
C
E

R
N

-T
H

E
SI

S-
20

02
-0

36
31

/
12

/
20

01
Study and Design of the Readout Unit
Module for the LHCb Experiment

José Francisco Toledo Alarcón

Under the direction of Dr. Francisco José Mora Más

Doctoral Thesis
Electronics Engineering Department

Universidad Politécnica de Valencia, 2001

To Hans, with gratitude.

I couldn’t have got this far

without your experience, support and leading.

i

List of acronyms xi

Preface 1
Introduction 1
Objectives 2
Thesis structure 4
Contributions by other engineers and physicists 6

CHAPTER 1 Data acquisition in high-energy physics experiments 9
Particle accelerators 9
Particle detectors 11

 Particle detector readout 12
Evolution of DAQ systems 13

Instrumentation buses for HEP in the 60’s and in the 70’s 14
DAQ and trigger systems in the 80’s 16
New trends in the 90’s 18
Trends in DAQ systems for the 21st century 20

The PCI Flexible I/O Card (PCI-FLIC) 22
Conclusions 24

CHAPTER 2 DAQ and Trigger systems in LHCb 27
The LHCb experiment at CERN 27

LHC: A new accelerator for new physics 27
A Large Hadron Collider Beauty Experiment (LHCb) 28

Front-end electronics overview 30
LHCb trigger and DAQ architecture 31

Trigger system 32
Data Acquisition (DAQ) system 34
Flow control in LHCb 35

CHAPTER 3 The Readout Unit for the LHCb experiment 39
Target applications in the LHCb experiment 39

The Readout Unit as input stage to the LHCb DAQ system 40
 The Readout Unit as Front-end Multiplexer for the Level-1 Electronics 43
The Readout Unit as readout module for the Level-1 Vertex Locator Trigger 45

Design criteria and parameters 47
DAQ Readout Unit functional requirements 47
Global decisions on the Readout Unit module design 49
Architecture and operation 50

Input stage 53
Input stage architectures 53
Modelling and simulation 57

Sub-event buffer 60
Memory management scheme 61
Buffer occupancy monitoring 62

Output stage requirements 64

ii
FEM application requirements 65
DAQ RU application requirements 65
Level-1 Trigger VELO application requirements 67

Output stage architectures 68
Single-processing-element output stage 68
Tandem-FPGA output stage 69

Overall module performance 71
Scalability and performance upgrade 72

Proposed Sub-event Transport Format (STF) for the DAQ 73
First proposals 74
Final sub-event transport format 77

Proposed input and output link technologies 79
CERN S-Link: a technology-independent interface to the Level-1 electronics 80
PCI: a technology-independent interface to the Network Interface Controller 82

Summary 88

CHAPTER 4 The first Readout Unit prototype 91
Overview 91
Module architecture 93

Input stage 94
Sub-event buffer 96
Output stage 97
Synchronization, front panel signals and RU reset 99
The Monitoring and Control Unit 100

Conclusions 102

CHAPTER 5 The Readout Unit II 103
Overview 103

Architecture 105
Input stage 106

Input stage design 109
Sub-event buffer 112
PCI subsystem 114
Output stage 116

TagNet interface implementation 117
Output to S-Link for the FEM application 118
Output to a PCI Network Interface card for the DAQ application 119
High bandwidth, tandem PCI master operation for the Level-1 VELO application 119

Physical implementation 121
Signal integrity studies 122

 Connectivity and crate environment 123
The MCU for the RU-II 124

Design choices 125
MCU architecture 127

CHAPTER 6 Readout Unit II laboratory tests 131
Overview 131

iii
S-Link to S-Link dataflow test 132
PCI subsystem test 134

Access to the Sub-event buffer from PCI 134
Control and monitoring registers in the FPGAs 138
Performance measurement tests 139
Conclusions 143

CHAPTER 7 Conclusions 145
New trends in DAQ systems for HEP experiments 145
Contribution to the LHCb DAQ and Trigger systems 146

Readout Unit modules 147
Monitoring and Control Unit (MCU) for the Readout Unit 149
Readout Unit II laboratory tests 149
Data formats and link technologies 150

Current and future work 150
An alternative approach based on Network processors 150
A Readout Unit on a PCI-X card 151
A test station for the Readout Unit 153

References 157

APPENDIX I Application development 165

FPGA development environment 165
HDL design flow 165

MCU development 168
Access to PCI devices in Linux 168
The flasher utility 169
The rwpci utility 169
I2C and JTAG controller utilities 170

APPENDIX II Data Acquisition and trigger systems in NA-60, a small HEP experi-

ment 171

The NA-60 experiment 171
Detector geometry 171
Trigger system 172
DAQ system architecture 173

Application of the PCI-FLIC to NA-60 detector readout 174
Other sub-detectors 175

iv

v

Basic functionality of a Readout Unit module. 3
Fig. 1-1. Typical detector readout analog front-end circuit. 13
Fig. 1-2. DAQ architecture in the seventies: NIM-based front end readout via

CAMAC by a minicomputer. 15
Fig. 1-3. TRIUMF’s DAS CAMAC architecture example. 15
Fig. 1-4. DAQ in the eighties: tree-like distributed architectures, DAQ

partitioning and trigger systems. 17
Fig. 1-5. ALEPH DAQ system architecture. 18
Fig. 1-6. DAQ in the nineties: event-building networks for gigabyte data

rates. 19
Fig. 1-7. ALICE DAQ and Trigger architecture. 20
Fig. 1-8. On-board data processing paradigm. 21
Fig. 1-9. The Flexible I/O concept. 22
Fig. 1-10. PCI-FLIC card architecture. 23
Fig. 1-11. PCI-FLIC outline. 23
Fig. 1-12. Picture of the PCI-FLIC card. 24
Fig. 1-13. LHC experiments compared other experiments in terms of event rate

and size. 25
Fig. 2-1. LHCb detector seen from above (bending plane). 28
Fig. 2-2. Isometric view of the LHCb experimental area. 29
Fig. 2-3. Front-end electronics architecture in LHCb. 31
Fig. 2-4. LHCb Trigger and DAQ system architecture. 32
Fig. 2-5. The vertex detector topology showing the individual r and phi

detectors. 33
Fig. 2-6. Sub-event buffer fill state monitoring and throttle signal

generation. 36
Fig. 2-7. Level-1 Trigger throttling. 37
Fig. 3-1. The three areas of application of the Readout Unit in the LHCb DAQ

and Trigger systems. 40
Fig. 3-2. The Readout Unit as entry stage to the DAQ system. 41
Fig. 3-3. DAQ Readout Unit functional blocks. 42
Fig. 3-4. Combined use of RUs as Front-end Multiplexer and DAQ entry

stage. 43
Fig. 3-5. FEM functional blocks. 44
Fig. 3-6. 2-D torus network with RUs as data sources for the Level-1 VELO

trigger data acquisition. 45
Fig. 3-7. VELO Readout Unit functional blocks. 46
Fig. 3-8. Readout Unit functional blocks. 51
Fig. 3-9. 4-to-1 multiplexing card for FEM application. 52
Fig. 3-10. Single processing element in the input stage. 53
Fig. 3-11. Two processing elements in the input stage. 54
Fig. 3-12. Four processing elements in the input stage. 54
Fig. 3-13. Maximum trigger rate as a function of the event fragment size,

normalized to 1 KByte. 56
Fig. 3-14. Relative trigger rate for small event fragments, normalized to 64

byte. 57
Fig. 3-15. Latency from Level-1 output to DAQ-RU input. 59
Fig. 3-16. DAQ-RU FIFO size histogram (worst case). 59
Fig. 3-17. Logic structure of the sub-event buffer. 61

vi
Fig. 3-18. Entry in the Directory Block. 62
Fig. 3-19. Event fragment storage in SEB memory. 62
Fig. 3-20. Buffer occupancy monitoring. 63
Fig. 3-21. VHDL code for buffer fill state monitoring. 64
Fig. 3-22. Output stage block diagram. 65
Fig. 3-23. Protocol between the sub-event builder and the NIC for the DAQ RU

application. 66
Fig. 3-24. Parallelized sub-event building protocol for the DAQ RU

application. 67
Fig. 3-25. PCI bus efficiency for VELO application. 68
Fig. 3-26. Output stage architecture for a single- or double-processing-element

input stage. 69
Fig. 3-27. Two-processing-element output stage architecture. 70
Fig. 3-28. Maximum trigger rate as a function of the NIC latency for the two

output-stage architectures. 71
Fig. 3-29. Tandem operation of the two FPGAs. 71
Fig. 3-30. Overall performance for input and output stages. 72
Fig. 3-31. First proposed STF. 74
Fig. 3-32. S-Link based STF. 75
Fig. 3-33. Sub-event building according to the first proposed STF. 76
Fig. 3-34. Sub-event transport format for LHCb FEM and DAQ RU. 77
Fig. 3-35. Example of sub-event building. 78
Fig. 3-36. S-Link connector signals. 80
Fig. 3-37. Parallel copper S-Link card (LVDS signaling, 160 MByte/s). 81
Fig. 3-38. Frame delimiting with S-Link control signals. 81
Fig. 3-39. Timing budget for 3.3V PCI implementation in 33-MHz mode. 82
Fig. 3-40. An example of hierarchical PCI architecture. 83
Fig. 3-41. Write transaction protocol in PCI. 84
Fig. 3-42. Read transaction protocol in PCI. 85
Fig. 3-43. PCI bus theoretical performance for a 32-bit 33-MHz bus. 86
Fig. 3-44. Throughput measurement on two commodity PCs. 87
Fig. 3-45. Performance for CPU-initiated PCI transactions in several

platforms. 88
Fig. 4-1. First RU prototype. 92
Fig. 4-2. Architecture of the first RU prototype. 94
Fig. 4-3. Implementation of a 64-bit FIFO with 32-bit buffers. 94
Fig. 4-4. Detail of the S-Link connector and the two FIFOs below the

mezzanine. 95
Fig. 4-5. Block diagram of the SEM FPGA logic. 96
Fig. 4-6. Sub-event buffer implementation. 97
Fig. 4-7. Dual-port and quad-port modes in the ORCA3TP12 FPGA PCI

interface. 98
Fig. 4-8. Output stage block diagram. 98
Fig. 4-9. RU Reset hierarchy. 99
Fig. 4-10. MCU block diagram for the first RU prototype. 101
Fig. 4-11. MCU-RU interconnection in the first RU prototype. 101
Fig. 5-1. Readout Unit II. 104
Fig. 5-2. RU-II horizontal architecture. 105

vii
Fig. 5-3. RU-II architecture. 106
Fig. 5-4. Event fragment merging in the sub-event buffer. 107
Fig. 5-5. Input stage algorithm for the DAQ application. 108
Fig. 5-6. Timing diagram illustrating a potential timing error avoided using a fast

auxiliary PLD. 109
Fig. 5-7. RU-II input stage. 110
Fig. 5-8. Detailed interconnection scheme between the FIFO, PLD and

FPGA. 111
Fig. 5-9. PLD state diagram. 112
Fig. 5-10. Structure of a dual-port memory bank. 113
Fig. 5-11. Dual-port memory connection scheme in the SEB. 113
Fig. 5-12. Photography of the Sub-event buffer in the RU II. 114
Fig. 5-13. PCI subsystem in the Readout Unit II. 115
Fig. 5-14. Output stage architecture. 116
Fig. 5-15. TagNet implementation. 117
Fig. 5-16. Proposed TagNet formats. 117
Fig. 5-17. Output data path for the FEM application. 118
Fig. 5-18. Output stage algorithm for VELO application. 120
Fig. 5-19. Tandem PCI master operation. 120
Fig. 5-20. RU-II board arrangement. 121
Fig. 5-21. Readout Unit II stack-up. 122
Fig. 5-22. Definition of net topology with SpecctraQuest SigNoise. 122
Fig. 5-23. Simulation of the net corresponding to figure 5-22. 123
Fig. 5-24. DAQ RU connections in crate. 124
Fig. 5-25. Picture of the F6859 CERN crate. The upper rear half is free. 124
Fig. 5-26. ZFx86 internal architecture and PCI interface. 127
Fig. 5-27. MCU card architecture. 128
Fig. 5-28. MCU, bottom and top views (actual size). 129
Fig. 6-1. STF pattern generator card for RU-II test. 132
Fig. 6-2. Output from the STF pattern generator card. 132
Fig. 6-3. Example of sub-event (part 1 of 2). 133
Fig. 6-4. Example of sub-event (part 2 of 2). 133
Fig. 6-5. Sub-event building measurement. 134
Fig. 6-6. Data path between the MCU and the Sub-event buffer. 135
Fig. 6-7. Quad port and Dual port modes for the PCI interface logic in the

FPGA. 136
Fig. 6-8. PCI bus 1 activity captured with a PCI analyzer. 137
Fig. 6-9. MCU terminal dump. 137
Fig. 6-10. Single-word DPM read from the MCU. 138
Fig. 6-11. Access to a user defined register in the FPGAs: write followed by a

read. 139
Fig. 6-12. FPGA-to-FPGA write test setup. 140
Fig. 6-13. Eight-word burst transaction between FPGAs in the output stage. 140
Fig. 6-14. Ten empty clock cycles between transactions. 141
Fig. 6-15. PCI bus efficiency in the DAQ scenario. 141
Fig. 6-16. 64-byte burst write to a Dolphin SCI NIC (LC4000 and L5B9350

chips). 142
Fig. 6-17. A single idle cycle between transactions can be achieved. 142

viii
Fig. 6-18. FPGA read initiated by the TA-700 bus analyzer. 143
Fig. 7-1. Preliminary performance results for the Network Processor

proposal. 151
Fig. 7-2. Draft floor plan for the RU PCI-X card. 152
Fig. 7-3. A possible PCI-X motherboard architecture. 153
Fig. 7-4. Test station architecture with S-Link to S-Link configuration. 154
Fig. 7-5. Test station software block diagram. 155
Fig. I-I. HDL design flow for the RU FPGAs. 166
Fig. I-II. Design flow with Lucent Technologies’ ORCA FPGAs. 167
Fig. I-III. Example of C code to access PCI-mapped memory in the FPGAs. 168
Fig. I-IV. Programming interface in the RU on-board clock generator. 170
Fig. II-I. NA-60 detector layout. 172
Fig. II-II. NA-60 DAQ system block diagram. 173
Fig. II-III. Muon spectrometer readout. 174
Fig. II-IV. RMH mezzanine card. 175

ix
Table 1.1. Bandwidth limitations of backplane and inter-crate buses 19
Table 3.1. Simulated event fragment size into the RUs for the different sub-

detectors 42
Table 3.2. Requirements for DAQ application 43
Table 3.3. FEM Requirements 44
Table 3.4. RU requirements for the Level-1 Vertex application 46
Table 3.5. Design parameters for RU applications in LHCb 47
Table 3.6. Comparison in terms of relative cost and number of ICs 55
Table 3.7. Input stage throughput 55
Table 3.8. Level-1 trigger rate and block size 58
Table 3.9. Multiplexing stage parameters 58
Table 3.10. RU-II overall performance 72
Table 5.1. RU crate power requirement 124
Table 5.2. Non-standard MCU-RU interface signals 130
Table 6.1. User-defined register mapping 138

x

xi
 List of acronyms
CPLD Complex Programmable Logic Device

DAQ Data Acquisition

DB Data Block
DPM Dual-Port Memory

DYB Directory Block

EBI Event-Building Interface
ECS Experiment Control System

FCFS First Come, First Served

FEE Front-End Electronics
FEL Front-End Link

FEM Front-End Multiplexer

FLIC Flexible Input/Output Card
FPGA Field-Programmable Gate Array

GAL Gate Array Logic, a kind of programmable device

GPIO General Purpose Input/Output
HEP High-Energy Physics

HDL Hardware Description Language

IC Integrated Circuit
L1 Level-1 Trigger

MCU Monitoring and Control Unit

NIC Network Interface Controller

ODE Off-Detector Electronics

List of acronymsxii
PLD Programmable Logic Device

PMC PCI Mezzanine Card

RN Readout Network
RU Readout Unit

SEB Sub-Event Buffer

SEM Sub-Event Merging

SFC Sub-Farm Controller
STF Sub-event Transport Format

TTC Trigger and Timing Control

VELO Vertex Locator

 Preface
“A beginning is the time for taking the most delicate care that the
balances are correct”

From the novel “Dune” by Frank Herbert.

Introduction

This engineering doctoral thesis has been carried out at the Electronics Design group,
Experimental Physics division, of the European Laboratory for Nuclear Research (CERN) in
Geneva, Switzerland. The CERN Doctoral Student programme gave me the opportunity to
obtain a CERN doctoral student grant (from July 1998 until September 2001) and thus have the
privilege to work closely with members of the Electronics Design group (CERN EP/ED) and the
LHCb Collaboration at CERN.

This international research organization is building its new generation of high-energy physics
(HEP) experiments around its new TeV-range proton synchrotron: the LHC (Large Hadron
Collider), an upgrade to the existing LEP (Large Electron-Positron) collider. One of the four
approved experiments at the LHC is a single-arm spectrometer designed to study the CP1

violation in the decay of the B meson: the LHCb experiment. Its purpose is to gain a better
understanding of symmetry violations in Nature and help to answer questions such as why is
there more matter than anti-matter in our universe2. Another way to search for new physics
beyond the Standard Model in LHCb is the study of rare or forbidden B-meson decays.

Data Acquisition (DAQ) and Trigger systems in the four LEP experiments (OPAL, L3, ALEPH
and DELPHI) were designed in the eighties to handle data rates in the order of megabytes per

1. CP symmetry, C (particle-antiparticle interchange) and P (space inversion). The product CP was a good symmetry
until found to be violated in Ko decays in 1964.

2. A less romantic description of the LHCb experiment’s goal is to measure, with more accuracy than ever, the
coefficients of a three-by-three matrix (namely the CKM matrix) that describes the B meson decay.
1

Preface2
second, whilst LHC experiments (ATLAS, ALICE, CMS and LHCb) will have to deal with
gigabyte-per-second data flows. What makes such an enormous difference?. Firstly, it must be
taken into account that proton colliders like LHC provide “dirty” events (i.e., the interesting
interactions are surrounded by a large background of non-interesting phenomena) when
compared to electron-positron colliders. This translates into larger events and more complex
event filtering, as more refined algorithms are required.

Secondly, the high luminosity1 of LHC (one or two orders of magnitude higher than previous
high-energy colliders, including LEP) will cause multiple interactions per bunch crossing
(pileup), which will also increase event sizes and will make event filtering and reconstruction
more difficult. Thirdly, high bunch crossing rates (40 MHz) and million-data-channel
granularity will produce higher data throughputs.

As a consequence, the LHC experiments will require unprecedented challenging, cutting-edge
electronics for detector readout, event filtering, event building and storage. The Fastbus- and
VME-based tree architectures of the eighties run out of steam when applied to LHC’s DAQ
requirements. New concepts and architectures change rack-mounting backplane buses for high-
speed point-to-point links, abandon the centralized event building and use switched networks
and parallel architectures instead, and replace mainframes and workstations with cheaper PC
farms.

Following these trends, and in the context of the LHCb data acquisition (DAQ) and trigger
electronics, this doctoral thesis aims at investigating the feasibility, studying the architectures
and implementations, developing and testing a crucial electronics module for the LHCb
experiment: the Readout Unit (RU).

Objectives

HEP experiments in general, and LHCb DAQ and trigger systems [LHCC98-4] in particular,
share the need for readout modules that accept incoming event fragments from several inputs
and assemble them into larger sub-events, outputting to a single higher-bandwidth link. Thus,
data is processed on-board and routed via I/O links in the front- and back-panel, rather than the
traditional approach of data processing and routing across a crate backplane. This basic
functionality called sub-event building is recurrent in HEP experiments and usually requires
custom design for high-throughput applications, due to the lack of commercial systems that
comply with the specific requirements. Besides the sub-event building functionality, the readout
modules must provide enough buffering to compensate for fluctuations provoked by a number
of causes such as flow control and error handling.

A functional block diagram of such a readout module is shown in the following figure. Three
main functional blocks can be identified:

1. LHC will also produce, besides proton-proton collisions, nucleus-nucleus interactions for heavy ion experiments
like ALICE. In this case, both luminosity and bunch crossing rate will be lower than in other LHC experiments.
Large event sizes will compensate for these low figures, resulting also in challenging trigger and data acquisition
systems. LHCb will exploit proton-proton interactions only.

Objectives 3
1. An input stage which merges incoming event fragments sharing the same event number.
2. An intermediate sub-event buffer in which these event fragments are stored according to a

defined format. Input and output stages are isolated by this buffer that operates logically as a
dual-port memory.

3. An output stage that reformats fragments in the sub-event buffer into a single sub-event
which is sent to the next stage according to defined protocols and data formats.

Three modules requiring sub-event building and buffering have been identified in LHCb, and a
common approach to the three of them has been carried out under the name of the Readout Unit
Project for the LHCb experiment. These modules are:

1. Front-end Multiplexer module (FEM) for the off-detector electronics [LHCb-98-069].
2. Readout Unit (RU) for the DAQ system [RUnote].
3. Readout Unit for the Level-1 Vertex Locator (VELO) trigger [Schulz01].

Although the basic functionality is the same in all three applications, there are important
differences in terms of throughput (40 to 240 MByte/s), trigger rate (40 kHz to 1 MHz) and sub-
event building protocols. Thus, the RU must be a flexible and reconfigurable general-purpose
module to be used as an entry stage to a DAQ or trigger system. Other functionalities, like an
interface to the Experiment Control System are required in the LHCb applications.

Basic functionality of a Readout Unit module.

 The objectives of this thesis are:

1. Investigate the feasibility of the Readout Unit for the LHCb experiment and define its
architecture and algorithms in the context of the LHCb DAQ and trigger systems.
Modules with the above mentioned functionalities have been designed for HEP experiments
(either as custom-made or commercial products) since the eighties, most of them based on
processors. There is nowadays, though, a trend towards programmable-logic based designs
justified by higher throughput requirements, as posed by LHC experiments, leading to new
solutions and architectures like the ones presented in this thesis.

The feasibility of an architectures is ultimately determined by the state of the art in the basic
building blocks (like FIFO and dual-port memories, FPGA, network and link technologies,
etc.), and so architectures become quickly obsolete as new technologies emerge to replace
the “older” ones. This inherent obsolence, clearly a limitation for upgrading and
maintenance during the life span of the module (around fifteen years), poses the twofold
requirement of using state-of-the-art architectures, technologies and components that

M
U

X BUFFER INTERFACE TO
OUTPUT LINK

IN
PU

T
LI

N
K

S

Preface4
provide the required performance and, on the other hand, that will remain in the market for a
long-enough period.

2. Design and implement the Readout Unit.
Working with state-of-the-art technology usually means dealing with non-stable and
incomplete documentation and tools, unknown bugs and errata in data sheets and integrated
circuits. Specific issues related to new technologies must be usually sorted out and evaluated
before solutions are brought to market. All these problems must be solved in order to come
to a RU module implementation. As a result, design becomes an important issue in this
work.

3. Validate the design through laboratory tests and measurements.
In-system tests cannot be carried out, as the previous and next stages in the data flow chain
have not been implemented so far. Thus, validation must be done, for the time being,
through laboratory tests using pattern generators for Level-1 data emulation and logic and
PCI analyzers to capture the output link data.

4. Participate in the definition of the LHCb DAQ and trigger link technologies, data
formats and protocols.
Most of the algorithms, protocols and data formats affecting the Readout Unit were
undefined at the time the Readout Unit project started. Moreover, the upstream and
downstream1 components (Level-1 electronics, DAQ and Level-1 trigger readout networks)
and link technologies were not designed either. Flexible solutions must be found to evaluate
different link technologies until a final decision is taken and to allow upgrading during the
lifetime of the experiment. The chosen data formats must be characterized by low framing
overhead and easy error logging, tracing and detection.

The feasibility of the module has been investigated an several architectures have been studied,
leading to the construction of two different prototypes. Work has also been carried out in the
definition of the link technologies, data formats and protocols between the Front-end Electronics
and the RUs and between the RUs and the destination (application dependent). The proposed
interface technologies and data formats were accepted by the LHCb Collaboration. All these
achievements are described in this thesis.

Thesis structure

This thesis is divided into seven chapters.

An historical review of the technologies and architectures used in DAQ and trigger systems in
HEP experiments is presented in chapter one. In an evolution characterized by a continuous
increase in data rates and event sizes, the DAQ electronics shifted from the 70´s CAMAC-based
systems to the 80´s and 90´s Fastbus and VME systems. Some innovations were introduced in
the 90’s, like switched networks for event building, PC-based computing farms and high-speed
point-to-point links for inter-module and inter-crate communications. In a recent trend, VME is

1. Upstream is towards the detector.

Thesis structure 5
replaced by PCI. The Flexible I/O concept is exposed and our implementation, the PCI-FLIC, is
presented.

Chapter two gives an insight into the LHCb DAQ and Trigger systems and allows to place the
work in its context. High trigger rates (40 kHz) and event sizes in the order of 100 KByte
produce about 4 GByte/s of data through the DAQ system. For comparison, ALEPH (a large
LEP experiment) produces also 100 KByte events through its DAQ system, but at a 10 Hz rate.
Not less challenging, the four-level Trigger system reduces the initial 40 MHz bunch crossing
rate down to 200 Hz event rate to permanent storage.

One characteristic of LHCb is the indirect flow control. Instead of using duplex data links, as
other LHC experiments do, data sources push data into the destinations via simplex links. The
destinations must be always ready to accept data. This results in cheaper links and simpler
protocols. On the other hand, buffer overflow must be avoided. Both requirements can be met by
implementing a “throttle output” in all destination modules which is asserted when buffers get
full beyond a certain threshold. These signals are centrally monitored by a supervisor unit that
inhibits the Level-1 trigger whenever there is a risk that any buffer in the system overflows. The
flow control logic is then a critical sub-system with the Readout Unit as one of its components.

The Readout Unit applications, requirements, architecture and performance studies are covered
in chapter three. With applications ranging from 40 to 240 MByte/s, event rates from 40 kHz to
1 MHz and the need to support a wide range of link technologies, reconfigurability, flexibility,
scalability and performance are the key parameters that determine the architecture. Different
architectures are analyzed and the module feasibility (in terms of performance and buffer size) is
studied.

The RU I/O technologies proposed in this work are presented (CERN S-Link for data input and
slow output, and PCI as interface to commercial network interface cards for high bandwidth
output), together with our proposed Sub-event Transport Format (STF) for data transport across
the DAQ system.

The architectural studies presented in the previous chapter led to a first prototype
implementation described in chapter four. This prototype is a 9U Fastbus board with FPGA-
based input and output stages, dual-port-memory sub-event buffer and plug-in I/O and MCU
mezzanine cards. FPGAs and dual-port memory provide high performance, mezzanine cards
allow flexibility to test different technologies and the Fastbus form factor provides the
advantages described in section 4.1. The backplane is only used for power, routing all the I/O via
data links in the front- and back-panel. Intended as a demonstrator unit and an evaluation
platform for critical components and technologies like the PCI bus, the MCU and the FPGAs, its
design and manufacturing turned out to be a invaluable training and experience to tackle the
design of its successor: the Readout Unit II.

The Readout Unit II, described in chapter five, is intended as a final module design. It relies on
a two parallel 32-bit data-path concept rather than on the 64-bit architecture of its predecessor. It
implements a number of simplifications and improvements like support for the Level-1 VELO
application, larger sub-event size, and a new MCU in a standard PMC form factor, removing the
dependence on a single-company product.

Preface6
Only the most relevant implementation issues are presented in chapters four and five for the sake
of clarity, hiding the effort implied in the design of such complex boards.

The RU-II design and FPGA code have been validated by laboratory tests described in chapter
six. S-Link input to S-Link output tests have been carried out (see section 6.2) to demonstrate
the input stage sub-event merging (valid for all three applications) and sub-event building (FEM
application only) functionalities as well as the correct behavior of the hardware, thus validating
most of the design. In order to complete this validation, the PCI subsystem has been tested
(section 6.3) for both the MCU-based monitoring and control and the PCI-based sub-event
building functionalities. The latter validates also the DAQ and VELO application sub-event
building concepts.

This chapter is followed by the conclusions, which summarize the work carried out, the
scientific publications derived from it, and points at future lines of work.

The first appendix (Application Development) gives an insight into the development
methodology and tools for the Readout Unit’s FPGAs and MCU.

This thesis describes a novel solution for a large HEP experiment. For the sake of completeness,
a solution for a small experiment based on the PCI-FLIC card is presented in the second
appendix.

Contributions by other engineers and physicists

The Readout Unit Project started in July, 1998, when I joined the EP/ED group at CERN. At that
point, the RU was just a black box outlined in the LHCb Technical proposal document and
sketched in a few LHCb technical notes. Three permanent members (Dr. Hans Müller, project
leader and supervisor at CERN for this thesis work, François Bal, electronics design engineer
working part-time in the project in data-link related topics, and me, doctoral student responsible
for the RU implementation studies and design), with the reinforcement of other students
whenever possible, formed the Readout Unit Team. This team worked closely with other
members of the LHCb Collaboration in the framework of the large and multi-national project
which is LHCb.

As a consequence, some of the work done in the project and mentioned in this document has
been carried out by other physicists and engineers and this thesis should not be credited with it.
In particular:

1. The Level-1 VELO readout network (2-D SCI torus architecture with TagNet scheduling
bus) described in section 3.1.3 and the TagNet command format in section 5.5.1 are part of
the work done by V. Lindendstruth, M. Schulz and A. Walsch from the Kirchhoff-Institute
für Physik, Heidelberg in the context of the Level-1 trigger implementation project.

2. The sub-event building protocol for the DAQ application described in section 3.5.2 was
originally proposed by B. Jost and N. Neufeld, from the CERN LHCb Group.

3. The MCU programming for the first Readout Unit was done by B. Bruder, a French
cooperant who worked at CERN EP/ED. He should also share in a 50% the credit for the
design of the MCU for the Readout Unit II (section 5.8).

Contributions by other engineers and physicists 7
4. The final version of the input stage FPGA code for the Readout Unit II was developed by D.
Domínguez, technical student at CERN EP/ED. He also spent many hours at the laboratory
testing the Readout Unit modules and co-wrote the flasher utility to program the FPGAs
from PCI (section I.II).

5. The STF pattern generator card (section 6.2) and the S-Link rx./tx. card for the Readout Unit
test station (section 6.3) were designed by F. Bal, design engineer at CERN EP/ED.

6. A. Guirao, from CERN EP/ED, tested and debugged the MCU for the Readout Unit II and
developed the output stage FPGA code for the tests presented in section 6.2.

7. The flasher utility to program the FPGAs from PCI, the foundation for the rest of the PCI
programming in section I.II and the PCI-FLIC driver for Linux are part of the work done by
A. David, doctoral student at CERN for the NA-60 experiment.

8. The LHCb DAQ and trigger system architecture were defined by the LHCb collaboration
[LHCC98-4].

9. The NA-60 experiment, briefly described in appendix II, is not part of this thesis. The sole
relation with this thesis is the fact that I designed the PCI-FLIC card, backbone of the NA-60
DAQ system.

Preface8

CHAPTER 1 Data acquisition in high-energy
physics experiments
“All DAQ systems are by definition beyond the state of the art. No one
designs a new one when an old system can be adapted or upgraded to
do the job”

Peter S. Cooper, Fermi National Accelerator Laboratory.

1.1. Particle accelerators

High energy physics (HEP) study phenomena occurring at very high energies, creating
conditions under which matter behaves in non usual ways and then new Nature laws manifest.
HEP experiments consist normally in colliding accelerated particles with other accelerated
particles or with fixed targets. Collision produces complicated reactions which are detected,
stored and studied in order to find these new Nature laws.

The first HEP experiment [Fraser97] took place at the Rutherford’s laboratory in 1932 and
consisted on hitting litium nuclei with protons which had been previously accelerated in a high-
vacuum tube. The voltage difference across the tube gave enough energy to the protons to break
litium nuclei: a breakthrough in the study of the nuclear structure. But it was clear that new
instruments were needed in order to reach higher energies in the proton beams. This need gave
birth to the first particle accelerators.

The particle accelerator history started in the early thirties when Ernest Orlando Lawrence at
Berkeley turned his attention into the acceleration of charged particles by magnetic fields. His
idea was to make particles spiral by the effect of magnetic fields, gaining energy each time they
passed through the voltage gap of an oscillator. The practical implementation of this idea was
the cyclotron. His first demonstration model reached only 80 keV, but before the end of the
decade Lawrence’s cyclotrons progressed up to 19 MeV. The first applications of these machines
were the production of radioactive isotopes and plutonium and the separation of uranium
isotopes during the Second World War. As beam energies (i.e., particle speed) become higher
and higher, the applied magnetic field had to be shaped to compensate for relativity. Magnetic
9

Data acquisition in high-energy physics experiments10
field modulation allowed cyclotrons (now called synchrocyclotrons) to go up to 190 MeV in
1946.

Using quite a different approach, the advances in klystrons during the Second World War
allowed the construction of relatively-small linear accelerators, with the Stanford Linear
Accelerator Center (SLAC) in California leading the developments in this technology. Starting
in 1947 with a 6 MeV machine, Stanford reached 900 MeV in 1957.

Still in wartimes, the idea of having a beam of charged particles circulating in a ring and
behaving as the secondary of a transformer gave birth to the betatron in 1940. It was used as a
portable x-ray machine in hospitals and for bomb detection applications. The concept was
extended by Veksler in Russia and McMillan at Berkeley, introducing the idea of ‘phase
stability’ in which particles were packed in bunches that are accelerated by synchronized pulses.
This new machine was christened synchroton. In 1953, a synchroton in Brookhaven reached 3.3
GeV and was christened cosmotron, as it was the first machine to achieve cosmic-ray energies.

A further improvement to the synchroton was the ‘strong focusing’, in which magnets are
alternately facing inwards and outwards and not only outwards as it had been done previously.
This modification increased the focusing power and thus allowed the beam to be squeezed in a
smaller beam pipe with the benefit of a reduced magnet cost (as magnets enclose the beam pipe).
At the end of the fifties, the world’s highest-energy machine was CERN’s Proton Synchroton
(PS) which reached 25 GeV. New terms were coined for the new synchrotons in the seventies,
with energies in the order of several hundreds of GeV: supersynchroton and tevatron.

The next step in the evolution of particle accelerators towards higher energies was to collide
particle beams together. This way, with no kinetic energy loses in a fixed target, more energy is
available for particle-to-particle interactions. This could be achieved either by colliding two
beams circulating in two different rings that met tangentially or, more efficiently in terms of
costs, by accelerating in the same ring two beams with particles of opposite charge. In 1971, the
ISR (Intersection Storage Ring) at CERN collided two 31 GeV proton beams, which was
equivalent to a 2 TeV proton beam colliding a fixed target. LEP (Large Electron-Positron
collider) at CERN, SLC (Stanford Linear Collider) at SLAC and PETRA at DESY (Hamburg,
Germany) are three modern examples of electron-positron beam colliders. HERA at DESY is
an example of electron-proton collider, SPS at CERN is a proton-antiproton one. These
experiments took place in the eighties and nineties.

Last (so far) in the dynasty of large colliders, the LHC at CERN will be a proton1 synchroton
beam collider conceived for a TeV energy range. Superconducting magnets to produce the high
magnetic fields needed to bend the beams and higher luminosity2 are just two of the technical
challenges that LHC designers and builders have to face.

1. Synchroton radiation losses at LHC energies in an electron beam would be too high, so protons (which have a
much larger mass) are used in LHC.

2. Required to compensate for the resulting reduced cross section at high energies.

Particle detectors 11
1.2. Particle detectors

During the fifties, synchrocyclotrons, synchrotons, linear accelerators and cosmic rays1 were the
main sources of high-energy particles. Particle beams smashed onto fixed targets producing a
spread of particles that had to be detected. The instrument that had been used so far was the
cloud chamber2, also called Wilson chamber. A chamber was filled with a gas, in fact, a
mixture of vapor in equilibrium with liquid and a non-condensing gas. This mixture was brought
into a supersaturated state by expansion. Condensation started around the ions generated by
passing charged particles, and the resulting drops were photographed. Already in the early fifties
it was clear that this instrument was not able to work properly in a new environment
characterized by:

• High energy particles that could not be easily stopped by gases or vapors.
• Interaction rates too high for the chamber’s expansion time.

In order to alleviate these limitations, the bubble chamber was invented in the early fifties. The
sudden reduction in pressure in a liquid (hydrogen, propane or freon) made it boil following the
track left by a particle. Liquids could stop high energy tracks that gases could not, and so the
bubble chamber was better suited for the new particle accelerators. A good example is CERN’s
GARGAMEL bubble chamber, which worked from 1971 until 1984. Thousands of photographs
had to be taken in experiments until a rare (and thus interesting) event was captured. It was not
unusual that HEP institutes claimed a new discovery with the sole evidence of one or two
photographs.

But the future of particle detectors was clearly in electronics. The antiproton was the first
particle discovered by electronic means in the late fifties. In late sixties, Charpak at CERN
invented the multiwire chamber [Charpak76]. It was conceived as a detector for charged
particles consisting of thin parallel and equally spaced anode wires sandwiched between two
cathode planes. Cathodes have a negative voltage whilst anodes are grounded, creating an
electric field. Particles passing through the detector ionize the gas in the chamber and the
liberated electrons, which are collected by the anodes, are accelerated as the electric field
increases close to the anodes, producing further gas ionization and resulting in an avalanche of
electrons reaching the anode. The multiwire chamber provided tracking information with a
spatial resolution of less than 1 mm as well as momentum information (indicated by the pulse
amplitude in the anode wire). The multiwire chamber could be read out by a computer, with all
the implied benefits (on-line data analysis, detector read out at kilohertz rates, possibility to
trigger on specific events, measurement automatization, etc.).

The multiwire chamber was replaced by more sophisticated variants like the drift chamber
[Charpak74], in which the spatial resolution is enhanced by combining the wire coordinates with
temporal information (the drift time, i.e., the time it takes to the electrons to drift from the place
where the high-energy particle ionized an atom to the nearest sense wire). All kinds of chambers
share the drawback of having long drift times (up to 100 µs) that limit the frequency of operation
to a few kilohertz.

1. From the fifties on, as the machines were able to produce energies beyond the GeV, cosmic-ray experiments lost
protagonism. Nowadays, cosmic rays are still used in the absence of particle beams for test purposes.

2. By the end of the forties, another technique had been introduced: blocks of photographic emulsion in which tra-
versing particles left tracks.

Data acquisition in high-energy physics experiments12
Other types of detectors used nowadays which require an electronic readout system are:

• Scintillators. There is a large number of materials that can be used to build scintillators,
though plastic is the most common one. Scintillators utilize the ionization produced by
charged particles to generate optical photons. PMTs (photo multiplier tubes) transform the
photon’s energy into an electrical signal. With only 10 ns dead time and 150 ps time
resolution, these are one of the fastest detectors.

• Silicon detectors: Semiconductors have been used as particle detectors since the fifties,
exploiting the low ionization energy of silicon (3.6 eV per e-hole pair). The basic structure for
silicon strip detectors [Charles99] consists of a sandwich structure of a N-type bulk between
P+ and a N+ implants. The structure is reverse biased (20 to 30 V) to produce complete
depletion in order to allow charge drift, which is collected in metallic contacts at the implants.
Long and thin parallel implants (strips) provide spatial resolution better then 50 µm and
multimegahertz readout speed. Other kinds of silicon detector, the silicon drift detector and
the pixel detector, are also used nowadays. Silicon drift detectors enhance spatial resolution at
the expense of speed by taking into account the charge drift time, whilst pixel detectors
provide high-granularity two-dimensional spatial information.
Calorimeters: Gaseous, Cherenkov and silicon detectors work on charged particles.
Calorimetry is the only practicable way to measure neutral particles. Calorimeter detectors
use total absorption of particles to measure their energy and position. In the process of
absorption, particle showers are generated by cascades of interactions. In the course of
showering, most of the incident particle energy will be converted into heat, which explains the
name calorimeter for this kind of detector. No temperature is measured but characteristic
interactions with matter (e.g. atomic excitation, ionization) are used to generate a detectable
effect via particle charges. Calorimeters can also provide signatures for particles that are not
absorbed: muons and neutrinos. Muons do not shower in matter, but their charge leaves an
ionization signal, which can be identified in a calorimeter. Neutrinos, on the other hand, leave
no signal in a calorimeter, but their existence can sometimes be inferred from energy
conservation.
Typically, incident electromagnetic particles like electrons are fully absorbed in the
electromagnetic calorimeter. Incident hadrons1, on the other hand, may start their showering
in the electromagnetic calorimeter, but will be fully absorbed in later layers, i.e. in the
hadronic calorimeter, built precisely for their containment. Discrimination, often at the
trigger level, between electromagnetic and hadronic showers is a major criterion for a
calorimeter.

1.2.1. Particle detector readout

The typical analog readout front-end for most detectors is shown in Figure 1-1 [Groom00]. The
detector is represented by a capacitance Cd. The detector is biased through a resistor Rb which
has a certain capacitance to ground (Cb). The charge in the detector is coupled to the
preamplifier through a blocking capacitor (Cc) and an equivalent series resistor Rs.

Typically, the detector output is a pulse with a fast rising edge but a long tail which has to be
cancelled in order to allow fast detector operation. The preamplifier provides gain and feeds a

1. Particles are divided into two main families: hadrons (which take part in strong force interactions) and leptons
(which do not interact with the strong force, like electrons, muons and neutrinos). Hadrons are divided into mesons
(light mass particles, like B and K mesons) and barions (heavy mass particles, like neutrons and protons). Never-
theless, there are mesons heavier than barions.

Evolution of DAQ systems 13
pulse shaper that optimizes the signal-to-noise ratio while performs tail cancellation to limit the
pulse length, though not all applications require a pulse shaper [Simoes01]. Noise is an
important issue when working with the low signal levels involved in detector readout and it is
normally expressed in charge units.

Fig. 1-1. Typical detector readout analog front-end circuit.

Today’s detectors can have up to some hundred thousand channels and thus the analog front-end
is integrated in ASICs that accept more than one hundred input channels each. In a novel trend
in detector readout, the ASIC integrates a number of A/D converters, digital filters for pulse
shaping [Mota00], zero suppression, data formatting logic and an interface to transmit the data
to the following downstream component (off-detector electronics), normally some meters away.
In a different approach, data is transmitted in analog form to the off-detector electronics and is
digitized in a later stage (as an example, see “Front-end electronics overview” on page 30 for a
description of the LHCb front-end electronics system).

The data from all sub-detectors must be gathered into a single data unit called event which is
written into permanent storage for later analysis. This is the mission of the DAQ system in a
HEP experiment. Events have to be filtered, as not all events are relevant for the experiment’s
purposes and also the permanent storage bandwidth is limited. Filtering is the task carried out by
the trigger system. Next section describes the evolution of DAQ systems in HEP experiments
during the last decades.

1.3. Evolution of DAQ systems

During the past four decades HEP experiments have become progressively more complex and
larger. The search for new physics and rare phenomena with low cross section demanded
progressively higher bunch crossing rates and luminosities in order to keep acceptable event
rates1 and thus collect the required number of events during the lifetime of the experiment.
Higher beam energy was also required as experiments targeted particles and interactions that
required higher energies. These needs stimulated advances in a number of engineering fields like
electronics, microwaves, superconductivity, magnet design, vacuum and cryogenics, making
possible the construction of modern accelerators.

The combination of high luminosity and low-cross-section interesting events implies that these
interesting events are masked by a large background of non-interesting but higher-cross-section
interactions. From the data acquisition and trigger systems point of view this implies a number
of problems:

Rb

+VbiasCb

Cc Rs

Cd

Preamplifier Pulse shaper

Data acquisition in high-energy physics experiments14
• Event reconstruction becomes more complex, as interesting tracks and particles are but a
small fraction of the observed ones.

• High luminosity can cause multiple interactions per bunch crossing, complicating trigger
algorithms and difficulting event reconstruction.

• Channel occupancy in the sub-detectors (understood as the percentage of bunch crossings in
which a channel carries data) increases and thus the DAQ system throughput.

• Radiation levels in the vicinity of the detectors increase, posing radiation-hard or radiation-
tolerant requirements to the front-end electronics.

But luminosity and cross section are not the only basic parameter to take into consideration to
study the evolution of HEP experiments from the DAQ system point of view: the ever-growing
bunch crossing rate and detector channel count (the former to keep a sufficient event rate and the
latter to increase spatial resolution by using finer-grained detectors) have to be taken into
account to understand today’s DAQ system complexity.

The initial scenario in the late sixties, in which a few hundred data channels had to be read at a
low rate (a few hertzs), allowed a single mini computer to carry out the readout. Nowadays,
large experiments have millions of channels that have to be readout at megahertz rates.
Distributed processing, complex trigger systems, switch networks and PC-based computer farms
characterize today’s DAQ systems. The following sections describe how DAQ systems evolved
during the last four decades.

1.3.1. Instrumentation buses for HEP in the 60’s and in the 70’s

In a typical HEP experiment in the seventies and late sixties, the front-end electronics were read
out by a single minicomputer (the first ones arrived to market in the mid-sixties). This
architecture (Figure 1-2) lacked of parallelism and allowed data rates in the order of kilobytes
per second.

Signals coming from multiwire chamber anodes were connected to amplifiers. Scintillators were
connected to counters. Amplifier and TAC (time-to-amplitude converter) outputs were digitized
by ADCs. ADC and coincidence circuits sent pulses to counters which were read out by a
minicomputer via a non-standard bus. The front-end electronics used non-standard interconnects
and modules too, generating confusion and inefficiency.

This situation led to an effort of standardization in bused modular data acquisition systems. As
most of the electronics were at the front end rather than at the readout, the standardization effort
focused first on the front-end area, leading to the release of the NIM system standard [NIMstd]

1. The luminosity (L) defines the intensity of colliding beam machines and is proportional to the bunch interaction
frequency, to the square of the number of particles in the bunch and is inversely proportional to the bunch section

in the direction perpendicular to the beam. It is expressed in . Together with the cross section of the inter-
action (σ) and the detector acceptance (A), the luminosity allows to calculate the number of events (N) during a

certain amount of time: . The average rate of detected events is simply . The acceptance

is the average detection efficiency, or the probability of detecting an event if it has taken place. The cross section

(expressed in cm2 or in barn,) is a measure of the probability of interaction of two particles. Thus, inter-
esting events with a small cross section will require experiments with high luminosity and bunch crossing rate in
order to provide the required number of events during the life of the experiment.

cm 2– s 1–

N A σ L td∫⋅ ⋅= A L σ⋅ ⋅

10 24– cm2

Evolution of DAQ systems 15
in 1964, by the AEC Committee on Nuclear Instrument Modules (NIM) in the USA. This
standard defines the connector and module mechanics, signal levels and power supplies, but
does not define a backplane bus which could be used for readout. The NIM standard found
widespread application in all areas of nuclear research and is still alive today despite its age.

Fig. 1-2. DAQ architecture in the seventies: NIM-based front end readout via CAMAC by a minicomputer.

The standardization effort moved later into the computer bus arena leading to the publication in
1969 of the CAMAC (Computer Automated Measurement And Control) specification
[CAMACstd] by ESONE (European Studies on Norms for Electronics). CAMAC defines a
modular computer-controlled bus. In its simplest architecture, a crate controller controls the
modules residing in its crate (crates have up to 25 slots), though multi-crate systems can also be
built.

The modularity of CAMAC is exploited in applications such as the DAS CAMAC at TRIUMF
[Tam89], dating from the late eighties (see Figure 1-3).

Fig. 1-3. TRIUMF’s DAS CAMAC architecture example.

In this application, a system crate containing an executive crate controller module controls up to
seven branches interfaced via branch coupler modules. Each branch allows up to seven readout

Detector

Mini
computer

Front end

VAX STATION

Branch #1 Branch #2 Branch #3

System Crate

Readout Crates

Data acquisition in high-energy physics experiments16
crates interconnected in a daisy-chain fashion. Each of these readout crates houses a crate
controller and several data collecting modules. A VAX computer interfaced to the system crate
controls the whole system via defined commands. The command´s address is specified by
branch number, crate number, slot number and function number. The weak point of this
architecture is the inherent lack of parallelism that limits the use of this system to low rate
applications.

HEP experiments in the seventies used NIM-based front-end electronics modules readout by a
minicomputer using CAMAC as readout bus. But CAMAC did not fulfill the requirements of a
new scenario in which:

1. An increase in bandwidth requirements as the result of an increase in the number of readout
channels (when multiwire chambers and drift chambers started being used in the seventies)
highlighted CAMAC bandwidth limitations.

2. The advent of the microprocessor added parallelism to the new readout architectures by the
possibility to use multiple processors, but CAMAC had been defined for a single host in the
system and thus readout architectures were centralized.

Nevertheless, this centralized architecture is still used in small DAQ systems like the CAMAC
systems described in [Morhac95] and [Watzlavik92] though sometimes in hybrid VME-Fastbus-
CAMAC systems like in [Erven92].

1.3.2. DAQ and trigger systems in the 80’s

The following trends can be observed during the eighties:

• The increase in detector resolution increased the number of channels. The study of rare events
made it necessary to increase the event rate to achieve the required statistics. The conjunction
of these two parameters provoked and increase in bandwidth requirements through the DAQ
system to several MByte/s, requirement that could be fulfilled with the use of Fastbus and
VME as the DAQ backbone and the parallelism achieved with distributed computing.

• Permanent storage bandwidth was in the order of 100 KByte/s [Cattaneo97], thus requiring a
data rate reduction by means of a trigger system to filter out non-interesting events.

• The above mentioned increase in sub-detector complexity justified the DAQ partitioning
into several DAQ systems which could work autonomously during development and
commissioning phases and for calibration and test runs during operation. All the DAQ
partitions (which grouped all channels from a sub-detector) could of course work together in a
single DAQ system.

By 1976, it was judged that the time had come for a new bus standard that, retaining the strong
points of CAMAC, was based on new electronics technology [Pointing91]. Both NIM and
ESONE worked on the development of a new bus and joined forces, resulting in the release of
the first Fastbus specification in 1983 [Fastbus83] which evolved into the definitive
specification in 1986 [Fastbus86]. Strong points of Fastbus are its high bandwidth and support
for multi-segment and multi-host architecture (exactly what CAMAC was lacking).

The first microprocessors came to market in the seventies. But they did not have an external bus
that satisfied the needs of the HEP applications. It was the advent of 16-bit devices like the
Motorola 68000 which triggered a massive use of microprocessors in the HEP arena. The

Evolution of DAQ systems 17
Motorola 68000 was quite well suited for bus-oriented applications and thus widely used,
leading to the definition of the VME (VERSA Module Europe bus) standard [VMEstd]: an
adaptation of the Motorola’s proprietary VERSAbus from 1981 to the Eurocard mechanics. One
weak point of VME was the lack of inter-crate communication in the original specification,
solved at the end of the decade with the release of the VICbus (VME Inter-Crate bus)
specification [Parkman91]. The VME specification dates from 1987, though VME has been
used since 1982 [Parkman94].

Even with Fastbus and VME as high-bandwidth readout buses and NIM as front-end
interconnection standard, CAMAC still found a niche. The already existing modules,
developments and know-how in CAMAC could not be neglected, leading to a situation in which
NIM, CAMAC, Fastbus and VME coexisted quite frequently, with a clear trend towards the end
of the decade to use VME as the modular computing element, whilst NIM, CAMAC and Fastbus
were relegated to the front end [Parkman94].

Typical DAQ architectures had a hierarchical tree-like structure (see Figure 1-4) with computing
nodes at the branch intersections, profiting from the VME and Fastbus multi-master feature that
allowed distributed computing. The tree-like structure eased the creation of DAQ partitions and
allowed data rates in the order of megabytes per second.

Fig. 1-4. DAQ in the eighties: tree-like distributed architectures, DAQ partitioning and trigger systems.

A good example can be found in the CERN’s ALEPH DAQ System [Rüden89] [Cattaneo97]
based on Fastbus (see Figure 1-5). The experiment was approved in 1982 and started taking data
in 1989. Readout Controllers (ROC) and Event Builders (EB) are based on Motorola 68020
processor boards. The two modules are very similar with the only difference of additional fast
synchronization circuitry in the EB boards.

ROCs and EBs are masters towards the detector and slaves towards the Main Readout
Computer. The hierarchy is strengthened by the fact that ROCs and EBs do not communicate
with other nodes in their same hierarchical level. ROCs read out the sub-detectors upon
reception of a trigger accept signal, format and zero-suppress the data. EBs build a sub-event at
the level of each sub-detector, whilst the Main EB builds a complete event (around 100 KByte in

Detector

Host
computer

Front end

Event building

Data acquisition in high-energy physics experiments18
size) and sends it via an optical link to the Main Readout Computer. So, no event filtering is
done at the ROC and EB level.

ALEPH was designed with a three-level trigger system. The first two levels were implemented
in hardware and reduced the rate from 50 kHz to 500 Hz (Level-1) and down to 10 Hz (Level-2)
which is the DAQ rate. Level-3 reduction takes place in the Main Readout Computer and lowers
the rate to 1 Hz; thus matching the bandwidth to the tape storage capabilities (in the order of 100
KByte/s).

A similar architecture for the DELPHI experiment is described in [Adam92]. Smaller scale
examples of tree architecture can be found in [Geesaman89] [Essel92].

Fig. 1-5. ALEPH DAQ system architecture.

1.3.3. New trends in the 90’s

Today’s DAQ and trigger architectures are based on ideas and trends introduced during the
nineties:

1. The decade began with CAMAC and Fastbus coexisting as the front-end I/O standards,
though a growing tendency to use VME not only at the back end but also at the front end
resulted in all-VME experiments. This was possible due to the extension of the VME board
size to 9U to accommodate more electronics in a single board and the use of ASICs that
reduced the board size requirements for both the front-end and the VME interface logic.

2. VME did well during the eighties and early nineties, but the crate-based backplane
architecture cannot be used as the backbone in large DAQ systems with data rates in the
order of gigabytes per second. Switch-based event builders and point-to-point high speed
links for communication between modules replace VICbus for inter-crate connection and
the VME backplane at the crate level. An early discussion on switch-based event building

ROC ROC ROC ROC ROC ROC

EB EB EB

Main EB

Main Readout
Computer

TAPE

FRONT END

DISCs

LAN

TPC partition
Trigger+ECAL
+LCAL partition

16 crates 111 crates20 crates

HCAL+
others partition

cluster interconnect Server

CPUs

DISCs

PC PCPC

Event reconstruction

Evolution of DAQ systems 19
can be found in [Barsotti90]. Table 1.1 shows the bandwidth limitations of the backplane
and inter-crate buses [Parkman90].

3. At the beginning of the nineties, the way of collecting data was discussed and push
architectures were studied [Dorenbosch91]. Classical architectures relied on computing
nodes pulling data from the upstream stage, building a sub-event and buffering it until pulled
from the downstream stage (like in the ALEPH DAQ system). An increased performance1

can be obtained with push architectures in which processing nodes accept data from the
upstream stage, build a sub-event and push it to the downstream stage. Flow control
becomes then an issue in order to avoid destination buffer overflow.

4. Expensive computing facilities are replaced by PC-based computer farms running Linux
[Sphicas99], interconnected via network technologies like Ethernet or Myrinet.

These trends can be found in experiments designed in the nineties like the ALICE experiment at
LHC. This experiment [LHCC95-71] will exploit proton-proton and heavy ion-ion (Pb-Pb and
Ca-Ca) collisions. Thus, the trigger systems must be designed for reconfigurable trigger
algorithms and the DAQ system must allow different combinations of event rates (40 Hz to 1
kHz) and sizes (5 to 40 MByte).

Fig. 1-6. DAQ in the nineties: event-building networks for gigabyte data rates.

Data is transferred from the front-end electronics to RORC (Read-Out Receiver Cards) modules,
which are grouped in Front-end Digital Crates. Event fragments from a number of RORCs are
merged into sub-events, buffered and transmitted to the GDCs (Global Data Concentrator) by

Table 1.1. Bandwidth limitations of backplane and inter-crate buses

Bus Raw bandwidth Effective bandwidth
CAMAC 20 MByte/s below 1 MByte/s
VME 40 MByte/s 10-20 MByte/s
VICbus 30 MByte/s 3 MByte/s

Fastbusa

a. Performance on Fastbus segment interconnects is around 40 MByte/s.

200 MByte/s 40-60 MByte/s

1. As a result of a simpler protocol.

Detector front end

Readout

Network

Farms

Computing services

Level-1
trigger

Readout
supervisor

Detector
control

Data acquisition in high-energy physics experiments20
LDC cards (Local Data Concentrator). Thus, the combination of RORCs and its associated LDC
perform the same functionality as the LHCb Readout Unit. Throughput requirement for a LDC
is in the order of 100 MByte/s. GDCs are the final destinations and build complete events.

The large event size in ALICE (the largest in all four LHC experiments) poses the double
requirement of very high bandwidth and capacity per permanent Data Storage (DS) unit.

Fig. 1-7. ALICE DAQ and Trigger architecture.

1.3.4. Trends in DAQ systems for the 21st century

Today’s high-bandwidth applications require up to 200 MByte/s throughput per DAQ module
and thus an alternative to the conventional approach of “data processing across the VME
backplane” must be found. Nowadays, there is a clear trend towards using PCI as a high-speed
readout and DAQ bus. Two key technologies boosted the widespread of PCI in the HEP arena:
the PMC standard and the advent of high-gate-count FPGAs.

The PMC standard (PCI on a CMC form factor, i.e., 15-by-7.5 cm mezzanine card size), which
dates from 1995, added a large degree of freedom, allowing drop-in integration any device
compliant with the PMC standard, like for example network interfaces for network standards,
embedded CPUs and high-speed I/O interfaces. This standard invaded the VME arena and the
embedded processing migrated from the “bus-resident crate controller” towards exchangeable,
local processing units. The FPGA technology backed this trend in two ways:

1. Boosting local processing with FPGA-based coprocessors. The implementation of
specialized algorithms in an FPGA using only integer and boolean operations, in comparison
to a CPU, can result in a large performance gain [Hinkelbein00]. Data compression, track

Front-End Electronics

RORCRORC RORC RORCRORC RORC

LDC LDC LDC

Readout Network Switch

GDC GDC GDC

Switch

DSDS DS

F
ro

nt
-e

nd
D

ig
ita

l C
ra

te

... ...

DSDS

L-0 Trigger

L-1 Trigger

L-2 TriggerEDM

1.2µs
2.4µs

<100µs

...

...

... ...

Evolution of DAQ systems 21
finding, trigger algorithms and sub-event building can be implemented either on FPGA-
based co-processor mezzanines, assisting a CPU on the main board, or entirely in FPGAs.

2. Increasing the logic density of integration by packing in a single device control logic, glue
logic and small memories, thus easing the integration of complex systems in a small
mezzanine form factor. Recent examples can be found in PMCs for real-time data processing
[Pascual01], in the S-Link specification for link technologies on CMC mezzanine cards
[Bij97] and ADC cards with FPGA control and processing [Baird00].

The use of PCI in readout and DAQ applications can be classified in two paradigms:

1. On board data processing: Data is actually more efficiently processed locally on-board
(migrating from “data processing across the backplane” to “data processing across the on-
board bus”) and I/O is routed using today’s high-speed link technologies. This relegates
VME and Fastbus to the role of convenient mechanical frameworks with a “power and
control bus connector” rather than providing bus functionalities via backplanes. This
paradigm (see Figure 1-8) relies on the use of PMC [PMCstd] and other non-standard
mezzanine cards for exchangeable I/O interfaces. The motherboard provides an on-board
PCI bus for mezzanine interconnection, on-board memory and additional FPGA- or
microprocessor-based intelligence. In the conservative approach, the backplane is left in the
crate in order to maintain backwards compatibility, but the PCI bus is integrated into the
DAQ module logic for high-speed chip-to-chip and mezzanine-to-mezzanine
communication.

A recent implementation of this paradigm is described in this thesis: the Readout Unit for the
LHCb experiment [Tol01-1]. It is a 9U-sized card with four CMC mezzanines in the front
panel for data input, on-board PCI bus for FPGA-based event building and a PMC network
interface card on the rear for data output. Hybrid solutions like the one described in
[LeVine00] use front-panel links for data input, mezzanines for data processing, PCI for on-
board mezzanine interconnection and VME64 for board readout.

Fig. 1-8. On-board data processing paradigm.

2. Data processing across the PCI backplane: This second paradigm aims at using a PCI
backplane as DAQ backplane, with the benefit of superseding VME bandwidth limitations.

B
ac

kp
la

ne
 u

nu
se

d
or

 ju
st

 fo
r

m
on

ito
rin

g
an

d
co

nt
ro

l

A
ll

I/O
 v

ia
 h

ig
h-

sp
ee

d
lin

ks
 in

fr
on

t-
 a

nd
 b

ac
k-

pa
ne

l

Data acquisition in high-energy physics experiments22
Some PCI derivatives, like the CompactPCI standard appeared, but the acceptance was mild.
The PC is a much more successful (and cheaper) PCI readout platform, housing up to six
PCI cards in an off-the-shelf PC, which provides power and cooling, mechanical support, a
PCI backplane and control and monitoring via the CPU. Additionally, the PCI cards become
part of the host’s plug&play domain.

Following this second paradigm, a PCI card with FPGA, memory and mezzanine connectors can
result in a generic readout platform (see Figure 1-9). For a given application, only the specific
mezzanine card has to be designed (ADCs, I/O interfaces, etc.). The FPGA interfaces the
mezzanine, the PCI bus and the memory, allowing on-board data processing and the flexibility
to implement typical DAQ architectures [Muller01-2]. Scalability is limited by the number of
PCI slots on the motherboard (typically six), the PCI bus bandwidth and the processing
requirements in the CPU. References [Brosch98], [Drochner01], [Müller01-2] and [RACE-1]
describe PCI cards approaching towards the described concept which we call Flexible I/O
concept [Tol01-2].

Fig. 1-9. The Flexible I/O concept.

1.4. The PCI Flexible I/O Card (PCI-FLIC)

The PCI-FLIC represents our implementation of the Flexible I/O concept. It was designed in a
late stage of the thesis work, targeting the NA-60 experiment at CERN (see Appendix II) and the
Readout Unit test station (see Chapter 6).

Compared to other Flexible I/O cards, all data paths are 64-bit wide, including the PC-100
SDRAM and the PMC connector. Combined with 64-bit 66-MHz PCI bus capability, the PCI-
FLIC is well suited for very high throughput applications. Different readout architectures (dual-
port memory, FIFOs, circular buffers and swing-buffers of different widths up to 64 bits) are
supported. Data processing may be implemented in the FPGA or in the mezzanine.

Physically (Figure 1-12), the PCI-FLIC card is a 32/64-bit 33/66-MHz universal PCI card with
connectors for a variety of mezzanine adapters, centered on a 120-kilogate FPGA (center, top)

FPGA

PCI Interface

Sync. I/O

Host PCI bus

Application-specific
mezzanine card

RAM

Flexible I/O PCI card

Data I/O

The PCI Flexible I/O Card (PCI-FLIC) 23
with an embedded PCI master/target core. This PCI card contains two banks of 32-MByte
SDRAM (right) and two general-purpose LVDS I/O plugs (top left corner). The FPGA logic
serves as programmable interface between the connectors, the PCI bridge (center, bottom) and
local SDRAM. There are five mezzanine connectors for PMC-32 (including user defined I/O
connector), 64-bit PMC extensions and custom mezzanines like S-Link.

Fig. 1-10. PCI-FLIC card architecture.

Fig. 1-11. PCI-FLIC outline.

Using a commodity PC as host, two major environments can be targeted:

1. Linux environment: A Linux 2.2.x driver allowing up to five PCI-FLIC cards was
developed by the NA-60 experiment. It supports CPU-initiated data transfers to and from the
PCI-FLIC SDRAM at 37.8 MB/s [David01]. A utility was written to directly reconfigure the
FPGA from the host CPU via the PCI bus, allowing (in a networked PC) remote
reconfiguration [David01-2].

2. Windows environment: A Dynamic Link Library (DLL) for Windows 98/2000/NT has
been written using Jungo's Windriver utility1. This library provides functions to access the

PCI bridge

FPGA
32 MB

32

32

32
32 MB

64

64

32

Mezzanine Card

PMC conn.

User I/O

User I/O

Data acquisition in high-energy physics experiments24
memory and configuration registers in the FCI-FLIC card, and can be used by higher-level
software layers. An interface for LabView has been developed based on this DLL, allowing
control and monitoring applications via graphical interfaces [Martínez&Toledo].

Fig. 1-12. Picture of the PCI-FLIC card.

1.5. Conclusions

The next generation of large HEP experiments, represented by the four LHC experiments, will
work under unprecedented combinations of trigger rate and event sizes (see Figure 1-13,
extracted from [Sphicas99]), requiring extensive application of the new trends and paradigms
presented in the previous sections.

In one of its applications, the LHCb Readout Unit will have to assemble sub-events at a 1 MHz
trigger rate, with a 200-to-240 MByte/s throughput per module. As it will be described in this
thesis, this figure is not so far away from today’s technology limits. Under these conditions,
VME is not a valid solution any more.

As an industry standard for telecommunication, control and data acquisition applications, PCI is
the right bet for today’s DAQ system in both large and small experiments. Two approaches are
followed nowadays: the “data processing across the on-board bus” used for the Readout Unit,
and the “data processing across the PCI backplane”. The latter approach finds an interesting
platform in commodity PCs, leading to the “Flexible I/O concept” in which standard mezzanines
and PCI cards co-exist inside a PC to create flexible and cost-effective DAQ solutions.

1. See http://www.jungo.com

Conclusions 25
One of the most powerful representatives of this new concept has been designed as a part of this
thesis: the PCI-FLIC card.

Fig. 1-13. LHC experiments compared other experiments in terms of event rate and size.

Data acquisition in high-energy physics experiments26

CHAPTER 2 DAQ and Trigger systems in LHCb
“Never worry about the theory as long as the machinery does what it’s
supposed to do”

Robert A. Heinlein, Science Fiction writer.

2.1. The LHCb experiment at CERN

2.1.1. LHC: A new accelerator for new physics

In the quest for new physics, extremely high collision energies are needed. The next research
instrument at CERN will be an upgrade to the existing LEP (Large Electron-Positron collider)
accelerator: the LHC (Large Hadron Collider). It is designed to share the 27-kilometre LEP
tunnel and will be fed by existing particle sources and pre-accelerators. The LHC will be a
versatile accelerator. It will be able to collide proton beams and also heavy ions beams such as
lead with a total collision energy in excess of 1250 TeV, about thirty times higher than at the
Relativistic Heavy Ion Collider (RHIC) under construction at the Brookhaven Laboratory in the
USA. Joint LHC/LEP operation can supply proton-electron collisions with 1.5 TeV energy,
some five times higher than presently available at HERA in the DESY laboratory, Germany.

Four main experiments have been designed for the LHC:

• ATLAS (A Thoroidal LHC Apparatus): It is a general-purpose experiment for recording
proton-proton collisions at LHC. The detector has been optimized to cover the largest
possible range of LHC physics like searches for the Higgs boson, supersymmetric particles,
new gauge bosons, leptoquarks and quark and lepton compositeness indicating extensions to
the Standard Model, CP violation in B-decays, measurement of quark properties, etc.

• CMS (Compact Muon Solenoid): It is also a general-purpose detector for Higgs, super
symmetry and heavy ion physics at LHC.

• ALICE (A Large Ion Collider) is a general-purpose heavy-ion detector designed to study the
physics of strongly interacting matter and quark-gluon plasma in nucleus-nucleus collisions.
27

DAQ and Trigger systems in LHCb28
• LHCb (A LHC Beauty experiment) is an experiment dedicated to the study of CP violation
and other rare phenomena in B-meson decays.

2.1.2. A Large Hadron Collider Beauty Experiment (LHCb)

The main purpose of the LHCb experiment is the study of the CP violation in B-meson decays.
CP violation was first observed in neutral kaon decays in 1964 and has been object of study
since then. If it is true that the Standard Model explains the observed asymmetry in the neutral-
kaon systems, it cannot account for the degree of CP violation that would explain the dominance
of matter over antimatter in our universe, thus suggesting the existence of CP violation sources
beyond the Standard Model.

The Standard Model makes precise predictions for CP violation in B-meson decays, so its study
is an attractive place for searching for new physics and a number of HEP experiments have been
designed to study the B-meson system. But none of them with the BB cross section and
luminosity of the LHC that will make it the most copious source of B mesons.

Fig. 2-1. LHCb detector seen from above (bending plane).

The LHCb is a single-arm spectrometer1 which covers only particles produced between 15 and
300 mrad, comprising a silicon vertex detector, a tracking detector, two RICH2 detectors
(RICH1 and RICH2), an electromagnetic calorimeter, a hadron calorimeter and a muon detector

1. As proton-proton interactions at LHC energies will produce B and B mesons in the same forward cone.

The LHCb experiment at CERN 29
(Figure 2-1). A superconducting magnet is placed behind RICH1, surrounding the tracking
system, and an iron shield protects the vertex and RICH1 detectors from the magnetic field. The
vertex detector provides precise information on the primary and decay vertices and is the base
for the Level-1 trigger. It includes also a pile-up veto counter (two dedicated planes of silicon
detectors used to count the number of primary vertices) to reject at the Level-0 trigger events
with multiple proton-proton interactions. The detector consists of seventeen stations
perpendicular to the beam, spaced in such a way that a typical track traverses between five and
six stations. Each station consists of two silicon discs, one providing information on radius and
the other on angle.

The tracking system provides information on track reconstruction and momentum measurement
in charged tracks, as well as direction information for the RICH. The RICH detectors identify
charged particles. The electromagnetic and hadron calorimeters identify position and energy of
electrons and hadrons and are used for both off-line and trigger.

Fig. 2-2. Isometric view of the LHCb experimental area.

The muon detector identifies muons and its information is used in Level-0 trigger. Iron
absorbers surrounding the detector stations block all particles but muons, thus providing
efficient muon identification.

2. RICH stands for Ring Imaging Cherenkov, a charged particle detector. It is based on the Cherenkov effect,
according to which a charged particle traversing a medium faster than the local speed of light produces the
emission of light. Pavel Alekseyevich Cherenkov was awarded the 1958 Physics Nobel Prize for the discovery of
this effect.

Radiation
shield

Detector

Counting rooms

Equipment shaft

Personnel shaft

DAQ and Trigger systems in LHCb30
The experimental area (Figure 2-2) is divided into two zones by a radiation shield. Front-end
electronics residing close to the detector must be designed to stand high doses of radiation whilst
the counting rooms behind the concrete wall provide a radiation-free environment.

Front-end electronics for Muon, Calorimeters, Outer tracker and possibly also Inner tracker and
Vertex detector will reside in the cavern close to the detector. Level-0 and Level-1 trigger
electronics, RICH detectors and DAQ system will be placed in the counting rooms.

The integrated data rate among all detectors is 40 TByte/s, for a LHC bunch crossing frequency
of 40 MHz and an average zero-suppressed event size of 100 KByte. The resulting amount of
data is too high for storage and off-line analysis, so events are filtered and only a small fraction
are stored. The filtering (trigger) and detector data readout after the Level-1 trigger (data
acquisition) systems are presented in “LHCb trigger and DAQ architecture” on page 31.

2.2. Front-end electronics overview

The front-end system is defined as the processing and buffering of all detector signals until they
are delivered to the DAQ system via high-speed optical links. The analog signals coming from
the detectors are amplified, digitized and buffered during the latency of Level-0 and Level-1
trigger levels and finally zero suppressed and formatted for the DAQ system (see Figure 2-3).

The Level-0 electronics receive the amplified analog detector signals from the analog front-end,
condition and store the data into the Level-0 pipeline buffer during the fixed 3.2 µs Level-0
latency. Level-0 buffer is 128-event deep, matching the Level-0 latency ().
So, after the Level-0 latency, data are either discarded or passed to the derandomizing buffer
waiting to be transferred to the Level-1 electronics. At the output of the Level-0 derandomizing
buffer the data rate has been reduced in a factor of 40 by the Level-0 trigger. Data from 32
channels can now be multiplexed to share a link to the Level-1 electronics and/or an ADC.

The Level-1 electronics receive the event data accepted by the Level-0 trigger, which is stored
into the Level-1 buffer waiting to be accepted or rejected by the Level-1 trigger. Analog signals
are digitized, as the long Level-1 latency (up to 256 µs) does not allow analog data to be stored
with sufficient precision at an acceptable cost. After a Level-1 accept, event data are passed to
the Level-1 derandomizing buffer waiting to be serviced by a zero-suppression unit (with the
possible exception of special monitoring and calibration events). After the zero suppression,
data must be properly encapsulated with header and trailer information to enable the DAQ
system to handle each event fragment1.

The DAQ system is specified to be capable of handling all event data generated by the front-end
without any back pressure (Xon/Xoff) mechanism on the local DAQ links.

1. According to the transport format described in “Proposed Sub-event Transport Format (STF) for the DAQ” on
page 73.

128 25ns⋅ 3 2µs,=

LHCb trigger and DAQ architecture 31
Fig. 2-3. Front-end electronics architecture in LHCb.

2.3. LHCb trigger and DAQ architecture

Figure 2-4 depicts the LHCb trigger and DAQ system architecture as defined in [LHCC98-4].
The challenge is not small: close to one million detector channels are read each 25 ns
(determined by the 40-MHz LHC bunch crossing frequency) generating an integrated data rate
of 40 TByte/s. The data from these million channels must be gathered into a single event.
Identification and reconstruction algorithms are applied and only those events which contain
interesting phenomena (like specific B-meson decay modes) are finally sent to permanent
storage for off-line analysis. In order to cope with these complex and time-consuming tasks
(event-building and filtering) two strategies are applied:

L0 electronics

L1 electronics

L0 trigger
data extract

L1 trigger
data extract

TTCRX

ADC ADC ADC

B-IDE-ID

MUX

Bclk

B-res

E-res

L0-yes

L1 buffer
control

MUX

TTCRX

ADC ADC ADCBclk

L0-yes

L1-yes/no

MUX
Interface

ECS

ECS

Front-end-MUX

L0 trigger
processor

L1 trigger
processor

L0 decision
unit

L1 decision
unit

TTC
Driver

L1-yes/no

Level 0
monitor &
Throttle

Level 1
monitor &
Throttle

L0-yes

Readout supervisor

ECS local

controller

DAQ system O
p
ti
c
a
l
fa
n
-o
u
t

ECS system

L0 buffer
(pipeline)

L1 buffer
(FIFO)

Zero-suppression

L1 derandomizer

Output buffer

L0 derandomizer

Front-end system Trigger system

Analog front-end
ECS

L0 trigger links

L1 trigger

links

ECAL, HCAL, Preshower
Muon

Vertex, (tracker)

L1 throttle

~2k events

~20 events

2 events

128 events

16 events

Level-0 and Level-1 Triggers

DAQ and Trigger systems in LHCb32
• The event-building functionality is distributed across several stages of multiplexers. Those
stages comprised between the sub-detectors and the Level-1 buffer outputs are grouped under
the name of “front-end electronics”, whilst those stages beyond the Level-1 buffers form what
is called the data acquisition system (DAQ).

• The event filtering functionality is carried out in successive steps of increasing algorithm
complexity, each step reducing the number of events that reach the next. Each step is called
“trigger level” whilst the whole system is called “trigger system”.

Fig. 2-4. LHCb Trigger and DAQ system architecture.

2.3.1. Trigger system

The trigger system is responsible for delivering trigger decisions that allow the front-end system
to reduce the amount of data delivered to the DAQ system by three orders of magnitude (from
40 MHz down to 40 kHz) and allow the event filter farm to reduce this 40 kHz rate down to 200
Hz for permanent storage. The first level trigger (Level-0) is a hardware-implemented constant-
latency trigger, whilst the others are software-implemented and variable-latency triggers. Four
levels of trigger in total are defined to achieve a total suppression factor of in 40-25-8-25
steps:

• Level-0 uses information from the pile-up veto (to reject events with more than one proton-
proton interaction1) and from the calorimeters and muon chambers (to reject events with low

1. LHCb has chosen to operate at a low luminosity () to reduce the number of events with multiple
proton-proton interactions, which are more difficult to reconstruct. This results in 9.3 MHz single proton-proton
interactions.

Trigger Level 2 & 3

Event Filter

Read-out Network (RN)

RU RU

SFC

Control

&

Monitoring

SFC

CPU

CPU

RU

CPU

CPU

2-4 GB/s

4 GB/s

20 MB/s
Variable latency

L2 ~10 ms

L3 ~200 ms

L
A

N

Sub-Farm Controllers (SFC)

Read-out units (RU)

Timing

&

Fast

Control

Front-End Electronics

VDET TRACK ECAL HCAL MUON RICH

LHC-B Detector

L0

L1

Level 0

Trigger

Level 1

Trigger

40 MHz

1 MHz

40 kHz

Fixed latency

3.2 ms

Variable latency

<256 µs

Data

rates

40 TB/s

1 TB/s

Front-End Multiplexers (FEM)1 MHz

Front End Links

Storage

2 105⋅

2 1032cm 2– s 1–⋅

LHCb trigger and DAQ architecture 33
transverse momentum), operating at a frequency of 40 MHz and providing a suppression
factor of 40. Event data is stored in the 128-event-deep Level-0 buffers and, after a fixed 3.2
µs Level-0 latency, events are either discarded or forwarded to the Level-1 buffers.

• Level-1 uses information from the Vertex Locator (VELO). Level-1 trigger logic works at 1
MHz and provides a suppression factor of 25, resulting in a 40 kHz Level-1 accept rate.

• Level-2 achieves a suppression factor of 8 by eliminating events with fake secondary vertices
using information from the Vertex and Tracker detectors [LHCb98-017]. The Level-2
algorithms are executed in a processor farm with an estimated processing power requirement
of MIPS.

• Level-3 trigger works at an average 5 kHz frequency. The level-3 algorithms are designed for
filtering the decay modes of interest, resulting in an estimated suppression factor of 25 and
thus a final accept rate of 200 Hz.

Being one of the three applications of the RU, the Vertex Locator and Level-1 trigger deserve a
more detailed description. The vertex detector is depicted in Figure 2-5. It consists of 17
stations, each composed of two silicon-strip discs with different strip layout: one disc provides
information about the distance to the beam axis (radius coordinate, r) whilst the other gives
information about the angle (phi coordinate). The polar coordinates of a particle hit, together
with the station number and sector number (discs are divided into six sectors each) identify a
point in the space.

Fig. 2-5. The vertex detector topology showing the individual r and phi detectors.

The Level-1 algorithm consists of the following steps [LHCb00-001], [LHCb98-006]:

1. Track finding in the r-projection. A track is identified by three colinear points in three
consecutive stations (triplet). Tracks must have positive slope and a hit on a radius smaller
than 25 mm to be accepted.

2. Calculate the primary vertex position by histogramming the intersection point of the
previously computed tracks with the beam axis.

3. Calculate the impact parameter for all tracks (a measure of the distance to the primary
vertex). If the number of tracks with large impact parameter exceeds a maximum, pile-up is
suspected and the event is rejected.

4 105⋅

DAQ and Trigger systems in LHCb34
4. 3-D reconstruction of large impact parameter tracks by adding the phi information.
5. Search for secondary vertices, i.e., potential B decays.

Among different possibilities [LHCb98-002], [LHCb98-033], [Walsch01-2] the detector readout
and trigger algorithm will be implemented on a two-dimensional torus network based on SCI
ringlets, as described in “The Readout Unit as readout module for the Level-1 Vertex Locator
Trigger” on page 45.

The timing control of the complete front-end system and the delivery of the two first trigger
level decisions are performed by a global Readout Supervisor unit (TFC in Figure 2-4) over a
TTC1 system using optical fibers. The Readout Supervisor has a vital role in collecting Level-0
and Level-1 trigger decisions from the respective trigger decision units and only passing trigger
accepts that do not risk to overflow any part of the front-end and DAQ system. Each of the
triggers must be closely monitored and trigger inhibition (throttling) must be applied based on a
well established functional model of the front-end system.

2.3.2. Data Acquisition (DAQ) system

The purpose of the DAQ system is to accept and buffer incoming event fragments from the
front-end electronics following a Level-1 trigger accept and assemble them into complete
events. The main functional blocks of the DAQ system are:

• Front-end multiplexer (FEM): Data from the Level-1 electronics (in some cases called
ODE, Off-Detector Electronics) typically needs to be concentrated by a factor between eight
and sixteen in order to reduce the number of links going from the front-end electronics to the
DAQ system (see Figure 2-3). This will in most cases require one or possibly two FEM
modules per front-end electronics crate. This concentration could in some cases be performed
using a standard backplane bus (e.g. VME). A backplane bus cannot be easily scaled
(bandwidth at this level is highly dependent on detector occupancy as zero-suppression has
been performed), so it is much more attractive to use point to point links between the modules
and the concentrator, as such a scheme can be reconfigured quickly to handle higher
bandwidths.
As the FEM handles data from many detector channels it is vital that it can be serviced while
LHC is actively running. It should therefore be located in the counting room and long distance
(~100 m) optical link technologies must be used if the corresponding Level-1 electronics are
placed close to the detector.

• Readout Unit (RU): The entry stage to the DAQ system consists of RUs that assemble
incoming event fragments into larger sub-events and send them to the destinations (sub-farm
Controllers, SFCs) via the Readout Network (RN). The two multiplexing stages following the
front-end modules (i.e., FEMs and RUs) concentrate the data to match the number of links
and bandwidth per link to the requirements of the RN. Additionally, FEMs and RUs provide
the required buffering between the front-end and the RN. The multiplexing factor in the RUs
is a number between one and four.

• Readout Network (RN) is a N-by-M switch that routes all sub-events belonging to the same
event to one out of M destinations (sub-farm controllers). The throughput in the network is
100 Kbyte at 40 kHz, i.e., 4 GByte/s.

1. TTC: Trigger and Timing Control.

LHCb trigger and DAQ architecture 35
• Sub-farm Controller (SFC): The SFCs build complete events and allocate each event to one
of the CPUs it controls. Level-2 and Level-3 trigger algorithms execute on this CPU.

• Readout Supervisor: The basic concept in the LHCb data flow is that destinations must
always accept data sent by the sources. If a destination buffer fills beyond a certain point, the
destination will a assert a throttle signal. All throttle signals from FEMs, Readout Units and
Sub-Farm Controllers, reach the Readout Supervisor module (Timing and Fast Control in
Figure 2-4), resulting in a Level-0 and Level-1 trigger inhibition when any of the throttle
inputs is asserted. This implies that, in order not to lose already buffered events, destinations
must still have room to accept all buffered events in the upstream sources when asserting the
throttle signal.
The Level-0 trigger must be passed to the TTC driver in a completely synchronous manner
with a minimum latency. A global Level-1 derandomizer buffer will be required before the
TTC driver as the TTC system only has a limited bandwidth available for the Level-1 trigger
distribution. In case of the Level-1 trigger, the front-ends and the DAQ system must also be
capable of throttling the accept rate in order to prevent buffer overflows.
When the Level-1 throttle is asserted, the Readout supervisor will translate all Level-1 trigger
accepts into Level-1 trigger rejects and thereby stop the flow of event data into the Level-1
derandomizer. The Level-1 throttle network will have certain delay before the readout super-
visor will actually enforce Level-1 trigger rejects. The Level-1 throttle network is considered
part of the TFC (Timing and Fast Control) system which includes features for partitioning via
a set of programmable routing switches.

Data flow across the DAQ system according to a defined readout protocol. Two protocols are
currently under investigation [LHCb98-028]:

1. Full readout protocol. The preferred full readout protocol is conceptually simple: a
continuous, write-only data flow is maintained from source to destinations, i.e. from the
RU’s sub-event buffers to the Subfarm Controllers (SFCs) of the CPU farm. This implies
that full events (4 GByte/s) are transferred across the Readout Network.

2. Phased readout protocol. Under this LHCb protocol, only part of each event data are
transmitted for making Level-2 trigger decisions whilst the rest of the event is queued in the
RU’s sub-event buffer. Since the remainder of the data is only transferred after a positive
Level-2 decision, the bandwidth across the Readout Network may be reduced by a factor of
two.

The full readout protocol is preferred for its simplicity, despite the fact that it implies more
bandwidth across the network.

2.3.3. Flow control in LHCb

When a buffer in any of the ~1000 Level-1 front-end boards, a FEM or a RU gets full beyond a
programmable threshold, the corresponding module asserts a throttle signal and the Readout
Supervisor inhibits further Level-1 and Level-0 triggers (see Figure 2-7).

The LHCb policy is to process the events that are already stored in the Level-1 buffers. Thus, it
must be guaranteed that even under worst case conditions buffers will never overflow (which
would require a system resynchronization). According to Figure 2-7, up to eighteen events
(sixteen in the derandomizing buffer and two in the outgoing buffer) are stored in Level-1 boards
after a Level-1 accept. A FEM module must still accept 18 maximum-size event fragments after

DAQ and Trigger systems in LHCb36
asserting its throttle output. This implies 288 KByte, assuming 16 KByte as the maximum sub-
event size at the FEM output (sixteen times the nominal value1).

The latencies involved in the trigger throttling determine the low and high watermarks for the
throttle logic in FEM, RUs and SFCs (Figure 2-6). When the fill state reaches the high
watermark the buffers continue to fill during the throttle latency and then drop at the speed of the
readout until the low watermark level is reached and the throttle is released. The buffer will keep
on emptying during the throttle-off latency. If the low watermark is set too low as in this
example, it results in an empty state of the buffer (and thus in DAQ system inefficiency).

For a FEM module, the high watermark must be set to allow at least 18 more maximum-size
sub-events and the low watermark must be set to a level greater than 12 maximum-size sub-
events. The latter is estimated by considering a maximum 256 µs Level-1 trigger latency (i.e.,
10.2 events at 40 kHz) and rounding up to 12 to include other latencies. Assuming a maximum
sub-event size of 16 KByte, the distance between the high watermark and the buffer overflow
level must be at least . The low watermark must be set to at least

, thus determining a minimum FEM buffer size of half megabyte.

Fig. 2-6. Sub-event buffer fill state monitoring and throttle signal generation.

A DAQ RU module must still accept from each FEM, after asserting its throttle output, the
already buffered data in the FEMs plus additional eighteen maximum-size sub-events due to the
Level-1 buffers flushing. As it has been estimated, this does not exceed half megabyte per FEM
input in any case. The distance between the high watermark and the buffer overflow level must
be at least four times this value (i.e., two megabyte) for a four-input DAQ RU.

The estimated Level-1 output to DAQ-RU input latency is 200 microseconds maximum (see
Figure 3-15), which is equivalent to eight Level-1 triggers. For a multiplexing factor of four, the
low watermark level must be set to at least . Thus, the minimum
buffer size in a DAQ RU is 2.5 MByte.

The small sub-event size in the VELO application (256 byte) and the fact that in this case the
RUs are directly connected to the Level-0 trigger data extract, result in extremely low buffering
requirements.

1. This is a reasonable assumption, though this parameter has not been fixed yet in the LHCb experiment.

18 16KByte⋅ 288KByte=
12 16KByte⋅ 192KByte=

100%

time

buffer overflow line (severe error)

low watermark

throttle-on latency throttling

high watermark throttle-off latency

DAQ Inefficiency

Slope ~ readout speed

8 4 16KByte⋅ ⋅ 512KByte=

LHCb trigger and DAQ architecture 37
Fig. 2-7. Level-1 Trigger throttling.

To sum up, the buffer requirement is 2.5 MByte for the DAQ RU application, 0.5 MByte for the
FEM and even less for the VELO application.

Level-1 buffer
(~2000 events)

Derandomizing buffer
(~16 events)

Zero suppression

Outgoing buffer
(~2 events)

Link trx.

full

B
uffer

...

Link tx
B

uffer

F
ro

n
t-

E
n

d
 M

u
lt

ip
le

xe
r

D
A

Q
 R

ea
d

o
u

t
U

n
it

L
ev

el
-1

 F
ro

n
t-

E
n

d

Readout
Supervisor

Level-1 trigger

Throttle inputs

up to 16 inputs

up to 4 inputs

Link tx

DAQ and Trigger systems in LHCb38

CHAPTER 3 The Readout Unit for the LHCb
experiment
“Truth suffers from too much analysis”

From the novel “Dune Messiah” by Frank Herbert.

3.1. Target applications in the LHCb experiment

As it was mentioned on page 3, three modules belonging to the LHCb front-end electronics
(FEE), trigger and DAQ systems share a common development under the name of the Readout
Unit Project. These modules are:

1. Readout Unit for the Level-1 Vertex Locator (VELO) Trigger.
2. Readout Unit for the DAQ system as an entry stage into the Readout Network (RN).
3. Front-end Multiplexer (FEM) for the interface between the FEE and the DAQ system.

The benefits of having a single module for these three applications are evident: reduced costs
and ease of maintenance and support. The LHCb technical proposal [LHCC98-4] considers
these three modules as separate designs. An investigation of the required functionalities and
performance of the FEM in 1998 [Tol98-1] led to the conclusion that the DAQ RU and the FEM
could be the same design. The first RU prototype was designed to target these two applications
[Tol99-1].

The definition of the architecture of the Level-1 VELO trigger electronics during 1999 allowed
to identify the interface module between the Level-1 electronics and the VELO readout network
as a third target application for the LHCb Readout Unit project. The Readout Unit II was
designed in year 2000 to fulfil also the requirements of this third application [Müller00],
[Müller01-3].
39

The Readout Unit for the LHCb experiment40
The three referred application areas (shaded blocks in Figure 3-1) are described in detail in the
following sections.

Fig. 3-1. The three areas of application of the Readout Unit in the LHCb DAQ and Trigger systems.

3.1.1. The Readout Unit as input stage to the LHCb DAQ system

The DAQ RUs belong to the DAQ system as depicted in Figure 2-4. In the standard DAQ
application, as described in the technical proposal [LHCC98-4], RUs receive sub-event
fragments from multiple front-end links sourced by Front-end Multiplexers (see Figure 3-2),
assemble them into larger sub-events and transfer them to the next stage for further event
building. The RU is then part of the event building system. Sub-events are built according to the
LHCb sub-event transport frame format (“Proposed Sub-event Transport Format (STF) for the
DAQ” on page 73). Sub-events are queued in a sufficiently large sub-event buffer (SEB) inside
the RUs to compensate for fluctuations and throttling latencies.

Analog Front-end

Level-0 Electronics
Level-0
processor

Level-0
decision
unit

Level-1 Electronics
Readout
Units

L-1
Readout
Network

L-1
Computing
Farm

Level-1
decision
unit

Readout
Supervisor

Front-end
Multiplexer

Front-end
Multiplexer

DAQ
Readout Unit

DAQ
Readout Unit

Readout Network Switch

Sub-farm
Controllers

Sub-farm
Controllers

CPU
CPU
CPU

CPU

Throttle

Throttle

L-1 trigger

CPU
CPU
CPU

CPU

Storage

Throttle

Target applications in the LHCb experiment 41
Next stage in the event building system consists of a layer of sub-farm controllers (Figure 3-1).
Both layers, the RU and the SFC, are interfaced via a Readout Network as described in “Data
Acquisition (DAQ) system” on page 34. The multiplexing factor in the RUs is chosen to match
the aggregated bandwidth on its inputs with the output bandwidth towards the Readout Network
and is a number between one and four.

The LHCb readout system requires that an average throughput of 4 GByte/s (100 KByte events
at a 40 kHz rate) flows through a stage of DAQ RUs. Each RU is connected at its output to an
input port of a N-by-M switch, where N, M depend on the chosen network technology. The RU
and FEM layers in the LHCb readout architecture are shown in detail in Figure 3-2.

Fig. 3-2. The Readout Unit as entry stage to the DAQ system.

The transmission of sub-events from the SEB buffer to individual subfarm controllers (SFC) is
subject to the event-building protocols which also depend on the Readout Network and switch
technology chosen by LHCb.

The nominal requirements for a DAQ Readout Unit are given by the LHCb Level-1 trigger rate
and sub-event size per link. As shown in Table 3.1, the detector with the highest occupancy
(RICH 1) produces 690-byte event fragments into the DAQ RU1. Including some formatting
overhead this can be extrapolated to roughly 1 KByte maximum event fragment size per FEM
output. With four detector links at a 40 kHz Level-1 rate, this corresponds to a 160 MByte/s
nominal throughput.

The described functionalities and requirements allow to identify the following functional blocks
inside the DAQ RU (see Figure 3-3):

1. According to the LHCb Technical Proposal.

FEM FEM FEM FEM FEM FEM FEM FEM

L1 FRONT END ELECTRONICS

RU RU

N * M DAQ SWITCH

LAN

Front-end links

NIC

throttle

Throttle

DAQ

LAN MCU

The Readout Unit for the LHCb experiment42
• Input FIFOs: Also called ‘derandomizing buffers’ in the HEP jargon, store incoming sub
events until they are read by the data merger block.

• Data merger: Identifies sub-events with the same event number and merges them in the sub-
event buffer.

• Sub-event Buffer: Decouples the input stage (FIFOs and data merger) from the output stage
(sub-event builder and NIC), compensating for the fluctuations in data throughput provoked
by congestion in the Readout Network and flow control, NIC latencies and throttle latencies.

• Sub-event builder: Builds larger sub-events from the sub-events stored in the buffer and
sends them to the NIC according to the NIC’s technology-specific requirements.

• NIC (Network Interface Card): Intended as a commercial plug-in card1 to allow technology
changes and upgrades, interfaces the RU to the Readout Network.

• MCU (Monitoring and Control Unit): Allows to monitor, configure and control the RU
from the slow control system (Experiment Control System, ECS).

Fig. 3-3. DAQ Readout Unit functional blocks.

1. In a PCI or PMC form factor, as PCI is today’s de facto industry standard for Network Interface Cards.

Table 3.1. Simulated event fragment size into the RUs for the different sub-detectors

Sub detector Event size (bytes)
Vertex 240
Inner Tracker 230
Outer Tracker 600
RICH 1 690
RICH 2 250
Preshower 330
E. Calorimeter 500
H. Calorimeter 500
Muon calorimeter 125
Trigger 500

Simplex
input links

NIC Readout Network
Link

Experiment Control
System (ECS) LAN

Throttle output
(flow control)

Data Sub-event
builder

Monitoring and Control Unit

DAQ Readout Unit

Buffer

FIFOs

merger

Target applications in the LHCb experiment 43
A throttle output to the Readout Supervisor is also needed to avoid buffer overflow, as described
in the previous chapter. The design parameters are summarized in Table 3.2.

3.1.2. The Readout Unit as Front-end Multiplexer for the Level-1 Electronics

The number of Level-1 buffer output links (in the order of 1000) are reduced via Front End
Multiplexers (FEMs) before transferring the data to the RU modules (see Figure 3-2). For this
purpose, the FEM modules must provide a multiplexing factor that matches the aggregated input
bandwidth on its inputs with the output bandwidth into the RU layer. This factor is estimated to
be a variable number between 1 and 16. There are in principle two approaches to multiplexing:
simple concatenation (which does not require buffering) and sub-event building. FEM modules
in LHCb use the latter approach and thus the requirements and functionalities are similar to the
DAQ RU application, however event-building protocols across the Readout Network are
normally unused and the sub-event buffer can be smaller. The nominal throughput is in the order
of 40 MByte/s, since four FEM outputs connect to one Readout Unit with 160 Mbyte/s nominal
throughput.

Fig. 3-4. Combined use of RUs as Front-end Multiplexer and DAQ entry stage.

Table 3.2. Requirements for DAQ application

Parameter RU
Front-End Link inputs Up to four Gbit/s links with nominal 40 MByte/s

occupancy, maximum 80 MByte/s. Flexible link
technology (parallel, serial, copper, optical)

Output link NIC interfaced via PCI bus

Throughput (nominal)a

a. multiplexing factor of four.

160 MByte/s at a 40 kHz operation

SEB bufferb

b. In the previous chapter, a 2.5 MByte requirement was set. This includes input FIFOs and sub-event
buffer. FIFO size is determined by the 64-KByte non-zero-suppressed event fragment size in calibra-
tion runs. Thus, only two megabyte are needed in the sub-event buffer if 128-KByte FIFOs are used.

Minimum is 2 MByte
Sub-event building According to LHCb transport format convention
MCU and LAN Mandatory for initialization, PCI, Monitoring and

Control. 10/100 Mbit/s port via RJ45
Event building protocols Full readout (Phased readout only on demand)

Readout Network links

RU crates (DAQ) 20-100 m

source buffers

Gbit/s links (optical)Front-end Multiplexers

rear output

The Readout Unit for the LHCb experiment44
If the FEM and the DAQ RU are the same design, it would allow a FEM unit with enough output
bandwidth to output directly to the DAQ Readout Network via a NIC. Figure 3-4 shows a front-
end crate housing FEM modules which receive data from the front-end sources and send sub-
events to the DAQ Readout Units. The described functionalities and requirements allow to
identify the following functional blocks inside the FEM (see Figure 3-5):

• Input FIFOs, MCU (Monitoring and Control Unit): as described in 3.1.1.
• Data merger: Identifies event fragments belonging to the same event and either merges them

in the sub-event buffer or directly outputs the concatenated event fragments to the FEM
output.

• Buffer: Only present in buffered applications. Decouples the input stage (FIFOs and data
merger) from the output stage (sub-event builder). Small buffering space required, as the
LHCb data flow defines that FEMs push data to the next stage without any flow control
mechanism.

• Sub-event builder: Only present in buffered applications. Builds sub-events from the event
fragments stored in the buffer and sends them to the RU stage for further event building.

Fig. 3-5. FEM functional blocks.

The design parameters for the FEM application are summarized in Table 3.3.

Table 3.3. FEM Requirements

Parameter RU
Front-End link inputs Up to 16 Gbit/s links with nominal 2.5 MByte/s.

Flexible link technology
Output link Default is flexible Gbit link technology. Option-

ally, also NIC card
Throughput (nominal)a

a.Multiplexing factor of sixteen.

40 MByte/s at a 40 kHz rate
SEB buffer Minimum is 0.5 MByte
Sub-event building According to LHCb transport layer convention
MCU and LAN Mandatory for initialization PCI, Monitoring and

Control. 10/100 Mbit/s port via RJ45
Event building protocols Only applicable if FEM outputs directly to RN.

Full readout (phased readout only on demand)

Simplex
input links

Link tx Output link to
RUs

Experiment Control
System (ECS) LAN

Data Sub-event
builder

Monitoring and Control Unit

Front-End Multiplexer (FEM)

Buffer

FIFOs

merger

Throttle output
(flow control)

Target applications in the LHCb experiment 45
3.1.3. The Readout Unit as readout module for the Level-1 Vertex Locator Trigger

In the L1-VELO application, RUs receive event fragments from the VELO detector at a nominal
rate of 1 MHz (maximum 1.17 MHz according to [LHCb99-031]). With a 1-MHz operation
from all the detector’s r and phi stations and 1100 hits per event1 coded in two bytes for each r
and phi coordinates, this corresponds to a 4.4 GByte/s data flow. With an input multiplexing
factor between three and of four, there are around 20 RUs which have to stand 180-240 MByte/s
throughput each. Event fragments are received in a Readout Unit, merged into larger sub events
with a multiplexing factor of three or four, and transmitted to a shared-memory event-building
network which is arranged like a 2D-torus with Level-1 trigger farm CPUs at each crossing
point [Schulz01]. The torus is currently implemented as horizontal and vertical SCI [SCIstd]
ringlets of 800 MByte/s bandwidth each2, thus requiring three or four RUs per ringlet. The
application for the L1-VELO network is shown in Figure Figure 3-6.

A daisy-chained token bus (namely TagNet) connects the RUs to a Scheduler Unit which takes
care of destination allocation and traffic scheduling. It is important to make sure that each
column is used only by one sender at a time, otherwise network congestion may occur. The
Scheduler Unit keeps track of available CPUs, pending events (i.e., those for which a token has
been generated but has not reached back the Scheduler Unit) and columns in use. So, it is
possible for the Scheduler Unit to issue tokens containing clever x-y routing information to
ensure proper operation of the network. According to [Müller00] the Scheduler Unit can be
implemented on one additional Readout Unit for uniformity.

Fig. 3-6. 2-D torus network with RUs as data sources for the Level-1 VELO trigger data acquisition.

1. Noise accounts for 400 hits, so only 700 hits in average are due to real data [LHCb99-031].
2. A six-node torus has been built and its performance has been studied using 64-bit 66-MHz PCI-to-SCI NIC adapt-

ers [Walsch01-2], demonstrating that SCI NICs can handle more than 300 MByte/s each and that the integrated
bandwidth in a torus can reach 690 MByte/s.

RU

RU

RU

Input EFs

Scheduler
shared memory
network

16-bit TagNet bus

Distributed CPU farm in a

CPUs

n*m torus, each node running L1 algorithm

NIC

NIC mem

S-Link

Unit

The Readout Unit for the LHCb experiment46
The described functionalities and requirements allow to identify the following functional blocks
inside the VELO RU (see Figure 3-7):

• Input FIFOs, Data merger, MCU (Monitoring and Control Unit), Buffer: as described in
3.1.1.

• TagNet interface: Receives and transmits scheduling and destination information from/to the
TagNet daisy-chained bus.

• Sub-event builder: Builds complete sub-events from the event fragments stored in the sub-
event buffer and sends them to the SCI NIC using a push protocol.

• NIC: An SCI interface card which interfaces the RU to the SCI ringlet in which it is inserted.

Fig. 3-7. VELO Readout Unit functional blocks.

The RU requirements for this application are shown in Table 3.4. Apart from the TagNet
interface, the functionalities are compatible with the DAQ and FEM applications. The low
latency implied in the TagNet operation can be achieved if implemented on FPGAs.

Table 3.4. RU requirements for the Level-1 Vertex application

Parameter RU
Front-end link inputs Up to four Gbit/s links with 60 MByte/s occu-

pancy each. Flexible technology (parallel, serial,
copper)

Output link SCI
Throughput (nominal) 240 MByte/s at a 1-MHz operation
SEB buffera

a. Limited by the dual-port memory integration level.

0.5 MByteb

b. Enough for 2000 sub-events or 2 ms of operation.

Sub-event building According to Level-1 convention
MCU and LAN optional for Monitoring and Control. 10/100

Mbit/s port via RJ45
Event-building protocols Shared memory, TagNet scheduled transmission

Simplex
input links

NIC Readout Network
Link

Experiment Control
System (ECS) LAN

Throttle output
(flow control)

Data

Sub-event
builder

Monitoring and Control Unit

VELO Readout Unit

Buffer

FIFOs

merger TagNet output
TagNet inputTagNet interface

Design criteria and parameters 47
3.2. Design criteria and parameters

Design criteria for the RU module are:

• Simplicity, reliability and ease of maintenance. A large number of RUs (around two
hundred modules) installed in the LHCb cavern will channel all the detector’s data for the
lifetime of the experiment (10-15 years); thus a simple, reliable and easy to maintain design is
required. The more components on a board, the higher the probability of failure, and the more
different parts the more difficult it is to keep a reasonable stock or find spare parts. So, the RU
must be designed for a low component count and a small number of different components.
The use of mezzanine cards in the design will further simplify test and repairing operations.
The development of a test station with diagnostic tools to be used during all phases of the
project’s life (commissioning, installation and data taking) is mandatory.

• Scalability in terms of throughput and number of input links at the system level, and
throughput at the board level. Level-1 accept rate is defined as 40 kHz in the LHCb Technical
Proposal, though trigger efficiency considerations may force an increase that should be also
foreseen in the design. At the system level, the scalability is achieved by adding more RUs
(and hence reduce the multiplexing factor and the throughput per module).

• Capability to follow developments in I/O technologies. As the I/O scenario evolves in
industry, it must be possible to change the I/O technologies in the RU. This implies that the I/
O data formats and protocols should be programmable and technology independent. The use
of mezzanine cards will allow this feature.

The original RU design parameters for the three applications in the LHCb experiment are
summarized in Table 3.5.

3.2.1. DAQ Readout Unit functional requirements

The following points summarize the RU functionalities and requirements in the context of the
DAQ RU application described in [Harris98] and [LHCC98-4], reference documents released
before the Readout Unit project started. Clarifications and actualizations are shown in the
footnotes:

Table 3.5. Design parameters for RU applications in LHCb

PARAMETER FEM DAQ VELO

Number of inputs 1 to 16 1 to 4 1 to 4

Nominal fragment size per
input

64 byte 1 KByte 60 byte

Nominal sub-event size 1 KByte 4 KByte 240 byte

Nominal rate 40 kHz 40 kHz 1 MHz

Throughput 40 MByte/s 160 MByte/s 240 MByte/s

Max. sub-event buffer capac-
itya (sub-events)

a. For a 2 MByte buffer.

2000 500 8000

The Readout Unit for the LHCb experiment48
• The RU mission is to receive sub-events from several front-end links and assemble them into
larger sub events. Once a new sub event is assembled, the RU transfers it to the next stage for
further event building.

• The multiplexing factor in the RU is chosen to match the bandwidth on its inputs with the
output bandwidth towards the Readout Network.

• A destination must be assigned to each sub event. This can be done locally, by means of a
look-up table (dynamically updated), or can be done by an external dedicated controller.

• Must support both the Full Readout and the Phased Readout schemes. The latter implies in
average 10 ms buffering. This sets the required buffer size1.

• The RU stage must support an average event size of 100 KByte at an average Level-1 rate of
40 kHz. In average, at every Level-1 trigger, between 0.2 and 0.7 KByte of data per front-end
link have to be handled in the RUs.

• Must support remote control, monitoring and configuration via an external LAN.
• All RUs must be equal. Simplicity, scalability, ease of maintenance and updating to

technology improvements are design criteria.
• Error detection must be performed on the incoming front-end links. Error recovery

procedures should be local2.
• A fast reset must be available for all internal buffers in the RU to enable easy error recovery.
• Must support partitioning in DAQ system in order to run test on different partitions

concurrently and asynchronously. A partition is defined as a subset of DAQ system that has
been configured to function independently of the rest of the system.

• Must support several modes of running: physics data taking, cosmic triggers, calibration
running (not zero-suppressed data, large events but at a lower rate) and test pattern running
(artificially generated at the front end).

• Must be able to generate data patterns for testing other parts of DAQ system (test triggers).
• Must generate a throttle signal to avoid the overflow of its internal buffers. This signal is fed

into the trigger supervisor3.
• Event number: Assuming a lifetime of an event in DAQ of 1s, an Event Number ID of 20 bits

is required4.

• The trigger number and bunch crossing number must be added into each event fragment5.
• In order to allow proper synchronization of event building, null fragments should be

generated when the sub detector element has no data.
• All detector data, on a Level-1 accept, must be pre-processed and multiplexed in order to put

zero-suppressed data, in an agreeded protocol6, onto high bandwidth links leading to the
DAQ.

1. Obsolete. The buffer size is determined by the throttle latency.
2. After careful evaluation, it was decided that transmission error recovery mechanisms will not be implemented.
3. Readout Supervisor according to the current nomenclature.
4. This corresponds to a Level-0 event number (1 MHz rate). DAQ event numbers are incremented after a Level-1

accept, so 20 bits are enough for more than 26 seconds at a 40 kHz rate.
5. Obsolete. The DAQ event number is the only reference used by the DAQ system.
6. A protocol is suggested in this thesis, which was accepted by the LHCb Collaboration. See “Proposed input and

output link technologies” on page 79.

Design criteria and parameters 49
3.2.2. Global decisions on the Readout Unit module design

The feasibility and the architecture of the Readout Unit have been studied taking into account
these requirements and the functionalities described in previous sections. The RU study and
design project was started in 1998 [Müller98] with regular meetings [RUhist] in course of which
a series of decisions were taken and presented to the collaboration in the LHCb october DAQ
workshop 1999 [Müller99]. The global design decisions for building a common module
targeting both the DAQ RU and FEM applications were:

• The sub-event building logic is to be implemented on FPGAs, as a microprocessor- or DSP-
based solution would not yield the required performance.

• Physical format: The electro-mechanical RU crate standard is the existing LEP crate standard
(9U Fastbus, IEEE 960) but without using any Fastbus signals (only power and cooling). The
backplane remains unused as high-speed point-to-point links are used for inter-module
communication (following the trend presented in “New trends in the 90’s” on page 18) and
there is no need of communication between RUs that are at the same hierarchical level. The
reasons to use Fastbus and not VME mechanics are: (1) the availability of a large number of
Fastbus crates which could be acquired for free as a result of the dismantling of LEP
experiments, and (2) the upper half of the Fastbus backplane can be removed and thus Fastbus
boards can accommodate two PMC slots on the back-panel. VME, on the other hand,
inconveniently requires transition modules to use the back-panel.

• Extensive use of mezzanine card technology to allow for evaluation and upgrade of all
interfaced technologies.

• S-Link with derandomizing FIFOs at the link receiver inputs.
• PCI and S-Link at the output.
• Embedded processor system for initializing the PCI bus and PCI network cards.

The decisions taken during all following LHCb workshops and meetings are listed below:

• Sub-event building in the Readout Unit is carried out in the same way for the FEM and the
RU DAQ, using the proposed sub-event Transport Format (STF).

• The event data (payload) transported within the STF transport frame are ignored by the RUs
and FEMs, hence they need to be independently formatted.

• Error data are optionally appended in the trailer of the STF (Error Blocks).
• For error tracing, the identification number of the module from which sub-events are

transmitted is used as a geographical identifier of the link.
• Fast error flags are contained in the STF trailer to allow any stage (Level-1 electronics, FEM,

RU) to mark error conditions, or to quickly identify incoming erroneous data.
• The DAQ event number in the STF header is assigned by the Level-1 data sources and must

be monotonically incremented. This adds one degree of consistency in the information.
• There is exactly one event fragment sent out by any data source per trigger. This implies that

also empty data frames must always be sent for consistency, otherwise the sub-event building
algorithm should include a time-out mechanism, adding unnecessary large latencies.

• Readout Units can be fully configured and controlled remotely via a networked server (RUs
have no connection to a backplane bus). RUs can be individually reset via an independent
reset line.

• The full readout1 DAQ protocol is deemed to be easier to implement than the phased readout2
of the Technical Proposal document. The latter has been discarded in LHCb.

The Readout Unit for the LHCb experiment50
• The trigger throttling via the Experiment Control System (ECS) was discarded since the
implied latencies (order of 20 ms and more) would have required to implement very large
event buffers (expensive dual-port memory).

Pending are decisions on the conventions for error handling, error structure, error types etc.
however all of these are believed to be independent on the RU hardware, i.e. part of the VHDL
programming domain.

3.2.3. Architecture and operation

Any architecture for the RU that complies with the requirements of the three target applications
must include the functional blocks shown in Figure 3-8:

• An input stage that merges incoming event fragments from up to sixteen input links, checks
integrity and stores them into the sub-event buffer. For unbuffered FEM applications, a direct
path to the S-Link output may be provided.

• A dual-ported sub-event buffer (SEB) that allows simultaneous operation from both ports
(input and output stages) to achieve a high system throughput. This buffer must compensate
for fluctuations in the RU output availability and throttle latencies.

• An output stage consisting of the sub-event builder (SEB) that reads event fragments from
the SEB and builds a sub-event that is transmitted either to the S-Link output (FEM
application) or to the Network Interface Card (NIC) output (DAQ RU and VELO
application).

• A TagNet interface, needed for traffic scheduling and destination allocation in the VELO
application.

• An embedded CPU to perform monitoring and configuration tasks and to interface the RU to
the Experiment Control System.

The maximum throughput in both input and output stages must be equal, as the lower one will
limit the RU performance. For a target throughput of 160 MByte/s (DAQ RU) and a
conservative estimation of the FPGA operation frequency of 40 MHz1, 64-bit paths are needed.
For the VELO application, the nominal 240 MByte/s requirement also implies 64-bit data paths.
Thus, the RU must be designed with 64-bit data paths.

As it is justified in “Proposed input and output link technologies” on page 79, S-Link receiver
cards will be used at the RU input stage. These cards follow the CMC standard, and thus a
maximum of four cards fit on a 9U board front panel. This is convenient for the DAQ RU and
VELO applications (maximum four input links) but not sufficient for the FEM application.

In order to accomplish a multiplexing factor of 16 for the FEM application, a solution is
proposed in which the multiplexation is carried out in two stages: first in four-input S-Link
mezzanine cards (4 to 1) and then in the RU motherboard (4 to 1). A possible architecture for the

1. A push architecture with round-robin destination assignment.
2. A combined push and pull protocol where the full event is only read after a positive Level-2 decision.
1. In 1998, when the project started, a realistic estimation of the system clock frequency for a 64-bit-data-path logic

in the chosen FPGAs was 40 MHz, reaching 60 MHz in 2001. A conservative 40-MHz value is assumed though in
this discussion.

Design criteria and parameters 51
4-to-1 multiplexer mezzanine cards is shown in Figure 3-9. Such a card has been designed in the
framework of the Readout Unit Project [Bal01].

Fig. 3-8. Readout Unit functional blocks.

The CPLDs recover the STF format from the physical layer data and store event fragments in a
FIFO memory. An FPGA scans the FIFOs, concatenates event fragments with the same event
number (one per active input link) and writes them into the on-board RU input FIFOs via the S-
Link connectors. The FPGA also emulates the S-Link protocol, thus being fully compatible with
the RU hardware. The RU input stage logic will receive then up to four event fragments per S-
Link connector and event, compared to the single event fragment received in the DAQ and
VELO applications.

At the RU input stage, all FIFOs are read out by the input-stage logic which stores the fragments
sequentially in the sub-event buffer (SEB). Pointers to their consecutive storage locations in the
SEB are kept in a small directory in the SEB (see “Memory management scheme” on page 61).
At the output side of the SEB, the sub-event builder logic scans the descriptor section for entries
with the expected DAQ event number. The efficiency and safety of this scheme is enhanced by
the fact that incoming DAQ event numbers are monotonically incremented1. A set of (between
one and four) linked pointers defines a sub-event descriptor which can be transferred by a DMA
engine to the readout network.

The SEB buffer is logically operated like a FIFO which is filled from the input stage, and read
out concurrently by the output stage. Whilst event fragments are individually coming in, and
being queued in the SEB, the oldest events are read out. For outputting sub-events from the
SEB, a DMA engine is permanently transferring to the PCI-resident Network Interface (or to S-
Link). If the downstream system is free of congestion, the RU logic can autonomously maintain

1. In other LHC experiments like CMS, this basic feature is not implemented, thus requiring more complex sub-event
building algorithms.

Throttle

PCI bus

embedded
CPU

Input stage

Sub-event Buffer

Sub-event Builder

LAN
CPU memory

bus

DPM

Network Interface Card (NIC)

Network Link

1-16 Input Links

S-Link output

TagNet I/O TagNet
Interface

The Readout Unit for the LHCb experiment52
a N-to-1 data flow between 1 to 16 inputs and one PCI (or S-Link) output. Congestion can be
avoided by careful design of the downstream system which is receiving data from the RU. In
case of congestion, a feedback signal is returned to the Readout Supervisor to protect the system
from a potential buffer overflow (see “Flow control in LHCb” on page 35). During sub-event-
building, consistency in the received data fragments can be checked, and any errors can be
marked in the error bit fields of the STF.

Fig. 3-9. 4-to-1 multiplexing card for FEM application.

There are programmable options for error handling: erroneous data may be passed on, filtered or
only counted for error statistics. Any severity level of errors can be reported to the ECS. Finally,
a fast reset for SEB buffers is an option which allows to extend the LHCb buffer reset scheme
beyond Level-0 and Level-1 to SEB-RESET.

FPGA

FIFO

16/32

S-Link
connector

32

16/32Rx
chip CPLD

FIFO
16/32Rx

chip CPLD

FIFO
16/32Rx

chip CPLD

FIFO
16/32Rx

chip CPLD

Input stage 53
3.3. Input stage

3.3.1. Input stage architectures

Any efficient implementation based on today’s microprocessors and FPGAs can be find its
equivalent in one of the following three architectures1, depending on the number of concurrent
processing elements in the input stage: one, two or four. The processing elements can be
implemented in the same or in separate physical devices and these can be either FPGAs or
microprocessors. The implementation is not discussed in this section but the architecture
implications on system performance.

Figure 3-10 shows a possible architecture with a single processing element. The design
parameters (section 3.2 on page 47) require a 64-bit architecture. Input FIFOs are needed as data
arrives asynchronously from the several input links. Incoming data is stored in FIFOs, thus
allowing two data merging schemes: FCFS (Fist-Come First-Served) and Polling.

Fig. 3-10. Single processing element in the input stage.

• In the Polling scheme, the Data Merger polls input “a” until a frame with the expected event
number arrives and then stores the frame in dual-port memory (DPM). Data merger now waits
on input “b” until a frame arrives, stores it in DPM and polls input “c”. Input “d” is the last
one to be polled. As a result, we get the sequence a-b-c-d in memory.

• In the FCFS scheme, the first frame that arrives is stored in memory, so we can get different
sequences in memory (like b’-d’-a’-c’, as shown in Figure 3-10). If two frames arrive at the
same time, an arbiter decides which one is read out first. The FCFS scheme has the advantage
of requiring smaller FIFO lengths, as in average a frame must wait a shorter time to be read
out.

In both cases, a time-out mechanism must be implemented in the input stage to handle missing
frame and broken link conditions.

In the scenario depicted in Figure 3-11, each of the two processing elements handles one or two
input links. The difference between the polling and FCFS merging schemes in terms of FIFO

1. This statement will become obsolete when an array of processors on a chip be available. At the time of writing this
thesis, one of such devices [NP4GS3] has been announced by IBM. Its potential use for a RU implementation is
being evaluated at CERN.

FIFO

FIFO

FIFO

DPM
Data Merger

Sub-event

a

b

c

S-LINK
connectors

a
b
c

d’
b’

a’

64 bit wide

FIFO d

builder

64 bit64 bit

64 bit

d

c’

The Readout Unit for the LHCb experiment54
length is smaller that in the previous case. This architecture results in two independent input
stages working in parallel and thus 32-bit data paths provide the required performance. The sub-
event buffer must then be divided into two separate memory banks. The advantage of this
architecture resides in the reduction in a factor of two of the dead time implied in the FIFO
switching (both at the physical level and in the state machines in the processing elements). The
performance increase is marginal in applications with large event sizes, but may be significant in
small-event-size ones.

Fig. 3-11. Two processing elements in the input stage.

The four-processing-element architecture shown in Figure 3-12 has the advantages of not
requiring input FIFOs as there is a dedicated processing element per input link and thus
incoming frames can be analyzed and stored in DPM on-the-fly. The absence of dead cycles
implies a higher throughput.

Fig. 3-12. Four processing elements in the input stage.

Which architecture to use depends on the following criteria:

FIFO

FIFO

FIFO

DPM
Data Merger

Sub-event

a

b

c

S-LINK
connectors 64 bit wide

FIFO d

builder

64 bit

64 bit

64 bit

32 bit

32 bit

32 bit

input
connectors

DPM

Su
b-

ev
en

t
bu

ild
er

Memory
bus

Data Storer

The architecture
is scalable

16/32 bit 16/32 bit 64 bit

Input stage 55
1. Required input FIFO size: Worst case corresponds to the polling scheme in the single-
processing-element scenario for the DAQ RU application (the one with the largest event
fragments). This worst case situation was simulated (see “Modelling and simulation” on
page 57), showing that the maximum required size was less than 9 KByte per input link,
with an average occupancy of 1.4 KByte. This is a light requirement for commercial devices
and thus the selected input stage architecture will not depend on the FIFO size.

2. Impact on the output stage performance: Processing elements must store event fragments
on separate memories to operate with independence and achieve a high throughput. Two or
more processing units sharing the same memory would result in turnaround cycles that
would spoil performance. In order to build sub-events, the output stage will have to access as
many memory banks as processing elements in the input stage, with the corresponding
latencies. The impact on the output stage performance will be discussed in “Output stage
requirements” on page 64, but is marginal for FEM and DAQ applications.

3. Cost: Using 32-bit wide DPMs and FIFOs, the three options could be implemented
(according to bus widths defined in figures 3-10, 3-11 and 3-12) with the number of ICs and
relative cost shown in Table 3.6. For the relative cost calculation, DPMs and FIFOs compute
as 1 unit and processing elements as 2 units (3 units for the single-processing-element
architecture, as it requires at least 64 I/Os more than the other options, and thus a larger
physical package).

The cost and number of chips is similar for all three options and thus it will not be taken into
account to decide on an architecture.

4. Input stage performance: An analytical expression for the maximum input stage
throughput as a function of the number of processing elements (P), fragment size in bytes
(N), the FIFO bus width in bytes (B), the input stage clock frequency in MHz (fclk) and the
number of overhead clock cycles (d) imposed by the FIFO read first-word latency,
turnaround cycle and dead time due to the algorithm implementation, is given by expression
3.1.

(3.1)

The parameters and resulting throughput for each of the three options is shown in Table 3.7.
All three architectures meet or exceed the nominal throughput for VELO, DAQ and FEM
applications.

Table 3.6. Comparison in terms of relative cost and number of ICs

Scenario FPGAs FIFOs DPMs Nr. ICs Relative cost
Single processing unit 1 8 4 13 15
Two processing units 2 4 4 10 12
Four processing units 4 0 8 12 16

Table 3.7. Input stage throughputa

P B (byte)
Throughput DAQ
(MByte/s)

Throughput FEM
(MByte/s)

Throughput VELO
(MByte/s)

1 8 315 301 256
2 4 317 310 284

Throughput MByte s⁄()
P N fclk⋅ ⋅

N
B
---- d+

------------------------=

The Readout Unit for the LHCb experiment56
In terms of throughput, cost and required input FIFO size, all three options are valid. The single-
processing scheme minimizes memory access latencies at the output stage and the two-
processing-element scheme also has some advantages (see section 3.6.2). The four-processing-
elements solution is discarded due to negative impact on the output stage performance provoked
by memory access latencies.

From expression 3.1, assuming d=2 and expressing fclk in kilohertzs, the maximum trigger rate
as a function of the event fragment size (N) can be obtained from expression 3.2 for the single-
processing-element architecture and from expression 3.3 for the two-processing-element
scheme.

(3.2)

(3.3)

Fig. 3-13. Maximum trigger rate as a function of the event fragment size, normalized to 1 KByte.

4 4 635 620 568
4 2 318 315 301

a. Assuming d=2, NDAQ=1024 byte, NFEM=256 byte, NVELO=64 byte, fclk=40 MHz.

Table 3.7. Input stage throughputa

P B (byte)
Throughput DAQ
(MByte/s)

Throughput FEM
(MByte/s)

Throughput VELO
(MByte/s)

Rate kHz()
fclk

N
2
---- 8+ 
 
-------------------=

Rate kHz()
fclk

N
2
---- 4+ 
 
-------------------=

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5
5,5

6
6,5

7
7,5

8

128 256 512 1024 2048 4096

Single Double

Bytes

R
el

at
iv

e
tr

ig
g

er
 r

at
e

DAQ application

FEM application

Input stage 57
As it can be observed in figures 3-13 and 3-14, the difference in performance is negligible for
the FEM and DAQ applications (256 byte1 and 1024 byte event data, respectively). A 10%
improvement can be achieved with the two-processing-element architecture for the VELO
application (64 byte event fragments). For a 66 MHz operation on the two-processing-element
architecture, the VELO application can run up to 1.8 MHz, the DAQ application up to 127 kHz
and FEM up to 500 kHz. The strong dependence with the fragment size in the VELO application
is in evidence.

Fig. 3-14. Relative trigger rate for small event fragments, normalized to 64 byte.

3.3.2. Modelling and simulation

A complete slice of the readout system has been modelled and simulated (64 Level-1 front-end
sources, 4 FEMs with 4-to-1 multiplexing mezzanine cards and one RU) using Innoveda’s
VisualHDL for the model description2 and verification. Cadence’s Leapfrog was used for the
complete slice simulation as it is much faster than VisualHDL’s simulator. The model is based
on an existing VHDL library for queue modeling [Mohanty94].

Both the Level-1 trigger and event fragment size are modelled as random generators. The
parameters used for these simulations were (see Table 3.8):

• Level-1 trigger generator: Log-normal distribution3.
• Event fragment size at the Level-1 source: Results from multiplying two random variables:

base_length and modifier_lengh. The former is common for all Level-1 source instances in

1. Considering the four event fragments received from the 4-to-1 multiplexer card as a unit.
2. Single-processing-element input and output stages.
3. A poisson distribution is preferable, but the available VHDL model for poisson distributions showed frequent con-

vergence problems.

0

0,5

1

1,5

2

2,5

3

3,5

16 32 64 128 256 512

Single Double

Bytes

R
el

at
iv

e
tr

ig
g

er
 r

at
e

VELO application

The Readout Unit for the LHCb experiment58
the model, while the latter is different for each instance, thus resulting in a more realistic
spread of data block sizes for each FEM instance.

• Link and NIC latencies: have not been considered as they are implementation dependent.

Processing times for each of the three levels of multiplexing (4-to-1 multiplexer, FEM
motherboard and RU motherboard) depend on FIFO bus width, logic clock speed and fragment
size, according to the expression 3.4, where size is expressed in bytes and clock speed in MHz.

(3.4)

The parameters for each level in the hierarchy are shown in Table 3.9.

Figure 3-15 shows that the average latency between data arriving at FEM inputs and data
coming out from the RU output is close to two triggers (63 µs), with a maximum of about 200 µs
(eight triggers). Link latencies need to be added for more realistic results.

Figure 3-16 is an histogram of the DAQ RU motherboard’s FIFO occupancy, showing that the
average value is approximately1400 bytes and that the maximum occupancy is below 9 KByte.
This result poses a light requirement to the input FIFO size, which will be ultimately determined
by the maximum fragment size1 rather than by normal operation parameters.

It can be concluded that the input stage is technologically feasible and several architectures are
possible.

Table 3.8. Level-1 trigger rate and block size

Level-1 trigger generator Fragment size at the Level-1 sourcea

a.Fragment size is base_length*modifier_length

Level-1 trigger (µs) base_length (bytes) modifier_length (bytes)

Type of distribution log normal log normal gaussian

Mean value 25 64 1

Std. deviation 12 32 0.5

Table 3.9. Multiplexing stage parameters

Mux level
FIFO read bus size

(bytes)
clock speed

(MHz)
Available bandwidth

(MByte/s)

4-to-1 mux 2 10 20

FEM motherboard 4 20 80

RU motherboard 8 40 320

1. Non-zero-suppressed data will be sent across the DAQ system during calibration runs, resulting in large event
fragments at a reduced trigger rate.

Proces gTime µs()sin FragmentSize
FIFObusWidth fclk⋅
--=

Input stage 59
Fig. 3-15. Latency from Level-1 output to DAQ-RU input.

Fig. 3-16. DAQ-RU FIFO size histogram (worst case).

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

latency in microseconds

mean: 62.6 us

std deviation: 33.2 us

max. found: 198 us

The Readout Unit for the LHCb experiment60
3.4. Sub-event buffer

The sub-event buffer feasibility is determined by the required throughput and memory size and
the need to access the buffer simultaneously from both ports (input and output stages). Two
different implementations are possible: (1) emulate a dual-port memory with SDRAM and
control logic, and (2) use true dual-port memories.

True dual-port memories are expensive and their density of integration is much lower than
SDRAMs. As a result, DPM emulation with SDRAM is not a rare option. Some attempts have
been carried out in this direction. In [Antchev97] a PMC card is described in which one FPGA is
used as control logic to arbitrate the access to the SDRAM from two ports, whilst two bi-
directional FIFOs act as intermediate buffers. This implementation allows up to 33-MHz
operation on 32-bit buses, resulting in a raw bandwidth per port of 133 MByte/s. A more
sophisticated approach, described in [Gigi99], requires a long size PCI board with four 64-bit
66-MHz PCI bridges, one SDRAM controller, one FPGA and other interface logic in order to
allow 200 MByte/s bandwidth per port.

In the case of the Readout Unit, as the buffering requirements are not too high (in the order of 2
MByte) and a sustainable integrated bandwidth in excess of 500 MByte/s1 is beyond what has
been achieved so far in DPM emulation with SDRAM, a true dual-port buffer is preferred2.

The buffering requirements were determined by the throttle latency across the ECS system3

before a fast throttle implementation was decided. As justified in “Flow control in LHCb” on
page 35, 2.5 MBytes are needed to compensate for the fast throttle latency. This buffering is
partly provided by the input FIFOs (up to half megabyte for 128-KByte per input link4) and the
rest by the sub-event buffer.

At the time of writing this thesis, the largest DPM integrated circuit in market is a half megabyte
chip [IDT70V3599]. This allows up to 2 MByte of buffering space in a compact four-chip
configuration (see Figure 5-12 on page 114). If the currently 2 MByte buffer implemented on
the RU-II module is found to be insufficient, two complementary actions can be taken:

1. Increase the sub-event buffer size. Larger buffers can be achieved at a higher cost and
board area by using six or eight memory chips on BGA packages, which would allow up to
4 MByte on-board buffer space. This option implies a module redesign.

2. Reduce the multiplexing factor in the FEMs. More FEMs and RUs are needed then, but
the buffering requirements decrease. This would affect the DAQ switch implementation.

Due to the high cost and low level of integration of the dual-port memory compared to single-
port SDRAM memory, an efficient memory usage is required. This discards fixed-length, fixed-
position buffers for event fragment storage. An efficient memory management scheme is
proposed in the following section.

1. In the VELO application, the average throughput per port is 240 MByte/s.
2. In fact, four chips are enough to implement a 2-MByte true DPM in the Readout Unit II module.
3. Up to 20 ms latency, which implies 3.2 MByte of buffering space for the DAQ RU application.
4. Required for non-zero-suppressed data in calibration runs.

Sub-event buffer 61
3.4.1. Memory management scheme

In the proposed scheme, most of the buffer capacity is used for storing sub-event data; only a
small part is used as a pointer directory. Each DPM bank is logically divided into two circular
buffers: a Directory Block (DYB) and a Data Block (DB). There is also a special memory
position used for buffer occupancy monitoring called Mailbox (Figure 3-17). By means of
entries in the Directory Block pointing to event fragments in the Data Block, variable-length
variable-position buffers can be implemented with economic memory usage.

Fig. 3-17. Logic structure of the sub-event buffer.

A possible format for the directory entry in the DAQ and FEM applications is shown in Figure
3-18. It is a 64-bit word containing the following fields:

• Event Number: In the first code implementation on the RU-II, a fragment is assigned the
next free entry in the Directory Block, using a 24-bit DAQ event number in order to
accommodate a descriptor entry in 64 bits. If a 28-bit number is required1, a 128-bit
descriptor entry can be used. Nevertheless, the requirement of 28-bit DAQ event numbers is
not justified.

• Pointer: Event fragment start address in the Data Block. Eighteen bits are needed to address
64-bit words in a 2-MByte SEB.

• Length: Size of the fragment in 32-bit words. In this example (14-bit field), a maximum 128
KByte sub-event is allowed (32 times larger than the nominal sub-event in the DAQ RU
application).

• Flags: Includes errors reported by the data source, transmission errors and other kind of RU-
specific errors. It also indicates if an Error Block from the STF trailer is stored in the Data
Block following the fragment.

1. Some members of the LHCb Collaboration suggested to use a 28-bit number. At a 40 kHz trigger rate, a 20-bit
number would already allow more than 26 s without repeating a number. This is clearly much more than the life
time of an event in the DAQ system.

Directory
Block

Data

Block

Mailbox

64 bit

The Readout Unit for the LHCb experiment62
Fig. 3-18. Entry in the Directory Block.

Using this directory entry structure as an example, the memory looks like shown in Figure 3-19.
The final implementation is obviously dependent on the chosen input stage architecture. Error
blocks, as defined in the STF, can also be supported. In Figure 3-19, the entry in the Directory
Block points to an error block descriptor, basically containing the length of the error block
stored after the event fragment. A value of zero indicates absence of error block.

Fig. 3-19. Event fragment storage in SEB memory.

3.4.2. Buffer occupancy monitoring

The SEM logic keeps two pointers for the next free position in the Data Block (DB) and in the
Directory Block (DYB): pointers dbs and debs respectively, where “s” stands for SEM. Both are
pointers to circular buffers.

1. When a new event fragment is to be written into the DB, it is stored starting in the current
value of dbs. After storage, dbs points to the next free position in the DB.

2. The corresponding directory entry in the DYB is written to the address pointed by debs,
which is incremented afterwards.

 Event Number Pointer Length Flags

24 18 14 8

64 bits

 Event Number n Pointer n Length n Flags n
 Event Number n+1 Pointer n+1 Length n+1 Flags n+1
 Event Number n+2 Pointer n+2 Length n+2 Flags n+2
 Event Number n+3 Pointer n+3 Length n+3 Flags n+3

DIRECTORY
BLOCK

 Error Block Descriptor (optional)

 Event Fragment
(variable length)

 Error Block (if available)

Event fragment n
DATA
BLOCK

DYBs DBs Last Event NumberMAILBOX

64 bits

A bit indicates if there
is an Error Block to
read or not

DB

DYB

in SEB

in SEB

Sub-event buffer 63
3. The SEM logic writes dbs, debs and the event number in the MAILBOX (a dedicated
memory position in the SEB) and toggles a I/O line (also called MAILBOX) to warn the
output stage logic that a new sub-event has been written into memory.

The output stage logic also keeps two pointers: dbe and debe for the next locations to read from
DB and DYB, which are treated as circular buffers by the output stage logic. Each time the
MAILBOX signal toggles, the output stage reads the MAILBOX and recalculates the SEB
buffer occupancy. Above a certain programmable threshold, the signal DPMFULL# is asserted
to warn the SEM of this condition. If DPMFULL# or FIFO almost full conditions are detected
by the SEM logic, the fast throttle output signal is asserted at the RU’s front-panel connector.

In more detail, the output stage logic has to monitor the SEB occupancy in order to detect the
following conditions: empty, full beyond the “low watermark” and “high watermark” thresholds
and completely full. As both Directory Block and Data Block are logical circular buffers, the
input stage pointers can be greater, equal o lower than the output stage pointers. An example is
depicted in Figure 3-20, for a SEB total size of 256 positions. The DYB size is 32 and DB size is
256-32-1=223. The pointers point to the next position to be read (OP) and the next position to be
written (IP).

In case A, . The free space in the DB corresponds to the shaded area and can be
computed as: .

In case B, thus the free space in DB (shaded area) can be computed as:

.

Fig. 3-20. Buffer occupancy monitoring.

Additions and substractions are performed in two’s complement. For 8-bit wide addresses (as
memory size is 256 positions), the expression , when , equals to

. Then, can be computed for both cases and, if (which is detected by
the carry bit resulting of), 33 in this example, is substracted from the result. In the case
of the DYB, as its size is a power of two, there is no need to perform any subtraction and the free
space in DYB is always .

OP IP>
OP IP– 18=

IP OP>

256 33– IP OP–()– 256 OP IP–+() 33– 201= =

DYB

DB

MAILBOX

Input stage
pointer

Output stage
pointer

0

255

DB

MAILBOX

Input stage
pointer

Output stage
pointer

0

255

85

A B

31 31

68

50
(IP)

(IP)

(OP) (OP)
60

(Directory Block)

DYB
(Directory Block)

(Data Block)
(Data Block)

256 OP IP–+() IP OP>
OP IP– OP IP– IP OP>

OP IP–

OP IP–

The Readout Unit for the LHCb experiment64
The described mechanism allows to easily calculate the free memory in the circular buffers. An
example of implementation in VHDL is shown in Figure 3-21. As the carry bit is not accessible,
two’s complement operations are performed with N+1 bits and the most significant bit is used as
the sign bit.

Fig. 3-21. VHDL code for buffer fill state monitoring.

3.5. Output stage requirements

In the VELO and DAQ RU applications, the sub-event builder element is interfaced between the
sub-event buffer (SEB) and the Network Interface Card (NIC), as depicted in Figure 3-8. As it is
justified in “Proposed input and output link technologies” on page 79, the use of commercially
available NICs in a PMC form factor will allow to follow trends in technology during the
coming years, will make it unnecessary to carry out complex custom developments and will ease
maintenance. On the other hand, a configuration agent is needed on the PCI bus to initialize and
configure the PCI devices (including the NIC). This implies that the Monitoring and Control
Unit (MCU) has a PCI interface. The MCU could also embed other PCI functions such as the
arbiter, simplifying the output stage design.

In the FEM application, the sub-event builder element outputs to an S-Link transmitter card via
a 16-bit bus (a 32- or 64-bit bus would be an overdesign as only a 40-MByte/s throughput is
required). A block diagram of the RU output stage, including also the MCU, is sketched in
Figure 3-22.

The sub-event builder can be implemented either in FPGA logic or in a microprocessor, in both
cases with or without the assistance of a DMA controller. The FPGA solution has the advantages
of yielding higher performance (if the algorithms are highly parallelizable and only integer

architecture simple of count_blk is

 signal dbp_int,free_dbp_int:std_logic_vector(14
downto 0);
 signal mailbox_p:std_logic_vector(8 downto 0);
 signal mailbox_d:std_logic_vector(14 downto 0);
 signal pbp_int,free_pbp_int: std_logic_vector(8
downto 0);
...
begin
...

--
substractors:process(reset_counters,clk)
 variable free_dbp1_int:std_logic_vector(15 downto
0);
 variable free_dbp2_int:std_logic_vector(14 downto
0);
begin

 ...

 free_pbp_int<=pbp_int-mailbox_p;
 if(free_dbp1_int(15)='1') then
 free_dbp_int<=free_dbp2_int;
 else
 free_dbp_int<=free_dbp1_int(14 downto 0);
 end if;

 free_dbp2_int:=free_dbp1_int(14 downto 0)-
"1000000001"; --513

 free_dbp1_int:=('0'&dbp_int)-('0'&mailbox_d);
...
end process substractors;
--
...
end count_blk;

Output stage requirements 65
operations are involved), the high I/O pin count, the direct connection (i.e., without any glue
logic) to the SEB and S-Link output and the possibility to embed the PCI interface. Several PCI
interfaces for FPGAs are commercially available. For these reasons, the output stage logic will
be implemented on FPGAs.

The nominal bandwidth for the DAQ RU application (160 MByte/s) requires at least 64-bit 33-
MHz PCI implementations (264 MByte/s raw bandwidth), whilst the VELO application needs a
64-bit 66-MHz PCI bus (528 MByte/s raw bandwidth).

Fig. 3-22. Output stage block diagram.

3.5.1. FEM application requirements

The performance is limited by the FPGA clock frequency and the 16-bit output bus width. A
first non-optimized implementation of the sub-event building algorithms in the RU-II module
reached 45 MHz clock frequency, thus allowing for 90 MByte/s raw bandwidth over a 16-bit bus
to the S-Link output.

The first implemented algorithm on the RU-II module consumed 35 cycles for FPGAs
synchronization and header/trailer generation, 8 cycles to send header and trailer to S-Link and
512 cycles to send the payload to S-Link (1 KByte). This makes a total of 555 cycles per event
or 81 kHz trigger rate for a 45-MHz FPGA operation. Better results (100 kHz trigger rate) are
expected with an optimized implementation. The maximum rate for an arbitrary sub-event size
(S) in bytes is given by expression 3.5. This result implies that a 16-bit bus is enough and the
basic architecture depicted in Figure 3-22 exceeds the nominal requirements by a factor of two.

 (3.5)

3.5.2. DAQ RU application requirements

The output stage must support both pull and push protocols between the sub-event builder and
the NIC. In a pull scheme, an intelligent PCI-master-capable NIC pulls data from the RU via

Sub-Event
Buffer (SEB)

Sub-Event
Builder

Network Interface
Card (NIC)

Monitoring and Control
Unit (MCU)

S-Link
out card

ECS LAN

Readout
Network

Front-end Link

PCI bus

64 bit

16 bit

64 bit

ftrigger
1

tevent

fclk
43 Size 2⁄+
------------------------------= =

The Readout Unit for the LHCb experiment66
DMA read operations on the PCI bus (this is the case of commercial Gigabit Ethernet NIC
implementations preferred for the DAQ RU application). As a more efficient approach, in the
push scheme event data are written (pushed) by the sub-event builder directly into the NIC
buffers (this is the case of SCI, preferred for the Level-1 VELO application).

Fig. 3-23. Protocol between the sub-event builder and the NIC for the DAQ RU application.

The DAQ RU application will implement a pull scheme, as the extra overhead implied in the
RU-NIC protocol does not affect performance due to the large sub-event size, benefiting from
traffic-shaping and other complex network protocols which can be implemented in an intelligent
NIC. The proposed readout protocol (depicted in Figure 3-23) was agreeded in November 2000
with other members from the LHCb DAQ group and consists of the following steps:

1. The NIC indicates its availability to process a new sub-event by setting to zero a flag in a
PCI-accessible status register in the NIC (NIC flag in Figure 3-22).

2. The sub-event builder polls this NIC flag until the NIC is ready.

3. The sub-event builder constructs a DMA list according to the format1 shown in Figure 3-23,
sends it to the NIC via a PCI write transaction and signals the action by setting high a flag in
the NIC’s status register (RU flag).

4. The NIC acknowledges by toggling the NIC flag and starts polling the sub-event via PCI
read transactions.

5. The sub-event builder toggles the RU flag in response, and waits on the NIC flag until the
DMA operation is completed and the NIC ready for a new sub-event.

6. The sub-event builder frees the memory and jumps to step three in this list.

This algorithm can be parallelized in order to reduce the overhead, as suggested in Figure 3-24.
Nevertheless, a gigabit technology (i.e., 1 ns per bit, or 125 MByte/s) cannot transmit a 4 KByte
sub event in less than , which limits the maximum trigger rate to 30.5
kHz. Thus, a multiplexing factor of three or less is required to achieve the nominal 40 kHz rate.
Under these circumstances, the few overhead clock cycles implied in the protocol are negligible

1. Note that this format assumed that the NIC supports scatter-gather DMA.

� � � � � � �

� � � � � � � �

� � � � � � �� � � � � � � �

�

�

� �

�

�

�

�

� � � �
 � � � ! � � � � " � � � � � � � � # $ % � � � � 	

� � � � � � � �
 � 	 	 � � � � � # $ % � � � � 	 � � � � � � � � & � � � � � � �

� � � � � �
 � �
 � � � # $ %

� � � � � � � �
 � 	 �
 � � � 	 � � � � � � � �
 � � � � � � � � # $ %

� �

 � � 	 � & � � � �

� � � " �
 � � � � � � � '
 � � 	 �
 �

(� 	 � � �) � * �

+ , � � 	 � � � � " �

- " � � � � .

& � � � 	 �
 � �

� � � ' � �) � * � � �

& � � � 	 �
 � �

� � � ' � �) � * � � �

! ! !

/ � � " � 	

� � � � � � � � � 	
 � �
 �

4096 8 1ns⋅ ⋅ 32 8µs,≈

Output stage requirements 67
and a sequential algorithm would simplify the sub-event builder implementation. The apparent
mismatch between the achievable performance and the requirements can be avoided either by
using a faster link technology or by scaling up the number of RUs in the system. The latter
implies that a larger number of RUs will be connected to a larger switch, increasing the system
cost, in order to keep the currently preferred Gigabit Ethernet technology choice1. The use of
higher-bandwidth technologies in the context of the LHCb DAQ system is discussed in
[LHCb98-030].

Fig. 3-24. Parallelized sub-event building protocol for the DAQ RU application.

Performance degradation occurs if the NIC is not able to pipeline sub-event operations (i.e., read
one sub-event from the sub-event buffer at the same time a second event is being sent to the
readout network) and then the duration of the DMA operation in the PCI bus has to be added to
the 32.8 µs. This time, tDMA, for a pull protocol, a sub-event size of E bytes and a 64-bit PCI bus
clock period Tclk, is given by expression 3.6. One PCI turnaround cycle, one address phase, 15

wait states introduced by the FPGA when responding to a read operation2 and four latency
cycles for accessing the DPM (making a total of 21 cycles) have been considered for the PCI
read transactions. This time3 is 16 µs and would limit (together with the 32.8 µs transmission
latency) the trigger rate to roughly 20 kHz.

From expression 3.6, the maximum trigger rate for a 64-bit 33-MHz PCI bus and a 4-KByte sub-
event is 62.5 kHz. This required a 2-Gbit/s Gigabit Ethernet implementation.

(3.6)

3.5.3. Level-1 Trigger VELO application requirements

In the VELO application, a new sub-event is built upon reception of a token from the TagNet
bus. Each RU has a token input and a token output, and the RUs are interconnected forming a
closed daisy chain including a readout supervisor that generates the tokens. When all RUs in the
chain have built and sent its sub-event, the token finally reaches the readout supervisor.

A “push” protocol is assumed as it is the working mode of the commercially available SCI
NICs. It was observed with a PCI bus analyzer that no wait states are introduced by the FPGA
when performing PCI master write operation and that tested NICs add between three and seven
wait states when responding to a target write. Additionally, the embedded PCI interface in the
FPGAs inserts ten empty cycles between transactions (see Figure 6-14 on page 141). For the

1. The widespread of Gigabit Ethernet in industry implies lower costs per Gbit/s than other solutions. LHCb has
decided to adopt this technology for the time being and wait for higher-throughput derivatives.

2. This latency has been measured on Lucent Technologies’ Orca3TP12 and Orca3LP26B devices. Similar latencies
can be expected for other FPGA vendors. See “PCI subsystem test” on page 134.

3. For a 64-bit 33-MHz PCI operation and a sub-event size of 4 KByte.

� � � � � � � � � 	 � �

) � � � � � � � 	 � � � � � � # $ % � � � , ! �

5 & 6 % �
 � � � � � # & $ � � , ! �

� � � � 	
 7 ! � � , ! �

� � � � � � � � � 	 � �

) � � � � � � � 	 � � � � � � # $ % � � � , ! �

5 & 6 % �
 � � � � � # & $ � � , ! �

� � � � 	
 7 ! � �

� � � � � � � � � 	 � �

) � � � � � � � 	 � �

& $

& � �
� �

5
 � � � � � � ! � 5
 � � � � � � ! �

tDMA 21 E 8⁄+() Tclk⋅=

The Readout Unit for the LHCb experiment68
basic architecture in Figure 3-22, an average event fragment size of 64 bytes and a multiplexing
factor of four, a total of thirty-two 64-bit PCI data phases are needed.

The absolute minimum number of cycles required to transfer a complete sub-event to the NIC is
then 50 cycles (taking into account the 32 data phases, 7 cycles for NIC latency, one address
phase and 10 empty cycles between transactions inserted by the PCI interface). This implies that
FPGA and PCI clock frequencies beyond 50 MHz are required to achieve the nominal 1-MHz
rate. As a result, a 64-bit 66-MHz PCI bus must be implemented1. The maximum trigger rate for
an event fragment payload size of S byte, a PCI clock frequency fclk and a NIC target latency of
lat cycles is given by expression 3.7.

(3.7)

For 64-byte event fragments, this results in a theoretical maximum 64% PCI bus efficiency
(Figure 3-25). This sets a performance limit in the PCI bus that can only be superseded by using
PCI-X at frequencies between 66 MHz and 133 MHz. This option is not feasible for the time
being due to the lack of commercially available PCI-X network interface cards.

Fig. 3-25. PCI bus efficiency for VELO application.

3.6. Output stage architectures

Besides a single-processing-element output stage architecture (implemented in the first RU
prototype) depicted in figures 3-22 and 3-26, a two-processing-element scheme (as implemented
in the RU-II module) will be also discussed. In the latter scheme, a parallel operation of two
FPGAs on the PCI bus can yield a higher performance, as suggested in [Walsch01].

3.6.1. Single-processing-element output stage

In Figure 3-26, each processing element in the input stage (depending on the chosen
architecture) combines the incoming frame payloads into a single block and writes an entry in
the Descriptor Block, as described in “Memory management scheme” on page 61. To build a

1. Any frequency in the range 33-66 MHz is considered in the PCI specification as 66-MHz mode PCI.

ftrigger
fclk

11 lat S 8⁄+ +
-----------------------------------=

32 Data phases

1 Address phase

7 NIC latency

10 empty cycles

36% overhead 64% data transfer

Output stage architectures 69
sub-event, the combined payloads have to be encapsulated in a frame according to the STF
convention. The maximum performance for this architecture is limited by expression 3.7. In a
two-processing-element input stage scheme, performance would drop for small-fragment
applications, as a result of the additional overhead implied in switching between memories
during the sub-event building process.

Fig. 3-26. Output stage architecture for a single- or double-processing-element input stage.

3.6.2. Tandem-FPGA output stage

The output stage that corresponds to a two-processing-element input stage architecture (as
implemented in the Readout Unit II module) is shown in Figure 3-27. Data mergers store event-
fragments in separate memories. The two sub-event builder elements can synchronize their
operation via a 32-bit bus as suggested in “High bandwidth, tandem PCI master operation for the
Level-1 VELO application” on page 119.

The single-and double-processing-element architectures can be compared in terms of maximum
trigger rate for the VELO application (multiplexing factor of four, 64-byte event fragments and
66-MHz PCI operation) as a function of the target (NIC) latency. The maximum trigger
frequency for both architectures for a given event fragment size N in bytes, trigger latency lat
and PCI bus frequency fclk, is given by expressions 3.8 and 3.9. The two curves cross at
(see Figure 3-28), which is exactly the case of the new PCI-to-SCI adapter cards from Dolphin
(LC3 link controller and PSB66 bridge chip) tested in [Walsch01].

Sub-event
builder

64 bit

PCI bus

Data
Merger A

64 bit

NIC
Readout
Network

MCU
LAN

SEB throttle

S-Link
trx.

16 bit

Data
Merger B

Throttle output

32 bit

32 bit

DPM 64-bit wide

Entry for event N

Event N. Fragment 0
Event N. Fragment 1

Event N. Fragment M

...
...

...
...

Mailbox

...

DPM 64-bit wide

Entry for event N

Event N. Fragment 0
Event N. Fragment 1

Event N. Fragment M

...
...

...
...

Mailbox

...

lat 7=

The Readout Unit for the LHCb experiment70
(3.8)

(3.9)

Fig. 3-27. Two-processing-element output stage architecture.

This result implies that, considering the PCI bus efficiency only, the two architectures yield the
same performance for the VELO application.

The advantage of the two-processing-element scheme resides in the possibility to neglect the
overhead provoked by directory reading and housekeeping tasks. While one FPGA is flushing
its internal PCI FIFOs (i.e., performing a long burst PCI transaction) it can simultaneously
perform housekeeping tasks (like checking free space in memory) and read descriptors form
memory. At the same time, the other FPGA can fill its internal PCI FIFO with the next event
fragment (or a fraction of it, depending on the fragment size) [Tol01-1].

f glesin
fclk

N
2
---- 11 lat+ +
------------------------------=

fdouble
fclk

N
2
---- 4 2 lat⋅+ +
----------------------------------=

Sub-event
builder

64 bit

PCI bus

Data
Merger A

64 bit

NIC
Readout
Network

MCU
LAN

SEB throttle

S-Link
trx.16 bit

Data
Merger B

Throttle output

Sub-event
builder

64 bit 64 bit

32 bit

32 bit

DPM 64-bit wide

Entry for event N

Event N. Fragment 0
Event N. Fragment 1

Event N. Fragment M

...
...

...
...

Mailbox

...

DPM 64-bit wide

Entry for event N

Event N. Fragment 0
Event N. Fragment 1

Event N. Fragment M

...
...

...
...

Mailbox

...

32 bit

Overall module performance 71
Fig. 3-28. Maximum trigger rate as a function of the NIC latency for the two output-stage architectures.

The following figure illustrates this concept applied to the VELO application, where two
nominal-size event fragments fit in the internal FIFO of the RU-II’s output stage FPGAs1 and
thus a single block transaction form memory is normally needed.

Fig. 3-29. Tandem operation of the two FPGAs.

3.7. Overall module performance

The 64-bit RU hardware architecture allows a 528 Mbyte/s raw bandwidth at 66-MHz. Table
3.10 compares the nominal requirements with the RU estimated performance for the three target
applications. In the least demanding application (FEM) the output stage limits the trigger rate to
100 kHz.

1. 256-byte internal PCI FIFOs are provided in Lucent Technologies’ OR3LP26 FPGA.

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1 2 3 4 5 6 7 8 9 10

Single Double

Target latency

T
rig

ge
r

fr
eq

ue
nc

y
(M

H
z)

Single burst transaction
(PCI FIFOs have a full fragment)

FPGA A

FPGA B

Free space checking
Directory readingFragment loading into PCI FIFOs

The Readout Unit for the LHCb experiment72
The DAQ application performance is limited by the Gigabit Ethernet network technology and
the use of “pull” protocols. Network technologies with higher bandwidth and 66-MHz PCI bus
operation at the RU’s output stage would improve the maximum trigger rate for this application.

The maximum rate for the VELO application is limited to 1.3 MHz due to the 7-cycle NIC target
latency of current PCI-to-SCI network adapters (Figure 3-28). Input and output stage
performance for all architectures, as a function of the fragment size, can be approximated to
expressions 3.3 and 3.9 (see Figure 3-30).

Fig. 3-30. Overall performance for input and output stages.

As it has been demonstrated along this chapter, a different module architecture would not make
a significant difference and that the Readout Unit meets the requirements of the three target
applications.

3.7.1. Scalability and performance upgrade

Scalability in terms of higher multiplexing factor is not an issue in the LHCb context, but in
terms of higher trigger rate (as a Level-1 rate increase to 80 kHz is currently under study) and
higher event fragment size (greatly determined by threshold cuts and zero-suppression

Table 3.10. RU-II overall performance

Scenario Sub-event
size

Nominal
rate

Maximum
input

stage rate

Maximum
output

stage rate

Max. Achiev-
able

throughput

 Required
throughput

FEMa

a. For a 50-MHz FPGA operation.

1 KByte 40 kHz 460 kHz 100 kHz 100 MByte/s 40 MByte/s

DAQb

b. Assuming “pull” protocol and an intelligent 2-Gbit/s NIC, 33-MHz PCI and 50-MHz FPGA operation.

4 KByte 40 kHz 117 kHz 62.5 kHz 250 MByte/s 160 MByte/s

VELOc

c. For 66 MHz PCI and FPGA clock frequencies.

0.25 KByte 1 MHz 2.64 MHz 1.3 MHz 333 MByte/s 240 MByte/s

0,5

1

1,5

2

2,5

3

3,5

4

30 40 50 60 70 80 90 100

Input stage Output stage

Fragment size

T
rig

ge
r

fr
eq

ue
nc

y
(M

H
z)

(byte)

Proposed Sub-event Transport Format (STF) for the DAQ 73
algorithms). These two factors directly translate into a higher throughput requirement. Two
complementary approaches are possible:

1. At the system level only, more RUs with a reduced number of incoming links per module
would allow to handle higher throughputs. The drawbacks are evident: higher system cost
and the requirement of a larger DAQ network switch, further increasing the system cost.
This is the preferred approach until a higher-bandwidth technology is adopted.

2. At the module level only, higher FPGA clock frequencies as a result of optimized VHDL
code and faster devices can enhance performance in the FEM application. In the DAQ
application, 66-MHz PCI and higher-bandwidth network technologies would allow for a
higher trigger rate.

3.8. Proposed Sub-event Transport Format (STF) for the DAQ

Raw data produced in the one million sub-detector channels are either transformed into a binary
value (hit or no hit) or a digital value (via A/D converters). Channels carrying a no-hit or a
digital value below a certain threshold level are discarded (Level-1 zero suppression). The
remaining data are multiplexed and packed into a data block according to a sub-detector
specific formatting convention, which is of course unknown by FEM, RU and SFC modules.
Thus, an interface layer is needed between the Level-1 electronics and the DAQ (“MUX
interface” in Figure 2-3) to encapsulate the detector-specific data blocks (payload) with header
and trailer information to construct higher hierarchy frames whose format is understood by the
DAQ system.The resulting frame (an event fragment) is sent to the DAQ via a Front-end Link.

The first stage in the DAQ system (FEMs) merges incoming event fragments into a sub-event,
which has the same formatting convention (called sub-event transport format, shortened as
STF) as the event fragments. DAQ RUs merge sub-events into larger sub-events and send them
to a certain SFC, which receives all the sub-events and builds an event. The main purpose of the
DAQ system is to carry out this task, called event building.

It can be concluded that a STF must be defined taking into account the following considerations:

1. The Data Block must be self-sufficient, i.e., all the information needed for Level-2 and
Level-3 processing must be inside the block and do not concern to the readout protocols.

2. A low overhead format is required to keep the data flow in the DAQ as low as possible.
3. It must be simple to reduce the processing time in FEMs, DAQ RUs and SFCs (one more

word to read means one more clock cycle).
4. It must take into account the capabilities of the link technology which will be used across the

different stages in the DAQ system. Does the link technology already implement any sort of
error checking/correction?. Does the link technology allow to mark some words as special
(command or control) or allows any frame-delimiting mechanism?.

5. FEMs and DAQ RUs will merge incoming frames into a single outgoing frame with the
same STF convention. How does this scale in terms of bandwidth and frame complexity?.

The Readout Unit for the LHCb experiment74
3.8.1. First proposals

Before proposing a frame format, the solutions adopted by other LHC experiments were studied
and it was found that they introduced too much overhead. A major simplification of the ATLAS
frame format [McLaren98] led to a first proposal shown in Figure 3-31.

According to this first proposal, two 32-bit header words (containing the event number, the data
block size and a source identification number) and a single trailer word (containing status
information and a 16-bit CRC code) encapsulate the payload (data block). Frame delimiting is
achieved by means of a high-to-low transition in the flag bit, an additional signal available in a
number of link technologies such as [Hewlett1]. As this is a slow-changing signal, transmission
errors are rare and glitches can be detected, thus allowing for a safe frame delimiting. This
logical frame format has its corresponding technology-dependent physical frame format. As
most link technologies accept 16-bit input data, this is the assumed symbol size.

Fig. 3-31. First proposed STF.

FEMs and RUs are to be implemented using FPGAs and thus a 16-bit CRC code checking/
generation accepting 32-bit data words was implemented in a two-stage pipeline [Tol98-3]. The
implementation consumed only 74 four-input LUTs (look-up tables), thus validating the
feasibility of the frame format. Error correction schemes like Reed Solomon and Hamming
codes were studied, leading to the conclusion that error correction techniques required too many
resources for a practical on-the-fly implementation.

We shall consider how we should encapsulate these frames when crossing multiplexing stages.
FEMs and DAQ RUs gather event data from its input links, merge them into a data block and
construct a frame. Figure 3-33 illustrates this mechanism for a multiplexing factor of three. The
same concept can be extended for an arbitrary multiplexing factor. The new frame has the same
event number as the preceding ones, the data size is the addition of the lengths, the Source Id.
field identifies the sender (the current FEM or DAQ RU) and the status word carries some flags
(errors in transmission, in CRC checking, broken link condition, DPM full, etc.).

Flag bit delimits frame boundaries

Event Number
Source IdData Size

CRCStatus

32-bit wide

Data 1
Data 2

Data n

...

LOGICAL FRAME FORMAT

Event_Nr High
Event_Nr Low

Data Size
Source Id.

Data 1 High
Data 1 Low
Data 2 High
Data 2 Low

...

Data n High
Data n Low

Status
CRC
Idle
Idle

16-bit wide

Flag bit is zero at Status
field for early detection
of end of frame

 P
ay

lo
ad

Header

Trailer

PHYSICAL FRAME FORMAT

Flag bit

 P
ay

lo
ad

... ...

Proposed Sub-event Transport Format (STF) for the DAQ 75
This scheme has the advantage of adding a small overhead and it is also a simple protocol itself.
Once S-Link was adopted as the baseline link technology (see “CERN S-Link: a technology-
independent interface to the Level-1 electronics” on page 80), the STF proposal was adapted to
the characteristics of S-Link. Figure 3-32 shows the proposed frame format, in which a data
block is encapsulated with only three framing words containing the following fields: event
number, source identifier, type of frame, data size (in 32-bit words) and status information.

Start and end of frame are delimited by the flag bit signal, which is emulated in S-Link using a
control word. As S-Link includes error detection, the CRC field from the first proposal was
removed.

Fig. 3-32. S-Link based STF.

Event Number
Source Id

Size

32-bit words

DATA BLOCK

Type

Status

Flag bit

Type: 4 bits
Source Id: 24 bits
Size: 20 bits
Status: 8 bits

4 bits: must be zero
Used by S-Link for error report

4 bits: reserved for future
applications

(control words)

The Readout Unit for the LHCb experiment76
Fig. 3-33. Sub-event building according to the first proposed STF.

Event Number n

Source Id aData Size a

CRC aStatus a

32-bit wide

Block a

Event Number n

Source Id bData Size b

CRC bStatus b

Block b

Event Number n

Source Id cData Size c

CRC cStatus c

Block c

Source Id aData Size a

3Status a

Block a

Source Id bData Size b

3Status b

Block b

Source Id cData Size c

3Status c

Block c

Event Number n

CRC XStatus X

Source Id XData Size X

Blocklet building

Data Size a + Data Size b + Data Size c + 6

Initially all zeros!

Calculated after trx. error

Frame fields building

logging in Status X

Event Number n

Source Id XData Size X
Source Id aData Size a

3Status a

Block a

Source Id bData Size b

3Status b

Block b

Source Id cData Size c

3Status c

Block c

CRC XStatus X

Bl
oc

kl
et

Blocklet

Definitions

Data Block: Physics raw data

Blocklet: Consists of concatenated control words

Number of input links
in Readout Unit X
(3 in this example)

(always expressed in 32-bit words)

and Blocks

Block or Payload: Can be a Data Block or a Blocklet

Incoming frames

Putting all together we get...

Fr
am

e
re

ad
y

to
 b

e
se

nt
 to

 th
e

ou
tp

ut
 li

nk
(F

EL
 o

r R
ea

do
ut

 N
et

w
or

k
In

te
rf

ac
e)

Proposed Sub-event Transport Format (STF) for the DAQ 77
3.8.2. Final sub-event transport format

This work proposes the adoption of S-Link as link technology for the interconnections between
Level-1 sources, FEMs and DAQ RUs. S-Link allows two kind of words: data and control. The
proposed transport format (Figure 3-34) uses this feature to mark the first and last words in the
frame as control words, thus providing easy frame boundary delimitation. According to the S-
Link specification [S-Link] the four least significant bits in a control word are reserved for error
logging, and thus the fields SH, ST (S-Link Header, S-Link Trailer) in the proposed transport
format are imposed by S-Link.

Fig. 3-34. Sub-event transport format for LHCb FEM and DAQ RU.

Frames consists of three header words, the payload data block, an optional error block and one
trailer word. The resulting overhead is normally four 32-bit words1. In detail, the transport
format is composed of the following fields:

• DAQ event number: It is a monotonically increasing number generated in the front-end
electronics. It is incremented after a Level-1 accept, thus providing a “+1” search pattern for
FEM and RU sub-event building engines. Though 28 bits are available, 20-bit numbers are
already enough to provide unique event identification for more than 26 seconds and so there
is no need to use all the 28 bits.

• SH, ST (S-Link Header, S-Link Trailer): S-Link defined 4-bit error field.
• LID (Link ID): It is a 16-bit field used to identify the sender of the frame. Each Level-1

source, FEM and RU have an unique identification number that is written into the LID field in
every frame they produce.

• CB (Check Bits): This is an optional 8-bit checkbit field for the header word, default is all
zeroes.

• Type: Optional 8-bit field for type of data, default is all zeroes. It allows to distinguish
between normal data taking, calibration runs and other modes of operation.

• OEB (Offset to Error Block): Offset (expressed in number of 32-bit words) to the optional
error block in the trailer. This field is ignored (i.e., there is no Error Block) if EBS field is
zero.

1. As errors do not happen frequently and error blocks are only built when errors occur.

DAQ Event Number

DATA BLOCK (DB)

4 lower header bits:

ST

31 15 0

 trailer

header checkbits(8) type (8)

4 lower trailer bits:
Used by S-Link

opt. Error Block (EB)
Status(8) Total Size(20)

Link ID(16)
Offset to error block (16) EBS (8)Reserved(8)

S-Link Error detection
SH

sub-event data

The Readout Unit for the LHCb experiment78
• Reserved: 8-bit field reserved for future applications.
• EBS (Error Block Size): Error Block size expressed in 32-bit words.
• DB (Data Block): Payload data. Its structure is transparent to FEMs and RUs.
• EB (Error Block): Optional error log consisting on one 32-bit word per error found. Its

format is still to be defined.
• Status: 8 bits of fast status information for 8 types of error, identified by each bit. Default is

zero.
• Total size: 20-bit field containing total number of 32-bit words in the frame, including header,

error block and trailer.

Data transmission errors or synchronization errors can be detected by FEMs and RUs in three
ways:

1. Incoming frames are already marked in the status field as erroneous by the upstream stage.
2. An error condition is reported by S-Link.
3. An error is detected by the RU logic itself.

In the last two cases, the corresponding bit in the Status field is marked in the outgoing frame
and, if error logging is enabled, an entry is appended at the end of the Error Block (a 32-bit word
consisting of the error code and the identifier of the unit in which the error was generated).

Fig. 3-35. Example of sub-event building.

The described STF transport format is applied in every stage where a new sub-event is built, i.e.,
both in the FEM and the DAQ RU. Data from a number of input links are reorganized every time
into a new, larger sub-event. The full event-building of a single event is performed between the

DEN 0000
LID A Typecheck

Status A TS.A = 7 0000

DB.A

DEN 0000
LID B Typecheck

Status B TS.D = 7 0000

DB.B

DEN 0000
LID.C Type

Status C TS.C = 9 0000

DB.C

DEN (DAQ event number) 0000
Output Link ID Typecheck

Status-Flags Total Size = 16 0000

DATA BLOCK A

DATA BLOCK B

DATA BLOCK C

Combined ERROR BLOCK

Offset to EB = 8 EBS=4

FPGA

DPM

FPGA

OEB = offset to error block = size of (A+B+C+D)

New output Link Number
31 0

DEN 0000
LID C Type

Status D TS.D = 5 0000

OEB.A = 3 EBS.A = 0

OEB.B = 2 EBS.B = 1

EB.B

OEB.C = 3 EBS.C = 2

OEB.D = 0 EBS.D = 1
EB.D

EB.C

Total Size = 4 + OEB + EBS

Reserved

Reserved

Reserved

Reserved

Reserved

check

check

scan

buffer

assemble

A

B

C

D
NEW sub-event

no error block

Proposed input and output link technologies 79
DAQ RUs and a SFC. Figure 3-35 shows an example of a sub-event construction. A time out
condition was reached for fragment D and a dummy frame with an error block logging this
occurrence was produced by the input stage.

The described sub-event building format can be used recurrently and thus allows for an arbitrary
number of sub-event building stages. All header and trailer words in the incoming framed are
stripped off, reducing the framing overhead.

3.9. Proposed input and output link technologies

Input and output link technologies for the Readout Unit are not defined in the Technical
Proposal for the good reason that in this fast evolving market it is not possible to foresee what
gigabit link and network switch technologies will be the cheapest and long-term supported by
2005, when the experiment starts running.

There are four different types of links:

• Copper links for differential transmission of up to 20 m at 1 Gbit/s using parallel to serial
converters. Example: Texas Instruments Flatlink [Texas1].

• Non-serialized parallel transmission using copper ribbon cables for up to 100 Mbit/s.
Example: National LVDS line drivers/receivers [National1].

• Optical fibers for serially encoded transmission across 20-1000 meters at more than 1 Gbit/s.
Example: HP Glink [Hewlett1].

• Parallel optical ribbon fibers, either DC or AC coupled for up to 100 meters. Example:
Siemens Paroli [Siemens1].

For instance, twisted-pair cable links may be used at the Front-end region, whilst Gbit/s optical
links are needed for the longer distance interconnection to the multiplexing stages in the DAQ.
Between the two industry serial encodings, CIMT (synchronous) and 8b/10b1 (asynchronous),
today’s choice for Gbit/s transmission would be the Agilent Glink technology which implements
CIMT for up to 1.6 Gbit/s using low voltage devices. Nevertheless, today’s choice has a low
probability to be the same that would be made in three or four years time. The same applies to
the DAQ network technology.

The incoming front-end links to the DAQ RUs the are assumed to be 8 or 16 bit wide on the
physical level, corresponding to current gigabit link technology, LVDS copper ribbon cables or
PAROLI optical parallel links. The physical width is converted to 32 bit via a simple multiplexer
logic since the rate at which data are written to the FPGA is critical and defines the operating
frequency of the FPGA.

At least until a decision is taken, the Readout Unit must implement a flexible link scheme that
allows to test different technologies. The proposed solution, already approved by the LHCb
Collaboration, suggest the use of the technology-independent CERN S-Link interface for FEM,
DAQ RUs and VELO RUs inputs as well as FEM outputs, and the use of PCI as an interface bus

1. Used by Fiber Channel and Gigabit Ethernet.

The Readout Unit for the LHCb experiment80
to a commercial NIC for DAQ RU and VELO RU output. These two technologies are presented
and evaluated in the following sections.

3.9.1. CERN S-Link: a technology-independent interface to the Level-1 electronics

The use of the CERN S-Link mezzanine convention [S-Link] was proposed to the collaboration
in the framework of this thesis since it allows to choose from a variety of available mezzanine
boards for either copper or optical links, which may be plugged on the RU via the S-Link
connector (see Figure 3-36). A Link Source Card (LSC) transmits data and a Link Destination
Card (LDC) receives data. S-Link does not describe the physical link itself. What S-Link
defines is:

• The mezzanine and the connector, following the CMC standard [CMCstd].
• The 64-bit connector pinout. There are 32 data lines, clock, write enable, control/data, error

and linkdown lines generated by the source and transmitted to the destination. For duplex S-
link applications only, the destination (LDC) generates the signals: XOFF, RESET, TEST and
four asynchronous return lines.

• The FIFO-like data transfer protocol between the mezzanine and the motherboard.
• Other protocols (like reset, link down, transmission error reporting, self test).

Fig. 3-36. S-Link connector signals.

The error detection mechanism (parity, CRC, etc.) is implementation dependent (i.e., not defined
by the specification). Errors are reported either word-by-word (via the LDERR# line) or in a
block-by-block basis (LDERR# line and the four least significant bits in a control word). S-Link
obliges to perform error checking in all control words. This is used in the proposed STF to
guarantee error checking in the first and last words in the frame, which carry the critical event
number, frame size and status flag information.

LD(0-31)

LWEN#

LDOWN#

LRL(3-0)

LTDO#

LXOFF#

Data bus, 32 bit-wide

Validates incoming word

Link not operational. Asynchronous signal.

Asynchronous return lines

Test Data Out enable

Source throttle. Asynchronous

LDC reset. Asynchronous signalLRESET#

LCTRL# Indicates whether LD(31:0) is control or data

LCLK clock

LDERR# Link transmission error report

 duplex only

UD(0-31)

UWEN#

UDOWN#

URL(3-0)

UTDO#

UXOFF#

URESET#

UCTRL#

UCLK

UDERR#

LSC (data TX) LDC (data RX)

LDW0/1 UDW0/1
(32 bit)(32 bit)

Proposed input and output link technologies 81
The link physical implementation is transparent to the motherboard designer. The maximum link
clock frequency is 40 MHz and the maximum data width is 32 bit1, thus allowing for a
maximum 160 MByte/s throughput.The link technology may be any current technology. Popular
S-Link technologies are Glink (serial high speed) or LVDS for parallel short distance
applications.

LCLK is a free running clock if LDOWN# is high, undefined otherwise. This might imply clock
glitches and can be a cause of metastability if used by the receiving logic (SEM) as a master
clock. In the RU, the receiving FIFOs decouple the S-Link and SEM clock domains.

Fig. 3-37. Parallel copper S-Link card (LVDS signaling, 160 MByte/s).

The STF frame delimiting with S-Link control signals is depicted in Figure 3-38. A frame starts
and ends with low levels in LCTRL# and LWEN# signals (control words). Two consecutive
control words (ignoring idles) identify a start of frame.

Fig. 3-38. Frame delimiting with S-Link control signals.

1. A 64-bit 100-MHz version of S-Link capable of handling up to 800 MByte/s has been recently defined. See http://
edms02.cern.ch/tmpfiles/edms_tmp_1478521_slink64.pdf

S-Link connector
LVDS

connector

data_n Trailer... idle Header 1

LWEN#

LCTRL#

LD0-31 Header 1 Header 2 Header 3 ...

Start of
frame

End of
frame

Start of
frame

The Readout Unit for the LHCb experiment82
3.9.2. PCI: a technology-independent interface to the Network Interface Controller

The PCI (Peripheral Component Interconnect) is an I/O expansion bus designed for the desktop
PC market, aimed at replacing ISA, EISA, VESA and other legacy I/O standards. In its basic
configuration (32-bit 33 MHz) it provides a 132 MByte/s raw bandwidth. A factor of four
increase in throughput (i.e., up to 528 MByte/s) can be achieved with a 64-bit 66-MHz
implementation.

PCI is an unterminated CMOS bus [PCIstd], what means very low static currents. This energy-
saving feature is enhanced by the fact that PCI uses reflected-wave switching, which implies
moderate dynamic currents (around 300 mA). In a reflected-wave switching bus, unterminated
lines are driven with the incident wave at half the transition point. The reflected wave
propagates back to the loads to duplicate the voltage step and drive a valid logic level.

Fig. 3-39. Timing budget for 3.3V PCI implementation in 33-MHz mode.

Figure 3-39 shows the typical voltage step in the load produced by the reflected wave and the
timing constraints involved in a 33-MHz implementation. Allowing a clock skew of 2 ns and
assuming a setup time in the receivers of 7 ns, only 21 ns are available for signal propagation.
This includes the time taken by the driver to reach Vtest and twice the propagation time through
the bus and the settling time in the loads. The more loads on the bus, the more capacitance and,
as a result, the slower signals propagate. The longer the bus, the more time it takes the signals to
propagate.

This highlights the two major drawbacks of PCI: the reduced number of loads allowed in a bus
(between four and six) and the limited bus length. These limitations are partially avoided by the
use of PCI bridges (Figure 3-40). From the electrical point of view, a PCI bridge is seen from a
PCI bus like a single load, regardless of what is on the other port. This allows to add an arbitrary
number of loads in the system and to extend physically the bus a few more centimeters.

Tclk = 30 ns

tval < 11 ns tprop < 10 ns

tskew < 2 ns

tsu < 7 ns

Vih
1.65V

Vtest
1.33V

Driver

Load

Proposed input and output link technologies 83
PCI systems are hierarchical, consisting of a primary PCI bus where the PCI host resides and
secondary PCI buses created by the addition of PCI bridges (Figure 3-40). The use of PCI
bridges is an efficient way of traffic isolation, forwarding upstream (towards the host) or
downstream only those transactions requiring the participation of a PCI device that belongs to
other bus. This eases scalability, as simultaneous transactions (one per bus) can happen in the
system. As a drawback, inter-bus transactions suffer from additional latencies introduced by the
PCI bridges, resulting in reduced effective bandwidth.

Despite this hierarchical architecture, PCI defines a shared memory space model. All devices in
a system share a common 32-bit memory space. In a transaction, the destination is indicated by a
memory address, not by a geographical address (bus, slot, device, position). Thus, implementing
DMA is straightforward in PCI. The PCI host assigns during system configuration the base
addresses for each device.

Fig. 3-40. An example of hierarchical PCI architecture.

Devices behave either as masters or as targets. Masters initiate transactions and targets respond
to transactions. Thus, a device can implement both master and a target interfaces or only a target
interface. To initiate a transaction, a master must request ownership of the bus and this request
must be granted. PCI implements a hidden arbitration scheme (the arbitration is done
ortogonally to the main data flow by using separate signals and thus transactions and arbitration
can happen simultaneously) in which one dedicated pair of signals (request and grant) connect
each device to the bus arbiter. The arbitration algorithm is not defined in the PCI specification.
Once a master has obtained the bus mastership it can initiate a transaction consisting basically of
one address/command phase, an arbitrary number of data phases and a termination cycle. This
implies that all transactions are indeed burst transactions with a number of data phases limited
by:

• The arbiter, who can be programmed to prevent a master from monopolizing the bus.

SDRAMSDRAM

Bridge
PCI

PCI
HOST

CPUCPU
(Host)

Bridge
PCI

Bus 0

Bus 1

Bus 2

Bridge
PCI

Bus 3

SDRAMSDRAM

Bridge
PCI

PCI
HOST

CPUCPU
(Host)

Bridge
PCI

Bus 0

Bus 1

Bus 2

Bridge
PCI

Bus 3

PCI slots

PCI slots

The Readout Unit for the LHCb experiment84
• The target, who can have a limited buffer space and interrupts the transaction when the limit
is reached.

• The master itself, who can decide to give other masters a chance to transfer data.

Figure 3-41 depicts the memory write transaction protocol. Address and command are validated
when the master asserts FRAME# (1). This cycle is followed by a number of data phases (2).
The last one is indicated by the master by deasserting FRAME# (3). A turnaround cycle is
needed before the next transaction can take place (4), unless there is no change of master and
then this cycle can be saved (fast back to back transactions). Wait cycles can be inserted at any
time by both master (IRDY# deasserted) and target (TRDY# deasserted).

Fig. 3-41. Write transaction protocol in PCI.

Memory read transactions (Figure 3-42) are also initiated by an address/command phase
validated by FRAME# (1). A turnaround cycle is needed next as the target has to drive the data
bus (2). The target validates each data phase by asserting TRDY# (3) until the master has read
enough data, which is indicated by FRAME# deassertion (4). A turnaround cycle is needed
before the next transaction can take place (5). Wait cycles can be inserted at any time by both
master (IRDY# deasserted) and target (TRDY# deasserted).

For both write and read transactions, the target must assert DEVSEL# within a certain number of
clock cycles. This number and the delay introduced to complete the first data phase account for
the target latency.

From the performance point of view, a write operation requires one address phase, L target
latency cycles, N data phases and a turnaround cycle. The maximum achievable bandwidth
(assuming L=3) can be calculated by expression 3.10. A read transaction requires an extra
turnaround cycle and thus the performance is slightly slower (expression 3.11).

1
2 3 4

Proposed input and output link technologies 85
(3.10)

(3.11)

Fig. 3-42. Read transaction protocol in PCI.

Figure 3-43 depicts the theoretical effective bandwidth for a 32-bit 33-MHz bus.

Figure 3-44 shows effective bandwidth measurements on DMA write operations from a FPGA-
based DMA engine (residing in a PCI slot) into the PC main memory [Costi&Toledo99]:

• System A: Pentium 100 MHz CPU with chipset 430HX and 32-bit 33-MHz PCI bus. EDO
RAM 60 ns. One PCI slot populated by a video card.

• System B: Pentium II 400 MHz CPU with chipset 440BX and 32-bit 33-MHz PCI bus.
SDRAM 100 MHz. Video card in a AGP slot.

The peak value of 66 MByte/s for system A corresponds to the limit imposed by the main
memory bandwidth (32-bit bus width and 60 ns cycle time), whilst System B has a higher main
memory bandwidth and measurements are closer to theoretical values.

Performance in a PCI system is highly dependent on the burst length and on the chosen platform
and thus system evaluation and tuning is required to achieve an efficiency higher than 80%.

In a different approach, using non-DMA transactions (i.e., PCI read/write with the CPU),
performance tests moving data blocks larger than 64 KByte to an from an ATI 3D RAGE PRO
video card have been carried out [David01] on several platforms running Linux 2.2.x. Test

Throughput Mbyte s⁄() 4 103 N⋅ ⋅
30 5 N+()⋅
----------------------------=

Throughput Mbyte s⁄() 4 103 N⋅ ⋅
30 6 N+()⋅
----------------------------=

1
2 4 5

3

The Readout Unit for the LHCb experiment86
utilities were executed in kernel mode for higher performance. Results are summarized in Figure
3-45.

Fig. 3-43. PCI bus theoretical performance for a 32-bit 33-MHz bus.

• Write tests reported 103 MByte/s on a 400-MHz Pentium II with i440BX chipset, 112
MByte/s on an 800-MHz PentiumIII with i815EP chipset, but only 63 MByte/s on an Athlon-
based PC with VIA-KT133 chipset. All platforms had 32-bit 33-MHz PCI. These results
show promising bus efficiency for Intel chipsets.

• Read tests, on the other hand, did not yield more than 9 MByte/s in any of the tested
platforms. This is explained by the fact that PCI chipsets are not optimized1 for CPU reads
from PCI, as DMA is a more efficient paradigm to handle this data flow. Nevertheless, read
performance can be boosted as described in detail in [David01]. Firstly, the PCI board’s
prefetchable memory must be defined as cacheable in the chipset’s MTTR (Memory Type
Range Registers) [IA-32] in order to force a cache fill request rather than a data request. This
yielded a 21 MByte/s performance on the i815EP platform, no improvement at all on the
VIA-KT133 and 26.2 MByte/s on an AMD761-based platform. Secondly, the cache line size
register in the PCI bridge in the PCI board (an i21154 PCI-to-PCI bridge in our tests) was set
to the maximum value (sixteen 32-bit words), allowing longer bursts and yielding 37.8
MByte/s on an AMD761 platform.

The widespread use of PCI in the desktop arena stimulated its application in other fields
(including industrial applications and HEP experiments [Praag95], [Müller95]) and led to the
development of a number of derivatives designed to supersede PCI’s mechanical and electrical
limitations. Indeed, a PCI backplane is limited to a few centimeters in length and a few
(normally four or six) electrical loads. Moreover, no physical expansion mechanism is foreseen
in the PCI specification. Three of these PCI derivatives are:

• Compact PCI [PICMG97]. Defined in 1995 by Ziatech as an open standard which combines
PCI performance, Eurocard 3U and 6U form factors, hot swap capabilities and a higher bus

1. North Bridges in PCI chipsets lack of buffers for CPU-initiated read operations.

0

20

40

60

80

100

120

140

1 4 16 64 256 1024 4096

Write
Read

Number of
Data phases

MByte/s 133 MByte/s

Proposed input and output link technologies 87
loading capability, more adequate for industrial applications than the original PCI
specification. Compact PCI is based on interconnected segments, each segment consisting of
up to eight boards. The high loading in the bus segments is achieved by adding 10-ohm series
terminations in each board in order to damp the reflections. As a result, a modular and
scalable system using Eurocard mechanics expands PCI’s applications range.

• PXI (PCI eXtensions for Instrumentation, 1997) [PXI00]: Based on the Compact PCI
specification, adds to the backplane a set of signals for synchronization, timing and trigger
that are prevalent in instrumentation applications. The chosen software platform is Windows
and VXI plug&play drivers.

• PMC (PCI Mezzanine Card) [PMCstd]: Defines a connector pinout to combine the PCI
specification with the CMC (Common Mezzanine Card) mechanical standard [CMCstd]. This
reduced form factor (15 by 7.5 cm aprox.) is ideal for equipping 6U or 9U Eurocard boards
(like VME) with plugable mezzanine cards for I/O, memory or CPUs.
The extensions defined in VITA-32 standard allow to implement a PCI host on a PMC,
widening the range of applications and system configurations [VITA32std].

Fig. 3-44. Throughput measurement on two commodity PCs.

A recent extension to PCI 2.2, the PCI-X specification [PCIX], conserves the mechanical
specifications of PCI and admits up to 133 MHz clock rates, thus allowing up to 1 GByte/s on a
64-bit system. The electrical limitations of PCI apply and as a result, only one load per PCI-X
segment at 133 MHz is allowed. Two loads are allowed at 100 MHz and four at 66 MHz. Being
backwards compatible with PCI 2.2 and allowing a 10-30% performance increase in multi-

2 22

20

120 117.73

96.15

T
h

ro
u

g
h

p
u

t
(M

B
yt

e/
s)

Log2 (block size in byte)

40

60

80

100

4 6 8 10 12 14 16 18 20

140
Theoretical

System B

66

51.09
System A

The Readout Unit for the LHCb experiment88
master systems due to modified protocols like the new split transactions, PCI-X is bound to
replace PCI.

Fig. 3-45. Performance for CPU-initiated PCI transactions in several platforms.

3.10. Summary

The needed functionalities and design constraints for the three target applications are presented
in sections 3.1 and 3.2, together with a basic architecture for a RU module. Different options are
analyzed in sections 3.3 to 3.7, demonstrating the weak dependence of the performance with the
specific implementation (determined by the number of processing elements in the input and
output stages).

Input and sub-event buffer size estimation result in very relaxed needs for input FIFOs (a few
kilobytes) but more demanding requirements for the SEB (2 MByte minimum). This implies,
due to high cost and low density of integration of true dual-port memory, that an efficient
memory usage is mandatory, as suggested in section 3.4.

Sub-event building algorithms for each application are proposed in section 3.5. In the FEM
application, a 16-bit output to an S-Link transmitter card provides the required performance with
a safety factor greater than two. PCI-based sub-event building between the RU output stage and
the NIC aims at higher throughput applications like DAQ and Level-1 VELO trigger. In the
former case, a “pull” protocol ruled by an intelligent NIC results in unnecessary overhead which
can be tolerated as performance is not affected due to the large frame sizes involved. The
benefits of intelligent NICs are in their capability to perform traffic shaping and complex
readout protocols with the readout network.

The Level-1 VELO trigger application cannot afford the overhead implied in a “pull” protocol
due to the small sub-event size (around one quarter of a kilobyte, sixteen times less than in the

103
112

63

MB/s

A B C
Write transactions Read transactions

9,1 9,1 7,46

MB/s

A B C

37,8

D

A: Pentium II 400 MHz, i440BX chipset
B: Pentium III 800 MHz, i815EP chipset

C: Athlon, VIA KT133 chipset
D: Athlon 1 GHz, AMD761 chipset

103
112

63

MB/s

A B C
Write transactions Read transactions

9,1 9,1 7,46

MB/s

A B C

37,8

D

A: Pentium II 400 MHz, i440BX chipset
B: Pentium III 800 MHz, i815EP chipset

C: Athlon, VIA KT133 chipset
D: Athlon 1 GHz, AMD761 chipset

Summary 89
DAQ application). A “push” protocol is used in which the RU output stage writes sub-events
into the NIC buffer via PCI transactions. The PCI bus protocols reduce the bus efficiency to a
poor 64% in a single-processing element scheme. A tandem-FPGA output stage architecture is
proposed in section 3.6 which can potentially yield a higher performance. Nevertheless, the sub-
event size, FPGA and NIC latencies (measured in laboratory tests) combine in this specific
application to annul this superiority.

A sub-event transport format for encapsulating and handling data through the different DAQ
stages is proposed. Solutions for I/O technologies in the RU are also proposed (S-Link at the
input and at the output for the FEM module, and PCI at the output for the other two
applications).

The Readout Unit for the LHCb experiment90

CHAPTER 4 The first Readout Unit prototype
“Any path that narrows future possibilities may become a lethal trap”

From the novel “Children of Dune” by Frank Herbert.

4.1. Overview

The first RU prototype module (Figure 4-1) was presented to the collaboration in the May 2000
LHCb Electronics Workshop [Müller00-2]. This prototype module aimed at evaluating some
crucial components (like the chosen FPGAs1 and Monitoring and Control Unit2), a number of
design issues (like CMOS switches on the PCI bus and the planar PCI bus implementation) and
to demonstrate the Readout Unit concept before developing a final module. The experience
gained in the design, manufacturing and test of this prototype was of great importance to the
successful implementation of its successor: the Readout Unit II.

This prototype was conceived as a modular system, consisting of a 9U-sized Fastbus
motherboard with plug-in mezzanine cards for I/O and MCU, targeting the DAQ RU and FEM
applications only. The board has a multiplexing factor fully configurable via the monitoring and
control network to be any number between one and four, as four is the maximum number of
mezzanine cards that fit in the front panel of a VME 9U board.

The crate backplane is not involved in the dataflow, all I/O links are point-to-point connections
which are implemented via mezzanines on front and rear-panels of the RU motherboard. The
Fastbus crates are only used for power supply and mechanical support. Double-width modules
are used, as CMC mezzanine cards with high connectors like RJ-45 would not fit in the height

1. Lucent Technologies’ ORCA 3TP12 was the first 64-bit 66-MHz master/target PCI interface implementation on an
FPGA. This device could be used in a compact and high-performance solution for the RU output stage, but had not
been tested before at CERN.

2. A commercial single-board computer based on the Intel i960 processor family [Pxecore00] was chosen as
Monitoring and Control Unit (MCU) for the RU prototype, and thus had to be evaluated.
91

The first Readout Unit prototype92
available in a single-width IEEE960 module (16.51 mm). The reasons to use Fastbus and not
VME mechanics are:

1. The availability of a large number of Fastbus crates which could be acquired for free as a
result of the dismantling of LEP experiments.

2. The upper half of the Fastbus backplane can be removed and thus Fastbus boards can
accommodate two PMC slots on the back-panel. VME, on the other hand, inconveniently
requires to use transition modules to use the back-panel. This would imply long buses from
the motherboard logic to the output connector.

As it can be observed in Figure 4-1, there are connectors for two PMC (IEEE P1386.1)
mezzanines on the rear side: one for a Network Interface Controller card (NIC) and a second one
for an auxiliary PMC card. Physically, the connectors for the NIC and the S-Link cards are on
the same mezzanine slot and thus both cards are mutually exclusive. Four S-Link receiver
mezzanines are located on the front-panel side. The MCU, a i960-based subsystem [Pxecore00]
on a card has the LAN connection routed via the printed-circuit board to the front panel. There
are reset input and Throttle output signals available via NIM coaxial connectors.

Fig. 4-1. First RU prototype.

Apart from these I/O connectors and plug-in cards, there are a number of ICs on the RU
motherboard that implement the following functional blocks:

• The sub-event buffer (SEB) buffer is implemented as two separate memory banks. One or
two banks (each consisting of four 16-bit wide true dual-port memory1 ICs) can be populated,
depending on the buffering needs.

4 * Rx

MCU

Network Interface
 PMC / S-Link
mezzanine

Auxiliary PMC
mezzanine place

LAN

SEM input

EBI output

SEB buffer

DC-DC

S-Link

Reset IN
Throttle OUT

mezzanine

NIC

MCU

S-Link 1

S-Link 2

S-Link 3

S-Link 4

AUX PCI

mezzanines

stage

2 banks

Fastbus

stage

connector

Module architecture 93
• The input stage FPGA, sub-event merger (SEM), reads the input FIFOs (placed below the S-
Link mezzanines) and stores the event fragments in the SEB.

• The output stage FPGAs, or event-builder interface (EBI). Only one is needed, though a
second one has been provided for extended user logic (in case the sub-event building logic
does not fit in a single device).

• The voltage regulators, to convert 5V from the Fastbus crate power supply down to 3.3 V.
Additionally, the from Fastbus are regulated to as these voltages are mandatory
in the PMC slots. There is no need for 2.5 V supply, as low-voltage devices did not spread in
market until year 2000.

• The timing circuitry (not visible in Figure 4-1) consisting of a programmable clock generator
and associated clock buffers, to distribute clean clock signals through the board.

4.2. Module architecture

Figure 4-2 shows the RU prototype architecture with four data link receiver inputs and a PCI
(optionally S-Link) output. The S-Link output option allows to use the RU also as FEM. The RU
prototype is optionally equipped1 with a monitoring and control unit (MCU) for communication,
error handling and configuration of the FPGAs, PCI bus, and programmable clock chips. The
MCU card in the prototype is a commercial i960 subsystem with LAN controller, PCI bus and I/
O functions supporting the I2C, JTAG, GPIO and interruption lines as required by the RU logic
(see “The Monitoring and Control Unit” on page 100).

The input and output stages are implemented as two independent FPGA functions: SEM (Sub-
Event Merger) and EBI (Event-builder Interface). The PCI bus, an integral part of both the EBI
FPGAs and the MCU, interconnects the output of the MCU and the EBI FPGAs to the NIC,
which is assumed to be a standard PCI device on a PMC form factor. The input and outputs
stages work independently with their proper programmable clock domains.

The 64-bit architecture of the RU is conceived for a maximum raw bandwidth of 528 MByte/s
(66-MHz PCI mode) or 264 MByte/s (33-MHz PCI). Its capability to cope with high data
bandwidths relies on the extensive use of 64-bit data paths and fast hardware algorithms in
FPGAs. Performance tests carried out on this prototype have shown that the DAQ working point
of 1 KByte input sub-events at 40 kHz can be reached already with the prototype logic operating
at 28 MHz.

1. In 1998 and 1999 the maximum commercial FIFO width was 36 bits, whilst the maximum DPM width was 18 bits,
reaching 36 bits in year 2000. So, 16-bit memories were used for the SEB.

1. Not required for the FEM operation as the PCI bus is not used. This is true as far as FEM modules are not
connected to the ECS.

15V± 12V±

The first Readout Unit prototype94
Fig. 4-2. Architecture of the first RU prototype.

4.2.1. Input stage

From several possibilities (see discussion in “Input stage” on page 53) the chosen architecture is
based on single-processing-element input and output stages, which requires 64-bit FIFO
memories. Each 64-bit FIFO memory consist of two 32-bit FIFOs working in parallel, where an
interleaved writing scheme (implemented in a GAL) performs the 32-to-64 bit demultiplexing,
as depicted in Figure 4-3. A snapshot of the S-Link connector and the two FIFOs below the
mezzanine is shown in Figure 4-4. FIFO size can be selected between 64 KByte and 1056 KByte
per chip using pin-compatible memories.

Fig. 4-3. Implementation of a 64-bit FIFO with 32-bit buffers.

PLD DPM DPM

16

64

32

32

FPGA
SEM

64

DPM DPM

16
FPGA
EBI
B

FPGA
EBI
A

32

32

PMC AUX
LAN

PMC

S-Link
Output

32

NIC

S-Link #3

S-Link #1

S-Link #0

S-Link #2

MCU
(no PMC)

i960 Bus 32bits@33MHz

Readout
Network

Experiment
Control
System

Fr
on

t-E
nd

 E
le

ct
ro

ni
cs

DAQ

Fr
on

t-E
nd

 M
ul

tip
le

xe
rs

CONN.

INPUT STAGE

OUTPUT STAGE
SUB-EVENT
BUFFER

MONITORING & CONTROL

Throttle

REAR I/OsFRONT PANEL I/Os

Readout
Supervisor

READOUT UNIT BOARD (9U SIZE)

(PCI Host)

FIFO

FIFO

FIFO

FIFO

PLD

PLD

PLD

DPM DPM

16

DPM DPM

16

8

PC
I B

us
 6

4
bi

ts

8

32

(from MCU)

32

32

32

32

32

64
SEM

Write enable

Data

Interleaving
Logic

2
FIFO

FIFO

FPGA

Module architecture 95
Fig. 4-4. Detail of the S-Link connector and the two FIFOs below the mezzanine.

In the prototype, a single 3.3-Volt 55-kgate FPGA [Lucent3T55] in a 352-BGA package is used
for the SEM input logic. The choice was based on previous experience in several projects at the
CERN EP/ED group, though there is no constraint on using other vendor devices. The FPGA
code design methodology is based on VHDL description and simulation (Innoveda’s
VisualHDL), logic synthesis (Specctrum’s Leonardo and Synplicity’s Synplify) and FPGA
vendor place and route tools (Lucent Technologies’ ORCA Foundry), as described in the
Appendix I.

The merging/multiplexing functionality is performed by the SEM FPGA which polls the FIFO
outputs and forwards events either to the output link interface1 (shown in Figure 4-2 as a dashed
line) or to the output buffer (SEB). The former was foreseen for non-buffered applications. The
functional block diagram of the SEM FPGA is sketched in Figure 4-5. This FPGA
communicates with other devices via three interfaces:

• FIFO interface: Allows the SEM logic to read data from the 64-bit FIFO bus, monitor empty
and full FIFO flags, and control FIFO operation.

• S-Link and DPM interfaces: Depending on if the multiplexer motherboard is used in
buffered or unbuffered applications, the built sub-event is sent to either S-Link or to the DPM.

• CPU interface: Links the FPGA with the i960-based MCU using an embedded 8-bit i960
interface.

In unbuffered applications, the Main Control (a state machine in SEM logic) creates the header
for the next sub-event and, according to the status of each link (enabled, disabled, unavailable,
empty FIFO, time out reached, etc.), determines if a new block has to be read (activating the
Read Block from FIFO state machine), if a dummy block has to be created (activating the Create
Dummy Block state machine) or if errors have happened and an error block must be appended at

1. The FEM is considered today to be a buffered application, though both options (buffered and non-buffered) were
under discussion by the time the first RU prototype was designed and thus both are supported.

Slink connector

FiFo: IDT72V3660=4K*36
 3670=8K*36

 3680=16K*36
 3690=32K*36
 36100=64K*36
 36110=132K*36

FIFOs

The first Readout Unit prototype96
the end of the frame (Create Error Block state machine). Finally, the trailer is appended at the
end of the frame.

In buffered applications, the synchronization and operation of the functional blocks is
programmed in a different way to implement the scheme described in Section 3.4.1. "Memory
management scheme" in page 61. This way, a state machine (Main Control) controls other four
state machines, simplifying the SEM logic. Three-state buses are used to avoid big multiplexers
(buses are 64-bit wide) between pipeline stages.

Fig. 4-5. Block diagram of the SEM FPGA logic.

The CPU interface block can be used for several purposes:

• Test, diagnostics and Debugging: A multiplexer (see Figure 4-5) can be configured to read
data from the CPU instead of from the FIFO bus, allowing the simulation of error
transmission and frame corruption, as well as other scenarios like self-test patterns.

• Monitoring: The CPU can access a wide range of counters and status registers in the FPGA.
• Control: Turning links on/off, forcing self-test or debug mode, time out window acceptance,

etc. can be controlled remotely via LAN.

4.2.2. Sub-event buffer

Four 16-bit wide memory chips form a 64-bit memory bank, whilst two memory banks form the
SEB. The 64-bit wide DPM has a storage capacity of 512 KByte, upgradable to 1 MByte in the
prototype. This is insufficient as justified in “Sub-event buffer” on page 60, but enough to
evaluate the RU prototype design.

MAIN
CONTROL

Read Block
from FIFO

Create Dummy
Block

Create Error
Block

S-Link
Control

DPM
Control

C
PU

In
te

rf
ac

e

Control
Registers

M
ux

S-Link & DPM interfaces

C
PU

 in
te

rf
ac

e
FI

FO
 in

te
rf

ac
e

3-state bus

3-state bus

Header and
Trailer

Module architecture 97
The sub-event buffer implementation is shown in Figure 4-6. Signal integrity simulations carried
out with Cadence’s SpecctraQuest pointed out the need to buffer the memory address signals
driven from the FPGAs (SEM and EBI), due to the eight-load topology (see 16LVC16244
buffers in the figure).

Fig. 4-6. Sub-event buffer implementation.

4.2.3. Output stage

Two parallel, 45-kgate FPGAs [Lucent3TP12] with embedded 32/64-bit 33/66-MHz PCI core
are used to implement the EBI output stage logic. In the largest available physical package (352-
pin BGA) up to 187 user I/Os are available. Normally only one FPGA is needed, the second one
is present to accommodate extra user logic in case there is not enough with a single device.
Despite the fact that the embedded PCI interface in the output stage FPGAs is 64-bit wide
externally, the data path with the user logic is hardwired to 16 or 32 bits only, thus limiting the
performance to 264 MByte/s maximum. The embedded PCI interface can be used in two modes:
dual-port (Figure 4-7 right, master and target interfaces share 32-bit FIFOs) and quad-port
(Figure 4-7 left, master and target interfaces have independent 16-bit FIFOs).

The RU contains two PCI buses (see Figure 4-8):

• The secondary PCI bus (33 MHz, 32 bits, 5V signaling environment) is fully configured and
controlled from the MCU and is intended to connect the MCU to an auxiliary PCI card for
debugging purposes. The MCU’s on-board LAN chip is also connected to this PCI bus.

• The primary PCI bus (33/66 MHz, 32/64 bits, 3.3V or 5V) is controlled and configured by
either the MCU or the EBI FPGA, depending on which of them is the PCI configuration agent

Bank 1
256/512 KByte

Bank 2
Extension

IDT70V9289 DPM (64K*16)

compatible with
IDT70V9279 (32K *16)

74LVC16244

74LVC16244 buffers

The first Readout Unit prototype98
(selected via a switch on the RU motherboard). Other on-board switches allow to select the
electrical environment and bus speed.

Fig. 4-7. Dual-port and quad-port modes in the ORCA3TP12 FPGA PCI interface.

The output stage architecture (Figure 4-8, only one EBI FPGA shown) allows the MCU to take
part in the DAQ event-building protocols if desired, or even to take full control of the sub-event
building tasks (at a reduced performance) by using the EBI FPGA just as a memory interface.

Fig. 4-8. Output stage block diagram.

Nevertheless, full-speed operation at 66 MHz implies 3.3 V electrical environment, which is not
compatible with the MCU. Thus, a PCI switch based on CMOS pass transistors1 is used to

64

32 32

32

i960 RN
embedded

I/O processor SecondaryPrimary PCI bus

EBI FPGA

Network
Interface

Card

i960 Memory Bus

8

LAN
chip LA

N
Dual Port
Memory

PCI bus

Readout

SDRAM
local memory

EPROMEB logic

Network

Bus adapt.

32

Embedded PCI interfaces (hardcores)
Embedded i960 8-bit memory interface (hardcore)

D
at

a
M

er
ge

r

PMC conn.

64

MCU

Module architecture 99
isolate the MCU from the primary PCI bus. Output stage performance, in both push and pull
scenarios, is analyzed in Chapter 3.

4.2.4. Synchronization, front panel signals and RU reset

A bussed DPM_Full return line is required from the EBI FPGAs to the SEM FPGA to avoid
overwriting valid data in case of a SEB full condition. This signal, together with the FIFO full
lines in the input stage determine the status of the RU throttle output. This is a TTL open-
collector line on a NIM connector available in the RU front panel.

A line named MAILBOX is driven by the SEM FPGA to indicate that a new sub-event block has
been written into the SEB and thus the MAILBOX memory position in SEB has been updated.
The output stage FPGAs react to a toggle in this signal by reading the MAILBOX position,
recalculating free space in SEB and driving DPM_Full to the appropriate level.

The RU implements a hierarchical reset system, which is described here briefly. At the top of the
hierarchy, a reset request line driven by the MCU, a reset push button and a NIM reset input in
the front panel are fed into a logic or gate that triggers a monostable circuit. This monostable
generates a logic low pulse with a duration between 3.3 and 12 ms: the system reset signal. The
NMI1 input in the MCU is connected to this system reset signal. This way, the MCU can be
configured either to ignore the system reset or to reset itself together with the rest of the RU.

Fig. 4-9. RU Reset hierarchy.

The FPGAs are located at the second level of the reset hierarchy. The system reset signal forces
the FPGAs to enter a reprogramming sequence. FPGAs can be programmed from a Flash
memory (default) or from the embedded i960 interface. Alternatively, the MCU can force a reset
in a specific FPGA just by setting bit 0 in the FPGA Control Register to ‘1’ via the i960
interface. The difference between ‘reprogramming’ and ‘reset’ in a FPGA is that the latter only
resets flip-flops and I/Os, while the former also forces a reload of the FPGA configuration
bitstream.

The S-Link receiver and transmitter cards, the FIFOs and the GALs are at the third level of the
reset hierarchy. All these elements are reset by the FPGAs after a reset/reconfiguration or during
normal operation.

1. IDT QuickSwitch family devices, see http://www.idt.com/products/pages/Bus_Switches-QS32XR245.html
1. Non-Maskable Interrupt.

MCU

FPGAs

GALs
FIFOs

S-Link cards

The first Readout Unit prototype100
4.2.5. The Monitoring and Control Unit

The functionalities of the MCU in the first RU prototype are:

• FPGA configuration loading. At power up, the FPGAs read the configuration data from an
on-board flash EPROM. The three FPGAs are connected in a daisy-chain fashion, with the
SEM FPGA as the first member in the chain. At any time, the MCU can force a
reconfiguration in the FPGAs via a GPIO signal. EBI FPGAs can be also configured from the
MCU via the PCI bus.

• FPGA monitoring and control. The MCU can access user-defined internal registers in all
FPGAs via the i960 local bus.

• Programmable clock configuration. The two clock domains in the RU (input stage FPGA
and output stage FPGAs clocks) are generated in a programmable clock generator (AMI FS-
6370-1). This chips can be configured via an I2C interface or can read already programmed
parameters from an internal EPROM. This means that the clock generator only needs to be
programmed when a change is required in the output frequencies. As a change in the output
frequencies might cause glitches, this operation should only be performed while the FPGAs
are in reset mode.

• PCI configuration agent. The MCU is the configuration agent in the secondary PCI bus, and
can also act as the configuration agent in the primary PCI bus (selectable via a jumper on the
MCU board). The MCU can force a reset in the primary PCI bus. This reset does not affect
the MCU itself unless it is programmed to do so when attending a NMI.

• Experiment Control System interface. This functionality is over the entire control of the
MCU as no interface signals between the MCU and the on-board logic exist for this purpose.
An on-board Ethernet chip is used to interface the ECS network.

• Readout Unit debugging and protocol testing. This functionality requires that the MCU
accesses internal registers in the FPGAs and has read/write access to the DPM. These
functions ar performed via the i960 local bus.

• Participation in sub-event building protocols. As an intelligent device attached to the
primary PCI bus, the MCU can take part in the sub-event building.

The chosen embedded CPU for the RU prototype is the PXECORE module from CompuLab
[Pxecore00]. It consists of an Intel 80960-RD RISC CPU, a 10/100 Ethernet controller,
embedded Flash EPROM, DRAM memory and additional features like up to 50 programmable
I/O lines (see Figure 4-10).

The embedded I/O processor controls and bridges two 32-bit PCI buses. The interconnection
between the MCU and the RU is shown in full detail in Figure 4-11. The PXECORE card (133
by 86 mm forma factor, similar to the CMC form factor) interfaces with the RU via seven non-
standard connectors, which makes the RU dependent on this company-specific development.

Module architecture 101
Fig. 4-10. MCU block diagram for the first RU prototype.

Fig. 4-11. MCU-RU interconnection in the first RU prototype.

Primary PCI bus

Secondary PCI bus

Fl
as

h

D
R

A
M

I/O lines

Ethernet

EP
R

O
M

Local bus

FPGA

Local bus
interface

32

32

32

i960 CPU

FIFO32

32

32

32

S-Link
Rx

FIFO

FIFO

FIFO

SEM
FPGA

DPM

EBI2

FPGA

EBI

FPGA

S-Link
output #1

S-Link
output #2

NIC

PCI #1 32/64 bits 33/66 MHz

AUX

PCI #2 32 bits 33 MHz

(optional)

CPUAD (31:8)

64 data + 16 address + 8 control

64 data +
16 address +
4 control

C
PU

A
D

 (7
:0

)

B2

C
PU

C
LK

IN
T#

 (1
)

RWA
D

S#
B

E#
 (1

:0
)

A
LE

R
D

Y
R

C
V

#

C
E#

 (2
:0

)

CE# (0)

CE# (2) CE# (1)

70 data + control

FP
G

A Buffers

CPU
I2C Bus

Programmable clock

SEM_CLK

EBI_CLK

Local Bus

PA (4:0)

PD (1:0)

PCI_HOST
PCI_MCU_RT_REQ#

(SCL, SDA)
NMI

System_reset#

LAN
CHIP

LAN

INT# (3)

INT# (4)

INT# (2)INT# (2)

INT# (4:2)

0FPGA_RT#
1MCU_RT_REQ
2PXE_MC
3INIT# 4DONE

(MODE, SEL_CD)

PC (0)
PC (1)

PXECORE

The first Readout Unit prototype102
4.3. Conclusions

The Readout Unit prototype board was successfully tested (S-Link input to S-Link output sub-
event building in a buffered application) in January 2000, demonstrating the feasibility of the
RU concept despite some minor design errors. The PCI-based sub-event building could not be
tested, as the PCI core in the FPGAs required an specific configuration software for application
development which was not delivered until summer. Nevertheless, the PCI bus could be tested in
order to validate the physical design.

The chosen MCU turned out to be problematic for the RU application. The MCU LAN had
problems, the RU FPGAs configuration via the dedicated i960 bus did not work, and several
bugs were found on the card. Moreover, being a single-company product with non-standard
connectors, there was no possibility to use a different module. This lack of flexibility was found
unacceptable.

Other drawbacks in this first RU prototype are summarized below:

1. Too many components and connectors resulted in a very expensive 12-layer PCB requiring
the highest fabrication quality level.

2. Too many switches and jumpers on the board provided flexibility, but restricted ease of
operation and maintenance.

3. The sub-event buffer capacity (1 MByte maximum) was below the requirements to perform
trigger throttling (see “Flow control in LHCb” on page 35).

4. Two FIFO chips per input channel were required in the prototype, which added a significant
cost factor.

5. The SEB could not be written from the output stage, reducing the flexibility.
6. Lacking of TagNet interface, the module could not be used for the VELO application.

A module design revision was needed to reduce the module cost, remove some unnecessary
features, increase the sub-event buffer size and to include the features required by the VELO
application, resulting in the RU-II board described in the next chapter.

CHAPTER 5 The Readout Unit II
“There is in all things a pattern that is part of our universe. It has symmetry,
elegance, and grace (...) We try to copy these patterns in our lives and our society,
seeking the rhythms, the dances, the forms that comfort”

From the novel “Dune” by Frank Herbert.

5.1. Overview

A module design revision was needed to reduce the module cost, increase the sub-event buffer
size and to include the features required by the VELO application, resulting in a modified
architecture as shown in figures 5-2 and 5-3. The RU-II’s capability to cope with high trigger
rates relies on the use of parallel data paths rather than on wide buses.

The experience with the first RU prototype resulted in a list of improvements and simplifications
for a re-design of a final RU module. The resulting RU-II module was considerably less
expensive due to reduction of expensive components (like DPM memory, FIFO memory, Flash
memory and non-standard mezzanine cards). Also the diversification of components was further
reduced, in particular a single, new type of FPGA1 was used with the benefit of a higher gate
count and faster PCI interface. The use of PCI as configuration bus for all FPGAs made the
company-specific interface to a MCU card redundant and by using the PMC standard also for
the MCU, the special connectors could be avoided.

As a consequence of the simplifications, the new 9U module (figure 5-1) could be routed in
eight PCB layers only, compared with the twelve of its predecessor. The addition of one extra
FPGA in the output stage allows to test a new, parallel input architecture. Extensive analog
signal integrity checks were performed, as a result of which the addition of a PCI bus bridge for
the delicate 66 MHz PCI bus became mandatory.

1. Lucent OR3LP26, an FPGA with true 64-bit 66-MHz PCI core and 60-120 Kgates of user programmable logic.
103

The Readout Unit II104
Fig. 5-1. Readout Unit II.

The improved features on the Readout Unit II are:

• The scheduling network TagNet is implemented as required by the VELO application.
• The FPGA configuration via the Intel i960 bus is replaced by PCI bus.
• The MCU is implemented as a standard PMC card, allowing multiple vendor choices and

removing entirely non-standard connector dependencies.
• Only a single FIFO is used per S-Link input.
• The DPM size is increased to reach two megabyte (enough for fast throttling with low

latency) with only four chips, instead of the eight in the first prototype.
• A diagnostic PCI connector has been added, allowing to plug PCI bus analyzers or PCI

service cards.
• The SEB is now readable and writable from both input and output stages (could not be written

from the output stage in the first prototype).
• Most of the mechanical configuration jumpers are replaced by programmable lines in the

MCU, thus allowing remote-jumpering via the LAN interface.
• Some of the diagnostic logic which was required for the prototyping and development is

removed.
• The S-Link output option in the first RU prototype which allowed to directly drive S-Link

from the SEM (Figure 4-2) is removed since all RU applications require buffering for sub-
event building.

S-Link

Data inputs
in front
panel

Processor card
slot (PMC)

Network Interface
Card (PMC)

PCI connector
for diagnostics

Dual-port
memory

FPGAs

FIFO

Overview 105
• Newer FPGA devices of higher gate count (120 kgates) are used [Lucent3LP26]. All FPGAs
are equipped with 66-MHz PCI cores such that their interconnection with the MCU’s PCI bus
is straightforward. Additionally, these FPGAs include true 64-bit interfaces between the user
logic and the PCI core, thus allowing full PCI speed.

A picture of the revised RU module in shown in Figure 5-1. It has less components and includes
a TagNet bus interface. One S-Link card is inserted on the top front emplacement, further
emplacements are visible with a single FIFO each. One NIC card is inserted on the top rear
PMC/S-Link slot. The PMC slot emplacement below can be used for the MCU card. Below the
PMC there is the PCI diagnostic connector. The DPM consists of four ICs (center). Input stage
logic is implemented in two FPGAs (bottom). The two upper FPGAs implement the output stage
logic.

5.1.1. Architecture

Each of the two horizontal slices in the RU-II architecture (Figure 5-2) consists of a 32-bit input
stage performing 2-to-1 data merging (sub-event merging, SEM), a dual-port buffer with 32-bit
input and 64-bit output buses and a 64-bit output stage. The two slices generate two data paths
that are connected at the output stage together to perform sub-event building (event-building
interface, EBI). This generates four logic blocks, implemented in four FPGAs which are
interconnected via their PCI bus pins in a PCI bus hierarchy of which the MCU card is host.

Figure 5-3 shows the full RU-II architecture. The input stage, buffer and output stage implement
the main data flow. In a vertical view, control and monitoring paths are ortogonally
implemented.

Fig. 5-2. RU-II horizontal architecture.

The MCU, hosting the primary PCI bus, is connected via PCI bridges to the input and the
outputs stages. Two PCI bridges1 create three PCI segments which can operate independently.
Only the PCI bus segment at the output stage takes part in the event data transfer (from EBI

1. Intel 21154-BC 32/64-bit 33/66 MHz PCI-to-PCI bridges. This chips include a programmable PCI arbiter.

S-Link
PCI 32/64

S-Link

SEB

2:1 2:1

S-Link 32

32 64

64 2:1

32

32

32

S-Link

S-Link

2:1
32

32

32

DPM

DPM

SEM EBI

The Readout Unit II106
FPGAs to the Network Interface Card). The other two PCI segments are used for configuration
and control.

Fig. 5-3. RU-II architecture.

5.2. Input stage

Figure 5-2 allows to identify the two parallel input stage data paths: incoming frames from two
links are read and processed in an FPGA and stored in DPM. In order to implement part of the
sub-event building tasks in the input stage, the FPGA must merge incoming frames with the
same event number into a single data block and a single descriptor in DPM. The resulting data
structure in memory is shown in Figure 5-4.

The pointer in the directory block (DYB) points to the start of the event fragment from link 0.
The length field in the DYB descriptor results from the addition of the length of the two
fragments. The flag field is the bitwise logic OR of the flags for the two event fragments. This is
seen by the output stage as a single data block and a single descriptor.

A simplified version1 of the proposed algorithm for the DAQ application is shown in Figure 5-5.
This algorithm can be modified for the VELO application frame format (which might be a
simplified version of the DAQ transport data format) and can be also generalized and used in the
FEM application. In fact, the latter option has been implemented in VHDL and allows to turn the

1. All error handling mechanisms disabled, including support for Error Blocks.

PLD

FPGA
SEM

B

32

DPM DPM

32

64

FIFO32

FIFO32

FPGA
SEM

A

32

DPM DPM

32

64

FPGA
EBI
B

FPGA
EBI
A

32

FIFO32

FIFO32

PLD

LAN

PMC

S-Link
Output

32

NIC

S-Link #3

S-Link #1

S-Link #0

S-Link #2

PCI
Bridge 1

PCI
Bridge 2

MCU

PMC
Root PCI Bus 32 @ 33/66 MHz

PCI Bus 2

Readout
Network

Fr
on

t-E
nd

 E
le

ct
ro

ni
cs

DAQ

Fr
on

t-E
nd

 M
ul

tip
le

xe
rs

Tagnet

INPUT STAGE

OUTPUT STAGE

SUB-EVENT
BUFFER

MONITORING & CONTROL

32 @ 33 MHz
Traffic

ThrottleTrigger
Supervisor

READOUT UNIT BOARD (9U SIZE)

PCI Host

scheduling

 16

16

16
2:1

DCS

RJ45

PCI bus 1
64 @ 33 (66)

Rx cards

Flash
2*SEM

Flash
2*EBI

Tx cards

Fr
on

t

B
ac

k

Aux. PCI

on root
PMC

switch

Diagnostics
PCI card

exclusive
mutually

Input stage 107
DAQ application into a particular case of the FEM application with only one fragment per event
number and link. This means that the same FPGA code can be used in the input stage for both
DAQ and FEM applications, simplifying code maintenance and development.

Fig. 5-4. Event fragment merging in the sub-event buffer.

The algorithm in Figure 5-5 is divided into three tasks (identified as dashed boxes in the figure):

1. Read one sub-event from the first FIFO and store its data block in the sub-event buffer (top
left dashed box).

2. Read one sub-event from second FIFO and store its data block in the sub-event buffer so that
the two data blocks are merged (bottom left box).

3. Write a single entry for the merged data block in the Directory Block (bottom right box),
update the MAILBOX memory position and toggle the mailbox signal to let the output stage
know that a new sub-event can be built.

Task 3 for the event N is concurrent with task 1 for the event N+1, resulting in zero overhead for
memory management and 2-to-1 data merging (except for the turnaround cycle needed when
switching between FIFOs).

 Event Number Pointer Length Flags
DIRECTORY

BLOCK (DYB)

 Event Fragment link 1

DATA
BLOCK (DB)

DYB pointer DB pointerMAILBOX

 Event Fragment link 0

Last event number

The Readout Unit II108
Fig. 5-5. Input stage algorithm for the DAQ application.

% + � @ A
�

�

� � � � � + B � �

= � � ' � � � ?

� � � � �) ; � � � + � �

= � ' � � ?

� � � � �) � C + �

) 	 �
 � � 1 ; � #

� � � # & $ � = � ' � � ?

+ 5 � @ 4 � (� : � @ � A

� �
� �

= � ' � � ?

= � ' � � ?

% + � @ A
�

�

� � � � � + B � �

= � � ' � � � ?

� � � � �) ; � � � + � �

= � ' � � ?

� � � � �) � C + �

= � ' � � ?

) 	 �
 � � 1 ; � #

� � � # & $ � = � ' � � ?

+ 5 � @ 4 � (� : � @ � A

� �
� �

= � ' � � ?

= � ' � � ?

: � � � � � � � � " � � � A
D�

< �

�

�

) 	 �
 � � �) � C + � � � � � & ; � � (+ �

� � � # & $ � = � ' � � ?

= � ' � � ?

� � � � 	 � � $ % � : � ; <

� � � # & $ � = � ' � � ?

� � � � � � � � � � 	 � � � � � � � � � 	
 � � � � �
 � � � �

= � ' � � ?

+ , � � 	 � � � � " �
 5 � � � � & � � � 	 �
) � * �

� 2 E � F � F

F 2

� � � � � � � �
 � � � �
 � � � � � � � � � 	
 � �
 �

) 	 �
 � � � + B � � � � � � � 5 : % 6)

� � � # & $ � = � ' � � ?

	 �
 � � � � � � � �
 � � � � � � � � � �
 � �

< �

%

6 � 	 8 5
 � � � � � 	 @� + � @

+ 5 @ 4 � � (� : @

# � 	 � 8 B � � � � @

- / � ! ! � .

; + @	
�	

� �
�
�

	
�
�
�

� � � � � � � �
 � � � � � � � � � � � � � � � � ! � � � � � � � � � "
 � � � � !
 � � � � #

AE#,

Input stage 109
5.2.1. Input stage design

As described above, the input stage has two independent parallel data paths, each one consisting
of two S-Link inputs, two FIFOs, one FPGA and one small auxiliary PLD1 for FPGA support. A
detailed structure of one of these data paths is shown in figure Figure 5-7.

Each S-Link input receives data which are directly written into a FIFO. The value of three S-
Link signals [S-Link] (LDOWN#, LDERR#, LCTRL#) are written into the 36-bit-wide FIFO
together with the 32 data bits coming from the S-Link connector and the FF# (FIFO full) flag bit
coming from the FIFO. This additional information is used by the auxiliary PLD for frame
synchronization and delimiting (LCTRL# signal) and by the FPGA for error detection
(LDOWN#, LDERR# and FF# signals).

The FPGA monitors the state of the PAE# and EF# flags2 (Programmable Almost Empty and
Empty Flag, respectively) in both FIFOs. The value of the programmable flag can be changed
depending on the application. The FPGA reads the FIFOs with the help of the PLD. The PLD is
needed because the FPGA is not fast enough to immediately deassert REN# FIFO inputs (Read
ENable) when an end of frame has been reached and thus an additional word (the beginning of
next event fragment) would be read accidentally from FIFO. The timing diagram in Figure 5-6
illustrates this situation.

Fig. 5-6. Timing diagram illustrating a potential timing error avoided using a fast auxiliary PLD.

At the beginning of cycle n+1 (rising edge of the clock) a new word containing the end of the
frame is read form FIFO (CTRL# asserted after the FIFO’s access time delay tA). The FPGA
cannot deassert REN# fast enough and the result is that a new unwanted word is read on cycle
n+2. The FPGA latches CTRL# at the beginning of cycle n+2 and its internal delays (not fixed)
added to the FIFO setup time are too close to a clock period of 45-50 MHz (RU-II target
frequency). Thus, a second unwanted word might be read or not depending on program-
dependent FPGA delays3. A similar discussion can be applied to the EF# signal.

1. Altera MAX 7032AE-4 in a 44-pin PLCC, the smallest device in the MAX 7000 family. With a pin-to-pin max.
combinatorial delay of 4 ns, 32 macrocells and JTAG in-system re programmability, is well suited for the RU-II
application.

2. Four offset values (7, 15, 31 and 1023 words) for the PAF# and PAE# flags can be programmed via two lines (FS0
and FS1) from the SEM FPGAs.

3. This problem was a design bug if the first RU prototype that limited the maximum clock speed in the FPGA and
thus the input stage performance.

REN#

CTRL#

cycle n cycle n+1 cycle n+2

FPGA delay + FIFO ts

tA
tA

CLOCK

cycle n+3

tA: 6.5 ns
ts: 3.5 ns
FPGA delay: ~15 ns

(not fixed)

or EF#

The Readout Unit II110
In order to overcome this limitation, an auxiliary fast PLD is used. Fast PLDs have fixed pin-to-
pin delays as short as 3.5 ns, making it possible to deassert REN# prior to the rising edge of the
clock at the beginning of cycle n+2 and thus avoiding the read of unwanted extra words.
Another way to avoid the problem is defining a frame format in which two empty (non-valid)
words are added at the end of the frame. The resulting overhead could be acceptable for DAQ
but not for VELO application. So, the addition of one PLD per input stage data path is preferable
to adding framing overhead and would allow safe operation at frequencies of 50 MHz and
beyond.

Fig. 5-7. RU-II input stage.

The input stage block diagram is depicted in Figure 5-7. S-Link receiver cards write incoming
event fragments (EF) into their associated FIFO memories. The SEM identifies EF pairs that
share the same event number according to an input algorithm described in the previous section.
A combined sub-event block is written into the Data Block section of the SEB buffer together
with a pointer to its Directory Block (see also “Memory management scheme” on page 61 and
Figure 5-4).

The auxiliary PLD may be used for something else than deasserting REN# after an end of frame
or a FIFO empty condition. For this purpose, a number of lines are connected between the
FPGA, the PLD and each FIFO (Figure 5-8):

• ctrl# is an S-Link dedicated signal used for frame delimiting.
• FIFO read control signals: oe# and ren# (output and read enable).
• FIFO flags: EF#, PAE#, FF# (empty, programmable almost empty and full flags).
• PAE# threshold in FIFOs is adjusted via fs(1:0) signals coming from the SEM FPGA.
• S-Link defined control signals (url(3:0) and reset_S-Link#).
• get_frgm#: the FPGA asks the PLD to read a new event fragment from FIFO.
• start#: the FPGA enables the PLD operation after reset or power up.
• gal_rt#: the FPGA resets the PLD logic.

data(35:0)

REN#

oe#

EF#

FF#
reset_FIFO#

data (31:0)
clock
control(2:0)
we#

S-
L

in
k

co
nn

.

FIFO
(8Kx36)

FA
ST

 P
L

D

flag_bit#

data(35:0)

REN#

oe#

EF#

reset_FIFO#FIFO
(8Kx36)

flag_bit#

data (31:0)
clock
control(2:0)
we#

S-
L

in
k

co
nn

.

reset_S-Link#
SEM

reset_S-Link#

n

n

data(31:0)

address(16:0)
control

SEB

PAE#

PAE#
FF#

m
m

PCI-32
S-Link

S-Link

EBI

pointers

(FPGA)

NOTE: signals with one open end are connected to SEM

Input stage 111
• wait_sync#: provides a way to read one FIFO when the other gets empty in the middle of a
fragment read. Not used in the current version of the PLD logic.

• dvalid#: the PLD validates FIFO data words with this signal.
• aux: Additional signal reserved for future application.

Fig. 5-8. Detailed interconnection scheme between the FIFO, PLD and FPGA.

The currently implemented 8-state machine implemented in the PLD is shown in Figure 5-9 and
its operation is summarized below:

1. Wait for the FPGA to assert get_frgm# and start# (idle state in the diagram).
2. Read selected FIFO until a start of frame is found (states ask_FIFO, start_frgm,

icmplt_frgm and end_frgm). A start of frame is identified by two consecutive control words
(i.e., trailer followed by first word in header).

3. Read a complete event fragment from FIFO and validate each data word with dvalid# (state
end_frgm).

4. If FIFO gets empty during step 3, insert wait states (empty1, empty2).
5. Go to step 2 (and thus read a new event fragment) when the FPGA needs it (state next_frgm).

Thus, frame boundary synchronization and fast REN# control are transparent to the SEM FPGA,
simplifying its logic.

ren#

oe#

EF#

FF#

reset_FIFO#

data (31:0)
clock
control(2:0)
we#

S-
L

in
k

co
nn

.

FIFO
(8Kx36)

FA
ST

 P
L

D
SEM FPGA

reset_S-Link#

data(31:0)

address(16:0)
control

SEB

PAE#

PCI-32

S-Link

EBI

pointers

dvalid#
aux

wait_sync#
gal_rt#
start#
get_frgm#

data(31:0)&control(3:0)

ctrl#

fs (1:0)

url (3:0)

The Readout Unit II112
Fig. 5-9. PLD state diagram.

5.3. Sub-event buffer

The sub-event buffer is based on dual-port memory for simultaneous access from both ports
(SEM and EBI FPGAs). It consists of two independent memory banks with a 32-bit interface to
the input stage and a 64-bit interface to the output stage. Figure 5-10 depicts the structure of one
of the two memory banks.

The SEM FPGA performs 32-bit interleaved operations to memory so that two consecutive
memory positions lay in different ICs. The EBI FPGA performs 64-bit operations reading both
DPM ICs in parallel. This is a straightforward mechanism for interfacing 32-bit with 64-bit data
buses. A self-incrementing address counter in the memory ICs is loaded and enabled
independently for each port via the ADS# (Address Strobe) and CNTEN# (CouNTer ENable)
signals.

Sub-event buffer 113
Even if normal operation requires only write operations to the left port (input stage) and read
operations from the right port (output stage), bidirectional buses and R/W# control lines are
provided for special applications like debugging or test.

Fig. 5-10. Structure of a dual-port memory bank.

Fig. 5-11. Dual-port memory connection scheme in the SEB.

data_left 32

address_left 17

R/W#
ADS#

CNTEN#

CE_0#
OE_0#

Le
ft

po
rt

(in
pu

t s
ta

ge
)

si
gn

al
s t

o
SE

M
 F

PG
A

CE_1#
OE_1#

data_right
address_right
R/W#

ADS#
CNTEN#
CE#,OE#

R
ig

ht
 p

or
t (

ou
tp

ut
 st

ag
e)

si
gn

al
s t

o
EB

I F
PG

A

17
64

DUAL-PORT

MEMORY

DUAL-PORT

MEMORY

EBI 2

EBI 1

D<31:0>
A<15:0>

CE-A

SEB

SEM 1

SEM 2

upper 1

lower 1

upper 2

lower 2

OE-A

CNTEN-A

D<31:0>
A<15:0>

CE-B
OE-B

CNTEN-B

D<31:0>
A<15:0>

CE-A
OE-A

CNTEN-A

D<31:0>
A<15:0>

CE-B
OE-B

CNTEN-B

D<63:0>

Inter <31:0>

A<16:::0>

clk

CE
OE

R/WRW

RW

CNTEN-B

D<63:0>
A<16:::0>

CNTEN-B

D<63:0>
A<16:::0>
CE
OE

R/W
CNTEN-B

D<63:0>
A<16:::0>

CNTEN-B

SEM EBI

PCI 64

NIC

The Readout Unit II114
The picture below in Figure 5-12 shows the four SEB chips on the RU-II board. The chosen
device is a 36-bit-wide 512-KByte true dual-port memory (IDT 70V3599S) in a 208 PQFP
package. Four chips for a 2-MByte sub-event buffer.

Fig. 5-12. Photography of the Sub-event buffer in the RU II.

5.4. PCI subsystem

The PCI subsystem hierarchy is depicted in Figure 5-13. It consists of three PCI bus segments:

• One 3.3V 32-bit 33/66 MHz primary PCI bus that interconnects the MCU, the two PCI
bridges and an auxiliary PCI connector. The MCU acts as the configuration agent for the
whole PCI subsystem. Alternatively, a single-board computer can be plugged on the auxiliary
PCI connector (5V 32-bit) to act as the host. PCI-compliant switch/level-converter ICs are
used to interface between this 5V device and the 3.3V bus and to isolate the auxiliary
connector when in 66 MHz operation. This isolation reduces the bus length and enhances
signal integrity to allow 66 MHz operation.

• One 3.3V 32-bit secondary PCI bus that interconnects the two SEM FPGAs and the
corresponding PCI bridge This bus has been designed for 33 MHz operation as is intended
only for FPGA monitoring and control from the MCU and for SEM FPGAs
intercommunication.

• One 3.3V 64-bit secondary PCI bus that interconnects the two EBI FPGAs, the NIC and the
corresponding PCI bridge. This bus has been designed for 33/66 MHz operation and serves as
the communication path between the RU output stage and the NIC. Control and monitoring
from the MCU is also foreseen (the impact on the output stage performance is marginal, due
to the low bandwidth required for this task).

Apart from the benefits of traffic isolation, the two PCI bridges reduce the electrical loading and
the bus segment lengths, thus allowing 66-MHz-mode1 compliant PCI operation in both the
primary and the 64-bit secondary bus. This compliance has been verified with post-layout signal

1. 66-MHz mode refer to clock speed between 33 and 66 MHz, according to the PCI specification.

DPM DPM

DPM DPM

PCI subsystem 115
integrity simulations using Cadence Specctraquest. The bridges provide the clock and arbitration
signals for the devices on their secondary buses. The MCU is the arbiter in the primary bus. This
allows any FPGA to become a PCI master and access all the PCI devices in the RU.

The chosen device is the Intel 21154, a transparent bridge1 that provides 32-bit or 64-bit primary
and secondary interfaces, independently. This device is available in two versions: AC and BC.
The former operates up to 33-MHz, whilst the latter can be used in 66-MHz PCI systems. Both
versions are compatible with the RU II design.

Fig. 5-13. PCI subsystem in the Readout Unit II.

Currently, there is no transparent PCI-to-PCI bridge that allows a higher clock frequency on its
secondary PCI bus than on the primary bus2. This implies that, for 66-MHz sub-event building,
a 66-MHz PCI host (i.e., the MCU) is needed. There are several 66-MHz host-capable3 PMC
embedded CPUs commercially available, though the imminent widespread of 66-MHz PCI will
augment the number of such designs. The MCU in the RU-II module is a 33-MHz PCI device.

1. There are two kinds of PCI bridges: transparent and non-transparent. Transparent bridges allow to see initialize the
devices on the secondary bus from a host on the primary bus. Non-transparent bridges hide and initialize all the
devices on its secondary bus, allowing multi-host PCI systems.

2. The opposite is true: secondary bus clock can be slower than primary bus clock. The justification can be found in
the PC architecture, in which the closer to the microprocessor (host), the higher the needed bandwidth.

3. Compliant with VITA-32 extensions for PMC.

SEM 1

SEM 2

EBI 1

EBI 2

PMC conn.
for NIC

PMC conn.
for MCU

PCI conn. for
auxiliary card

32

32

64

BRIDGEBRIDGE

Primary

PCI PCI

Switch

HOST

The Readout Unit II116
5.5. Output stage

Event fragment merging is performed in the input stage, so the output stage will only have to
assemble two data blocks into a single sub-event. Each data block resides in a separate DPM
bank and is only accessible for the corresponding EBI FPGA (see Figure 5-14). The input stage
FPGA code can be very similar for the three applications (DAQ, FEM and VELO), but the
output stage FPGA code must be completely different from one application to the other. In this
section, the sub-event building algorithm and hardware for each application is briefly described.

The 64-bit output stage architecture is shown in Figure 5-14. Two FPGA chips can access their
associated SEB buffers via 64-bit data buses in parallel. The FPGA internal PCI cores allow to
combine the PCI outputs together on the PCI bus as required for the tandem master operation in
the L1-VELO application. The high speed data path between FPGAs and NIC is decoupled by a
PCI bridge from the other PCI bus segments which are mainly used for initialization and
communication. The TagNet connector for VELO high-rate traffic scheduling is implemented in
logic inside one FPGA.

Fig. 5-14. Output stage architecture.

The S-Link and NIC cards share (exclusively) the same PMC slot. For an S-Link output, the sub
event data are combined, using the 32-bit bus interconnecting the two FPGAs, and are sent to the
S-Link connectors as a single sub event. A 16-to-32 bit demultiplexer (74LVC16374 latch or
similar) is required for S-Link due to not enough pins on the FPGA. This is however uncritical
as the performance requirement for a link multiplexer is four times less than for a RU (see “FEM
application requirements” on page 65).

FPGA
EBI
A

32

PC
I B

us
 6

4@
33

/6
6

PMC

S-Link
Output

NIC

TagNet
I/O

Address(16:0)

CE#, OE#, R/W#,

Data(63:0)
DPM

BANK

ADS#, CNTEN#

DPMFULL#
MAILBOX#

Connected to
SEM FPGA A

32

FPGA
EBI
B

Address(16:0)

CE#, OE#, R/W#,

Data(63:0)
DPM

BANK

ADS#, CNTEN#

DPMFULL#
MAILBOX#

Connected to
SEM FPGA B

16
Data (31:16)

Control

Data (15:0)

PCI
BRIDGE

16-bit Latch

Output stage 117
5.5.1. TagNet interface implementation

The TagNet interface implementation on the RU was decided on a dedicated RU meeting
[Müller00] in October 2000 in Heidelberg.

Fig. 5-15. TagNet implementation.

The TagNet interface is implemented on the RU-II board as 16-bit data plus strobe and clock.
There is one TagNet input and one TagNet output per RU. At the TagNet output, the 18 lines are
multiplexed, converted to LVDS levels and transmitted over a 4-pair cable with RJ-45 connector
by an LVDS serializer chip1. At the input, the four differential pairs are de-serialized, converted
to LV-TTL levels and fed into the FPGA. Standard CAT-5 network cables up to 5 m are used to
interconnect RUs in a TagNet daisy-chained ring.

Two possible TagNet formats were proposed, both of which include Hamming error correcting
codes (ECC) due to the vulnerability of a system to erroneous traffic scheduling information.

Fig. 5-16. Proposed TagNet formats.

The first proposal uses a single 16-bit frame as information unit, with 10-bit data for up to 1024
nodes. There are 2 bits for 4 commands and 4 bit for ECC. The second proposal uses double 16-
bit frames as one information unit, allowing for more commands, and higher level ECC. The
two-bit commands defined so ar are:

1. National Semiconductors’ DS90CR217 and DS90CR218.

16+1

RJ45 plugs

EBI-A

rxclk 25-75 MHz

Four

in

out

16+1

DS90CR218

DS90CR217

Rx

Tx
txclk 25-75 MHz

CAT 5 network

to next RU

FPGA chip

pairs
 cable

CMD(2) DATA (10) ECC(4)

OR

CMD(x) DATA (>10)

CMD(x) ECC(x)

16 + 1 Flag (single frame)

2 * 16 +1 (double frame)

only 4 bits for ECC

>1024 nodes, spare bits, more commands

16-bit frames

sp

sp

The Readout Unit II118
• SEND (code 00). The destination is coded in the DATA field as a 9-bit node and a 1-bit buffer
identifiers.

• FLUSH (code 01). The 10-bit DATA field contains an event number.
• ERROR (code 10). Generated by RUs to communicate and error condition to the Scheduler

Unit via an 8-bit RU identifier and two bits for error type coding in the DATA field.

5.5.2. Output to S-Link for the FEM application

The output to S-Link uses a 16-bit data path as shown in Figure 5-17. FPGA-B implements the
sub-event building process. For this purpose, the dedicated 32-bit bus that interconnects the two
EBI FPGAs is used for transferring 16-bit data and control signals (8 lines in each direction).

Fig. 5-17. Output data path for the FEM application.

1. FPGA-B reads the next descriptor from DPM and asks FPGA-A via to read its descriptor
and send it to FPGA-B.

2. With this information, FPGA-B can generate and send the header words to S-Link.
3. FPGA-B sends its data block to S-Link.
4. FPGA-B asks FPGA-A to read and send its data block via the 16-bit inter-FPGA data lines.
5. FPGA-B adds the trailer word to complete the frame, according to the STF.

The first implemented algorithm on the RU-II module achieved 81 kHz trigger rate for a 45-
MHz FPGA operation. Better results (beyond 100 kHz trigger rate) are expected with an
optimized implementation.

DPM

DPM

64

FPGA-A

S-Link output

64

16 8+8

DEMUX
32

FPGA-B

16

Output stage 119
5.5.3. Output to a PCI Network Interface card for the DAQ application

As described in “DAQ RU application requirements” on page 65, it is foreseen that an
intelligent and PCI-master-capable NIC pulls data from the RU performing DMA read
operations on the PCI bus. The proposed readout protocol is depicted in Figure 5-5 on page 108
and is adapted to the RU-II architecture (Figure 5-14) by defining a hierarchy in which FPGA-B
is the master and FPGA-A is the slave. The former will implement the sub-event building
algorithm. Sub-event building is performed as described below:

1. FPGA-B waits for the NIC to be ready to accept a new DMA descriptor list.
2. Once the NIC is ready, FPGA-B writes the DMA descriptor list in the NIC using a PCI write

burst operation. When done, writes a register in the NIC: a flag that will signal an interrupt
in the NIC’s processor.

3. The NIC will then pull data from DPMs using a scatter-gathered DMA engine. FPGA-A and
FPGA-B will read the DPMs in request of PCI read operations initiated by the NIC.

4. When the DMA is finished, the FPGAs will create a new DMA list and then FPGA-B will
poll a register in the NIC until it is ready to accept a new DMA descriptor list.

In order to simplify the DMA operation, the DMA list will consists of two blocks: one to be read
from each FPGA. This implies that the frame header has to be added at the beginning of the data
block in FPGA-B and that the trailer will be added at the end of the data block in FPGA-A.

The creation of the DMA list and the addition of the framing words to the data blocks imply the
following steps:

1. Both FPGAs read next descriptor from the Directory Block in DPM.
2. FPGA-A transfers its descriptor to FPGA-B using the dedicated 32-bit bus that interconnects

the two FPGAs in the output stage.
3. FPGA-B creates the DMA descriptor list and the header and trailer of the frame.
4. FPGA-B transfers the trailer to FPGA-A using the dedicated 32-bit bus while transfers the

DMA list to the NIC using the PCI bus.
5. When the DMA is performed, the FPGAs will include the frame header and trailer.

5.5.4. High bandwidth, tandem PCI master operation for the Level-1 VELO application

A possible algorithm, together with its parallelized version are shown in figure Figure 5-18.

In the tandem master operation, one EBI FPGA fills its internal PCI core FIFO with data while
the second FPGA is flushing its FIFO to the PCI bus to the NIC card. In order to write a
contiguous sub-event into the NIC memory, the FPGA that writes the first part of the sub-event
gives a pointer to the other FPGA indicating the next free address in the NIC PCI-mapped
memory (A1 in Figure 5-19).

The Readout Unit II120
Fig. 5-18. Output stage algorithm for VELO application.

Fig. 5-19. Tandem PCI master operation.

� � $ � � � � �
 � �
 � �
 � � � ! �

� 0 � (� � � � 	 � 	 � � � � � �

 � , � � � � � � %

� 0 �) � � � � � , �
 ! � 	 � � �

/ 0 � % 4 � � �
 � � � � � � � '
 � � 	 �
 � � �
 � � � # & $

2 0 � � � � � � � � � 	 � � % � � � * � G � � � � �

3 0 � % � 	
 7 ! � � 	 � � " � � ' � � , � � � & � �

F 0 � % � 	
 7 ! � 	 � � � � 	 � � � (
 � � � �
 � � � � � 	 � � � & � � � 	 �

H 0 � � � 	
 7 ! � � 	 � � " � � ' � � � � � � 	 � � � (
 � � � �
 � , � � � & � �

E 0 � % 4 � �
 � � � � � � � � � � �
 � � � � # & $

(� � � � � / 4 � 2 4 � E � � � � � � ' � � �
 � � � � � � � �
 � � � � � � 	 � � 	 � � � � 3 � � � � %

(� � � � � � 4 � / 4 � F 4 � E � � � � % � ' � � �
 � � � � � � � �
 � � � � � � 	 � � 	 � � � � H � � � � �

� � � � � $ � � � " � 7

� � * � G � � � � � � 	 � � %

� � � � � $ � � � " � 7� � � � � � � � � � �
 � � � � � � � � � � � � � � � ' � � �

� � � � � � � � ' � � � � � � � � � � � � (
 � � � �
 � �

� G �

%

�

(
 � � � �
 � �
 � � � %

�

& � � � 	 �
 � �
 � � � %

� G �

�
 �
 � � � � � % � �
 � �
 � � � ! �

(� � � � 	 � � , ! � � G � � �

 � , � � 0 � � , ! � � � " � � � 	 (� � � � 	 � � , ! � � G / � �

 � , � � 0 � � , ! � � G � � " � � � 	

� � � � � � I � � � �
 � � G � � � � � � � � � � � � � � ' � � � G �

+ , �
 ! � �
 � � � %

� G �

� � � � � � � � '
 � � 	 �

� G �

� � � � � � � � '
 � � 	 �

� G �

SEB-A

SEB-B

NICFPGA-A

FPGA-B

A1

A0

A1

memory mapped buffer1/2 Sub-event

1/2 Sub-event

PCI64

to A0

to A1

Physical implementation 121
5.6. Physical implementation

The RU is implemented on a 9U IEEE-960 card as depicted in figure 5-20. The use of
mezzanine card standard is intentional (not necessarily cheaper) to protect against component
and standard obsolescence. The six mezzanine emplacements (four S-Link inputs on the front
and 2 PMC/S-Link outputs at the rear) are foreseen for CMC mezzanine cards with optional
connectors in positions as shown in figure 5-20. The FPGA-based input and output stage logic is
in the middle part, with the sub-event buffer in the center. The power conversion logic is close to
the Fastbus backplane connector which is only used for power. The reset and throttle I/O logic is
at the top of the front panel, the LAN is part of the MCU card. An auxiliary PCI slot is available
for standard PCI cards.

Fig. 5-20. RU-II board arrangement.

The Readout Unit II is a 9U-size (366.7x400 mm) 2.2mm-thick (tolerance) 8-layer
board manufactured under class 5 specifications (track width is 6 mils). The stack-up structure is
shown in figure 5-21. Copper (in black in the figure) thickness is 35 µm for top and bottom
layers and half this value for inner layers, according to standard values in industry. The thickness
of the dielectric layers (grey) has been defined in order to keep an uniform characteristic
impedance among signal layers and thus avoiding signal reflections caused by impedance
mismatches. One millimeter of dielectric between layers 4 and 5 increases the total board
thickness to the required 2.2 mm.

Assuming for the dielectric, top and bottom layer impedance is 58.3 Ω whilst
inner layer impedance is 55 Ω. These values correspond to unloaded lines. Propagation
delays are 59.5 ps/cm for top and bottom layers and 68.3 ps/cm for inner layers.

LAN (RJ45)

SEM 2 * FPGA

EBI

SEB buffer (DPM)

DC-DC

S-Link mezzanines

Reset in (NIM)
Throttle out

2* FPGAs

NIC

MCU

S-Link 1

S-Link 2

S-Link 3

S-Link 4

AUX PCI

(Rx FIFOs below)

with PCI core

or S-Link

Input

PMC 64 bit

TAGnet IN / OUT

aux PCI slot
for standard
PCI cards

(diagnostics)

with PCI core

NIC /S-Link

S-Link

S-Link

S-Link

S-Link

PMC (MCU)
PMC 32 bit

PCI

S-Link 32 bit
(open collector)

0,2mm±

εr 4,2=

The Readout Unit II122
Fig. 5-21. Readout Unit II stack-up.

5.6.1. Signal integrity studies

Both pre-layout and post-layout signal integrity simulations have been carried out using
Cadence SpecctraQuest SigXplorer, SpecctraQuest SigNoise and IBIS1 models from the
different chip vendors. The results of these simulations allowed to identify lines that needed
terminations, helped to choose and validate bus topologies and determined component
placement on the board.

Special attention was paid to the PCI bus subsystem, where simulations showed the need to
include a PCI bridge between the primary bus and the SEM FPGA PCI bus and helped to design
the topology of the segments that had to run at 66 MHz.

The net topology is either described based on placement assumptions (pre-layout analysis) or
extracted from the PCB layout files (post-layout analysis). An example is shown in Figure 5-22
where an FPGA pin (model orca_bmz_OB12) drives two DPM ICs (model
70v9279pf_70v9279z_pf_io0_mdl). Trace parameters (length and width) are also shown.

Fig. 5-22. Definition of net topology with SpecctraQuest SigNoise.

1. IBIS is an ANSI standard for integrated circuit input/output buffer specification, used for analog simulations
including signal integrity. See http://www.eda.org/ibis/ for more information.

L1(top):signal
L2: 3.3V

L3: signal

L4: GND

L5: 5V

L6: signal

L7: 2.5V
L8(bottom):signal

100µm

200µm

500µm

200µm

Connectivity and crate environment 123
Fig. 5-23. Simulation of the net corresponding to figure 5-22.

Once the net topology is defined, it is possible to perform signal reflection simulations, like the
one shown in figure 5-23 which corresponds to the example in Figure 5-22.

5.7. Connectivity and crate environment

Figure 5-24 shows the connectivity of a DAQ RU in a IEEE 960 crate environment1. The
Experiment Control System network is connected via a local LAN distributor box. The input
data cards, normally unidirectional S-Links, are connected on the front panel, using S-Link as
interface. The fast throttling signals are transmitted via NIM cables to an external combinatorial
logic as part of the trigger control system. The front-panel Reset input for resetting the RU logic
are also on the front panel. At the rear side of the RU, the LAN and DAQ readout network cables
can be routed as the crate’s upper-half rear is open.

1. IEEE 960 mechanics for double-width RUs corresponds to 13 modules per crate.

60 MHz clock, fast case

The Readout Unit II124
Fig. 5-24. DAQ RU connections in crate.

The power requirement per RU can be calculated as 7.5 W maximum per mezzanine card
(according to the CMC specification) and less than 15 W for on-board logic, making a total of
60 W per board. This means 780 W per crate (13 boards), or equivalently 156 A from the 5 V
supply. Using the F6853 CERN standard (Figure 5-25), an RU crate requires two 100-Amp 5-
Volt supply modules and one 25-Amp 15 Volt modules.

Fig. 5-25. Picture of the F6859 CERN crate. The upper rear half is free.

5.8. The MCU for the RU-II

The LHCb Readout Unit has been conceived as a 9U module in a Fastbus crate, using the crate
for powering only without using the backplane bus. This option forces that in absence of the bus
controller, an embedded controller is needed in each Readout Unit. The RU has some PCI
components which need host initialization. Both needs led to the idea to design a local computer
card in a PMC form factor, as the credit-card PC suggested by other LHCb members [S586pc]
(which could be adapted to a PMC form factor) was not available to test the RU-II during year

4...16 Input data link inputs (on 4 S-Link cards)

Output link/

back plane
(unused)

4* S-Link
cards

Rear open PCI/
S-Link

MCU
card

NIM Reset
RU crates (IEEE960)

Readout Network LAN box

ECS server

to Readout

Throttle
combination
logic

DAQ SWITCH

LAN

Tagnet cable connections

Supervisor

Table 5.1. RU crate power requirement

power modules Maximum current No of modules needed
+5 V 100 A 2
+15 V 25 A, 30 A 1

The MCU for the RU-II 125
2000 and early 2001. The aim was to develop in a short period of time a diskless computer to
perform the following tasks for the Readout Unit boards:

1. Initialization and configuration of the RU-II’s PCI subsystem (FPGAs, NIC and PCI
bridges). This includes loading SCI drivers for the SCI NIC used in the Level-1 VELO
trigger application and adding in-system programmability (ISP) capability to the hardware,
allowing to program the FPGAs via the PCI bus.

2. PCI bus arbitration.
3. RU-II monitoring and control via (1) PCI-accessible registers in the FPGAs, and (2)

general-purpose I/O (GPIO) signals that control some portions of the RU-II hardware.
4. Interrupt handler for special events signaled by the RU-II’s FPGAs and NIC.
5. I2C controller for the programmable clock generator in the RU-II.
6. JTAG controller for test purposes in the RU-II.

The configuration, monitoring and control of a large quantity of MCUs is more efficiently
managed and maintained from a central resource. The MCU was hence designed to be
networked, to load the operating system and access a remote file system from a central server in
the ECS LAN. This implies that the MCU must have a bootstrap code in non-volatile memory
which allows to contact a server and obtain system files over a network link, thus avoiding the
use of a hard disk for booting with the advantages of cost reduction, reliability and ease of
maintenance.

5.8.1. Design choices

Three major choices determine the MCU design: (1) the form factor, (2) the remote boot
mechanism and (3) the microprocessor. These three choices are justified below:

1. Form factor. Some of the embedded PC industry standard were not adequate for our
application, company dependent, not fully specified or just quite expensive. A brief survey
of standard and proprietary solutions for embedded and industrial PCs is listed bellow:

•PC/104 Consortium1: Intended for a wide range of applications, defines 90-by-96 mm
self-stacking modules communicating via 104- or 120-pin PCI bus connectors, without the
need of a backplane and with a low-power consumption (1-2 Watts per module). Single-
board computers with LAN interface exist, but lack of enough I/O functionalities and 66-
MHz PCI operation as required for the RU-II application.

•PICMG (PCI Industrial Computer Manufacturers Group)2: These computer systems
use a passive PCI/ISA backplane and the CompactPCI Eurocard form factor. ISA bus route
the interrupts, like in PC104 standard, so an special backplane is needed. This PCI form
factor is not compatible with the RU applications requirements.

•SIM30 pin-size µCLinux computer project3: The µCsimm module is a microcontroller
module built specifically for the µClinux Operating System (a version of Linux for
microcontrollers without a memory management unit). It stands an inch high, with a
standard 30-pin SIMM form factor. I2C bus, 10Base-T Ethernet, serial port and 21 GPIO

1. See http://www.pc104.org/
2. See http://www.picmg.org/
3. See http://www.uclinux.org/index.html

The Readout Unit II126
pins are included. But the lacking of PCI interface, remote boot capability and the fact that
is a single-company product prevent it from being considered an option.

•Credit-Card PC (formerly Digital Logic AG, Switzerland)1: Two weak points are the
single-company production and the non-standard connector. Despite these drawbacks, it
has found supporters in the LHCb Collaboration. The card was not available at the time of
testing the RU-II.

It was decided to implement the MCU as a standard PMC card (74 mm x 149 mm, with 10
mm of stack-height) which is the de facto standard with VME in the HEP field. This
standard does not define the position for the M66EN pin (required 66-MHz PCI operations)
and does allow a PMC card to be the PCI system host. Nevertheless, VITA-32 extensions to
PMC [VITA32std] assign a position to the M66EN pin and redefine some of the reserved
pins in PMC to include the required signals to implement a PCI host on a PMC. This way,
the required PCI functionalities can be implemented.

2. Remote boot.There are at least three solutions:

•Use the Intel i82559 PCI LAN chip and Intel’s Preboot Execution Environment (PXE)2.
•Use the Intel i82559ER chip (which is present in many of the last Intel Pro100 network

cards) and use a PXE-like kit from Bootix Technologies GmbH3.
•Use any of these two chips and Linux’s Etherboot project software, an open source

initiative4.

The third option was chosen as it is free and well supported. In the Linux Etherboot scheme,
the LAN chip uses a bootstrap code in EPROM to access5 a DHCP (Dynamic Host
Configuration Protocol) or BOOTP (Boot Protocol) server to get a host name and IP address
for the MCU, the IP address for a TFTP (Trivial FTP) server and the Linux kernel image file
name to download. With this information, the MCU accesses the TFTP server and gets the
Linux kernel image and other files required in the boot process, like tools for building the
downloaded image.

3. Microprocessor. The main criterion is Linux compatibility. Among a large number of
possibilities, the ZFx86 chip from ZFLinux6 was chosen because of its high degree of
integration, low power consumption (as low as 0.5 W at 33 MHz) and embedded PCI
interface with host capability. This chip integrates a Cyrix 486+ processor core running up to
120 MHz together with SDRAM, IDE (floppy), EIDE (hard disk), 16-bit ISA, USB, serial
port, I2C, mouse and keyboard controllers. Additionally, the chip incorporates a 3.3-Volt 32-
bit 33-MHz PCI interface that can act as PCI host. A PCI arbiter is also embedded in the
chip.

The chip has a typical PC architecture based on North and South bridges (Figure 5-26, left)
with most of the I/O subsystem under the control of the South bridge, as well as the

1. See http://www.digitallogic.ch/english/products/datasheets/smartmodule_detail.asp?id=smartModule586PC
2. See http://developer.intel.com/ial/WfM/tools/pxesdk20linux/index.htm
3. See http://www.bootix.com/us/index.shtml
4. See http://etherboot.sourceforge.net/
5. Issuing a broadcast request, as the MCU does not know the BOOTP server address.
6. See http://www.zflinux.com

The MCU for the RU-II 127
expansion PCI bus. The North bridge handles the SDRAM controller and the frontside PCI
bus.

The PCI interface (Figure 5-26, right) is also typical in the sense that it does not include
buffers for CPU-initiated PCI reads, yielding a poor performance. On the other hand, CPU-
initiated PCI writes benefit from a 16 dual-word buffer. Nevertheless, monitoring and
control throughput in the RU is the main purpose of the MCU and thus PCI performance will
not be an issue.

Fig. 5-26. ZFx86 internal architecture and PCI interface.

5.8.2. MCU architecture

The main components in the MCU card (Figure 5-27) are:

1. LAN subsystem: consisting of an Intel i82559 PCI Ethernet chip, a transformer and a RJ45
connector and the Remote Boot PROM.

2. SDRAM: Four MT48LC8ML16A2 chips from Micron Technologies provide 64 MByte of
memory. A small-form-factor SIMM would have been a cheaper option, though the
difficulty to find horizontal SIMM connectors (to reduce component height) and the
potential incompatibility with the ZFx86 chip resulted in a discrete implementation.

3. Auxiliary connectors: Serial port, keyboard, mouse, floppy and hard disk connectors are
available in the MCU for development, debugging and diagnostics. These are not needed for
the RU-II application.

4. PCI connectors: Defined in the PMC specification, for 32-bit PCI.
5. Voltage regulator: The 3.3 V supply available in the PMC connectors is regulated down to

2.5 V required by the ZFx86 and the LAN chip. A 1-Amp Micrel MIC39101 regulator in an
8-pin SSOP package is used.

The Readout Unit II128
6. Programmable clock: The ZFx86 chip needs external 33 MHz, 14 MHz and 48 kHz. These
frequencies are generated by an on-board AMI FS6370, also used in the RU-II. The ZFx86’s
I2C interface can be used to program this chip, but taking into account that the FS6370
responds to all I2C addresses reserved for EPROM devices, a conflict may occur between
the on-board FS6370 and any external EPROM I2C device. To solve the conflict, switches
controlled by ZFx86’s GPIO lines are provided (GPIO1 and GPIO2 in Figure 5-27).

7. BIOS: The MCU equips the old BIOS code from ZFLinux, and not the newer Phoenix BIOS
release. The latter, requiring a larger memory size, would need an MCU redesign.

Fig. 5-27. MCU card architecture.

8. PMC I/O connector: This connector includes the I2C, JTAG (emulated via GPIO lines) and
control signals to the RU-II. Seventeen signals in total that are described in Table 5.2.
Additionally, 8-bit ISA and USB are also provided for other applications.

LAN

SDRAM

Disk and I/O

PCI + I/O PMC conn.

ZFx86

RJ45 conn.

Transformer
H1012

i82559
LAN chip

Remote Boot
PROM AT29C12

PCI I2C ISA GPIO RU-II I/Os

ISA

I2C

BIOS
ATC29C1024

3.3 V 2.5 VMIC39101

FS6370

GPIO1

GPIO2

RS-232
Keyboard
Mouse
IDE
Floppy

48 kHz
14 MHz
33 MHz

PCI 32 bit 33 MHz

M
T

48
LC

8M
L1

6A
2

M
T

48
LC

8M
L1

6A
2

M
T

48
LC

8M
L1

6A
2

M
T

48
LC

8M
L1

6A
2

SDRAM

GPIO

C
O

M
1

K
ey

b.
M

ou
se

F
lo

pp
y

H
ar

d
D

is
k

IRQ PCI Arbiter

LAN chip PCI
expansion ROM

The MCU for the RU-II 129
Figure 5-28 shows bottom and top views of the MCU card in actual size.

Fig. 5-28. MCU, bottom and top views (actual size).

SDRAM chips LAN chip

ZFx86 PCI conn.I/O conn.FS6370 clock generator

Voltage regulator
BIOS EPROM Button battery

Keyboard and mouse

10 MHz osc.
Floppy connector Hard Disk conn.

RJ45 LAN conn.LAN TransformerRemote boot EPROM

The Readout Unit II130
Table 5.2. Non-standard MCU-RU interface signals

Name Direction Comment
REQ# (2:0) Input PCI arbitration lines for the PCI bridges and

the auxiliary PCI connectorGNT# (2:0) Output
SCLK, SDA Inout I2C bus lines
TDI, TDO, TMS, TCK, TRST# JTAG bus lines

SYSRT# Input RU-II reset connected to the MCU’s NMI line

MCU_RT_REQ# Output Forces a reset in the RU-II board

SEL_CD, MODE Output FS6370 programmable clock signals.

CHAPTER 6 Readout Unit II laboratory tests
“We only know what we're told, and that's little enough. And for all we
know it isn't even true”

Extracted from a play by Tom Stoppard.

6.1. Overview

The Readout Unit II must be tested with the twofold purpose of:

1. Verifying the module functionality, which is related to design errors.
2. Detecting unexpected behavior in the different components. This includes unknown features

and unreported component bugs that escape system simulation.

The basic module functionality (several inputs combined into a single buffered output) is tested
in section 6.2. An S-Link to S-Link data flow test is carried out in order to verify the sub-event
merging, buffering and sub-event building functionalities (the latter only for the FEM
application). No errors were found in the RU-II in these tests, demonstrating the correctness of
the design.

The PCI-based sub-event building concept for the DAQ and VELO applications is tested in
section 6.3, and the achievable performance for both scenarios is measured.

The PCI subsystem in the RU-II is also the most likely source of unexpected component
behavior, as it includes the MCU, the FPGA’s PCI interface and the Network Interface
Controller, all of them of great complexity. Section 6.3 also describes the tests carried out on the
PCI subsystem and the results, like more overhead in the PCI transactions than expected and an
unreported error in the FPGA’s PCI interface.
131

Readout Unit II laboratory tests132
6.2. S-Link to S-Link dataflow test

The test setup includes FPGA-based sub-event transport format (STF) pattern generator cards
for up to 1 MHz rate, designed in the context of the RU project (Figure 6-1). The frame length,
data pattern (two alternating 32-bit words) and source identifier code are programmable via
jumpers and switches. Connectors for trigger input and daisy-chain output are available in the
front panel. Four of these cards are plugged onto the S-Link input connectors in the RU.

Fig. 6-1. STF pattern generator card for RU-II test.

Figure 6-2 shows a frame generated by the STF pattern generator card. Firs word in the frame is
an S-Link control word (LCTRLN, an active-low S-Link signal used to mark control words, is
low) with value Ox00000010. This indicates that the event number is one and there are no link-
reported errors (four least significant bits are all zeroes). Next two words identify the source
(programmed via switches to Ox00F00000) and the data size (four 32-bit words, Ox00000004).
After the four data words, the trailer (another S-Link control word) indicated that status flags
have value OxEE and total frame length is eight (four data and four framing words).

Fig. 6-2. Output from the STF pattern generator card.

Data length and pattern
programmable via jumpers

Source Identifier code
programmable via switches

Trigger input/output for
synchronization

FPGAQuartz oscillator

S-Link connector
(below)

S-Link to S-Link dataflow test 133
Input event collection and sub-event building is performed in the RU-II, outputting to the S-Link
output connector. A built sub-event captured at the RU-II S-Link output is shown in Figures 6-3
and 6-4. The sub-event header starts with an S-Link control word (LCTRLN low) and has the
value Ox00000010, indicating event number one. Next two words in the header are the RU
identifier code (programmed to OxFEEDBEEF) and the data size (Ox00000008). The eight data
words follow with alternating pattern Ox55555555 OxAAAAAAAA.

Fig. 6-3. Example of sub-event (part 1 of 2).

The frame ends with a trailer word (OxAB0000C0), indicating that the total frame length is OxC
(eight data words plus four framing words). Next word is the header of sub-event number two,
which also has eight data words.

Fig. 6-4. Example of sub-event (part 2 of 2).

Figure 6-5 depicts a sub-event building measurement for the FEM application. Four 64-byte-
payload frames at an equivalent 100-kHz Level-1 trigger rate are received per event and input

Readout Unit II laboratory tests134
link. Sub-event building is carried out on two input links, generating 512-byte sub-events at the
S-Link output.

Fig. 6-5. Sub-event building measurement.

The FPGA clock in the RU-II is 15 MHz (25% of the nominal value). Trace 1 shows one of the
incoming S-Link control inputs (LCTRL#), with four frames every 2.5 µs. Trace 2 is the
corresponding input FIFO empty flag signal. Trace 3 shows the RU-II MAILBOX signal,
toggling every time that a new 2-to-1 sub-event block has been merged and stored into the SEB.
Trace 4 is the S-Link output LCTRL# line, showing a 1.6 µs output-stage latency.

Every 27.8 µs a 256-byte-payload sub-event is transmitted, corresponding to a 18.4 MByte/s
throughput. A factor four of performance increase (74 MByte/s) can thus be achieved at a
nominal 60 MHz FPGA operation.

6.3. PCI subsystem test

6.3.1. Access to the Sub-event buffer from PCI

The simple test utility for Linux, rwpci (described in “The rwpci utility” on page 169) can be
used to provide access to the SEB from the MCU. This requires on the output stage FPGAs a
target PCI interface and a dual-port memory controller programmed in VHDL. Figure 6-6 shows
the data path between the MCU and one of the two sub-event buffers (SEB).

0 1 2 3

10 µs 1.6 µs

27.8 µs

512 byte payload

PCI subsystem test 135
Using simple assignments like the shaded instructions in Figure I-III on page 168, the MCU
accesses PCI memory space causing single-word (i.e. no burst) 32-bit PCI transactions on the
root PCI bus.

Fig. 6-6. Data path between the MCU and the Sub-event buffer.

The PCI bridge reacts initiating a transaction on the 64-bit wide PCI bus 1. Both the PCI bridge
and the FPGA are 64-bit capable. Nevertheless, this does not mean that the bridge will therefore
initiate a 64-bit transaction on PCI bus 1. In fact, only when the EBI FPGA declares the SEB as
prefetchable memory, the transaction address is quadword1 aligned, and at least two (memory
read) or three (memory write) words are to be transferred, the bridge will perform a 64-bit
transaction. Thus, single-word transactions, that are the ones generated by our test software,
imply 32-bit bus accesses in PCI bus 1.

User logic inside the FPGAs cannot know if the transaction on the PCI bus 1 is 32 or 64-bit
wide. This is meant to be transparent to both ends (user logic in the FPGA and C application
running on the MCU) and thus have no implication in the success of the transaction.

The EBI FPGAs can only access their SEBs by means of 64-bit read and write pipelined
transactions. The glue logic between the PCI core and the user logic in the FPGA can be
configured to either Quad port or Dual port mode, being the PCI core in charge of the data width
conversions between the current PCI transaction and glue logic data widths. These modes are
depicted in Figure 6-7.

• Quad port: Master and target interfaces have separated 32-bit read and write paths.
• Dual port: Master and target share 64-bit read and write paths.

Using Quad port mode and non-prefetchable memory

As the SEB is declared as non-prefetchable for this test, the bridge performs single-word 32-bit
transactions. This was verified with a PCI bus analyzer2 plugged in PCI bus 1. The rwpci test
utility combined with the PCI analyzer measurements show that read and write accesses to even
memory positions are performed successfully, whilst read accesses to odd memory positions
return the contents of the next memory position (i.e., read to address 5 returns data in address 6).
Wrong data alignment in 32-bit to 64-bit conversion in the PCI core FIFOs was suspected and
later confirmed by Lucent Technologies as a chip bug that is overcome using the Dual port mode
instead of the Quad pot mode.

1. “Quadword” is 64 bits. “Dualword” is 32 bits. “Word” is used as a generic term.
2. Catalyst TA-700.

MCU PCI
BRIDGE 1

Root
PCI bus 1 EBI

FPGA
Sub-event

buffer
PCI bus

DPM bus

32-bit 64-bit 64-bit

PCI
Analyser

Readout Unit II laboratory tests136
Fig. 6-7. Quad port and Dual port modes for the PCI interface logic in the FPGA.

Figure 6-8 shows in cycles five to eight a successful PCI write followed by a read at the first
memory position in the SEB:

• Cycle 0: IDLE. No transaction taking place in the bus.

• Cycle 1: Configuration read to Ox80000010 (i.e., BAR01 which is in offset Ox10 in FPGA
PCI configuration space starting at Ox80000000).

• Cycle 2: Read value is OxC0100000, i.e., the physical address for the start of the SEB. The
transaction finishes with disconnect+data, which means that the PCI configuration space does
not support burst mode transactions.

• Cycle 3: Configuration read to Ox80000000 (i.e., VendorID and DeviceID in offset Ox0 in
FPGA PCI configuration space.

• Cycle 4: Read value: DeviceID is Ox5401 (registered code for OR3LP26B) and VendorID is
Ox11C1 (reserved for Lucent Technologies devices).

• Cycle 5: Memory write to first position in SEB.
• Cycle 6: Written value is Ox0000049B.
• Cycle 7: Memory read to first position in SEB.
• Cycle 8: Read value is Ox0000049B.
• Cycle 9: Write to next memory position: OxC0100004.

1. BAR stands for Base Address Register. PCI devices have six of such registers (BAR0 to BAR5) in their
configuration space. They are used to map memory areas connected to the PCI devices and thus make them
accessible from PCI. In our application, the SEB is mapped in BAR0 and a number of general-purpose registers
inside the FPGA are mapped in BAR5.

QUAD PORT MODE DUAL PORT MODE

PCI subsystem test 137
Fig. 6-8. PCI bus 1 activity captured with a PCI analyzer.

Using Dual port mode and prefetchable memory

A different PCI core configuration was generated with the FPGA vendor software and the
VHDL code was modified for a Dual-port interface between user logic and embedded PCI core.
The corresponding bitstream was loaded from the MCU into the EBI FPGA via the PCI bus (see
section I.II.II). Figure 6-9 shows a snapshot of the MCU terminal in response to a lspci -xvv
command. Line 7 shows that memory region 0 (where the SEB is mapped) is defined as
prefetchable. This region is mapped starting at address OxC0200000.

Fig. 6-9. MCU terminal dump.

Measurements show correct behavior for 64-bit transactions, but some word-swapping when
transactions are 32-bit wide. Once again, wrong multiplexing in the internal PCI core FIFOs in
the FPGA is suspected, which can be related to the quad-port mode bug reported by the FPGA

Read BAR0 in FPGA

configuration space

Read VendorID, DeviceID
in FPGA config. space

Write 04B9 in
position 0 in SEB

Read 04B9 from the
same SEB position!

01:0f.0 Signal processing controller: Lucent Microelectronics: Unknown device 5401 (rev 01)
Subsystem: Unknown device beef:dead
Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B-
Status: Cap+ 66Mhz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR
Latency: 255 min, 255 max, 64 set
Interrupt: pin A routed to IRQ 11
Region 0: Memory at c0200000 (32-bit, prefetchable)
Region 5: Memory at c0100000 (32-bit, non-prefetchable)
Capabilities: [50] #06 [0080]
00: c1 11 01 54 07 00 b0 02 01 00 80 11 00 40 00 00
10: 08 00 20 c0 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 10 c0 00 00 00 00 ef be ad de
30: 00 00 00 00 50 00 00 00 00 00 00 00 0b 01 ff ff

Readout Unit II laboratory tests138
vendor. Figure 6-10 shows a single-word read operation to DPM initiated by the MCU. As the
DPM is mapped in prefetchable space, the bridge initiates a burst transactions of variable length
(determined by the bridge instantaneous buffer space availability).

Fig. 6-10. Single-word DPM read from the MCU.

Note the fifteen wait cycles inserted by the FPGA after DEVSEL# assertion. This latency
represents a low overhead for the DAQ application (4 KByte sub-events) but would be too high
for the VELO application.

6.3.2. Control and monitoring registers in the FPGAs

For the tests described in this section, five 32-bit registers have been mapped in the FPGA’s
BAR 5 space (see Table 6.1). These user-defined registers are the foundation to implement in the
FPGAs configurable parameters, error counters and monitoring registers which can be accessed
from the MCU via PCI (see data path in Figure 6-6). Figure 6-11 shows the result of the
command rwpci ebi2a WREG 100 100 (100h is written to the 256th 32-bit word -offset 400h-
followed by a read operation for verification).

A target retry is generated as a first response to the read, and 12 wait state cycles are inserted by
the FPGA after the retry (one cycle for DEVSEL# assertion and 11 cycles due to the user logic
and the embedded PCI core delays. User logic delay is in the order of one or two cycles and
cannot be further reduced).

Table 6.1. User-defined register mapping

Register Offset (bytes) Offset (32-bit words)

Reg 1 100h 40h

Reg 2 200h 80h

Reg 3 300h C0h

Reg 4 400h 100h

Reg 5 500h 140h

15 wait states Six 32-bit words

Memory read
command

PCI subsystem test 139
Fig. 6-11. Access to a user defined register in the FPGAs: write followed by a read.

6.3.3. Performance measurement tests

PCI performance has been measured on three different scenarios:

1. FPGA-to-FPGA write test for single-FPGA output stage architecture in the Level-1 VELO
application.

2. Tandem-FPGA architecture for the Level-1 VELO application.
3. DAQ application emulation: TA-700 bus analyzer (as PCI master) reads the sub-event buffer

via EBI FPGAs.

1. FPGA-to-FPGA write test for single-FPGA output stage in the VELO application

This test shows the maximum performance achievable with a single FPGA in the output stage. A
Dual-Port-mode PCI master write interface is implemented in VHDL in one of the two output
stage FPGAs (EBI2 in Figure 6-12), together with a set of registers1 accessible via PCI. The
MCU sets the burst length (in 64-bit words), destination address (start of SEB in the other EBI
FPGA) and go/stop bit through these registers. When enabled via the Go/Stop bit, EBI2 FPGA
will continuously produce write transactions to EBI1 FPGA, which is programmed with a target
PCI interface and SEB access logic.

This test can be carried out loading the corresponding bitstream file in the FPGAs and running
the line command rwpci ebi2a TESTWREBI1 length 1 (where length is the desired number of
64-bit words). This command will configure the registers REG2 to REG4 in EBI2 and initiate
the test.

1. See Section 6.3.2 in page 138.

Memory Write

transaction
Memory Read

terminated in retry

Retried Memory Read

transaction

Offset 400h
in BAR5 Data is

100h

Retry

Offset 400h
in BAR5

Offset 400h
in BAR5

11 wait cycles

Data is
100h

Readout Unit II laboratory tests140
Fig. 6-12. FPGA-to-FPGA write test setup.

Figure 6-13 shows a 64-bit-wide 80-byte transfer between the two FPGAs, where a single wait
state is inserted by the target at the beginning of each transaction (thus, the FPGAs are fast-
decoding devices according to the PCI specification). Figure 6-14 shows that two consecutive
transactions are spaced by ten clock cycles, and this is true regardless of the burst length.

Fig. 6-13. Eight-word burst transaction between FPGAs in the output stage.

Where do these ten empty cycles come from?. The first one is a turnaround cycle (the current
master releasing the bus after a transaction completion). The other nine are inserted by the
FPGA embedded PCI core and cannot be avoided. If we take into account that the most
performance-demanding application (Level-1 VELO) will require in average 32-quadword
bursts, the maximum achievable performance in the PCI bus would be (counting 10 idle cycles,
one wait state and one address cycle, see Figure 6-15) 32/44, i.e., 72.7% of the available bus
bandwidth. This would make 384 MByte/s at 66 MHz clock speed or 192 MByte/s at 33 MHz
for 64-bit transactions.

MCU PCI
BRIDGE 1

Root
PCI bus 1 EBI1

FPGA
Sub-event

buffer
PCI bus

DPM bus

32-bit 64-bit 64-bit

PCI
Analyser

EBI2
FPGA

Destination address
Go/Stop bit
Burst length

Reg1
Reg2
Reg3
Reg4
Reg5

Reg2 to Reg4 configuration

PCI subsystem test 141
Fig. 6-14. Ten empty clock cycles between transactions.

For a real FPGA-to-NIC write scenario, seven target wait cycles in the NIC must be considered
instead of just one (find the justification in the next paragraph). This decreases the PCI bus
efficiency to a 64% (338 MByte/s at 66 MHz).

Fig. 6-15. PCI bus efficiency in the DAQ scenario.

2. Tandem-FPGA scenario for the VELO application

The tandem-FPGA operation bus efficiency is shown in Figure 6-16, where a Dolphin1 PCI-to-
SCI adapter with 33-MHz 64-bit PCI interface has been used as NIC. This card introduces four
wait states as target write. Modern NIC cards should respond faster and thus increase the bus
efficiency (for instance, the FPGA’s PCI interface respond in just one clock cycle). Surprisingly,
new 66-MHz-capable Dolphin PCI-to-SCI cards introduce seven wait states, spoiling
performance for small-fragment applications like the Level-1 VELO.

1. Dolphin Interconnect LLC. See http://www.dolphinics.com/

10 idle cycles

Readout Unit II laboratory tests142
Fig. 6-16. 64-byte burst write to a Dolphin SCI NIC (LC4000 and L5B9350 chips).

According to the tests, a 16-quadword (128 byte) transfer takes 22 cycles (16 data, 1 address, 4
wait and 1 turnaround), resulting in 16/22 bus bandwidth efficiency (72.7%). This yields 193
MByte/s at 33 MHz. For a seven-cycle NIC latency, the efficiency drops to a 64%, matching the
single-FPGA architecture performance (338 MByte/s). Figure 6-17 shows bus activity for
tandem operation.

Fig. 6-17. A single idle cycle between transactions can be achieved.

3. DAQ application emulation: TA-700 read EBI FPGAs

The PCI bus performance for the DAQ application has been measured using the TA-700 bus
analyzer as a PCI master reading alternatively the two EBI FPGAs. As it can be seen in Figure
6-18, the FPGAs add 15 wait states before returning data, the same result as in measurement in
Figure 6-10 (the eleven cycles shown in figure Figure 6-11 and four additional cycles due to the
DPM first-word latency and user logic state machines). The TA-700 adds a turnaround cycle
plus eight empty cycles between transactions and a real NIC may require a similar number of
cycles (ten in the case of a FPGA, see Figure 6-14).

Long burst transactions (2 KByte) will take place in the DAQ application, reducing the impact
of these 15 wait cycles. The maximum bus usage for a 2-KByte sub-event fragment, taking into

Single idle cycle
between transactions

NIC introduces 4 wait states!

64-bit transfers

idle idle idle

PCI subsystem test 143
account the protocol overhead (1 address cycle, 1+15 wait cycles, 8 empty cycles and 1
turnaround cycle) is 95.9% for 32-bit transactions and 81.8% for 64-bit transactions. This makes
127 Mbyte/s and 217.5 Mbyte/s respectively at a 33 MHz operation.

Fig. 6-18. FPGA read initiated by the TA-700 bus analyzer.

6.3.4. Conclusions

The PCI subsystem has been successfully tested at 33-MHz clock frequency (using an
Advantech single-board-computer card) and 18 MHz (using our MCU card). Tests at higher bus
frequencies would require a 66-MHz PCI capable MCU, which was not available1.

The tested features include:

1. FPGA bitstream configuration from the MCU (with and without flash memories on the RU).
2. MCU access to the user-defined registers via PCI.
3. MCU access to the SEB via PCI.
4. PCI write operations between FPGAs to emulate single-FPGA output stage for the VELO

application.
5. DAQ application emulation (requiring a target read/write PCI interface).
6. Tandem-FPGA VELO application emulation (requiring additionally a master write PCI

interface).

The results of the first three points in the above list are exportable to the input-stage PCI
subsystem. FPGA’s PCI interface weak and strong points (like the single wait cycle as target
write, the fifteen wait cycles as target read or the ten empty cycles between transactions as
master write) have been identified and their impact on the VELO and DAQ applications studied.
It has been also observed that under certain circumstances, in both the Quad port and the Dual
port modes, the core swaps erroneously the lower and upper dualword in the cores’ 64-bit FIFOs
(recently reported by Lucent Technologies as a product design bug).

PCI bus bandwidth performance for single- and double-FPGA VELO operation has been
measured, showing identical performance when using the new PCI-to-SCI adapters, as analyzed
in “Tandem-FPGA output stage” on page 69.

1. Several commercially available 64-bit 66-MHz VITA-32 compliant PMC processor cards exist which could be
used to carry out 66-MHz tests.

15 wait cycles

8 empty cycles

Readout Unit II laboratory tests144

CHAPTER 7 Conclusions
“Arrakis teaches the attitude of the knife--chopping off what's
incomplete and saying: Now, it's compete because it's ended here.”

From the novel “Dune” by Frank Herbert.

7.1. New trends in DAQ systems for HEP experiments

Large HEP experiments cannot rely anymore in crate-based backplane bus standards like VME
to cope with the high throughputs involved in their DAQ and trigger systems. Migration towards
a “data processing across the on-board bus” paradigm (opposed to “data processing across the
backplane”) using PCI as the on-board bus, provides high performance (up to 528 MByte/s raw
bandwidth per bus segment) and the benefits of an industry-supported standard solution. I/O is
routed via point-to-point links in the front- and back panel, and the backplane is only used for
power. The Readout Unit has been designed following this trend.

Alternatively, PCI backplanes are also an attractive solution for DAQ if compared to VME-
based systems. A typical PC provides five to six PCI slots, resulting in a low-cost platform that
includes mechanical support, cooling, power supply and an CPU for data processing and/or
monitoring and control. A low-cost LAN card adds connection to a slow control system.
Certainly, the 3.3 V regulation in today’s PCs may not be adequate for some applications (10%
regulation, when some 3.3 V chips require 5% stability) and the cooling may be insufficient. The
number of PCI slots is low, however the bandwidth per card is below 30 MByte/s for 32-bit 33
MHz systems. Moreover, the PCI form factor is small compared to 6U and 9U VME boards,
posing additional restrictions.

Using commodity PCs as DAQ platforms, flexibility and design reuse can be achieved by
plugging PMC and other mezzanines onto PCI DAQ cards. This results in a new trend, the
Flexible I/O concept, in which a general-purpose mezzanine-carrier PCI card with SDRAM and
FPGAs can be used in a large number of applications by plugging-in the appropriate mezzanine
145

Conclusions146
(ADCs, protocol conversion, legacy bus interfaces, I/O and data preprocessing, etc.) and writing
the corresponding code for the carrier card’s FPGA.

These trends were discussed in the first chapter. The PCI-FLIC card designed as part of this
thesis for the RU test station (section 7.3.3) was also introduced in the first chapter and its
applications are described in the appendices. This card is the first 64-bit-architecture
implementation of the Flexible I/O concept and is being used in the LHCb and NA-60
experiments at CERN.

The immediate future is in PCI-X. High throughput systems are possible in currently existing
dual-bus 64-bit 66-MHz PCI motherboards, in which the available throughput per module is
multiplied by eight. PCI-X based implementations will further enhance the available throughput
(up to 64-bit bus at 133 MHz, i.e., 1 GByte/s) and solve some of the mentioned electrical and
mechanical drawbacks. A proposal for a Readout Unit implementation in a PCI-X card is
depicted in “A Readout Unit on a PCI-X card” on page 151.

Performance will leap upwards in the second half of this decade with the advent of the Third-
Generation I/O (3GIO) [Bhatt01], a natural evolution of PCI based on point-to-point differential
lines which also targets the PC market. It will have an enumeration and software device model
compatible with PCI, providing a smooth technology transition in which PCI, PCI-X and 3GIO
will coexist in motherboards with combined PCI-3GIO slot connectors. Allowing chip-to-chip
and module-to-module low-pin-count interconnection at up to 100 MByte/s per pin, it is well
suited for the coming year’s bandwidth requirements in HEP DAQ applications.

The results are presented in two publications:

1. “A flexible PCI card concept for Data Acquisition: the PCI-FLIC”. H. Müller, F. Bal, A.
David, D. Dominguez, J. Toledo, in Proc. 12th IEEE Nuclear and Plasma Science Society
Real Time Conference, Valencia, Jun. 2001, pp. 249-253.

2. “A plug&play approach to Data Acquisition”. H. Müller, J. Toledo, F. Bal, J. Buytaert, A.
David, D. Domínguez, M. Floris, A. Guirao, in Proc. 2001 IEEE Nuclear Science Sympo-
sium, San Diego, Nov. 2001, to be published.

Additionally, a manuscript with title “A plug&play approach to Data Acquisition” has been
submitted for publication in the IEEE Transactions on Nuclear Science as is pending of
acceptance.

7.2. Contribution to the LHCb DAQ and Trigger systems

The thesis objectives, as stated in the preface of this thesis are:

1. Investigate the feasibility of the Readout Unit for the LHCb experiment and define its
architecture and algorithms in the context of the LHCb DAQ and trigger systems.

2. Design and implement the Readout Unit.

Contribution to the LHCb DAQ and Trigger systems 147
3. Validate the design through laboratory tests and measurements.
4. Participate in the definition of the LHCb DAQ link technologies, data formats and protocols.

The achievement of the first three objectives is discussed in sections 7.2.1, 7.2.2 and 7.2.3,
whilst the last one is commented in section 7.2.4.

7.2.1. Readout Unit modules

Though initially conceived for a single application (entry stage to the DAQ system), two other
applications in LHCb apart from the DAQ RU have been investigated: the FEM module and the
RU for the Level-1 VELO Trigger. The feasibility to build a single module which targets these
three applications has been demonstrated, leading to the design of two different RU
implementations.

The needed functionalities and design constraints for the three target applications have been
studied. Different architectures are analyzed, demonstrating their feasibility in terms of
throughput and the weak dependence of the performance with the specific implementation
(determined by the number of processing elements in the input and output stages). The
feasibility study is completed by input and sub-event buffer size estimation, resulting in very
relaxed needs for input FIFOs (a few kilobytes) but more demanding requirements for the SEB
(2 MByte minimum). This implies, due to high cost and low density of integration of true dual-
port memory, that an efficient memory usage is mandatory.

Sub-event building algorithms for each application are proposed. In the FEM application, a 16-
bit output to an S-Link transmitter card provides the required performance with a safety factor
greater than two. PCI-based sub-event building between the RU output stage and the NIC aims
at higher throughput applications like DAQ and Level-1 VELO trigger. In the former case, a
“pull” protocol ruled by an intelligent NIC results in unnecessary overhead which can be
tolerated as performance is not affected due to the large frame sizes involved. The benefits of
intelligent NICs are in their capability to perform traffic shaping and complex readout protocols
with the readout network. Gigabit Ethernet is the currently preferred technology for the DAQ
(unbeatable for its widespread and low cost), though at least a 2-Gbit/s Gigabit Ethernet NIC is
needed to achieve the nominal 160 MByte/s requirement.

The nominal requirement for the VELO application is building 200-240 byte sub-events at a 1
MHz trigger rate, resulting in 200-240 MByte/s throughput. This application cannot afford the
overhead implied in a “pull” protocol due to the small sub-event size (around one quarter of a
kilobyte, sixteen times less than in the DAQ application). A “push” protocol is used in which the
RU output stage writes sub-events into the NIC buffer via PCI transactions. The PCI bus
protocols reduce the bus usage to a poor 64% in a single-processing element scheme. A tandem-
FPGA output stage architecture is proposed, which can potentially yield a higher performance.
Nevertheless, the sub-event size, FPGA and NIC latencies (measured in laboratory tests)
combine to annul this superiority. The advantage of the tandem-FPGA scheme can be found then
in a reduced output-stage algorithm overhead provoked by the architecture parallelism. Both
schemes (single-element and tandem output stages) yield a maximum 338 MByte/s for 64-bit
66-MHz PCI implementations, 30-to-40% above the nominal throughput.

Two RU modules have been implemented on 9U-sized cards, with S-Link CMC slots for data
input on the front panel. The upper half of the rear panel includes a PMC slot for the MCU

Conclusions148
(interface to the ECS) and a shared PMC/S-Link slot for data output. The backplane is not used
but as a power connector, being all I/O routed via point-to-point connections. This results in an
implementation of the “data processing across the on-board bus” paradigm above mentioned,
using PCI bus in the output stage as interface technology between the RU output stage and a
commercial high-throughput network adapter.

The implementation of on-board PCI buses and system clocks up to 66 MHz posed the need to
carry out pre- and post-layout signal integrity studies and simulations, field in which we
pioneered at CERN.

A first Readout Unit prototype was built in May 2000, as described in chapter four. It
implements a true 64-bit architecture, consisting on an FPGA-based input stage for data
merging, a dual-port memory for sub-event buffering and an FPGA-based output stage for sub-
event building and readout network protocols. Targeting the FEM and DAQ applications, the
nominal requirement is building 4 KByte sub-events at a nominal 40 kHz Level-1 trigger rate
(160 MByte/s throughput). At a 50 MHz FPGA operation, the prototype architecture allows 400
MByte/s raw bandwidth, exceeding the nominal requirements.

The experience with the first RU prototype resulted in a list of improvements and simplifications
for a re-design of a final RU module. A module design revision was also needed to reduce the
module cost, increase the sub-event buffer size and to include the features required by the VELO
application, resulting in a redesign during summer 2000: the Readout Unit II.

The resulting RU-II module was considerably less expensive due to reduction of expensive
components (like DPM memory, FIFO memory, Flash memory and non-standard mezzanine
cards). Also the diversification of components was further reduced, in particular a single, new
type of FPGA was used with the benefit of a higher gate count and faster PCI interface. The use
of PCI as configuration bus for all FPGAs made the company-specific interface to a MCU card
redundant and by using the PMC standard also for the MCU, the special connectors could be
avoided. As a consequence of the simplifications, the new 9U module could be routed in eight
PCB layers only, compared with the twelve of its predecessor. Extensive analog signal integrity
checks were performed, as a result of which the addition of a PCI bus bridge for the delicate 66
MHz PCI bus became mandatory.

The addition of one extra FPGA in the input stage allowed to test a new, parallel architecture in
which two parallel 32-bit data flows merge at the output stage in a tandem-FPGA sub-event
building operation. Thus, its capability to cope with high trigger rates relies on the use of parallel
data paths rather than on wide buses.

The results are presented in three publications:

1. “Readout Unit for the LHCb experiment”. J. Toledo, H. Müller, F. Bal, B. Jost, in Proc.
Fifth Workshop on Electronics for LHC experiments, Snowmass, Colorado, Sept. 1999, pp.
352-356.

2. “A Readout Unit for high data rate applications”, J. Toledo, F. Bal, D. Dominguez, A.
Guirao, H. Müller, in Proc. 12th IEEE Nuclear and Plasma Science Society Real Time Con-
ference, Valencia, Jun. 2001, pp. 230-234.

Contribution to the LHCb DAQ and Trigger systems 149
3. “A Readout Unit for high data rate applications”, J. Toledo, F. Bal, D. Dominguez, A.
Guirao, H. Müller. Accepted for publication at the IEEE Transactions on Nuclear Science.

7.2.2. Monitoring and Control Unit (MCU) for the Readout Unit

A single-board computer on a PMC form factor has been designed to serve as MCU for the RU.
This design follows the VITA-32 extensions for Processor PMCs, which allow the
implementation of a PCI host on a mezzanine card. The card includes a 10/100 Mbit Ethernet
interface with remote booting capability, 32 MByte of SDRAM, standard interfaces for
development (floppy disk, hard drive, keyboard and mouse) and other bus controllers via the
PMC I/O connector (I2C, ISA, USB and JTAG). Additional I/O lines, specific for the RU
application, complete the MCU interface.

The MCU is PC on a PMC card based on the ZF-x86 chip from ZF-Linux. Windows95, DOS
and Linux 2.2.x have been successfully tested on the MCU, though Linux is the chosen
development platform. The results are presented in the following publication:

1. “A networked mezzanine card Linux processor”. A. Guirao, J. Toledo, D. Domínguez, B.
Bruder, H. Müller, in Proc. 12th IEEE Nuclear and Plasma Science Society Real Time
Conference, Valencia, Jun. 2001, pp. 81-84.

7.2.3. Readout Unit II laboratory tests

S-Link to S-Link data flow tests have been successfully carried out, validating the input stage
and sub-event buffer concept and design. Sub-event building towards the S-Link output results
in a FEM application implementation in which 74 MByte/s are reached for a 60 MHz FPGA
operation (almost twice the nominal throughput).

The PCI subsystem has been successfully tested at 33-MHz clock frequency (using an
Advantech single-board-computer card) and 18 MHz (using our MCU card). FPGA’s PCI
interface weak and strong points (like the single wait cycle as target write, the fifteen wait cycles
as target read or the ten empty cycles between transactions as master write) have been identified
and their impact on the VELO and DAQ applications studied. It has been also observed that
under certain circumstances, the PCI core swaps erroneously the lower and upper halves of the
data words. This result was recently reported by Lucent Technologies as a product design bug.
Another surprise was the high target latency in the tested PCI-SCI adaptor cards.

The tested features include monitoring and control (FPGAs bitstream configuration from the
MCU, MCU access to the user-defined registers and to the SEB) and PCI-based sub-event-
building emulation for DAQ and VELO applications. In the former, a PCI bus analyzer reads
alternatively from the two output stage FPGAs. In the latter, the two FPGAs write alternatively
to a PCI-SCI adaptor card.

PCI bus efficiency for single- and double-FPGA Level-1 trigger operation has been measured
(64% bus efficiency or 338 MByte/s), showing figures below the expected performance, though
still above the nominal requirement of 240 MByte/s. Higher bus efficiency (72.7%) is shown in
the DAQ application emulation due to the larger nominal sub-event size, reaching 193 MByte/s

Conclusions150
on a 64-bit 33-MHz PCI bus, exceeding in a 20% the nominal requirements for the DAQ
application (160 MByte/s). The safety margin can be increased with 66-MHz PCI NIC cards.

All these tests and measurements validate the design and show that the Readout Unit II meets
the requirements of all three applications.

7.2.4. Data formats and link technologies

Data formats and protocols in the LHCb DAQ system were not defined at the time the Readout
Unit project started. As a part of the work carried out, a Sub-event Transport Format has been
proposed in order to interface the Level-1 electronics with the FEM stage and to handle event
data through the different DAQ system stages.

The sub-event building protocols between the DAQ RU and the Network Interface Controller
have been defined in collaboration with other members of the LHCb DAQ group.

A solution for several module interfaces (FEE-FEM, FEM-DAQ RUs, FEE-VELO RUs) based
on the CERN S-Link convention has been proposed, allowing to evaluate different link
technologies during the coming years and easing maintenance and support.

PCI, an industry standard, is proposed as common denominator between the RU output stage
and a network interface card (VELO and DAQ applications). No other standard can compete
nowadays with PCI in widespread and bandwidth.

Performance for both I/O technologies (S-Link and PCI) is estimated and measured,
demonstrating the correctness of the proposed solutions.

7.3. Current and future work

A number of HEP experiments and private companies have shown their interest on the PCI-
FLIC card, opening a potential line of work in the study and implementation of the different
applications.

Further work on programming the Readout Unit for the different applications, specially for the
Level-1 Trigger application -together with the corresponding system integration- is being carried
out as the subject of a new doctoral thesis at CERN EP/ED group.

The future of the Readout Unit is in one of the two following lines:

7.3.1. An alternative approach based on Network processors

The advent of a new generation of ICs for the high-end switch market, the Network Processors
(NPs), provide an alternative approach to the Readout Unit. Network Processors aim at
implementing packet processing and forwarding and other switch-related tasks on a

Current and future work 151
programmable IC. This allows to update the switch to new protocols and requirements,
superseding the lack of reconfigurability of ASIC-based switches. NPs embed a set of
processors, memory and hardware accelerator units, making use of parallel distributed
computing and pipelining techniques to achieve hardware speed.

An implementation proposal for the Readout Unit based on the IBM NP4GS3 Network
Processor [NP4GS3] is briefly described in [Dufey01]. This proposal was presented to the
collaboration in year 2001 by members of the LHCb DAQ group in clear competence with the
implementation defended in this thesis. The competition led to an internal review, whose
conclusions [Gavillet01] highlighted the technical feasibility and similar costs of the two
options. Preliminary performance results of the NP-based implementation are promising for the
DAQ application, but not for the Level-1 VELO application (see Figure 7-1).

Fig. 7-1. Preliminary performance results for the Network Processor proposal.

Further work on the NP-based solution must be carried out in order to develop a prototype and
demonstrate its feasibility.

7.3.2. A Readout Unit on a PCI-X card

Shrinking the Readout Unit, a 9U-sized card, on a PCI form factor does not look like and easy
task. A closer look to the RU-II boards reveals that in basically consists of four FPGAs, four
DPM chips, four FIFO chips, two PCI bridges, one MCU, one NIC and four data input CMCs,
apart from auxiliary electronics like voltage regulators and clock buffers.

Applying the Flexible I/O concept to the Readout Unit, it results evident that the NIC can reside
in a separate PCI slot, the MCU is not needed as the PC’s CPU can implement its functionalities,
a single FPGA in a larger package could replace the actual four FPGAs, which would also make

Conclusions152
unnecessary the PCI bridges. Moreover, the input CMCs and the four FIFOs could be shrunk
into a single mezzanine plugged on the RU carrier board.

A floor plan for such a PCI Readout Unit is depicted in Figure 7-2. Board layout and component
sizes are set to scale. The following components could be used:

• An Altera APEX-II FPGA in a 1.25mm-pitch 724-pin BGA package, with 492 to 536 avail-
able I/O pins. With 1.9 and 5.2 million equivalent gates and PCI-X support up to 133 MHz,
the four ORCA FPGAs on the RU-II could be replaced by a single APEX-II in a 35-by-35
mm BGA package.

• IDT 36-bit synchronous FIFOs in a 128-pin TQFP (20 mm by 14 mm), same ones as in the
RU-II.

• IDT 36-bit synchronous DPMs in a BGA package (17 mm by 17 mm), same ones as in the
RU-II but the package.

• LVDS serializer and deserializer and two RJ-45 connectors for the TagNet implementation,
same components as in the RU-II.

• NIM connectors for reset input and throttle output, same as in the RU-II.
• One CMC mezzanine card with four connectors for data, control and power.

Fig. 7-2. Draft floor plan for the RU PCI-X card.

Single-processing-element input and output stages would provide the required performance over
a 100-MHz PCI-X bus segment. PCI-X chipsets for high-end servers will be available soon, like

FPGA

DPM
FIFO

FIFO

FIFO

FIFO

DPM

DPM

DPM

Short PCI card (174 mm)

106 m
m

RJ-45RJ-45 N
IM

N
IM

LVDS LVDS

Current and future work 153
the VIA APOLLO PX-266. This chipset includes a four-way PCI-X bridge which will allow
architectures like shown in Figure 7-3.

Fig. 7-3. A possible PCI-X motherboard architecture.

Two 100-MHz PCI-X slots per bus segment can accommodate one RU PCI-X and one NIC card,
resulting in several RUs per PC (four in the figure) sharing a common MCU (i.e., the host CPU).
The advantages of this solution are reduced cost and higher performance.

7.3.3. A test station for the Readout Unit

A test station must be built with the three-fold purpose of serving as (1) RU test and
demonstrator station, (2) qualification test station for production RUs and (3) RU development
station. A PC-based test station (Figure 7-4) has been designed, consisting of five main
components:

1. The Readout Unit module to be tested.
2. A FastBus crate to provide power and mechanical support for the RU (not shown in the fig-

ure).
3. A six-PCI-slot commodity PC running the test software.
4. Ten S-Link cards (five on the RU and five on the PC) that can be configured as either

receiver or transmitter. Such cards have been designed at EP-ED group [Bal01] using inex-
pensive physical media (LVDS over UTP1 with RJ-45 connectors) and are currently in the
production phase.

5. PCI-FLIC cards that interface the S-Link cards to the PCI bus on the PC (see “The PCI
Flexible I/O Card (PCI-FLIC)” on page 22).

The implementation has not been completed though. All the test software, with the exception of
the PCI-FLIC linux driver, has to be written. No further hardware development is needed, as the
FLIC cards are already existing and the S-Link rx/tx cards are in the production phase. The
FPGA in the PCI-FLIC need to be programmed, though most of what is required can be re-used
from the existing NA-60 PCI-FLIC developments (SDRAM controller and PCI target interface).
The FPGA code in the RU does not need to be modified.

1. Acronym for Unshielded Twisted Pair.

VIA
North
Bridge

VIA
HDIT
PCI-X

PCI-X slots
100 MHz PCI-X

VIA
HDIT
PCI-X

Conclusions154
If a NIC is plugged on the RU output slot and a second NIC replaces the S-Link receiver card on
the PC (either directly or as a mezzanine on top of the PCI-FLIC, depending on the NIC card
form factor), the station can be used to test also the RU DAQ and L-1 VELO configurations.
Nevertheless, an S-Link to S-Link configuration is intended as the baseline test setup.

Optionally (and conveniently) a connection between a LAN card on the PC and the MCU would
ease FPGA reconfiguration and monitoring using the utilities described in “MCU development”
on page 168. The PC can then emulate not only the data sources and destination, but also the
slow-control system.

The software for the baseline RU test station will have the modular structure depicted in Figure
7-5:

• Control Program: Synchronizes the operation of the other software modules, sends data to
S-Link transmitters and reads the buffer in the FLIC card that hosts the S-Link receiver card.
Two synchronization signals between the Control Program and the RU are implemented, as
described in the next section.

• Pattern Generator: Under the control of the Control Program, will accept data from a file,
create data patterns according to the sub-event transport format and store them in a buffer in
RAM.

• Compare Utility: Under the control of the Control Program, compares the generated data
patterns and the received sub-events from the RU to generate and log error statistics.

• FLIC driver for Linux: This is an existing device driver from the NA-60 experiment
[David01-2].

Fig. 7-4. Test station architecture with S-Link to S-Link configuration.

For the baseline test system, the following algorithm will be used:

1. If needed, the Control Program (CP) asks the Pattern Generation utility (PG) to write new
patterns in the RAM buffers.

S-Link
rx

S-Link
rx

S-Link
rx

S-Link
rx

S-Link
trx

MCU

F
LI

CS-Link
trx

F
LI

CS-Link
trx

F
LI

CS-Link
trx

F
LI

CS-Link
trx

F
LI

CS-Link
rx

P
C

I b
us

PC RAM

CPU

ReadoutUnit

C
om

m
er

ci
al

 P
C

LAN CARD

Current and future work 155
2. Once the patterns are ready, the CP will send them to the RU via the S-Link transmitter
cards. The RU input stage will assemble and store incoming event fragments into the SEB.
The RU output stage remains inactive until the CP enables the sub-event building operation
(via a Xon/Xoff signal1).

3. When the patterns have been sent (note that the total size must not exceed the SEB capacity
to avoid buffer overflow) the CP enables the RU output stage and sub-events are sent from
the RU to the FLIC that hosts the S-Link receiver card on the PC. The sub-events are stored
in the FLIC’s SDRAM.

4. When the SEB empties, the RU signals this event to the CP via a dedicated signal2 (accessi-
ble from the CP as a PCI register in a FLIC card). The CP reads the FLIC SDRAM and
stores sub-events into the main PC RAM.

5. The CP asks the Compare Utility to analyze the sub-events and write results into a log file.
6. The CP returns to step 1 if further test is required.

Fig. 7-5. Test station software block diagram.

1. Among several possible implementations, a register in the RU FPGA’s PCI space looks like an attractive option.
2. The RU throttle output can be used for this purpose if connected to one of the generic I/Os in the PCI-FLIC card.

Pattern
GeneratorFile

Patterns for
S-Link trx 0

Patterns for
S-Line trx 1

Patterns for
S-Link trx 2

Patterns for
S-Link trx 3

RAM

Control
Program

data to FLIC
trx cards

FLIC
driver

data and control
from FLIC rx card

Sub-events
from RU

Compare
utility

Statistics
logLog

Log

Conclusions156

 References
[Adam92] “Design and performance of the DELPHI Data Acquisition System”. W. Adam et al.
IEEE TND, 1992. pp 166-175.

[Antchev97] “32MB PMC Dual Port Synchronous DRAM Module”. G. Antchev, T. Anguelov,
I. Vankov, S. Cittolin, A. Fucci and D. Gigi, in Proc. XVII International Symposium on Nuclear
Electronics. Varna, Sept. 1997.

[Baird00] “A PMC based ADC card for CMS tracker readout”, S. A. Baird, J. A. Coughland, R.
Halsall, J. Hartley, W. J. Haynes and T. Parthipan, IEEE Trans. Nucl. Sci., vol. 47, no. 2, pp.
158-161, Apr. 2000.

[Bal01] “Readout Unit I/O S-Link cards”. Technical LHCb note in preparation. F. Bal et al.
CERN EP-ED group.

[Barsotti90] “A progress report of the Switch-based Data Acquisition System prototype project
and the application of switches from industry to high-energy physics event building”, E.
Barsotti, A. Booth, M. Bowden and C. Swoboda, in Proc. Symposium on Detector Research and
Development for the Superconducting Super Collider”, Fox Worth, Texas, Oct. 1990.

[Bhatt01] “Creating a Third-Generation I/O Interconnect”, Ajay V. Bhatt, Technology and
Research Labs, Intel Corp. Available: http://developer.intel.com/technology/3GIO/downloads/
3rdGenWhitePaper.pdf

[Bij97] “S-Link, a Data Link Interface Specification for the LHC Era”, E. van der Bij, R.
McLaren, O. Boyle and G. Rubin, IEEE Trans. Nucl. Sci., vol. 44, no. 3, pp. 398-401, Jun. 1997.

[Bock01] “The Active Rob Complex: An SMP-PC and FPGA based solution for the ATLAS
Readout System”, R. Bock et. al., in Proc. 12th IEEE NPSS Real Time Conference, Valencia,
2001, pp. 199-203.

[Brosch98] “MicroEnable, a Reconfigurable FPGA Coprocessor”, O. Brosch et al., in Proc. 4th
Workshop on Electronics for LHC Experiments, 1998, pp. 402-406.
157

References158
[Bruder00] “MCU and Linux Programming for the Readout Unit”, B.Bruder Nov,
2000. Available: http://hmuller.home.cern.ch/hmuller/RU/MCU/jtag.pdf and http://
b.home.cern.ch/b/bruderbe/www/

[CAMACstd] “CAMAC, A Modular Instrumentation System for Data Handling”. EUR 4100,
Office for Official Publication of the European Communities, Case Postal 1003, Luxemburg.

[Cattaneo97] The ALEPH Handbook. Volume 2. Chapter 10 (The Data Acquisition and Control
System). M. Cattaneo, M. Frank, J. Harvey, B. Jost, P. Mato and W. von Rüden, CERN, 1997.
Available: http://alephwww.cern.ch/HANDBOOK/VOL2/CH10/

[Charles99] “The Silicon Vertex Tracker”, SLAC Detector Physics Seminar Series. Eric
Charles, Nov, 1999. Available: http://hepunx.rl.ac.uk/BFROOT/www/doc/Seminars/detector/
SvtDetTalk/sld001.htm

[Charpak74] “Drift chambers”. G. Charpak. CERN, 1974.

[Charpak76] “Wire chambers: a review and forecast”. Comments Nucl. Part. Phys. 6 (1976),
pp.157-171.

[CMCstd] “Draft Standard for a Common Mezzanine Card Family: CMC”, IEEE P1396 Draft
2.0, April 1995.

[Costi&Toledo99] “Evaluación de la tecnología de bus PCI para el desarrollo de tarjetas de
adquisición de datos de altas prestaciones”, Final Studies Project of P. Costi Kowolik,
Universidad Politécnica de Valencia, 1999.

[David01] “Performance issues in PCI reading”, A. David. Available: http://
adavid.home.cern.ch/adavid/public/NA60/online/PCIReadingNote/PCIReadingNote.pdf.

[David01-2] PCI-FLIC driver web page: http://adavid.home.cern.ch/adavid/public/NA60/
online/FLIC/driver/flic/

[David01-2] “Readout of NA60’s silicon strip planes”, A. David, J. Buytaert, J. Lozano and R.
Shahoyan. To be published as NA60 technical note.

[Dorenbosch91] “Data Acquisition Studies for the Superconducting Super Collider”, J.
Dorenbosch, E.C. Milner, A.W. Booth, M. Botlo, R. Idate and V. Kapoor, in Proc. First Annual
Conference on Electronics for Future Colliders, Chestnut Ridge, New York. May, 1991.

[Drochner01] “A VME Controller for Data Acquisition with flexible Gigabit Data Link to
PCI”, M. Drochner, W. Erven, M. Ramm, P. Wüstner and K. Zwoll, in Proc. 12th IEEE NPSS
Real Time Conference, 2001, pp. 204-207.

[Dufey01] “Use of Network Processord for Data Multiplexing and Data Merging”, J. P. Dufey,
B. Jost and N. Neufeld, in Proc. 12th IEEE-NPSS Real Time Conference, Valencia, Jun. 2001,
pp. 195-198.

[Erwen92] “COSY Data Acquisition System for Physical Experiments”, W. Erven, J. Holzer, H.
Kopp, H.W. Loevenich, W. Meiling and K. Zwoll. IEEE Trans. Nucl. Sci., 1992, pp 148-158.

159
[Essel92] “GOOSY-VME: The Data Acquisition and Analysis System at GSI”, H.G. Essel, J.
Hoffmann, W. Ott, M. Richter, D. Schall, H. Sohlbach, W. Spreng. IEEE Trans. Nucl. Sci., 1992,
pp. 248-251.

[Fastbus83] “FASTBUS a modular high speed data acquisition system for high energy physics
and other applications” DOE/ER-0189, by the NIM Committee and ESONE/FB/01 by the
ESONE Committee, 1983.

[Fastbus86] “Fastbus Modular High-Speed Data Acquisition and Control System and
Fastbus Standard Routines”, IEEE 960-1986 Std, 1986.

[Fraser97] “The Quark Machines: how Europe fought the particle physics war”, Gordon Fraser.
Institute of Physics Publishing, 1997. ISBN: 0 7503 0447 2.

[Gavillet01] Readout Unit internal review report, Ph. Gavillet, 24th July, 2001. Available: http:/
/lhcb-comp.web.cern.ch/lhcb-comp/DAQ/FEMRU%20Internal%20Review%20report.txt

[Geesaman89] “Data Acquisition for FNAL E655”, D.F. Geesaman, M.C. Green, S. Kaufman,
S. Tentindo-Repond, IEEE Trans. Nucl. Sci., vol. 36, no. 5, Oct. 1989.

[Gigi99] “Dual-Port Memory with Reconfigurable Structure”, D. Gigi, G. Antchev, in Proc.
Fifith Workshop on Electronics for LHC Experiments, Snowmass, Colorado, Sept. 1999.

[Groom00] Particle Physics Booklet, extracted from The Review of Particle Physics, D. E.
Groom et al, The European Physics Journal C15 (2000) 1.

[Guirao01] “A networked mezzanine card Linux processor”, A. Guirao, J. Toledo, D.
Dominguez, B. Bruder and H. Müller, in Proc. 12th IEEE NPSS Real Time Conference,
Valencia, 2001, pp. 81-84.

[Harris98] “LHCb Data Flow Requirements. User requirements document”, F. Harris, M:
Frank, LHCb Note 98-027, CERN, 1998.

[Hinkelbein00] “Pattern Recognition Algorithms on FPGAs and CPUs for the ATLAS LVL2
Trigger”, C. Hinkelbein et al., IEEE Trans. Nucl. Sci., vol. 47, no. 2, pp. 362-366, Apr. 2000.

[Hewlett1] 5V receiver and transmitter G-LINK chips data sheet. Available: http://
www.semiconductor.agilent.com/cgi-bin/morpheus/displayFile/
displaySecureFile.jsp?BV_SessionID=@@@@0588020311.1007544224@@@@&BV_Engin
eID=cadccjhdhedlbemgcgjcfijdin.0&oid=9555

[IA-32] The IA-32 Intel Architecture Software Developer's Manual, Volume 3: System
Programming Guide. Available: http://developer.intel.com/design/pentium4/manuals/
245472.htm.

[IDT70V3599] IDT’s 128Kx36 3.3V, synchronous dual port RAM data sheet. Available: http://
www.idt.com/products/pages/Multi-Ports-70V3599.html.

References160
[Infineon1] Infineon’s Paroli web page: http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/
prod_ov.jsp?oid=15437&cat_oid=-8222

[LeVine00] “The STAR DAQ Receiver Board”, M. J. Le Vine et al., IEEE Trans. Nucl. Sci.,
vol. 47, no. 2, pp. 127-131, Apr. 2000.

[Lindsay78] “RMH: A fast and flexible data acquisition system for Multiwire Proportional
Chambers and other detectors”, J. B. Lindsay et al., presented at the Wire Chamber Conference,
Vienna, Feb. 1978.

[LHCb98-006] “The L1 Vertex Trigger algorithm and its performance”, H. Dijkstra and T. Ruf.
LHCb Technical Note. CERN, 1998.

[LHCb98-017] “The LHCb Level-2 trigger”. T. Teubert, I. R. Tomalin, J Holt. LHCb Technical
Note. CERN, 1998.

[LHCb98-022] “An All-Software Implementation of the Vertex Trigger”, M. Koratzinos, P.
Mato. LHCb Technical Note. CERN, 1998.

[LHCb98-028] “DAQ Architecture and Read-Out Protocols”, M. Frank et al. LHCb Technical
Note 98-028. CERN, 1998.

[LHCb98-029] “DAQ Implementation Studies”, J. P. Dufey and I. Mandjavidze, LHCb
Technical Note 98-029. CERN, 1998.

[LHCb98-030] “SCI implementation study of LHCb data acquisition”. Hans Müller. LHCb
Technical Note. CERN, 1998.

[LHCb98-033] “Vertex Trigger implementation using shared memory technology”. H. Müller.
LHCb Technical Note. CERN, 1998.

[LHCb-98-069] “Vertex detector electronics-L1 electronics prototyping”. Y. Ermoline. LHCb
technical Note. CERN, 1998.

[LHCb99-031] “LHCb Level-1 Vertex Topology Trigger: Requirements and Interface
Specifications”. Y. Ermoline, V. Lindestruth, A. Walsch. LHCb Technical Note. CERN, 1999.

[LHCb00-001] “The LHCb Vertex Locator and Level-1 trigger”. Hans Dijkstra. LHCb
Technical Note. CERN, 2000.

[LHCb01-034] “Level-1 decision Unit. Functional specifications”. Beat Jost. LHCb Technical
Note. CERN, 2001.

[LHCC95-71] ALICE Technical Proposal: A Large Ion Collider Experiment at LHC, CERN/
LHCC/95-71, Dec., 1995.

[LHCC98-4] LHCb Technical Proposal: A Large Hadron Collider Beauty Experiment for
Precision Measurements of CP-Violation and Rare Decays. Chapters 12 (Trigger) and 13
(DAQ). ISBN: 92-9083-123-5. Published by CERN, February, 1998.

161
[Lucent3T55] Lucent Technologies’ Orca 3T data sheet. Available: http://www.agere.com/
netcom/docs/DS99087.pdf

[Lucent3TP12] Lucent Technologies’ Orca 3TP12 data sheet. Available: http://
www.agere.com/netcom/docs/DS00222.pdf

[Lucent 3LP26] Lucent Technologies’ Orca 3LP26B data sheet. Available: http://
www.agere.com/netcom/docs/DS00151.pdf

[Martínez&Toledo] “Desarrollo hardware y software para aplicaciones de adquisición de datos
basadas en la tarjeta PCI-FLIC”, Final Studies Project of D. Martínez Martínez, Universidad
Politécnica de Valencia. To be published.

[McLaren98] “ATLAS Read-Out Link Data Format - Version 1.1”, R. Mclaren and O. Boyle.
Available: http://www.cern.ch/HSI/atlas/format/

[Mohanty94] “An Integrated Design Environment for Rapid System Prototyping, Performance
Modeling and Analysis using VHDL”, S. Mohanty, Master of Science Thesis, University of
Cincinnati, 1994.

[Morhac95] “PC-CAMAC Based Data Acquisition System for Multiparameter Measurements”,
M. Morhac, I. Tuerzo and J. Kristiak, IEEE Trans. Nucl. Sci., vol. 42, no. 1, Feb. 1995.

[Mota00] “Digital Implementation of a Tail Cancellation Filter for the Time Projection
Chamber of the ALICE Experiment”, B. Mota, J. Musa, R. Esteve and A. J. de Parga, in Proc.
LEB-2000 Electronics for LHC Experiments, Krakow, Sept., 2000.

[Müller95] “A Millenium Approach to Data Acquisition: SCI and PCI”, H. Müller, A. Bogaerts,
V. Lindenstruth, in Proc. International Conference on Computing in High-energy Physics:
CHEP '95, Rio de Janeiro, Brazil, Sept. 1995, pp. 388-393.

[Müller98] “LHCb Readout Unit Project Proposal”, H. Müller, J. Toledo, F. Bal, L. Mcculloch,
E. Watson. Available: http://hmuller.home.cern.ch/hmuller/~HMULLER/DOCS/ruproj.pdf

[Müller99] Presentation at the LHCb DAQ Workshop, October 1999. Available: http://
hmuller.home.cern.ch/hmuller/~HMULLER/DOCS/daqws.pdf

[Müller00] Minutes of the two-day Readout Unit meeting for the Level-1 VELO meeting at KIP
Heidelberg, September 2000. Available: http://hmuller.home.cern.ch/hmuller/RU/Minutes/
Heidelberg/Heidelberg.html

[Müller00-2] Presentation at the May 2000 LHCb FE-DAQ Workshop. CERN. Available: http:/
/hmuller.home.cern.ch/hmuller/RU/daqws2000.pdf

[Müller01-1] “A flexible card concept for Data Acquisition: the PCI-FLIC”, H. Müller, F. Bal,
A. David, D. Domínguez, J. Toledo, in Proc. 12th IEEE NPSS Real Time Conference. Valencia,
2001, pp. 259-253.

[Müller01-2] “Status on PCI readout”, H. Müller et al., Feb. 2001. Available: http://
hmuller.home.cern.ch/hmuller/FLIC/na60march.pdf

References162
[National1] “LVDS Design Guide”, Second Edition, National Semiconductors. Available: http:/
/www.national.com/appinfo/lvds/0,1798,100,00.html

[NIMstd] “Standard Nuclear Instrument Modules”, TUD-20893, Department of Energy,
Physical and Technological Research Division, Office of Health and Environmental Research.
Washington D.C. 20545.

[NP4GS3] More information on the IBM Network Processor NP4GS3 can be found in http://
www-3.ibm.com/chips/techlib/techlib.nsf/products/IBM_PowerNP_NP4GS3

[Parkman90] “CSI buses and link groups”, Rev 1.0, C.F. Parkman, CERN/CN, 1990.

[Parkman91] “VICbus, Inter-crate Bus for the IEC821 VMEbus”, C.F. Parkman, ISO/IEC
26.11458 Draft Specification Revision 1.1. IEC, Geneva (Switzerland), 1991.

[Parkman94] Based on an article written by Chris parkman and published at the VITA Journal
of September 1994. Available: http://ess.web.cern.ch/ESS/VMEbus_at_CERN/
VMEbus_General.html.

[Pascual01] “Development of a DSP-based PMC board for real time data processing in HEP
experiments”, J. V. Pascual, V. González, E. Sanchis, G. Torralba, J. Martos, in Proc. 12th IEEE
NPSS Real Time Conference, 2001, pp. 235-239.

[PCIstd] “PCI Local Bus Specification. Revision 2.2”, PCI Special Interests Group, Dec., 1998.

[PCIX] “PCI-X Specification Revision 1.0a”, PCI Special Interests Group, 2001.

[PICMG97] CompactPCI specification Revision 2.1. PCI Industrial Computers Manufacturers
group, 1997. Rogers Communications, 301 Edgewater Place, Suite 220, Wakefield MA 01880.

[PMCstd] “Draft Standard Physical and Environmental Layers for PCI Mezzanine Cards:
PMC”, IEEE P1386.1 Draft 2.0, 1995.

[Pointing91] “Instrumentation Buses for High Energy Physics, Past, Present and Future”, P.
Pointing, H. Verweij, IEEE Trans. Nucl. Sci., vol 38, no.2, Apr., 1991.

[Praag95] “Overview of the use of the PCI bus in present and future High Energy Physics Data
Acquisition systems”, A. van Praag et al., presented at the PCI-week, 27 to 31 March, 1995 in
Santa Clara, CA. Tech. Rep. CERN/ECP 95-4, 1995.

[Pxecore00] Home page of Compulab’s PXECORE product. http://www.compulab.co.il/
pxecore.htm

[PXI00] PXI Specification Revision 2.0. PXI Systems Alliance, 2000. http://www.pxisa.org/

[RACE-1] University of Mannheim’s RACE-1 Reconfigurable Accelerator Computing Engine.
Web page: http://www-li5.ti.uni-mannheim.de/fpga/

[Rüden89] “The ALEPH Data Acquisition System”, Wolfgang von Rüden, IEEE Trans. Nucl.
Sci., vol. 36, no. 5, Oct. 1989.

163
[RUhist] Minutes of the Readout Unit Project Meetings. Available: http://hmuller.home.cern.ch/
hmuller/RUminutes.htm

[RUtechnote] “Readout Unit. FPGA version for link multiplexers, DAQ and VELO trigger”, H.
Müller, J. Toledo, A. Guirao. LHCb Technical Note LHCb 2001-136, CERN, 2001.

[Schulz01] “Architecture of the L1 Vertex Trigger Processor”, M. W. Schulz. To be published as
a LHCb Technical Note.

[SCIstd] “IEEE Standard for Scalable Coherent Interface (SCI)”, IEEE Std 1596-1992, Aug.,
1993.

[Simoes01] “A Simple Approach to X-ray Spectrometry with Driftless Gas Proportional
Scintillation Counters”, P.C.P.S. Simoes et al., in Proc. 2001 IEEE Nuclear Science Symposium,
San Diego, CA., November 2001.

[S-Link] “The S-Link Interface Specification”, O. Boyle, R. McLaren and E. van der Bij, CERN
CN, March, 1997. Available: http://hsi.web.cern.ch/HSI/s-link/spec/spec/s-link.pdf

[Sphicas99] “Data Acquisition in High Energy Physics Experiments”, P. Sphicas, presented at
the IEEE NSS Symposium. Seattle, Oct. 1999.

[SPSC00-10] NA60 Technical Proposal: “Study of Prompt Dimuon and Charm Production
with Proton and Heavy Ion Beams at the CERN SPS”. CERN SPSC 2001-09, March
2000. Available: http://na6i.web.cern.ch/NA6i/proposal/p.ps.gz

[SPSC01-9] NA60 Status Report, CERN SPSS 2001-009, March 2001. Available: http://
na6i.web.cern.ch/NA6i/proposal/spsc-2001/statrep-march12.ps.Z

[S586PC] Digital-Logic, AG S586PC credit-card PC technical user’s manual. Available: http://
www.digitallogic.ch/english/products/datasheets/
smartmodule_detail.asp?id=smartModule586PC

[Tam89] “An introduction to CAMAC and the CAMAC Controller Diagnostic program”,
Technical report for the 1989 summerwork team, Tandy Tam, TRIUMF, 1989. Available: http://
daq.triumf.ca/online/camac_primer/camac_primer/index.html

[Texas1] Texas Instruments’ Flatlink web page: http://www.ti.com/sc/docs/apps/analog/
flatlink_lvds_.html

[Tol98-1] “A common approach to the Front-end Multiplexer and the Readout Unit”, J.Toledo
and H. Müller, 1998. Available: http://toledo.home.cern.ch/toledo/~toledo/newarch.PDF

[Tol98-2] “A common approach to the Front-end Multiplexer and the Readout Unit”, J.Toledo
and H. Müller, presentation at the LHCb Week, December 1998. http://toledo.home.cern.ch/
toledo/~toledo/lhcbw_transp.PDF

[Tol98-3] “Cyclic Redundancy Code (CRC) Implementation on FPGAs”, J. Toledo. Available:
http://toledo.home.cern.ch/toledo/~toledo/crc1.pdf

References164
[Tol99-1] “Readout Unit for the LHCb experiment”. J. Toledo, H. Müller, F. Bal, B. Jost, in
Proc. Fifth Workshop on Electronics for LHC Experiments, Snowmass, Colorado. Sept. 1999.
Available: http://toledo.home.cern.ch/toledo/~toledo/leb99.doc

[Tol01-1] “A Readout Unit for high rate applications”, J. Toledo, F. Bal, D. Domínguez, A.
Guirao, H. Müller, in Proc. 12th IEEE NPSS Real Time Conference, 2001, pp. 230-234.

[Tol01-2] “A plug&play approach to data acquisition”, J. Toledo, H. Müller, J. Buytaert, F. Bal,
A. David, A. Guirao, F. J. Mora, in Proc. 2001 IEEE Nuclear Science Symposium, San Diego,
CA., November 2001.

[Usai01] “The Pixel Readout Board”, G. Usai et al., NA60 Technical Note. To be published.

[VITA32std] “Processor PMC Standard for Processor PCI mezzanine cards”, VITA-32 Draft
0.41 Std., Sept. 2000.

[VMEstd] “The VME bus specification”, ANSI/IEEE 1014-1987, IEC 821.

[Walsch01] “A Hardware/Software triggered DMA engine”, A. Walsch, LHCb 2001-125,
CERN, 2001. Available: http://weblib.cern.ch/database

[Walsch01-2] “Evaluation of SCI as a Fabric for a Computer based Pattern Recognition Trigger
running at 1.12 MHz”, A. Walsch, V. Lindenstruth. M. W. Schulz, in Proc. 12th IEEE NPSS
Real Time Conference, pp. 11-15, Valencia, June 2001.

[Watzlavik92] “FATIMA: A Data Acquisition System for Medium Scale Experiments”, K.H.
Watzlavik, R. Nellen, T. Noll, M. Karnadi, H. Machner, IEEE Trans. Nucl. Sci., pp 154-158,
1992.

APPENDIX I Application development
There are two programmable components in the Readout Unit: the FPGAs and the MCU. This
appendix describes the development environments for these two elements.

I.I. FPGA development environment

An HDL-based methodology is used for FPGA development. HDL languages (with VHDL and
Verilog as major representatives) allow structural and behavioral description of complex digital
systems, with none or little1 technology dependence. These languages are simple in syntax and
easy to learn (somewhat close to simplified Pascal or C languages) and are today’s foundation of
complex digital design. We have chosen VHDL as it is intensively used and well supported at
CERN, though the use of Verilog would not make any difference in the tools or methodology.

I.I.I. HDL design flow

We have chosen Innoveda’s VisualHDL2 as design entry and simulation tool. Among different
possibilities (top-down, bottom-up and middle-out design approaches are supported by the tool)
a top-down methodology has been used. Block diagrams are drawn, with the possibility of
multi-level hierarchy. Each box in a block diagram (Figure I-I, top left corner) can be visually
described as a graphical state diagram (top right corner) a flowchart for asynchronous state
machines or as a table for combinational logic. Raw VHDL code descriptions are, of course,
also allowed.

Functional simulations can be carried out, either on individual blocks or on the whole design.
When the simulations are satisfactory, VHDL code is automatically generated for the whole
design, with optimizations for specific synthesis tools3. Visual HDL also accepts the output from

1. The instantiation of technology-specific components like macros and I/O buffers restricts portability. Nevertheless,
it can take between a few minutes and one week to port any design to a different FPGA vendor.

2. Now renamed as Visual Elite. See http://www.innoveda.com/products/datasheets_HTML/vishdl.asp
165

166
the FPGA vendor place and route tools, in the form of standard delay format (SDF) files, which
allow to perform post place-and-route timing simulations and compare the VHDL model with
the actual implementation. The VHDL output is translated into a technology-specific netlist

by the synthesis tool (Synplify1 in our current development environment, though Leonardo

and Galileo2 have also been used).

Fig. I-I. HDL design flow for the RU FPGAs.

3. Not all synthesis tools support all VHDL syntax constructions. In some cases, specific directives via VHDL
attributes (like state-machine coding) or constructions (“case” instead of “if” clauses) produce a better result in a
specific synthesis tool.

1. See http://www.synplicity.com/
2. Leonardo an Galileo are from Exemplar. See http://www.exemplar.com/

Automatic HDL
code generation

Synthesis tool
FPGA vendor

Place and Route
Tool

Bitstream
file

generation

FPGA load
via PCI

Simulation

Block Diagram in VisualHDL Graphical state machine description

FPGA development environment 167
The EDIF netlist output from the synthesis tool is used as an input to the Orca Foundry 9.x
tools1.

Orca Foundry includes a mapper that packs the flip-flops and logic into ORCA LUTs
(look-up tables), a place and route tool and a bitstream generator (bitgen) tool that creates
the binary configuration file. Optionally, a graphic editor and floor planer (EPIC) is
available (see Figure I-II). An additional ORCA tool, the FPSC Configuration Wizard, is
used to crate a PCI core instantiation in VHDL needed for proper device configuration.

Fig. I-II. Design flow with Lucent Technologies’ ORCA FPGAs.

1. See http://www.agere.com/netcom/orca/software.html

PCI Bus

Foundy MAPSH
MAPPER

Foundry PARSH

Foundry EPIC

 Foundry BITGEN

PLACE

ROUTE

INTERACTIVE EDITOR

BITSTREAM GENERATOR

BITSTREAM FILE

.ncd

.ncd

.ncd

 Foundry PROMGEN
combine + generate S-RECORD

PREFERENCE FILE

TIMING PARAMETERS

.prf

.bit

.mcs

PROM PROGRAMMER

Flash EPROM

.vhd

VHDL Editor Visual
State Machines

Block
Diagrams

Simulation

Design Source files and constraints

Synthesizer (Synplify)

Place & Route (Orca Foundry)

.bit

.edn (edif file)

Back annotation
(post place & route).vhd

Design and Simulation (Visual HDL)

FPGA’s

FPSC: Orca PCI interface wizard

M.C.U.
(Embedded CPU)

Resources
Summary

LAN

Power up

Innoveda

optional

168
Once the bitstream file is generated, two options are available:

• Convert the file to MCS86 or other PROM-compatible format for programming the on-board
FPGA-configuration EPROM memories in the RU.

• Load the FPGA configuration bitstream from the MCU via PCI using the flasher utility
described in the following section. This option takes less than 10 minutes for a complete re-
programming cycle (i.e., from the VHDL code generation until the FPGA is loaded via PCI).

I.II. MCU development

A Linux 2.2.x system is used as operating system in the MCU, though DOS and Windows95
have also been tested successfully. Hard disk, keyboard and mouse can be directly connected to
the MCU. The available serial port can be used to interface a terminal, completing the
development and test set up. Alternatively, a PC with terminal emulation software can be
connected to the serial port in the MCU. As a third option, the MCU can be operated remotely
via the LAN interface.

I.II.I. Access to PCI devices in Linux

The basic access to a PCI device in Linux is summarized in Figure I-III and relies on the use of
the pci.h library. Using functions from this library, the steps needed to access a device are:

1. Once the bus, device and function numbers for the target device are know, the function
pci_get_device returns a pointer to its PCI configuration space.

Fig. I-III. Example of C code to access PCI-mapped memory in the FPGAs.

2. Using this pointer and the appropriate offsets to call the function pci_read_long, the
different BAR (Base Address Register) registers can be read. In the case of the EBI FPGAs

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <pci/pci.h>
#include <sys/stat.h>
#include <fcntl.h>
#define ORCA_BAR0 0x10

int main(int argc, char *argv[])
{
 int i,fd,dev_num, bus_num;
 u32 bar0_addr,position;
 struct pci_access *pci_acc;
 struct pci_dev *orca_config_space;
 unsigned long *ptr,value,readback;

 /* Scan the PCI bus, and store the config space in pci_acc */
 pci_acc = pci_alloc();
 pci_init(pci_acc);
 pci_scan_bus(pci_acc);

 /* Select fpsc to access */
 if(strcmp(argv[1],"ebi1")==0)
bus_num = 0x1; dev_num = 0xF; /* EBI1 */
...
...

/* Verify if an orca is there */

orca_config_space=pci_get_dev(pci_acc, bus_num,
dev_num,0);
bar0_addr = pci_read_long(orca_config_space,ORCA_BA
& PCI_BASE_ADDRESS_MEM_MASK;

if(pci_read_long(orca_config_space,0) != 0x540111c1)
 {printf("Can't find orca board\n"); return(-1);}
else { printf("Orca board has been found ...\n");
fd = open("/dev/mem", O_RDWR);
ptr = (unsigned long *) mmap(
NULL, 128, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, bar0_addr);
/*----Read/write memory according to user command----
 if (strcmp(argv[2],"W")==0)
 {
 value= (unsigned long) atol(argv[3]);
 position = (u32) atol(argv[4]);
 *(ptr+position) = value;
 printf("%x written to position ", value);
 printf("[%x]",position);
 readback = *(ptr+position);
 if (readback == value) printf("...[OK]\n");
 else printf("...error: readback %x",readback);
 }
...
...
/* free buffer before leaving */
 munmap(ptr, 128);
 return 0;
 }
}

MCU development 169
in the RU, the SEB is mapped in BAR0 and several control and monitoring registers are
mapped in BAR5.

3. The value read from the BAR registers need to be masked to have 0h in the lower 4 four bits.
4. The masked BAR addresses value are used as an input to the mmap function to get pointers

to the different memory regions.
5. These pointers can be used as in the highlighted assignments in Figure I-III to perform CPU-

initiated read and write operations. Block transfer functions and any other function that
operates with memory pointers can be used.

Before the program exits, munmap (memory unmap) must be called to free the reserved
memory buffer.

I.II.II. The flasher utility

Written by NA-60 for the PCI-FLIC card, this utility to load a bitstream into a Lucent
Technologies FPGA with embedded PCI ASIC interface is fully functional on the RU-II. It
works with the MCU and has also been tested with other single-board computers plugged on the
RU-II’s auxiliary PCI connector. The flasher utility must be called using the following
convention:

flasher device bitstream_file

Where device is bus:device.function and bitstream_file is a “.bit” file created by Orca Foundry
tools. In the following usage example “flasher 1:f.0 hope6.bit”, the FPGA located in PCI bus 1,
device Oxf, function 0, is configured with the bitstream file named hope6.bit.

Common to all bitstreams are a read/write PCI target interface that grants access to the RU’s
SEB via the BAR0 and five user-defined registers located in BAR5 at offsets 100h to 500h.

I.II.III. The rwpci utility

This test utility reads and writes memory positions in the SEB. It must be called using the
following conventions:

• rwpci device R n: Reads the nth 32-bit DPM memory position.
• rwpci device W val n: Writes val into the nth DPM memory position and reads back the posi-

tion for verification.
• rwpci device I val: Writes val to the first 32 DPM positions.
• rwpci device INC val: Writes the first 32 DPM positions with a self-incrementing counter

value starting with val.
• rwpci device DUMP: Prints in the screen the first 32 DPM memory positions.
• rwpci device RREG pos: reads the user-defined 32-bit register located in offset BAR5+pos
• rwpci device WREG val pos: writes val into the user-defined 32-bit register located in offset

BAR5+pos and verifies with a read operation.
• rwpci device TESTWREBI1 burst_cnt go: Configures the destination address, burst count in

quadwords and go/stop bit in the FPGA to initiate a sequence of PCI write bursts to another
PCI device. The transactions can be stopped writing a 0 in go and enabled writing a 1.

170
• rwpci device TESTWRNIC burst_cnt go bar_nr: Used to perform write tests to a PCI device
plugged on the NIC slot. Configures the destination address -according to the selected BAR
bar_nr in the NIC- burst count in quadwords and go/stop bit in the selected device. The trans-
actions can be stopped writing a 0 in go and enabled writing a 1.

I.II.IV. I2C and JTAG controller utilities

The programming of the clock domains SEM, EBI and PCI is performed via the I2C interface
(SCL and SDA lines) and two additional signals (SEL and MODE) in the PMC’s I/O connector
(see Figure I-IV). A utility has been written to program the clock frequencies using the on-board
MCU I2C interface and two GPIO lines.

Fig. I-IV. Programming interface in the RU on-board clock generator.

A JTAG controller is emulated using GPIO signals through the PMC I/O connector [Bruder00].
Operating frequencies up to 100 kHz have been tested. This software can be used to test the
FPGAs and PLDs in the RU-II.

10 MHz

FS6370-1
A

B

C

D

EBI clock domain
SEM clock domain

PCI domain

n.c.

MODE
SCL
SDA
SEL

I/O connector

Reference Osc.

APPENDIX II Data Acquisition and trigger systems in
NA-60, a small HEP experiment
The work described in the previous chapters has been carried out in the context of a large 21st
century experiment at CERN LHC, at the cutting-edge of high-end electronics for HEP DAQ
and trigger systems. Nonetheless the picture is incomplete, as the HEP arena is also populated
by a large number of small experiments with less demanding requirements and much smaller
budget. Both circumstances favour the reuse of already existing components, sub-detectors,
electronic modules and software tools from other experiments.

This is the case of a small fixed target experiment at CERN SPS: NA-60 [SPSC00-10]. It has
inherited from its predecessors (NA-50, 1994-2000 period, and NA-38, which ran from 1986 to
1992) old DAQ and trigger systems, with some concepts dating from the seventies and a number
of modules from the eighties. The old system cannot cope with the new requirements and a new
DAQ system has been designed [SPSC01-9], following the PC-based DAQ trend presented in
“Trends in DAQ systems for the 21st century” on page 20.

One of the cards used in the RU test station, the PCI-FLIC [Müller01-1], is also a key module in
the new NA-60 DAQ system. In this appendix, this new DAQ system and the applications of the
PCI-FLIC card are presented, thus completing the picture of the state-of-the-art in DAQ systems
for HEP experiments.

II.I. The NA-60 experiment

II.I.I. Detector geometry

The NA-60 detector consists of the following four sub-detectors:

• Muon spectrometer: Inherited from NA-38, it is made up of eight multi-wire proportional
chambers (MWPCs, numbered 1 to 8 in Figure II-I) and four trigger hodoscopes1 made up of
plastic scintillators (R1 to R4). The muon spectrometer is used to reconstruct particle tracks.
171

172
• Zero Degree Calorimeter (ZDC): Inherited from NA-50, it collects and amplifies in photo-
multiplier tubes (PMTs) the Cherenkov light produced in quartz fibers when a particle crosses
the material. The ZDC is also used in the trigger system for heavy-ion runs.

• Beamscope: New in NA-60, consists of two stations, each one made up of two silicon
microstrip detectors providing two-dimensional information to determine the ion beam’s
coordinates. This information is used to enhance the vertex calculation.

• Silicon pixel telescope: Also new in NA-60, is made up of ten silicon pixel planes, eight pixel
chips per plane. It provides information about the interaction vertex and about the generated
muons before they scatter in the carbon absorber.

Fig. II-I. NA-60 detector layout.

II.I.II. Trigger system

The NA-60 experiment aims at measuring certain properties of dimuon systems produced in
proton and heavy-ion collisions. So, the trigger system is designed for muon detection. The
trigger system uses basically the information from the four hodoscope planes. A muon track is
drawn in Figure II-I. The first step in the trigger algorithm is the detection of coincidences in
planes R1 and R2. Indeed, the scintillator spacing in planes R1 and R2 is such that, if a track is
originated at the vertex (interaction point), hits with the same coordinates are produced in R1
and R2. The momentum is determined by checking in a look-up table the value that corresponds
to the R4 hit coordinate, thus providing fast momentum discrimination. Note that the track can
only correspond to a muon, as by definition, it is a particle able to cross a 120-cm iron absorber.
This justifies the existence of the iron wall. The data from R3 are redundant and are used for
eliminating accidental coincidences.

The whole trigger system is fully implemented in hardware. Data arrive at the counting room
and each channel1 is conditioned in a pipeline consisting of a discriminator (to filter out noise), a
programmable delay (to compensate for cable length tolerances) and a time averaging process
(to compensate for differences in hit distance to the photo-multiplier tube).

1. Hodoscope is a term used for a combination of detector elements arranged in space and connected by logic cir-
cuitry such that particle tracks can be identified. As in this case, they are normally used in trigger systems and
made up of scintillator counters, for this is a very fast kind of detector as required in trigger systems.

1. There are 768 data channels in a trigger hodoscope plane.

R4

120 cm
iron absorber5 6 7 8

Magnet1 2 3 4

R1 R2

5 m carbon
absorber

Pixel Telescope

Target

Beamscope

Dipole
Magnet

ZDC
R3

θ

The NA-60 experiment 173
Coincidence and momentum checking is performed with logic gates and jumper-based look-up
tables for minimum delays. The total time, from data arriving at the discriminators until a trigger
decision is produced, is less than 100 ns. There are no clocks and no synchronization means in
the system other than the programmable delays. Meanwhile, analog detector data have been
delayed with meters of cable for exactly the same amount of time (around 100 ns) in order to
arrive to the readout electronics simultaneously with the trigger decision.

Needless to say that this scheme is unconceivable in large experiments like LHCb, with one
million data channels and a 40-MHz interaction rate.

II.I.III. DAQ system architecture

The DAQ system in NA-60 reads out four sub-detectors (muon spectrometer, beamscope, ZDC
and pixel telescope) via PCI instead of NA-50’s VME-based system. According to the
architecture depicted in Figure II-II, event building is carried out in a Global Data Concentrator
PC (GDC) using an Ethernet switch for data routing from the Local Data Concentrator PCs
(LDC) to the GDC. Two LDCs (Pixel 1 and Pixel 2 in the figure) read out the Pixel Telescope
sub-detector. One LDC reads out the Beamscope and ZDC sub-detectors. The Muon
spectrometer requires one LDC. Thus, five PCs are enough to read out the different sub-
detectors, resulting in a significant cost saving if compared to a VME-based solution. As
described in the next section, two PCI-FLIC cards per LDC (with their corresponding
mezzanine cards) are used for sub-detector readout.

Fig. II-II. NA-60 DAQ system block diagram.

Ethernet Switch
100Mbit/Gbit

Disk Array

Tape

GDC

4.8 MByte/s

6.4 MByte/s 0.12 MByte/s
0.8 MByte/s

12 MByte/s

8 MByte/s

Pixel 1 Pixel 2 Beamscope
ZDC

 Muon LDCs

48MByte/s 64 MByte/s 1.2 MByte/s 8 MByte/s Burst
throughput

174
Events are not read out from the front-end electronics on a trigger-by-trigger basis, but in 5-
second bursts of up to 8000 triggers each. Data bandwidth generated by an LDC ranges from
0.12 to 6.4 MByte/s, totalling 12 MByte/s though the switch, though ten times higher
bandwidths are produced during the bursts.

II.II. Application of the PCI-FLIC to NA-60 detector readout

The readout of NA60 muon spectrometer’s multiwire chambers (MWCs) relied on an old CERN
system [Lindsey87] consisting of: (1) 32-channel readout CAMAC modules grouped in up to 22
modules per crate, (2) a RMH system encoder collecting hit data via a CAMAC branch cable
and outputting to a custom ECL cable according to a protocol named RMH, (3) a VME memory
module into which events are written by the RMH encoders, and (4) a VME interface to a
readout computer. The 1.6 kHz trigger rate and event sizes in the order of 1 KByte require 1.6
MByte/s throughput. To enhance the event efficiency during 10 s of machine spill, the
bandwidth had to be increased to 6-8 MByte/s, which required faster RMH handshake and a four
times larger buffer.

Fig. II-III. Muon spectrometer readout.

A mezzanine card has been designed [Müller01-2] to adapt the RMH cable and ECL electrical
levels to the PCI-FLIC and thus replace the VME memory and PC interface modules with a
faster RMH receiver with larger buffer (a PCI-FLIC card, see Figure II-III). The buffer is
interfaced via PCI to the readout computer (the host PC). Several PCI-FLIC cards housed in a
host PC allow to read the detector partitions in parallel from the host. In the RMH mezzanine
card (Figure II-IV), NIM connectors are used for the RMH trigger interface (top right corner)

Application of the PCI-FLIC to NA-60 detector readout 175
and the RMH cable is connected via a 50-pin connector (bottom right). Signals are converted
from ECL to TTL levels before being transmitted to the PCI-FLIC via a 64-pin connector (left).

Fig. II-IV. RMH mezzanine card.

II.II.I. Other sub-detectors

A mezzanine card (PRB, Pixel Readout Board) is being designed to interface the front-end
electronics of the Silicon Pixel Telescope to the PCI-FLIC [Usai01]. The PRB mezzanine will
provide clock and control signal to the pixel chips and will perform zero-suppression and
encoding on the read out data. Finally, processed data will be stored in FIFOs that will be read
out by the FPGA in the PCI-FLIC card. There will be four PRB mezzanines reading out sixteen
chips each.

The use of the PCI-FLIC is also planned for reading the ZDC and the beamscope sub-detectors.

176

