206 research outputs found

    DESIGN MODULAR COMMAND AND DATA HANDLING SUBSYSTEM HARDWARE ARCHITECTURES

    Get PDF
    Over the past few years, On-Board Computing Systems for satellites have been facing a limited level of modularity. Modularity is the ability to reuse and reconstruct the system from a set of predesigned units, with minimal additional engineering effort. CDHS hardware systems currently available have a limited ability to scale with mission needs. This thesis addresses the integration of smaller form factor CDHS modules used for nanosatellites with the larger counterparts that are used for larger missions. In particular, the thesis discusses the interfacing between Modular Computer Systems based on Open Standard commonly used in large spacecrafts and PC/104 used for nanosatellites. It also aims to create a set of layers that would represent a hardware library of COTS-like modules. At the beginning, a review of related and previous work has been done to identify the gaps in previous studies and understand more about Modular Computer Systems based on Open Standard commonly used in large spacecrafts, such as cPCI Serial Space and SpaceVPX. Next, the design requirements have been set to achieve this thesis objectives, which included conducting a prestudy of system alternatives before creating a modular CDHS hardware architecture which was later tested. After, the hardware suitable for this architecture based on the specified requirements was chosen and the PCB was designed based on global standards. Later, several functional tests and communication tests were conducted to assess the practicality of the proposed architecture. Finally, thermal vacuum testing was done on one of the architecture’s layers to test its ability to withstand the space environment, with the aim to perform the vibration testing of the full modular architecture in the future. The aim of this thesis has been achieved after going through several tests, comparing between interfaces, and understanding the process of interfacing between different levels of the CDHS. The findings of this study pave the way for future research in the field and offer valuable insights that could contribute to the development of modular architectures for other satellite subsystems

    Evolution of system embedded optical interconnect in sub-top of rack data center systems

    Get PDF
    This research was funded by the EU FP7 project “PhoxTrot”, for which it has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 318240, the Horizon2020 Nephele project (Grant No. 645212), the Horizon2020 COSMICC project (Grant No. 688516).In this paper we review key technological milestones in system embedded optical interconnects in data centers that have been achieved between 2014 and 2020 on major European Union research and development projects. This includes the development of proprietary optically enabled data storage and switch systems and optically enabled data storage and compute subsystems. We report on four optically enabled data center system demonstrators: LightningValley, ThunderValley2, Pegasus and Aurora, which include advanced optical circuits based on polymer waveguides and fibers and proprietary electro-optical connectors. We also report on optically enabled subsystems including Ethernet-connected hard disk drives and microservers. Both are designed in the same pluggable carrier form factor and with embedded optical transceiver and connector interfaces, thus allowing, for the first time, both compute and storage nodes to be optically interchangeable and directly interconnectable over long distances. Finally, we present the Nexus platform, which allows different optically enabled data center test systems and subsystems to be interconnected and comparatively characterized within a data center test environment.Publisher PDFPeer reviewe

    LHCb base-line level-0 trigger 3D-flow implementation

    Get PDF
    The LHCb Level-0 trigger implementation with the 3D-Flow system offers full programmability, allowing it to adapt to unexpected operating conditions and enabling new, unpredicted physics. The implementation is described in detail and refers to components and technology available today. The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on the replication of a single type of circuit of 100 k gates, which communicates in six directions: bi-directional with North, East, West, and South neighbors, unidirectional from Top to Bottom, the system offers full programmability, modularity, ease of expansion and adaptation to the latest technology. A complete study of its applicability to the LHCb calorimeter triggers is presented. Full description of the input data handling, either in digital or mixed digital-analog form, of the data processing, and the transmission of results to the global level-0 trigger decision unit are provided. Any level-0 trigger algorithm (2*2, 3*3, 4*4, etc.) with up to 20 steps, can be implemented with zero dead-time, while sustaining input data rate (up to 32-bit per input channel, per bunch crossing) at 40 MHz. For each step, each 3D-Flow processor can execute up to 26 operations, inclusive of compare, ranging, finding local maxima, and efficient data exchange with neighboring channels. (One-to-one correspondence between input channel and trigger tower.) Populated with only two main types of components, front-end FPGAs and 3D-Flow processors, a single type of board, it is shown how the whole Level-0 calorimeter trigger can be accommodated into six crates (9U), each containing 16 identical boards. All 3D-Flow inter-chip Bottom to Top ports connection are all contained on the board (data are multiplexed 2:1, PCB traces are shorter than 6 cm); all 3D-flow inter-chip North, East, West, and South ports connections, between boards and crates, are multiplexed (8+2):1 and are shorter than 1.5 m. Full implementation of a 3D-Flow system, for the most complex trigger algorithm, requires 320 cables to north and south crates and 40 cables to east and west crates (Cable cost=$2 each). For applications requiring a simpler real-time algorithm (e.g., requiring less than 20 steps, which is equivalent to 10 layers of 3D-Flow- processors), then the number of connections for the inter-boards (North and South), and inter-crates (East and West) will also be reduced to the number of layers used by the simpler algorithm, thus not requiring to install all cables (e.g., applications requiring only nine layers of 3D-Flow processors will save 32 cables to the North, 32 to the South, four to the East, and four to the West crates). Details are also given on timing and synchronization issues, ASIC design verification, real-time performance monitoring and design (software and hardware) development tools. (37 refs)

    Pluggable Optical Connector Interfaces for Electro-Optical Circuit Boards

    Get PDF
    A study is hereby presented on system embedded photonic interconnect technologies, which would address the communications bottleneck in modern exascale data centre systems driven by exponentially rising consumption of digital information and the associated complexity of intra-data centre network management along with dwindling data storage capacities. It is proposed that this bottleneck be addressed by adopting within the system electro-optical printed circuit boards (OPCBs), on which conventional electrical layers provide power distribution and static or low speed signaling, but high speed signals are conveyed by optical channels on separate embedded optical layers. One crucial prerequisite towards adopting OPCBs in modern data storage and switch systems is a reliable method of optically connecting peripheral cards and devices within the system to an OPCB backplane or motherboard in a pluggable manner. However the large mechanical misalignment tolerances between connecting cards and devices inherent to such systems are contrasted by the small sizes of optical waveguides required to support optical communication at the speeds defined by prevailing communication protocols. An innovative approach is therefore required to decouple the contrasting mechanical tolerances in the electrical and optical domains in the system in order to enable reliable pluggable optical connectivity. This thesis presents the design, development and characterisation of a suite of new optical waveguide connector interface solutions for electro-optical printed circuit boards (OPCBs) based on embedded planar polymer waveguides and planar glass waveguides. The technologies described include waveguide receptacles allowing parallel fibre connectors to be connected directly to OPCB embedded planar waveguides and board-to-board connectors with embedded parallel optical transceivers allowing daughtercards to be orthogonally connected to an OPCB backplane. For OPCBs based on embedded planar polymer waveguides and embedded planar glass waveguides, a complete demonstration platform was designed and developed to evaluate the connector interfaces and the associated embedded optical interconnect. Furthermore a large portfolio of intellectual property comprising 19 patents and patent applications was generated during the course of this study, spanning the field of OPCBs, optical waveguides, optical connectors, optical assembly and system embedded optical interconnects

    Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects

    Get PDF
    New broadband applications are causing the datacenters to proliferate, raising the bar for higher interconnection speeds. So far, optical board-to-board and rack-to-rack interconnects relied primarily on low-cost commodity optical components assembled in a single package. Although this concept proved successful in the first generations of optical-interconnect modules, scalability is a daunting issue as signaling rates extend beyond 25 Gb/s. In this paper we present our work towards the development of two technology platforms for migration beyond Infiniband enhanced data rate (EDR), introducing new concepts in board-to-board and rack-to-rack interconnects. The first platform is developed in the framework of MIRAGE European project and relies on proven VCSEL technology, exploiting the inherent cost, yield, reliability and power consumption advantages of VCSELs. Wavelength multiplexing, PAM-4 modulation and multi-core fiber (MCF) multiplexing are introduced by combining VCSELs with integrated Si and glass photonics as well as BiCMOS electronics. An in-plane MCF-to-SOI interface is demonstrated, allowing coupling from the MCF cores to 340x400 nm Si waveguides. Development of a low-power VCSEL driver with integrated feed-forward equalizer is reported, allowing PAM-4 modulation of a bandwidth-limited VCSEL beyond 25 Gbaud. The second platform, developed within the frames of the European project PHOXTROT, considers the use of modulation formats of increased complexity in the context of optical interconnects. Powered by the evolution of DSP technology and towards an integration path between inter and intra datacenter traffic, this platform investigates optical interconnection system concepts capable to support 16QAM 40GBd data traffic, exploiting the advancements of silicon and polymer technologies

    The reduction of broadband crosstalk interference between multiple conductors in a backplane interconnect and its performance impact on gigabit digital communication signals

    Get PDF
    Crosstalk interference from signal transmission between transmission line conductors limits channel throughput as amplitude distortion in an experimental backplane connector. Shared return conductor microstrip connectors arranged in stacks have resonant frequencies that are determined largely by cavity dimensions of the return conductor geometries. If an input waveform to the connector excites these resonant frequencies, the resonant energy will couple to other signal conductors in the connector and will result in crosstalk interference. Lossy materials can be used to reduce the resonant crosstalk interference in connectors. Quasi-conductor and magnetic absorber materials were used to reduce the resonant crosstalk in an experimental connector. Full-wave computer simulation was used to calculate connector S-parameters and was compared with measurement. Empirical equations were developed to relate experimental S-parameters of connector lossy material configurations with system bit-error-rate, channel Q, and eye pattern height at the data rate of 10.6Gbps

    Experimental Evaluation and Comparison of Time-Multiplexed Multi-FPGA Routing Architectures

    Get PDF
    Emulating large complex designs require multi-FPGA systems (MFS). However, inter-FPGA communication is confronted by the challenge of lack of interconnect capacity due to limited number of FPGA input/output (I/O) pins. Serializing parallel signals onto a single trace effectively addresses the limited I/O pin obstacle. Besides the multiplexing scheme and multiplexing ratio (number of inter-FPGA signals per trace), the choice of the MFS routing architecture also affect the critical path latency. The routing architecture of an MFS is the interconnection pattern of FPGAs, fixed wires and/or programmable interconnect chips. Performance of existing MFS routing architectures is also limited by off-chip interface selection. In this dissertation we proposed novel 2D and 3D latency-optimized time-multiplexed MFS routing architectures. We used rigorous experimental approach and real sequential benchmark circuits to evaluate and compare the proposed and existing MFS routing architectures. This research provides a new insight into the encouraging effects of using off-chip optical interface and three dimensional MFS routing architectures. The vertical stacking results in shorter off-chip links improving the overall system frequency with the additional advantage of smaller footprint area. The proposed 3D architectures employed serialized interconnect between intra-plane and inter-plane FPGAs to address the pin limitation problem. Additionally, all off-chip links are replaced by optical fibers that exhibited latency improvement and resulted in faster MFS. Results indicated that exploiting third dimension provided latency and area improvements as compared to 2D MFS. We also proposed latency-optimized planar 2D MFS architectures in which electrical interconnections are replaced by optical interface in same spatial distribution. Performance evaluation and comparison showed that the proposed architectures have reduced critical path delay and system frequency improvement as compared to conventional MFS. We also experimentally evaluated and compared the system performance of three inter-FPGA communication schemes i.e. Logic Multiplexing, SERDES and MGT in conjunction with two routing architectures i.e. Completely Connected Graph (CCG) and TORUS. Experimental results showed that SERDES attained maximum frequency than the other two schemes. However, for very high multiplexing ratios, the performance of SERDES & MGT became comparable

    Study and design of the readout unit module for the LHCb experiment

    Get PDF

    Development of optically interrogated diagnostic systems within materials ageing experiments

    Get PDF
    This research project aimed to develop diagnostic options for in situ use within future materials ageing experiments in complex engineering environments. The techniques developed were required to be suitable for multi-decade deployment and have minimal impact upon the experimental chemical ageing evolution. Optical fibre based diagnostic options for measuring temperature, barometric pressure, and gaseous concentrations were reviewed. The long-term suitability of fibre Bragg grating (FBG) temperature sensors, fibre Fabry-Pérot (FFP) pressure sensors, O2sensing fluorescence probes, and optical fibre switches were assessed experimentally in experiments that lasted up to 1 year. A bespoke fibre-coupled multi-pass spectroscopic gas cell was developed for the detection of H2O with a path-length of (6.47±0.05)m, along with novel techniques to package FBG and FFP sensors, hermetically pass optical fibres into the experimental volume, and route optical fibres. Custom optical fibre connectors for use both inside and outside the experiment were designed and evaluated. To support the diagnostics investigated, a bespoke interrogation system was created, with a design focus on modularity, redundancy, and long-term support. The research was evaluated against the project requirements, and together formed a potential concept for future materials ageing experiments requiring comprehensive and enhanced embedded diagnostic capabilities. The developed technologies were assessed as ranging in technology readiness level (TRL) from 2 to 6. For use in an experiment, further work would be required to mature the techniques up to TRL 9, and potential maturation routes are presented.Engineering and Physical Sciences Research Council (EPSRC) Grant number EP/L01596X/1
    corecore