted clinical relations from the CLEF corpus that hold 

between both entities (e.g. condition, drug, result) and modifiers (e.g. negation).  

There are seven classes of relations and each entity pair can be linked by one relation 

only. Therefore, the classification task is considered as a binary classification task 

between a specific type of relation and the non-relation class. The classification is 

performed using SVMs that employ a number of different sets of features including 

lexical (e.g., the words that constitute the two related entities), syntactic (e.g., the 

POS tags of the two entities and different types of information  contained within the 

linguistic analysis provided by dependency parser, such as the number of links on the 

dependency path connecting the two related entities), direction (e.g., is argument 1 

before argument 2 and vice versa), contextual information (e.g., the distance between 

the two related entities, the surrounding 6 tokens on each side of both entities in the 

pair) and semantic (e.g., semantic types of the two related entities). The method was 

evaluated using ten-fold cross validation over the CLEF corpus and achieved a recall 

of 0.74 and precision at 0.71. The contribution of different feature sets towards the 

overall  macro-averaged F-score was investigated, and revealed that the distance and 

direction features were the most important, in that they were able to improve the 

macro-averaged F-score by 10%. 

    SVMs generally have high performance on various classification tasks, and their 

usage has been a common trend among the most effective relation extraction systems 

at the i2b2 relation extraction challenge [32] and by many other relation extraction 

systems in the biomedical domain [103]. The performance of these techniques 

depends heavily on the types of features that they use. However, they are usually 

dependent upon a large amount of manually annotated data for training purposes, 

which can be expensive and time consuming to obtain.  
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d) Hybrid approaches 

 

Hybrid approaches combine rule-based and ML methods in an attempt to achieve 

better performance. Abacha and Zweigenbaum [123] described a hybrid approach 

that uses patterns developed by domain experts as well as SVM classification to 

extract relations between diseases and treatments (i.e., cure, prevent and side effect) 

from MEDLINE abstracts. The number of cure relations in the training data was 524, 

but there were much smaller numbers of prevent and side effect relations (43 and 44, 

respectively). The very sparse examples of these latter two relation types make it 

difficult for the SVM classifier to capture and generalise the patterns that 

characterise these relations sufficiently to recognise unseen examples in the test set.  

Accordingly, supplementing the SVM classifier with hand-crafted rules was 

considered to be a promising solution. The performance of the hybrid approach was 

compared with the performance of applying pattern-based and ML approaches 

separately. The results show that the hybrid approach achieved an overall 94.07% F-

measure, significantly outperforming either of two individual methods when used in 

isolation. This result provides strong evidence that rules can be used successfully to 

enhance ML performance when few training examples are available.   

Comparison 

Presented in Table 2.3 are the details and results of some of the various reported 

approaches for clinical RE. In the same way as for Table 2.2, it should be noted that 

the results are not directly comparable to each other, since different evaluation 

corpora are used in each case. However, the comparison serves to highlight some 

general performance trends. 
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Table 2.3 Comparison of approaches to clinical relation extraction 

 

 
Approach System Key idea Eval. corpus Precision Recall F1 

Co-occurrence 

statistics 
Wang et al.[105] 

co-occurrence statistics 

and contextual filter 

11 discharge 

summaries 
0.92 0.90 0.90 

Rule-based 

RelEx [107] 
rule-based: using 

dependency parse trees 

one million 

MEDLINE abstracts  
0.79 0.78 0.78 

SemRep [109] 

rule-based: using 

ontological 

predications contained 

in the UMLS Semantic 

Network. 

6,864  discharge 

summaries 
0.81 0.65 0.72 

 

PASMED [115] 

PAS 

patterns applied to 

identify pairs of related 

noun phrases 

LLL 0.87 0.81  

BioInfer 0.51 0.44 0.47 

ML 

Rink et al. [122] 

multi-class SVM: 

lexical, contextual, 

syntactic, similarity 

and Wikipedia features  

i2b2 relation extraction 

challenge test data set 
0.72 0.75 0.73 

Robert et al.[103] 

SVM: lexical, 

syntactic, contextual 

and semantic features 

CLEF corpus test data 

set 
0.71 0.74 0.72 

Hybrid 
Abacha and  
Zweigenbaum [123] 

SVM coupled with 

pattern-based rules 

591 sentences from 

MEDLINE abstracts 
0.94 0.94 0.94 
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 Event extraction 

Recently, there has been a shift from extracting simple binary relations to more 

complex relations, known as events. Events differ from simple binary relations in a 

number of ways. Firstly, a more detailed semantic interpretation is associated with 

the relation, by assigning semantic roles to the arguments, to characterise their 

contributions towards the overall description of the relation. Secondly, it is possible 

for events to have an arbitrary number of arguments, rather than the two required in 

binary relations. Thirdly, event arguments could also occur outside the sentence 

containing the event trigger. Finally, arguments of events are not restricted to being 

simple entities; an argument can also consist of an “embedded” event. The automatic 

extraction of events is important, given the frequent occurrence of complex 

information in text. The growing interest in event extraction research has largely 

been facilitated by the increasing availability of semantically annotated corpora 

containing the detailed annotations necessary for the training and evaluation of event 

extraction systems. The GENIA Event (GE) corpus [124] is one of the largest and 

most widely used corpora of biomedical text annotated with event structures. It has 

been used to train a wide variety of biomedical event extraction systems, and a subset 

of this corpus formed the basis of the first BioNLP shared tasks (i.e., BioNLP'09 

GE). The BioNLP'09 GE task [125] was largely based around a simplified subset of 

the original GE corpus, using only nine of the original 36 event types. Subsequent 

GE tasks have added complexity, by supplementing abstracts with full papers 

(BioNLP'11) [126], or by using an exclusively full-paper corpus, annotated with an 

extended range of event types (BioNLP'13) [126]. Further tasks of the BioNLP'11 

and BioNLP'13 shared tasks have concentrated on different biomedical subdomains 

and/or target application areas, each defining a custom set of event types. These 

include Epigenetics and Post-translational Modifications (EPI), Infectious Diseases 

(ID) [127] (BioNLP'11), Cancer Genetics (CG) [128] and Pathway Curation (PC) 

[129] (BioNLP'13). 

    Events are centred on a trigger (often a verb or nominalisation that characterises 

the event). The trigger is then linked to an arbitrary number of participants or 

arguments [20, 130], which are assigned roles to denote their semantic contribution 
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towards the description of the complex relationship. For example, in the sentence 

“glnAP2 may be activated by NifA”, the event trigger is the verb “activated”.  

    The complexity of biomedical events means that arguments may be scattered 

throughout a sentence. Typically, arguments are structurally and/or semantically 

related to the event trigger, meaning that a thorough analysis of sentence structure 

can help to identify them. Accordingly, event extraction is usually aided by the use of 

semantic NLP techniques such as deep parsing. In particular, dependency parsing 

tools have been shown to be effective for event extraction, in terms of their ability to 

carry out a semantic analysis of the sentence, thus helping to identify event 

arguments and their likely semantic roles [131]. 

     Although the event extraction task is far more complex than the detection of 

binary relations, the more detailed and expressive semantic information encoded in 

event structures means that their potential utility in text mining systems is far greater.  

This has helped to drive research efforts and has resulted in the growing popularity of 

such systems in the biomedical domain. Event extraction is currently being used to 

enable and increase the efficiency of several tasks in the biomedical domain, 

including the annotation of biomedical pathways, Gene Ontology annotation, and the 

enrichment of biological databases [20].    

    In the following section, we review some of the most notable reported approaches 

to the core event extraction subtasks. 

Pipeline-based approaches 

Most event extraction systems are developed as pipelines that divide the complete 

event extraction task into three phases: firstly, triggers are recognised and assigned a 

semantic label corresponding to an event type. The next step determines which 

entities or other events participate as arguments of the event. Lastly, links between 

triggers and arguments are created and assigned semantic roles, to form complete 

event structures [130, 132, 133]. Examples of event extraction systems that use the 

pipeline approach are the Turku Event Extraction System (TEES) [25] and 

EventMine [134]. In each system, sentences are represented as graphs with nodes 

representing named entities and triggers, and edges as event arguments. Both systems 

employ a multi-class SVM based classifier to assign an event class to each token if it 

is detected as a trigger, or a negative class otherwise.  
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    TEES employs SVM-based pipelines using different sets of features. For trigger 

detection, these include: token features (e.g., word stem and character n-grams), 

syntactic features (e.g., dependency types obtained from the dependency parser) and 

frequency features generated from bag-of-word counts. After trigger detection, edge 

detection is used to predict the edges of the semantic graph, thus extracting event 

arguments [25]. Like the trigger detector, the edge detector is based on a multi-class 

SVM classifier. The classification employs a range of  features including: token (e.g.,  

character n-grams, named entity and type labels) and syntactic (e.g., shortest 

undirected paths of syntactic dependencies, according to results obtained through 

application of the Stanford Parser [135] ). Each potential edge is classified by the 

model as any of the permitted event roles (e.g., theme, cause or none). 

    For trigger recognition, the EventMine system employs an SVM-based classifier 

with similar feature sets to TEES [25]. In addition to shortest paths between the 

tokens of interest, dictionary features are also employed. E.g., synonyms, hypernyms 

and other related forms of matching tokens provided by WordNet [136] and the 

UMLS SPECIALIST Lexicon [33]. For the task of edge detection, EventMine adopts 

features employed by TEES to determine the most appropriate semantic label for 

each candidate edge. 

Joint approaches  

Joint learning techniques (i.e., non-pipeline-based systems) have been proposed to 

address the potential problems caused by the percolation and accumulation of errors 

that is inherent in pipeline-based methods (i.e., errors introduced by one module in 

the pipeline have a knock-on effect on the output of subsequent modules).  Examples 

of joint learning approaches that have been proposed for application to the event 

extraction task include joint inference models and dual composition models. Both of 

these techniques are described below. 

    Riedel and McCallum of the University of Massachusetts (UMass) were the first 

to explore joint inferencing of triggers, incoming/outgoing arguments and protein-

protein bindings, through the use of Markov logic-based dual decomposition [137]. 

    Building upon the dual decomposition model from UMass, the FAUST system 

[138] was developed. FAUST uses a stacking model to combine the results of the 

UMass system [139] with another biomedical event extraction system, i.e., the 

Stanford Biomedical Event Parser [140]. Specifically, the output of the Stanford 
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system is used as a feature in the UMass system. While the combined system 

performs well on the BioNLP 2011 shared task, it was found to produce many false 

positives which were not predicted by either of component systems when they were 

applied to the task individually.  

Comparison 

We provide in Table 2.4 a summary of the most notable approaches to event 

extraction, subdivided into two groups. The first group is pipeline-based methods, 

which divide the task into two sub-tasks, namely trigger recognition and argument 

recognition. Examples of systems that employ pipeline-based methods are TEES and 

EventMine. Both systems are based on machine learning, which facilitate ease of 

portability to new tasks, through training on different corpora. Such flexibility has 

allowed both systems to be adapted to several tasks within the different BioNLP 

shared tasks, as presented in Table 2.4. EventMine has also shown to be more widely 

applicable and has demonstrated its state-of-the-art performance when applied to 

texts of different types and belonging to different subject areas [130, 141]. The 

second group corresponds to joint model approaches which recognise both triggers 

and arguments simultaneously. Based on the F-scores obtained by the methods, 

ranging from 50-57%, which is lower than for relation extraction it can be clearly 

observed that event extraction is a very challenging and complex problem which is 

yet to be solved. 
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Table 2.4 Comparison of approaches to biomedical event extraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approach Proponents 

or System 

Key idea Eval. Corpus Precision Recall F1 

Pipeline 

TEES 

multi-class SVM 

trigger & 

argument 

classifier 

BioNLP ’09 Test 0.58 0.46 0.51 

BioNLP ’11 ID Test 0.48 0.37 0.42 

BioNLP ’11 EPI 

Test 
0.53 0.52 0.53 

BioNLP ’13 CG 

Test 
0.64 0.48 0.55 

BioNLP ’13 PC Test 0.55 0.47 0.51 

EventMine 

multi-class SVM 

trigger & 

argument 

classifier, use 

UMLS and 

WordNet features 

BioNLP ’09 test 0.58 0.48 0.53 

BioNLP ’11 ID Test 0.54 0.60 0.57 

BioNLP ’11 EPI 

Test 
0.55 0.49 0.52 

BioNLP ’13 CG 

Test 
0.55 0.48 0.52 

BioNLP ’13 PC Test 0.53 0.52 0.52 

Joint 

UMass 

Markov logic, 

dual 

decomposition 

BioNLP ’11 ID Test 
0.62 0.46 0.53 

BioNLP ’11 EPI 

Test 
0.41 0.28 0.33 

FAUST 

stacking and 

stacked models 

BioNLP ’11 ID Test 0.65 0.48 0.55 

BioNLP ’11 EPI 

Test 
0.44 0.28 0.35 
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2.2 Biomedical resources 

 Corpora 

The primary input for biomedical TM is text. An important first step towards 

developing more accurate TM systems is to collect and characterise text that satisfies 

various types of information needs [142]. One such method of characterisation is to 

annotate corpora of relevant text by adding layers of linguistic information. One 

common type of annotation is to add labels to terms, indicating the semantic class to 

which they belong [143]. Various other levels of annotation can be added to corpora, 

which include not only semantic annotations, but also discourse annotations (e.g., 

adding information about anaphoric links in a text) and syntactic annotations (e.g., 

POS tags). 

    For biomedical TM purposes, a popular approach to developing corpora for 

specific subdomains is to collect relevant MEDLINE abstracts, full-text articles, or 

more recently clinical narratives from EHRs. Biomedical corpora can be classified in 

different ways. For example, according to the domain that they cover (e.g., molecular 

biology, oncology), text type (e.g. literature articles, clinical narratives) or types of 

annotations added (e.g. semantic biomedical entities and relations, or syntactic POS 

and parse structure, etc.). A  review of the most widely-used corpora in the 

biomedical domain suggested that such corpora need to have three main 

characteristics in order to be user-friendly and to encourage frequent use, i.e. high-

quality documentation, balanced representation and information about Inter-

Annotator Agreement (IAA) [142]. 

    The MEDLINE database is the primary knowledge source for research in biology 

and medical science [18]. Various subsets of MEDLINE relevant to different 

biomedical subdomains have been collected both by different individual research 

groups and for community-wide evaluations. Some of these collections consist of 

abstracts that span a given period of time, e.g., the TREC Genomics track data [129] 

contains stand-off annotations covering ten years of MEDLINE citations (1994-

2003) and has been used to support various tasks including IR, document 

classification and question answering.  
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    There are several semantically annotated corpora for biomedicine which are 

publicly available. However until very recently, there were few corpora consisting of 

clinical text [144]. Of the large number of corpora in the biomedical domain, in the 

review below we only cover some of the most influential or recent ones. 

 Annotated corpora from the biomedical literature 

GENIA 

GENIA is the most influential and the most richly annotated biomedical corpus to 

date. It is one of the only biomedical corpora that contain high-quality linguistic and 

structural annotation, as well as different types of semantic annotations. The corpus 

consists of 1,999 abstracts in the area of molecular biology retrieved from 

MEDLINE using the MeSH terms ‘human’, ‘blood cells’ and ‘transcription factors’. 

Annotations include POS tags [145], syntactic parse information [146], biomedical 

entities [147], co-reference [148], relations [149, 150] and events [151]. Additionally, 

it is one of the three components of the BioScope corpus [152], which consists of 

GENIA abstracts, five full-text articles and a collection of radiology reports 

annotated for negation, uncertainty and their scopes.  

PennBioIE 

The PennBioIE corpus [153] is intended to cover the subject areas of cancer 

genomics and drug development. It consists of 1100 abstracts annotated for 

biomedical entities and for POS. A portion of the corpus is annotated for Penn 

treebank style syntactic structure [154].  

    While the above-mentioned corpora have been developed for the purpose of 

specific research projects, other semantically annotated corpora have been developed 

in the context of shared task evaluations for IE. Examples of these corpora are 

BioCreative [155, 156] and LLL [157]. 

NCBI disease corpus 

The NCBI disease corpus consists of 793 PubMed abstracts annotated for disease 

mentions [158]. Each abstract is annotated by two annotators for disease mentions 

and corresponding concepts in MeSH or OMIM [34]. The annotation proceeded 
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through two phases: mention level and concept level. The disease mentions were 

annotated based on their relevance to biomedical information retrieval. Disease 

mentions are categorised into four classes: specific disease (e.g., clear-cell renal cell 

carcinoma), disease class (e.g.., cystic kidney diseases), composite mention (e.g., 

prostatic, skin, and lung cancer), and modifier categories (e.g., hereditary breast 

cancer families). The public release of the corpus consists of 6,892 disease mentions 

that are mapped to 790 unique disease concepts. The corpus constitutes a gold 

standard aimed at improving the state-of the-art in disease recognition and 

normalisation. It has already enabled the creation and evaluation of the first ML 

method for disease normalisation, i.e., DNorm [158].  

    MEDLINE abstracts cannot contain all the information presented in full-text 

articles, which contain important information (e.g., results and discussion) that is not 

reported in the abstracts. Therefore, there is growing interest in annotating corpora of 

full-text articles, especially according to the growing popularity of open access 

journal publishing such as BioMed Central [159]. The largest publicly available 

repository of original, full-text articles is the Open Access subset of PubMed 

Central2. Full-text, open access repositories have allowed the more recent creation of 

full-text annotated corpora. The ITI TXM is the first corpus of full-text articles. It 

consists of two parts: 238 full-text articles annotated for tissue expressions and 217 

full-texts annotated for PPIs. The Colorado Richly Annotated Full Text Corpus 

(CRAFT) [160] consists of 97 full-text articles and more than 100 concept types 

annotated from 9 ontologies and terminologies (e.g., Chemical Entities of Biological 

Interest, Cell ontology, NCBI Taxonomy, etc.). The corpus adds to the growing body 

of semantically and syntactically annotated full-text collections (including the full-

text portion of the BioScope collection mentioned above). BioCause is another 

example of full-text corpus; it includes a collection of 19 full text biomedical articles 

annotated for causality relation on the top of existing event annotations from the 

BioNLP shared task on infectious diseases. Table 2.5 presents a comparison of some 

important biomedical corpora. 

 

 

 

 

 

                                                           
2 http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist 
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Table 2.5 Some biomedical corpora and their characteristics 

 

 Corpus 
Document 

Type/Size 
Domain 

Annotation 

type  
Semantic  types Encoding/format 

GENIA  2000 abstracts 
molecular 

biology 

entities, POS 

tags, 

relations, 

events 

POS tags, syntactic parse 

information, biomedical 

entities, co-reference, 

relations and events 

in-line XML 

BioScope 

GENIA 

abstracts, 9 

full-text 

articles and 

1954 radiology 

reports 

radiology 

and 

molecular 

biology 

negation, 

uncertainty 

and their 

scopes  

modality cues and scope 

negation 
in-line XML 

PennBioIE 1100 abstracts 
molecular 

genomics 

POS, entities 

and relations 

genes entities and POS 

tags 
stand-off 

GENETAG 

20,000 

MEDLINE 

sentences  

molecular 

biology 
entities genes/proteins names stand-off 

 

NCBI 

disease 

793 PubMed 

abstracts 
 entities  disease mentions stand-off XML 
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Some biomedical corpora and their characteristics (Continued from previous page) 

 Clinical annotated corpora 

The corpora mentioned so far consist of documents drawn from the biomedical 

literature. However, as has already been mentioned, corpora of clinical text are much 

rarer. Gaining access to clinical records for research purposes is difficult due to 

confidentiality reasons; obtaining permission to release records for reuse by the 

wider research community is even more challenging. However, due to high demand, 

a number of such corpora have recently been developed and made available to the 

wider research community in support of research into clinical TM, thanks to 

pioneering efforts by medical research groups [12, 161]. These corpora consist of 

collections of de-identified clinical text, which have been made available according 

to compliance with user agreement requirements. These corpora include records in 

the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC II) database 

[162] and the Pittsburgh collection of clinical reports3. To our knowledge, the only 

annotated corpora of clinical records that have been released to the scientific research 

                                                           
3 University of Pittsburgh NLP repository 

Corpus 
Document 

Type/Size 
Domain 

Annotation 

type  

Semantic  

types 
Encoding/format 

ITI TXM 

238 full-text  
entities 

relations 

proteins, 

tissues, genes 

and tissue 

expression 

relation 

stand-off XML 

217 full-text  
entities and 

relations 

protein 

entities 

and PPIs 

stand-off XML 

CRAFT 

 

97 full-text 

articles 
Genomics entities 

genes and 

gene 

products  

stand-off 

BioCause  
19  full-text 

articles 

molecular 

biology 

discourse 

relations 

proteins and 

chemical 

organism, 

stand-off 
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community are those developed in the context of recent shared tasks, as described 

below.  

I2b2 

The i2b2 challenges have used collections of clinical records obtained from the 

Partners Healthcare Research Patient Data Repository, upon which a series of 

annotation efforts has been carried out to create layered linguistic annotation over the 

records. These efforts have provided training and testing data for a number of  tasks, 

including de-identification of private health information in clinical records, 

classification of documents mentioning smoking status [30], recognising documents 

mentioning obesity and its co-morbidities [31], extracting information related to 

clinical concepts [78], performing clinical assertion classification [32] and carrying 

out co-reference resolution [163].  For the purpose of these tasks, a series of clinical 

corpora has been released by i2b2 containing different levels of annotations. For 

example, the records for the smoking status and obesity classification tasks are 

annotated at the document level, whereas the suicide notes used to carry out 

sentiment analysis are annotated at the sentence level. The i2b2 community was also 

interested in the detection of concept mentions and for this purpose, they released a 

corpus of clinical records annotated for clinical concepts (e.g., medical problems, 

tests, treatments, medications and dosages). Annotated entities were also annotated 

for assertion information (e.g., whether a medical problem is present/absent in a 

patient) and temporal relations (e.g., differences in dosages before and after surgery).  

I. I2b2 recognising obesity corpus 

The obesity challenge corpus consists of 1,237 discharge summaries for patients who 

had been hospitalised at some point since 1st December 2004  and were overweight 

or diabetic [31]. A total of 730 records were used for training and 507 records were 

held out for testing. Both datasets were annotated by two obesity experts from the 

Massachusetts General Hospital Weight Center. The corpus is annotated at the 

document level for mentions of obesity and 15 of its co-morbidities: Diabetes 

mellitus, Hypercholesterolemia, Hypertriglyceridemia, Hypertension, Atherosclerotic 

disease, Heart failure, Peripheral vascular disease, Venous insufficiency, 

Osteoarthritis, Obstructive sleep apnoea, Asthma, GERD, 
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Gallstones/Cholecystectomy, Depression, and Gout. Each document is labelled with 

one of four possible disease statuses for each disease, i.e.: Present, Absent, or 

Questionable or Unmentioned. The annotation process involved two tasks: textual 

and intuitive annotations. The textual annotation required there to be explicit 

reference to the disease in the text, while the intuitive annotation was based on 

inferring the disease status from the records, using the annotators' medical expertise. 

The agreement (Kappa) was 0.86 for the textual annotation task and  0.71 for the 

intuitive annotation task [31].  

II. I2b2 extracting medication information corpus  

 

This corpus consists of 1,243 de-identified discharge summaries annotated for 

medication (i.e. brand name and generic name) and medication-related information 

(dosage, frequency, duration and reasons). The training dataset consists of 547 

discharge summaries, whilst the remaining 696 were held out for testing [78].  

    The unique aspect of this corpus, compared to other i2b2 corpora, is the 

involvement of the TM community in the generation of ground truth data. The 

community’s input helps to demonstrate potential alternatives that can help to 

overcome the bottleneck of developing ground truth data.  

    The i2b2 team developed the annotation guidelines, which assume that none of the 

annotators who contributed to the annotation process has a medical, linguistic or 

computer science background. The development of the annotation guidelines went 

through an iterative process. The initial guidelines were released to a group of 

students from the University of Washington, who were asked to use these guidelines 

to annotate a small subset of the corpus. IAA was measured and feedback from the 

students helped the i2b2 team to revise the guidelines. After several iterations, the 

guidelines, together with 17 records annotated by the i2b2 team, were released to the 

teams participating in the i2b2 challenge [164]. For the community annotation 

experiments, 251 records were allocated to the i2b2 challenge teams, with 10 

discharge summaries given to each person. A subset of the released records was also 

annotated by the i2b2 experts to compare the quality of the expert annotations with 

those produced by the community. IAA was measured by means of micro-averaged 

F-measures, which were above 0.90. The results showed both that community 
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annotators can produce annotations of a similar quality to those produced by experts 

and also that they can achieve IAA comparable to that of experts [164]. 

 

III. I2b2 Concepts/assertions and relations challenge 

The corpus consists of de-identified discharge summaries from Partners Healthcare, 

Beth Israel Deaconess Medical Center as well as discharge summaries and progress 

notes from the University of Pittsburgh Medical Center. In total, there are 394 

training reports and 477 test reports [32]. Annotations were made at the following 

three levels: concept, assertion and relations. The concepts annotation process 

involved annotating noun and adjective phrases that represent medical problems, 

treatments and tests.  

    The assertion annotation task involved annotating each identified medical problem 

with one of six categories of assertions: “present”, “absent”, “possible”, 

“conditional”, “hypothetical” and “not associated with the patient” [165].  

    The relation annotation task consisted of identifying different types of relations 

that hold between pairs of annotated concepts. Relations could hold between the 

following pairs of concept types: medical problems and treatments, medical 

problems and tests, and medical problems and other medical problems. Relation 

annotation was carried out at the sentence level (i.e., the two related concepts must 

occur within the boundaries of a single sentence). Previously-added annotations for 

both concepts and assertions were available for use during the relation annotation 

process. A total of 8 different relation types between three medical concepts were 

annotated: 

 

Treatment improves medical problem (TrIP);  

Treatment worsens medical problem (TrWP);  

Treatment causes medical problem (TrCP);  

Treatment is administered for medical problem (TrAP);  

Treatment is not administered because of medical problem (TrNAP);  

Test reveals medical problem (TeRP);  

Test conducted to investigate medical problem (TeCP);  

Medical problem indicates medical problem (PIP).  
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IV. I2b2 co-reference resolution Challenge  

The corpus for this challenge consists of two separate corpora, i.e., the i2b2/VA and 

Ontology Development and Information Extraction (ODIE) corpus.  

    The i2b2/VA corpus contains 390 de-identified clinical records including discharge 

summaries and surgery progress notes. It is annotated for mentions and co-reference 

chains of five different classes (i.e. person, pronoun, problem, test, and treatment). 

The latter three types match those annotated in the i2b2 concepts/assertions and 

relations challenge (i.e., the challenge mentioned in the previous section) [163].  

    The ODIE corpus consists of de-identified clinical reports and pathology reports 

from the Mayo Clinic together with de-identified discharge records, radiology 

reports, surgical pathology reports and other reports from the University of 

Pittsburgh Medical Center. It is produced  under the ODIE grant and made available 

to the i2b2 challenge under SHARP—Secondary Use of Clinical Data from the 

Office of the National Coordinator (ONC) for Health Information Technology [163]. 

It is annotated for ten concept categories: anatomical site, disease or syndrome, 

indicator/reagent/diagnostic aid, laboratory or test result, organ or tissue function, 

people, procedure, and sign or symptom. 

    Both the i2b2 and ODIE corpora were annotated by two independent annotators 

for co-reference pairs. Then the resulting pairs were post-processed to generate co-

reference chains. The co-reference chains were reviewed by an adjudicator to resolve 

any disagreements between the annotators by adding/deleting annotations as 

necessary. The i2b2/VA corpus contains 5,227 co-reference chains, with an average 

chain length of 4,326 concept mentions and a maximum chain length of 122 concept 

mentions. In comparison, the ODIE corpus contains 419 chains, with an average 

chain length of 5,671 concept mentions and a maximum chain length of 90 mentions 

[163, 166]. 

V. I2b2  Identifying risk factors for Heart Disease (HD)  

The corpus for this challenge consists of 1,304 de-identified clinical narratives 

representing 296 diabetic patients (2–5 records per patient) obtained from the 

Research Patient Data Repository of Partners Healthcare. The narrative records are 

annotated at document level for the explicit mentions of Coronary Artery 

Disease (CAD) or risk factors that are associated with its onset 
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(diabetes, obesity, hyperlipidemia, hypertension, smoking status, family history of 

CAD and related medications), the presence of clinical markers or indicator 

suggesting the presence of the risk factors (e.g., blood pressure measurement of over 

140/90 mm/hg suggests that the patient has hypertension) and temporal attributes 

including present, before, during, or after the date on the record, giving the potential 

to create timelines of a patients’ progress towards heart disease over the course of 

their longitudinal record. 

    This shared task differs from other i2b2 tasks in two ways: firstly, the records in 

the dataset are longitudinal in that they provide a snapshot of patient’s health 

progress overtime. Secondly, the guiding concept when developing this dataset was 

to answer a clinical question about patients’ health (e.g., ‘‘how do diabetic patients 

progress towards heart disease, specifically coronary artery disease?”) rather than 

annotating syntactic or semantic categories.  

ShARe/CLEF 

The ShARe/CLEF-eHEALTH [167] lab organised three shared tasks (i.e. disease 

names recognition and normalisation (task 1); mapping acronyms and abbreviations 

to UMLS Concept Unique Identifiers (CUIs) (task 2); and retrieving relevant 

documents to address patients’ queries that arise when they are reading discharge 

summaries (task 3). The ShARe/CLEF corpus consists of annotations over subsets of 

the de-identified clinical records in version 2.5 of the MIMIC II database. The corpus 

contains a number of different document types including: discharge summaries, 

electrocardiography reports, echo reports and radiology reports. For tasks 1 and 2, a 

set of 200 training and 100 testing records was annotated for disorder mentions. 

These were subsequently mapped to appropriate UMLS CUIs. A disorder is any span 

of text that can be mapped to a concept within the disorder semantic group in the 

SNOMED CT terminology. The disorder semantic group consists of concepts 

belonging to one of the following UMLS semantic types: Congenital Abnormality; 

Acquired Abnormality; Injury or Poisoning; Pathologic Function; Disease or 

Syndrome; Mental or Behavioral Dysfunction; Cell or Molecular Dysfunction; 

Experimental Model of Disease; Anatomical Abnormality; Neoplastic Process; or 

Signs and Symptoms.  

    For task 3 a large collection of healthcare resources (i.e., one million documents 

collected from the Internet) was used, including the Drugbank, Diagnosia and Trip 
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Answers websites. These were made available to the CLEFeHealth 2013 participants 

through the Khresmoi project. The collection consists of web pages covering a broad 

range of topics (e.g. health and medicines) and those which target both the general 

public and healthcare professionals. The annotations include associating 55 queries 

corresponding to disorders identified in task 1, with corresponding text documents, 

and assessing the relevance of the identified documents to the queries. 

SemEval 

The SemEval-2014 task 7 [29] was designed as a follow up to the ShARe/CLEF 

eHealth 2013 tasks. The task reused the ShARe/CLEF corpus developed for tasks 1 

and 2, but added further training data and a new test set (i.e. 133 discharge 

summaries). The new test data set was annotated by a senior annotator. This was 

followed by a correction step carried out by the same annotator using a checklist to 

identify the most frequent errors encountered in the annotation of the original corpus 

(i.e., the ShARe/CLEF corpus). However, as the gold-standard annotation of the test 

set is not released by the organiser, the detailed annotation information of the test set 

is not available. 

 

Other efforts in the clinical domain 

The above mentioned corpora are the only publicly available corpora in the clinical 

domain. However, various research groups have also published descriptions of 

annotated corpora of clinical records, used within their projects, but not made 

publicly available. For example, the CLEF corpus [168] is a collection of 20,000 

records for patients diagnosed with cancer. The corpus is the most richly 

semantically annotated corpus for clinical IE, in terms of its annotation for a variety 

of clinical entities (e.g., drug or device, intervention, condition) and the relations 

among them (e.g., has indication, has finding). Ogren et al. [169] developed a corpus 

of clinical notes annotated for disorders, which was used to train and evaluate an 

NER system. Meystre and Haug [66] described a corpus of 160 clinical records of 

mixed types (diagnostic procedure reports, radiology reports, history and physicals, 

etc.) annotated for medical problems. This was used to evaluate an automatic system 

to extract lists of problems. 
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    Most of the corpora in the biomedical domain have been released to the research 

community to facilitate reusability. Data reuse saves important amounts of human 

effort, time and money. For example, the GENIA corpus has been enriched several 

times with further annotations to include event and meta-knowledge annotations 

[170]. We ourselves exploited the corpus created in the context of the i2b2 

recognising obesity challenge as the basis for constructing a semantically annotated 

corpus for phenotypic information related to CHF. The corpus is annotated at concept 

level and includes four major classes: causes, risk factors, signs or symptoms and 

non-traditional risk factors that highlight the role of kidney failure in the progress of 

heart failure [171]. Fu et al. utilised 1,000 clinical records from the MIMIC II data 

base and 30 full-text papers from the biomedical literature to construct a semantically 

annotated corpus for phenotypic information related to COPD [172, 173]. The corpus 

is annotated for fine-grained COPD phenotype entities (e.g., problem, treatment, test, 

etc.) linked to concepts in ontologies (e.g., Human Disease Ontology (DO) [174], 

Uber Anatomy Ontology UBERON [175], etc.). Later the literature articles subset of 

the COPD corpus was exploited by Batista-Navarro et al. [176] as a part of the User 

Interactive Task of BioCreative V to demonstrate Argo, an interoperable web-based 

text mining platform, suitable for semi-automatic phenotype annotation. The corpus 

was split into 15 papers for training the TM component constituting the automatic 

COPD phenotype curation workflows, and 15 papers for curation.  Due to time 

constraints a document has been defined as a smaller chunk of text (e.g., section 

paragraphs according to each paper’s metadata). 124 documents were randomly 

selected for the curation task. The first 62 documents were used for the pure manual 

annotations by 5 domain experts and the remaining documents were used for the 

semi-automatic annotation mode of the task. 

    The produced COPD phenotype corpus was annotated with four phenotype related 

entities (i.e., medical condition, signs or symptoms, drugs, proteins) and the relations 

between COPD and other mentions. Argo proved to accelerate the annotation process 

and show promising results, achieving an F-score of 0.66. This is close to the IAA of 

0.68, indicating that automatic concept annotation workflows perform comparably 

with human annotators. Table 2.6 presents a comparison of some of the well-known 

clinical corpora. 
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Table 2.6 Some clinical corpora and their characteristics 

Corpus Document Type/Size Annotation  type Semantic types Encoding/ 

format 

Availability 

Recognising Obesity 

corpus 

1,237 discharge 

summaries 

present, absent, 

questionable for obesity 

+ 15 comorbidities 

obesity and its co-

morbidities 

in-line XML upon request  

Medication 

information corpus 

1,243 discharge 

summaries 

medications, dosages, 

frequencies, modes, 

reasons, durations, 

list/narrative 

medications, dosages, 

modes, frequencies, 

durations and reasons  

XML upon request 

Concepts/assertions 

and relations 

394 discharge summaries 

and 477 progress note 

concepts, assertions, 

relations 

problem, treatment and 

test  

stand-off upon request 

Co-reference 

resolution 

 

 

814 different document 

types including:  

discharge summaries and 

progress notes 

entities and co-reference 

chain 

person, pronoun, 

problem, test, and 

treatment 

 upon request 

Identifying risk 

factors for heart 

disease over time 

 

1,304 clinical narratives 

longitudinal 

CAD risk factors and 

temporal attributes 

CAD risk factors and 

temporal attributes 

XML upon request 

ODIE  

164  pathology reports, 

discharge summaries, 

radiology reports, and  

entities and co-reference 

chain 

anatomical site, 

disease or syndrome, 

indicator/reagent/diagn

ostic aid, laboratory or 

test result, organ or 

tissue function, people, 

procedure, and sign or 

symptom. 

 

stand-off upon request 
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Some clinical corpora and their characteristics (Continued from previous page) 

 

Corpus Document Type/Size Annotation  type Semantic types Encoding/ 

format 

Availability 

ShARe/CLEF 

 

300 different clinical 

record types  

entities and UMLS CUIs entities belong to 

SNOMED CT disorder 

stand-off upon request 

SemEval 

 

ShARe/CLEF 2013 data 

set in addition to 133 

discharge summaries. 

  

entities and UMLS CUIs not available not available not available 

COPD 
1,000 clinical records and 

30 full-papers 

entities linked to 

pertinent ontologies 

problem, treatment, 

test  

stand-off  

COPD Biocreative V 

30 full-papers entities linked to 

pertinent ontologies and 

relations 

medical condition, 

signs or symptoms, 

proteins and drugs 

stand-off upon request 
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 Annotation Process 

High-quality annotation, which encodes information about the interpretation of text, 

is best carried out by humans, since they are most suited to interpreting natural 

language text. Since annotations are usually used for ML purposes, it is important 

that they are consistent in order that systems can learn accurately from them. High 

quality and consistent annotations can be ensured through the preparation of 

annotation guidelines, which help to ensure that all human annotators have a clear 

and shared understanding of the task to be undertaken, thus helping to reduce 

potential inconsistency. Annotation guidelines need to include clear examples 

illustrating the contexts in which instances should (or should not) be annotated.   

    There are three main methods that have been applied in the annotation of 

biomedical text: 1) completely manual annotation in which annotation is started from 

scratch, based only on annotator’s knowledge and expertise; 2) assisted (semi-

automatic) annotation, in which the output of an automatic annotation tool is firstly 

applied to the documents to be annotated; the annotations that are output by the tool 

are then manually reviewed, corrected and/or augmented by expert annotators; 3) 

ontology-based annotation, in which only terms and relations present in existing 

knowledge sources are annotated. Each one of these approaches has its own 

advantages and disadvantages [20]. For example, the semi-automatic annotation is 

usually more consistent but it is sometimes biased. Similarly, the ontology-based 

annotation is likely to be biased because it can only be based on information that is 

encoded in the knowledge resource used as a basis for the annotation. Using multiple 

annotators to annotate each document by more than one annotator can help to 

compensate for potential biases.  

 Approaches to manual annotation 

There are three main approaches that have been taken to generating manually 

annotated corpora: 

 

1) Traditional annotation method: this method has been followed in the creation 

of almost all the large-scale annotated corpora produced in the context of 
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NLP research, and it has demonstrated to be highly effective. Annotation is 

reliant on bringing together a team of people with different types of expertise, 

to carry out different tasks. NLP experts usually design the guidelines, 

possibly in collaboration with a domain expert. A separate set of people (also 

usually domain experts) carry out the annotation, which is usually adjudicated 

by a more senior domain expert. Technical support staff may also be required 

to develop, configure or provide assistance in using annotation software. 

Detailed guidelines for the annotation process are generated prior to the start 

of the annotation process, and may be subsequently revised to take into 

account problems and issues that arise as annotation progresses.  Although 

this approach is usually very successful, it can also be very costly, since the 

processes of developing and refining the guidelines, and training the 

annotators, can all be very time consuming [177].  

  

2) Crowd sourcing: Instead of being carried out by domain experts, crowd-

sourced annotation is carried out by non-experts, via online labour markets, 

such as Amazon's Mechanical Turk. This approach has been found to work 

well for simple tasks that are not reliant on high levels of domain expertise. 

The advantage of crowd-sourcing is that the cost of generating annotations is 

lower than if they were produced in the traditional way, i.e. by domain 

experts. Since crowd-sourcing usually involves large numbers of annotators, 

the annotations can also often be produced more quickly than by a small 

number of domain experts. The low cost of the annotation, combined with the 

large number of people often willing to participate, can help to ensure that the 

annotations produced are of a sufficiently high quality to be useful in the 

training of NLP systems. By obtaining multiple sets of annotations for the 

same corpus, a voting scheme can be applied, such that only annotations that 

are agreed on by a number of different annotators are taken to be correct 

[177]. This has been successful for the annotation of named entities for 

clinical trial documents [178]. 

 

3) Community annotation:  this type of annotation is initiated through the 

release of a set of initial annotation examples and guidelines to the research 

community. Researchers from the community then contribute towards 
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producing more annotations. An example of a successful application of this 

method is the i2b2 challenge in 2009 where the corpus was annotated by both 

the challenge organisers and research teams who participated in the 

challenge. This kind of annotation is very fast and reliable if it is coordinated 

well [177]. 

 Annotation tools 

In addition to the IE tools that can assist in carrying out semi-automatic annotation, 

several tools have been developed specifically to aid in the manual annotation 

process. Examples of commonly-used tools to annotate biomedical text include 

Knowtator [179], GATE Teamware [180], Callisto [181], Ellogon [182], WordFreak 

[183], Extensible Human Oracle Suite of Tools (eHOST) [184] and Brat Rapid 

Annotation Tool (BRAT) [185]. In order for the annotation tools to be useful they 

must be easy to use, support various annotation types and allow collaborative 

annotation.  

 Knowledge resources 

Biomedical resources constitute important sources of domain-specific knowledge 

used to drive data annotation, data integration and NLP tools. 

 Lexical resources 

A rich set of knowledge sources has been developed for the biomedical domain, 

including both terminologies and ontologies. These resources are employed within a 

variety of text mining systems, and are often a prerequisite for the successful 

operation of the systems.  Domain-specific lexical resources play a fundamental role 

in supporting various types of NLP tasks, including NER (e.g. MetaMap and 

BioLexicon [186]), relation extraction and event extraction. They can also help to 

facilitate interoperability among systems [187].  

UMLS SPECIALIST lexicon  

In the biomedical domain, the major lexical resource employed in text processing is 

the UMLS SPECIALIST Lexicon [188]. In addition, specialised resources can help 
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in analysing text from biomedical subdomains, such as gene and protein names or 

chemical and drug names [188]. 

    The UMLS SPECIALIST Lexicon collects lexical items (e.g., biomedical terms 

that consist of single word or multi word expressions) that are frequently observed in 

biomedical text. For each term, the lexicon records information about their 

characteristics, including syntactic information (POS), morphological information 

(base form and inflectional variants) and orthographic information (spelling variants) 

[188]. This information can be very important to improve the performance of 

domain-specific NLP tools, such as POS taggers and parsers. 

WordNet 

WordNet [136] is an electronic lexical database for the English language, aimed at 

supporting NLP applications. It has been under development at Princeton University 

since 1985. In WordNet, terms are organised into sets of synonymous terms (called 

synsets), each of which represents a single underlying concept. The current version 

of WordNet (3.1) integrates over 117,000 synsets, which are organised into separate 

hierarchies for nouns, verbs, adjectives and adverbs, with links between them.  For 

example, the synonyms “renal” and “kidney” occur within different synsets in 

separate hierarchies (since “renal” is an adjective and “kidney” is a noun).  However, 

a specific relationship (pertainymy) relates the two synsets together.  Several types of 

relations are encoded between synsets in the noun hierarchy, which include 

hyponymy (specific-generic) and meronymy (part-whole). WordNet is not 

specialised in any subdomain. However, because of its modest coverage of 

biomedical terms, its use in biomedical TM research is limited. 

 Terminological resources 

Biomedical terminologies consist of lists or hierarchies of terms used in a particular 

domain or subdomain, usually together with their synonyms. Such terminologies can 

be extremely important to support NER tasks. The hierarchical organisation used in 

most terminologies allows for the encoding of parent-child or more-general-to-more-

specific relationships, which can be exploited by relation extraction tasks. The 

UMLS Metathesaurus is an example of a terminological resource that integrates a 

large number of terminologies. 
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UMLS Metathesaurus 

The UMLS Metathesaurus is a large repository of biomedical concepts and is the 

major component of the UMLS. The UMLS Metathesaurus is linked to the other two 

knowledge sources (i.e., semantic network and SPECIALIST Lexicon): firstly, all 

concepts in the Metathesaurus are assigned at least one semantic type from the 

semantic network; secondly, many of the terms that appear as concept names in the 

Metathesaurus also appear in the SPECIALIST Lexicon [188]. The UMLS 

Metathesaurus is organised by grouping all synonymous terms together into 

concepts, each of which is assigned a unique identifier. The Metathesaurus is the 

most comprehensive biomedical resource, its wide scope being facilitated by the 

range of source vocabularies integrated within it. These include: NCBI for 

identifying organisms, Gene Ontology for gene products, MeSH for biomedical 

literature and SNOMED CT for clinical terms [18, 33]. This comprehensive coverage 

by the Metathesaurus represents link between the vocabularies and the subdomain 

they represent. These features of the UMLS knowledge resources are exploited by 

MetaMap, a tool specifically designed to recognise UMLS Metathesaurus concepts 

in text. 

 Ontological resources 

The aim of biomedical ontologies is to encode information about classes of entities 

(e.g., substances, qualities and processes) of biomedical significance. Examples of 

these classes include anatomical entities such as mitral valve and processes such as 

blood circulation. Unlike biomedical terminologies which are concerned with the 

names of entities, biomedical ontologies are concerned with the definition of 

biomedical classes and the semantic relations that hold between them. In practice the 

distinction between terminologies and ontologies is somewhat blurred, since some 

ontologies collect names of entities, whilst most terminologies also have some 

degree of hierarchical organisation that reflect the relations among entities.  

 

UMLS semantic network 

The UMLS semantic network consists of a set of broad categories or semantic types, 

together with the semantic relations that hold between them. The semantic types 
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provide a consistent means to categorise all concepts represented within the UMLS 

Metathesaurus, whilst the relationships provide a useful means to link together these 

concepts [188]. The scope of the semantic network is very broad, including 133 

semantic types and 54 relation types. Such wide coverage is advantageous in 

allowing the semantic categorisation of a broad range of terms belonging to a variety 

of biomedical subdomains [188]. In the Metathesaurus, the structure of each source 

terminology is preserved. Hence, the relations among concepts are either inherited 

from the underlying source or specifically generated. Because of the multiple sources 

and their differing structures, the Metathesaurus cannot provide the consistent kind of 

structure expected from an ontology.  

    The semantic network is developed independently of the terminologies integrated 

in the Metathesaurus. It constitutes a high-level ontology for the biomedical domain. 

The semantic network is organised around the opposition of the two single-

inheritance hierarchies: one for entities and the other for events. The immediate 

children for Entity are Physical Object and Conceptual Entity while Event has 

Activity and Phenomenon or Process as direct descendants. In addition to the 

taxonomy, associative relationships belonging to five different subcategories are 

defined between semantic types: physical (e.g., part-of, branch-of, ingredient-of), 

spatial (e.g., location-of), functional (e.g., complicates, causes), temporal (e.g., co-

occurs-with), and conceptual (e.g., evaluation-of, diagnoses).  

2.3 Summary 

This chapter introduced the state-of-the-art in biomedical IE. In particular it provided 

a detailed review of the methods used to process documents from heterogeneous 

biomedical sources (i.e., biomedical literature and clinical records). Additionally, we 

provided a review of notable biomedical resources including: corpora and other 

knowledge sources. 
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 Heterogeneity in Biomedical Text 

Biomedical text, including both literature articles and EHRs, constitutes a rich source 

of disease-phenotypic information. However, each text type has a different focus and 

perspective. EHRs include information about individual patient diagnoses, 

medication and family history, whilst scientific articles report on the latest research 

findings and results, together with advances in knowledge relevant to different 

diseases [49, 189]. Thus, although EHRs and scientific articles provide information 

that is complementary to each other, this information can be difficult to combine 

using automated methods. Problems of integrating information may occur according 

to the different styles of writing, language structure and vocabulary used within each 

type of text. Accordingly, potentially important unknown associations, which can 

only be discovered by considering information from both types of text, may be 

overlooked.    

    In this chapter, we identify and investigate the phenomenon of linguistic 

sublanguage variations that can occur in different genres of text within the broad 

domain of biomedicine. Although a potentially wide variety of text genres falls under 

this domain (e.g., periodicals, letters, book reviews, case reports, etc.), our 

investigation is specifically focussed on the different ways in which phenotypic 

information may be expressed in two types of textual sources that constitute 

particularly important sources for such information (i.e., EHRs and articles from the 

literature).  

3.1 Background  

Differences between the features of text belonging to completely different types and 

subjects (e.g., biomedical text and newswire) is a well-studied topic. Varying 

characteristics between such text types, such as sentence length/structure and 

semantic features, are known to affect the portability of NLP tools [130, 190, 191].  

A number of studies have explored the linguistic differences between non-technical 

and scientific language. For example, in  [192], two characteristics of academic 

writing which differentiate it from general English are described. Firstly, academic 

writing tends to be structurally ‘compressed’ and it is very common for detailed 
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information to be integrated into the discourse by means of the modification of 

phrases, rather than through the addition of extra clauses. For example, consider the 

following sentence, which is typical of the sentence structure used when writing for a 

general audience: “ the perspective that considers the participant’s point of view and 

facilities that have been developed to treat waste”. In contrast, the same information 

is likely to be expressed in a much more compact way for an academic audience, 

e.g., “the participant perspective and facilities for waste treatment”. Secondly, in 

academic writing it is common to use less elaborate and less explicit language by 

omitting non-essential information, through the frequent use of passivisation, 

nominalisation and noun compounding. 

    Harris [193] proposed the notion of sublanguage, which is defined as a subset of 

general language. He hypothesised that the informational structure and form of 

specialised (i.e., domain-specific) language can be represented in the form of 

sublanguage grammar. The sublanguage grammar can then be used by a language 

processor to extract and encode entities and the relations between them in the text.  

This theory of sublanguage provides the basis for sublanguage processing within 

specialised domains.  

    Based upon Harris’ theory, several works have studied variations between 

sublanguages. For example, Friedman et al. [194] analysed the properties of the 

different sublanguages that occur within clinical reports and molecular biology 

articles. They defined restricted ontologies for each domain, highlighted frequent 

patterns of co-occurrence of words/phrases that occur within each domain and 

discussed the similarities and differences between them. They concluded that the 

establishment of a sublanguage grammar is difficult, at least when this is 

accomplished by carrying out a manual analysis of sample corpora from the two 

domains. Accordingly, the use of ML techniques can be beneficial in helping to 

automate or semi-automate the process of discovering how relationships between 

entities are expressed within a given sublanguage.  

3.2 Comparison of biomedical scientific and clinical sublanguages 

Previous studies have shown that different subdomains within the biomedical 

literature (e.g. molecular biology, pharmacology, etc.) exhibit different  
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linguistic characteristics [17]. In this research, we demonstrate that the types of 

linguistic variations that occur between two different biomedical text types (EHRs 

and the biomedical literature) in terms of the expression of the same types of 

phenotypic information can be substantial.  

    Clinical sublanguage primarily expresses descriptions of entities and events 

associated with a patient’s state, such as clinical findings, treatments and procedures. 

These are most commonly expressed using noun phrases [194]. However, the 

sublanguage used within biomedical scientific text tends to describe complex events 

associated with biomolecular substances and their interactions. In contrast to clinical 

text, such events in the biomedical literature are often expressed using verbs or their 

nominalisations.  

    Since the sublanguage of a particular scientific field reflects the underlying 

information, it is not surprising that the variant sublanguages used in different types 

of biomedical text, e.g., clinical (where the text consists of EHRs) and scientific 

literature articles, are substantially different. However, they also exhibit a number of 

interesting similarities.  

    First of all, in these two text types there is an overlap between both the entities 

mentioned and the subject matter covered. For example both EHRs and the 

biomedical literature are concerned with diseases, cells, tissues and molecular 

components, such as genes and proteins. Therefore, the grammars of clinical and 

biomedical scientific sublanguages share these informational categories. However, in 

clinical text, the focus is on describing causes, symptoms and treatments of a given 

disease (e.g., She had mild increase in her hypertension during the hospitalization, 

likely secondary to fluid overload. Her hypertension managed with ACE inhibitor). 

In contrast, in literature articles it would be more common to see discussions about 

molecular level interactions that may lead to a disease occurring (e.g., They identified 

4 chromosomal regions on chromosomes 6, 15, 5, and 2, which showed significant 

linkage to genes that influence individual blood pressure variation) [194, 195].  

    There are also overlaps in terms of the modifiers used in each sublanguage. For 

example, in both clinical and biomedical scientific text, entities may have modifiers 

concerned with evidence, change, quantification, degree and body location. In 

clinical text, such modifiers are frequently used in conjunction with diseases, 

symptoms and treatments, etc., to provide accurate and detailed descriptions about 

patient health status. For example, in clinical text the sentence “slight improvement 
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in asthma” includes both a modification of asthma, referring to a change in the 

condition (i.e., improvement) and a modification of the information about the change, 

referring to the degree of change (i.e., slight). Similarly, the sentences “increased 

lower extremity edema” and “increased swelling of lower extremities” include 

modifiers referring to change (i.e., increased) and location (i.e., lower extremities).  

A further example from clinical text is “asthma not ruled out”, in which the 

condition is modified by evidential information (i.e., not ruled out).  

    In biomedical scientific text, modifiers are also used but usually in a different way 

to clinical text. In biomedical text, mentions of diseases, symptoms etc. often occur 

unmodified (e.g., leg edema). However, according to the nature of the information 

contained within literature articles, it is more common for modifiers to be used in the 

context of providing summaries about the advances in knowledge relevant to 

different diseases. An example is the use of the evidential modifier “these results 

suggest that” in the sentence “these results suggest that menaquinone-7 improves 

disease activity in patients with rheumatoid arthritis”.  

    Although there are some similarities in the ways in which information can be 

expressed in each text type, there are also some significant differences. Figure 3.1 

shows an example text snippet taken from an EHR that describes a patient’s health 

condition upon arrival at hospital. The figure also shows a text snippet from a 

biomedical literature article, which also reports information about patient status.  

From the figure, it can be appreciated that literature articles constitute formal text 

that conforms to conventions of structure, readability and grammaticality. For 

example, information is presented clearly in the form of full sentences.  In contrast, 

EHRs, which are intended to be used only in a hospital context by doctors, are 

usually less structured, with short or incomplete/ungrammatical sentences and 

contain many domain-specific abbreviations or acronyms (whose expansions may be 

ambiguous are/or not fully explained). Furthermore, there is often a large degree of 

orthographic and lexical variability, while spelling and/or grammar mistakes are 

frequent  [189], with up to 10% of words being misspelt [43]. Compared to literature 

articles, therefore, the general textual characteristics of EHRs pose many challenges 

for TM analysis. 

    A further difference between the two text types is that there is considerable 

divergence in the nature of the relationships specified between entities. For example, 

although there is some overlap in the types of entities mentioned, the semantic 
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relationships in which these entities are typically involved tend to vary considerably 

between clinical and biomedical scientific text. For example, in the clinical domain, 

diseases are usually associated with procedures (chest x-ray showed pneumonia) or 

treatments (on Bactrim for urinary tract infection). Conversely, in biomedical text 

diseases are primarily associated with genomic variations (BRCA1 and BRCA2 are 

the two genes in which mutation is associated with hereditary breast and 

ovarian cancers). 

    A major difference between the sublanguages used in each of the text types is the 

complexity of the entities and relations. In the clinical domain, information is 

commonly described using noun phrases, which are generally modified by adjectives 

or nouns (e.g., elevated right heart filling pressures, significant left atrial dilatation). 

The relationships involving entities can vary in complexity. In the simplest case, a 

relation may associate a single finding with a modifier (e.g., heart was enlarged, 

blood pressure is low). However, the information expressed by relations is often 

more complex. For example, it is common for several modifiers to be associated with 

a finding (e.g., Abdomen is soft, nontender, nondistended), for one or more findings  

to be associated with a procedure and/or treatment (e.g., Echo showed normal 

ejection fraction, normal systolic function, and normal valve motion), for one or 

more findings to be associated with a negation modifier (e.g., The patient denies 

shortness of breath, chest pain, orthopnea), for causality to be expressed between 

entities  (e.g., anemia due to iron deficiency and chronic renal insufficiency) and for 

temporal ordering to be specified  (e.g., coronary artery disease status post non-ST 

segment myocardial infarction).  In biomedical scientific text, the emphasis is rather 

on descriptions of biomolecular pathways, which may be expressed by complex 

interactions and other relations. Pathway relations that describe the interactions 

between substances are often expressed using verbs (e.g., p53 binds to il2). 

Frequently, the nominalised form of the verb (e.g., activation) is used to allow for 

nesting, for example, where the cause of an interaction is specified to be one or more 

other interactions (e.g., activation of protein kinase C and elevation of cAMP interact 

synergistically to raise c-Fos and AP-1 activity in Jurkat cells). 

    Tables 3.1 and 3.2 present a comparison in terms of our two compared 

sublanguages in the biomedical domain (i.e., clinical and biomedical scientific text), 

in terms of both similarities and differences.    
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The patient is 77 yo gentleman. 

He present with worsening 

diabetese.  Increased weight. 

LVH. Very high blood pressure . 

Long history of CHF. Hypoxia 

due to volume overload and 

COPD. 

Patient has a history for terrible 

vasculopathy s/p recent right 

BKA with dry gangrene of the 

distal stump. 

 Obesity is associated with 

structural and functional 

changes in the heart. 

Many of these changes, 

such as left ventricular 

(LV) hypertrophy, left 

atrial (LA) enlargement, 

and subclinical 

impairment of LV systolic 

and diastolic function are 

believed to be precursors 

to more overt forms of 

cardiac dysfunction and 

heart failure. 

 Diabetes or the metabolic 

syndrome do appear to be 

significant risk factors for 

LV hypertrophy. 

EHRs Literature 

 

Figure 3.1 Phenotypic information encoded in two different types of text 
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Table 3.1 Comparison of textual features in clinical and biomedical scientific text 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Textual feature Similarities between clinical and  
scientific text 

Differences between clinical and  scientific 

text 

Subject matter  both text types cover similar 

subjects and contain mentions of 

similar types of entities, such as  

diseases, cells, tissues and 

molecular components, such as 

genes and proteins. 

 EHRs: disease descriptions specify 

causes, symptom, treatments etc.  

Molecular components occur in 

pathology reports and they denote 

findings of tests associated with 

molecular markers. 

 Biomedical literature: disease 

mentioned in context of biomolecular 

interactions. 

 

Use of modifiers both text types use modifiers 

relating to evidence, change, 

quantification and degree. 

 EHRs: frequent use of modifiers in 

conjunction with diseases, symptoms and 

diagnostic  procedures to provide   

detailed descriptions.    

 

 Biomedical literature: usually used in 

context of providing  summaries about 

advances in knowledge relevant to 

different diseases  
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Table 3.2 Comparison of semantic-level variability in clinical and biomedical scientific text 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type of semantic 

variability 

Biomedical  scientific  text Clinical text 

Complexity of entities entities are less descriptive with few 

modifiers. 

entities are descriptive and dominated 

by nouns and pre-modifiers (generally 

adjectives or nouns). 

Complexity of relations  disease information primarily 

associated with genomic 

variations and molecular 

interactions. 

 dominated by complex and 

highly nested relations between 

biological substances, described  

using verbs (e.g., activate) or 

their nominalisations (e.g., 

activation).  

  

 diseases usually associated with 

procedures or treatments. 

 the relation can be simple to 

connect single finding with 

associated modifiers (e.g.. body 

location). 

 relations can be complex, e.g. 

connecting several findings with 

procedures, or denoting causality 

between entities. Relations may 

have additional information 

associated with them, such as 

modality.  
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3.3 Variability in expressing phenotypic information in EHRs and the 

biomedical literature 

Since both EHRs and biomedical literature articles contain different, but complementary types 

of valuable phenotypic information, combining details from each source can be useful in 

uncovering new disease-phenotypic associations. The discovery of such associations can be 

instrumental in accelerating scientific progress towards an enhanced understanding of the 

etiology of human diseases and in facilitating better disease prevention and treatments. 

    The recognition of phenotypic concepts presents a particular challenge, since each concept 

can often be expressed in text in a number of different ways.  Indeed, phenotypic concepts can 

even correspond to complete sentences, e.g., “two brothers died of heart disease”. Different 

types of variations may occur both within a particular text type and across different text types. 

Examples of variations that can occur between clinical and biomedical sublanguages in 

expressing same phenotypic information include lexical (light-headedness vs. 

lightheadedness), syntactic (jugular venous pressure is elevated vs. elevated jugular venous 

pressure) and semantic variations (hypertension vs. high blood pressure). Further examples of 

these and other types of variations are provided in Table 3.3. Variability in the expression of 

phenotypic concepts may occur according to the different levels of experience and 

backgrounds of the clinicians who author the text, together with the different styles of writing 

used in articles and EHRs. However, it is important to take such linguistic differences into 

account, since they can constitute a potential barrier to the successful application of TM 

methods. NLP tools that perform well on textual data from one source may fail to perform at 

the same level on other sources, unless the tools are tailored to these alternative sources in 

some way [17]. Mapping or normalising mentions of various types of phenotypic information 

that appear in both EHRs and literature articles to concepts in  domain-specific knowledge 

resources such as UMLS [33] can help to draw generalisations about information that may be 

expressed in text in many different ways. The normalised phenotypic concepts can be used as 

a first step towards the automatic integration of knowledge that is dispersed within these two 

text types. 

    The above analysis highlights the importance of developing TM tools that are specifically 

tailored to extracting phenotypic information from different textual sources, in order to 
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facilitate a more in-depth understanding by clinicians of the factors surrounding deadly 

diseases such as CHF, and thus to allow for advances in their treatment.  However, the many 

challenges to be faced in developing robust TM tools for application in this domain go 

towards explaining the current paucity of research in this area. To the best of our knowledge, 

the work described in this thesis is the first effort to extract and integrate phenotypic 

information from two different biomedical sources, using TM techniques.  

 

Table 3.3 Differences in expressing the same phenotypic concepts in EHRs and the literature 

Type of variability EHR mentions Article mentions 

Synonymy Drop in blood pressure Hypotension 

 

Lexical light-headedness Lightheadedness 

 

Syntactic structure left ventricle is dilated 

 

left ventricular dilatation 

 

Word ordering cardiac output decrease decreased cardiac output 

 

Spelling variation hyperkalemic 

 

Hyperkalemia 

 

Modification moderate left ventricular 

enlargement  

 

left ventricular enlargement 

 

 

3.4 Summary 

In this chapter we have investigated the differences between two sublanguages (i.e., clinical 

and scientific) in the biomedical domain. The fact that both sublanguages cover broadly the 

same subdomain means that they naturally exhibit certain similarities. Since they cover 

similar subjects, the same types of entities are mentioned within them (e.g., diseases, findings, 

drugs, etc.).  However, there are also some significant differences in the features of the 

sublanguages. Clinical sublanguage, found within clinical reports, is highly descriptive (e.g. 

modifiers are frequently associated with concepts) in order to provide accurate details about 

patient health status. However, since this text is not intended to be published, it is common to 

encounter features such as ungrammatical sentences and spelling errors. In contrast, 

biomedical scientific language found within literature articles is often structurally compressed 
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and less elaborate, with modifiers being used in a different way. However, compared to 

clinical text, information in the literature is presented clearly and follows grammatical 

conventions. A further difference between the two text types is that there is considerable 

divergence in the nature of the relationships specified between entities.    

    The differences between the language used in EHRs and the literature have motivated our 

interest in comparing and contrasting the performance of TM tools on different text 

types/subdomains, in exploring domain adaptation methods, and in developing a manually 

annotated domain-specific corpus that is representative of the two different text types, to act 

as a gold standard to train and evaluate different TM techniques.  
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 Corpus Development 

Annotated corpora in the biomedical domain mostly consist of texts drawn from the 

biomedical literature. Typically abstracts are sourced from MEDLINE (e.g., GENIA [124], 

PennBioIE [153], BioInfer [116] and NCBI disease corpus [158]). Further studies have shown 

that applying information extraction techniques to full-text articles is also a feasible task  

[127, 196]. This has resulted  in increased interest towards the development of annotated 

corpora containing full-text articles (e.g., BioScope [152], CRAFT [197] and the BioNLP 

2011 infectious disease dataset [127]). In the biomedical domain, a variety of corpora with 

different levels of annotation have been developed. These levels include syntactic (e.g., 

sentences [147], tokens [145], dependencies [116]), semantic (e.g., named entities [147], 

relations [127], events [124, 198]) and discourse (e.g., discourse relations [170, 199]), whilst 

the underlying texts may belong to different sub-domains (i.e., molecular biology, anatomy, 

chemistry etc.). However as we explained in Section 2.2.1, despite the richness of the 

available annotation very few of the previously annotated semantic information is relevant to 

phenotypes. 

    Although clinical corpora containing EHRs are rare (due to confidentiality and privacy 

concerns [32]), a small number have recently become available. These have been created for 

shared tasks to support the development of clinical NLP methods.  

    In addition to these shared tasks, several research groups have published descriptions of 

annotated clinical corpora developed and used within their own research, although they have 

mostly not been made publicly available. These corpora vary in terms of the text type and 

annotation granularity. For example, a corpus that is annotated for medical problems in 

narrative text clinical documents is described in [66]. However, the corpus is annotated at the 

document level, which makes it more suitable for developing and evaluating IR methods, 

rather than for supporting the extraction of fine-grained information about phenotypic 

concepts. 

    Several other clinical corpora have been enriched with text-bound annotations that encode 

the exact locations of a phenotypic concept within the text [168]. CLEF was one of the first 

corpora to include detailed semantic and fine-grained text-bound annotations. It is annotated 

with a variety of clinical entities (e.g., drugs, investigation, conditions and results), relations 
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between these entities such as: has_finding which holds between condition and result entities. 

For example, in the following sentence “This patient has had a lymph node biopsy which 

shows melanoma in his right groin”, the result melanoma is a finding of the investigation 

biopsy. However the corpus has not been made publicly available. Subsequently, South et al. 

produced a corpus [200] which is annotated for all mentions of signs or symptoms, 

medications and procedures relevant to inflammatory bowel disease. The ShARe/CLEF 

corpus of clinical notes is annotated for specific disorder mentions including diseases and 

signs or symptoms. The annotated concepts are linked to terms in the SNOMED CT 

vocabulary [28]. Another scheme [201] has similar specifications to the ShARe/CLEF corpus, 

in that its purpose was to annotate entities pertaining to the disorder semantic group in 

SNOMED CT vocabulary. However, the approach to performing the annotation was different 

from ShARe/CLEF as an automatic tool [63] was used to pre-annotate the corpus. The corpus 

developed in the context of  the i2b2 concepts and relation challenge is a further example of a 

clinical resource that can support a variety of IE tasks [32]. The corpus is annotated for named 

entities concerning medical problems, tests and treatments and the relations between them. 

    In order to build upon existing semantically annotated corpora in the clinical domain, we 

have developed the PhenoCHF corpus. PhenoCHF is comparable to some of the other corpora 

annotated above, in that many of the annotated entities fall under the general definition of the 

UMLS disorders semantic group. However, we have used a finer-grained classification of 

such entities than previous efforts, in order to capture more detail about information that is 

particularly important in the study of CHF according to guidance from a domain expert. In 

contrast to most previous clinical text annotation efforts, the corpus also identifies 

relationships between the annotated entities. 

    PhenoCHF [171] is unique amongst annotation efforts within the clinical NLP community, 

in its integration of information from both EHRs and literature articles to allow the training of 

systems that are sufficiently robust to recognise relevant information in heterogeneous, and 

potentially complementary, sources as we discussed in Chapter 3. The annotation scheme, 

whose design was guided by a domain expert (i.e., a cardiologist) includes both entities and 

relations pertinent to CHF. 

    In the remainder of this chapter, we describe our work on developing PhenoCHF corpus as 

a resource for training and evaluating different TM tools. We include details about the 

composition of the corpus, the design of the annotation schema and guidelines, and statistics 
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regarding the reliability/consistency of the annotated information.   

4.1 Description of the corpus  

 Corpus composition 

The portion of our corpus containing information from EHRs consists of a set of discharge 

summaries, which constitute a subset of the data released for the second i2b2 shared task, 

known as “recognising obesity” [31]. The challenge dealt with the extraction of information 

about obesity and 15 of its comorbidities, such as CHF, hypertension and diabetes mellitus as 

described in Section 2.2.1. The original annotation for the discharge summaries consists only 

of document level annotations, which encode whether or not obesity or any of its 

comorbidities are mentioned in the summary. 

The discharge summaries in the PhenoCHF corpus were chosen by filtering the original 

i2b2 corpus, such that only those summaries for patients with CHF and kidney failure were 

retained. This was achieved by searching for summaries containing the disease names CHF 

and renal failure, acronyms (CRF, CRI) or synonyms (e.g., renal insufficiency, kidney failure). 

A total of 300 discharge summaries matched these search criteria.     

The second part of PhenoCHF consists of the 10 most recent full-text articles (at the time of 

query submission) retrieved from the PubMed Central Open Access database, using the 

following query which was determined by a domain expert: “Heart failure Clinical 

presentation” OR “Heart failure clinical features” OR “Heart failure symptoms” OR “Heart 

failure clinical manifestation” OR “Heart failure clinical picture” AND (“Chronic renal 

failure “OR “Renal failure” OR “Chronic renal insufficiency” OR “Renal insufficiency” OR 

“Kidney failure” OR “CRF”OR”CRI”).  

All documents in PhenoCHF were manually annotated by medical experts for phenotypic 

information related to CHF.  The annotation includes entity mentions relating to four semantic 

categories of phenotype-related information, as shown in Table 4.1. 
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Table 4.1 Types and statistics of entity mentions annotated in the PhenoCHF corpus 

Semantic 

categories 
Description 

# of annotated 

mentions in 

narrative EHRs 

# of annotated 

mentions in 

literature articles 

Cause 

Any medical problem that 

contributes to the 

occurrence of CHF 

1320 1107 

Risk factor 

A condition that increases 

the chance of a patient 

having CHF 

1335 408 

Sign or symptom 

Any observable 

manifestation of a disease 

which is experienced by a 

patient and reported to a 

physician 

2449 304 

Non-traditional 

risk factor 

Conditions associated 

with abnormalities in 

kidney functions that put 

a patient at higher risk 

of developing signs or 

symptoms and causes of 

CHF 

308 329 

 

 Schema 

The design of the annotation schema was guided through an analysis of the relevant discharge 

summaries, in conjunction with a review of comparable domain specific schemata and 

guidelines, i.e., those from the CLEF and i2b2 shared tasks. The schema is based on a set of 

requirements developed by a cardiologist. Taking into account our chosen focus of annotating 

phenotypic information relating to the CHF disease, the cardiologist was asked firstly to 

determine a set of relevant entity types that relate to CHF phenotypic information and the role 

of the decline in kidney function in the cycle of CHF (exemplified in Table 4.2), secondly to 

locate words that modify the entities (such as polarity clues, i.e., words that negate entities) 

and thirdly to identify the types of relationships that exist between these entity types in the 

description of phenotype information (see Table 4.3). The types of annotation are described in 

a schema, shown in Figure 4.1. Following the manual annotation of entities and relationships, 

annotated entities in the corpus are mapped semi-automatically onto semantic types in UMLS 

with the aid of MetaMap. 
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Relation annotation 

Three types of intra-sentential relationships have been defined (see Table 4.3).  Each type of 

relationship links two specific types of entities. The relationships are based on UMLS 

semantic network relations, e.g. the causality relation in the PhenoCHF corpus is based on 

causes in the UMLS semantic network that holds between two diseases or a disease and a 

pathologic function. The finding in PhenoCHF relation is mapped to the UMLS manifestation 

relation that holds between ‘sign or symptom’ and ‘body part or organ’. 

 

 

 

 

Causality 

Negate 
Causality Causality 

Causality Causality 
Causality 

Finding 

Organ  

Non-traditional Risk 

Factor  
Risk factor 

Sign or symptom 

Cause 

Polarity clue 

CHF 

Figure 4.1 Annotation Schema: ovals represent entities, rectangle represents negation modifier and lines 

represent relationships 
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Table 4.2 Annotated phenotype entity classes 

Entity Type Description Example 

Cause any medical problem that 

contributes to the 

occurrence of CHF  

Risk factors a condition that increases 

the chance of a patient 

having CHF disease  
Sign or 

symptom 

any observable 

manifestation of a disease 

which is experienced by a 

patient and reported to the 

physician 

 

Non-

traditional 

risk factor 

conditions  associated 

with abnormalities in 

kidney functions that put 

the patient at higher risk 

of developing “signs or 

symptoms” and causes of 

CHF 

 

Organ any body part 

       
Chief 

complaint 

mentions of CHF 
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Table 4.3 Description of annotated relations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relation 

Type 

First  

argument type  

Second 

argument 

types 

Description Example 

Causality 

 

Chief complaint 

Cause 

Risk factors 

Non-traditional 

risk factor 

Non-traditional 

Cause 

This relationship links 

two concepts in which 

one concept causes the 

other to occur. 
 

 

Finding 
Organ 

Sign or symptom 

 

This relationship links the 

organ to the 

manifestation or 

abnormal variation that is 

observed during the 

diagnosis process. 
 

Negate Polarity cue 

Finding 

Cause 

Non-traditional 

risk factor  

This is a one-way relation 

that relates a negation 

attribute (polarity clue) to 

the condition it negates.  
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 Development of annotation guidelines 

Consistent annotation across the entire corpus is a prerequisite of a high quality and 

reliable gold standard.  

    The same annotation schema and guidelines were used for both the discharge 

summaries and the scientific full articles. In the latter, annotations were omitted for: 

organ entities, polarity clues and relations. This decision was taken due to the 

differing ways in which phenotypic information is expressed in discharge summaries 

and scientific articles. In discharge summaries, phenotypic information is explicitly 

described in the patient’s medical history, diagnoses and test results, whereas 

scientific articles summarise results and research findings. This means that certain 

types of information that occur frequently in discharge summaries are extremely rare 

in scientific articles, such that their occurrences are too sparse to be useful in training 

TM systems. Hence, these were not annotated.  

    We developed the guidelines through an iterative process. They were firstly tested 

by providing the two annotators who are doctors with a small common set of records 

to be annotated independently. An analysis of errors and disagreements in this 

annotation set was used to refine the guidelines. Specific issues were concerned with 

difficulty in differentiating between causes and risk factors (e.g., annotators were 

confused whether “diabetes” and “hypertension” are causes or risk factors of CHF) 

and the choice of a correct annotation span (e.g., whether to include the modifier “left” 

in the annotation of “left atrial enlargement”). Another source of error was that only 

the first mention of a phenotype was annotated, rather than all of its mentioned 

instances. The guidelines were updated to make the span decision easier for the 

annotators by refining the definitions for cause and risk factors and providing more 

examples for the correct spans. After updating the guidelines, agreement between the 

annotators improved, and the whole corpus was subsequently annotated by both 

annotators. For the complete guidelines the reader is referred to Appendix A. 

    In addition to the guidelines, the annotators were supported through regular 

meetings allowing the discussion of questions and other issues that arose during the 

annotation process. The cardiologist who helped to design the scheme acted as the 

adjudicator in these meetings and was responsible for making the final decision to 

resolve all problems and discrepancies. 

    Figure 4.2 shows the most prevalent phenotypes in the corpus and their distribution 

in the discharge summaries and articles. In discharge summaries, there is a large 
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emphasis on describing the signs or symptoms of the disease. These play a much less 

significant role in scientific articles, where the dominant topics are non-traditional risk 

factors and the etiology of CHF. 

 Annotation tool 

The annotation was carried out using the BRAT [185], a highly-configurable and 

flexible web-based tool for textual annotation. BRAT is simple to configure for our 

requirements and easy for non-technical annotators to use. These factors contributed 

to our choice. 

 

Figure 4.2 Distribution of phenotype information in the corpus 

 

 Evaluation 

Annotations in the corpus should reflect the instructions provided in the guidelines as 

closely as possible, in order to ensure their high quality. A standard means of 

providing evidence regarding the reliability of annotations in a corpus is to calculate a 

Discharge Summaries

cause

risk factors

sign or 
symptoms

nontraditional 
risk factors

Scientific Articles
cause

risk factors

sign or 
symptoms

nontraditional 
risk factors
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statistic known as the IAA. A high IAA score provides assurance that the two 

annotators can produce consistent annotations when working independently and 

separately.  

    There are several different methods of calculating IAA, which can be influenced by 

the exact nature of the annotation task. The simplest is to calculate the percentage of 

absolute agreement by dividing the number of agreed annotations by the total number 

of annotations [202]. However, absolute agreement is not considered very accurate, in 

that it does not take into account that some proportion of agreement between the two 

annotators can be expected by chance [203]. 

Accordingly, a more widely used coefficient of agreement is Cohen's Kappa [204]. 

However, the calculation of Cohen’s Kappa requires that the total number of 

annotated items is known in advance, meaning that it is unsuitable in our case. 

Instead, we use the measures of precision, recall and F-measure to indicate the level of 

inter-annotator reliability [205]. In order to carry out such calculations, the set of 

annotations produced by one of the annotators is considered as the ‘gold standard’, 

i.e., the set of correct annotations.  

    Precision is the percentage of correct positive predictions annotated by the second 

annotator, compared to the first annotator’s assumed gold standard. Precision is 

calculated as the ratio between the true positive (TP) entities and the total number of 

entities annotated by the second annotator (the sum of TP and False Positives (FP)). 

P = TP / TP + FP 

Recall is the percentage of positive cases recognised by the second annotator. It is 

calculated as the ratio between the True Positive (TP) entities and the number of 

named entities that the second annotator was expected to recognise, based on the gold 

standard (the sum of TP and False Negatives (FN)). 

R = TP / TP + FN 

F1-measure is the harmonic mean between precision and recall. 

F1-measure = 2* (Precision * Recall) / Precision + Recall 

    We have calculated separate IAA scores for the discharge summaries and the 

scientific articles. Table 4.4 summarises agreement rates for term annotation in the 

discharge summaries, showing results for both individual entity types and macro-

averaged scores over all entity types.  
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    Relaxed matching criteria were employed, such that annotations added by the two 

annotators were considered as a match if their spans overlapped. For example, if one 

annotator annotated the span increased shortness of breath, and the other annotated 

only shortness of breath, this would count as a match.   

    In comparison to related annotation efforts, the IAA rates are quite high.  However, 

it should be noted that the number of targeted classes and relations in our corpus is 

quite small and focussed compared to other related corpora.   

    Agreement statistics for scientific articles are shown in Table 4.5. Agreement is 

somewhat lower than for discharge summaries. This could be due to the fact that the 

annotators (clinicians) are more used to dealing with discharge summaries in their 

day-to-day work, and so are more accustomed to locating information in this type of 

text. Scientific articles are much longer and generally include more complex language, 

ideas and analyses, which may require more than one reading to fully comprehend the 

information within them.  

    Table 4.6 shows the agreement rates for relation annotation in the discharge 

summaries. The agreement rates for relationships are relatively high. This can partly 

be explained by the deep domain knowledge possessed by the annotators and also by 

the fact that the relationships identified were relatively simple, linking only two pre-

annotated entities. 

 

 

Table 4.4 Term annotation agreement statistics for discharge summaries 

 Causality Risk 

factor 

Sign or 

Symptom 

Non-

traditional 

risk factor 

Polarity 

clue 

Organ Macro-

average 

Total number 

of annotations 

1320 1335 2449 308 492 432 - 

TP 1265 1263 2388 266 276 407 - 

FN 55 72 61 42 18 25 - 

FP 40 50 28 60 10 40 - 

Precision 0.97 0.96 0.98 0.81 0.96 0.91 0.93 

Recall 0.95 0.94 0.97 0.86 0.93 0.94 0.93 

F-score 0.95 0.94 0.97 0.83 0.94 0.92 0.92 
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 Table 4.5 Term annotation agreement statistics for scientific articles 

 

 

Table 4.6 Relations annotation and agreement statistics for discharge summaries 

 Causality Finding Negate Macro-

average 

Total number of 

annotations 

125 364 692 - 

TP 102 343 657 - 

FN 23 21 35 - 

FP 12 19 29 - 

Precision 0.94 0.95 0.96 0.95 

Recall 0.80 0.94 0.95 0.89 

F-score 0.86 0.94 0.95 0.91 
 

4.2 Summary 

In this chapter, we have presented a detailed description of our procedure for the 

development of the PhenoCHF corpus. This consisted of the development of a novel 

annotation scheme, specifically tailored to annotating phenotypes within the context 

of CHF and kidney failure. Subsequently, we manually applied the scheme to create 

an annotated corpus of documents from two different biomedical sources (i.e., 

literature articles and EHRs). The corpus has been developed to act as a gold standard 

resource to carry out domain adaption and development of TM tools that can extract 

and integrate phenotypic information from both text types. We will use this corpus to 

drive our research in the following chapters of this thesis.  

 

 Cause Risk factor Sign or 

Symptoms 

Non-

traditional 

risk factor 

Macro-

average 

Total 

number of 

annotations 

357 

 

272 153 

 

118 - 

TP 284 225 120 85 - 

FN 73 47 33 33 - 

FP 27 34  19 17 - 

Precision 0.91 0.86 0.86 0.83 0.86 

Recall 0.76 0.82 0.78 0.72 0.77 

F-score 0.82 0.84 0.82 0.77 0.81 
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 Phenotypic extraction 

Due to the large volume of clinical information and test results in EHRs, it is very 

time consuming for clinicians to read EHRs to have a better idea about the patient’s 

phenotypic information. TM techniques have been applied successfully to extract 

different medical information from clinical records. Such techniques can be extended 

to allow the extraction of phenotypic information and the relations between them from 

free text. 

    Following the creation of the PhenoCHF corpus [171], we proceeded to carry out 

experiments to automatically extract phenotypic information form the PhenoCHF 

corpus [206]. As we discussed in Chapter 4, PhenoCHF corpus is annotated for 

phenotypic entities and the relations between them. In this chapter, we will discuss the 

methods we have used to extract phenotypic mentions. Presented in Figure 5.1 is the 

workflow we have applied on the PhenoCHF corpus. 
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Figure 5.1 Workflow to process the PhenoCHF corpus to extract CHF phenotypic information 
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5.1 Phenotypic entity recognition  

The recognition of phenotypic entities is a prerequisite for the extraction of more 

complex information (e.g., relations and events that involve these entities) and the 

integration of dispersed information.   

    The task of extracting phenotypic mentions can be seen as a typical NER task. It 

involves determining the boundaries of the mentions and assigning semantic types. In 

our case, this corresponds to the types cause, risk factor, non-traditional risk factor and 

sign or symptom.  

    As described in Chapter 2, there are several existing TM systems that aim to extract 

various types of semantic annotation from clinical texts, including MetaMap [63], 

cTAKES [56], i2b2 HITEX [207] and MedLEE [67]. These systems mainly use 

dictionary-based methods, which aim to map mentions of clinical concepts found in 

text to entries in the UMLS Metathesaurus.  

    The main issue with the above-mentioned systems is that they can only match 

mentions of concepts whose lexical form matches, or is closely related to, known 

variants of the concepts in UMLS. Generally, semantic variants of concepts whose 

lexical form is not related to existing entries cannot be handled by these systems.  

These problems represent potentially significant drawbacks for dictionary-based 

systems. Given that such dictionaries are usually manually curated, it is impossible for 

them to be kept up to date to cover all relevant concepts and their variants that may 

occur within text. This can reduce their ability to recognise all instances of categories 

of interest.  Furthermore, it is not always the case that a particular sequence of words 

will denote a medical concept in all cases. The exact interpretation will sometimes 

depend upon the textual context. However, dictionary-based methods do not usually 

take context into account.   

    More intelligent methods of extracting entities are required, in order to capture the 

nuances of the expression of clinical entities in text. Terms in clinical text may vary 

from forms that are listed in dictionaries and their interpretation may be dependent on 

context. Additionally in the specific context of our work, a significant drawback of 

UMLS is that it does not include semantic categories that correspond directly to 

specific types of phenotypic information.  

    In the following sections, we demonstrate how the PhenoCHF corpus can be used to 

train ML models to recognise different types of information relating to phenotypes 
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automatically. We performed a range of different ML experiments, using different 

splits of the data in the corpus for training and testing, different algorithms and 

different sets of features. We compare the results obtained by the ML models to those 

achieved using two alternative approaches to phenotypic NER, i.e. dictionary and rule 

based methods. 

    In the first set of experiments, we considered each part of the corpus (i.e., literature 

articles and discharge summaries for EHRs) separately. Each of these portions of the 

corpus was divided into a training set (80%) and test set (20%). Thus, for the clinical 

discharge summaries, 240 records were used for training and 60 records were used for 

testing, while for the full text literature articles, 8 articles were used for training and 2 

for testing. Different machine learning algorithms (HMM, Maximum Entropy Markov 

Model (MEMM) and CRFs) were applied to each of the training sets, and the resulting 

learned models were evaluated against the test set. We considered a variety of features 

and evaluated their contribution towards the performance of the machine learning 

models. In our second set of experiments, we trained models on the complete set of 

documents from one portion of the corpus (i.e. either EHRs or literature articles) and 

evaluated the performance on the other portion of the corpus (i.e. either EHRs or 

literature articles). The aim of these experiments was to determine the potential 

portability of the models to find out whether a model trained on one type of text could 

successfully recognise entities in another type of text. Subsequently, we carried out 

experiments to determine whether training on a mixture of text types (EHRs and 

literature articles) can result in a more robust and better performing model. Finally, we 

investigated the potential portability of our best performing model by applying it to 

different annotated corpora (i.e. ShARe/CLEF 2013, HD risk factors and COPD 

phenotype corpora).  

 Methodology 

In this section, we firstly describe the methods applied in carrying out our baseline 

experiments for NER, i.e. the dictionary-based and rule-based approaches, after which 

we provide a detailed account of the ML methods that we applied.  
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 Dictionary-based method 

For the dictionary-based method, we applied MetaMap to PhenoCHF.  MetaMap 

maps phrases found in free text to concepts in the UMLS Metathesaurus. Although the 

UMLS Metathesaurus does not have any semantic categories corresponding directly to 

fine-grained phenotype information, previous studies [208] have found that 

information relating to phenotypes usually falls under the semantic types belonging to 

the disorder semantic group in UMLS. Our own annotators have also confirmed this.  

    In UMLS, semantic groups consist of a number of individual semantic categories. 

The disorder semantic group in UMLS contains 12 semantic categories, i.e.: Acquired 

Abnormality, Anatomical Abnormality, Cell or Molecular Dysfunction, Congenital 

Abnormality, Disease or Syndrome, Experimental Model of Disease, Finding, Injury 

or Poisoning, Mental or Behavioral Dysfunction, Neoplastic Process, Pathologic 

Function and Sign or Symptom.  

    Given that by default, MetaMap recognises instances of all categories of the wide 

variety of semantic concepts that are included within the UMLS Metathesaurus, we 

configured the tool such that it would only recognise concepts belonging to the 

disorder semantic group. The aim was to try to reduce the number of falsely identified 

phenotypic concepts.  

 Rule-based method 

For the rule-based approach, we exploited an existing system that applies pattern-

matching rules to free text to facilitate the recognition of semantic information. The 

system, called Conceptual Annotations for Facts, Events, Terms, Individual Entities 

and Relations (CAFETIERE) [61], allows the formulation of rules that can match 

phrases (e.g., entities) using various textual features of both the phrase itself and its 

textual context. Through the manual examination of phenotype annotations and their 

contexts in the training portion of PhenoCHF, we developed a set of rules (i.e., 45 and 

37 rules for records and articles respectively). These rules exploit a range of textual 

features including syntactic (i.e. POS), semantic (UMLS semantic type) and lexical 

(word shape, prefix and suffix) to capture common patterns that denote the presence 

of phenotype information.  

    Each rule can specify up to three contexts. The left and right contexts specify 

patterns that must occur either before or after the entity to be annotated (but which do 
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not form part of the entity), while the centre context specifies features of the tokens 

that form part of the entity to be annotated. The syntax for a rule is left_context \ 

constituents / right_context, where there may be 0 or more left or right context items 

and at least one constituent item. Items on the right hand side are comma-separated 

except before a slash. Each item, including the phrase item, is described by a set of 

comma-separated expressions enclosed in square brackets, where an expression has 

the form: feature operator value. 

 

    An example of the right hand side of a rule is shown below where it specifies a 

syntactic pattern to capture certain types of phrases that can describe signs or 

symptoms. The rule aims to annotate phrases (left hand side detail not shown) such as 

heart is enlarged, abdomen was distended, leg is swollen, i.e., phrases that describe a 

characteristic of a body part.  

 

 \ 

[syn=NN|NNP]{1,3}[20]?,[sem=beverb]?,[syn=VBN] 

 / 

 

The above rule right hand side only specifies a centre context, i.e., any matching token 

sequence will be annotated, regardless of its surrounding textual context. The centre 

context consists of 3 token specifications. The first specification matches a token that 

is syntactically tagged as a noun or proper noun. The {1,3} after this token 

specification means that the rule will match up to three tokens with this specification. 

This is to allow matching with multi-word body parts, including those that include 

proper names as one of the tokens, e.g., Achilles tendon. The second token 

specification will match different forms of the verb to be (e.g., is, was, were) while the 

final token specification matches past participles of verbs.  

    An example of a slightly more complex rule right hand side is shown below. This 

rule aims to recognise certain types of cause phenotypic concepts, such as “chronic 

obstructive pulmonary disease”, “mild mitral insufficiency” and “atrial fibrillation”.  
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\ 

 [syn=JJ|NN|NNS|VBG|NNP|VB|VBN]{0,3}, 

[syn=NN|NNS,token="*ension"|"pressure"|"disease|"failure"|"dysfunction"|"insufficie

ncy"|"flutter"|"regurgitation"|"syndrome"|"fibrillation"|"infarction"] 

/ 

    Once again, the rule only specifies a centre context. The token feature is used to 

specify all or part of a token to match. The | character is used to specify alternative 

matching tokens, while the * character will match any sequence of characters within 

the token, to allow for more general token specifications. For example, *ension will 

match tension, hypertension, etc. Thus, the rule will match phrases whose final word 

is one that typically denotes a cause. The first two token specifications allow the 

matching of longer phrases that fully describe this cause, including sequences of 

preceding nouns and/or adjectives. 

 Machine learning-based methods 

We cast the problem of NER as a sequence labelling task, i.e., the automatic 

assignment of labels to a sequence of tokens.  

    The set of possible labels is defined by a chosen encoding scheme. We use the most 

commonly encoding representation begin-inside-outside (BIO) encoding as shown in 

the example in Table 5.1 on Page 103.  

    We carried out experiments with a number of existing ML algorithms for sequence 

labelling such as HMM [209], MEMM [210] and CRFs [211]. Each of which can 

predict the most likely sequence of labels given a sequence of words. Specifically, we 

have employed the CRFSuite implementation of CRF [212] and the Mallet 

implementation of MEMM [213]. Additionally, since the traditional HMM does not 

assume independent features [214], i.e., each observation is independent from its 

context, we adapted the approach reported in [215] to allow the integration of multiple 

features. 

    Each of the ML algorithms can use different sets of features representing different 

types of linguistic information relating to the input sequence of tokens. To generate 
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these features, a text pre-processing pipeline, which consists of a set of existing tools, 

as described below, is applied to the raw text.   

 Pre-processing pipeline 

All documents in PhenoCHF corpus (EHRs and literature articles) were pre-processed 

with the pipeline described below. 

Sentence splitting 

The plain text in the PhenoCHF corpus is firstly processed using the LingPipe 

MEDLINE sentence splitter model [216]. This model was designed specifically to 

process biomedical text. It uses a set of rules to determine the sentence boundaries. 

The rules take into account possible endings for sentences (e.g., full stop, question 

mark), impossible penultimate tokens (e.g., abbreviations or acronyms such as 

personal titles like Dr) and impossible starts of sentences (e.g., percentage sign).  

Tokenisation 

We use the GENIA tagger [47] to segment each sentence into tokens. The maximum 

entropy model has been trained on both general- and biomedical-domain documents 

and has demonstrated robustness in tokenising biomedical text. We use the model 

adapted for biomedical text.  

Part-of-speech and chunk tagger 

The GENIA tagger has been shown to achieve the state-of-the-art performance in 

providing syntactic information for biomedical text (i.e., it achieves a precision of 97-

98% for POS tagging on biomedical text) [47]. It takes as input tokenised sentences 

and outputs syntactic information for each token (i.e., POS and chunk tags). Tagging 

is based on a maximum entropy model trained on both general-and biomedical-

domain documents [47].  

Feature set 

The input to the ML algorithms is formulated by combining the information in the 

BIO format of the gold standard annotation on PhenoCHF corpus with various types 

of features obtained through the application of the pre-processing pipeline described 

above. These features include word level information (i.e., bags-of-words), syntactic 
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information (e.g., part-of-speech and chunk tags) and morphological features (i.e., 

prefixes and suffixes of the words). Table 5.1 shows an example of the features 

available as input to the ML algorithms, for the following sentence: He had coronary 

artery disease and myocardial infarction.  

 

 

 

Table 5.1 Example of features available for machine learning input, following the application of the 

pre-processing pipeline 

BIO tag Token POS Chunk 

O He PRP B-NP 

O had VBD B-VP 

B-CAUSE coronary JJ B-NP 

         I-CAUSE artery NN I-NP 

I-CAUSE disease NN I-NP 

               O and CC O 

B-CAUSE myocardial JJ B-NP 

I-CAUSE infarction NN I-NP 
 

 

    We specifically extracted the following features for potential use in our ML 

experiments:  

Part-of-speech (POS) tags 

Unigram and bigram features of POS tags within a window of two tokens before and 

after the active token were extracted. Given the example in Table 5.1 and using 

‘artery’ as the active token unigrams {VBD}, {JJ}, {NN}, {NN}, {CC}, and bigrams 

{VBD, JJ}, {JJ, NN}, {NN, NN}, {NN, CC} would be extracted.  

Chunks 

Unigram and bigram features of chunks tags within a window of two tokens before 

and after the active token were extracted. Again using ‘artery’ as the active token in 

the example above, the unigrams {B-VP}, {B-NP}, {I-NP},{I-NP}, {O} and bigrams 

{B-VP, B-NP}, {B-NP, I-NP},{I-NP, I-NP},{I-NP, O} would be extracted.  
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Morphological features 

We generated affix-capturing features, based on the observation that certain prefixes 

and suffixes are quite common amongst phenotypic expressions, e.g., the prefix 

hyper- in hyperthyroidism and the suffix -emia in lipidemia and anemia. Using the 

gold standard annotations in the training set, a registry of prefixes/suffixes of lengths 

two to five was automatically compiled (following [217]); this list served as a look-up 

list during feature extraction.  

    We used the training dataset to generate the most frequent prefixes and suffixes of 

length two to five. Then each of prefix/suffix x is evaluated according to the following 

equation: 

 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑥) =
(#𝐼𝑁𝑋 − #𝑂𝑈𝑇𝑋)

#𝑋
 

 

    Where #𝐼𝑁𝑥 is the number of times that the prefix/suffix x occurs within a 

phenotypic concept; #𝑂𝑈𝑇𝑥 is the number of times that the prefix/suffix x occurs 

outside a phenotypic concept; #X is the total number of times that prefix/suffix x 

occurs within the corpus. The value weight(x) is highest for prefixes and suffixes that 

are most likely to occur inside phenotypic expressions, and which are least likely to 

occur outside of such expressions. Prefixes and suffixes with a weight above a certain 

value may thus be considered to be potentially predictors of words that are likely to 

form part of a phenotypic concept. Accordingly, we select candidate prefixes/suffixes 

with a weight above 0.70.  

    Table 5.2 shows the result of matching the tokens from the example sentence 

against our affix lists, which are provided in Appendix A.1. Tags resulting from this 

matching process are incorporated into the feature set. 
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Table 5.2 Example of tokens sequence tagged with matches against our affix lists 

 Prefix Suffix 

Token Size 

2 

Size 

3 

Size 4 Size 5 Size 

2 

Size 

3 

Size 4 Size 5 

He O O O O O O O O 

Had O O O O O O O O 

History O O O O O O O O 

of  O O O O O O O O 

Heart O O O O O O O O 

Disease O O O O O O O O 

Anemia O O O O O O emia O 

Hypertension hy hyp hype hyper O O sion nsion 

Hypercholesterolemia hy hyp hype hyper O O emia O 
 

 

Experiments 

As described above, we carried out a number of different ML experiments. In the first 

set of experiments, we considered each text type of the corpus (i.e., literature articles 

and discharge summaries for EHRs) separately. Each portion of the corpus was 

divided into a training set (80%) and test set (20%). Thus, for the clinical discharge 

summaries, 240 records were used for training and 60 records were used for testing, 

while for the full-text literature articles, 8 were used for training and 2 for testing. 

Different ML algorithms were applied to each of the training sets, and the resulting 

learned models were evaluated against the test set. We considered a variety of 

features, and we systematically evaluated the contribution of using different features 

towards the performance of the ML models.   

    In our second set of experiments, we trained models on the complete set of 

documents from one portion of the corpus (i.e. either EHRs or literature articles) and 

evaluated the performance on the other portion of the corpus (i.e. either EHRs or 

literature articles). The aim of these experiments was to determine the potential 

portability of the models, i.e., to find out whether a model trained on one type of text 

could successfully recognise entities in another type of text.  

    Subsequently, we carried out experiments to determine whether training on a 

mixture of documents (both EHRs and literature articles) can result in a more robust 

and better performing model. For these experiments, we used 5-fold cross validation 

to split the data. The purpose was to reinforce our results from the first set of 

experiments and ensure that the trained model did not overfit the datasets. 
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    Finally, we investigated the potential portability of our best performing model by 

applying it to different annotated corpora (i.e. ShARe/CLEF 2013, HD risk factors 

and COPD phenotype corpora). 

5.2 Results and Discussion 

We have evaluated the performance of both the baseline and ML methods introduced 

above, by calculating precision, recall and macro-averaged F-score against the gold 

standard annotations in the test portions of the PhenoCHF corpus. 

    The evaluation also compares results achieved using different matching criteria 

(i.e., both exact and relaxed matching). For exact matching, the start and end offsest of 

the predicted phenotypic entities must be the same as those in the gold standard data, 

wheras for relaxed matching, it is sufficient for the start and end offsets of the 

recognised phenotype to overlap with the gold standard. 

    Tables 5.3 and 5.4 show the results obtained for the experiments that were carried 

out separately on the two portions of the corpus (i.e., EHRs and literature articles), 

using 80% training and 20% tests sets introduced above. These results are also 

visualised in Figures 5.2 and 5.3. Results are shown for different ML algorithms, as 

well as for the baseline rule-based and dictionary-based methods. 

    The lowest performance was achieved by the dictionary-based MetaMap method. 

This method produced many FPs, even though we restricted the semantic types 

recognised to those belonging to the disorder group. This is partly because MetaMap 

recognised all disorders, regardless of whether they were concerned with CHF, and 

also because not everything that is a disorder can be classed as phenotypic 

information. However, in the gold standard, such disorders were only annotated if 

they were mentioned in the context of CHF. For example, gout is recognised as a 

disorder by MetaMap, but is not annotated as a phenotype term in PhenoCHF. Using 

MetaMap produces low recall due to spelling mistakes in the corpus (e.g., aneamia 

instead of anaemia), which MetaMap is not designed to handle. Additionally, a large 

number of phenotypic terms consist of multiple words, which MetaMap often 

recognises as multiple different terms. For exact matching, recall is low because 

MetaMap cannot recognise phenotypes which consist of adjective or modifier + 

medical term, i.e., “moderate to mild cough”. 
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    In terms of the other methods, it can be observed that, even though the rule-based 

method achieved the highest F-score among all experiments, for both text types of the 

corpus, comparable performance is achieved by one of the ML algorithms (i.e., CRF) 

on the EHRs portion of the corpus. Although the ML methods achieve considerably 

lower performance than rule-based methods on the literature part of the corpus, it is 

much smaller than the EHRs part of the corpus, and therefore the training data 

available is much sparser. This means that machine learning models are unlikely to 

have sufficient evidence to predict phenotype information accurately in the unseen test 

set. 

    The high performance of the rules suggests that it is possible to formulate general 

patterns that denote the existence of phenotypic information. However, the rule-based 

approach does have several drawbacks.  Firstly, it is a very labour–intensive and time 

consuming process. The human rule-writer must carefully read many documents and 

generalise the textual patterns denoting the probable occurrence of concept mentions. 

Additionally, given that these patterns can vary between text types, it will usually be 

necessary to create a new set of rules for each different text type to be considered. 

Indeed as has been explained above, we needed to create roughly equal sized (but 

different) sets of rules for the EHRs and literature data sets.  Thus, portability of this 

method is a large issue. In contrast, given an appropriate annotated training corpus, 

ML algorithms can generalise patterns many times more quickly.  

    An analysis of the errors produced by the rules revealed that most of the FNs occur 

because the test set contains forms of phenotype annotations that were not present in 

the training set, and thus the rules do not cover them. E.g., “mitral valves mildly 

thickened” and “increased swellings in both hands”. The source of several FPs is that 

some of the rules are not sufficiently restrictive as some non-phenotype terms share 

similar syntactic patterns to phenotypic terms. For example, consider the following 

rule: 

 

\ 

[syn=NN|NNP]{0,3},[sem=beverb]?,[syn=VBN|JJ,token!= 

"normal"|"regular"|"stable"] 

/ 
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    The phrase “abdomen is benign” is incorrectly recognised by this rule as a sign or 

symptom, because many signs or symptoms are expressed using a similar syntactic 

pattern i.e., “abdomen is distended”.  From this rule, it can be appreciated that we 

tried to address such examples to a certain extent, since the specification of the last 

token in the central context means that it will not match the words normal, regular or 

stable. These restrictions aim to filter out terms that refer to normal conditions, e.g. 

“chest is normal” and “heart is regular”. However, once again due to examples in the 

test data that do not occur in the training data, we were unable to filter out all such 

FPs. 

     The CRF algorithm achieves the highest F-score amongst the evaluated machine 

learning methods, followed by HMM and MEMM. CRF also achieves a greater 

balance between precision and recall than the other algorithms. Overall, our 

experiments demonstrate that ML methods exhibit good levels of precision but lower 

recall. This is partly due to the fact that machine learning algorithms are sensitive to 

textual heterogeneity, such as the use of different vocabulary and different writing 

styles [218]. 

 
Table 5.3 Comparative evaluation of different machine learning methods on the discharge summary 

(EHRs) set, for MEMMs, HMMs and CRFs. Only the results from the model with the best performing 

combination of features are presented 

 Exact Match Relaxed Match 

Methods P R F P R F 

MetaMap 0.22 0.29 0.25 0.39 0.51 0.44 

Rules 0.88 0.86 0.87 0.92 0.93 0.92 

MEMMs 0.67 0.33 0.52 0.87 0.60 0.54 

HMMs 0.90 0.63 0.74 0.90 0.65 0.76 

CRFs 0.88 0.77 0.82 0.90 0.86 0.88 

 

Table 5.4 Comparative evaluation of different machine learning methods on literature articles set, for 

MEMMs, HMMs and CRFs. Only the results from the model with the best performing combination of 

features are presented 

 Exact Match Relaxed Match 

Methods P R F P R F 

MetaMap 0.42 0.25 0.30 0.67 0.33 0.44 

Rules 0.83 0.88 0.85 0.88 0.90 0.89 

MEMMs 0.18 0.55 0.24 0.20 0.56 0.28 

HMMs 0.30 0.55 0.39 0.32 0.58 0.41 

CRFs 0.48 0.62 0.54 0.53 0.69 0.60 
 

 



      110 
 

    For each algorithm, we have evaluated the effects of using different feature sets in 

conjunction with the different ML algorithms. This is shown in Table 5.5 for EHRs 

and Table 5.6 for the literature articles. Compared to the bags-of-words (BOW) 

baseline, it can be observed that all additional features contribute towards improving 

performance. POS features appear to contribute most towards improving the precision, 

with the addition of chunk features usually contributing little to improving the overall 

performance. However, adding prefix and suffix features results in an additional small 

boost in F-score in all cases, such that the highest performance is achieved when all 3 

sets of features are used in addition to BOW.   

 

 

Figure 5.2 Visualisation of comparative evaluation of NER methods on discharge summaries 

 

 

 

 

 

 

 

 

 

 

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precision Recall Macro-averaged
F-score

MetaMap

Rule-based

CRF

HMM

MEMM

0

0.2

0.4

0.6

0.8

1

Precision Recall Macro-averaged F-
score

MetaMap

Rule-based

CRF

HMM

MEMM

Figure 5.3 Visualisation of comparative evaluation of NER methods on articles 



      111 
 

Table 5.5 the contribution of features in each machine-learning based method on discharge summaries 

Method P R F 

HMM(BOW) baseline 0.86 0.59 0.69 

HMM (BOW+POS) 0.89 0.62 0.73 

HMM (BOW+POS+CHUNK) 0.88 0.62 0.73 

HMM (BOW+POS+CHUNK+Prefix & Suffix 0.90 0.63 0.74 

MEMM(BOW) baseline 0.57 0.43 0.49 

MEMM (BOW+POS) 0.61 0.47 0.53 

MEMM (BOW+POS+CHUNK) 0.56 0.51 0.53 

MEMM (BOW+POS+CHUNK+Prefix & Suffix 0.67 0.33 0.52 

CRF(BOW) baseline 0.84 0.75 0.78 

CRF (BOW+POS) 0.87 0.72 0.80 

CRF(BOW+POS+CHUNK) 0.89 0.75 0.81 

CRF (BOW+POS+CHUNK+Prefix & Suffix 0.88 0.77 0.82 

 

 

 

Table 5.6 The contribution of features in each machine-learning based method on literature articles 

Method P R F 

HMM(BOW) baseline 0.28 0.41 0.32 

HMM (BOW+POS) 0.27 0.54 0.36 

HMM (BOW+POS+CHUNK) 0.29 0.41 0.37 

HMM (BOW+POS+CHUNK+Prefix & Suffix 0.30 0.55 0.39 

MEMM(BOW) baseline 0.49 0.11 0.18 

MEMM (BOW+POS) 0.24 0.21 0.22 

MEMM (BOW+POS+CHUNK) 0.22 0.23 0.22 

MEMM (BOW+POS+CHUNK+Prefix & Suffix 0.18 0.55 0.24 

CRF(BOW) baseline 0.54 0.38 0.45 

CRF (BOW+POS) 0.57 0.47 0.51 

CRF(BOW+POS+CHUNK) 0.57 0.47 0.51 

CRF (BOW+POS+CHUNK+Prefix & Suffix 0.48 0.62 0.54 

 

 

    The top part of Table 5.7 shows the results of our experiments in which we trained 

models on one part of the corpus (i.e. either literature articles or EHRs) and tested the 

model on the other part of the corpus. According to the results of the previous 

experiments, training was carried out using the CRF algorithm and all features.  

    These results show that the CRF model trained on the discharge summaries 

performs with reasonable accuracy on the literature articles. The level of precision is 
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particularly encouraging, given the good size of the discharge summaries part of the 

corpus and the fact that the annotations provide evidence of the wide range of 

different ways in which phenotypic information can be expressed. A model trained on 

this class of documents has the potential to perform well when applied to other text 

types.  In contrast, the model trained on the literature articles demonstrates much less 

potential for portability, as evidenced by the results obtained when it is applied to the 

discharge summaries. However, this result is to be expected according to the results 

obtained in the previous experiments. If there is insufficient training data for a 

literature-trained model to perform with high accuracy when applied to other literature 

articles, then it is understandable that the performance is even lower when the model 

is applied to documents with different characteristics.    

    However, the above results do not mean that the literature part of the corpus is not 

useful at all for training. As shown in the bottom row of Table 5.7, we carried out a 5-

fold cross validation experiment over the combined corpus of clinical records and 

articles, in which each fold consists of data from both articles and records. The results 

are higher than any of the experimental results shown in Tables 5.3 and 5.4, in which 

training and testing was carried out only on a single part of the corpus. Although the 

experimental setup is different (i.e., cross validation rather than a training and test set), 

the results in Table 5.7 strongly suggest that training on information from multiple 

text types can result in a classifier that is not only robust to heterogeneous text types, 

but which can perform with higher accuracy than if only a single text type is used for 

training. This result is in contrast to other studies (e.g., [219]), which have reported 

that  pooling corpora of different text types decreases the performance of the trained 

model. However, the difference in our case is that the two portions of the corpus were 

annotated according to a common set of guidelines.  

 

Table 5.7 Results of CRF model training and evaluation on different document types 

Evaluation data Training Data P R F 

PhenoCHF discharge summaries articles 0.79 0.47 0.58 

PhenoCHF articles  discharge 

summaries 
0.56 0.29 0.38 

PhenoCHF (full) 5-fold cross validation 0.89 0.83 0.86 
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5.3 Evaluation 

In order to further demonstrate the portability and utility of the best performing CRF 

model trained on our corpus, we evaluated the PhenoCHF model that is trained on the 

full PhenoCHF corpus (i.e., EHRs and the literature articles) on three of the gold 

standard corpora reviewed in Section 2.2.1, namely the ShARe/CLEF 2013 task1, 

i2b2 heart disease, and the COPD phenotypic corpus as presented in the Table 5.8.   

    In the following sections we provide an analysis of the results we obtained by 

applying the PhenoCHF model on the three above-mentioned corpora. 

 The ShARe/CLEF 2013 task1 

As reviewed in Section 2.2.1, the ShARe/CLEF 2013 task 1 corpus consists of 300 

clinical records split into a training set of 200 records and a test set of 100 records. 

The records were annotated for mentions of disorder terms, which were mapped to 

corresponding concepts in the SNOMED CT terminology.  

    As in UMLS, SNOMED CT concept types are organised into semantic groups, one 

of which is disorder. The SNOMED CT disorder semantic group corresponds almost 

exactly to the UMLS disorder semantic group, in that it consists of the following 

semantic types: Congenital Abnormality, Acquired Abnormality, Injury or Poisoning, 

Pathologic Function, Disease or Syndrome, Mental or Behavioural Dysfunction, Cell 

or Molecular Dysfunction, Experimental Model of Disease, Anatomical Abnormality, 

Neoplastic Process and Sign or Symptom. The only difference is that while the UMLS 

disorder group includes the Finding semantic type, the corresponding SNOMED CT 

disorder group does not. As has been previously discussed in the context of UMLS, 

therefore, the fact that the disorder group covers many types of phenotypic 

information means that there is some level of overlap in the annotated entities within 

ShARe/CLEF 2013 and PhenoCHF. However an important difference between the 

annotations is that, whilst in PhenoCHF annotated information is restricted to that 

concerning CHF, the annotations in the ShARe/CLEF corpus correspond to all 

instances of terms relating to disorders. Accordingly, the disease-specific models 

trained on PhenoCHF cannot be expected to recognise all the disorders annotated in 

the ShARe/CLEF corpus. 
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    In order to provide a fair comparison of the ability of the PhenoCHF model to 

recognise disorder information in the ShARe/CLEF corpus, we only applied our 

model to a subset of the records in the corpus, i.e., those which are specifically 

concerned with heart disease. We created this subset by finding records in the 

ShARe/CLEF corpus which contained annotated terms relating to heart disease 

disorders. We exploited the hierarchical structure of concept classes in SNOMED CT, 

retaining only those records (135 from the training set and 76 from the test set) 

containing annotations that could be mapped to concepts within the heart disease 

subtree of SNOMED CT. 

    As can be seen in Table 5.8 on Page 120, the results are somewhat lower than those 

achieved when applying our model to the PhenoCHF corpus. Whilst this could be 

partly due to the fact that the ShARe/CLEF corpus includes reports of different types 

than those included in the PhenoCHF corpus, we know that it is also due to the 

differing annotation scopes of the ShARe/CLEF and PhenoCHF corpora. Although we 

tried to restrict our evaluation to only those records in the ShARe/CLEF corpus that 

cover a similar subject to documents in PhenoCHF, it is still the case that all instances 

of disorders within these documents are annotated, rather than only those that 

specifically relate to CHF. 

    Thus, in order to provide a more realistic estimate of the ability of our model to 

recognise information relating to CHF in the ShARe/CLEF subset, we asked our 

expert annotators (doctors) to review both the FPs and FNs that were output by the 

PhenoCHF model. They were asked to identify how many of the FPs output by the 

PhenoCHF model (in comparison to the ShARe/CLEF annotations) actually represent 

valid phenotypic information, and how many of the FNs represent information that is 

beyond the scope of CHF (and hence could not be expected to be recognised by our 

model). 

    The results of this expert annotation revealed that the majority of FPs recognised by 

our model represent valid phenotype information in the context of CHF, and are 

recognised by the PhenoCHF model according to the wider range of semantic types 

that are annotated in PhenoCHF, compared to the ShARe/CLEF corpus. In particular 

our sign or symptom category partly corresponds to the UMLS Finding semantic type 

(e.g., “chest pain”), which is not within the scope of the ShARe/CLEF corpus. We 

found that many sign or symptom annotations occur within the echocardiogram and 

radiology reports of the ShARe/CLEF corpus. A smaller number of FPs were found to 
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be genuine errors made by the PhenoCHF model, but these were found to correspond 

largely to cases where non-phenotype terms share the same morphological form as 

correct phenotype terms, and so they were incorrectly recognised by our model. As an 

example, the suffix -uria is common amongst phenotype information related to CHF, 

especially non-traditional risk factors (e.g., “dysuria”). However, the same suffix is 

sometimes used in non-phenotypic terms, e.g., “cystinuria”. 

    The FNs were mainly due to the broader scope of ShARe/CLEF annotation, 

compared to the very focused scope of PhenoCHF. Accordingly, for example, 

endocarditis is annotated as a disorder in the ShARe/CLEF corpus, but was not 

recognised by the PhenoCHF model because it is beyond the scope of phenotypic 

information related to CHF. A further source of error is acronyms and abbreviations. 

Although there are many such examples in PhenoCHF, such as “CHF” for 

‘Congestive Heart Failure’, “CAD” for ‘Coronary Artery Disease’ and “MR” for 

‘Mitral Regurgitation’, there is a proliferation of different acronyms in the 

ShARe/CLEF corpus, e.g., “PAFIB”, “LBBB”, “CHB”, “PDA”. This is partly due to 

the fact that the corpus was specially designed to allow the evaluation of acronym 

recognition and resolution, in addition to the more general task of disorder 

recognition. Given that many of the acronyms in the ShARe/CLEF corpus correspond 

to disorders that our model is not trained to recognise, many of them were missed. 

    When we remove the FPs that correspond to real phenotypic information, as well as 

the FNs that are beyond the scope of our task, the precision and recall and F-score are 

0.68, 0.73 and 0.68 respectively, for ShARe/CLEF, for the model trained on the 

complete PhenoCHF corpus (i.e., PhenoCHF).  

    Phenotypic information related to CHF in the ShARe/CLEF corpus is shown in 

figure 5.4 and as it appears the most prevalent phenotype is sign or symptom followed 

by cause. The least prevalent was non-traditional risk factor.  

    As CHF phenotypic information falls within the scope of the disorder semantic 

group, it was also in our interest to test the performance of the CRF model trained on 

the ShARe/CLEF corpus, which includes a broad coverage of information belonging 

to the disorder semantic group, on the PhenoCHF corpus. For this purpose we trained 

the CRF model (i.e., ShARe model) using an identical set of features that were used to 

train the PhenoCHF model as presented in Section 5.1.1.3, and we evaluated the 

ShARe model to extract phenotypic information from the PhenoCHF corpus. The 

result of the ShARe model on the PhenoCHF corpus is presented in Table 5.8.   
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Figure 5.4 The distribution of the types of phenotypic concepts relating to CHF in the ShARe/CLEF 

corpus 

 

        As can be observed, the ShARe model achieved higher recall than precision; this 

is largely due to the broad scope of the annotations within ShARe/CLEF making a 

model trained on this corpus robust enough to recognise most of the CHF phenotypic 

entities. The manual analysis of FNs has shown that most of the entities missed by the 

ShARe model belong to the UMLS Finding semantic group, which is beyond the 

scope of the ShARe/CLEF annotations; hence the ShARe model exhibits difficulties 

in recognising the wider variability in the syntactic structure in which finding 

information can be expressed when compared to disorder instances in ShARe/CLEF 

(e.g., creatinine is elevated, weakness in the extremities, and grandmother and aunt 

died of sudden cardiac death). 

    Meanwhile, the main source of FPs is the broader scope of annotations within 

ShARe/CLEF in comparison to the very focused scope of PhenoCHF. Although we 

restricted our experiments to those records in the ShARe/CLEF corpus that cover 

heart disease information, the ShARe model still recognises all disorder entities in the 

PhenoCHF corpus, and the majority of FPs produced by the ShARe model are correct 

instances of disorders. However, the FP entities are beyond the scope of CHF and 

hence counted as FPs (e.g., “platelet dysfunction”, “lung cancer”, “hyperplasia” and 

“pancreatitis”). 

    Overall, the performance of the PhenoCHF model on the ShARe/CLEF corpus 

achieved a better result in comparison to the result of the ShARe/CLEF model when 

ShARe/CLEF

Cause

Risk factor

Sign or symptom

Nontradition risk factor
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applied on the PhenoCHF corpus. However our results suggested that phenotypic 

information is covered by the UMLS disorder semantic group, which includes all the 

semantic types under the SNOMED CT disorder semantic group in addition to the 

Finding semantic type. We believe that adding Finding annotations on top of 

ShARe/CLEF annotations will bring wider coverage of phenotypic information in the 

ShARe/CLEF corpus and make it a very useful resource for phenotypic information 

extraction.   

 i2b2 heart disease corpus 

As reviewed in Section 2.2.1, the i2b2 heart disease corpus (HD) is a collection of 

1,304 records split into a training set of 790 records and a test set of 514 records 

annotated for heart disease risk factors including obesity, CAD, hypertension, 

hyperlipidaemia, diabetes, smoking, family history of premature CAD and any 

medication used to treat the risk factors or indicators.  

    Manual analysis of annotation in the HD risk factors corpus revealed that the 

PhenoCHF and the HD risk factors corpora are partially overlapping in their 

annotation scopes (i.e., heart disease risk factors). More specifically, the PhenoCHF 

corpus shares the HD risk factors corpus with all risk factor entities excluding 

medications. However, the two corpora differ in semantic categories. For example, the 

HD risk factors corpus includes seven classes (obesity, CAD, hypertension, 

hyperlipidaemia, diabetes, smoking, family history), while the PhenoCHF corpus 

annotates these risk factors with different semantic categories. For example, obesity, 

hyperlipidaemia, diabetes and family history are annotated as risk factors in 

PhenoCHF, while CAD and hypertension are annotated as a cause.  

    To provide a fair evaluation of the PhenoCHF model against the HD risk factors 

corpus, we removed the annotation for medication mentions from the HD risk factors 

corpus, and then applied the PhenoCHF model to extract heart disease risk factors 

from the i2b2 HD risk factors test dataset as shown in Table 5.8.  

    Error analysis of the results produced by our PhenoCHF model revealed that the 

majority of FPs represent valid phenotype information in the context of CHF. In 

particular, the sign or symptom category, which is not within the annotation scope of 

the i2b2 HD risk factors corpus, represents the largest portion of FP predictions. The 

reason for the large amount of sign or symptom information being recognised within 

the HD risk factors corpus is because two thirds of the records in the corpus are either 



      118 
 

for patients who have been diagnosed with CAD or who developed CAD over the 

course of their records. Therefore, signs or symptoms related to heart diseases are very 

common in the records. A smaller number of FPs originated from risk factor mentions 

that are either related to a member of the patient’s family (e.g., “father developed 

coronary artery disease”) or negated (e.g. “no history of hypertension”). 

    The FNs were mainly due to the differences between the annotation guidelines for 

the PhenoCHF and HD risk factors corpora. While the annotations in PhenoCHF 

corpus include only the explicit mentions of the disease names that represent CHF 

phenotypes, the five disease classes (CAD, diabetes, obesity, hyperlipidaemia, 

hypertension) that represent risk factors in the HD risk factors corpus are annotated 

through either explicit mention of the disease or the indicator of the disease. Different 

diseases have a different number of indicators. For example, obesity has two 

indicators — Body Mass Index (BMI) and Waist Circumference (WC). Diabetes has 

two indicators — haemoglobin levels above 6.5 and glucose levels over 126. Some 

indicators are challenging and are expressed in long text spans, such as CAD test 

result indicators (e.g., “MIBI was read as positive for moderate to severe inferior 

ischaemia”, “stress test with MIBI imaging that perhaps showed an abnormality”). 

Since the PhenoCHF model is not trained to extract such information (i.e., disease 

indicators) the PhenoCHF model failed to recognise some risk factors. Machine 

learning algorithms are sensitive to textual heterogeneity, which also affected 

performance. Examples of missed risk factors are: “177/90” and “blood sugar was 

noted to be greater than 600”. 

    The distribution of the types of phenotypic concepts relating to CHF in the HD risk 

factors corpus, recognised by PhenoCHF model, is shown in Figure 5.5. It is worth 

noting that the most prevalent phenotypic type is sign or symptom followed by cause 

and risk factor, whilst the least prevalent type is non-traditional risk factor. 
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Figure 5.5 The distribution of the types of phenotypic concepts relating to CHF in the HD corpus 

 

    Manual analysis of the results obtained by applying our PhenoCHF model on the HD 

risk factors corpus revealed that the scope of risk factors information falls within the 

cause and risk factors phenotypic classes in the PhenoCHF corpus. We further tested the 

performance of the CRF model trained on the HD risk factors corpus, namely the HD 

model, using the combination of features presented in Section 5.1.1.3 to extract cause and 

risk factors entities from the PhenoCHF corpus. The results are shown in Table 5.8. The 

HD model achieved high precision in extracting cause and risk factor entities related to 

the seven classes in the HD risk factors corpus (obesity, CAD, hypertension, 

hyperlipidaemia, diabetes, smoking, family history). However, the HD model 

achieved low recall as it failed to recognise causes and risk factors that are not related 

to the five classes (e.g., the causes “chronic kidney disease”, “uremic 

cardiomyopathy” and the risk factors “peripheral vascular disease”, “asthma”, 

“stroke”). The main source of FPs is due to the differences in the annotation 

guidelines between the two corpora as explained above. For example, the HD trained 

model recognised “blood glucose of 151” as a risk factor because it is an indicator of 

diabetes. Whereas this annotation is not included in PhenoCHF, therefore it is counted 

as a FP in the result. 

 COPD phenotypic corpus 

We also evaluated the PhenoCHF model on the COPD-phenotype corpus by Batista-

Navarro et al. [176]. As described in Section 2.2.1. The COPD corpus is annotated for 

HD
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Risk factors

Sign or symptoms
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four phenotypic entities related to COPD (medical conditions, signs or symptoms, 

proteins, and drugs). COPD and CHF are commonly prevalent co-morbidities, hence 

COPD mention is annotated as a cause for CHF in the PhenoCHF corpus. Therefore, 

the two corpora (COPD and PhenoCHF) overlap in many phenotype entities. 

However, the PhenoCHF corpus is not annotated for drug and protein entities. To 

provide a fair evaluation of our PhenoCHF model on the COPD corpus we removed 

the annotations pertaining to drugs and proteins. We tested the performance of the 

PhenoCHF model to extract information related to medical conditions and signs or 

symptoms. 

    As shown in Table 5.8, the results revealed that the PhenoCHF model was able to 

recognise most medical conditions and signs or symptoms information. This is not 

surprising, considering what we mentioned earlier: CHF and COPD are comorbidities 

and hence there are many phenotypes shared between the two diseases. More 

specifically, the COPD phenotypes (medical condition, signs or symptoms) fall within 

the scope of the following phenotypic classes: cause, risk factor and sign or symptom 

in the PhenoCHF corpus. As can be observed from Table 5.8, the PhenoCHF model 

achieved high precision and low recall, largely due to the phenotypic entities that are 

specifically related to COPD (e.g., muscle atrophy, rhinovirus infection, cystic fibrosis 

and skeletal muscle dysfunction) and are not related to CHF. By looking at the FP 

results we noticed that most of the FPs are correct examples of phenotypes in the 

context of CHF as annotated in the PhenoCHF corpus. We also believe that some of 

the FP results which comprise correct CHF phenotypes are also related to COPD (e.g., 

reduced oxygen delivery, fluid retention, reduced exercise capacity, fluid retention and 

reduced mixed venous oxygen saturation). But the annotations were missing in the 

COPD corpus due to differences in the definitions of semantic types between the two 

corpora. For example, medical condition in the COPD corpus typically contains 

mentions of diseases related to COPD or its comorbidities, while signs or symptoms 

are often composed of any observable irregularity manifested by a COPD patient. In 

the PhenoCHF corpus, however, the semantic category cause refers to any disease that 

directly contributes to cause CHF. Risk factor contains any mention of a condition that 

put the patient at high risk to develop CHF. Sign or symptom category refers to any 

observable manifestation of CHF. 

    The distribution of the types of phenotypic concepts relating to CHF in the COPD 

corpus, recognised by the PhenoCHF model is shown in Figure 5.6. It is worth noting 
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that the most prevalent phenotypic type is cause followed by sign or symptom, whilst 

the least prevalent types are risk factor and non-traditional risk factor. 

 

 

Figure 5.6 The distribution of the types of phenotypic concepts relating to CHF in the COPD corpus 

 

    It is also of interest to see the performance of the CRF model trained on the COPD 

corpus to extract cause, risk factor and sign or symptom entities from the PhenoCHF 

corpus. For this purpose, we trained a CRF model using the combination of features 

presented in Section 5.2.1.3 on the COPD corpus. We applied the model to extract 

cause, risk factor and sign or symptom information from the PhneoCHF corpus. As 

can be observed from Table 5.8, the COPD model achieved lower precision and recall 

in comparison with the PhenoCHF model. This can be explained by the richer and 

wider coverage of annotations in the PhenoCHF corpus when compared with the 

annotations in the COPD corpus. Therefore, the COPD model exhibits lower recall 

when applied to PhenoCHF. The low recall achieved by the COPD model is also due 

to the heterogeneous documents that comprise the PhenoCHF corpus. The PhenoCHF 

corpus is a combination of EHRs and literature articles, where EHRs represent the 

largest portion of the PhenoCHF corpus. However, the documents in the COPD corpus 

consist of only literature articles; therefore, the COPD model exhibits difficulties in 

recognising phenotypic entities with complex characteristics and a variety of syntactic 

structure in the EHRs portion of the corpus (e.g., mild concentric left ventricular 

hypertrophy, mitral valve was thickened). It is also observed that while most of the 
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FPs are correct signs or symptoms in the context of COPD (e.g., “cancer”, “cystic 

fibrosis”, “mortality and death”), the COPD model produced many spurious negative 

results which are not related to COPD or CHF (e.g., “glaucoma”, “osteoarthritis” and 

“pancreatitis”). 

 

Table 5.8 Comparative evaluation of PhenoCHF model on overlapping corpora: ShARe/CLEF, HD risk 

factors risk factors and COPD phenotype corpora. Corpus refers to the data that was used for testing 

and model refers to the data that was used for training 

Corpus Model P R F 

HD PhenoCHF 0.57 0.62 0.59 

PhenoCHF (cause and 

risk factor annotations) 

HD 0.85 0.36 0.51 

COPD PhenoCHF 0.85 0.68 0.75 

PhenoCHF(cause and 

sign or symptom) 

COPD 0.74 0.51 0.60 

ShARe/CLEF PhenoCHF 0.32 0.71 0.44 

PhenoCHF ShARe 0.30 0.54 0.40 
 

 

 Results 

We evaluated our best performing model, PhenoCHF, on three overlapping corpora. 

We also leveraged these overlapping corpora to create different models concerned 

with phenotypic extraction and evaluated them in various ways. The results of these 

tests are shown in Table 5.9. 

    The results we obtained are encouraging, considering that each corpus has unique 

characteristics. For example, ShARe/CLEF contains clinical records of various types 

(discharge summaries and electrocardiogram, echocardiogram, and radiology reports), 

COPD consists of literature articles, and the HD risk factors corpus is characterised by 

its annotations for explicit disease mentions (e.g., “diabetes”) or its indicators (e.g., 

“high level of glucose”) as well as long annotation span (e.g., catheterisation showed 

multi vessel non-obstructive CAD). The result also showed the value of PhenoCHF as 

a resource to train NER models that take full advantage of the evidence of different 

means of expressing phenotypic information and different writing styles in order to 

deal with the different characteristics present in different corpora.  

    Finally, we carried out experiments to determine whether training on overlapping 

corpora with shared semantic types can result in a more robust and better performing 

model. For this purpose, we trained several CRF models, combining the semantic type 
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annotations that are shared across different corpora. Since the heart disease risk 

factors in the HD corpus overlap with the annotations under the cause and risk factors 

categories in the PhenoCHF corpus, we merged the cause and risk factors annotations 

from PhenoCHF with risk factors annotations from the HD risk factors corpus. For 

reasons of fairness, the semantic categories in the HD risk factors corpus have been 

replaced with cause or risk factor categories based on PhenoCHF guidelines as 

follows: the categories CAD and hypertension are replaced with cause, while the 

categories hyperlipidaemia, diabetes, smoking, and family history are replaced with 

risk factor. Similarly, medical condition and signs or symptoms annotations are 

merged with the overlapping subset of annotations in PhenoCHF (cause, risk factor 

and sign or symptom). While it was straightforward to replace categories in the HD 

risk factors and COPD corpora to the PhenoCHF categories, the entities in the 

ShARe/CLEF corpus are annotated under one general class (i.e., disorder) and the 

disorder information is scattered within the PhenoCHF categories, which makes it 

difficult to replace the disorder category into PhenoCHF categories. For reasons of 

fairness we merged the full PhenoCHF corpus with the subset of ShARe/CLEF which 

is concerned with heart diseases and unified the semantic categories within the merged 

corpora of ShARe/CLEF and PhenoCHF into the phenotype category.  

    Using the following merged corpora: ShARe/CLEF+PhenoCHF, HD risk 

factors+PhenoCHF, COPD+PhenoCHF, we trained and evaluated single CRF models 

using 5-fold cross validation, where each fold consists of data from both merged 

corpora (e.g., ShARe/CLEF and PhenoCHF). The macro-averaged evaluation results 

for the three merged corpora are presented in Table 5.9.  

    Merging corpora allows the training of a wide-coverage, state-of-the-art phenotypic 

extraction model from multiple corpora with partial semantic annotation overlap. The 

degradation in the results of training a single model from partially overlapping corpora 

is due to the creation of spurious negative instances from one corpus for cases that 

correspond to positive instances in terms of the scope of another corpus. 

    Having observed that the recall of the CRF models on the three corpora is 

significantly lower than precision, we tabulated their recall scores for each phenotypic 

subtype (Table 5.10) in COPD+PhenoCHF and HD risk factors+PhenoCHF merged 

corpora. This allowed us to identify the subtypes which are most difficult for NER 

models and, hence, are pulling down the overall recall. It can be observed that the 

most challenging subtypes for the NER model trained on merged corpora are cause 
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for the COPD+PhenoCHF corpus and risk factor for the HD risk factors+PhenoCHF 

corpus. This can be attributed to the sparsity of annotations under these two 

categories. The sparsity prevented the CRF models from learning the relevant features, 

leading to low recall for these types.  

 

Table 5.9 Results for 5-fold cross validation over the merged corpora 

 P R F1 

ShARe/CLEF+PhenoCHF  0.81 0.76 0.78 

HD+PhenoCHF 0.77 0.57  0.66 

COPD+PhenoCHF 0.88 0.80 0.83 

 

 

Table 5.10 Recall scores for each phenotypic subtype in the HD risk factors+PhenoCHF and 

COPD+PhenoCHF corpora 

Merged corpus Cause Risk factor Sign or symptoms 

HD+PhenoCHF 0.60 0.53 - 

COPD+PhenoCHF 0.78 0.81 0.81 

 

5.4 Summary 

In this chapter, we have demonstrated how the PhenoCHF corpus can be successfully 

used in the development of systems targeted at the extraction of information relating 

to CHF and CKD, through the application of different techniques to extract 

phenotypic entities. 

    To demonstrate the value of PhenoCHF in developing ML NER systems, we 

compared the results obtained by training different ML models against other baseline 

methods, i.e., those based on dictionary lookup and hand constructed pattern matching 

rules. Our results showed that ML methods can significantly outperform dictionary-

based methods, and that the best performing ML algorithm, i.e. CRF, compares 

favourably to rule-based methods when sufficient training data is available, especially 

taking into account the amount of manual work saved when ML techniques are 

applied.    



      125 
 

    In terms of our ML results, we also systematically demonstrated that a ML tagger 

trained to recognise phenotypic information in one type of text is fairly robust to 

changes in document types. We also found that training a model on a pooled corpus 

consisting of two different documents types, but which are annotated using a common 

set of guidelines, can result in a model with both improved performance and greater 

robustness/portability when applied to different document types. This was 

demonstrated by applying such a model to a corpus with overlapping scope to 

PhenoCHF, i.e., the ShARe/CLEF, HD risk factors and COPD phenotype corpora.   
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 Phenotypic relation extraction 

Relation extraction systems that have the ability to detect more than two arguments 

have the potential to stimulate a qualitative advance in medical information extraction 

and enrich existing medical knowledge resources and databases with new and more 

complex relations and associations. 

    In this chapter we will discuss the automatic extraction of n-ary relations between 

phenotypic entities from EHRs subset of the PhenoCHF corpus.  

6.1 Relation extraction 

In chapter 5 we described an automatic method to extract phenotypic entities from 

both EHRs and literature articles. The extracted phenotypic entities represent a rich 

source of information that can contribute to individual patient care [12].  For example, 

they can be used to provide clinicians with a summary of the medical history of a 

patient, and they identify patient-specific characteristics which can be used to 

determine a suitable personalised treatment plan to a patient with CHF. 

    Furthermore, the automatic extraction and classification of phenotypic entities can 

facilitate entity-based searching of documents, which can be far more effective than 

simple keyword-based search. However, clinicians are interested not only in retrieving 

all instances of documents that mention a particular entity, but also in locating specific 

pieces of knowledge involving the entity that are reported in the records, and which 

can help them to answer questions that arise during the diagnosis process. 

    An example of such a question is What are the causes of hypoxia in patients with 

CHF?.  In seeking answers to this question, clinicians are only interested in medical 

records for patients known to have CHF and, more specifically, those in which 

hypoxia is mentioned to occur as a result of other medical conditions. Some examples 

of sentences that would fulfil the clinicians’ information need are as follows: 

‘Congestive heart failure along with obesity underlying restrictive lung disease could 

be the cause of hypoxia’ and ‘the patient had worsening hypoxia related to restrictive 

lung disease’. 

    In order to allow the results of search systems to match more closely the 

requirements of clinicians, research into relation extraction aims to carry out a deeper 
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analysis of the text, with the aim of identifying and/or characterising relations and the 

entities that participate in them. The output of such analyses can be used as the basis 

for developing advanced semantic search systems that allow queries to be performed 

over this structured knowledge, rather than simply over keywords or entities [71]. This 

in turn helps in the retrieval of a more focussed set of results in response to a query, 

which could assist a researcher in formulating hypotheses that could, for example, be 

subsequently explored in clinical trials. 

    The PhenoCHF corpus is annotated for both entities and a number of different types 

of relations in which they are involved, i.e., those denoting causality, finding and 

negation. We consider the relations in our corpus to be complex for two reasons. 

Firstly, two of the relation types (i.e. causality and finding) are n-ary, meaning that 

they can link together an arbitrary number of arguments (i.e., possibly more than two) 

in the same sentence. Consider the following sentence: 

The patient course was significant for chronic renal insufficiency in the setting of a 

low ejection fraction, congestive heart failure, and volume overload.  

    In this sentence, the phenotype chronic renal insufficiency is stated to be caused by 

three other phenotypes, i.e.: low ejection fraction, congestive heart failure and volume 

overload. Hence, a relation is identified in which chronic renal insufficiency has 3 

different causes.  A second reason why the relations are complex is that there may be 

an overlap between negation and finding relations, e.g., when the finding relation is 

negated. This is illustrated in the following sentence: 

 cardiac: irregular rate and rhythm, no murmurs or rubs 

    There are three finding relations involving cardiac and two of them (i.e., those 

involving “murmurs” and “rubs”) are negated. Therefore, it is very important to have 

a joint view over both finding and negation types, in order to account for the fact that 

the findings involving “murmurs” and “rubs” are negated.  

     Until now, there has been little research into extracting complex relations or events 

from clinical records, mainly due to the lack of available corpora in which such detailed 

information has been annotated. One example of n-ary relation extraction from clinical 

records is the i2b2 medication challenge, which requires the extraction of medications 

and medication-related information (i.e., medication, dosage, mode, frequency, 

duration and reason), followed by the identification of links between medications and 
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medication-related details. Although the relations in this corpus are n-ary, the relations 

are not semantically typed. The relation extraction task is tackled as a classification 

problem to determine whether or not a medication and its attributes are related. The 

best performing system participating in this challenge was developed by Patrick et al. 

[220], who used a cascade approach based on two machine learners: CRF to extract 

medication information, and SVM to determine whether or not pairs of entities were 

related. As a final step, a rule-based method is applied to connect all the related 

entities together to build complex n-ary relations.  

    The easiest way to deal with n-ary relations is to factorise all the relations into sets 

of binary relations; this is done by pairing all entities within a sentence, which may or 

may not be related. Consider the following sentence:  He had renal failure due to 

heart failure and poor forward flow. The entities within this sentence can be 

factorised into the following pairs: (“renal failure”, “heart failure”), (“renal 

failure”, “poor forward flow”) and (“heart failure”, “poor forward flow”). If an 

entity pair corresponds to the arguments of a relation in the gold standard, then it is 

assigned a class of that relation type. Otherwise, the class none is assigned. For 

example, the corresponding relation types for the pairs in the above example are as 

follows: causality, causality and none. 

    The precision of n-ary relations is equal to 𝑝𝑛−1, where n-1 refers to the number of 

binary relations into which the complex relations were factorised. For example, for a 

4-ary relation, there are 3 different binary relations. Assume the precision for the 

binary relation extraction is 0.8; the precision of 4-ary relation extraction will be 

0.83 = 0.512. Therefore, applying binary relation extraction methods for n-ary relation 

extraction will result in low performance [221]. 

    McDonald et al. [222]  proposed a framework to extract n-ary relations with three 

arguments; the variation relation that is targeted corresponds to alternations in nucleic 

acid levels and is formalised as follows: (location, initial-state, and altered-state). The 

described framework divides the task of 3-ary relations into two stages: the first stage 

involves extracting all possible binary relations, after which a graph is constructed in 

which the edges represent binary relations between pairs of entities. In the second 

stage, the maximal cliques are scored to find potential 3-ary relation instances. This 

system obtained an F-score of 0.64. The lack of using rich syntactic and semantic 

features adversely affected the performance. 
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    The EventMine system can deal with n-ary relations, nested relations and negation, 

and it has been shown to achieve a state-of-art performance for several event 

extraction tasks [26, 130]. Accordingly, when suitably adapted to the clinical domain, 

EventMine possesses the functionality necessary to allow the extraction of relations of 

the type annotated in the PhenoCHF corpus. The pipeline-based, modular nature of the 

system makes it straightforward to adapt to new tasks. Additionally,  its adaptability to 

new domains has been demonstrated, and it can achieve state-of-the-art performance 

by addressing only the major differences between the two tasks [130].  

    The above-mentioned advantages of EventMine motivated us to investigate how it 

could be adapted from its original purpose of extracting events from biomedical 

scientific papers, to the task of extracting of n-ary relations between phenotypic 

entities related to CHF and CKD, with the aim of capturing the effect of the CKD in 

worsening heart conditions. To demonstrate the suitability of EventMine for our 

purposes, we compare its performance in extracting relations from PhenoCHF with 

other state-of-the-art supervised ML methods, which are able to extract only binary 

relations.  

 Methodology 

In this section, we describe our application of two types of methods to the task of 

extracting phenotypic relations from clinical records. Firstly, we explain our method 

of applying binary relation extraction techniques to the problem. Subsequently, we 

explain how we adapted the EventMine system to allow the extraction of such 

relations.  

 Binary relations extraction 

Since there are 3 types of relations within the scope of our task (i.e., causality, finding 

and negation), the relation extraction problem was addressed as a multi-class 

classification task, in which the classifier determines the type of relation that exists 

between each pair of entities. We used a four-class classification model, in which the 

classes correspond to the three relations of interest, plus the additional class none, 

which is assigned when there is no relation between a pair of entities.  
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    To prepare the data for training, all annotated relations were factorised into sets of 

binary relations; this was done by pairing all entities within a sentence that may or 

may not be related, and assigning one of the four possible labels, as explained above. 

    Following the factorisation of the entities, we used the Weka package tools [223] to 

compare the performance of different classifiers in identifying and classifying relation 

instances in the test set. We carried out experiments using both Naïve Bayes and 

Random Forest classifiers, using a range of different features, as described below.   

Feature sets 

Due to the prevalence of complex sentence structures in biomedical text, effective 

relation extraction systems must carry out a deep analysis of sentence structure.  This 

is able to provide syntactic information which, in turn, supports semantic knowledge 

acquisition [20]. Accordingly, we supplemented lexical and semantic features with 

syntactic features such as grammatical relations between words, as well as the results 

of dependency parsing, i.e., PAS. 

    Our features can be categorised into two groups: entity-related features and context 

features. The feature extraction process used a different external knowledge source 

(i.e., UMLS) [33], and incorporates the output of different parsers, in order to provide 

a rich set of syntactic features. Specifically, we applied the GENIA tagger [47] to 

obtain part of speech tags and chunk sequences, and the Enju parser [224] to obtain 

the shortest dependency paths between pairs of entities.  

Entity-related features 

The entity-related features provide information about the two entities or arguments of 

the relation, including lexical features (i.e., sequence of words that constitute the 

entity), syntactic features (i.e., POS and chunk sequence obtained from the GENIA 

tagger) and semantic features (i.e., phenotypic entity classes and UMLS semantic 

types).  

Context related features 

Context features include information about the text surrounding pairs of potentially 

related entities. These include words that occur before the first argument and after the 

second argument, BOW between the two arguments, the chunk sequence of the words 
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occurring between the two arguments and the shortest dependency path between the 

two arguments, which corresponds to the PAS obtained from the Enju parser.  

    PAS paths are constructed by finding the shortest path that connects two tokens of 

interest within a parse tree. If two entities are arguments of the same predicate, the 

shortest path between them naturally traverses through the shared predicate, as shown 

in Figure 6.1. In cases where two entities belong to different PASes that share a 

common argument, then the shortest path traverses through this shared argument. An 

example of this latter case is shown in Figure 6.2, where the shortest path between 

“shortness of breath” and “volume overload” traverses through the node for she 

[225].  

 

 
                       Figure 6.1 Dependency and shortest path between the two related entities 

 

 
 
                    Figure 6.2 Dependency and shortest path between the two related entities 

 

    PASes are useful in this task as they represent relations in an abstract manner. For 

example, the PAS obtained for the sentence Anaemia causes renal failure is the same 
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as that obtained for other possible syntactic variations, including passivisation: renal 

failure is caused by anaemia and relativisation: renal failure that anaemia causes”.  

PAS paths thus normalise the syntactic variability that can be used to express the same 

information, and allow the construction of general representations of relations 

between pairs of entities. 

    Table 6.1 shows examples of all of the features extracted for the sentence Chronic 

anemia is due to chronic kidney disease. 

 

Table 6.1 Examples of the used features for the sentence chronic anemia is due to chronic kidney 

disease 

Entity-related feature 

 Entity 1 Entity 2 

Sequence of words Chronic anemia Chronic kidney disease 

POS JJ NN JJ NN NN 

Chunk B-NP I-NP B-NP I-NP I-NP 

PhenoCHF class Non-tradional risk factor Cause 

UMLS class Disease or syndrome Disease or syndrome 

Context-related feature 

Sequence of words between the two 

entities 

Is due to 

 

Sequence of POS VBZ JJ TO 

Chunk sequence  B-VP B-ADJP B-PP 

Shortest path Chronic anemia is  chronic kidney disease 

Word before the first entity 1 Demonstrated  

 

Word after entity 2 None 
 

 

 Adaptation of EventMine to the extraction of relations from clinical 

records 

Each module in EventMine applies a one-versus-rest SVM to solve multi-class 

classification problems using a combination of features, including lexical and 

syntactic features obtained from multiple parsers i.e., Enju [224] and  GENIA 

Dependency (Gdep) [226]. A detailed description of EventMine can be found in 

Chapter 2.  

    Given that EventMine expects event representations as input, the relations in the 

PhenoCHF corpus were converted into events in order to allow EventMine to be 

trained to extract them. The conversion was carried out by treating all entities as event 

triggers and adding relations as arguments if the entity has outgoing relations. For 
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example, the entities (e.g., cause, risk factor and non-traditional risk factor) that are 

linked in causality relations were converted to PhenotypeE events and all sign or 

symptom entities linked to organ entity in finding relations were converted to 

FindingE events. Figure 6.3 shows an example of the original relation annotation in 

PhenoCHF, and Figure 6.4 depicts how these relations are converted into event 

structures.  

 

 
               Figure 6.3 Causality relations 

 

 
               Figure 6.4 Converting the annotation of causality relations into events 

 

    Detailed analysis of the converted relations revealed that they have much in 

common with the events targeted by the GENIA Event Extraction task (GENIA) in 

the BioNLP ST 2013[126]. In particular, the converted relations in PhenoCHF can 

have multiple arguments and the relations are sometimes nested, i.e., one relation can 

have another relation as an argument. In other ways, however, the converted relations 

in the PhenoCHF corpus are simpler than GENIA events, in that there are only two 

event types (converted relations) — one pertaining to causality (PhenotypeE) to link a 

phenotype with its causes and another for finding (FindingE), to link sign or symptom 

with a corresponding organ. Furthermore, while in GENIA, events can overlap, i.e., a 

given text span can serve as the trigger for multiple events, this is not the case in the 

converted PhenoCHF corpus.   

    Given the above similarities between our converted relations and the types of events 

that EventMine is designed to extract, we were able to directly train EventMine on our 

converted corpus, using the same feature sets and configuration as in the original 

version of the system. 

 Evaluation 

We firstly report on our results for binary relation extraction, and then compare these 

with the results obtained using EventMine.  
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    The results of applying Naïve Bayes and Random Forest classifiers to the extraction 

of relations were evaluated using the gold standard PhenoCHF annotations, by 

splitting the dataset into 80% training and 20% testing. Since the phenotypic entity 

extraction was separately evaluated as discussed in Chapter 5 [206], the use of the 

gold standard entity annotations  allows us to evaluate the relation extraction task 

independently. The relation extraction results were evaluated using the standard 

metrics of precision, recall and F1 measure. To evaluate the performance of extracting 

3-ary and 4-ary relations, we compute the recall based on the assumption that, for a 

relation to be classified correctly, all the binary relations that constitute the 3-ary or 4-

ary relations must be correctly identified. Incomplete 3-ary or 4-ary relations were 

counted as false positives. Tables 6.2 and 6.3 break down the evaluation results 

according to relation type and number of arguments. 

 

Table 6.2 Random Forest classifier to extract relations 

 2-ary 3-ary 4-ary 

 P R F P R F P R F 

Causality 0.66 0.80 0.72 0.44 0.61 0.51 0.28 0.38 0.32 

Finding 0.67 0.91 0.77 0.45 0.64 0.53 0.30 0.56 0.39 

Negation 0.58 0.95 0.72 - - 

Macro-averaged 

F-score 

0.63 0.88 0.73   

 

 

Table 6.3 Naive Bayes classifier to extract relations 

 2-ary 3-ary 4-ary 

 P R F P R F P R F 

Causality 0.57 0.72 0.63 0.32 0.52 0.39 0.19 0.33 0.24 

Finding 0.62 0.85 0.70 0.38 0.58 0.45 0.23 0.51 0.31 

Negation 0.57 0.80 0.67 - - 

Macro-averaged 

F-score 

0.59 0.79 0.66 - - 

 

 

    Error analysis showed that most of the FNs can be attributed to data sparsity, i.e., 

certain ways in which relations can be expressed are rare and/or may have unexpected 

structures, which do not occur in the training data. Therefore, the classifier struggles 

to classify such relations when they occur in the test set. A specific example of a 

Causality relation that is expressed in the test set in an unconventional way that does 

not appear in the training data is: Renal failure likely secondary to poor forward flow.  
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The syntactic structure of this sentence is incorrect, and it lacks a verb to connect the 

two arguments.  

    Meanwhile, the most common cause of FPs is incorrect relations that share 

characteristics with correct relations. For example, in the sentence Edema is due to 

fluid overload, the two concepts, “edema” and “fluid overload”, were classified as 

being involved in a causality relation because they share the syntactic structure of 

positive causality relations. Both finding and negation relations have low precision 

and high recall. This is mainly because finding and negation are straightforward to 

link a negation modifier with the negated entities for the negation relation, or to link 

an organ with sign or symptoms to form a finding relation. This pattern is also 

observed in other similar studies that extract relations from clinical records. For 

example, in a study by Roberts et al. [103] to extract relations, the recall for the TeRP 

relation, which links tests to medical problems, is 90%. This relation is very similar to 

the finding relation in our corpus. In Roberts et al., the description of the negation- 

modifies relation is very similar to the negation relation in our corpus and their system 

achieved a high recall of 98%. 

    The output of EventMine was evaluated using exact and relaxed evaluation 

methods, as shown in Table 6.4. The results are very encouraging, this can be partly 

explained by the narrow topic, i.e., the link between CHF and CKD and simpler nature 

of the task compared to other relation corpora from well-known extraction tasks in the 

clinical domain, such as the i2b2 and CLEF tasks. However, our relation extraction 

task can be considered more complex than the previously introduced i2b2 medication 

challenge, which only recognised un-typed relations. The best performing system for 

the medication challenge, by Patrick and Li [220], obtained an F-score of 0.85. 

Therefore, our best score of 0.77 can be considered satisfactory. 

Table 6.4 Results of applying EventMine to extract relations 

 Exact Relaxed 

 P R F P R F 

Triggers 0.44 0.37 0.40 0.92 0.81 0.85 

Argument 0.26 0.16 0.20 0.79 0.76 0.77 

Negation 0.48 0.81 0.60 - - - 
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    When evaluated using exact matching, the performance of EventMine is 

significantly lower than that obtained using relaxed matching. This can be partly 

explained by the fact that EventMine was originally designed to extract events from 

the biomedical domain where event triggers are usually expressed as short text spans, 

typically (e.g., inhibit) or nominalised verbs (e.g., inhibition). In the converted 

phenotype relations, however, the triggers are the phenotypes themselves, which are 

usually expressed as longer sequences of words, i.e. noun phrases of varying 

complexity and verb phrases, as shown in Table 6.5. Accordingly, when applied to the 

current task, EventMine only partially recognised many of the event triggers. For 

example, it was only able to detect the headword of the potentially complex noun 

phrases, thus leading to low recall when exact matching criteria are applied.  

 

Table 6.5 Different types of phrases corresponding to phenotypes 

Phrase types Examples 

Simple noun phrases 
 reduced ejection fraction 

 chronic anaemia 

Compound noun phrases that contain 

coordinators 

 irregular rate and rhythm 

 mother and sister with heart disease 

Noun phrases with prepositions 
 family history of coronary artery disease 

 increased shortness of breath 

Verb phrases 
 jugular venous pressure is 6 cm 

 father died of a myocardial infarction 
 

 

Post-processing rules 

 In order to mitigate the low recall obtained for exact matching, a set of rule-based 

post-processing steps was developed, based on the outputs of the Enju [224] and 

GDep [226]. These include predicate-argument structures and word dependency 

relations, respectively. We studied the internal structure of noun phrases 

corresponding to triggers, in order to refine trigger detection. The rules used the Enju 

output to connect pre-modifiers in the same noun phrase to the head noun, by tracing 

the syntactic tree and finding all the predicates that have the head noun as an 

argument. This is illustrated in Figure 6.5, where abnormalities is the head word that 

was detected by EventMine, and motion, wall and  regional are all predicates which 

have abnormalities as an argument. If the detected triggers are part of a noun phrase 

that contains coordination, then a rule is applied that uses the output of GDep to trace 



      137 
 

head dependencies, as shown in Figure 6.6, where the head word is non-compliance 

and the words that are dependent on the head word are medical and dietary.  

 

                      Figure 6.5 Post-processing rule to link the head word with the pre-modifiers 

 

 

                     Figure 6.6 Post-processing rule to link the head word with the dependent words 

 

    These rules are only designed to connect pre-modifiers with headwords that 

constitute a noun phrase and compound noun phrases that contain coordinators (e.g., 

and). The current rules cannot help to fully recognise verbal phrases such as “jugular 

venous pressure is high” and noun phrases with following prepositional phrases, such 

as “jugular venous pressure at angle of the jaw”. However, the types of phrases 

targeted by the rules account for a large portion of the mis-identified triggers and 

through their application, we were able to improve the exact matching F-scores for 

trigger detection and argument detection by 26 and by 38 percentage points, 

respectively as shown in Table 6.6. 
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Table 6.6 Comparison of F-scores for the performance of EventMine using exact boundary matching 

before and after post-processing 

 Exact matching by EvenMine 

 Without post-processing With post-processing 

Triggers 0.40 0.66 

           Argument 0.20 0.58 

 

 

     Normalising diverse phenotypic phrases to canonical expressions in relevant 

terminologies (e.g., UMLS) is a prerequisite for effective information extraction;  this 

is discussed further in Chapter 7 of this thesis. 

    Comparing the results of EventMine with those obtained through the application of 

binary relation extraction methods showed that, although Naïve Bayes and Random 

Forest classifiers perform well on the 2-ary relations, the performance decreases when 

the 3-ary and 4-ary relations are considered. In contrast, the flexible and adaptable 

nature of EventMine means that it has a stable level of performance, regardless of the 

number of arguments involved in the relations. Unlike the binary relation extraction 

methods, EventMine combines all related entities, and outputs complex, n-ary 

relations as a single event structure.  

    To illustrate more clearly the differences in the outputs of the binary relation 

extraction methods and EventMine, consider the following sentence: The patient 

became hyperkalemic, secondary to poor urine output and acute renal failure.   

 

    The binary relation extraction methods (i.e., Naïve Bayes and Random Forest) 

output two different relations,   each with two arguments, as follows:   

 Relation ID: R1, Type: Causality, Argument1: hyperkalemic, Argument2: poor 

urine output 

 Relation ID: R2, Type: Causality, Argument1: hyperkalemic, Argument2: 

acute renal failure 

 

    However, EventMine is able to combine the information into a single relation, 

which more explicitly encodes the fact that there are two separate causes for a single 

phenotype.   
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 Event ID: E1,Type: PhenotypeE, Trigger: hyperkalemic, Cause1: poor urine 

output, Cause2: acute renal failure 

    While, as explained above, one challenge of EventMine lies in extracting 

phenotypes expressed as long sequences of words, nevertheless we were able to 

address this to a large extent through the application of post-processing rules.  

6.2 Summary 

In this chapter, we have shown that the PhenoCHF corpus can successfully support the 

development of different methods to extract phenotypic relations from clinical text.  

    We have demonstrated that the corpus can be used to train both binary relation 

extraction methods, as well as more complex n-ary extraction methods, which more 

closely model the types of relations annotated in PhenoCHF. The latter was achieved 

by adapting EventMine, which was shown to outperform supervised ML-based 

methods for binary relation extraction. Our results illustrate that automatic detection 

of complex n-ary relations in medical records is a feasible task, and that EventMine 

can be successfully adapted to this task.   
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 Integrating phenotypic information from clinical 

records and literature articles 

In Chapter 5, we discussed our experiments on the automatic extraction of phenotypic 

entities related to CHF from both EHRs and literature articles. In Chapter 6, we built 

upon this by extracting relations between these entities that are specified in EHRs 

(e.g., causality relations that highlight the interaction between CHF and kidney 

failure).  Although EHRs and literature articles provide valuable information that can 

complement each other, it can be problematic to combine the knowledge contained 

within them, according to the varying ways in which information is expressed in each 

of these textual sources. However, such a combination is important since it can be 

vital to allow for the discovery of new disease-phenotypic associations which may not 

be apparent if only a single knowledge source is considered. 

    Mapping different and variant mentions of the same concept within the different 

types of textual sources to concepts in domain-specific resources such as UMLS is an 

important step towards bridging the gap between the information contained within the 

two sources. Normalising phenotypic entities in this way can help to draw 

generalisations about information that may be expressed in text in many different 

ways; it also constitutes an important first step towards the effective integration of 

complementary information dispersed within these sources, in order to facilitate new 

knowledge discovery and generation of new hypotheses. 

7.1 Background 

The problem of concept normalisation for genes and proteins has been extensively 

studied, according to its central role in a number of the BioCreative shared tasks [227-

229], where participants are required to produce lists of genes and proteins mentioned 

in documents, and to link each one to a unique concept in a domain-specific database. 

A variety of methods including pattern matching, dictionary lookup, ML and heuristic 

rules were applied in the systems participating in these challenges. The shared tasks 

have resulted in the development of several new techniques that complement the more 

traditional dictionary-based methods, although they are largely customised for 

operation on biomedical literature. 
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    The development of the NCBI disease corpus [158], which is comprised of the 

abstracts of biomedical articles, represents a rich source for researchers to explore 

normalisation methods for disease names, and several methods customised for disease 

name recognition have emerged [230-232]. To our knowledge, the ShARe/CLEF 

eHealth Evaluation Lab [28]  is the only shared task that has focussed on normalising 

clinical concepts that occur in EHRs. The normalisation process aims to map textual 

mentions of disorder entities to concepts in UMLS [233]. However, the more 

specialised task of normalising phenotypic information in EHRs has not been 

previously attempted, probably according to the lack of a gold standard that can be 

used to evaluate existing techniques or support the development of new techniques. 

    This is not to say that automatic acquisition of phenotypic knowledge from text is 

not an active research area. Indeed, the Phenotype day events [234, 235] bring 

together a large number of researchers to promote advances in the state-of-the-art of 

phenotype knowledge acquisition and to support deeper understanding for 

phenotyping. Researchers have proposed solutions to a number of different topics 

including: 1) composition of ontologies to represent phenotypes [236-239] 2) tools 

and pipelines to support phenotypic data curation and integration with ontologies 

[172, 236, 240] 3) application of phenotype knowledge acquisition in real world 

applications (e.g., discovery of phenotype-genotype relation) [241-243]. However, as 

far as we are aware, using normalisation techniques to integrate EHRs and biomedical 

literature has not previously been attempted. 

    Although the PhenoCHF corpus [171] is annotated for mentions of phenotypic 

entities, the annotation process did not involve linking these mentions to unique 

concepts in an external knowledge resource. This meant that it was not possible for us 

to apply ML techniques to carry out the normalisation process, since training an ML 

system to carry out this task requires that links between entities and database 

identifiers are annotated. This is necessary so that the ML algorithm can learn how to 

model the similarity between annotated textual mentions and information about the 

corresponding concepts in the external knowledge resource [244].  

    The absence of such links in our annotated corpus limited the types of 

normalisation approaches that we could apply using the PhenoCHF corpus to those 

based on dictionary lookup and/or string similarity. Accordingly, our review of 

normalisation approaches in the following section concentrates on commonly used 

dictionary-based and string similarity methods.  
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 Dictionary-based methods 

A large number of approaches to concept normalisation in the biomedical domain rely 

at least partially on dictionary lookup techniques. Existing NLP systems (e.g., 

MetaMap [63], cTAKES [56] and SAPHIRE [245]) aim to recognise entities 

belonging to a variety  of semantic categories, and to map them to concepts in the 

UMLS Metathesaurus. These systems employ mainly dictionary-based methods, i.e., 

they attempt to match phrases occurring in documents with synonyms of terms that 

are listed in UMLS. Heuristics are employed in some of these systems to allow 

recognition of textual concept mentions that do not match exactly with synonyms 

listed in the resource. These heuristics include normalizing case, removing inflections, 

generating derivations, using additional lexical resources or permuting the words 

contained within UMLS entries. The application of post-processing rules has also 

been shown to be beneficial [231].  

    Whilst such heuristics are successful in detecting term variants to a certain extent, 

e.g., those exhibiting different word order, they still largely assume that the actual 

words used to express a concept will be the same as those already present in the 

Metathesaurus.  However, in reality, language use is highly creative, meaning that in 

practice, such an assumption is too restrictive.  

    Oellrich et al. [246] investigate the performance of  four concept recognition tools 

(i.e., cTAKES; MetaMap; the National Center for Biomedical Ontology (NCBO) 

annotator [247] and  the Biomedical Concept Annotation System (BeCAS) [248]) on 

ShARe/CLEF dataset to extract disorder mentions and map them to unique concepts 

in UMLS. Amongst the four systems, the best performance was achieved by 

MetaMap.  However, a number of problematic issues were observed for all four of the 

NLP systems evaluated, which lead to decreased performance and incorrect 

recognition of the disorder concepts. Such issues include incorrect boundary detection, 

difficulties in correctly mapping abbreviations and problems in handling phrases 

containing coordination. These findings suggest that adding additional pre-processing 

steps that are aimed at resolving abbreviations and coordinations would be 

advantageous.  

 String similarity-based methods 

Approximate string matching methods move beyond pure dictionary-based matching, 

in that they allow textual mentions to be mapped to dictionary entries that they closely 
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resemble, rather than requiring an exact match. By calculating a numerical measure of 

similarity between a recognised entity in text and entries in a dictionary, it is possible 

to determine the most appropriate entry to which the textual entity mention should be 

mapped. 

    String similarity methods may be classified into three main approaches: edit 

distance, token-based and hybrid approaches. 

 Edit Distance 

The most widely-used means of determining the similarity between a pair of strings is 

to calculate the edit distance beween them. Edit distance metrics quantify the 

similarity between two strings by counting the minimum number of operations (e.g., 

insertion, deletion) required to transform one string into the other. A variety of 

methods of calculating edit distance has been proposed, examples of which are as 

follows: 

    The Levenshtein edit distance [249] corresponds to the minimum number of 

insertions, deletions or substitutions needed to transform a string X into another string 

Y. 

    Two other edit distance metrics that are broadly similar to each other are Jaro [250] 

and Jaro-Winkler [251] metrics. The Jaro metric is based on both the number and 

order of the common characters that are contained within two strings X and Y. A 

character is counted as common if it occurs in the other string within a given distance, 

which depends on the length of the string. Let X= 𝑥1 , 𝑥2, …….𝑥𝑖 and Y= 𝑦1, 

𝑦2……𝑦𝑗. The Jaro distance is calculated as follows: 

 

Jaro (X,Y)={
1

3
(

𝑚

|𝑋|
+

𝑚

|𝑌|
+

𝑚−𝑡

𝑚
) 

 

Where: 

 m is the number of the matching characters 

 t is the number of transpositions  

 

    An identical pair of characters from X and Y are considered to match if they are not 

farther from each other than:  
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𝑚𝑎𝑥(|𝑋|‚|𝑌|)

2
    − 1 

 

    The Jaro metric was developed to detect spelling variations between a pair of 

strings being compared. Thus, the Jaro metric will range from 0 to 1, with a higher 

value signifying a greater similarity between the pair of strings being compared [252]. 

    Winkler proposed an enhancement to the Jaro metric [251] based on his observation 

that spelling errors occur more commonly toward the end of a string. Winkler’s 

enhancement assigns a higher comparator score to strings with common prefixes as 

they are more likely to be similar.  

    Jaro-Winkler uses the length P of the longest common prefix of X and Y. P is the 

constant scaling factor that gives more favourable similarity scores to strings that 

match towards the beginning, rather than towards the end [253]. Let P’ = max (P,4) 

 

Jaro-Winkler (X, Y) = Jaro (X, Y) + 
P′·(1−Jaro(X,Y))

10
 

 

Like the Jaro metric, the Jaro-Winkler metric will also range from 0 to 1, with a higher 

value signifying a greater similarity between the pair of strings being compared. 

    The edit distance metrics seem to be intended for single tokens [253]. To find the 

similarity between longer strings that include multiple tokens, token-based distance 

functions have been proposed. 

 Token-based edit distance metrics  

Token-based similarity measures aim to find the similarity between strings that 

include multiple tokens. They convert two strings X and Y into (unordered) bags of 

tokens; a similarity function is then used to calculate the level of similarity between 

the two sets of tokens. Examples of token-based distance metrics are the Jaccard 

similarity and cosine similarity.  

    The Jaccard similarity function [254] measures the similarity between two strings X 

and Y as shown in the following equation: 

 

Jaccard (X,Y) =  (|X∩Y|)/(|X∪Y|) 
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Where (|X∩Y|) refers to the number of overlapped tokens between X and Y and 

(|X∪Y|) refers to the total number of token in the union of X and Y. The higher the 

score, the more similar X and Y are to each other. This makes the Jaccard measure 

biased toward short strings [253]. For example, let the string in query X = ‘reduced 

ejection fraction’, Y1 = ‘ejection fraction’ and Y2 = ‘decreased ejection fraction’, 

J(X, Y1) =0.40 and J(X, Y2) =0.33. Nevertheless, Y2 is more similar to X since reduced 

and decreased are synonyms. Jaccard metric gives higher score for  Y1 as the number 

of total tokens in the union is smaller. 

    Cosine similarity or TF-IDF (Term Frequency- Inverse Document Frequency) is a 

further token-based similarity metric which is widely used in information retrieval 

tasks.  The TF-IDF weighting scheme is a statistical measure used to evaluate the 

importance of a word within a document in a collection or corpus [255]. It works by 

comparing common tokens in the strings X and Y.  

 

TF-IDF (X,Y) = ∑ V(w‚X) ·  V(w‚Y)w∈X∩Y  

 

 

V′ (w,X) = log (TFw,X+1) · log (IDFw )   and 

 

 

V(w,X)= 
V′(w, X)

√∑ V′(w‚X)2
w′

⁄  

 

    Where 𝑇𝐹𝑤,𝑋 is the frequency of word w in string X and 𝐼𝐷𝐹𝑤 is the inverse of the 

fraction strings in the corpus that contain w. 

    However, the terms are weighted, such that rarely occurring words are assigned 

higher weights. As such, higher similarity scores are assigned to pairs of strings whose 

matching words have a distinguishing meaning, rather than function words like the, of 

etc. However, the measure is only useful when the strings share strictly identical 

tokens; it would not work, e.g., in the case that a word is misspelled in one of the 

strings being compared, e.g. “high blood presser “and “pressure” [257]. 
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 Hybrid distance function 

To overcome the limitations of TF-IDF in comparing strings whose tokens may 

exhibit spelling variations, a “soft” version of TF-IDF was introduced by [253], which 

combines both character-based and token-based metrics. Using this method, the 

similarity score is determined by considering similar tokens, as well as identical 

tokens that appear in both X and Y. Accordingly, in this approach, a special set of 

words CLOSE (∅, 𝑋, 𝑌) w ∈ 𝑋 is determined, such that there exists some word v ∈ 𝑌 

where sim′ (𝑤, 𝑣) >  ∅ [256]. 

    In order to calculate the similarity between two strings X and Y, the strings are 

firstly broken into tokens, which are weighted using the TF-IDF statistical weighting 

scheme. Let sim′ be a secondary similarity function that performs well on short strings 

(e.g., Jaro-Winkler). Let CLOSE (∅, 𝑋, 𝑌) represent a set of tokens w ∈  X such that 

there is a similar token v ∈ Y, and for w ∈  CLOSE (∅, 𝑋, 𝑌), let D(w,Y)= 𝑚𝑎𝑥𝑣 ∈ 𝑌 dist 

(w, v). SoftTFIDF is then calculated as follows: 

 

SoftTFIDF(X,Y) = 

 

∑ 𝑉(𝑤‚𝑋) · 𝑉(𝑤‚𝑌) · 𝐷(𝑤‚𝑌)

𝑤∈𝐶𝐿𝑂𝑆𝐸 (∅,𝑋,𝑌)

 

 

    SoftTFIDF is similar to cosine similarity, except that instead of requiring exact token 

matches, it computes approximate matches between tokens, using a secondary distance 

function (e.g., Jaro-Winkler) [258]. Tokens are considered sufficiently similar to each 

other if the secondary distance function returns a value that is above a pre-specified 

threshold (usually 0.9). However, if a similar token does not appear in both X and Y, 

then the SoftTFIDF value will be equal to the cosine similarity value [257]. 

Furthermore, SoftTFIDF does not consider the string length (i.e., the number of tokens) 

in computing the similarity, which can be very important in mapping a string to the 

most similar term. For example, in terms of meaning, “worsening in exercise 

tolerance” is more correctly mapped to ‘reduced exercise tolerance’ rather than to 

‘exercise tolerance’. However, the SoftTFIDF method would assign a higher similarity 

value to the latter term.   
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7.2 Methodology 

We have developed a novel method called PhenoNorm, which integrates surface-level 

and semantic similarity measures to allow variant mentions of different types of 

phenotypic information to be mapped effectively to concepts in the UMLS 

Metathesaurus. We compare our method with two baseline methods, i.e., dictionary-

based (using MetaMap) and string similarity based (using SoftTFIDF). 

Pre-processing 

To address the specific characteristics of our corpus, we applied a number of pre-

processing steps. Different methods were applied both to the UMLS terminology 

itself, and to the phenotypic entities in the PhenoCHF corpus, to help to increase the 

accuracy of the subsequently applied mapping procedure.   

    Firstly, we filtered the UMLS vocabulary to include only those terms belonging to 

the disorder semantic group. Since all phenotypic concepts are expected to fall within 

this group, this filtering step ensures that irrelevant concept candidates are disregarded 

by our normalisation method. We built the inverted index to store the mapping 

between each word in the phenotypic entities and all UMLS terms in which this word 

appears. 

    As has been outlined previously, a detailed manual analysis of PhenoCHF revealed 

that phenotypic concepts can be expressed using diverse syntactic means. These 

include simple noun phrases (e.g. “progressive renal failure”), coordinated noun 

phrases (e.g., “increased chest pain and fatigue”), noun phrases followed by 

prepositional phrases (e.g., “increasing dyspnea on exertion”) and complete clauses or 

sentences (e.g., “jugular venous pressure is elevated”).  

Our similarity method is not restricted to specific syntactic structures, and hence it 

can be applied in mapping annotations with all types of structures to appropriate 

UMLS concepts. However, special treatment is needed for coordinated noun phrase 

annotations, since they usually correspond to multiple individual concepts, each of 

which should be mapped to a separate UMLS concept. Accordingly, we carried out 

pre-processing of such annotations through the application of a rule-based module 

(Baumgartner et al. [259]), which uses POS and chunk information obtained from the 

GENIA tagger [47] to split coordinated phrases into appropriate separate entities, e.g., 

“increased chest pain and fatigue” is split into increased chest pain and increased 



      148 
 

fatigue. A further pre-processing pipeline was applied to the entity annotations in 

PhenoCHF, in order to convert all letters to lower case, to tokenise multi-word 

annotations, to remove stop words, e.g., the, is, was, etc., and to expand abbreviations 

into their full forms. The latter task was achieved in two steps. Firstly, the MetaMap 

concept recognition tool was applied to map the abbreviations to appropriate UMLS 

concepts; the preferred full form of the concept was subsequently retrieved from 

UMLS. Given that acronyms can be ambiguous, and thus MetaMap will not always 

produce the correct mapping, the automatically derived expansions were manually 

checked and corrected by a doctor, with the aid of an online abbreviation and acronym 

resource (http://acronyms.thefreedictionary.com/). 

 PhenoNorm 

Following the pre-processing steps, we applied our PhenoNorm method to carry 

out the mapping of phenotypic entity annotations to UMLS concepts.  The method 

works as follows:   

For a given phenotype annotation that consists of n tokens 

(token(1),token(2)……token(n)) ,  the following steps were undertaken (see Figure 

7.1) : 

 For each token(i), the inverted index is consulted to determine all UMLS 

terms that include the token. 

 Candidate terms with the most similar sets of tokens to the phenotype 

annotation are found by computing the intersection between the sets of hits 

retrieved for each token (i). The set of candidates is then reduced by 

considering only those UMLS terms whose tokens match most closely to 

those in the phenotype annotation. If any of the candidate UMLS terms 

matches exactly with the phenotype annotation, then the algorithm 

terminates. Otherwise, the closest non-exact matches are sought. Firstly, it 

is determined whether any of the candidate terms share all words with the 

phenotype annotation (but possibly in a different order). If such candidates 

exist, then the algorithm moves on to step 3. If no such candidates exist, 

then the constraint is relaxed such that candidates with only (n-1) matching 

words will be considered, and so on.  

http://acronyms.thefreedictionary.com/
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 Each candidate term identified in step 2 is assigned a score based on its 

level of similarity to the phenotype annotation.  Similarity is computed 

using Levenshtein edit distance metrics, i.e., the minimum number of 

character level operations (e.g., insertions, deletions) required to transform 

the phenotype annotation into the candidate UMLS term.  

 The phenotype annotation is mapped to the UMLS concept associated with 

the candidate term with the minimum edit distance to the phenotype 

annotation. 

 If the phenotype annotation does not contain any tokens that match with a 

UMLS term (e.g., diabetesmellitus, which occurs in UMLS as diabetes 

mellitus), then character n-grams are employed as the means of calculating 

similarity between the phenotype annotation and the UMLS terms (where n 

is 5 by default, and 3 if the length of  the token (i) is less than 5). For each 

token (i) in the phenotype annotation, all UMLS terms containing the least 

frequent (rarest) n-gram in token (i) are retrieved, since rare n-grams tend to 

be the most informative. Steps 2-4 are then repeated. 
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Figure 7.1 Workflow for the normalisation steps 
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Pre-processing rules 

As mentioned above, one of the features of our method is that it gives a higher priority 

to terms sharing the greatest number of words, and it also favours terms that have a 

similar length to the phenotypic annotation, rather than considering overall edit 

distance. Although this strategy results in the correct mapping in the majority of the 

cases, the fact that the meaning of non-shared words can be different can cause 

incorrect mapping in some cases. For example, the entity annotation “elevated 

pulmonary capillary wedge pressure” is incorrectly mapped to the UMLS term 

‘decreased pulmonary capillary wedge pressure’ instead of ‘increased pulmonary 

arterial wedge pressure’. This is because the selected term shares four words in 

common with the annotated entity. This means that it is assigned a higher similarity 

score. However, the non-shared words in the phenotype annotation and the UMLS 

term that are linked by our method, i.e., elevated and decreased have completely 

opposite meanings, whereas the semantics of the words elevated in the phenotypic 

mention and increased in the correct UMLS term are similar. This demonstrates that it 

would be advantageous to take meaning as well as surface similarity into account 

when performing the mapping.   

    With this in mind, we applied pre-processing rules to the initial results of our 

mapping, in order to better account for semantic-level similarities between terms. We 

utilised WordNet [136], a large lexical database of English, in which words are 

organised into sets of synonyms (called synsets); synsets are linked together into a 

semantic network. For example, the synonyms elevated and raised occur within the 

same synset, and this synset is linked within the network to the synset that contains 

increased. The pre-processing rules used WordNet to generate variants of each 

phenotype annotation, by using WordNet to find the synonyms of each adjective or 

noun appearing in the original annotation. The generated phenotypic variants are used 

as input to be processed by the PhenoNorm method. 

With the aid of these pre-processing rules, semantic-level variations such as 

“increased pulmonary arterial wedge pressure” can be generated from the original 

phenotypic annotation “elevated pulmonary capillary wedge pressure”, which allows 

PhenoNorm to successfully map the annotation to the correct UMLS term ‘increased 

pulmonary arterial wedge pressure’. 
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 Baseline techniques 

Our baseline methods involved applying MetaMap [63] and the SofTFIDF string 

similarity method [253]. MetaMap firstly splits the input text into sentences and the 

noun phrases within each sentence are identified. For each noun phrase, MetaMap 

identifies possible mappings to UMLS concepts based on lexical lookup and on 

variant generation, and associates a score with each potential mapping.  Similarly to 

the configuration of MetaMap described in chapter 5 to extract phenotypic entities, we 

configured the tool to recognise only those concepts belonging to the 12 categories 

under the disorder semantic group, since all phenotypic concepts fall within this 

semantic group.  

    To apply the SoftTFIDF method, we used the implementation provided in the 

secondstring package [260], which has achieved good results when applied to several 

different string-matching problems [253].  

7.3 Results 

The PhenoNorm and baseline methods were evaluated using the accuracy metric, 

which is defined as follows: 

Accuracy= correct/total  

where correct refers to the number of phenotypic entities mapped to the correct UMLS 

concept and total refers to the total number of entities in the gold standard. The 

correctness of the mappings to UMLS was determined by an annotator of the 

PhenoCHF corpus, who is a clinician.  

 The results of the evaluation of the PhenoNorm method are summarised in Table 7.1, 

showing the accuracy achieved for each phenotype category, both with and without 

the WordNet-based pre-processing step.  
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Table 7.1 Results of applying PhenoNorm method to the PhenoCHF corpus 

Phenotypic categories 
Accuracy 

Without post-processing With post-processing 

EHRs 

Cause 0.89 0.90 

Risk factor 0.74 0.75 

Sign or symptom 0.78 0.83 

Non-traditional risk factor 0.86 0.88 

average 0.82 0.84 

Articles 

Cause 0.91 0.91 

Risk factor 0.87 0.88 

Sign or Symptom 0.83 0.85 

Non-traditional risk factor 0.86 0.88 

average 0.87 0.88 

 

The evaluation of the two baseline methods is reported in Table 7.2., in which their 

performance is compared to the best result achieved by the PhenoNorm method. 

 

Table 7.2 Comparison of MetaMap, SoftTFIDF and the best result of PhenoNorm 

Method Accuracy 

 EHRs Articles 

MetaMap 0.46 0.56 

SoftTFIDF 0.76 0.83 

PhenoNorm 0.84 0.88 
 

 

As can be observed in Table 7.1 PhenoNorm achieves good results and that in the 

majority of cases, the WordNet-based pre-processing helps to further increase the 

accuracy. The better performance on literature articles is likely to be due at least in 

part to the more formal nature of the writing, in which authors frequently use 

standardised forms to refer to clinical concepts.  For EHRs, the performance for the 

cause and non-traditional risk factor categories is almost as high as for articles. The 

results are somewhat lower for risk factor and sign or symptom in EHRs as these two 

types of phenotypic information are expressed in long sequences and usually 

mentioned with qualifiers (e.g., increased, reduced, elevated, moderate, severe, etc.). 

For example, “severe myocardial infarction” is incorrectly mapped to ‘recent 
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myocardial infarction’ instead of ‘myocardial infarction’. However, as can be 

observed, the pre-processing step is particularly helpful for boosting performance for 

sign or symptom entities in this text type (i.e., an increase in accuracy of 4.6% is 

achieved). 

Literature article analysis 

In the majority of cases, as can be verified by our encouraging results, the PhenoNorm 

method correctly maps most of the phenotypic mentions in literature articles to UMLS 

concepts. Examples of correct decisions determined by our method include mapping 

“increasing chest pain” to ‘chest pain increasing in severity’; “significant jugular 

venous distention” to ‘increased jugular venous distention’; and “stenosis in left 

anterior descending” to ‘left anterior descending coronary artery stenosis’. 

    An analysis of mapping errors produced by our method when applied to literature 

articles revealed that issues can occur when annotated entities do not correspond 

exactly to UMLS terms. For example, the phenotypic mention increased oxygen 

requirement has a similar meaning to the UMLS concept hypoxia. However, it is 

mapped incorrectly to the UMLS concept increased insulin requirement, since this 

concept shares two tokens with the phenotypic entity.  

    Another source of error results from the fact that this method favours strings with 

similar numbers of words, and those with the greatest number of shared words, rather 

than considering the overall edit distance between the strings. Although this feature is 

useful in most cases, this behaviour can, in a small number of cases, give incorrect 

mapping. For example, “intermittent chest pain” is mapped incorrectly to ‘intermittent 

flank pain’ instead of the most similar UMLS term, i.e. ‘chest pain’. This wrong 

decision was made because there are two shared words between the two terms (i.e., 

intermittent and pain), and since the matched UMLS term is of the same length as the 

phenotype annotation. 

EHR analysis 

In the EHR subset of PhenoCHF, there is far more variation in the way that 

phenotypic concept mentions are expressed, and in certain cases, there is no 

corresponding UMLS term to which the mentions can be matched. This is the case, 

e.g., for “troponin leak” and “low flow to the kidneys”. Another type of mapping error 

can occur when a UMLS term contains all tokens in the phenotype annotation, even 
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though it actually represents a different concept, the annotation “family history for 

coronary heart disease” is mapped to the UMLS term ‘family history: premature 

coronary heart disease’ instead of ‘family history of coronary artery disease’. 

However, this feature of our method was useful in other cases, e.g., to allow the 

successful mapping of the phenotype mention “elevated right heart filling pressures” 

to the UMLS concept ‘elevated right atrial pressure’ and of the mention “decreased 

breath sounds bilaterally” to ‘decreased breath sounds bilaterally bases’.  

    PhenoNorm achieved superior results to both baseline methods, with considerably 

better performance for the EHRs. SoftTFIDF performed acceptably on average for 

both EHRs and literature articles datasets. MetaMap achieved the lowest results; this 

is to be expected, given the high variability in the means of expressing phenotypic 

concepts, and the fact that MetaMap relies largely on lexical lookup to determine how 

noun phrases should be mapped to UMLS concepts. 

    Error analysis revealed that incorrect mappings produced by SoftTFIDF occur 

mainly because it does not take into account the length of the phenotypic entity (i.e., 

number of tokens). For example, SoftTFIDF incorrectly maps the phenotypic entity 

“moderately reduced left ventricular systolic function” to ‘moderate left ventricular 

systolic dysfunction’ instead of ‘moderately or severely depressed left ventricular 

systolic function’. This mapping is chosen by softTFIDF because it assigns a higher 

score to the shortest UMLS term with greatest number of common tokens without 

considering the overall number of tokens in the phenotypic concept.  

    Another source of error comes from the secondary similarity metrics; SoftTFIDF 

uses Jaro-Winkler as a secondary edit-distance metric to find similar strings. When 

applying Jaro-Winkler to compare terms, the similarity score is highly dependent on 

the similarity of the prefix (i.e., the first four letters) of the tokens being compared. 

For every phenotypic annotation, SoftTFIDF finds all UMLS terms with tokens in 

common with the phenotype annotation, and then the Jaro-Winkler metric is applied 

to further filter these UMLS terms, by finding the shortest UMLS term in which the 

prefixes of the tokens match those in the tokens of the phenotype annotation.  

    For example, the SoftTFIDF method incorrectly maps the phenotypic annotation 

“reduced cardiac output” to the more general UMLS term ‘cardiac output’ instead of 

to the more specific UMLS term ‘decreased cardiac output’. This is because the 

prefix of the token reduced does not match any of the shortlisted UMLS terms that 
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have tokens in common with the phenotypic concept, and since the method does not 

account for semantic-level similarities.   

    The constraints of SoftTFIDF contribute to many errors and mean that the method 

is biased towards mapping to the shortest possible UMLS terms, meaning that 

important information expressed in qualifier concepts (e.g., high, low, moderate, 

severe), which determine the degree of the disease, is often ignored.  

    Similar patterns of errors were evident in the output of MetaMap. For example, FNs 

occurred frequently when phenotypic entities correspond to term variations that are 

not listed in UMLS (e.g., “cardiac troponin leak” which is a variant of ‘cardiac 

troponin increased’) or when annotations were mapped to more general concepts, e.g., 

“high Jugular venous pressure” is incorrectly mapped to ‘jugular venous pressure’ 

instead of to the correct, but more specific concept ‘raised Jugular venous pressure’. 

Another cause of FNs is spelling mistakes that occur in the clinical records. For 

example, “eg edema” is not mapped to ‘leg edema’, but rather to the more general 

concept ‘edema’. Furthermore, since MetaMap is designed to only recognise simple 

phrases, it fails to recognise phenotypic concepts that are expressed using different 

syntactic structures. For example, the phenotypic concept “moderately reduced left 

ventricular ejection fraction” is parsed by MetaMap into three different concepts, i.e., 

‘moderately’, ‘reduced’ and ‘left ventricular ejection fraction’ and thus mapping it 

incorrectly into three different UMLS concepts instead of to the correct single concept 

‘left ventricular ejection fraction decreased’. A further example is the phenotypic 

concept “stenosis in left anterior descending”, which is parsed by MetaMap into three 

different concepts, i.e., ‘stenosis’, ‘left anterior’ and ‘descending’ and therefore it 

cannot be mapped to the correct, but much longer concept ‘left anterior descending 

coronary artery stenosis’. 

     In general, SoftTFIDF achieves a level of performance that is more comparable to 

the PhenoNorm method than the much lower results achieved by MetaMap. The main 

issues of SoftTFIDF are that it does not take into account the overall length of the 

term, and that the Jaro-Winkler secondary similarity metric does not always produce 

the correct results. However, the fact that it does not attempt to split long terms into 

shorter ones, as is the case with MetaMap, means that it achieves far superior 

performance to MetaMap.    

     To highlight the differences in the mappings to UMLS provided by the SoftTFIDF 

and the PhenoNorm methods, a comparison is provided in UMLS mappings Table 7.3.  
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Table 7.3 Comparison of the UMLS mappings produced by SoftTFIDF and PhenoNorm for the same 

phenotypic concepts 

Phenotypic concepts SoftTFIDF Mappings PhenoNorm Mappings 

moderately reduced left 

ventricular systolic function 

moderate left ventricular 

systolic dysfunction 

moderately or severely depressed 

left ventricular systolic function 

High   jugular venous 

pressure 

jugular venous pressure 

 

raised jugular venous pressure 

Diminished exercise 

tolerance 

exercise tolerance impaired exercise tolerance 

Mother died of myocardial 

infarction 

subsequent myocardial 

infarction of other sites 

family history of myocardial 

infarction 

Reduced cardiac output cardiac output decreased Cardiac Output 

Coagulation imbalance Imbalance coagulation abnormal 

Uremia-associated 

dyslipoproteinemia 

Uremia dyslipoproteinemia 

Increased pulmonary artery 

systolic pressure 

pulmonary artery mean 

systolic pressure 

doppler echocardiography: 

increased derived systolic 

pressure of pulmonary artery. 

significantly reduced 

left ventricular ejection 

fraction 

ejection fraction left ventricular ejection fraction 

decreased 

 

7.4 Discussion 

An evaluation of the output of our method confirmed that it is able to handle a variety 

of types of term variation, as summarised in Table 7.4.  

 

Table 7.4 Types of term variation in the PhenoCHF corpus 

Type of variability PhenoCHF mentions UMLS term 

Orthographic variation light-headness lightheadness 

Morphological variation Hyperkalemia hyperkalemic 

Roman-Arabic variation type II diabetes type 2 diabetes 

Differing numbers of words mild mitral regurgitation mitral regurgitation 

Synonyms worsening renal function decreased renal function 

Different internal structure 

of terms 

jugular venous pressure is 

elevated 

elevated jugular venous 

pressure 

spelling mistakes left ventricular hypertrophi left ventricular hypertrophy 
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Comparison of concepts used in the literature and EHRs 

Analysis of the UMLS concepts which are linked to the phenotype annotations in 

PhenoCHF corpus by our method revealed that a total of 835 UMLS concepts are 

mentioned in PhenoCHF as a whole. Of these concepts, 184 occur in both EHRs and 

literature articles, as shown in Figure 7.2. 

    The fact that the remaining concepts only appear in either EHRs or the literature 

articles (but not both) provides strong evidence of the complementary nature of the 

information contained within the two text types. However, our finding that there is a 

significant overlap in the concepts that occur in both parts of the corpus provides 

evidence that common types of information are reported in the two text types. The 

shared concepts between the two parts represent a link between EHRs and the 

literature articles. It can also be used to support the provision of personalised 

healthcare, by linking patients’ clinical records to the new findings and discoveries in 

the literature. 

    Manual analysis of the concepts that are shared between EHRs and the literature 

articles revealed that there is variability between the two text types in terms of 

expressing the same phenotypic concept. In literature articles, standardised forms are 

most commonly used to refer to phenotypic concepts, whereas mentions of the same 

concepts in the EHRs are generally more descriptive, and can consist of long phrases 

with different syntactic structures. To illustrate this, Table 7.5 includes some examples 

of the diversity in expressing the same phenotypic concepts in EHRs and literature 

articles. These examples highlight the importance of employing sophisticated 

normalisation methods to map these concept mentions to standardised forms, to allow 

the links between the two information sources to be established, based on their 

commonly mentioned concepts, and thus to allow complementary information to be 

integrated.   
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Table 7.5 Difference in expression of the same phenotypic concepts in EHRs and the literature 

Type of variability 
PhenoCHF corpus 

EHR mentions Article mentions 

Synonymy 
sodium overload 

drop in blood pressure 

hypernatremia 

hypotension 

Syntactic structure 
left ventricular is dilated 

mild mitral calcification 

left ventricular dilatation 

calcification of mitral valve 

Word ordering  cardiac output decreased decreased cardiac output 

Spelling variation Hyperkalemic hyperkalemia 

Additional word 
moderate left ventricular 

enlargement 
left ventricular enlargement 

 

7.5 Evaluation 

To demonstrate the wider applicability of our PhenoNorm method, we have also 

evaluated it on four different annotated data sets (ShARe/CLEF task1 [28], NCBI 

disease corpus [158], heart failure and pulmonary embolism annotations [239]). In 

Cause RiskFactor

SignOr Symptoms NontraditionalRiskfactor

EHRs Literature 

Figure 7.2 The overlap between EHRs and articles phenotypic concepts 
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each case, we firstly process the gold standard annotations using the pre-processing 

steps that were described in Section 7.3. 

    To provide a fair comparison of the PhenoNorm method with other normalisation 

methods that have previously been applied to the same data sets, we used different 

metrics for evaluation (i.e., accuracy, precision, recall and F-measure). For the 

ShARe/CLEF task, participating systems were evaluated using the accuracy metric. 

Therefore, we evaluate the output of PhenoNorm on this corpus in terms of accuracy. 

However, for the three other corpora evaluated, i.e. the NCBI disease corpus, the heart 

failure corpus and the pulmonary embolism corpus, we used precision, recall and F-

measure, to allow our results to be more easily compared to other normalisation 

methods reported for the disease corpus, and with IAA agreement for the heart failure 

and pulmonary embolism annotations. 

 ShARe/CLEF data set 

As described in Section 2.2.1, ShARe/CLEF task 1 data set is a collection of 300 

clinical records annotated for disorder mentions and linked to UMLS CUIs. 

    Our method achieved an accuracy of 0.83 when applied to this data set, and was 

able to address the variability in expressing the same concept. The main reason for the 

incorrectly predicted mappings was due to ambiguous abbreviations, which are very 

prevalent in this corpus. This is because it was designed specifically to address two 

different tasks, i.e., both disorder recognition and normalisation of 

acronyms/abbreviations to UMLS concepts. Accordingly, it includes a large number 

of challenging abbreviations and acronyms, which sometimes proved to be 

problematic for our method.  For example, our method mapped the abbreviation 

“3VD” to the UMLS concept ‘three vessel disease’. However, the correct concept in 

the gold standard is ‘triple vessel disease of the heart’. Another source of error was 

that our method searches for the most similar concept in UMLS. However, in creating 

the gold standard links to UMLS in the ShARe /CLEF corpus, the annotators 

considered the textual context to determine the most relevant mapping. This is 

problematic for our method, since it considers only the annotation, rather than the 

surrounding context, when carrying out the mapping. As an example, the 

ShARe/CLEF corpus contains the annotated span “recurrent ventral hernia” which 

exactly matches the UMLS concept ‘recurrent ventral hernia’, and hence this is the 

mapping chosen by our method. However, presumably according to textual context, 
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the actual concept assigned in the ShARe/CLEF gold standard corpus is the more 

specific ‘recurrent ventral incisional hernia’. Table 7.6 provides examples that show 

the differences between the mappings produced by the PhenoNorm method and the 

gold standard annotation of ShARe/CLEF corpus.   

 

Table 7.6 Differences between the UMLS mappings in the ShARe/CLEF gold standard annotations and 

those produced by PhenoNorm 

ShARe /CLEF mentions ShARe /CLEF annotations PhenoNorm mappings 

three-vessel coronary artery 

disease 

triple vessel disease of the 

heart 

multi vessel coronary artery 

disease 

heart rhythm abnormality cardiac arrhythmia irregular heart rhythm 

recurrent ventral hernia recurrent ventral incisional 

hernia 

recurrent ventral hernia 

3VD triple vessel disease of the 

heart 

three vessel disease 

 

 

 NCBI disease corpus 

The NCBI disease corpus [158] consists of 793 PubMed abstracts annotated for 6,892 

disease mentions and mapped to 790 unique disease concepts in the MEDIC  

vocabulary [261] (which merges OMIM into the disease branch of MeSH).  

    We evaluated PhenoNorm in terms of its ability to normalise disease mentions in 

the test subset of the NCBI corpus to the most similar disease concept in the MEDIC 

database and the results are shown in Table 7.7,  in which a comparison is made with 

the normalisation methods  applied by Leaman et al., [262] to the same data sets. Our 

method is broadly comparable to several of the other methods applied, i.e.., those that 

use lexical normalisation (MetaMap and Norm4 which is a tool for addressing the 

problem of name variation by normalising case, plurals, inflections and word order) 

and those that apply string similarity metrics i.e.., inference and cosine similarity 

methods. The inference method [263] works by applying a combination of rules that 

use the O (ND) difference string similarity algorithm [264]. Briefly, this algorithm 

works by finding the smallest number of edits needed to transform one string into 

another. However, our method cannot be compared to DNorm, since it is ML-based 

and it uses pairwise learning to learn the level of similarity between the disease 

                                                           
4 https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lvg/2013/docs/userDoc/tools/norm.html 
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mentions and MEDIC vocabularies. PhenoNorm outperforms all other methods apart 

from DNorm, and the recall of PhenoNorm is almost the same as for DNorm. 

 

 

Table 7.7 Micro-averaged performance comparison of PhenoNorm against other normalisation 

approaches 

Methods P R F-measure 

PhenoNorm 0.65 0.75 0.69 

MetaMap 0.50 0.66 0.57 

Norm 0.21 0.68 0.33 

Inference method 0.53 0.66 0.59 

Cosine similarity 0.64 0.71 0.67 

DNorm 0.80 0.76 0.78 
 

 

    Analysing the results of PhenoNorm when applied to the NCBI corpus showed that 

it was able to handle term variations and make the correct decision most of the time. 

For example, PhenoNorm correctly mapped the disease mention “familial 

neurohypophyseal diabetes insipidus” to the correct concept in MEDIC, i.e.,  

‘Diabetes Insipidus, Neurogenic’. 

    The NCBI disease annotation guidelines instruct human annotators to assign disease 

mentions that could correspond to a complete family of more specific diseases to the 

more general concept in MEDIC. For example, according to the gold standard NCBI 

disease mappings, instances of “complement deficiency” mentions are mapped to the 

more general concept ‘Immunologic Deficiency Syndromes’.  However, PhenoNorm 

mapped disease mentions to the most similar disease concepts in MEDIC and 

therefore, mentions of “complement deficiency” are mapped to ‘C9 Deficiency’. 

    As was the case for the PhenoCHF corpus, the pre-processing step of PhenoNorm 

that splits up coordinated noun phrases is useful in many cases. For example, it is able 

to correctly identify the four different types of cancer mentioned in the phrase “breast, 

brain, prostate and kidney cancer” and map them to four separate MEDIC concepts, 

i.e., ‘breast neoplasms’, ‘brain neoplasms’, ‘prostatic neoplasms’ and ‘kidney 

neoplasms’. When applied to such phrases, PhenoNorm can sometimes produce 

mappings that are more correct than those produced by the best-performing DNorm 

method, which incorrectly mapped the coordinated phrase to a single concept, i.e., 

‘prostate cancer/brain cancer susceptibility’. Despite the fact that the application of 

the pre-processing step to split up coordinated phrases is usually advantageous, it can 
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lead to errors in a small number of cases, since some mentions of single diseases 

contain coordinating conjunctions. This is the case, for example, for “breast and 

ovarian cancer syndrome”, which corresponds to a concept in MEDIC. However, 

PhenoNorm incorrectly splits this coordinated phrase condition into two separate 

phrases, i.e., “breast cancer syndrome” and “ovarian cancer syndrome”, which are 

incorrectly mapped to separate MEDIC concepts, i.e. ‘breast cancer’ and ‘ovarian 

neoplasms’.   

 Annotations from heart failure and pulmonary embolism ontologies 

 

Wang et al. [239] developed ontologies for phenotypic information (i.e., causes, sign 

or symptoms, diagnostic tests and treatments) pertaining to heart failure, rheumatoid 

arthritis and pulmonary embolism. The ontologies were curated manually using a 

semi-automatic annotation approach. Specifically, documents were automatically pre-

annotated with a dictionary compiled using previously adjudicated annotations to 

annotate three corpora (i.e., one corpus for each of the three conditions introduced 

above). With these pre-annotated documents, annotators could modify or delete pre-

annotations, or add missed occurrences of terms. Each corpus is compiled from 

different types of textual sources including textbooks, evidence-based online 

resources, practice guidelines and journal articles. The heart failure corpus includes 

2588 annotations, while the rheumatoid arthritis and pulmonary embolism corpora are 

annotated with 193 and 425 mentions, respectively. To address lexical variations in 

concept mentions between the different sources (e.g., alcohol consumption and 

alcohol intake), the annotations were mapped to UMLS concepts using MetaMap 

followed by manual verification and correction by one annotator. The accuracy of the 

mapping was evaluated by comparing the mappings assigned for 237 randomly 

selected terms against mappings produced by a second annotator. The mapping 

agreement between the two annotators, in terms of F-score, was 0.84.  

    We exploited the heart failure and pulmonary embolism ontologies to evaluate the 

ability of PhenoNorm to map concept mentions relating to heart failure and pulmonary 

embolism to the corresponding concepts in the ontologies; the results are shown in 

Table 7.8. 

    To the best of our knowledge, our work constitutes the first attempt to use these 

data sets to normalise phenotypic mentions relating to heart failure and pulmonary 
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embolism to concepts in the corresponding ontologies. As such, we cannot compare 

our results with any other normalisation approaches. However, for reference, we 

compare our results with the IAA results mentioned above. As can be observed in 

Table 7.8, the performance of PhenoNorm in normalising concept mentions relating to 

heart failure is almost the same as human levels of agreement.  

  

Table 7.8 Results of applying PhenoNorm to the heart failure and pulmonary embolism data sets 

Method Corpus P R F 

PhenoNorm Pulmonary 

embolism 
0.75 0.77 0.76 

PhenoNorm Heart failure 0.82 0.86 0.83 

IAA between 

MetaMap 

followed by 

manual 

corrections   

Randomly 

selected 237 

phenotypic 

mentions 

- - 0.84 

 

 

    As can be observed in Table 7.8, PhenoNorm achieved high recall for both corpora 

and in most cases it was able to handle term variations and associate mentions with 

the correct concept in the corresponding ontology. The pre-processing step of splitting 

coordinated phrases into two or more phrases was very useful for this data set and was 

able to help to map annotated phrases containing coordinations, such as “stable or 

unstable angina”, to appropriate separate concepts, in this case ‘stable angina’ and 

‘unstable angina’.  

    However, specific features of the PhenoNorm method, in combination with the 

mapping strategy applied by annotators in these corpora, resulted in some mapping 

errors. Firstly, as has been mentioned previously, PhenoNorm tends to assign a higher 

score to concepts that share the greatest number of words with the mention in 

question. Secondly, the heart failure and pulmonary embolism ontologies were 

manually curated and the guidelines instruct annotators to map each phenotypic 

mention to the concept that conveys the mention’s specific meaning within the context 

of the original sentence. According to the above, our method caused a number of FNs 

and FPs in both the pulmonary embolism and heart failure corpora.  For example, 

PhenoNorm maps the mention “continuous blood pressure monitoring” to ‘blood 

pressure monitoring’ instead of ‘Continuous Sphygmomanometers’. Another source of 

incorrect decisions made by PhenoNorm was due to the strategy of mapping mentions 
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to concepts with the smallest edit distance. For example, it maps “haemoglobin” to 

‘haemoglobin low’ instead of to ‘haemoglobin measurement’. It should be noted, 

however, that the above mentioned features of PhenoNorm were highly advantageous 

in other cases, e.g., in facilitating the correct mapping of “permanent pacemaker 

implantation” to ‘Implantation of permanent intravenous cardiac pacemaker’.  

7.6 Summary 

 In this chapter, we have described our development of a novel method, PhenoNorm, 

that allows variant mentions of different types of phenotypic entities to be mapped 

effectively to concepts in the UMLS Metathesaurus. This constitutes an important first 

step towards the automatic integration of information from these heterogeneous 

sources. Our method shows encouraging performance in mapping mentions with a 

variety of internal structures to the most appropriate concepts in the Metathesaurus. 

The range of different internal structures of concept mentions includes simple noun 

phrases (e.g. progressive renal failure), coordinated noun phrases (e.g., increased 

chest pain and fatigue), noun phrases followed by prepositional phrases (e.g., 

increasing dyspnea on exertion) and complete clauses or sentences (e.g., jugular 

venous pressure is elevated).  The different mentions also exhibit a range of different 

term variation patterns such as different orderings of words, different forms of words 

and the use of semantically related words.   

    The expert evaluation/correction of the automatic mappings produced by our 

method adds value to the PhenoCHF corpus and allows it to be used as a gold standard 

to compare our method with state-of-art normalisation techniques such as hybrid 

string similarity methods (i.e., SoftTFIDF) and dictionary-based methods (i.e., 

MetaMap).  

    To demonstrate the wider applicability and the utility of our method, we have 

applied it to the task of normalising concepts in a number of different annotated 

corpora, whose concepts include gold standard mappings to concepts in different 

knowledge resources. Specifically, we have applied PhenoNorm to the ShARe/CLEF 

task 1 corpus, the NCBI disease corpus and the heart failure and pulmonary embolism 

datasets. We have demonstrated that our method can achieve competitive performance 

in carrying out mapping of concept mentions in all of these corpora, compared to the 

results achieved for PhenoCHF, despite the differing parameters and complexity of the 
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tasks. For the NCBI disease corpus, we also showed that PhenoNorm could 

outperform a number of different lexical and string similarity based methods when 

applied to the task of normalising disease names, and that the PhenoNorm method 

could produce comparable recall to the more sophisticated DNorm method, which is 

based on machine learning.   
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 Conclusion and future work  

Biomedical text, including both literature articles and EHRs, constitutes a rich source 

of disease-phenotypic information. Since each of these text types contains different 

types of valuable information, combining details from each source can be important in 

uncovering new disease-phenotypic associations that may be of interest to clinicians 

and which can provide useful information to assist in clinical decision making and 

evidence-based health care. However, integrating information can be problematic if 

the same concepts are expressed in different ways in EHRs and articles. 

    Therefore, there is an emerging need for methods that automatically extract and 

integrate phenotypic information from EHRs and biomedical literature. However, 

developing such methods is reliant on the availability of corpora of clinical records 

and literature articles that are annotated for phenotypic information. However, 

acquiring corpora of clinical text can be particularly challenging, mainly due to 

privacy and confidentiality concerns that hamper ready access to clinical records.  

    In the following sections, we summarise the work described in this thesis and 

provide an outline of further research directions. Firstly, we revisit the research 

objectives that we established in Section 1.4.3 and explain how we fulfilled each one. 

Subsequently, we review the contributions of this study and summarise the main 

findings described in the preceding chapters. Finally, we conclude with a discussion of 

the main areas of future work. 

8.1 Evaluation of Research Objectives 

To obtain knowledge about the state-of-the-art in NER, we established objective O1 . 

Objective O1  

 

 

    

As an initial step towards achieving this objective, we analysed existing lexical 

resources, and presented our findings in Section 2.2. This enabled us to select the 

UMLS Metathesaurus as the most appropriate domain-specific knowledge resource 

O1 To conduct a comprehensive review of existing resources, annotated 

corpora and approaches for clinical NER. 
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for our requirements, along with the associated MetaMap concept recognition tool, 

which recognises instances of Metathesaurus concepts that occur in text.  

    By examining a wide variety of biomedical and clinical corpora in section 2.2.1, we 

discovered that there are many publicly available corpora of scientific biomedical 

literature which are annotated for biological entities and/or their interactions. 

However, corpora containing clinical text drawn from EHRs are much rarer, which is 

mainly due to privacy and confidentiality concerns. Recently, however, a small 

number of annotated corpora containing clinical text have been made available, 

mainly in the context of shared task challenges. These corpora vary both in terms of 

the types of reports that have been drawn from EHRs for inclusion in the corpora (e.g., 

discharge summaries, progress notes and radiology reports) and in terms of the levels, 

types and granularity of the annotations that have been added to corpora. Despite the 

opportunities that such corpora offer in terms of advancing the state-of-the-art in 

clinical information extraction, very few of the above corpora (either clinical text or 

scientific literature) are annotated with the types of entities and relationships that are 

relevant to the study of phenotypic information. 

    In response to the above, we have created a new annotated corpus (PhenoCHF), to 

stimulate research into the automatic extraction of phenotypic information from free 

text. The PhenoCHF corpus integrates two text types, i.e., literature articles and 

discharge summaries from EHRs. The major part of the PhenoCHF corpus consists of 

discharge summaries from EHRs on the subject of CHF, drawn from the data released 

for the i2b2 obesity and its co-comorbidities challenge.  The second part of the corpus 

consists of 10 full-text articles on the subject of CHF retrieved from the PubMed 

Central Open Access database. PhenoCHF has been annotated with various types of 

information relating to phenotype-disease associations by two domain experts 

(doctors). To our knowledge, the corpus is unique, both in terms of the level of detail 

of the phenotypic information annotated, and in that it integrates both literature 

articles and unstructured text reports from EHRs.  

    By reviewing previously reported approaches to clinical NER in Section 2.1.2.1, we 

determined that ML approaches have become one of the most commonly used 

approaches to NER. In particular, we found that previous solutions based on the CRF 

algorithm have frequently produced results that are superior to those obtained using 

other ML algorithms, especially when coupled with the use of a rich set of linguistic 

features. 
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Objective O2  

 

 

 

 

 

 

We have achieved this objective by applying a common set of NER methods to extract 

phenotypic information from EHRs and from full-text articles, as described in Section 

5.1.1. 

    To demonstrate the utility of PhenoCHF corpus in training ML-based phenotype 

extraction systems, we presented a comparative evaluation of different types of NER 

methods, i.e., rule-based (using the CAFETIERE system), dictionary-based (using 

MetaMap) and various ML approaches (i.e., CRF, MEMM and HMM). For the ML 

methods, we employed different sets of features that have previously been employed 

successfully in other NER efforts in the biomedical and clinical domains. These 

features included syntactic features (e.g., POS and chunk tags) and morphological 

features (i.e., prefixes and suffixes). We carried out an assessment of the contribution 

of different feature sets toward the performance of different ML algorithms when 

applied to the task of phenotypic NER.  

    While the rule-based method achieved the best results, the results obtained by 

certain ML algorithms and feature sets compare extremely favourably with the results 

achieved by the rules. ML-based methods also present the advantage of being far less 

time consuming than manually derived rules.   

    For literature articles, the discrepancy between the results achieved by the rule-

based method and ML-based methods is considerably greater than for clinical records. 

This can be explained by the smaller size of the article subset, and the scarcity of its 

annotations, compared to those in the clinical records. This means that ML models 

trained only on the literature articles had fewer observations from which to learn how 

to recognise entities accurately.  

    As the CRF algorithm achieved the best performance amongst the different ML 

algorithms applied to both the discharge summary and article subsets of PhenoCHF, 

we employed CRF in carrying out further experiments. Specifically, we demonstrated 

that a CRF ML tagger trained to recognise phenotypic information in one type of text 

(i.e. clinical records) is fairly robust when applied to another type of text (i.e., 

O2 To apply NER techniques at a large scale to extract phenotypic 

information from both EHRs and literature articles.  
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literature articles). We also explored the use of a pooled corpus of heterogeneous 

textual sources (i.e., EHRs and literature articles), annotated according to a common 

set of guidelines, to train a single classifier. Our results showed that such a trained 

model is robust to variations in text type and exhibits superior performance to models 

trained only on a single text type.  

    The portability and the robustness of the pooled model to different text types, 

together with the superiority of CRF models in this context, were further reinforced 

through our application of PhenoCHF-trained pooled model to related annotated 

corpora (i.e., ShARe/ CLEF 2013, HD risk factor and COPD phenotype), for which 

encouraging results were obtained.   

 

Objective O3  

 

 

 

 

 

In section 2.2.1, a review of clinical corpora annotated for relations (e.g., i2b2 and 

CLEF) revealed that, although a variety of binary relations has previously been 

annotated, none of the currently available corpora is annotated for n-ary relations 

(where n > 2).  Our review thus determined that there is a research gap in terms of 

extracting complex (n-ary) relations from clinical records. 

    A review of existing approaches to the automatic extraction of binary relations from 

texts in the clinical domain was also presented in Section 2.1.2.2. Whilst earlier work 

focussed on rule-based approaches and co-occurrence of pairs of entities, more recent 

work has explored ML approaches.  

    A straightforward way to extend binary relation extraction to n-ary relation 

extraction is to factorise the n-ary relations into binary relations and then to apply 

binary classification methods to extract the factorised relations. However, an issue in 

directly applying this method to the extraction of n-ary relations is that, as n increases, 

the factorisation will lead to a large increase in the number of candidate binary 

relations. This in turn will result in low performance when extracting n-ary relations.  

O3 To conduct a comprehensive review of existing corpora and approaches 

for clinical relation extraction. 
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    In our context, it is very important to facilitate joint detection and semantic 

categorisation of all n related arguments, and also to determine whether the relation is 

negated.  

    Unlike methods for binary relation extraction, event extraction systems (e.g., 

EventMine), reviewed in Section 2.1.2.3, have achieved state-of-the-art results in 

extracting complex biomedical events, and they are capable of capturing many 

different types of associations, in which an arbitrary number of entities is semantically 

characterised through the assignment of a variety of semantic roles. Furthermore, 

event extraction systems are able to detect different aspects of meta-knowledge, i.e., 

how events should be interpreted according to their textual contexts, as a subtask of 

the event extraction process. Such meta-knowledge includes the detection of when 

events are negated.     

    The above findings were used to help us to accomplish our research objective O4. 

. 

 

Objective O4  

 

 

 

 

This objective was also established at the beginning of this research, with the aim of 

exploring how n-ary clinical relations could be extracted efficiently from clinical 

records.  

    We accomplished this objective by adapting EventMine, coupled with the 

application of a number of post-processing rules, which use the outputs of the Enju 

and GDep parsers to refine trigger detection, as described in Chapter 6. 

    We compared the performance achieved by EventMine to the performance of state-

of-the-art supervised ML methods for binary relation extraction, using a rich set of 

features. Our results demonstrated that EventMine (with post-processing rules), was 

able to outperform the binary relation extraction methods, proving that it is a useful 

and successful means of detecting complex relations within medical records.   

    To the best of our knowledge, our work constitutes the first research effort to 

explore and evaluate this methodology as a solution for n-ary relation extraction.  

 

O4 To adapt TM tools currently used to extract relations and events from 

full papers and abstracts and make them suitable for extracting the 

relations between phenotypic entities in EHRs. 
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Objective O5  

 

 

 

 

One of the major outcomes of this work, geared towards the fulfilment of objective 

O5 , was the development of a novel method (i.e., PhenoNorm). As described in 

Chapter 7, PhenoNorm is able to normalise/map different textual mentions/variations 

of a given phenotypic concept to an appropriate concept in the UMLS Methesaurus. 

Given that concepts can be expressed in various ways in different types of text, the 

normalisation process constitutes an important first step towards bridging the gap 

between the information contained within the two different text types that we have 

considered (i.e., EHRs and the biomedical literature). 

    PhenoNorm is a hybrid method that integrates token-based, character-based and 

semantic similarity measures to allow variant mentions of different phenotypic 

concepts to be mapped effectively to concepts in the UMLS Metathesaurus. The 

results of the automatic mapping carried out by PhenoNorm were manually evaluated 

by a domain expert. The evaluation confirmed that PhenoNorm is able to handle a 

variety of types of term variations with different internal structures.  

    The expert evaluation/correction of the automatic mappings produced by our 

methods adds value to the PhenoCHF corpus, since the corrected mappings may be 

used in future as a gold standard for the training and evaluation of ML normalisation 

methods. We used the expert-produced gold standard mappings as a means to 

compare the performance of the PhenoNorm method with other state-of-the-art 

methods for normalisation, i.e., dictionary-based (MetaMap) and string similarity 

(SoftTFIDF) methods. PhenoNorm achieves higher accuracy than the compared 

methods, and shows encouraging performance in terms of its ability to map phenotype 

mentions with a variety of internal structures, and which exhibit a range of different 

term variation patterns, to appropriate UMLS concepts.  

    To further demonstrate the utility of our normalisation method, we applied it to the 

tasks of normalising disorder mentions in the ShARe/CLEF 2013 corpus, disease 

mentions in the test set of NCBI disease corpus and phenotypic mentions related to 

heart failure and pulmonary embolism in the corpora used to develop heart failure and 

O5 To develop a novel method to normalise phenotypic concept mentions 

from heterogeneous textual sources (EHRs and literature articles) and to 

map them to UMLS concepts. 
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pulmonary embolism ontologies. Despite the differing parameters and levels of 

complexity of these tasks, PhenoNorm achieved results that compare favourably both 

to the results obtained when the method is applied to the PhenoCHF corpus, and to 

results of other normalisation methods that have been previously applied to the NCBI 

corpus. These results help to prove the wider applicability and utility of our method in 

linking a wide range of biomedical concept mentions to appropriate ontology 

concepts. 

 

Objective O6  

 

 

 

 

We accomplished this objective through the application of our novel PhenoNorm 

normalisation method. Phenotypic mentions from both text types (i.e., EHRs and the 

literature articles) were mapped to unique concepts in UMLS using this method. 

Based upon the output of the method, we found that the PhenoCHF corpus mentions 

835 unique phenotypic concepts relating to CHF. Of these concepts, 184 occur in both 

EHRs and literature articles. Thus, the normalisation process allows the identification 

of concepts that are shared between the two text types. These shared concepts 

represent a link which can be used to bridge the gap between the different kinds of 

information that are present in the two document types contained within the 

PhenoCHF corpus. Examining instances of these shared concepts in the different text 

sources can represent a first step towards understanding how complementary 

information within the different resources can be integrated in an effective manner.    

    The findings and results summarised above demonstrate that we have successfully 

fulfilled our research objectives.  In turn, the results obtained through completing our 

research objectives serve to prove the research hypotheses formulated at the beginning 

of this thesis: 

 

H1 Existing text mining techniques can be adapted to extract phenotypic 

information from the overwhelming volume of information in the literature 

O6 To integrate information extracted from both text types using the 

normalisation approach. 
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and EHRs, and to discover hidden knowledge and associations that may occur 

across texts of different types.   

 

H2 N-ary relations between phenotypic entities can be cast as events, and they can 

be extracted using an event-based approach. 

 

H3  Normalising various types of phenotypic information that appear in both 

EHRs and literature articles can act as a first step towards the automatic 

integration of knowledge that is dispersed within these two text types. 

8.2 Future work 

There is evidence of a 13−17 year gap between the point at which research findings 

are reported in the literature and the time when they are put into practice in the context 

of clinical care [16]. This reality suggests that the current methods of making use of 

scientific results within actual clinical care are severely lacking. As a result of this 

time lag, evidence-based treatments derived from research are often out-of-date by the 

time they achieve widespread use, and do not always account for real-world variation. 

These factors can significantly impede the effective implementation of treatments 

based on research findings. 

    The work in this thesis presents the first step towards the automatic integration of 

phenotypic information occurring in clinical records and the biomedical literature. 

Such integration can fill in the knowledge gaps that result from the discrepancies 

between the types of information  that are present in EHRs on the one hand, and in the 

biomedical literature on the other. Through the integration of the complementary 

information contained within these two textual sources, the valuable information in 

EHRs can be further augmented with relevant information and findings contained 

within the vast amount of published biomedical literature, in multiple ways. For 

example, the integration can be helpful in identifying diseases and their associated 

symptoms, potential treatments, genes responsible for the disease and in determining 

adverse drug events. Discovery of all of these types of associations is unlikely to be 

possible by considering only one of the text types in isolation.    
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    Furthermore, multiple threads of novel research can be carried out, using the 

outcomes of our work as a basis.  Below, we review some of the main areas of future 

work. 

    As a result of carrying out the work described in this thesis, we have developed 

novel resources, i.e., the annotated PhenoCHF corpus and the models trained using the 

annotations within the corpus. PhenoCHF is richly annotated for CHF phenotypes that 

are linked to canonical forms in the UMLS Metathesaurus. By making these fine-

grained phenotype annotations and their links to ontological concepts available in a 

computable form, they are suitable for use in computerised applications such as CDSS 

and clinical research. For example, the application of the models to large amounts of 

patient data can facilitate the extraction of phenotypic information associated with 

different diseases which, in turn, can be profiled and used to construct the backbone of 

CDSS, driven by live data based on the actual population. Phenotypic information 

associated with different diseases will further enable researchers to identify patient 

cohorts based on particular sets of phenotypic features that are shared amongst 

particular groups of patients.  In turn, the identification of these cohorts will facilitate 

clinical trial enrolment and support clinical decision support. 

    The ability to obtain detailed phenotypic information for different diseases can help 

to build up a clearer picture about individual patients’ drug reactions. This in turn can 

facilitate phenotype-driven treatment of diseases and pave the way for personalised 

healthcare.  

    Understanding diseases at the phenotypic level will also help to guide 

improvements in diagnosis, prevention and discovery of the origins of diseases. For 

instance, an interesting extension of this thesis would be to link information in EHRs 

with information in the biomedical literature by applying a text mining approach to 

literature-based discovery, targeted specifically at understanding phenotype-genotype 

associations that may be dispersed across different types of biomedical text.  

    Another obvious extension of this thesis is to broaden the scope of phenotypes that 

can be recognised automatically (e.g., treatments and tests could additionally be 

included), as well as to extend the range of detected relations that can hold between 

phenotypes. Examples of further relevant relation types could include cure and 

diagnose. Although we designed our methods with a particular focus on the CHF 

disease, they are sufficiently general to allow their application to other diseases, as 

long as suitably annotated corpora are available. We have already partially 



      176 
 

demonstrated the generality of our methods by successfully applying them to corpora 

whose scopes only partially overlap with the PhenoCHF corpus. The proposed 

methods for extracting phenotypic information in this thesis can be incorporated with 

other text mining tools within interoperable Web-based text mining platforms (e.g., 

Argo [45]) to generate semi-automatic annotation workflows; these can help to 

accelerate the manual annotation process when producing further annotated corpora.  

    Besides the integration of information contained within clinical records and 

biomedical literature, it would be useful to investigate the additional integration of 

information contained within various social media channels, such as Facebook and 

Twitter [265, 266], as well as other social networking web sites such as 

PatientsLikeMe [267]. These data sources are highly valuable, since they are able to 

provide the most up-to-date information about diseases, as they occur in the real 

world. Within these fora, users frequently supply first-hand information regarding 

their health status, adverse effects of medication they are taking, etc. Taking into 

account information contained within social media is becoming increasingly 

important, given the recent steep increase in the volume of potentially useful 

information that is publicly shared via these channels. We envisage that future 

confluence of details contained within social networks and EHRs will open up new 

ways to manage diseases and treatments. Nevertheless, it is important to bear in mind 

that the variable reliability of the first-hand information provided within social media 

channels is an important issue that must be taken into account when determining the 

most effective strategies for combining this information with that originating from 

health professionals.   
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Appendix A 

A. PhenoCHF corpus 

A.1 Annotation guidelines 

Overview: 
 

More than one third of patients with chronic kidney disease (CKD) develop symptoms 

of heart failure. Congestive heart failure (CHF) is also a common contributor to the 

progression of CKD. Thus, a vicious circle exists between these two diseases.  

Therefore, renal failure or renal insufficiency may be more than a marker for heart 

failure severity and instead may play a causative role in the progression of heart 

failure. 

    Annotation is marking up piece of text with class to describe it. In this task we will 

use BRAT in which it displays the annotations by highlighting the text with different 

colours according to the chosen class. 

The Data: 

The corpus consists of 300 clinical records obtained from the i2b2 obesity challenge. 

The medical records are filtered to include only the discharge summaries for the 

patients with CHF and kidney failure (renal insufficiency). The second part of the 

corpus consists of the 10 most recent (at corpus collection time) full-text articles 

retrieved from the PubMed Central Open Access database, using the query "Heart 

failure" OR "Congestive Heart Failure" OR "Heart failure Clinical presentation" OR 

"Heart failure Clinical features" OR "Heart failure Symptoms" OR "Heart failure 

clinical manifestation" OR "Heart failure clinical picture" AND ("Chronic renal 

failure" OR "Renal failure" OR "Chronic Renal insufficiency" OR "Renal 

insufficiency" OR "Kidney failure" OR "CRF" OR "CRI"). 

Aim of current annotation : 

This annotation task consists of two stages: i) to mark-up the mentions of medical 

terms that denote phenotypic information of CHF to highlight the entire  

characteristics of CHF such a: causes, risk factors , clinical signs/symptom and also to 
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identify non-traditional risk factors (uremia-related) of heart failure to investigate the 

extent to which renal failure can worsen the condition of CHF, ii) the relationships 

annotations link two annotated entities to  reflects the interactions between them. 

Annotation task: 

1- Terms annotation (Entities annotation): 

 

The basic task of annotation is entity in which stretches of text (medical terms) that 

denote phenotypic information is marked up with the most relevant class. 

 

CHF Phenotypic information is defined in three general classes as follows: 

 

1.1) Cause is any medical problem that contributes to the occurrence of CHF. It could 

be any disease (i.e. coronary artery disease, renal insufficiency)   or disordered activity 

of body systems, organ or tissues ( i.e. atrial fibrillation) that cause heart failure. 

 

 

 

 

 

1.2) Risk factor  (RiskF) is a medical or social condition that increases the risk of 

CHF disease or  it may contribute to put the patient in higher risk of developing the 

causes of CHF  such as: bad life style ( i.e. physical inactivity , smoking , being 

overweight) or it could be drug to control other diseases i.e. amikacin. Also, any 

family history of cardiovascular disease. 

 

 

1.3) Sign or Symptom is any observable manifestation of CHF disease which either 

experienced by a patient and reported to the doctor or found as a result by the doctor's 

examination. For example, fatigue , decreased exercise tolerance, shortness of breath, 

sweating,  irregular rhythm , murmur , rub and gallop sounds, low cardiac output. 
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1.4) Non-traditional risk factor:  (NontradRF) is the medical term that denotes the 

complication associated  with  abnormalities  in the kidney functions that put the 

patient in a higher risk to progress “signs/symptoms”  and causes of CHF, it could be 

disease (i.e. anemia) , electrolyte imbalance (i.e. hyperkalemia , hypokalemia and 

increased creatinine). 

 

 

 

 

 

 

Other classes that highlight important and relevant information to 

the task: 

 

a)Chief complaint(Chiefcomp) is congestive heart failure in this annotation task. 

 

 

b)Organ is any body part. For example, 

 , ,  

 

c)Polarity clue  (polcue) to highlight the negation modifier that negate medical 

condition such as no , without , denies etc. Polarity clue refers to any words that 

denote negation or absence of medical conditions meaning that the patient does not 

have this condition. Only annotate negation when it is related to medical condition. 

http://en.wikipedia.org/wiki/Hyperkalemia
http://en.wikipedia.org/wiki/Hypokalemia
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Only annotate negation modifier when it is negated medical condition related to CHF . 

 

  

General guidelines for term annotations: 

 

1-Only annotate the correct span (as much information as required). 

2- The phenotypic term could be expressed in any syntactic structure it can be: 

 a noun phrase  

 pedal edema 

 diastolic dysfunction 

 orthopnea 

 prepositional phrase. 

 Pain in chest 

 Shortness of breath 

 adjective phrases 

 The patient was hypertensive. 

 The patent was anemic 

 The patient becomes hypercalemic. 

3- If the medical condition is preceded by modifier of multi words phrase.  Annotate 

the whole phrase (except for negation refer to polarity clue annotation) for example: 

 Increased potassium. 

 increased shortness of breath 

 left atrial enlargement 

4- There should be only one annotation per mentioned disorder. 

6- Annotate all abbreviations and acronyms that refer to phenotypic information. For 

example: 

 JVP refers to  jugular venous pressure 

 CABG stand for  coronary artery bypass graft 

 AF stands for Atrial fibrillation 
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 A-fib stands for Atrial fibrillation 

Do not annotate the following: 

1- Normal condition for example if the information describe normal function i.e. 

EKG showed normal sinus rhythm , regular chest etc. 

2- anything you infer from the text only annotate the explicitly mentioned entity. 

For example consider the following lab result: 

 

Laboratory data:  INR of 1.6, BUN of 110, creatinine 3, potassium 5.5, white 

blood cell count of 11.7 and a hematocrit of 27.9. 

 

Do not annotate anything in the previous example even though you felt that, the 

patient have high level of creatinine which suggest that the patient have impaired 

kidney function or the patient have hyperkalemia which is uremia related risk factor 

for heart failure. 

 

Another example is: Echo showed ejection fraction of 10-15% 

Do not annotate anything in the previous sentence, even though an ejection fraction of 

10-15% indicates sign of CHF.  

 

2-Relations Annotation: 

 

The aim of this task is to annotate the existing relationships on the top of the annotated 

entities. It usually links two annotated concepts (arguments) within the boundaries of a 

single sentence. Relationships help to identify: 

 Which medical condition causes the other? 

 Which negation modifies which sign or symptoms? 

 

There are three types of relationships and each type constrains to link two specific and 

predefined pair of arguments. 
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2.1) Negate 

It is one-way relation to relate negation attribute to the condition that it is denied.  

 

For example: 

 

 

 

The above mentioned example illustrates the negate relationship as follows the 

modifier without is used to explicitly negate the following phenotypic information 

chest pain and lightheadness. 

 

 

 If the negation modifier refer to several medical condition create different 

negate relation for each negated medical condition. 

 

 

 

The above mentioned example illustrates the negate relationship as follows the 

modifier denied is used to explicitly negate the following phenotype information 

diaphoresis, nausea, vomiting and abdominal pain. 

 

Another example is: 

 

 

-Only annotate Negate relationship on the top of the annotated concepts and, DO NOT 

annotate negate relationship for concepts out the scoop of this annotation task for 

example: 
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 The patient does not have diarrhea or constipation. 

 No visual change. 

 Patient was found without mental changes. 

 

In the above mentioned examples negate relationship is not annotated because the 

underlined medical conditions are not associated with CHF. 

 

2.2)Causality: 

 

This relationship links two concepts in which one argument causes the other. 

 

For example, in the following sentence the chronic kidney disease causes the chronic 

anemia. 

 

 

 

Another example, 

 

 

In the above mentioned example there are two causality relations: 

 First causality relationship associating dehydration to cause renal 

insufficiency. 

 Second causality relationship associating congestive heart failure to cause 

renal insufficiency. 

 

 

 

In the above mentioned example there are two causality relations: 

 First causality relationship associating congestive heart failure to cause leg 
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edema. 

 Second causality relationship associating chronic venous stasis to cause leg 

edema. 

 

 Do not annotate the relationship causality whenever the relationship does not 

contribute to the progression of CHF. For example, 

 

She had a urinary tract infection per report secondary to E.Coli resistant to Levaquin 

and gentamicin. 

 

In the above mentioned example neither the relationship nor the medical concepts are 

annotated because they are irrelevant to this annotation task. 

 

2.3) Finding    

This relationship links the organ to the manifestation or abnormal variation that is 

observed during the diagnoses process. 

For example,  

 

 

 

 

 

 

 Annotate the finding relationship even if the signs or symptoms of CHF are 

negated in the records, and annotate the negation relationship. 
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General guidelines for relationships annotations: 

 

1- Relationship may be created based on medical knowledge: 

2-If the relationship has many arguments create different causality relation for each 

negated medical condition. 

for example: 

 

 First causality relationship associating iron deficiency to cause anemia. 

 Second causality relationship associating chronic renal insufficiency to cause 

anemia. 

 

 

3-Some argument causing other argument 

 

4- At least one relation exits for each annotated negation modifier 

 

General Guidelines for the annotation task: 

1- Complete this task independently. Do not discuss your annotations with 

anyone else. 

2- Read the whole patient's record first to get understanding about the patient 

medical case. 

3- Read the document again and annotate the medical terms with correct class 

and in parallel annotate the negation modifier (polarity clue) where they are 

found. 

 

4- Go to each annotated terms and look if it is related to any other annotated term 

in the same sentence. For example consider the following : 
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 For each Cause decide whether it was caused by any non-traditional 

(uremia) risk factor or risk factor. 

 

 

 

 For each non-traditional risk factor decide whether it was caused by 

any cause. 

 

 For each sign or symptom decide whether it was caused by any risk 

factor or cause. 

 

 

 

 For each organ check if it is associated with any sign or symptom. 

 

 

 

5- Per each record you have annotated please record any comments you might 

think it is important to improve the guidelines for example you could record 

comments about: 

 The clarity and applicability of the guidelines. 

 Adding any important information that is not covered by the 

guidelines. 
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Appendix B 

B. Phenotypic resources 

B.1 List of phenotypic affixes 

 

 

 Size 2 Size 3 Size 4 Size 5 

Prefix Ju,hy Lig,Ble,deh,ede 

,Cig,kes,chr 

,mit,Bib,Dia 

,jug,hyp 

ligh,righ 

,blee,dehy 

,crac,whee 

,atria,myoc 

,coro,chro 

,mitr,arrh 

,pleu,biba 

,jugu,dece, tric,hype 

 

dyspn,Light,  

hypon, 

crack,wheez, 

,myoca,globa 

 ,coron,jugul 

,chron,mitra 

,palpi,aorti 

diast, arrhy 

,pleur,biba 

,hypoc,hyper 

 

Suffix Ep eep,dia,ism dism,lure 

,tite,rdia  

,sure,tter 

,lism,emia,mnia,okes,sion 

jugul,perip 

,nsion,emia 

,hemia,lemia 

,nuria,rokes 

,cytic, 

,ilure,opnea 

,spnea,litus 

,etite,ardia 

,ssure,utter 

,olism,temia, 

iency 

,ality 

 

 


