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ABSTRACT 

A study is hereby presented on system embedded photonic interconnect technologies, which would address the 

communications bottleneck in modern exascale data centre systems driven by exponentially rising consumption 

of digital information and the associated complexity of intra-data centre network management along with 

dwindling data storage capacities. It is proposed that this bottleneck be addressed by adopting within the system 

electro-optical printed circuit boards (OPCBs), on which conventional electrical layers provide power 

distribution and static or low speed signaling, but high speed signals are conveyed by optical channels on 

separate embedded optical layers. One crucial prerequisite towards adopting OPCBs in modern data storage and 

switch systems is a reliable method of optically connecting peripheral cards and devices within the system to an 

OPCB backplane or motherboard in a pluggable manner. However the large mechanical misalignment tolerances 

between connecting cards and devices inherent to such systems are contrasted by the small sizes of optical 

waveguides required to support optical communication at the speeds defined by prevailing communication 

protocols. An innovative approach is therefore required to decouple the contrasting mechanical tolerances in the 

electrical and optical domains in the system in order to enable reliable pluggable optical connectivity. 

This thesis presents the design, development and characterisation of a suite of new optical waveguide connector 

interface solutions for electro-optical printed circuit boards (OPCBs) based on embedded planar polymer 

waveguides and planar glass waveguides. The technologies described include waveguide receptacles allowing 

parallel fibre connectors to be connected directly to OPCB embedded planar waveguides and board-to-board 

connectors with embedded parallel optical transceivers allowing daughtercards to be orthogonally connected to 

an OPCB backplane. 

For OPCBs based on embedded planar polymer waveguides and embedded planar glass waveguides, a complete 

demonstration platform was designed and developed to evaluate the connector interfaces and the associated 

embedded optical interconnect. 
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Furthermore a large portfolio of intellectual property comprising 19 patents and patent applications was 

generated during the course of this study, spanning the field of OPCBs, optical waveguides, optical connectors, 

optical assembly and system embedded optical interconnects. 
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OPCB Optical Printed Circuit Board or (Electro-optical Circuit Board) 

PAM4 Pulse-Amplitude Modulation with 4 signal levels 

PCI Peripheral Computer Interface 

PCB Printed Circuit Board 

PD Photodiode 

PIN Positive intrinsic negative (photodiode) 

PRBS Pseudo Random Binary Sequence 

QSFP Quad Small Form-Factor Pluggable 

SAS Serial Attached SCSI 

SATA Serial ATA 

SCSI Small Computer System Interface 

SFP Small Form Factor Pluggable 

TIA Trans-Impedance Amplifier 

TCO Total Cost of Ownership 

UI   Unit Interval 

VCSEL Vertical Cavity Surface Emitting Laser 

WDM   Wavelength Division Multiplexing 
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1 INTRODUCTION 

 

 

1.1 Background 

Over the last 10 years, there has been a surge in the amount of digital information being captured, processed, 

stored and conveyed from one place to another, precipitated for the most part by the proliferation of mobile data 

devices and media communications. This exponential increase in data demand is pushing modern information 

and communications systems beyond their design limits and towards a crippling “data cliff”, but electro-optical 

printed circuit boards (OPCBs) offer a way past this bottleneck. 

 

Printed circuit boards (PCBs) form the basis of all modern information and communication systems. The 

increase in data communication speeds will incur a toll on electronic systems when higher frequency electronic 

signals are conveyed along the copper channels used in conventional PCBs today. Dielectric absorption and 

resistive loss mechanisms will more strongly attenuate higher frequency signals conveyed along a copper 

channel, while reflections, signal skew and interference from other electronic channels will distort the data. 
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Furthermore the environmental effects of system operation, such as temperature and humidity, will cause 

changes in the circuit board substrate, thus altering the carefully balanced characteristics of the electronic 

channels. Many of these constraints can be mitigated to some degree, however, at an ever mounting cost to the 

overall system design and with an increasing power penalty. 

OPCBs are PCBs, in which optical channels have been embedded or to which they have been directly attached. 

In future, OPCBs will almost always still require electronic layers for electrical power distribution and static 

control or low-speed signals, however higher frequency signals can be confined to dedicated optical 

communication layers, which benefit from the substantially higher data bandwidth density that optical channels 

enable. Therefore it is envisaged that in future OPCBs will almost always comprise both optical and electrical 

layers. 

Embedded optical interconnect technologies, whether deployed at the cable level, circuit board level or chip 

level offer significant performance and power advantages over conventional electronic interconnect including 

higher data rates, reduced electromagnetic interference, reduction in power consumption, higher channel density 

and corresponding reduction in the amount of cable or PCB materials used. Therefore in order to cope with the 

exponential increase in capacity, processing power and bandwidth density inside information communication 

systems, there has been a trend over the past decade to migrate optical channels down from the higher 

communication tier optical fibre networks into the data communication system enclosure itself. The introduction 

of OPCB technology is a critical part of this migration as they provide a medium, which can accommodate 

hundreds of times the volume of data compared to conventional PCBs and are therefore seen as a key enabling 

technology for future, high bandwidth data communication systems. 

One area in which this migration is particularly apparent is in modern data centres. A major consequence of the 

widespread adoption of smaller mobile data devices (smart phones and tablets) over fixed larger computer 

terminals (PCs and laptops) is that a dramatic shift is now occurring in where customers need to store their 

information. While it has, until recently been sufficient to store data locally (such as on the user’s local laptop or 

desktop computer hard drive), the average size of data objects generated on the fly now, such as high definition 

pictures or short videos, has grown to the extent that the storage available on mobile devices is rapidly becoming 

insufficient for long term accumulation and retention of data.  So called “Cloud” services are therefore emerging 

to meet a burgeoning customer demand to store data remotely and securely. Data centres provide the dedicated 

compute, storage and server equipment required to meet the remote data processing and storage requirements of 

these emerging Cloud environments, but in order to cope with rapidly changing customer demand, the 
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architectures underlying the data centres themselves need to evolve and a critical part of that evolution is the 

deployment of optical connections at all levels of the data centre environment. 

 

1.2 Motivation and aim 

Widespread adoption of OPCBs will herald substantial performance, cost and environmental benefits for the data 

communications industry, however there are still a number of technical barriers that need to be overcome before 

OPCBs can become commercially viable, the most challenging of which is the provision of reliable connector 

interface technologies allowing pluggable (interfaces can be repeatably attached and detached) optical 

connectivity to OPCB embedded optical waveguides. 

 

The purpose of this thesis is to investigate and advance the deployment of OPCB technology into data centre 

systems, by designing and developing new connector and interface solutions to enable pluggable optical 

connectivity directly to planar waveguides (waveguide structures of uniform thickness subtending a plane) 

embedded in OPCBs. The thesis focusses on research advances in polymer waveguide based OPCB connector 

interfaces [1], [2] and low cost high precision optical assembly methods [3], however also explores the 

application of the same connector interface principles to planar glass waveguide based OPCBs [4]. The author 

has invented, designed and developed a variety of optical waveguide connector interfaces, optical assembly and 

coupling mechanisms. In order to evaluate these technologies, the author has also designed and developed a suite 

of complete optical backplane connection platforms (Figure 1-1). 
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Figure 1-1: Optical circuit board varieties and associated demonstration platforms 

 

1.2.1 Chapter 1: Introduction 

Chapter 1 provides an introduction to the motivation and aim of the thesis and a description of the thesis 

structure. 

This chapter will introduce the trends in modern data centres, which are fuelling the migration of optical 

interconnect including the adoption of disaggregated architectures and the increase in network protocol speeds 

across all tiers of the data centre. It will also describe international collaborative research projects, which are 

advancing system embedded optical interconnect technologies and with which the author has been involved to 

varying degrees over the course of the thesis. The broad aim of these projects is to develop a complete suite of 

dense, high-performance and low-energy optical interconnect solutions spanning the system connectivity 

hierarchies of data centres and high performance computers including rack-to-rack, board-to-board, chip-to-chip 

and on-chip optical links [5]. 

 

1.2.2 Chapter 2: System embedded optical interconnect technology survey  

Chapter 2 provides an overview of the state of the art in commercial and prototype technologies, which enable 

optical connectivity within the system enclosure itself. This suite of technologies includes midboard optical 
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transceivers, passive optical connectors for front fascia and backplane connections and the different media for 

optical channels within the system. 

Chapter 2 will also consider in more detail the design constraints on high frequency copper channels on the PCB 

and the benefits of replacing these with optical channels as well as the the relative merits of different OPCB 

interconnect technologies. 

 

1.2.2.1. Methodology 

Throughout the project, comprehensive commercial and academic literature searches will be carried out to 

determine the state of the art in waveguide, OPCB, connector and transceiver interconnect technology. As this is 

a new field of research, publications will be continuously surveyed and where possible appropriate conferences 

attended to establish research and supplier networks. 

 

1.2.3 Chapter 3: First generation pluggable active optical circuit board connector for 

polymer waveguide based optical circuit boards 

In order for OPCB technology to become commercially viable, it is crucial that the embedded waveguides can be 

terminated and that connector technologies are developed that allow either other PCBs or external optical cables 

to connect directly to the optical waveguides in the OPCB. 

This will require both novel optical connector technologies and the ability to reliably and accurately align and 

assemble components onto OPCBs with respect to the optical waveguides therein. In the past such assembly 

could only be achieved through active alignment, however this would be unsuitable for high volume OPCB 

assembly due to the impact on equipment cost, assembly, assembly time and board yield. 

 

1.2.3.1. Objective 

 Develop a novel method of connecting peripheral devices orthogonally to a polymer 

waveguide OPCB (i.e. with the principal axis of the peripheral device connection at 90° to the plane of 

the OPCB), which precludes the need for embedded mirrors 

 Develop active transceiver based connector system 
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 Develop novel, low-cost method of assembling components (optical or mechanical) to an 

OPCB to allow suitably accurate alignment to multimode optical waveguides embedded in the PCB 

substrate 

 Develop bespoke mechanical coupling elements to form part of the waveguide connector 

receptacle 

 Develop test platforms to characterise these novel technologies 

 

1.2.3.2. Methodology 

An in-plane optical connector interface concept will be invented and a number of iterative prototypes designed 

and developed to prove the concept and evaluate its suitability for commercial deployment. The design will 

incorporate a high density parallel optical interface and would need to accommodate high speed serial 

modulation rates of over 10 Gb/s per channel. To this end a parallel optical transceiver circuit incorporating such 

an interface will also be developed to form part of an active connector mechanism. This mechanism will reside 

on the edge of pluggable peripheral devices to allow those devices to be optically plugged and unplugged to and 

from an optical printed circuit board. A suitable programming interface will be developed to allow user 

configuration of critical transceiver control parameters such as channel enable, laser modulation current, laser 

bias current and receiver squelch. 

Peripheral test cards will also be designed to accommodate the connector prototypes. These test cards will serve 

as a conduit for external serial test data to the transceiver channels in the connector. Finally a complete proof of 

concept demonstration platform will be constructed, comprising a test chassis, single board computer, test cards, 

prototype connectors and an OPCB to allow comprehensive optical and mechanical characterisation of the 

connectors. 

A crucial part of this OPCB connection system will be the optical waveguide receptacle for the pluggable active 

in-plane connector, which is fixed to the board and meets the tolerance requirements to enable the optical 

connector interface to align with the embedded waveguide interface. 

To this end, a novel low-cost method will be invented and developed of assembling components (optical or 

mechanical) to an OPCB such as to allow suitably accurate alignment to multimode optical waveguides 

embedded in the PCB substrate. A suite of receptacles will be designed and developed, which incorporates 

features to allow passive accurate alignment of the receptacle onto the board waveguides. In addition, compliant 
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features will be designed in the board itself to accommodate the accurate mechanical registration of the 

receptacle. 

The final iteration of the prototype will allow a lens array to be accurately fixed to the OPCB and form part of a 

dual lens expanded beam coupling solution. 

 

1.2.4 Chapter 4: Second generation pluggable active optical circuit board connector for 

polymer waveguide based electro-optical circuit boards 

This chapter is an extension of chapter 3 and describes the second improved iteration of pluggable optical 

connector for OPCBs and corresponding demonstration platform. 

 

1.2.5 Chapter 5: Pluggable passive optical circuit board connector for planar glass 

waveguide based optical circuit boards 

While polymer waveguides are well suited to applications requiring 850 nm optical signals, such as low cost 

optical links based on commodity Vertical Cavity Surface Emitting Lasers (VCSELs), planar glass waveguides 

would be preferable in applications requiring longer wavelengths such as 1310 nm or 1550 nm due to their 

superior transmissivity at these wavelengths. The emergence of affordable longer wavelength transceiver 

solutions based on photonic integrated circuits such as silicon photonics makes glass waveguides an attractive 

OPCB technology. 

In this chapter, the author describes how some of the connector principles developed for polymer waveguide 

interfaces can be successfully deployed to allow connector termination of planar glass waveguides. 

 

1.2.5.1. Objective 

 Co-develop a waveguide receptacle based on those already developed for polymer waveguides to be 

assembled onto planar glass waveguide based OPCBs allowing direct fibre-to-waveguide coupling 

 Lead the design and development of passive board-to-board optical connector system, which 

incorporates the waveguide receptacle, but also makes use of the commercial parallel optical ferrule jumpers  
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 Design and develop an optical connector and backplane test platform, which incorporates a glass 

waveguide based OPCB backplane and peripheral test cards, which can be plugged directly into the OPCB 

backplane using the optical connectors developed. 

 

1.2.5.2. Methodology 

The author will work with our partner organisations in the consortium of the EU Piano+ SEPIANet project to 

provide the key elements of the demonstration platform: 

The planar multimode glass waveguides will be fabricated within thin glass foils based on a two-step thermal ion 

exchange process by Fraunhofer IZM. Novel lamination techniques will be developed by ILFA GmbH to allow 

glass waveguide panels to be reliably integrated into a conventional electronic multi-layer printed circuit board. 

The author will lead and co-design a complete suite of optical connector technologies to enable both direct fibre-

to-board and board-to-board connectivity. 

Both on-card and externally generated 850 nm and 1310 nm optical test data will be conveyed through the 

connector and waveguide system and characterised for in-system and system-to-system optical connectivity at 

data rates up to 32 Gb/s per channel. 
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Figure 1-2: SEPIANet glass waveguide optical circuit board connector platform 

 

  



Chapter 1 Introduction 10 

 

1.2.6 Chapter 6: Intellectual Property 

Chapter 6 will provide an overview of the intellectual property portfolio developed during the project. 

 

1.2.6.1. Objective 

 Develop Intellectual Property to address problems encountered and capture innovative solutions, 

preferably in the form of a patent portfolio broadly covering the field of OPCB interconnect including passive 

and active optical connectors, precision alignment and assembly techniques and OPCB waveguide structures. 

 

1.2.6.2. Methodology 

The author will identify problem areas and develop innovative solutions, which he will capture as invention 

disclosures using the Xyratex Intellectual Property (IP) capture and submission system. The author will submit 

invention disclosures for review by the Xyratex IP review team, which will determine whether inventions 

warrant being pursued as patent filings. He will assist patent lawyers in converting the invention disclosure into 

proper patent applications to be filed. 

As of November 2015, the intellectual property portfolio developed by the author consisted of 17 patent families 

divided into three broad categories: 

1. Connectors, which includes a comprehensive variety of optical connector solutions 

2. Waveguides and fabrication, which includes advanced optical waveguide structures, fabrication 

techniques 

3. System and assembly, which includes solutions for rack scale optical interconnect and optical assembly 

 

1.2.7 Chapter 7: Conclusion 

Chapter 7 will summarise the achievements of the project and describe the future work that will be carried out in 

this field. 
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1.3 Optical interconnect migration in data centres 

Our growth as an information affluent society will be gated by our ability to consolidate and control storage, 

processing and switching of digital information on a massive scale. By 2020, it is predicted that ~44 ZB of data 

will be created, of which ~13ZB will need to be stored, however the amount of data that installed capacity will 

be able to hold will only be ~6.5ZB [6]. A consequence of the continuing proliferation of mobile devices coupled 

with the exponential demand in data capacity and performance is now pushing us towards an architectural 

bottleneck, where traditional data centre infrastructures will not support the required level of information 

migration from local client side operations to exascale cloud environments. 

There is a critical need for data centre architectures to evolve to provide the flexible control to eliminate 

underutilisation of compute and storage resources, minimise latency for “east-west” communication and support 

linear scalability of equipment. The prevailing wisdom advances network management solutions coupled with 

disaggregated modular architectures, in which data centre nodes are optically interconnected across different 

hierarchical tiers. 

 

 

 

Figure 1-3: Optical interconnect migration in data centre environments 
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1.3.1 Data centre overview 

Data centres provide dedicated storage and server equipment designed to meet the data processing and storage 

requirements of an organisation, where such requirements can vary strongly from organisation to organisation. 

Modern large data centres can contain hundreds of thousands of servers and data storage systems, which are 

typically placed in racks, with about 20-40 servers in a given rack. Often server and storage racks are grouped 

into pods and connected either physically in the same enclosed area or logically networked to a common pod 

switch. Figure 1-4 shows the floor plan of a small data centre facility. 

 

 

 

Figure 1-4: Floor plan of a single storey data centre (Source: NTT Japan) 

 

1.3.1.1. Data storage systems 

Data storage system technologies, as shown in Figure 1-5, form the crucial building blocks of modern data 

centres, wherein data storage arrays (typically incorporating data storage devices based on magnetic or solid 

state media) are connected within systems of varied complexity and size ranging from simple high capacity 

storage racks to high performance computing data storage systems. 

A generic data storage array system (Figure 1-5a) may comprise an array of hard disk drives or solid state drives 

connected to one side of a passive midplane while controller modules and power supplies are connected to the 
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other side. The controller modules are designed to fit into a canister of a specific standard form factor defined in 

the Storage Bridge Bay (SBB) Specification [7]. 

As shown, the midplane and its peripherals are connected in a mutually orthogonal geometry, which, as will be 

described later, is advantageous for in-plane optical connections. 

 

 

Figure 1-5: a) Generic data storage array system, b) Data storage integrated application platform, c) 42U  

data storage rack 

 

Figure 1-5b shows a data storage integrated platform, which incorporates greater functionality such as server 

hardware into a data storage system combining computational and storage capabilities. Figure 1-5c shows a data 

storage rack in which assorted data storage subsystems are incorporated according the required capacity and 

processing power of the rack and data centre application.  

 

1.3.2 Data storage system interconnect topologies 

The interconnect topology in high availability enterprise class data storage systems is typically defined by a dual 

star configuration (Figure 1-6), whereby each data storage device supports two duplex data links on the 

midplane, one to each of at least two separate controller modules. As a current example the Storage Bridge Bay 
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(SBB) Specification [7], which defines mechanical, electrical and low-level enclosure management requirements 

for an enclosure controller slot, allows for a maximum of 48 disk drives in a given data storage system enclosure, 

each supporting two duplex links to each of two controller modules, with a further 17 duplex links directly 

connecting the controllers to each other. The midplane of a 48 drive storage array would therefore have to 

accommodate 113 duplex links or 226 high speed transmission lines. Furthermore there is an enhancement of the 

drive interface standard in development [8], which allows up to four independent duplex links per drive scaling 

the number of high speed links on the data storage midplane accordingly. 

The level of fault tolerance and scalability offered by these topologies forces increased complexity and cost into 

the midplane, particularly when interconnect protocols define serial data rates beyond 24 Gb/s. 

 

 

Figure 1-6: Example of a Dual Star interconnect topology whereby 2 controller nodes each have a link to 

16 storage devices, thus eliminating the controller module as a single point of failure 

 

1.3.3 Data centre switching architectures 

The term “fat tree” is used to describe the network topology connecting large numbers of different end-hosts and 

is likened to an upside down tree with the fat trunk and root at the top, representing the highest switching tier. As 

one moves down from the root to the lower switching tiers with more numbers switching nodes across 

“branches”, which become progressively thinner until one reaches the eventual “twigs” holding the “leaves” of 

the fat tree. The twigs, branches and trunk of the fat tree represent the increasing bandwidth of data links 

required as one moves from one tier up to the next. 
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Figure 1-7: Schematic view of traditional fat tree with links becoming thicker as we move up the hierarchy 

 

Fat-tree networks are built out of Ethernet or Infiniband packet switches in several tiers or levels. Typically, end-

hosts (servers) are installed in racks, and the servers in a rack are connected to a top-of-rack (TOR) switch, that 

provides southbound interfaces to the rack’s servers and northbound interfaces to the higher levels of the data 

centre switching network. The TOR switches of all racks form the “leaves” of the tree network. 

There are three basic fat tree topologies: 

Fat-link (traditional fat tree) method where the rate of links (size of branch) increases as we move closer to the 

root (the rate of the port of a switch facing upwards is higher than the rate of ports facing downwards). This 

method would be impractical for bigger data centres, as increasing the number of end-hosts would require higher 

bandwidth ports at the switches in the higher tiers of the fat tree. This would mean switches would become 

prohibitively expensive as the number of end-hosts was increased and the data centre could not be scaled beyond 

the limit of achievable link bandwidths. 

Folded Clos uniform rate method where all links have the same rate and the required bandwidth is provided by 

having multiple paths between end-hosts [9]. This method allows use of low cost, commodity switching 

equipment at the higher interconnection levels as well as multiple paths between the end-hosts (servers) [10]. 

Figure 1-8 shows a folded Clos fat tree architecture based on the deployment of commodity TOR switches at all 

interconnection levels solves the link, port and switch failure problems. 
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Figure 1-8: Fat tree network where all three levels are built out of uniform rate port commodity TOR 

switches in a (folded) Clos topology (Source: Nephele project [11]) 

 

Folded Clos non-uniform rate method combines attributes of the aforementioned Clos uniform rate and Fat 

link topologies. This method would leverage a multiple path Clos topology while also providing increasing link 

bandwidths at higher levels in the tree, but within the constraints of commercially available transceiver 

interconnect. For example, 10 Gbps bandwidths can be deployed at server and TOR switches ports, while 

emerging 40 Gbps and 100 Gbps optical link technologies can be deployed at higher levels. 

Modern data centres are typically designed with a fat-tree or oversubscribed fat-tree data network 

topology, employing folded Clos uniform or non-uniform rate topologies. 

 

A (full) fat-tree network provides full bisection bandwidth, that is at any given instance each end-host can talk 

at full rate to another end-host and the network can support simultaneous communication of all end-host pairs. 

Most data centres have tens to hundreds of thousands of servers and require 3 to 4 fat-tree levels to achieve full 

bisection bandwidth. However the use of folded Clos topologies mean that the data centre scales super-linearly, 

that is, as the number of end-hosts increases by a given factor, the number of required switching nodes to support 

full bisection increases by a larger factor. Moreover fat tree networks are under-utilised most of the time with 

even oversubscribed trees reporting less than 20% average utilization [12], hence full bisection bandwidth is not 

needed. 

Sometimes however data traffic congestion, in the form of hotspots can be created whereby data packets are lost, 

due to the rigid allocation of the available (reduced) bandwidth. Even when lossless operation is guaranteed, 

congestion adds queuing delays leading to latencies. This can be mitigated to some degree through the use of 
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protocols and algorithms that allow traffic loads to be properly balanced across the data centre network e.g. the 

equal-cost multi-path routing (ECMP) protocol [13]. 

 

1.3.4 Resource disaggregation 

According to the conventional data centre model, each server system consists of a fixed ratio of computing, 

memory, storage and communication resources that are all “aggregated” into a single enclosure. ICT 

requirements on a data centre can differ vastly depending on the user and application. Different ICT 

requirements can be satisfied by different ratios of the compute, storage and memory subsystems, which form 

the building blocks of modern data centres (Figure 1-9a), but as requirements change, so too will the necessary 

ratio of compute, storage and memory utilisation. These building blocks include, but are not limited to servers, 

data storage arrays, switches and high performance storage and computer subsystems. 

Data centre customers will typically lease a fixed cluster of equipment and to ensure that they can always 

accommodate demand including transient peak demand, they will tend to strongly over-provision resources, that 

is, on average, their equipment utilisation will be quite low, as evidenced by the less than 20% average utilisation 

reported by Benson [12]. 

Resource disaggregation is an emerging paradigm, which allows resources to be shared across the data centre in 

an on-demand fashion by taking advantage of the modular nature of data centre systems and subsystems. This 

physical decoupling of resources allows for more fine-grained resource provisioning, and the ability to multiplex 

available resources according to need will give rise to higher utilisation [14]. 

If these resource subsystems could be arranged to be truly modular and work in independence of their location 

within the data centre, and if interconnect length and bandwidth constraints between these subsystems could be 

neglected, then this would allow a disaggregated architecture as shown in Figure 1-9b). In this case the 

combination of subsystems required to satisfy a given set of ICT requirements needn’t be constrained to the 

same rack or cluster of racks, they could be physically dispersed across the data centre. 

The Disaggregated Rack-Scale Server (DRS) architecture proposed by Facebook and Intel as part of the Open 

Compute project [15] proposes the separation of computing, storage and communication hardware components 

within the rack and the interconnection between them with distributed switching functions [7]. The Open 

Compute Project anticipates a 24% reduction of costs and an efficiency increase of about 38% with this new 

disaggregated rack paradigm [16]. 
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Figure 1-9: a) Building blocks of modern data centres, b) Schematic of optical links connecting 

geographically dispersed subsystems within a data centre architecture 

 

In a similar vein, the drive to increasing virtualisation of the data centre through Software Defined Network 

(SDN) architectures also promises to provide significantly greater user control, Quality of Service and flexibility 

while optimising resource use. Ideally the user can be provided a virtual data centre solution with the optimum 

ratio and amount of compute, memory and storage, which varies dynamically depending on the user’s transient 

needs, even though the actual corresponding hardware allocated could be dispersed. In order to satisfy these 

requirements without over-provisioning of hardware resources, one must have the capability to convey high 

bandwidth data over far longer distances then is typical or possible today between subsystems, and this can only 
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be satisfied by low-cost, high-bandwidth optical links. Indeed fibre-based commercial optical modules are now 

common in data centres for rack-to-rack connectivity [17]. 

 

1.3.5 Optical interconnect migration 

However, while, as system bandwidths increase, the provision of ubiquitous optical links would remove the 

interconnect bottleneck between racks or subsystems within a rack, new bottlenecks will emerge or existing ones 

will become more exposed deeper in the system enclosure itself. Thus the need for commercially viable, dense 

interconnect solutions will continue inevitably to migrate down through the data communication tiers of the 

system from board-to-board, chip-to-chip and ultimately to the chip itself. 

The migration of optical connectivity within data centres is already underway, with hybrid electro-optical 

infrastructures proposed and numerous proof-of-concept technologies developed [18]–[20]. Notable examples 

include the reported deployment by IBM of optical interconnect for POWER7-IH [18] systems with 100,000s of 

high-performance CPU cores by leveraging dense optical transceiver and connector technologies to construct 

chip module optical IOs. Fujitsu Laboratories proposed dense optical interconnect architectures for next-

generation blade servers [21], with a demonstration of an electro-optical midplane with 1920 embedded optical 

fibres to meet the projected bandwidth requirements [22]. 

HP developed an optical backplane with broadcast and micro electro-mechanical systems (MEMS) based optical 

tapping capabilities along an embedded plastic waveguide, suitable for non point-to-point interconnect 

topologies [23], which was demonstrated within a proof-of-concept network switch chassis. 

Commercial adoption of system embedded photonic solutions will be gated by the priority requirements relevant 

to the application space or market in question. Applications that prioritise performance and bandwidth density, 

would be amongst the first adopters. For example, in the IBM Blue Waters Supercomputer, optical links are 

deployed at both the inter-rack and intra-rack levels [18]. In other application spaces, such as high volume ICT 

equipment, internal optical interconnect technologies will most likely only be adopted once it becomes cost 

competitive with traditional copper interconnect solutions or once traditional interconnect can no longer meet the 

evolving system bandwidth requirements.  

Xyratex, Finisar, Vario-optics and Huber+Suhner demonstrated an optically enabled data storage platform, in 

which 12 Gb/s SAS traffic was conveyed optically between two internal controller cards along 24 PCB 

embedded polymer optical waveguide channels, thereby showing, for the first time, how in-system optical 

channels could be successfully deployed within a 12G SAS architecture [24]. 
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1.4 Data centre network communication protocols 

Data centres can play host to a variety of data communication protocols including Ethernet, Serial Attached 

SCSI, Infiniband and PCI Express. The increase in data bandwidth requirements in modern data centres is 

strongly reflected in the roadmaps of these protocols, which are briefly introduced below. 

 

1.4.1 Serial Attached SCSI 

Serial Attached SCSI (SAS) is a point-to-point serial bus protocol providing connectivity to storage devices 

including Hard Disk Drives (HDD), Solid State Drives (SSD) and Solid State Hybrid Disk Drives (SSHD) and, 

as such, defines the speed with which data is conveyed between the peripheral devices in a storage system 

environment. 

 

The T10 technical committee of the International Committee for Information Technology Standards (INCITS) 

develops and maintains the SAS protocol. The SAS roadmap [25]  maintained by the T10 committee [26] 

currently defines a serial data rate of 12 Gb/s and is set to double to 24 Gb/s by 2017 (Figure 1-10). 

 

 

Table 1-1: Serial Attached SCSI protocol generations 

Name Raw bit rate / Gigabaud Encoding Availability 

3G SAS 3 8b/10b 2002 

6G SAS 6 8b/10b 2006 

12G SAS 12 8b/10b 2010 

24G SAS 24 8b/10b 2016 
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Figure 1-10: Serial Attached SCSI Roadmap (Source SCSI Trade Association – March 2014) 

 

1.4.2 Infiniband 

The InfiniBand protocol is used predominantly for rack-to-rack communication in enterprise data centres and 

high performance computers (HPC) currently defines a serial bit rate of 14 Gb/s under the FDR (Fourteen Data 

Rate) scheme, which is set to increase to 26 Gb/s with the introduction of EDR (Enhanced Data Rate) and 

50Gb/s with the introduction of HDR (High Data Rate) [27]. 

The Infiniband roadmap is shown in Figure 1-11. 
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Figure 1-11: Infiniband™ Roadmap (Source: InfiniBand™ Trade Association) 

 

1.4.3 PCI Express 

PCI Express is the dominant CPU expansion bus protocol in servers, computer motherboards and integrated 

application platforms. PCI Express interfaces can accommodate up to 16 lanes, each capable of supporting high 

speed traffic. PCI Express 3.0, which is currently implemented, is specified to run parallel channels (1, 4, 8 or 16 

wide) at a serial data rate of 8 Gb/s per  lane, with PCI Express 4.0 due to increase the per lane bandwidth to 16 

Gb/s by 2016 [28].  

The PCI Express protocol is also gaining prominence as an alternative drive interface and is one of the preferred 

data interfaces to Solid State Drives (SSDs) and other flash memory devices, such as memory cards. 

 

Table 1-2: PCI Express protocol generations 

Name Raw bit rate / Gigabaud Link Bandwidth Total BW x 16 /  Availability 

PCIe 1.x 2.5 2 Gb/s ~ 8 GB/s 2002 

PCIe 2.x 5 4 Gb/s ~16 GB/s 2006 

PCIe 3.x 8 8 Gb/s ~32 GB/s 2010 

PCIe 4.x 16 16 Gb/s ~64 GB/s 2016 

 



Chapter 1 Introduction 23 

 

1.4.4 Fibre Channel 

Fibre channel is a communications protocol almost exclusively used between servers and storage systems and is 

typically restricted to shorter distances of between 2 metres to 20 metres. 

 

Table 1-3: Fibre Channel protocol generations 

Name Raw bit rate / Gigabaud Link Bandwidth / 

MB/s 

Encoding  Availability 

1GFC 1.0625 100 8b/10b 1997 

2GFC 2.125 200 8b/10b 2001 

4GFC 4.25 400 8b/10b 2004 

8GFC 8.5 800 8b/10b 2005 

10GFC 10.52 1200 64b/66b 2008 

16GFC 14.025 1600 64b/66b 2011 

32GFC 28.05 3200 64b/66b 2016 (projected) 

128GFC 4x28.05 12800 64b/66b 2016 (projected) 

 

1.4.5 Ethernet 

Ethernet is the dominant protocol in data centres for application traffic and has emerged as the backbone of 

modern data storage infrastructures. This is evidenced by the growth of virtual servers and desktop 

infrastructure, as well as the rampant adoption of Amazon Web Services. 
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Figure 1-12: Ethernet roadmap [29] 

 

The Ethernet standards are governed by the IEEE trade association with most recent emerging standards (e.g. 

400 GbE  discussed below) specifying optical interfaces and optical links. It was identified that the bandwidth 

associated with core networking was observed to double every 18 months in accordance with Moore’s Law, 

while the bandwidth associated with high volume x86 servers and computing applications, was doubling every 

24 months. In order to accommodate these two separate bandwidth trends, the IEEE P802.3ba Task Force 

defined objectives for two new wireline Ethernet speeds – 40 Gigabit Ethernet and 100 Gigabit Ethernet. 

The IEEE working group 802.3ba defines 40 GbE and 100 GbE, electrically while working group 802.3bm 

defines 40 GbE and 100 GbE optically, based on 4 channels of 10.3125 Gbps NRZ (Non-Return to Zero) and 10 

channels of 10.3125 Gbps NRZ respectively.  

The Ethernet bandwidth growth rate shown in Figure 1-12 already predicted the need for 400 Gb/s by 2013 and 1 

Tb/s by 2015 on the faster core networking trend path. In order to develop standards targeting an Ethernet rate  

beyond 100 Gb/s, the IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment Ad Hoc was created in 

2011. The working group 802.3bs is responsible for 400 GbE standardisation with many options being 

developed to achieve these aggregate bandwidths. 

Electrical implementations of 400 GbE under consideration include: 

 16 channels of 25 Gb/s NRZ, in which 16 separate electrical signals are modulated between 

two signal amplitude levels at a rate of 25 Gbd 
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 8 channels of 25 Gbd PAM4 (4 level Pulse Amplitude Modulation), in which 8 separate 

electrical signals are modulated between four signal amplitude levels at a rate of 25 Gbd 

 8 channels of 50 Gbps NRZ, in which 8 separate electrical signals are modulated between two 

signal amplitude levels at a rate of 50 Gbd 

Optical implementations of 400 GbE under consideration include: 

 8 channels of 25 Gbd PAM4, in which 8 separate optical signals are modulated between 4 

signal amplitude levels at a rate of 25 Gbd 

 8 channels of 50 Gbd NRZ, in which 8 separate optical signals are modulated between 2 signal 

amplitudes at a rate of 50 Gbd 

 4 channels of 100 Gb/s NRZ, in which 4 separate optical signals are modulated between 2 

signal amplitude levels at a rate of 25 Gbd 

 

The next future standard under consideration is 1 Tb/s (1000 Gigabit Ethernet), which is as yet undefined, 

though it will most likely be based on N x 25 Gb/s or 50 Gb/s (PAM4 or NRZ) electrically and optically. 

 

1.4.5.1. Lossless Ethernet 

Traditional Ethernet is a “lossy” protocol, which means that data frames can be dropped or delivered out of order 

during normal operation, whereby the task of reconstructing the full data will be carried out by the higher 

protocol layers such as TCP/IP layer. As such Ethernet performs poorly in terms of latency compared to higher 

reliability protocols such as SAS, where packets cannot be dropped. In order to address this, a new Ethernet 

protocol standard was developed known as Lossless Ethernet [30] that provides features supported by other 

protocols, such as guaranteed packet delivery. 

 

1.4.6 Network Convergence 

The convergence of these multiple protocol networks (Ethernet, Fibre Channel, InfiniBand) into a unified 

protocol would give rise to reduction in equipment overhead and associated cost and power consumption, 

resulting in a reduction in total cost of ownership (TCO). Recently Ethernet has emerged as a possible candidate 

for network convergence due to its low cost and widespread adoption. Incremental steps towards network 

convergence include migration from Fibre Channel to Fibre Channel over Ethernet (FCoE) and the adoption of 
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RDMA (Remote Direct Memory Access) over converged Ethernet standards (RoCE) for high performance, low 

latency clustering applications. 

 

1.5 International research projects targeting system embedded optical data 

communications 

During the period of this thesis, the author has been actively involved in a number of international collaborative 

research and development projects, which have been focussed on advancing the eco-system for system 

embedded optical interconnect in mainstream data communication environments. These include the SEPIANet 

project [31],  the European PhoxTrot project [5], the European Nephele project [11] and the US HDPuG 

Optoelectronics project [32]. 

 

1.5.1 SEPIANet project 

In mid 2011, a consortium of European organisations Xyratex, Fraunhofer IZM, ILFA, V-I Systems, Conjunct 

and TerOpta, entered into a 2.5 year EU funded collaborative research and development project called “System 

Embedded Photonics in Access Networks” (SEPIANet), which was launched as part of the European 

Commission’s PIANO+ funding scheme. 

The aim of SEPIANet was to develop technology solutions for embedded optical architectures in access network 

head-end systems in order to allow both a significant reduction in power consumption and increased energy 

efficiency, system density and bandwidth scalability. 

The SEPIANet project culminated in the successful development and demonstration of pluggable optical 

interconnect technologies for embedded planar glass waveguide OPCBs. 

These activities will be detailed in Chapter 5. 
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Figure 1-13: SEPIANet project technology overview 

 

1.5.2 PhoxTroT project 

PhoxTroT is an acronym of the full project title: “Photonics for High-Performance, Low-Cost & Low-Energy 

Data Centers, High Performance Computing Systems: Terabit/s Optical Interconnect Technologies for 

On-Board, Board-to-Board, Rack-to-Rack data links”. 

In October 2012, a large consortium of 18 European organisations led by Fraunhofer IZM as project coordinators 

with Xyratex as lead industrial partner entered into a 4 year European Commission FP7 funded collaborative 

research and development project called PhoxTrot [5]. 

The aim of this large scale “Integrated Project” is to develop an entire technology portfolio of cost‐ and energy‐

efficient Tb/s‐scale on-chip, chip‐to‐chip, board‐to‐board and rack‐to‐rack level photonic interconnect solutions 

within data centre and HPC architectures (Figure 1-14). 
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Figure 1-14: PhoxTrot vision: On-chip, chip-to-chip, board-to-board and rack-to-rack optical 

interconnect solutions deployed in PhoxTrot demonstration platform 

 

In particular the PhoxTrot portfolio includes the following key technology areas and platforms: 

 Multimode polymers, for use in low‐cost, high‐performance optical PCB development (Figure 1-15) 

 Single‐mode polymer and glass waveguide technology platforms for high‐end optical PCBs 

 III‐V material platforms, for use in active transceiver chip‐scale circuitry 

 Silicon photonics, based on the Silicon‐on‐Insulator waveguide platforms, which will be exploited for its 

attractive properties when CMOS‐compatible chip‐scale optical functions are required 

 CMOS electronics and ASICs to deliver high speed and small footprint drive, amplification and routing 

functions 

 Plasmonic interconnects to guide light along metallic stripes 

 

Some of the board-to-board pluggable optical connector and waveguide coupler technologies developed on the 

SEPIANet project have been enhanced and will be deployed in more advanced demonstration platforms. The 

PhoxTrot project is due to end in October 2016. 
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Figure 1-15: Multimode optical interconnect deployed in systems, chips and OPCBs 

 

1.5.3 Nephele project 

Nephele is an acronym of the full project title: “eNd to End scalable and dynamically reconfigurable oPtical 

architecture for application-awarE SDN cLoud datacentErs”. 

Nephele is a research project on optical data centre network technologies, supported by the Horizon2020 

Framework Programme for Research and Innovation of the European Commission. The three-year project 

started officially on February 1, 2015 and brings together seven leading European universities, research centers 

and companies with National Technical University of Athens acting as coordinator. 

The aim of the Nephele project is to develop a dynamic optical network infrastructure for future scale-out, 

disaggregated data centres (Figure 1-16). NEPHELE builds on the enormous bandwidth capacity of optical links 

and leverages hybrid optical switching to attain the ideal combination of high bandwidth at reduced cost and 

power compared to current data centre networks. To this end the project brings together research from multiple 

disciplines spanning data centre architecture protocols, network management software and firmware, optical 

switching technologies and system embedded interconnect technologies. The end-to-end development path of the 

project aims to bridge innovative research with near-market exploitation, achieving transformational impact in 

data centre networks that will pave the way to exascale infrastructures. 
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Figure 1-16: Nephele hybrid electro-optical scale out data centre architecture 

 

1.5.4 HDPuG Optoelectronics project 

The High Density Packaging user Group (HDPuG) is an international organisation with a broad membership 

comprised predominantly of industrial organisations. The purpose of HDPuG is to carry out industrial feasibility 

projects in packaging and assembly technologies. One of the HDPuG projects, “Optoelectronics”, is tasked with 

evaluating the performance commercial feasibility of new electro-optical PCB technologies for intra-system high 

speed interconnect with particular emphasis on polymer waveguide based OPCB and connector technologies. 

The HDPuG Optoelectronics project, which started in 2010, is coordinated by Cisco and PhoxTrot partner TTM 

Technologies, with design and test contributions from partners and contributors including Xyratex. 

The importance of participation in the HDPuG Optoelectronics project is that it involves many large US 

organisations including Cisco, Juniper Networks, IBM, Boeing as well as major organisations from other parts of 

the world including Huawei (China) and Fujitsu (Japan) who have a direct interest in electro-optical PCB 

technology and could provide an accelerated path to market, depending on the outcome. 

 

Phase 1 of the project involved the fabrication of small stand-alone electro-optical polymer waveguide based 

printed circuit boards, which were characterised with high speed 25 Gb/s test data. The embedded waveguides in 

the Phase 1 boards were not connectorised so could only be accessed through butt-coupling with optical fibres. 
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Phase 2 of the project, which started in 2014, sought to further develop connectorised optical waveguide 

backplanes and daughtercards with full board-to-board connectivity. Figure 1-17 shows samples developed on 

the HDPuG Optoelectronics project by different partners. 

 

Figure 1-17: HDPuG demonstrators a) 1.4 metre spiral polymer waveguide sample (source: Dow 

Corning), b) MT ferrule terminated optical waveguides with visible pink and green light illuminating 2 

waveguides (Source: Optical Interlinks), c) OPCB with straight waveguide illuminated with green light 

(source: TTM Technologies), d) Two MT ferrules assembled onto the edge of a polymer waveguide based 

OPCB (Source: Optical Interlinks) 

 

 

1.6 Summary 

In this chapter, the structure of the thesis has been outlined and the research objectives and methodologies 

employed by the author explained for chapters 2, 3, 4, 5 and 6. 

An introduction was provided to the emerging trends in data centre environments with emphasis on data centre 

systems, architectures and data protocol speeds, which are the main factors promoting a steady migration of 

optical interconnect technologies deeper down the hierarchal layers of the data centre and ultimately into the 

system enclosures themselves. A selection of international collaborative research and development projects 

seeking to advance the deployment of optical interconnect into future data centre environments was also 

introduced. 

The next chapter describes the nascent commercial technology eco-system supporting this system level 

migration, which includes midboard optical transceivers, optical connectors and ultimately electro-optical circuit 

boards (OPCBs).  The benefits of adopting OPCB technologies in future are explained with reference to the 

limitations of current electronic interconnect operating at increasing signal frequencies. 

 



Chapter 2 System Embedded Optical Interconnect Technology Survey 32 

 

 

 

 

 

 

 

 

 

2 SYSTEM EMBEDDED OPTICAL 

INTERCONNECT TECHNOLOGY 

SURVEY 

 

In-system bandwidth densities driven by interconnect speeds and scalable I/O within data storage and server 

enclosures will continue to increase over the coming years thereby severely impacting cost and performance in 

future data centre systems. The resulting increase in capacity, processing power, bandwidth density and 

bandwidth length product in and around data centre subsystems will severely impact design, cost and 

performance of future assemblies. However this could be mitigated by incorporating embedded optical channels 

into the backplane, motherboard and peripheral controller circuit boards. System embedded optical interconnect 

technologies have been the subject of research and development for many years to provide a cost viable “eco-

system” to mitigate this impending bottleneck. 

This chapter introduces emerging technologies enabling the migration of optical interconnect links into 

information and computing systems with particular emphasis on data storage and server systems, which form the 

lower tier, high volume equipment building blocks of modern data centres. In particular the state of the art in 

board-mounted transceiver technologies, optical connector interfaces and electro-optical circuit board (OPCB) 

technology will be discussed. 
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The design constraints associated with the arrangement of high frequency electronic signal transmission lines on 

PCBs will also be considered and the comparative merits identified of replacing high speed copper traces on the 

printed circuit board with embedded optical channels. 

2.1 Introduction 

Prevailing trends in the data server and storage system industry [33], [34] are poised to severely impact the 

design of future data centre subsystems. Over the last decade, the volume of data being captured, processed, 

stored and manipulated as digital information has increased exponentially and this trend is set to continue. By 

2020, 44 ZB of data will be created, of which 13 ZB will need to be stored, however the amount of data that 

installed capacity will be able to hold will only be 6.5 ZB [6]. 

The on-going exponential increase in data usage and storage is fuelled by business critical applications, email 

communications, multimedia networking applications and the emerging “Big Data” environments, where the 

amount of data exceeds the ability of traditional methods to manage, analyze and understand the meaning behind 

the data. With this tremendous growth in digital information, applications must become more data-intensive to 

accommodate the increased role of data analytics for decision management, storage performance requirements 

and the number and size of files. This means that applications will require more data throughput, higher levels of 

availability, more storage capacity and better response times to support applications. 

Data storage and networking technologies have therefore advanced to address a growing diversity of data 

management requirements, which is expected to result in an increase not only in the volume and density of data 

storage devices manufactured to store this information, but also in devices with an increasing variety of physical 

shapes or form factors. These technologies include storage systems and subsystems, which run on a variety of 

high bandwidth data communication protocols including SAS, Fiber Channel, PCI Express, Infiniband and 

Ethernet. 

As reported in Chapter 1, interconnect speeds based on the SAS point-to-point bus protocol, the dominant 

protocol governing data storage devices within data storage systems, will increase to over 24 Gb/s by 2017 [25], 

while the Infiniband protocol used predominantly for rack-to-rack communication in the switched fabrics 

inherent to enterprise data centres and high performance computers is projected to provide 50 Gb/s per lane by 

2018 [27] with other protocols following similar bandwidth trends. 

The exponential increase in system bandwidth and density required to satisfy this demand will impose 

unmanageable cost and performance burdens on future data centre technologies. In particular, the integration of 

more data intensive applications, such as servers, and the reduction in size and the increase in the number of high 
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speed ports of peripheral storage devices, such as hard disk drives, will cause the density of printed channels on 

the data storage midplane to go up, while the increase in data communication speeds will further expose the 

system to some of the fundamental constraints incurred when higher frequency data is conveyed along electronic 

channels. Many of these constraints can be mitigated to some degree, however at a mounting cost to the overall 

system design [35]–[38], [13]. 

The resulting performance bottleneck within the system could however be substantially reduced by conveying 

high speed data optically instead of electronically with the conversion point from electrical to optical 

interconnects (transceiver location) migrating ever closer to the on-board processing complexes, whether these 

are CPUs on a server blade, memory modules or data storage network switches. 

This requires that optical channels be incorporated into the system, first in the form of discrete optical cables, but 

ultimately embedded into the system PCBs themselves. 
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2.2 System embedded optical interconnect technologies 

The migration of optical interconnect into low cost, high volume data communication enclosures is now being 

made possible by the emergence of a new technology family for system embedded optical interconnect, which 

includes mid-board mountable optical transceivers and very high density parallel optical connectors and 

interfaces [39].  

 

 

Figure 2-1: Generic data storage enclosure with passive and active optical connectors 

 

2.2.1 Host side pluggable transceivers 

Host side pluggable optical transceivers, which can be plugged and unplugged from the user accessible host side 

of the ICT system have been commercially deployed in ICT system for over 20 years [40]. 

The most common type of host side pluggable transceiver is the Small Form Factor Pluggable (SFP) transceiver, 

which supports one bidirectional channel. The SFP standard defines the package, electrical interface and optical 

interface of SFP transceivers.  

XFPs (Extended Form Factor Pluggable transceivers are a higher speed version of SFPs, which can 

accommodate 10.3125 Gb/s data rates and include a Clock and Data Recovery (CDR) circuits in a larger 

package than the SFPs. With the introduction of SFP+, a 10 Gb/s capable transceiver in the original smaller SFP 
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package, but without intrinsic CDR circuitry, XFPs became for the most part obsolete from around 2013 

onwards. 

The increase in I/O density requirements started to give rise to parallel optical transceiver pluggable transceiver 

variants, the most common of which is the Quad Small Form Factor Pluggable transceiver (QSFP), which 

supports 4 bidirectional optical channels. 

Pluggable transceivers with even higher port counts were developed including CFP, which supports 12 

bidirectional channels, but these did not enjoy the same level of commercial deployment due for the most part to 

prohibitively high costs.  

 

Active Optical Cables (AOC) are fixed assemblies comprising two host port pluggable optical transceiver 

assemblies connected by a fixed optical cable, which cannot be detached from the transceivers. The only 

accessible interface is the pluggable electrical interface connecting the transceiver to the host port of the ICT 

system. By removing the ability of the user to separate the optical cable from transceiver modules, the optical 

power margin can be optimised for the dedicated link in question and the characteristics of the optical 

transmitter, receiver and cable connection will be decided purely by the vendor. AOCs can support single 

bidirectional channels (adopting the SFP electrical interface and cage form factor), quad bidirectional channels 

(adopting the QSFP electrical interface and cage form factor) or 12 bidirectional channels adopting the CFP 

electrical interface and cage form factor). Host side pluggable transceivers are said to be “field replaceable”, that 

is a user, such as a data centre technician, may remove the transceivers from or attach the transceivers to the 

system during operation, without the need to disassemble or power down the system. 

 

2.2.2 Passive optical connector interface 

2.2.2.1. Host side passive fibre optical connector interfaces 

Host side pluggable transceivers could be described as active optical connectors, in that they are pluggable 

connectors which also incorporate the optical conversion circuitry. 

In contrast, passive host side optical connectors are interfaces, which are not immediately part of a transceiver 

[41]. They will convey optical signals from somewhere within the system in question either from a transceiver 

located somewhere within the system, which is not field replaceable or directly to an internal fibre-optic 

infrastructure. 
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Host side passive optical connectors have the advantage that they can accommodate a substantially higher 

density of optical channels than active connectors as they do not need to immediately provide space for the 

transceiver circuitry and packaging associated with each channel, in the same way as an active optical connector. 

Passive parallel optical interfaces based on the MT standard (Figure 2-2) will typically accommodate up to 6 

rows of 12 optical channels per connector ferrule, whereby adjacent channels will have a centre-to-centre 

separation of 0.25 mm. MT ferrules are designed to house arrays of multimode or singlemode optical fibres. 

Optical connection between 2 MT ferrule interfaces is established through a physical contact between the 2 MT 

interfaces whereby each fibre in one MT interface is physically forced against the fibre in corresponding 

opposite position in the connecting MT interface. Typically the end facet of an MT ferrule will not be properly 

flat, but slightly rounded due to the polishing processes required as part of the fibre termination process.  

In order to ensure that each connecting fibre pair in the connecting ferrules can make full physical contact with 

each other even when the connecting MT facets are not completely parallel, the fibres are arranged to protrude 

slightly out of the MT ferrule facet. 

MT ferrules are by far the most common parallel optical connector interface. 

 

 

 

 

Figure 2-2: MT parallel optical interface showing the positions of six rows of 12 small circular fibre 

channels relative to two large circular mechanical alignment slots on the left and right hand side 
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One disadvantage of physical contact connectors is that the size of the optical channel at the connecting interface 

is the size of the fibre itself which is of the order of the size of typical dust or contaminant particles in a forced 

air environment. That is, a stray dust particle settling on the connecting interface could potentially block an 

entire optical channel or even multiple optical channels. In order to reduce the likelihood of this occurring, the 

physical fibre contact interfaces need to be cleaned after a small number of matings. This is manageable, when 

the number of connectors is small, but in a high volume environment, such as a data centre, including potentially 

hundreds of thousands or even millions of such interfaces, it would be prohibitive to enforce this requirement. 

A new generation of parallel optical connector was developed by USConec in 2013 in collaboration with Intel 

and Facebook as part of the OpenCompute project to address the problem of scaling such connectors into future 

mega data centres. The expanded beam PrizmMT™ ferrules (Figure 2-3b) incorporate microlens arrays into the 

fibre holding structure to ensure that, at the exposed connecting interfaces, the optical beam width was actually 

increased to about 3.5 times the size of the multimode fibre aperture, thus making it far less susceptible to 

contamination. The MXC connector (Figure 2-3c), which formed a key part of the publicity drive surrounding 

the OpenCompute project houses a PrizmMT ferrule in a plastic shell and clip and is designed for host side 

access. 

 

 

Figure 2-3: a) MT ferrule, b) PrizmMT™ ferrule, c) MXC connector 

 

2.2.2.2. Passive optical fibre board-to-board connectors 

In order to address the emerging need for board-to-board optical connectivity within the system enclosure, fibre-

optic push pull type connectors have become commercially available. The most common application of such 

connectors is the need for daughtercard to backplane of midplane optical connectivity. A leading commercial 

product is the HBMT™ connector assembly offered by Molex. 
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2.2.3 Board-mountable optical transceivers 

A highly relevant development is the emergence over the past 3 years of parallel mid-board mountable optical 

transceiver modules that can be mounted at any location on the PCB rather than constrained to the card edge. 

This allows transceivers to be placed as close as possible to the electronic signal source (e.g. CPU, ASIC, 

expander) allowing electronic trace lengths and associated signal attenuation losses to be minimised and signal 

drive power reduced accordingly. Thus locating the optical engine close to the host chip not only reduces power 

consumption, but also improves the signal integrity compared to running signals over long copper traces on the 

host board and requires less post transmission electrical recovery at the target. 

This migration of optical transceiver and supporting interconnect technologies into the system enclosure itself 

allows high speed electrical trace lengths to be minimised while increasing channel densities at the front fascia 

by over an order of magnitude through the use of passive host side pluggable optical connectors such as MTP or 

MXC. While current midboard transceiver technologies rely on fibre interconnect, efforts are underway to 

develop compliant interfaces to allow midboard transceivers to couple directly to waveguides embedded in the 

printed circuit board (PCB) [42]. 

The expected impact of this technology in the coming years is reflected in the strategic realignment of the major 

connector companies since 2010 toward parallel optical transceiver technology through acquisition of know-

how, assets and development capability in III-V or silicon photonics based technologies. 
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Table 2-1: Strategic purchases by optical connector companies of mid-board transceiver start-ups 

Date Vendor Description 

February 2010 FCI FCI purchased MergeOptics optical engine producers [43] 

May 2010 TE Connectivity TE Connectivity purchased Zarlink, producer of parallel optical 

engines and subcomponents [44] 

January 2011 Molex Molex purchased Luxtera’s silicon photonics active optical cable 

(AOC) business [45] 

April 2011 Samtec Samtec purchased AlpenIO – optical engine producers of high-

speed active optical cables, optical engines and custom optical 

interconnects [46] 

January 2013 Volex Volex purchased active optical technology from AppliedMicro 

[47] 

 

Crucially board-mounted parallel optical transceiver modules are becoming increasingly commercially available 

with major transceiver and connector vendors demonstrating product solutions. 

Market survey organisation CIR projects revenues for board-mounted optical transceiver modules of $235 

million by 2019 and reaching $775 million by 2020 [48]. 

The Avago miniPOD family was the first commercially available board-mounted optical transceiver module first 

supporting 8 Gb/s per lane in compliance with PCI Express applications [49]. This was followed by the first 

Finisar BOA module supporting data rates of 10.3 Gb/s per lane in order to target 10 GbE applications. 

The increasing bandwidth demands rapidly led to a series of board mounted transceivers operating at 25Gb/s per 

lane [50], [51], [52] to primarily address 100G Ethernet applications. 

Table 2-2 summarises the state of the art in board-mounted optical transceivers. 
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Table 2-2: Survey of commercial midboard optical engine technologies 

Vendor Description Channel number / 

bandwidth per 

channel 

Image 

Finisar Board mounted optical assembly 

(BOA™) 

Midboard optical transceiver module, with 

internal right-angled 2x12 optical lensed 

coupling interface to horizontal 24-way (2x12) 

MT ferrule and optical ribbon cable 

12 channel duplex 

 

28.4 Gb/s per channel 

 

 

Avago MicroPOD™ and MiniPOD™ 

Midboard optical transceiver module, with 

internal 1x12 vertical lensed coupling interface 

to top pluggable USConec right-angled lensed 

“Prizm Lighturn” connector cable 

12 channel singlex 

(separate Tx or Rx 

modules) 

 

10.3125 Gb/s per 

channel 

 

 

Samtec Firefly™ ECUO 38 AWG Fibre Optic 

Micro Cable Assembly 

Midboard optical transceiver module, part of 

broader Firefly™ Microflyover interconnect 

range with internal fibre ribbon pigtail 

terminated in external MPO connector [53] 

 

4/ 12 channel simplex  

28 Gb/s per channel 

 

 

Reflex Photonics LightABLE™ 

Midboard singlex transceiver module with 

horizontally pluggable MT terminated multi-

mode parallel fibre connector. Separate Tx or Rx 

modules [54] 

12 channel singlex 

 

11.2 Gb/s per channel 

 
 

Ultra 

Communications 

X80-Q Fury SMT Quad Transceiver  

QFN surface-mount quad transceiver  

With GaAs VCSEL array and GaAs PIN 

photodetector (PD) array, glass lens array with 

4 channel duplex 

 

12.5 Gb/s per channel 
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lens guide mechanisms for pluggable RVCON™ 

[55] ribbon fibre ferrule termination (proprietary 

to Ultra Communications). Attachable to PCB 

through reflow soldering 

 

TE Connectivity Coolbit™ 

Midboard optical transceiver module, with 

internal right-angled 2x12 optical lensed 

coupling interface to horizontal 24-way (2x12) 

MT ferrule and optical ribbon cable. 

Demonstrated at OFC 2013 but not yet 

commercially available 

12 channel duplex 

28.4 Gb/s per channel 

 

FCI LEAP™ 

Midboard optical transceiver module, with 

internal right-angled 2x12 optical lensed 

coupling interface to horizontal 24-way (2x12) 

MT ferrule and optical ribbon cable. 

Demonstrated at OFC 2013 but not yet 

commercially available 

12 channel duplex 

28.4 Gb/s per channel 
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2.3 Performance limiters on high frequency electronic channels 

There are a number of factors, which will limit the operational bit rate of the high speed links on a commercial 

copper PCB [56], [57]. Dielectric absorption and Skin Effect are the key loss mechanisms on a copper trace [58], 

which cause an increase in signal attenuation with frequency, while electro-mechanical connectors introduce 

parasitic capacitance and inductance effects, and vias can act as impedance stubs giving rise to partial reflections 

in the signal path [59], [60]. At signal data rates of 24 Gb/s and higher, additional design measures will need to 

be taken including the use of lower dielectric loss PCB substrates, skew and loss controlled electro-mechanical 

connectors and enhanced via control techniques such as back-drilling or buried vias [61]–[63]. In order to 

mitigate rising crosstalk, copper channels will need to be moved further apart, however due to the spatial 

constraints of modern enclosure form factors for data communication systems, more complex routing patterns 

will be required and the number of high speed layers in the midplane PCB increased. The available space on the 

data storage midplanes is further restricted by the need for milled access slots to allow sufficient air flow through 

the system, while space on controller and other peripheral cards is consumed by ever increasing component 

densities as functionality is scaled. 

 

2.3.1 Overview 

In terms of PCB design and manufacture, the challenge of developing a backplane with such architecture 

becomes significant and costly. Copper traces have to be impedance controlled, which means that they have to 

be referenced to a ground plane, such that for each high speed routing layer there also has to be a reference 

plane, as well as layers for power and slow speed signals. Connectors have to be highly specialised in design and 

this also carries a significant cost adder. There are also considerable environmental effects which have to be 

managed and which play an important part in the performance of high speed copper interconnects.  

There are a number of factors in a commercially produced copper backplane system which will limit the 

operational bit rate. The effect of ohmic losses and capacitances inherent in any system, as well as crosstalk and 

electro-magnetic emissions will put a high demand on the designer as bit rates increase. Dielectric absorption 

increases attenuation in proportion to frequency such that at bit-rates of 24 Gbps the track length would be 

limited to no more than a few inches or the use of more expensive substrates would have to be considered.  

There are also more specific problems associated with backplane systems which have a requirement for multiple 

connectors in the signal path. Electro-mechanical connectors introduce parasitic capacitance and inductance 
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effects and PCB holes used for mounting can act as stubs. Manufacturing tolerances in the connectors cause 

skew and the environmental effects of system operation cause changes in the substrate. The relative permittivity 

and loss tangent of an FR4 substrate increase with both temperature and moisture. 

Consider then the following operational factors which have a direct bearing on any comparison of optical and 

copper interconnects: 

In scalable systems, the trend toward increased storage capacity, faster data processing and an overall reduction 

in system size will inevitably result in: 

• Increased communication bandwidth within the system defined as the sum data rate of all high speed 

transmission lines in the system 

• Increased density of communication channels defined as the ratio of the number of transmission lines 

on a board  to the board area 

As high speed electronic pulses travel along copper waveguides, they are subject to a number of effects which 

prove detrimental to signal integrity. This leads to a fundamental physical trade-off between the signal data rate, 

channel density and distance over which signals can propagate before irrecoverable degradation occurs. Some of 

these effects are now described. 

There have been extensive studies on the comparative and projected performance of PCB embedded electronic 

vs embedded optical channels [38], [64]–[68].   

 

2.3.2 Crosstalk 

Crosstalk results from the coupling of signal energy from one channel to another. There are two principal 

mechanisms for crosstalk between adjacent copper traces, namely inductive coupling and capacitive coupling. 

 

Inductive coupling causes adjacent signal channels to interfere with each other across the interaction between 

each channel’s magnetic field. These fields are generated by the movement of charge along the conductive 

traces.  

 

Capacitive coupling occurs between adjacent channels when signal energy is coupled from one conductive trace 

to another over the small capacitance which exists between them. The nature of capacitance is such that as the 

variation in voltage (due to high frequency signals) between the two traces speeds up, they will tend to short 

circuit. 
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In order to control crosstalk, one inevitably must place a limit on the separation between high speed channels 

[69]. This usually requires additional design efforts to optimise the layout of the signal traces and an increased 

number of high speed layers on the PCB. 

 

2.3.3 Impedance mismatch 

One of the principal concerns in high speed signal design is to ensure that the impedance between a high speed 

signal trace and its reference plane is maintained at every point along the trace and matches the impedance at the 

signal source and termination. This requires strict design control over the properties of the signal trace such as 

width, height, differential pair separation (if applicable) and distance to the reference plane. Erroneous features 

along the signal path, which deviate from the accepted geometries will cause localised mismatches in the 

impedance, which in turn will lead to partial signal reflections. Such features are known in the industry as 

“stubs” and can take many different forms. The most common type of stub is caused by vias, which are 

metallised holes in the PCB providing an electrical connection between different layers in the PCB stack-up. 

Typically, these vias pass right through the PCB from the top layer to the bottom layer the board, even if the 

required signal path, say between two internal layers passes along only part of the metallised inner surface of the 

via as shown in Figure 2-4. The result is that the section of the via over which the signal does not propagate 

causes a localised deviation in track impedance, which in turn gives rise to a partial reflection of the signal 

energy back along the trace. 

Via stubs can be eliminated by physically removing the unwanted section of the via, through back-drilling of the 

via. 

 

 

Figure 2-4: PCB stack-up showing electrical signal propagation between a copper trace on the top layer 

and a copper trace on an intermediate layer, passing along part of a via. a) fully filled via causes the 
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exposed unused section to create localised impedance mismatch, which gives rise to a partial reflection, b) 

back-drilling of the via to minimise discontinuity and therefore partial reflection 

 

 

2.3.4 Signal attenuation 

The greatest challenge to conveying high frequency signals over long trace lengths however is signal attenuation. 

Attenuation will always occur in traces due to the non-zero resistance of the trace. This can be reduced by 

increasing the cross-sectional size of the trace. 

In addition to pure resistance based attenuation, there are strong frequency dependent loss mechanisms, which 

result in the higher frequency components of the signal experiencing higher attenuation, which in turn will 

distort the signal. The dominant frequency dependent loss mechanism is Skin Effect, which is the tendency of 

charge carriers to become more tightly concentrated around the surface or ‘skin’ of a conductor as the frequency 

of the signal increases. This concentration of charge into a smaller cross-sectional volume of conductive 

material, causes it to experience greater electrical resistance and dissipate energy more rapidly into the 

environment. This therefore places a greater limit on the distance over which high speed signals can propagate 

before the signal strength degrades beyond acceptable limits. Furthermore, the surface roughness of the copper 

trace contributes to Skin Effect, in that charge carriers will have further to travel, as they trace out a path along 

the contour of a rough trace compared to when they travel along a smooth trace. 

In order to compensate for this effect, special alternative PCB materials can be used, such as Rogers® [70], the 

dielectric properties of which will reduce signal energy dissipation along the trace. Active signal conditioning 

devices such as pre-emphasis or equaliser circuits can also be included along the channel. 

The cost and design effort required to remain within these constraints will be driven ever higher as conventional 

bandwidth requirements increase. 

As systems become smaller, denser and faster, some requirements will simply not be physically enforceable. 

This trend toward greater system integration and transmission bandwidth will inevitably lead to system 

bottlenecks i.e. areas in which the constraints of electronic transmission cannot be overcome. 

The first of these bottlenecks is expected to emerge on the system backplane, which will typically need to 

accommodate the highest density of high speed channels. 
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2.4 Board-level optical interconnect 

It is proposed that the projected performance bottleneck in ICT systems is mitigated by conveying high speed 

signals optically rather than electronically even at the system PCB level. In order to achieve this one would need 

to adopt electro-optical printed circuit board (OPCB) and interconnect technology on the midplane or backplane 

[71]–[76]. As shown in Figure 2-5 the midplane would thus comprise a PCB with both copper layers for 

electrical power and low speed electronic signal distribution and one or more optical transmission layers to allow 

high speed signals to be conveyed optically. There are various types of optical waveguide that can form the basis 

of such optical transmission layers such as laminated fibre-optic flexible circuits, planar glass optical waveguides 

or planar polymer optical waveguides. The research has primarily targeted the deployment of planar polymer 

waveguide technology in electro-optical PCBs and the development of commercially viable pluggable optical 

connection technologies. 

 

 

 

Figure 2-5: Schematic view of electro-optical midplane architecture comprising copper layers to 

accommodate power, static and low speed signal distribution and at least one optical transmission layer to 

convey high speed signals along optical waveguides 



Chapter 2 System Embedded Optical Interconnect Technology Survey 48 

 

2.4.1.1. Optical circuit board overview 

Although the prospects for commercial proliferation of optical circuit board (OPCB) technology were crippled 

by the slow-down in the telecoms sector following the stock market crash in 2001, embedded waveguide based 

OPCB technology advanced substantially during the first 15 years of the 21
st
 Century. 

While significant advances have been made in embedding conventional optical fibres onto printed circuit boards 

[77], focus across Europe and Japan has been on the fabrication of transparent channels (waveguides), which are 

integrated directly into the printed circuit board substrates. Research by Dangel, Van Steenberge, Penty, 

Chappell, Shibata, Ishigure, Schröder and Doany [73], [76], [78]–[83] has collectively demonstrated a wide 

range of waveguide fabrication techniques and materials. 

Optical materials are now available, which offer the required resilience to thermal cycling and humidity to allow 

them to be integrated into PCBs. A variety of waveguide fabrication techniques have evolved, which lend 

themselves to high volume production (photolithography, batch-processing) or low volume or prototype 

development (laser direct imaging). Graded index waveguide profiles can now be fabricated in both glass [84] 

and polymer [85] to offer reduced modal dispersion, crosstalk and radiative losses though the side walls. 

Waveguide connector termination, considered the final technical barrier to OPCB commercialisation, had 

reached the stage by 2015 where low termination losses have been demonstrated both in glass [4] and in polymer 

[81]. 

There are three primary classes of electro-optical circuit board available at different technology readiness levels: 

1) fibre-optic flexible circuits [77], 2) embedded planar polymer waveguides [1], [86] and 3) planar glass 

waveguides [87] (Figure 2-6). Each interconnect class offers different advantages making them suitable in 

different applications. 

 

 

Figure 2-6: Electro-optical PCB interconnect technologies a) Fibre-optic flexible circuits, b) PCB 

embedded polymer waveguides, c) PCB embedded planar glass waveguides (Source: Fraunhofer IZM) 
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2.4.1.2. Fibre-optic flexible circuits 

Laminated fibre-optic circuits, in which optical fibres are pressed and glued into place on a substrate benefit 

from the reliability of conventional optical fibre technology. However these circuits cannot accommodate 

waveguide crossings in the same layer i.e. fibres must cross over each other and cannot cross through each other. 

Also with each additional fibre layer, backing substrates must typically be added to hold the fibres in place, thus 

significantly increasing the thickness of the circuit. This would limit the long term usefulness of laminated fibre-

optic circuits in PCB stack-ups. At best they can be glued or bolted onto the surface of a conventional PCB. 

Fibre-optic circuits were deployed on the data storage system demonstrator developed by the author as part of 

the PhoxTroT project [88] . 

 

2.4.1.3. Planar polymer waveguides 

The incorporation of multi-mode polymer waveguides into PCB stack-ups has been demonstrated extensively 

over the past decade [39], [73], [76], [89]–[92]. While historically these waveguides have been constrained to 

stepped refractive index profiles with higher NAs than conventional multi-mode fibres, recent advances in 

polymer waveguide materials and fabrication techniques have opened the door to graded-index waveguides with 

excellent ageing properties and better transmissivity at longer infra-red wavelengths [81], [93], [94] making 

them suitable for short reach on-board or board-to-board interconnect within a system enclosure. 

Conventional step-index multimode polymer waveguides would be challenged over longer high speed links, in 

which modal dispersion would limit performance compared to graded index waveguides. However recent work 

by Bamiedakis and Chen at the University of Cambridge [95], [96] has shown that long step index polymer 

waveguides are subject to less modal dispersion than anticipated and can convey a 40 Gb/s signal along a 1 

metre waveguide without detrimental dispersion [97]. It should however be noted that due to the spiral test 

pattern, the higher order modes of propagation are more likely to have been coupled to the radiation modes in a 

process known as “mode stripping”. As these higher order modes are the strongest contributors to modal 

dispersion, the result of their being filtered out would provide a “cleaner” signal than would be expected on a 

straight waveguide of the same length, though at the expense of higher insertion loss. Furthermore, modal 

dispersion is also strongly determined by the manner in which the optical signal is launched into the waveguide, 

thus a singlemode launch into the fundamental mode will give rise to the lowest dispersion, while conversely a 

modally filled launch will give rise to the highest dispersion. 

Polymer waveguides exhibit a high transmissivity at shorter communications wavelengths such as 850 nm, but 
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would be unsuited to convey other operational wavelengths (1310 nm or 1550 nm) over longer distances, due to 

higher intrinsic absorption losses, though this can be mitigated in some polymer formulations [98]. However 

they would be suitable for very short reach, versatile, low cost links such as inter-chip connections on a board. 

They would also be suitable for applications in which certain properties of the polymer such as thermo-optic, 

electro-optic or strain-optic coefficients could be used to support advanced devices such as Mach-Zehnder 

switches or long range plasmonic interconnect. A comprehensive overview of polymer waveguide materials, 

fabrication and devices is provided by Ma and Dalton [99]. 

Electro-optical circuit boards with embedded polymer waveguide layers were developed by Xyratex in 

collaboration with IBM Research and Varioprint in 2008 [100]. Planar polymer waveguide connector 

technologies form the basis of this thesis and are described extensively in Chapter 3. They were also deployed in 

a joint demonstration system developed by the author at Xyratex in conjunction with Finisar, Vario-optics and 

Huber+Suhner in 2012 [101]. 

 

 

 

Figure 2-7: Scanning Electron Microscope image of exposed 50µm x 50µm polymer waveguide core 

without upper cladding (left) and array of exposed parallel polymer waveguide cores (right) 

 

2.4.1.4. Planar glass waveguides 

Planar glass waveguide technology could combine some of the performance benefits of optical fibres, such as 

lower material absorption at longer operational wavelengths such as 1310 nm and 1550 nm and lower modal 

dispersion with the ability to fabricate dense complex optical circuit layouts on single layers and integrate these 

into PCB stack-ups. OPCBs with embedded planar glass waveguides were developed by Fraunhofer IZM, ILFA 



Chapter 2 System Embedded Optical Interconnect Technology Survey 51 

 

and Xyratex as part of the SEPIANet project [102], with Fraunhofer IZM fabricating the planar glass waveguide 

foils, ILFA laminating the glass foils into a PCB stack and Xyratex developing both passive fibre-to-board and 

board-to-board connectors as well as a complete optical backplane connector demonstration platform, 

characterised at both 850 nm and 1301 nm, which is described in Chapter 5. 

For densely populated data communication modules, board embedded waveguides offer crucial advantages over 

stacked and grouped fibre patchcords or laminated fibres. Primarily, as it would be prohibitive to embed fibre 

laminates into the PCB substrate directly, they would need to be routed over the board surface, thus strongly 

reducing the area available for component packages. In comparison optical waveguide layers embedded in the 

PCB would not limit the layout of component packages on the board surface, though they would incur some 

additional design constraints to the placement of vias or other through-hole structures. 

Preferably, such board-embedded waveguides could be coupled directly to external optical cables, through 

pluggable interfaces, and would need to thus have comparable interface parameters to those of optical fibre, such 

as numerical aperture (NA), core size, core shape and refractive index profile in order to minimise coupling loss. 

OPCBs based on embedded glass waveguides have been demonstrated [103], [104] and would further combine 

the performance benefits of graded index optical fibers, such as lower material absorption at operational 

wavelengths used for longer reach fiber optic networks (>1260 nm) and lower modal dispersion as compared to 

step-index waveguides, with the ability to accommodate dense complex optical circuit layouts on single layers 

and integrate these into PCB stack-ups. Crucially, this would enable direct, “seamless” optical connectivity from 

an external fabric to board-embedded optical channels [4]. Although the multimode planar glass waveguides 

described are graded index and thus have lower modal dispersion than a step-index multimode waveguide, 

singlemode waveguides will have substantially less dispersion, and so ultimately the low cost fabrication of 

panel level singlemode glass waveguides is an important goal of fabricators in this area. 

 

2.4.1.5. Free space optics 

There has also been research in the past looking at using free space optics to provide short reach connectivity 

within system enclosures. In 2006, the EU funded HOLMS (High Speed Opto-electronic Memory Systems) 

project proposed the use of a 3D free-space optical interconnect module to optically connect different parts of the 

system [75]. In 2009 Hewlett Packard proposed two schemes for in-system free space optical communications. 

The first scheme was based on the use of telecentric lenses at the transmitter and receiver side providing an 

expanded beam solution that allowed very large misalignment tolerance of ± 2 mm. The second scheme made 



Chapter 2 System Embedded Optical Interconnect Technology Survey 52 

 

use of magnetically coupled proximity free space modules [105]. 

 

2.4.2 Milestones in polymer OPCB research and development 

2.4.2.1. MT terminated OPCBs 

IBM Research demonstrated the first OPCBs with an MT pluggable optical connector for communication with 

other boards/instruments. The interconnection of two such boards via a ribbon cable was presented in [106] with 

OPCBs exchanging data at 120 Gb/s (12x10Gb/s) aggregate bit rate. Also 12.5Gb/s data were successfully 

transmitted via a 100cm spiral shaped polymer waveguide (0.05dB/cm losses @850nm) formed on a PCB. 

 

2.4.2.2. Passive alignment of optical elements on OPCBs 

IBM Research developed a technique for passive alignment of optical elements onto an OPCB by creating 

structures in a copper layer during manufacturing, which were used as a positional reference for polymer 

waveguide fabrication and for the formation of mechanical alignment features [107] as shown in Figure 2-8. 

 

Figure 2-8: Male MT adapter passively aligned and assembled onto an OPCB (Source: IBM Research 

[107]) 

 

In this thesis, it will be described how the author has improved on this method by inventing and realising a 

simpler and more precise technique for passively assembling optical components onto an OPCB, whereby 
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mechanical registration features are developed in the same process step as the optical waveguide core layer itself. 

This is described in Chapter 3. 

 

2.4.2.3. Direct connection of optical transceiver interfaces to OPCBs 

IBM Research developed a demonstration card with a fixed transceiver interface with MT compliant interface 

mounted on a flexible substrate, which was butt coupled to the embedded polymer optical waveguide interface of 

an OPCB [108] as shown in Figure 2-9 a). In Chapter 3 and Chapter 4 of this thesis the author describes two 

generations of pluggable optical transceiver interface, which allow the optical transceiver interface to be butt-

coupled to the embedded polymer optical waveguide interface of an OPCB as shown in Figure 2-9 b). 

 

Figure 2-9: Optical transceiver connectivity to OPCBs a) active optical transceiver interface in a fixed 

butt-coupled arrangement to embedded polymer waveguide interfaces in OPCBs (Source: IBM Research 

[108]), b) active optical transceiver and pluggable connector mechanism developed by author and 

described in Chapter 4, allowing optical transceiver interface to be selectively butt-coupled to embedded 

polymer waveguide interfaces on OPCB during engagement of a daughter card 

 

 

2.4.2.4. Adiabatic coupling to silicon photonics chips 

Polymer waveguides have been demonstrated to provide low loss coupling between fibres and photonic 

integrated circuits through the adiabatic or evanescent coupling method, whereby singlemode polymer 
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waveguides are placed in near physical contact with tapered silicon waveguides and a reciprocal coupling of 

optical energy occurs between the two [109]. 

 

2.4.2.5. Singlemode waveguide fabrication and connectorisation 

IBM have advanced laser direct writing as a preferred means of fabricating singlemode polymer waveguides 

[110]. Swiss company Huber Suhner demonstrated connectorisation of singlemode polymer waveguides through 

a passive alignment method based on the principle of using exposed waveguide core features, which were 

developed in this project [111]. 

 

2.4.2.6. Dense OPCB non-blocking architecture 

In the UK, the Centre for Advanced Photonics and Electronics (CAPE), part of the University of Cambridge, has 

been leading polymer waveguide research and fabrication activities using polysiloxane material provided by 

Dow Corning. They developed a passive OPCB incorporating 100 embedded waveguides, which is able to 

connect to 10 other PCBs through a non-blocking architecture [112]. 

 

2.4.2.7. Graded index polymer waveguides 

Historically it has been exceedingly difficult to fabricate graded index polymer waveguides with a similar 

numerical aperture (difference in refractive index maximum in core and cladding) to graded index fibres. It is 

only recently that the fabrication of high performance graded index polymer waveguides was successfully 

spearheaded in Japan by Keio University and Sumitomo Bakelite. Keio University demonstrated lower crosstalk 

between adjacent channels using an OPCB with sixteen parallel graded index MM waveguides as presented in 

[113] exhibiting more than 5 dB inter-channel crosstalk reduction compared to step index waveguides.  

 

2.4.2.8. OPCBs with integrated optical transceivers 

Furukawa demonstrated 12 channel optical modules coupled directly to PCB embedded polymer waveguides 

[42] while Hitachi demonstrated an OPCB with dual polymer waveguide layers and a 1 Tb/s, 48 channel optical 

transceiver assembled onto it, coupling directly to embedded waveguides operating at 20 Gb/s per lane [114]. 
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2.4.2.9. Self-written optical waveguides 

Yoshimura at Tokyo University of Technology demonstrated self-writing waveguides by launching 448nm UV 

light from a fibre into a photocurable optical polymer. As the polymer cured in response to the Gaussian 

intensity distribution of UV light emanating from the fibre, it produced a corresponding Gaussian dome, which 

acted to guide and collimate the UV curing radiation. This allowed a long waveguide to be written directly [115].  
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2.5 Design attributes of embedded optical channels 

There are many design benefits to replacing the high speed electronic copper traces on a data storage midplane 

with optical traces, however the limits on in-plane bend radius are still unacceptably high for practical design 

purposes. 

 

2.5.1 Density comparison between printed copper and polymer waveguides 

The maximum permissible density of copper transmission lines is determined by the crosstalk incurred between 

electronic channels. 

Most PCB layout engineers will adhere to “20*H” design rule [116], whereby the separation between high speed 

traces must be at least 20 times the height of the high speed traces over the reference plane on an adjacent layer, 

which is used to provide the return path for the current. This distance between traces and reference plane is 

commonly annotated as H in PCB trace simulation tools, such as those offered by Polar Instruments [117]. 

A typical distance H between a high speed trace and a reference plane in modern printed circuit boards will be 

around 125µm. Therefore the minimum separation between adjacent electronic transmission lines required to 

convey data at around 24 Gb/s should typically be no less than about 2.5 mm. This helps prevent the coupling of 

the signal onto adjacent wires and also helps prevent free radiation of the signal from the edge of the PCB [118]. 

However conventional parallel optical layouts can accommodate centre to centre horizontal separations between 

optical channels of 250 μm. Furthermore multiple optical layers can be accurately stacked to also allow vertical 

250 μm separations between optical channels as demonstrated by Betschon [73]. 

In Figure 2-10 we compare a cross-section of an electrical PCB with high frequency electrical differential 

transmission lines arranged as tightly as possible across multiple layers using the 20xH rule and a cross-section 

of an optical PCB with optical waveguides arranged as tightly as possible across multiple layers with a 

horizontal and vertical centre-to-centre separation of 250 μm. In the same cross-sectional area occupied by 3 

electrical differential channels, 39 optical waveguides can be arranged, thus indicating a 13 fold increase in 

channel density when multilayer high speed copper traces are replaced with multilayer polymeric optical 

channels. An increase in channel density will allow both for a reduction of the functional horizontal area of the 

PCB and a reduction in layer count. It should be noted that optical waveguide pitches as low as 62.5 μm have 

been demonstrated [72]. Assuming that only the horizontal waveguide pitch is reduced from 250 μm to 62.5 μm, 

the density improvement would increase by a factor of four.  Further scaling in density improvements would also 

come with reduction in vertical channel pitch, though this would be harder to achieve. Optical fibres have larger 
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pitch restrictions than waveguides as each fibre core is surrounded by a cladding. The standard cladding diameter 

for OM2, OM3 and OM4 fibres is 125 µm, though some modern fibres are being introduced with smaller 

cladding diameters of down to 80 µm. This means that parallel fibre arrays with a channel pitch of 125 µm are 

possible and have been proposed for development [119]. While waveguides can have smaller pitches than optical 

fibres, any waveguide interface to fibres would need to fan out to the fibre channel pitch at least in the interface 

region. 

 

  

Figure 2-10: Channel density comparison between 24 Gb/s copper differential trace and polymeric optical 

channels 

 

The 20 * H rule is however very conservative. In reality, there are many factors, which influence the minimum 

separation between adjacent high speed channels. Crosstalk is a cumulative effect and will increase with the 

distance over which the channels in question remain adjacent. Often the PCB layout designer can limit the 

distance over which a pair of channels remain adjacent, by moving said channels away from each other after 

given distances, so much shorter inter-channel separations could be tolerated over shorter distances. 

Also, traces on the PCB surface (e.g. microstrip) will be more susceptible to crosstalk from adjacent traces 

compared to traces on internal layers of the PCB (e.g stripline).  

 

2.5.1.1. Environmental benefits of embedded optical waveguides 

Optical waveguides neither produce nor are affected by electro-magnetic (radio frequency) interference and are 

therefore not constrained by Electromagnetic Compatibility (EMC) regulations that impose a severe cost burden 

on the design of high speed copper PCBs. The layout advantages offered by optical waveguides will give rise to 
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a reduction in functional area and layer count of the PCB. This level of reduction will strongly depend on the 

application with the more IO intensive applications subject to the greatest potential reduction in PCB volume. 

This will help to meet the prevailing industrial trends of system integration and miniaturisation. This will also 

give rise to substantial reductions in PCB waste materials including copper, FR4, solder resist and laminating 

adhesives. 

During the PCB design stages of the system backplane developed as part of the FirstLight demonstration 

platform described in Chapter 4, a design feasibility study was carried out and it was estimated that by removing 

the 96 high speed electrical signal traces on a typical 24 drive storage system, the layer count of the PCB in the 

case of a 4U midplane could potentially be reduced by over 50% and the open area available for airflow 

increased by over 20%. The reduction in thickness and material area can give rise to a corresponding reduction 

in total PCB material by over 60%, assuming the mechanical rigidity of the PCB will not be compromised 

beyond the requirements of the system. However separate reinforcing structures, such as metal bracing structures 

can be put in place in order to provide the necessary mechanical support to the PCB if required. 

This is not a reliable estimate as it is highly dependent on the immediate functional and design requirements of 

the system, which evolve year on year as the products advance. However given that the product requirements 

evolution is dominated by increasing data rates and increasing numbers of high speed links with tighter routing 

restrictions, these estimates can be considered a conservative lower bound on the material savings possible. 
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2.5.1.2. Crossovers 

The most crucial advantage of laying out optical waveguides in lieu of electronic transmission lines is that while 

copper traces can only be routed across each other by redirecting at least one trace along a different PCB layer 

through the use of bridging vias, optical waveguides can intersect each other on the same layer. This means that 

the number of layers devoted to optical transmission is only limited by spatial constraints. To minimise crosstalk 

between crossed waveguides, the waveguides should be crossed orthogonally, however a range of crossing 

angles can be tolerated depending on the loss budget of the waveguides [120]. Figure 2-11 shows both 

orthogonal and non-orthogonal waveguides. 

 

 

Figure 2-11: Waveguide crossovers a) Schematic view of waveguide crossover, b) Photo of 50µm x 50µm 

polymer waveguides patterned photolithographically with multiple 90° crossovers (Source: Exxelis Ltd), 

c) Photo of 50µm x 50µm polymer waveguides patterned photolithographically with multiple 60° 

crossovers (Source: Exxelis Ltd) 
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2.5.1.3. Passive high speed splitters 

Optical waveguides can be split into multiple branches to allow division of the signal power along each 

waveguide branch. The number of branches into which a waveguide can be divided would depend on the 

available power budget and the loss characteristics of the waveguide. However passive division of high speed 

electronic traces cannot be reliably achieved and would usually require an active device such as a crosspoint 

switch. Figure 2-12 shows images of 1x2 splitters. 

 

 

Figure 2-12: Waveguide splitters a) Schematic view of 1 x 2 waveguide splitter, b) Photo of 50µm x 50µm 

polymer waveguides with 1 x 2 symmetric Y-branch splitter (Source: IBM Research), c) Photo of 50µm x 

50µm polymer waveguides with 1 x 2 splitter (Source: Exxelis Ltd) 

 

2.5.2 Bend radius routing constrictions 

In spite of the substantial design benefits associated with embedded polymer optical architectures one severe 

constriction has yet to be overcome, namely the minimum bend radius in the plane of the interconnect layer. 

Figure 2-13 shows a photo of a 90° polymer waveguide arc with a tight 10 mm bend radius illuminated with 
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visible 650 nm light. The light is scattering strongly from the bend. The minimum in-plane bend radius of a 

waveguide will be determined by many factors including critical angle, difference between core and cladding 

refractive indices, core size and shape and size wall roughness. Characterisation of optical propagation losses in 

printed multimode polymer waveguides had shown that in-plane bend losses due to scattering of higher order 

modes will realistically restrict the bend radius to more than 15 mm [120]. In practical terms, it would be very 

difficult and severely limiting to accommodate a bend radius that large within a high density PCB interconnect 

layout. Advances have been made in further reducing the in-plane bend radius of polymer waveguides. 

Hendrickx and Steenberge at the University of Ghent demonstrated the fabrication of in-plane micromirrors 

through laser ablation to create very tight in-plane bends [121]. Research by Bamiedakis in 2013 showed that the 

minimum in-plane bend radius could be reduced further by removing the cladding on the outer bend side, and 

thus temporarily providing a higher index contrast between the core and air, which served to better confine the 

light as it propagated along the bend [122]. 

In contrast, out-of-plane bend radii can be much smaller. It has been demonstrated that polymer multimode 

waveguides fabricated on flexible substrate can tolerate out-of-plane bend radii as tight as 1.5 mm without 

damage or substantial loss in reliability [93]. The cause of this strong discrepancy in bend limitations between 

in-plane and out-of-plane bends is based on the fact that the main scattering mechanism for high order modes is 

the roughness of the waveguide side walls in the direction of the bend. The side wall roughness of in-plane bends 

depends on the resolution achievable by the waveguide fabrication method. For instance in the case of 

photolithographically patterned waveguides, the roughness profile of the in-plane side walls will depend on the 

mask resolution, whereas in the case of laser direct imaging it will depend on the translation step resolution of 

the writing laser or substrate stage. However the surfaces of the top and bottom of the waveguide, which 

constitute the out-of-plane bend side walls, will be significantly smoother as their profiles are not directly 

dependent on patterning resolution, but rather on other factors such as material viscosity, layer thickness 

uniformity, thickness control techniques (e.g. Doctor blading) and surface tension. 

The constraints on in-plane bend radius could in future be effectively mitigated by refinement of manufacturing 

techniques, further flexibility in crossing angles and in particular adoption of reliable in-plane mirrored bends. 
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Figure 2-13: Photo of polymer waveguide 90° arc bend illuminated with 650 nm visible light 

 

2.5.3 In-plane vs out-of-plane optical coupling to OPCBs 

There has been investigations into out-of-plane coupling methods whereby integrated or discrete deflection 

elements were assembled onto the embedded waveguides in order to allow light to be launched and extracted 

normal to the plane of the waveguides [123]–[125]. However the coupling losses incurred by the deflection 

element, including Fresnel and scattering losses at the multiple interfaces are inherently higher than would be 

achieved by directly coupling to the waveguide interface collinear to the waveguide axis i.e. an in-plane coupling 

scheme . As will be detailed in Chapter 3, an in-plane coupling scheme between peripheral devices and the 

embedded waveguides was pursued in the research reported in this thesis, due to the respective orientations of 

the connector elements and the daughtercards on which they were mounted and in order to minimise the number 

of coupling interfaces. 

 

2.6 Summary 

This chapter has provided a survey of commercial technologies, including midboard transceivers and optical 

connectors, which have in recent years brought system embedded optical interconnect closer to reality. It was 

described how integrated optical waveguides could in future mitigate or solve many of the mounting technical 

and performance challenges associated with propagation of high frequency electronic signals along traditional 

copper PCB transmission lines. OPCB technology is however not yet mature enough for commercial 

deployment, and the absence of a viable method of board-to-board connectivity is considered one of the final 

barriers to adoption. 
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The next chapter will detail the first efforts to tackle this challenge with the design and development of a suite of 

novel pluggable active OPCB connectors, which incorporate a parallel optical transceiver along with a 

mechanism to enable direct board-to-board pluggable connectivity to an OPCB backplane. These efforts 

included the invention and deployment of a method to assemble optical components onto an OPCB passively 

and with sufficient precision to ensure low loss coupling to the waveguide interface. 
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3 FIRST GENERATION 

PLUGGABLE ACTIVE OPTICAL 

CIRCUIT BOARD CONNECTOR 

FOR POLYMER WAVEGUIDE 

BASED OPTICAL CIRCUIT 

BOARDS 

 

 

3.1 Introduction 

In order for OPCB technology to become commercially viable, it is crucial that the embedded waveguides can be 

terminated and that connector technologies are developed that allow either other PCBs or external optical cables 

to connect directly to the optical waveguides in the OPCB. 
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This will require both novel optical connector technologies and the ability to reliably and accurately align and 

assemble components onto OPCBs with respect to the optical waveguides therein. In the past such assembly 

could only be achieved through active alignment, however this would be unsuitable for high volume OPCB 

assembly due to the impact on equipment cost, assembly time and board yield. 

 

3.1.1 Objective 

 Develop a novel method of connecting peripheral devices orthogonally to a polymer 

waveguide OPCB, which precludes the need for embedded mirrors 

 Develop active transceiver based connector system 

 Develop novel, low-cost method of assembling components (optical or mechanical) to an 

OPCB to allow suitably accurate alignment to multimode optical waveguides embedded in the PCB 

substrate 

 Develop bespoke mechanical coupling elements to form part of the waveguide connector 

receptacle 

 Develop test platforms to characterise these novel technologies 

 

3.1.2 Methodology 

An in-plane optical connector interface concept will be designed and a number of iterative prototypes developed 

to prove the concept and evaluate its suitability for commercial deployment. The design will incorporate a high 

density parallel optical interface and would need to accommodate high speed serial modulation rates of over 10 

Gb/s per channel. To this end a parallel optical transceiver circuit incorporating such an interface will also be 

developed to form part of an active connector mechanism. This mechanism will reside on the edge of pluggable 

peripheral devices to allow those devices to be optically plugged and unplugged to and from an optical printed 

circuit board. A suitable programming interface will be developed to allow user configuration of critical 

transceiver control parameters such as channel enable, laser modulation current, laser bias current and receiver 

squelch. 

Peripheral test cards will also be designed to accommodate the connector prototypes. These test cards will serve 

as a conduit for external serial test data to the transceiver channels in the connector. Finally a complete proof of 

concept demonstration platform will be constructed, comprising a test chassis, single board computer, test cards, 
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prototype connectors and an OPCB to allow comprehensive optical and mechanical characterisation of the 

connectors. The test chassis will be 19” wide in order to be compliant with standard data centre racks. This will 

enable the chassis to be mounted into a data centre rack at a later stage with the option to be connected to fully 

functional storage and server enclosures in a real data centre system. 

A crucial part of this OPCB connection system will be the optical waveguide receptacle for the pluggable active 

in-plane connector, which is fixed to the board and meets the tolerance requirements to enable the optical 

connector interface to align with the embedded waveguide interface. 

To this end, a novel low-cost method will be invented and developed of assembling components (optical or 

mechanical) to an OPCB such as to allow suitably accurate alignment to multimode optical waveguides 

embedded in the PCB substrate. A suite of receptacles will be designed and developed, which incorporates 

features to allow passive accurate alignment of the receptacle onto the board waveguides. In addition, compliant 

features will be designed in the board itself to accommodate the accurate mechanical registration of the 

receptacle. 

The final iteration of the prototype will allow a lens array to be accurately fixed to the OPCB and form part of a 

dual lens expanded beam coupling solution. 
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3.2 OPCB connectivity in data storage enclosures 

3.2.1 Electro-optical midplane architecture  

It is proposed that the projected performance bottleneck in data storage systems is mitigated by incorporating 

electro-optical printed circuit board (OPCB) and interconnect technology on the midplane [71]–[76]. As shown 

in Figure 3-1 the midplane would thus comprise a PCB with both copper layers for electrical power and low 

speed electronic signal distribution and one or more optical transmission layers to allow high speed signals to be 

conveyed optically. As discussed in the previous chapter there are various types of optical waveguide that can 

form the basis of such optical transmission layers such as laminated optical fibre webbing, planar glass optical 

waveguides or planar polymer optical waveguides. The efforts described in this thesis focus on the deployment 

of planar polymer waveguide technology in electro-optical PCBs and the development of commercially viable 

supporting connection technologies. 

 

 

 

Figure 3-1: Schematic view of electro-optical midplane architecture comprising copper layers to 

accommodate power, static and low speed signal distribution and at least one optical transmission layer to 

convey high speed signals along optical waveguides 
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3.2.2 Midplane interconnect requirements 

A conventional data storage array enclosure is shown in Figure 3-2. The enclosure comprises 24 hard disk 

drives, two controller modules (only one of which is shown populated) and two power supply modules (only one 

of which is shown). The disk drives are located on the “front end” and plug into a multilayer midplane PCB from 

one direction, while the controller modules and power supply modules plug into the midplane from the other 

direction. The midplane serves as the interconnect backbone of the system accommodating power distribution, 

static control lines, low speed control busses and high speed transmission lines. The midplane will also typically 

require slots to allow air flow through the system, which further reduces the amount of functional area that can 

be used for interconnect (traces) or components. 

 

 

 

Figure 3-2: Data storage array with 24 drives, two controller modules (one shown) and two power supply 

modules (one shown) 

 

In a conventional data storage, integrated or computer system, the midplane / backplane and its peripheral line 

cards (such as disk drives, controller modules, server blades) are arranged in a mutually orthogonal 

configuration. The peripheral line cards must be pluggable to the midplane i.e. they can be manually connected 

to or extracted from the midplane. In most cases there is a requirement that peripheral devices are also “hot 

pluggable”, which means they can be connected or disconnected from a system during operation without 
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compromising the system. The midplane in data storage enclosures must be passive, that is to say there can be no 

active devices on the high speed signal paths on the midplane. The reason for this is that as the midplane is not a 

field replaceable unit and, the critical failure modes on the midplane should be minimised by ensuring that all 

high speed data links are passive. This would therefore preclude the use of signal conditioning circuitry such a 

pre-emphasis or decision feedback equalisers on the midplane, and more pertinently it also prevents the 

deployment of optical transceiver circuitry on the midplane. 

 

3.2.3 Electro-optical PCB connection scheme 

As the midplane is passive in the proposed application model, then this would require that the optical transmitter 

and receiver devices are situated on the peripheral line cards (such as controller modules and disk drives), and 

that the line cards are both electrically and optically pluggable to the electro-optical midplane (Figure 3-3). 

  

 

 

Figure 3-3: Schematic view of line cards with optical edge connectors plugging in orthogonally to an 

electro-optical backplane with embedded optical interconnect 

In a cost-effective system, the optical transmitter and receiver devices would most likely comprise VCSELs and 
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PIN photodiodes. 

In the most elementary configuration, whereby the VCSELs and photodiodes are mounted directly onto the line 

card, the optical axes of their respective emitting and receiving areas are orthogonal to the plane of the line cards 

and would lie parallel to the plane of the electro-optical midplane to which the line cards would connect. 

Thus an optical channel can be conveyed by an optical waveguide in the midplane if the optical transmitter and 

receiver interface on the line card are drawn into direct physical contact with the waveguide interface on the 

midplane (Figure 3-4). This would be satisfied by a butt-coupling engagement scheme, which would eliminate 

the need for intermediary optical interfaces on the backplane, such as 45° optical deflection structures, and thus 

minimise the number of interfaces incurring optical losses as well as additional assembly costs. 

 

 

Figure 3-4: Butt-coupled optical connection between surface emitting and receiving devices on the line 

card and planar optical waveguide interface on electro-optic backplane 

 

3.2.4 Electro-optical PCB connection concept 

Research into lateral misalignment tolerances [126] of a VCSEL to a multimode planar waveguide have shown 

that direct butt-coupling of an 850nm VCSEL to multimode polymer waveguides would be subject to lateral 

misalignment tolerances of approximately 0.9 of the waveguide core size, the maximum lateral misalignment 

being defined as the displacement from the optimum alignment position, at which the transmissivity through the 

waveguide drops by 1 dB from the maximum transmissivity. Given the dimensions and layout densities inherent 

in conventional parallel multimode waveguides, the interface between the line card and optical midplane would 
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be subject to very stringent alignment tolerances (±22.5 µm for a 50 µm core width). 

These tolerances would have to be met continuously throughout the connection cycle and would therefore 

require that the physical optical interface remain immune to typical movements arising between the line card and 

midplane, which will arise in a typical data centre enclosure such as system enclosure vibrations, air-flow and 

PCB deformation. The optically connected interface would therefore require a level of detachment from other 

non-optical midplane connecting components, such as mechanical guide-rails and electrical (power/low speed 

signal) connectors, as these are generally subject to far lower assembly tolerances than could be accommodated 

optically. The cost of widespread precision assembly on all midplane interface components would be 

prohibitively high. 

In order to address these challenges, the author invented and patented a pluggable optical PCB (OPCB) 

connector concept [127] whereby the optical transceiver interface is housed on a platform, which is detached 

from the rigidity of the supporting line card by a mechanically flexible bridge. The optical interface platform 

contains mechanical features which will engage with compliant structures on the optical midplane allowing the 

optical interface to be drawn into precise physical alignment with the waveguide interface on the OPCB (be it a 

midplane or backplane). Finally, a mechanical engagement mechanism is required to raise and lower the optical 

interface platform into compliancy. 

The method comprised a two stage engagement process: a first stage of coarse alignment whereby the 

daughtercard is inserted into the midplane providing the necessary electrical and mechanical connections, and a 

second stage of higher precision alignment whereby the optical connection is asserted. Thus the requirement for 

precision component assembly is restricted to the line card optical interface and the compliant receptacle on the 

OPCB midplane / backplane. 
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3.3 Electro-optical PCB demonstration platforms 

In order to evaluate the viability of this technology concept in a high speed data communication system 

environment, the author designed and developed two generations of active connector and corresponding 

demonstration platforms: 

The Storlite demonstration platform (Figure 3-5a) comprised a first generation active pluggable optical 

backplane connector, two test line cards and separate passive optical and electrical PCBs [128]. The Storlite 

platform will be described in this chapter. 

The FirstLight demonstration platform (Figure 3-5b) comprised a second generation active pluggable optical 

backplane connector, four test line cards and an electro-optical backplane [89], [129]. 

The FirstLight technologies will be described in Chapter 4. 

 

 

Figure 3-5: a) Storlite Demonstrator - First generation optical backplane connector platform, b) 

FirstLight Demonstrator - second generation optical backplane connector platform 
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3.4 Storlite – first generation passive optical backplane system with active 

pluggable connectors 

 

3.4.1 Storlite project summary 

During the Storlite project, a first generation optical backplane connection system was developed, which allowed 

for repeatable docking and undocking of an active optical interface housed on a line card to the optical interface 

of a passive optical backplane containing planar multimode polymer waveguides. The connector comprised a 

parallel optical transceiver circuit, a self-aligning optical interface and a connector mechanism. The transceiver 

was capable of supporting data rates of 10.3 Gb/s on each of four duplex channels. The transceiver circuit was 

constructed on a flexible material to enable the optical interface to mechanically float with respect to the line 

card, thus allowing the critical optical connection to remain relatively immune to displacements between line 

card and backplane. A manual connection mechanism controlled the engagement and disengagement of the 

transceiver with the optical backplane. 

Finally an optical backplane demonstration system was constructed comprising a passive optical printed circuit 

board, a passive electrical backplane, two line cards and the proposed pluggable optical connector (Figure 3-6). 

The system was successfully characterised with respect to 10.3 Gbps board-to-board test data exchange. 
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Figure 3-6: Storlite optical backplane connection scheme 

 

3.4.2 System design overview 

The author carried out the design, development and characterisation of the active pluggable optical connector 

and of all circuit boards in the Storlite platform. Table 3-1 contains the formal designations for each circuit board 

type designed for the Storlite system. 
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Table 3-1: Storlite card designations 

Card designation Description 

 

StorConn2 Quad 10 Gb/s parallel optical transceiver circuit 

StorConnTest2 10 Gb/s test daughtercard 

StorConnOpt2 Passive optical backplane 

StorConnPwr2 Passive electrical backplane 

 

The Storlite platform is populated by two 10 GbE LAN test daughtercards (StorConnTest2) plugging into a 

passive optical backplane (StorConnOpt2) and a separate passive electrical power backplane (StorConnPwr2). 

Each test daughtercard supports one active pluggable optical connector, which includes a quad 10 Gb/s parallel 

optical transceiver circuit (StorConn2). 

 

3.4.3 StorConn2 - Storlite quad 10 Gb/s parallel optical transceiver 

A quad parallel optical transceiver circuit was designed to accommodate the proprietary connection technique. 

The Storlite optical transceiver circuit was constructed on flexible laminate PCB; the sections housing the optical 

interface and the base section with the electronic array line-card connector were supplemented with rigid FR4 

layers, while the bridge section between these sections was exposed and flexible. This arrangement served the 

critical purpose of ensuring that the rigid platform supporting the optical interface was free-floating with respect 

to the line-card, thus allowing the optical interface to be manipulated into precise alignment with the polymer 

optical waveguides embedded in the passive optical PCB irrespective of the relatively coarse alignment of the 

line-card. 

Figure 3-7 shows an oblique view of the quad transceiver circuit mounted on a partially flexible and rigid 

substrate. The transceiver circuit comprised three sections: a base section, a flexible bridge section and a 

moveable optical interface. The circuit was constructed on a flexible laminate substrate, which was reinforced 

with rigid FR4 layers in the base section and optical platform leaving the intermediary bridge section flexible. 

The base section allowed for the electrical connection of the transceiver to the peripheral line card by means of a 

high speed electronic array connector (Mezzanine GIG Array®) capable of supporting data rates up to 11 Gb/s. 
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Figure 3-7: Storlite parallel optical transceiver circuit 

 

Figure 3-8 shows an annotated side view of the Storlite transceiver circuit and its key components. A polymer 

resin block (Figure 3-8a), which contained two MT pins of diameter 0.7 mm and with a centre to centre 

separation of 4.6 mm was attached to the bottom of the optical interface section, with the two pins protruding up 

through compliant holes in the PCB. These pins form part of the opto-mechanical interface (Figure 3-8b), which 

comprises the lasers and receivers, GRIN micro-lens array and male MT compliant plug. A heatsink (Figure 

3-8c) is provided below the power consumptive quad VCSEL driver and quad transimpedance amplifier / 

limiting amplifier (TIA/LA) array ICs. The ICs are mounted on the top side of the PCB as shown and covered in 

epoxy. Each IC has a thermal dissipation pad on its base. In order to maximise heat transfer from the ICs to the 

heatsink on the bottom of the PCB, two holes were milled in the PCB under each IC’s thermal pad section. Two 

copper slugs were then carefully assembled into the holes in order to create a thermal bridge between the ICs and 

the heatsink. An intermediary flexible section (Figure 3-8d), in which the board was not reinforced with FR4 

layers, was required to provide a level of mechanical detachment between the optical interface section and the 

base section. The base section in turn was rigidly connected to the StorConnTest2 test daughtercard by means of 

the GigArray® high speed electronic array connector offered by FCI (Figure 3-8e). 
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Figure 3-8: Storlite parallel optical transceiver side-view: a) MT pin holder, b) Opto-mechanical interface, 

c) Heat sink, d) Flexible bridge, e) GigArray® high speed connector 

 

3.4.3.1. Transceiver circuit functional description 

Figure 3-9 shows a functional diagram of the transceiver circuit. The Base section of the transceiver contains a 

high speed electronic array connector, which conveys electronic signals to and from the transceiver circuit from 

and to the StorConnTest2 test daughtercard PCB on which the transceiver is mounted. The differential signals 

are conveyed from the Base section across a flexi-rigid bridge to the electro-optical conversion circuitry on the 

Optical Interface section. The Optical interface comprises a four channel transmitter array of four Vertical 

Cavity Surface Emitting Lasers (VCSELs) operating at a wavelength of 850 nm, and a four channel receiver 

array of four positive intrinsic negative (PIN) photodiodes sensitive to a wavelength of 850 nm. There are two 

reasons for the choice of 850 nm sources: 1) Commercial VCSEL arrays for data communication were only 

available at this wavelength. 2) The optical polymer material to be used in the OPCB is substantially more 

transmissive at this wavelength than at the longer wavelengths associated with laser sources used for 

telecommunications. The PIN photodiodes are comprised of GaAs, which will allow them to generate a current 

in response to a wide range of wavelengths. An important metric for photodiodes is the Responsivity, which is 

the ratio of electrical current generated to the optical power received. GaAs PIN photodiodes have a suitably 

high responsivity at 850 nm. A four channel VCSEL driver chip converts differential electronic signals from 

each of four high speed differential transmission lines into a varying current across the VCSEL diode, which in 

response generates corresponding optical signal pulses. On the receiver side, the PIN photodiodes are held under 

reverse bias so they do not conduct electricity, save for a negligible dark or leakage current. When a photon of 

sufficient energy arrives at and is absorbed in the depletion region, it will form an electron-hole pair, which is 

swept away by the reverse bias field, thus generating a current which is proportional to the number of photons 

received. Thus varying optical signal pulses received on any of the four photodiodes are converted to an electric 

current, which is then passed to a trans-impedance amplifier (TIA), the purpose of which is to convert current 
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back into an electronic differential signaling voltage of proportional amplitude. Each of the four differential 

signal lanes is then conveyed across the flexible bridge to a 10.7 Gb/s adaptive receive equaliser designed to 

reduce signal jitter on high speed signals, by reducing inter-symbol interference and adapting the signal to 

frequency dependent skin effect and dielectric losses incurred over the transmission lines from the TIA. The 

differential signal output from equaliser is then conveyed to the high speed electronic array connector to the 

StorConnTest2 test daughtercard. A detailed introduction to the operational principles of optical transmitters and 

receivers is provided by DeCusatis [130]. 

 

Figure 3-9: Functional diagram of quad transceiver circuit 

 

3.4.3.2. StorConn2 circuit hardware design 

The principal feature of the StorConn2 circuit design allows for both a robust electronic connection to the host 

board and a quasi-free floating optical connection to the optical backplane. The reason for the latter lies in the 

fundamental requirement that the host board optical connector be directly connectable to the optical backplane 

precluding the need for intermediary optical transmission media such as external fibre ribbons. In view of the 

fragility of the optical backplane paraphernalia and the criticality of the optical connection, the quasi free-

floating feature coupled with the self-aligning mechanism of the connector allows for greater optical alignment 

tolerance and mechanical sensitivity. The interface should be able to tolerate relative lateral translation between 

the daughtercard and backplane of ±2 mm, which would account for the most severe operational vibrations that 

the system may undergo, though, in practice, given the firm mechanical connection of the daughtercard to the 
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backplane through electrical connectors and guide rails, it is unlikely that translations of that magnitude would 

occur. 

An electro-optical connector with a floating mechanism was later developed by Fujitsu to address the same issue 

of decoupling precise optical alignment tolerances to greater electrical alignment tolerances [52]. 

 

3.4.3.3. Raw card outline 

The StorConn2 raw card consists of a Kapton Polyimide based flexible PCB sandwiched between two rigid 

extremities of the card. In both the Base and Optical head sections, the flexible material is reinforced by FR4. 

The Bridge section is mechanically flexible. 

 

Figure 3-10 shows the physical shape of the card and the principal dimensions of its outline. 

 

 

Figure 3-10: StorConn2 raw card outline dimensions 

 

3.4.3.4. PCB layer stack-up 

Figure 3-11 outlines the complete layer stack-up of this circuit board. 
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StorConn2 has five electrical layers, of which two are signal layers (layers one and five), two are ground layers 

(layers two and four) and one is a power layer (layer three). 

The high speed differential tracks are located on the top layer (layer one) and bottom layer (layer five) and 

designed with a controlled differential impedance of 100 Ω ± 8%. As these differential tracks are on the surface 

layers and referenced to an adjacent ground layer, they are referred to as microstrip type. Differential traces 

buried between layers are known as stripline and result in reduced EMI compared to microstrip as all electric 

field lines are coupled to planes on surrounding layers and thus confined within the PCB. Stripline design, 

however also requires more PCB layers and more vias than microstrip, which leads to a greater probability of 

creating impedance mismatch points (e.g. vias) and greater difficulty in achieving the required differential 

impedance of 100Ω [131]. 

 

 

 

Figure 3-11: StorConn2 PCB layer stack-up 

 

3.4.3.5. Opto-mechanical interface 

The optical interface comprised a section of the parallel optical transceiver, which established the direct physical 

connection with the optical waveguides embedded in a passive optical backplane. The active transmit and 

receive elements – VCSEL die array and PIN photodiode die array (Figure 3-12a) – were bonded directly to the 

transceiver PCB over appropriate thermal distribution structures. 
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Figure 3-12: Optical interface a) Quad VCSEL and PIN photodiode die array aligned and assembled onto 

PCB, b) GRIN micro-lens array in ceramic holder aligned over active areas of VCSEL and PIN 

photodiodes 

 

VCSELs were chosen as a suitable laser transmitter on the basis of cost, suitability of emission orientation and 

wavelength compatibility with optical polymer transmission [72], [73], [76], [79], [90], [132]–[139]. A quad die 

array VCSEL from ULM Photonics, ULM850-10-TT-C0104U, was chosen with a package die size of 1000 µm 

x 350 µm x 150 µm, nominal emission wavelength of 850 nm and maximum data rate of 11 Gb/s. Each VCSEL 

had a circular active area of 7 µm diameter and an emission divergence angle of 25°. 

A coplanar PIN photodiode quad die array from Microsemi, LX3045, was chosen with a package size of 1200 

µm x 450 µm x 203 µm, nominal receive wavelength of 850 nm and active circular receive aperture size of 75 

µm. 

The high speed electronic connections were made between the VCSEL and PIN photodiode die and the PCB 
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through wire bonds between copper lands on the PCB and contacts on the top surface of the die. 

After the VCSEL and PD die were attached and bonded, a GRIN micro-lens array (Figure 3-12b) in ceramic 

holder was aligned over active areas of VCSEL and PIN photodiodes using the MT pins protruding from the 

optical interface as a reference. 

 

3.4.3.6. GRIN micro-lens array and MT compliant support structure 

In selecting an appropriate surface to mate physically with the waveguide interface, the author initially 

considered a geometric micro-lens array; however, following discussions with vendors, the author decided that 

that the ability to collimate the divergent output of a VCSEL into a waveguide at close proximity carried too 

high a risk of exceeding available manufacturing tolerances and introducing undesirable Fresnel losses and 

spherical aberrations. 

The author then identified that a gradient index micro-lens array (GRIN lens) would be suitable as it could be 

designed to image the circular optical output from the VCSEL onto the point of intersection with the waveguide 

by determining, through simulation, the optimum GRIN lens length. Likewise the lens could image the output of 

the waveguide onto the active area of the PIN photodiode. GRIN lens technology has been deployed as a suitable 

coupler to micro-waveguide structures on silicon-on-insulator chips [140], but, to the knowledge of the author, 

has not been used in this way before to couple directly to macroscopic optical waveguides. 

The GRIN lens array and support structure could serve both to protect the fragile die underneath and to counter 

the optical divergence from the VCSELs and the waveguides. In addition, the planar ingress / egress surfaces of 

the GRIN lenses made them suitable for butt-coupling to flat surfaces. 

 

The author designed a custom GRIN lens array and support structure, which included two MT compliant slots 

and a GRIN lens array supported at an offset from the datum of the two MT pins (Figure 3-13). The purpose for 

this offset was to accommodate the need for compliancy with an MT compliant optical waveguide receptacle 

(described in section 3.4.6), which sits over the waveguide interface and on which, therefore, the datum between 

the two compliant MT pins cannot be in line with the waveguide array on the optical PCB. The offset was 

chosen to be compliant with that of a 6x12 way MT ferrule (Figure 3-14), which includes six rows of 12 fibres 

distributed evenly around the datum of the two MT pins. The offset between the GRIN micro-lens array and the 

datum between the two MT slots in the GRIN lens holder was chosen to match the offset between the first or 

sixth row in the 6x12 MT Ferrule and the datum of the two MT slots. This way a commercial fibre-optic patch-
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cord terminated in a 6x12 MT ferrule could be used for stand-alone testing of the transceiver and the optical PCB 

waveguides. 

 

 

Figure 3-13: Physical drawings of Gradient Index Micro-lens array and custom ceramic holder 

 

 

 

Figure 3-14: 6x12 MT ferrule interface. The lowest (or highest) row of optical channels is offset from the 

datum of the MT pins by 625 µm 
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The author liaised with a German GRIN lens fabricator GRINtech GmbH to determine the optimum lens 

parameters and support stand-offs for the optical interface. 

The GRIN lenses each had a diameter of 240 µm and were held at an inter-lens pitch of 250 µm by a V-groove 

array. The ceramic holder incorporated two slots to accommodate the MT pins protruding through the PCB. The 

positional alignment of these slots to the lens array, mirror the alignment of the MT pins to the VCSEL and PIN 

arrays, thus providing initial self-alignment of the lens array to the associated photonics. The central four lenses 

were not used. 

The surface plane of the ceramic holder is supported on platforms on all four sides leaving a clearance in the 

central area under the lenses for the VCSEL / PIN die and their respective bonding areas. The front platform is 

shorter than the others by 30 µm in order to accommodate the thickness of the high speed copper traces passing 

to the arrays. 

The same GRIN lens had to be used to both image the divergent VCSEL output into the 70 µm x 70 µm 

waveguide aperture and image the output of the waveguide into the receive aperture of the PIN photodiode. 

Therefore the length of the GRIN lens axis was chosen to provide the best compromise between the imaging 

requirements of both the VCSEL to waveguide axis and the waveguide to PIN photodiode axis. GRINTech 

carried out a ZEMAX ray tracing simulation to determine the optimum GRIN lens length ZL (Figure 3-15) to 

satisfy both requirements. The simulation took account of the different die thicknesses of the VCSEL and the 

photodiode and therefore the different distances between the emitting VCSEL aperture and the planar GRIN lens 

ingress point and the GRIN lens egress surface and the PIN photodiode receiving aperture. The VCSEL die was 

50 µm thinner than the PIN photodiode die. As both die were mounted on the same level PCB surface, this 

meant the receiving aperture of the PIN photodiode was 50 µm closer to the GRIN lens surface than the emitting 

aperture of the VCSEL. Figure 3-15 shows three positions for source and receiving element in order to highlight 

how the image point will change when the source is misaligned with respect to the GRIN lens. The simulation 

also took into account the NA of the waveguide based on the refractive indices of core and cladding and the NA 

of the VCSEL based on its nominal divergence of 25°. Based on the results of this simulation, an optimum 

GRIN lens length of 0.944 mm was chosen. It should be noted that the launch profiles from both waveguide and 

VCSEL were assumed in the simulation to have a Gaussian profile. The output of a waveguide could be assumed 

to be Gaussian, if the waveguide geometry (length, bends) is such that it will promote sufficient mode mixing. 

However it should be noted that VCSEL source profiles are not Gaussian in nature, as they will typically exhibit 

a characteristic dip in the centre of the profile, therefore this simulation could be further optimized in future. 
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Figure 3-15: ZEMAX simulation provided by GRINTech of optimum GRIN lens length (ZL) required to 

enable: a) imaging of the 75 µm x 75 µm waveguide output into the 75 µm circular aperture of the PIN 

photodiode and b) imaging of the VCSEL output into the waveguide 

 

The GRIN lens design was sent to GRINtech GmbH who fabricated the custom ceramic assembly incorporating 

a 1 x 12 GRIN lens with part number GT-LFRA-025-12-048-NC. 
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3.4.3.7. StorConn2 component layout 

Table 3-2 lists the main components of the StorConn2 card, while Figure 3-16 shows their positions. The power 

dissipation of all active components is shown except the PDs in order to extrapolate the power dissipation and 

efficiency of the complete module. 

 

Table 3-2: Component layout and description 

Item Supplier Part No. Description 

Optical Head 

VCSEL Driver 

 

Primarion 

(Acquired by Infineon 

Technologies in April 2008) 

 

PX6514 

(obsolete) 

10 Gb/s data rate per channel (40 Gb/s 

aggregate data rate) 

Power dissipation  = 570 mW (all on) 

TIA / LA PX6524 

(obsolete) 

10 Gb/s optical receive system, 

Transimpedance amplifier & Limiting 

amplifier per channel 

Power dissipation  = 650 mW (all on) 

Passive heatsink Xyratex inventory custom Attached to PCB onto copper slugs 

forming thermal contact with VCSEL 

Driver / Optical Receiver die 

VCSEL array 

(chip) 

 

ULM Photonics 

 

ULM850-10-TT-

C0104U 

10 Gb/s Vertical Cavity Surface 

Emitting Laser array (1 x 4) 

Power dissipation  = 20 mW (max) 

PIN array (chip) Microsemi 

 

LX3045 

 

10 Gb/s PIN photodiode array (1 x 4) 

MT pin block Extec custom Precision ceramic mount incorporating 

to standard MT pins 

GRIN lens array 

and holder 

GRINTEch 

 

GT-LFRA-025-

12-048-NC 

(custom) 

 

1 x 12 GRIN lens array embedded in 

custom ceramic holder to accommodate 

MT pins 
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Flexible Bridge 

No active or passive components 

 

Base 

 

Signal equalisers Maxim 

 

MAX3805 10.7 Gb/s Adaptive Receive Equalisers 

to improve signal integrity of 10 Gb/s 

differential  signals received from 

TIA/LA 

Power dissipation = 135 mW per 

device. Total = 4*135 mW = 540 mW 

Mezzanine 

connector 

FCI Connect 

 

55740c 

 

Copper array connector receptacle 

supporting differential signals up to and 

exceeding 10 Gb/s data rate and low 

speed control signals. 

Fan connectors  standard Attached to PCB onto copper slugs 

forming thermal contact with VCSEL 

Driver / Optical Receiver die 

Device efficiency 

Total estimated power dissipation 570 mW + 650 mW + 20 mW + 540 mW = 1780 mW = 

1.78 W 

Aggregate bandwidth 8 unidirectional channels * 10.3 Gb/s = 82.4 Gb/s 

Efficiency 1780 mW / 82.4 Gb/s = 21.6  mW / Gb/s = 21.6 pJ/bit 
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Figure 3-16: StorConn2 component layout: a) top view, b) side view 

 

3.4.3.8. StorConn2 card assembly process 

The complete assembly of the StorConn2 card required, in addition to the conventional process of card 

population with standard passive and active components, the direct wire-bonded assembly of the VCSEL drive 

and TIA/LA array chips in raw die form, the integration of novel thermal dissipation structures and high-

precision passive alignment processes for both chips and opto-mechanical structures. 

The assembly process and sequence is outlined below. 

 

3.4.3.9. Mezzanine connector placement 

The GIG-ARRAY® high speed mezzanine connector (Figure 3-17) is designed to provide high speed 

differential (10 Gb/s) and single ended electrical connection between two parallel boards. The connector utilises 

Ball Grid Array (BGA) for solder attachment to the PCB. For initial alignment, the plug housing has a 
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chamfered lead-in that captures and guides the receptacle cover and to assure proper mating orientation, both 

parts are keyed appropriately. 

 

 

Figure 3-17: Gig array receptacle (Source: FCI Interconnect - GS-20-016 Rev B) 

 

3.4.3.10. Equaliser chip assembly 

Maxim MAX3805 is a 10.7 Gb/s Adaptive Receive Equaliser designed to improve jitter on high speed signals, 

by reducing inter-symbol interference and adapting the signal to frequency dependent skin effect and dielectric 

losses. 

The Maxim MAX3805 chip was packaged in a thin “quad-flat no-leads” (QFN) surface mount package with a 

thermal pad on the base and had to be assembled onto the board by means of a solder reflow process (Figure 

3-18). 

Subsequently, all passive components including resistors and capacitors were solder-attached to the card in the 

standard manner. 
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Figure 3-18: Equaliser Chip – 10.3 Gb/s 

 

3.4.3.11. Thermal dissipation structures 

The VCSEL driver and optical receiver die dissipated a large amount of power relative to their size. In order to 

effectively dissipate heat from the area, solid, thermally-conductive structures were put in place to form direct 

thermal contact with the base of the die and dissipate the heat into the heatsink on the opposite side of the card. 

These cylindrical structures (slugs) traversed the card through hollow vias directly under the die and served as a 

more effective alternative to thermal vias. 

The slugs alone were inserted into the hollow vias and fastened to the side walls with a thermally conductive 

epoxy. 

The heatsink was then attached to the base of the card with the protruding slugs inserted into compliant slots in 

the heatsink housing. 

 

3.4.3.12. Optical driver die assembly 

Primarion® PX6514 was a four-channel VCSEL driver designed for various 4 x 10 Gb/s parallel optics 

applications. It consisted of a DC-coupled amplifier with selectable modulation and bias currents optimised for 

driving commercially available, common cathode VCSELs from a single +3.3 V supply. Primarion® PX6524 

was a four-channel TIA/LA optical receiver designed for various 4 x 10 Gb/s parallel optics applications. It 

consisted of a DC-coupled trans-impedance amplifier and an AC-coupled differential limiting amplifier. 

The Primarion PX6514 VCSEL driver and PX6524 optical receiver die were positioned over the vias now 

populated with the thermal dissipation slugs and attached to the top surface of the slugs with a thermally 

conductive epoxy, thus establishing a thermal channel to the underlying heatsink. The die pads were then wire-

bonded to the compliant pads on the PCB. 
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3.4.3.13. MT pin block assembly 

The MT pin block is a custom high-precision holding piece for two MT pins (Figure 3-19). In accordance with 

the NTT standard; these pins require a diameter of 0.7 mm and are mounted onto a planar surface at a pitch of 

4.6 mm. The block will be fastened to the underside of the optical head with the pins protruding through a 

compliant slot in the PCB. The block is composed of machinable ceramic, which satisfies the requirements for 

thermal resilience and mechanical stability. 

The MT pin block was attached to the base of the card such that the pins and the adjoining alignment shelf 

protruded up through the compliant slot in the PCB. 

 

Figure 3-19: MT pin block 

 

3.4.3.14. VCSEL array and photodiode array assembly 

The ULM Photonics ULM850-10-TT-C0104U quad (four channel) VCSEL array, capable of sustaining 

modulation speeds of 10 Gb/s per channel at a nominal wavelength of 850 nm, was presented in an unsealed chip 

form with the cathode / anode bond pads and the active area located on the top surface. 

The Microsemi LX3045 quad (four channel) GaAs coplanar PIN photodiode array, capable of processing optical 

signal modulation of 10 Gb/s at a detection wavelength of 850 nm, was presented in an unsealed chip form with 

the cathode / anode bond pads and the active area located on the top surface. 

The quad VCSEL array and quad PIN photodiode array die were visually aligned through the microscope on the 

chip placement and wire bonding machine relative to the MT compliant alignment pins protruding through the 

board from the MT pin block to within a lateral positional accuracy of 5 µm (Figure 3-20). 
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The bases of the VCSEL array and PIN array were then secured in place over the thermal vias on the PCB with a 

thermally conductive epoxy. 

The cathode and anode pads on the VCSEL and PIN arrays were attached to the recipient bond pads on the PCB 

with bond wires. 

 

 

Figure 3-20: Photo of VCSEL array and photodiode assembly prior to wire bonding (photo through 

microscope) 

 

3.4.3.15. GRIN lens assembly 

The GRIN lens array, embedded in a ceramic holder, was lowered over the die with the MT pins protruding 

through the two compatible slots in the ceramic. The MT slots which are slightly larger than the MT pins allow 

for initial self-alignment of the lenses to the active areas of the underlying die. As these are imaging lenses, the 

images of the underlying die were clearly visible, allowing for reasonably precise visual alignment of the centres 

of the active areas with the centres of the lenses (Figure 3-21). 
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Figure 3-21: GRIN lens assembly (photo through microscope) 

 

3.4.4 Storlite connector mechanism 

The author developed a full requirements specification for the connector concept outlined below and worked 

with Xyratex mechanical engineer Chris Smith who rendered the design concept into a viable mechanical model 

and system. 

 

3.4.4.1. Connector composition 

The parallel optical transceiver is housed within a mechanical casing incorporating a pivoted lever, which is 

driven by the cam handle. The pivoted lever is bifurcated to provide a balanced tension to the photonic interface 

section of the transceiver PCB. Thus, by operating the cam handle, the photonic interface can be retracted and 

elevated as required. 
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3.4.4.2. Engagement mechanism 

The connector mechanism served two key functions: 

1. Retraction of the photonic interface to protect the salient mechanical alignment structures during the test 

daughtercard insertion and retraction process (Figure 3-22a). 

2. Elevation of the photonic interface into engagement with compliant receptacle on optical PCB (Figure 

3-22b). 

 

Figure 3-22: Storlite connector CAD model - side view a) optical interface retracted, b) optical interface 

elevated 

 

Figure 3-23 shows photos of the connector with photonic interface retracted (Figure 3-23a) and photonic 

interface elevated (Figure 3-23b). 
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Figure 3-23: Photo of Storlite connector - side view a) photonic interface retracted, b) photonic interface 

elevated 

 

The connector assembly including the transceiver board (Figure 3-24a) was electronically plugged to the line-

card with the GigArray® connector (Figure 3-24b) and fastened at the screw points. The test daughtercard was 

guided within the chassis along standard guide rails to the point of engagement with both the optical backplane 

and a separate electrical backplane. At the first level of optical engagement, guide features on the connector 

housing brought the optical interface into coarse alignment with the compliant receptacle.  

At the second level of engagement, the cam handle was manually turned and the optical interface elevated, such 

that the MT alignment pins on the interface are made to mate with the MT slots on a compliant receptacle, which 

is mounted to the optical PCB, thus forcing the optical array into a precise butt-coupled arrangement with the 

waveguide array on the backplane. 

All precision assembly on the design is thus restricted to the optical interface and the compliant receptacle. 
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Figure 3-24: a) Storlite connector with retracted optical interface, b) Storlite connector bottom view 

showing bifurcated pivoted lever mechanism and electronic high speed GigArray® connector  

 

A full exploded view of the Storlite connector is shown in Figure 3-25. 

 

Figure 3-25: Storlite connector exploded view 
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The fully assembled Storlite connector attached to the test line card is shown in Figure 3-26. 

 

 

Figure 3-26: Storlite connector attached to line-card - front view 
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3.4.5 StorConnOpt2 - Storlite optical waveguide backplane 

The StorConnOpt2 optical backplane is a purely passive optical printed circuit board with one optical layer and 

no electronic layers. 

The optical waveguide parameters for the experimental evaluation of the proposed interface and coupling 

method were designed to be compliant with the optical interface on the Storlite transceiver. As a result, the 

waveguide interface on the StorConnOpt2 OPCB could also be tested with MT patch-cords. 

 

3.4.5.1. Optical waveguide design layout and dimensions 

The design of the StorConnOpt2 OPCB contained four groups of 12 straight parallel waveguides with a centre to 

centre pitch of 250 µm and waveguide cross-section of 70 µm x 70 µm. The waveguides extended over a 

distance of 100 mm from one physical ingress point at one end of the PCB to the egress point at the other end 

(Figure 3-27a). 

The waveguide core and cladding were composed of a cross-linked polymer acrylate, Truemode®, which was 

deposited on a rigid FR4 substrate and patterned lithographically as will be described in section 3.4.5.2. 

The refractive indices of the polymer core and cladding layers were 1.556 and 1.5264 respectively at 850 nm, 

thus yielding a N.A. of 0.302 for the waveguide. 

As the waveguide N.A. was larger than that of the imaged VCSEL, good power coupling was ensured between 

the active optical transmitter on the line-card and the recipient waveguide on the optical PCB (Figure 3-27b). 
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Figure 3-27: Storlite optical waveguide PCB: a) four groups of 12 parallel straight waveguides. MT 

compliant receptacle with MT pins slots offset from waveguide array by 625 µm (centre to centre), b) 

Single waveguide illuminated with 635 nm visible light to demonstrate effectiveness of passive alignment 

method and devices. 

 

 

3.4.5.2. Truemode® optical waveguide material 

The waveguide core and cladding were composed of a highly cross-linked polymer acrylate, Truemode®, which 

offers sufficient thermal stability and humidity resistance to withstand conventional PCB manufacturing 

conditions [74][141] and has been prototyped successfully for optical backplane applications [82], [139], [142], 

[143]. 
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The Truemode® optical polymer comprised a proprietary polymer acrylate and photoinitiator blend. The 

photoinitiator catalyses a crosslinking reaction in the polymer when exposed to UV light, which increases the 

photosensitivity of the polymer blend and allows the polymer to be cured solely through exposure to curing 

radiation without the need for thermal curing steps. Figure 3-28 shows a photo of part of the waveguide interface 

with four parallel waveguides back-illuminated in a shadowgraph. The reticule grating pitch is set to 20µm. 

 

 

Figure 3-28: Polymeric optical PCB interface 

 

Table 3-3: Optical waveguide testbed attributes 

Material UV-curable polymeric acrylate (Truemode®) 

Propagation loss @ 850nm 0.04 dB/cm 

Heat degradation resilience 350° 

Waveguide size 70 µm x 70 µm 

Waveguide centre to centre pitch 250 µm 

Refractive index core 1.556 

Refractive index cladding 1.526 

Numerical aperture 0.302 

 

 

3.4.5.3. Two-step photolithographic fabrication process for Storlite waveguide OPCB 

backplane 

The Storlite passive optical backplane comprised an FR4 substrate with a polymeric multimode optical 

waveguide layer patterned onto it. The fabrication process (Figure 3-29) detailed below included a first 

photolithographic step in the core layer to pattern the core waveguide features and a second photolithographic 

step in the upper cladding layer to create a clearance in the upper cladding allowing mechanical access to core 

features peripheral to the signal waveguides to enable high precision passive mechanical alignment and assembly 
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of the connector receptacle with respect to the waveguide interface. 

 

 

Figure 3-29: Fabrication process for Storlite optical waveguide PCB 

 

 

Truemode® is a negative polymer material, in which those portions of the material exposed to curing radiation 

will become insoluble to developer (solvents), while those portions not exposed to light can be removed with a 

developer. Therefore the photolithographic mask will allow light to pass through in those areas, which are to 

form the hardened waveguide structures. 

 

The two-step photolithographic fabrication process is detailed as follows: 

a) A viscous liquid variant of the photosensitive Truemode® optical polymer acrylate is spin-

coated onto the surface of an FR4 substrate. 

b) Ultraviolet light is applied to the liquid polymer coating. As the polymer is photosensitive, 

crosslinking occurs and the polymer is cured. This polymer has a refractive index of 1.5264 at 850 nm 

in its cured state and comprises the cladding variant of the polymer, which surrounds the higher 

refractive index core channels to form the waveguides. This layer comprises the lower cladding layer 

and has a thickness of 150 µm. 

c) A viscous liquid higher refractive index variant of the Truemode® polymer acrylate is spin-
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coated onto the surface of the cured lower cladding layer 

d) A photolithographic mask is aligned over the deposited core polymer layer and UV light is 

passed through the mask exposing only those areas, which are to form the 12 signal waveguides and the 

two peripheral mechanical registration waveguides. This polymer has a refractive index of 1.556 at 850 

nm in its cured state and comprises the core variant of the polymer. 

e) Uncured areas of the core layer are removed with developing agent and washed away leaving 

only the salient signal and mechanical registration waveguides. This layer comprises the core layer and 

has a thickness of 70 µm. 

f) A liquid cladding variant of Truemode® polymer is spin-coated over the patterned core layer 

to a thickness sufficiently large to ensure that the core features are completely covered. 

g) A second photolithographic mask is aligned over the deposited upper cladding layer. The mask 

includes a broad clearance allowing the upper cladding over all signal waveguides to be exposed to UV 

light and cured. The clearance is chosen such that at least the outer edges of the peripheral mechanical 

registration waveguides and a region outside these outer edges are not exposed to UV light and cured.  

h) The uncured areas of the upper cladding area are removed with developing agent and washed 

away. The uncured areas include the outer edges of the peripheral mechanical registration waveguides 

and a clearance region around them. This will provide the means to passively align and assemble the 

MT compliant optical receptacles onto the optical PCB edges. 

 

3.4.6 Storlite optical waveguide receptacle 

The author designed an MT compliant optical waveguide receptacle that can be passively aligned onto the 

waveguide interface. My designs were rendered into CAD models by Xyratex mechanical engineer Chris Smith 

and used to fabricate the waveguide receptacle piece. 

The optical waveguide receptacle was a custom high-precision unit housing two MT compliant slots. In 

accordance with the 6x12 MT interface requirements shown in Figure 3-14, these slots require a diameter of 0.7 

mm and are mounted onto a planar surface at a pitch of 4.6 mm. 

The receptacle unit contained two mounting feet, which are critical to the passive self-alignment process outlined 

in section 3.4.7 below. 

Figure 3-30 shows the mechanical drawings for the optical waveguide receptacle, which was fabricated out of 

Torlon®, an amorphous (non-crystalline) engineering thermoplastic. 
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Figure 3-30: Mechanical drawings of Storlite waveguide receptacle 
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3.4.7 Passive optical assembly process 

3.4.7.1. Patented method of high precision passive alignment onto optical PCBs 

The author is the lead inventor of a patent “Optical printed circuit board and manufacturing method” [144], 

which outlines a method of highly precise assembly of components onto OPCBs with respect to optical 

waveguides using a passive self-alignment process. Figure 3-31 shows two images from the published patent. 

The key premise of the patent is that additional features are fabricated in the optical core layer on either side of 

the optical waveguide or group of waveguides. While the waveguide cores themselves need to be covered in a 

lower refractive index cladding, the outer edges of the additional registration stubs must be mechanically 

exposed, that is the upper cladding around the outer edges must be removed. The height of typical multimode 

core structures are of the order 50 µm, which is sufficient to mechanically engage a high precision component 

with compliant registration features passively. This component can then be aligned laterally very accurately with 

respect to the waveguides themselves. Accurate vertical alignment is achieved through the use of the top surface 

of the bottom cladding on which the component rests.  
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Figure 3-31: Diagrams from patent “Optical printed circuit board and manufacturing method” [144]: a) 

optical waveguide receptacle socket showing exposed registration stubs, b) optical waveguide receptacle 

assembled into optical waveguide receptacle socket  

 

This method of passive self-alignment has been adopted in recent years and forms the basis of modern 

waveguide termination schemes for both multimode and singlemode polymer waveguides  [145] [146]. 

Another method of self-alignment of photonic components on OPCBs takes advantage of the surface tension 

effects of liquid solder on copper pads on a PCB [147]. This effect has been successfully exploited to produce 

accurate self-alignment of singlemode optical components with a misalignment of the order of 1µm 

demonstrated [148]. 

 

3.4.7.2. Alignment and assembly of optical waveguide receptacle 

The process of alignment and assembly of the Storlite optical waveguide receptacle is shown in Figure 3-32. 
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The mounting feet on the Storlite optical waveguide receptacle unit are passively inserted into the exposed 

registration recesses on the optical backplane StorConnOpt2, such that the following conditions are met. 

 Condition one 

o the bases of the mounting feet rest against the top surface of the lower cladding. It is 

crucial that the exposed top surface of the lower cladding is completely clean and free of any 

debris or residue. Preferably the OPCB fabricator will provide a protective cover over these 

recesses, which can be removed only prior to the assembly process. 

 Condition two 

o the inner edges of the mounting feet are in contact with the outer edges of the 

registration stubs 

 Condition three 

o the front face of the unit is flush with the polished waveguide interface (Figure 3-32c) 
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Figure 3-32: Passive self-alignment assembly procedure: a) Storlite waveguide receptacle and OPCB 

waveguide interface with mechanical recesses and exposed registration structures, b) Waveguide 

receptacle assembled onto OPCB (view facing waveguide interface), c) Waveguide receptacle assembled 

onto OPCB (side view showing front face of unit flush with waveguide interface) 

 

The waveguide interface of a given waveguide group on the Storlite optical backplane contains 12 waveguides 

and two mechanical registration features on either side of the 12 communications waveguides. As can be seen in 

Figure 3-33 the mechanical registration waveguides are effectively very wide waveguides, the outer edges of 

which serve as mechanical registration points for the waveguide receptacle. The receptacle could thus be 

passively aligned to a very high accuracy with respect to the communication waveguides. Once aligned and 

assembled, the datum of the MT pin slots in the receptacle are offset from the communication waveguides by 

625 µm centre to centre. This offset was deliberately chosen to be compliant with the offset in a commercial 

6x12 MT ferrule between the MT pin slots and the lowest (or highest) row of fibres, thus allowing the 

waveguides to be tested with a 6x12 MT ferrule on which only the lowest row of fibres is populated and used for 
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measurement. As previously mentioned, the reason the transceiver optical interface, and waveguide interface 

were not made compliant with a standard 1x12 MT ferrule interface, whereby the row of optical channels is 

inline with the two MT pin slots (no offset), was that it would not have been possible for the MT pin slots in the 

receptacle to have been placed in line with the waveguide interface. As is evident from Figure 3-33, this would 

have required that clearance sections be diced immediately around the communication waveguides to allow each 

wing of the receptacle containing an MT pin slot to be lowered in line with the embedded waveguide array. 

Given dicing tolerances on FR4 of ~100 µm, it would not have been possible to achieve this around the full set 

of 12 waveguides as required. 

 

 

Figure 3-33: Shadowgraph image of an optical waveguide group with a receptacle passively aligned over it 

using the mechanical registration features fabricated in the peripheries of the 12 communication 

waveguides 

 

In order to verify that the passive alignment has been successfully achieved prior to fastening the waveguide 

receptacle into place, a fibre fan-out jumper is used comprising a 6x12 MT ferrule on one end, of which the 
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lowest row only was populated with 12 individual multimode graded index fibres and each fibre terminated with 

an FC/PC fibre connector. 

A first stage alignment verification process shown in Figure 3-34 required connecting one of the fibres to a 

visible 635 nm light source (Figure 3-34a) such that the corresponding channel in the MT interface was 

illuminated (Figure 3-34b). The MT ferrule was connected into the optical waveguide receptacle on its own 

(Figure 3-34c,d). The optical waveguide receptacle with the MT ferrule attached was passively aligned into the 

waveguide recess of the optical backplane. If the waveguide is visibly illuminated as shown in Figure 3-34e), 

this is an indication that at least partial alignment of the MT ferrule fibre and the waveguide has been achieved. 

A more stringent first stage validation of at least partial alignment of the entire MT ferrule and the waveguide 

interface would be to simultaneously illuminate the end channels (1 and 12) and to ensure that both waveguides 

are illuminated. 
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Figure 3-34: First stage alignment verification using visible light: a) Class 2 635 nm laser source is 

connected to one fibre of a lowest row populated 6x12 MT to 12 LC fibre jumper, b) view of lowest row 

populated 6x12 MT interface with channel five illuminated (fifth channel from left), c) MT ferrule about 

to engage with optical waveguide receptacle, d) MT ferrule fully engaged with optical waveguide 

receptacle, e) optical waveguide receptacle passively aligned into waveguide registration recess with one 

waveguide channel illuminated 

 

This is only a first level alignment verification process. A second level alignment verification process would 

require, while the waveguide receptacle was held in place with the MT ferrule attached, each channel to be 

connected in sequence to a stable 850 nm source, and the light exiting the waveguide end facet on other side of 

the backplane measured directly. The level of light should be consistent with the expected performance of the 

waveguide. The expected performance of the OPCB waveguides would be determined prior to any assembly. 

The OPCB would be measured in a lab with the input launch source on an x-y-z translation stage used to align 

and butt-couple the source to the waveguide under test. A photodetector would be aligned to the other end of the 
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waveguide under test. The position of the launch source would be tuned until the photodetector measures the 

maximum amount of light through the waveguide. Ideally the moveable launch source is the same as the source 

that will be used in the actual system. In this case, the transceiver would need to be adapted such that it could be 

mounted on an x-y-z translation stage and powered. The MT pins in the Optical Interface section would need to 

be removed otherwise they would impede the lateral adjustment of the flat GRIN lens surface against the 

waveguide interface. In practise this can be cumbersome, so an optical test fibre with a similar core size to that 

of the VCSEL aperture can be used. 

Once all these positional and measurement criteria are met then the unit can be fastened in place with epoxy 

(Figure 3-32b). 

 

3.4.7.3. Misalignment tolerance of VCSEL and PD to waveguides 

A detailed study was carried out by Ioannis Papakonstantinou at UCL on the misalignment tolerances of 

VCSELs and PDs to waveguides on StorConnOpt2 board. Figure 3-35 shows 2 dimensional contour maps 

describing the changes in insertion loss as the lateral positions (parallel to the plane of the waveguide end facet) 

of a VCSEL is varied at the launch facet (Figure 3-35a) and the lateral position of a PD is changed at the receive 

facet (Figure 3-35b). 

 

Figure 3-35: Contour maps of relative insertion loss compared to the optimum coupling position for a) 

VCSEL misalignment at z = 0, b) PD misalignment [2] 
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Furthermore, the reliability of repeated mating cycles of connectors to the waveguide receptacle was 

characterised and showed that during 75 repeated attachment and detachment cycles, the average insertion loss 

was measured to be 5.19 ± 0.16 dB. The results are reported in the joint journal paper [2].  
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3.4.7.4. Waveguide end facet preparation 

The StorConnOpt2 OPCB was diced at each end to create the end facets of the waveguides. The surface quality 

of waveguide end facets is crucial for coupling efficiencies as end facet scattering is one of the key loss 

mechanisms in waveguides. In order to further reduce the surface roughness of the end facets, they were 

manually polished with optical cloths. Care was taken during polishing to avoid contamination of the soft 

polymer waveguide end facets by particulates released form the FR4 substrate during polishing. This was 

primarily achieved by wiping the sample in one direction along the optical polishing cloth leading with the 

optical layer and never wiping along the same section of the polishing cloth multiple times as contaminants from 

the FR4 layers will be lodged in the cloth after the first wipe. As a matter of course, the end facets were polished 

with different optical polishing cloths in sequence of decreasing coarseness.  

Figure 3-36a shows a Scanning Electron Microscope image of a group of 12 waveguides on the Storlite optical 

waveguide backplane including the peripheral recesses in the upper cladding layer to enable mechanical access 

to mechanical registration features. Figure 3-36b shows a close-up of the waveguide interface. The degradation 

at the top upper cladding lip over the communications waveguides is clearly visible. Certain materials, such as, 

in this case,  polyacrylates, will take on a brittle nature once cured, and this makes it easier for outer sections to 

crumble away when subjected to the unidirectional shearing forces consistent with the manual polishing process 

described above. This is a common issue with manual polishing of OPCB end facets. Furthermore this angled 

degradation of the upper cladding in the interface region is exacerbated when the polishing cloth is not moved 

exactly parallel to the plane of the waveguide end facet, but rather at a slight tilt. 

 

  



Chapter 3 First Generation Pluggable active Optical Circuit Board Connector for Polymer Waveguide 

Based Optical Circuit Boards 

114 

 

 

Figure 3-36: SEM images of waveguide array interface which has been diced and polished: a) Full view of 

array of 12 communications waveguides and peripheral recesses in upper cladding layer to enable 

mechanical access to mechanical registration features, b) Close view of roughness and surface degradation 

over waveguide interface 

 

Figure 3-37a shows a photo of the optical backplane with waveguide receptacle aligned and assembled next to 

the constituent parts for the receptacle holder, which guides the optical connector housing into place during the 

insertion of the test daughtercard. The receptacle holder serves as a coarse alignment structure bringing the 

photonic interface of the transceiver into alignment over the waveguide receptacle. The waveguide receptacle is 

the secondary fine alignment structure, which receives the MT pins of the transceiver photonic interface and 

aligns the GRIN lens apertures accurately to the waveguide end facets. 

Figure 3-37b shows a photo of optical waveguide interface with secondary alignment structure (receptacle 

holder) and primary alignment structure (waveguide receptacle) assembled. 
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Figure 3-37: optical backplane assembly: a) Exploded view of optical backplane assembly and parts 

including the receptacle holder, b) optical waveguide interface  
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3.4.8 StorConnTest2 - Storlite 10 Gb/s test daughtercard 

The purpose of the test daughtercards was to route high speed test data from an external 10 GbE LAN network 

analyser via the commercial XFPs on the front end to the StorConn2 transceiver circuit, which in turn is optically 

connected to the backplane. Each test daughtercard contained a GigArray® connector receptacle (Figure 3-38a) 

to accommodate the compliant GigArray® plug on the base of the StorConn2 transceiver and thus allow the 

fully assembled connector to be electronically attached to the line card. A microcontroller (Figure 3-38b) was 

included primarily to allow direct configuration of the StorConn2 transceiver parameters including VCSEL 

modulation and bias current, receiver squelch and enable all four transmit and receive channels. In addition the 

microcontroller was used to enable the four commercial XFPs (Figure 3-38c) mounted on the front end of the 

line card, which were required to convert external optical test data into high speed electronic test data and to be 

conveyed to the StorConn2 transceiver and vice versa. External communication with the test daughtercard was 

enabled through the RS232 connector and transceiver on the front end (Figure 3-38d). 

 

 

Figure 3-38: Storlite test daughtercard: a) GigArray® connector receptacle, b) microcontroller, c) four 

commercial XFP transceivers, d) RS232 connector and transceiver 
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3.4.8.1. Functional overview 

Figure 3-39 provides a functional diagram of the StorConnTest2 physical layer relay card, which includes the 

following key features: 

 The card houses four host ports to accommodate commercial XFP transceivers required for the 

transfer of 10.3 Gb/s test data between external protocol analyser devices and the adjoining StorConn2 

circuit. 

 PECL clock distribution to all XFP ports of 161.132 MHz to conform to XFP support of 10.3 

Gb/s GbE test data 

 Mezzanine connector to deliver all electrical and electronic signals including power, high and 

low speed and static control signals to the StorConn2 circuit. 

 Microcontroller to regulate the functions of the StorConnTest2 XFPs and the StorConn2 

transceiver. 

 User interface to the microcontroller via a USART interface (RS232), which allows the user to 

configure the following parameters (see section 3.4.9): 

o StorConnTest2 control: 

 XFP power down 

 XFP transmit Enable 

 XFP I²C interface 

o StorConn2 Control: 

 VCSEL Driver TX enable 

 Optical Receiver RX Enable 

 Optical Receiver Squelch 

 TX and RX fault read-back 

 Advanced serial interface control to VCSEL Driver and Optical Receiver 
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Figure 3-39: StorConnTest2 functional diagram 

 

3.4.8.2. Circuit hardware design 

The StorConnTest2 circuit comprises a physical layer relay system between the four XFP ports and the high 

speed mezzanine connector to the adjoining StorConn2 device. This includes the controlling hardware for the 

StorConn2 and StorConnTest2 boards. 

The challenge presented to the design of this circuit is the need to accommodate 10 Gb/s electronic data streams 

along differential copper traces over ample distances, while ensuring that the integrity of these high speed signals 

does not degrade beyond acceptable limits. This obstacle was tackled by adopting the appropriate PCB material, 

trace and via layout guidelines and signal conditioning hardware. 
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3.4.8.3. Raw card outline 

The StorConnTest2 raw card profile was chosen in accordance with Compact PCI standards for daughtercard 

form factors. Figure 3-40 shows the physical outline of the card and its principal dimensions. 

 

 

Figure 3-40: StorConnTest2 card profile 

 

3.4.8.4. Raw card stack-up 

The circuit is housed on a standard six layer PCB, of which two layers, accommodating the high speed signal 

traces are composed of a Rogers dielectric material – RO4350B and the remaining layers accommodating low 

speed signals and power planes of a standard FR4 composite. 

Controlled impedance tracks are located on the top layer (R_SIG00) and bottom layer (R_SIG01) subject to a 

differential impedance of 100 Ω ± 8%. 

Figure 3-41 outlines the complete lay-up of this card. The layer names prefixed by “R_” denote the Rogers 

layers. 
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Figure 3-41: StorConnTest2 raw card stack-up 
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3.4.8.5. StorConnTest2 component listing 

Table 3-4 lists the main components of the StorConnTest2 card, while 

Figure 3-42a shows their positions. 

Table 3-4: StorConnTest2 component listing 

Component Supplier Part No. Description 

Mezzanine 

Connector 

FCI Connect 

 

 

55737c 

 

Copper array connector plug supporting differential 

signals up to and exceeding 10 Gb/s data rate and low 

speed control signals. 

XFP transceiver Picolight 

 

PL-XXL-SC-

S45 

 

10 Gb/s optical transceiver with LC optical connector 

receptacles 

850nm 

multimode optical 

XFP cages / 

connectors 

 Tyco 

 

788862-1 / 

1489951-1 

Cages and connector bezels to accommodate XFPs on 

host board 

Microcontroller Microchip 

 

PIC18F6620 64 pin microcontroller for user regulation of board 

functions 

Signal Equaliser Maxim 

 

 

MAX3805 10.7 Gb/s Adaptive Receive Equaliser 

PECL oscillator 

161.132 MHz 

  Supplies clock signal for XFP CDR signal conditioning 

at 10.3 Gb/s 

PECL differential 

clock driver 

On 

Semiconductor 

 

MC100EP14 

 

1 : 5 PECL clock distribution buffer to relay single 

161.132 MHz clock source to all four XFPs for CDR 

conditioning at 10.3 Gb/s 

RJ-11 Tyco 

 

520470-3 Standard connector for programming and in-circuit 

debugging of microcontroller 

DB9 Farnell  Standard serial connector for RS232 serial interface to 

microcontroller USART 

Switching 

Regulator 

Texas 

Instruments 

PT6441N 5V – 3V3 

PIH 16-pin 
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 PT6442N 5V – 2V5 

PIH 16-pin 

Serial Interface Maxim 

 

 

MAX3232ECUP RS232 Transceiver 

TSSOP 20-pin 

Linear Regulator Micrel 

 

MIC29502BT 3V3 – 2V Low Voltage Dropout Regulator 

SMD 6-pin 

MIC39150-

2.5BU 

3V3 – 2V5 Low Voltage Dropout Regulator 

TO263-3 4-pin 

4 way right-

angled connector 

Molex 53109-0410 Auxiliary 4 way power connector to enable board to be 

powered outside the test enclosure 

 

3.4.8.6. Power supply 

The card draws its supply from two alternative sources: 

 The Molex power connector is used for stand-alone testing 

 Either of the two C-PCI connectors will be used to supply power to the StorConnTest2 board 

when plugged into the electrical backplane – StorConnPwr2 – as part of the two card demonstrator 

assembly 

 

3.4.8.7. Connector positions and orientations 

 The C-PCI connectors are oriented such that upon rotation of the StorConnTest2 card by 180° 

around the axis of the adjoining StorConn2 card, the power connector orientation is identical. The 

purpose of this is to allow two StorConnTest2 daughtercards and more pertinently the two adjoining 

StorConn2 photonic interfaces to face each other when incorporated into the demonstrator assembly, 

without the need for separate circuits. This avoids the need for waveguide crossovers in the optical 

PCB, which will bind the two StorConn2 interfaces. 

 The StorConn2 mezzanine connector is positioned centrally with respect to the C-PCI 

connectors in order to accommodate the requirement for rotational symmetry in the system. 

 In addition, the StorConn2 mezzanine interface is orientated orthogonally to the axis of the 

StorConn2 card in order to help minimise the lengths of the high speed traces. 
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3.4.8.8. High speed layout guidelines 

 The high speed differential copper signal traces are laid out across the top and bottom layers. 

These layers are composed of a Rogers dielectric material offering greater impedance control and a 

lower loss tangent at 10 Gb/s in comparison to FR4. 

 The use of vias is unavoidable if crossovers on the high speed transmit and receive lines are to 

be prevented. In order to minimise unwanted reflections, the vias are direct and not stubbed. 

 A ground via is located in the vicinity of each high speed via. The purpose of these “stitched” 

vias is to accommodate the return path of the signal at all points along the signal path. 

 All aspects of the circuit layout have been adapted to minimise the lengths of the high speed 

traces. 

 

3.4.8.9. Microcontroller interfaces 

 The PIC microcontroller is programmed and debugged in circuit via a RJ-11 connector 

positioned on the front end of the card for ease of accessibility. 

 User communication with the microcontroller by means of the embedded USART interface is 

maintained by a RS232 transceiver with a DB9 connector situated on the front end of the card for ease 

of accessibility. 

 

3.4.8.10. LED indicators 

 The card contains four LED banks to enable first-hand indication of the states of the XFPs’ 

static control lines. 

 LEDs are provided to indicate the status of every voltage rail on the card and the programming 

status of the microcontroller. 
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Figure 3-42: a) Schematic showing StorConnTest2 component layout, b) photo of StorConnTest2 
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3.4.9 Storlite platform firmware design 

The StorConnTest2 microcontroller serves as the principal control mechanism on the unit, the main purpose of 

which is to both program and read-back data to and from the StorConn2 card and to regulate the XFP ports. 

The author designed the communication flow structure of the microcontroller and the firmware, which was 

written in Assembler code. 

 

3.4.9.1. Design structure 

The microcontroller flow design is partitioned into separate functional blocks in order to effectively 

accommodate the arbitration of user commands to different facilities and provide user feedback. This is shown in 

the flow diagram of Figure 3-43. 

 

 

 

Figure 3-43: StorConnTest2 microcontroller flow diagram 
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3.4.9.2. Command interface 

The command interface to the StorConnTest2 unit is regulated by the PIC microcontroller. The low level user 

interface has a rudimentary structure and is implemented by direct serial communication to the workstation via a 

null modem cable. An appropriate connection tool such as HyperTerminal allows user input to be transferred 

directly to the microcontroller USART via the serial connection and displays the data returned. The simple 

command structure underlies the development of the associated GUI described below to provide advanced user 

functionality. 

 

3.4.9.3. User command format 

Table 3-5 contains the complete command set for the StorConnTest2 unit. 

 

The command format is structured in the following manner: 

1) The command type is determined by the first letter. 

2) The command body varies depending on which of the four commands is used. 

3) The command is confirmed with “Enter” 

4) If the command format is correct, the command will be executed and the appropriate response 

delivered, otherwise an error message will occur. 
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Table 3-5: StorConnTest2 User Interface ASCII Command Format 

Function User Input Response Description 

Static Control 

write 

wh0h1h2h3 

(where h is a hex 

value) 

ok Set all static controls: 

h0 = Enable StorConn2 Equalisers (3 to 0) 

h1 = Enable XFP Tx Disable (D to A) 

h2 = Power down XFPs (D to A) 

h3 =  b0 b1 b2 b3 

b0 = Enable StorConn2 VCSEL driver 

b1 = Enable StorConn2 optical receiver 

b2 = Enable optical receiver squelch function 

b3 = Assert microcontroller LEDs (diagnostic) 

Static Control 

Read 

r h0h1 Reads all static control lines: 

h0 = StorConn2 Equaliser Signal Detect (3 to 0) 

h1 = b0 b1 b2 b3 

b0 = StorConn2 optical receiver global signal detect 

b1 = StorConn2 VCSEL Driver transmit fault 

b2 b3 = Post-amble “00” (diagnostic) 

XFP I²C 

Register Read 

yxh0h1 h2h3 Reads back contents h2h3 of channel x XFP at register 

address h0h1 

VCSEL Driver 

temperature 

t h0h1h2h3 Reads back analogue to digital converted output of 

VCSEL driver temperature sensor 

User Input 

Error 

Any input outside 

the command 

format 

??  

System Error Correctly 

formatted input 

##  
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3.4.9.4. ASCII command exchange demonstration 

An example of the ASCII command use and format is shown below. 

 

User Input 

StorConnTest2 Output 

 

Table 3-6: StorConnTest2 Microcontroller ASCII Command Exchange 

Rdy Upon reset the StorConnTest2 unit initialises user interface 

wF00F  Enable all StorConn2 Equalisers 

 Enable transmit on all XFPs 

 Power up all XFPs 

 Enable StorConn2 VCSEL driver, optical receiver and optical receiver 

squelch function 

ok Operation confirmed 

r Read back static control lines 

F8  StorConn2 Equalisers all detecting signal from optical receiver 

 Optical receiver verifies global signal detect 

 No transmit faults on VCSEL driver 

y100 Read back contents of register 00 on XFP A over the I²C interface 

06 XFP reads back hex value “06” identifying itself as an XFP 

ww User input outside the specified format 

?? User input error message 

y100 Correct input  

## Error due to I²C interchange failure 

Carriage Return Carriage Return on its own 

No Response StorConnTest2 is forced into an idle state 

 

3.4.9.5. Global User Interface (GUI) description 

The author designed the complete Global User Interface to control the Storlite demonstration platform using the 

Visual BASIC software language. 
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For the purposes of general user accessibility, the low level command interface is overlaid by the “OptoPhy” 

GUI, the main features of which are described below. 

 

 

Figure 3-44: Main screen / comm control tab 
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Figure 3-45: Optical control tab 
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Figure 3-46: XFP control tab 

 

3.4.10 StorConnPwr2 – passive electrical backplane 

In addition to the optical backplane, StorConnOpt2, a separate passive electrical backplane was designed to 

supply power to the StorConnTest2 daughtercards when they were in situ. 

 

3.4.10.1. Physcial and component layout 

The StorConnPwr2 card was populated with two C-PCI receptacles to accommodate the C_PCI power plugs on 

the StorConnTest2 daughtercards and a five way header Power connector to accommodate an external power 

supply. Power filtering capacitors and indicator LEDs comprise the remaining components. 

Table 3-7 shows the component listing. 
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Table 3-7: StorConnPwr2 component listing 

Component Supplier Part No. Description 

C-PCI 

Receptacle 

ERNI 

 

 

923190 

 

Shielded electronic connector 

Five way 

Header 

Molex 

 

 five pin power connector 

 

Figure 3-47 shows the component layout and physical outline of the StorConnPwr2 card. Figure 3-48 shows the 

PCB layer stack-up of the StorConnPwr2 card. 

 

 

Figure 3-47: StorConnPwr2 physical layout 

 

 

Figure 3-48: StorConnPwr2 PCB layup 
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3.4.11 Storlite demonstration platform 

An assembly was constructed to demonstrate the proposed optical backplane connection system. 

Figure 3-49 shows the iterative assembly of the Storlite demonstration platform starting from the aluminium 

enclosure (Figure 3-49a), the StorConnPwr2 backplane assembled (Figure 3-49b), one StorConTest2 

daughtercard plugged into the StorConnPwr2 backplane (Figure 3-49c) and the completely populated enclosure 

(Figure 3-49d), which is elaborated in Figure 3-50. 

 

 

Figure 3-49: Assembly process for Storlite demonstration enclosure: a) unpopulated enclosure, b) 

Enclosure populated with only StorConnPwr2, c) enclosure populated with StorConnPwr2 and 

StorConnTest2, d) fully populated enclosure 

 

The assembly was comprised of two test line-cards (Figure 3-50d), each housing the prototype Storlite active 

connector modules and the passive optical waveguide backplane (Figure 3-50a) described in section 3.4 with 

connector receptacles (Figure 3-50b) assembled at each end. In addition a separate electrical backplane (Figure 

3-50c) was provided to supply power to both line cards. 
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Figure 3-50: Storlite demonstration platform a) Passive optical waveguide backplane (copper clad side 

shown), b) Pluggable optical backplane connectors, c) Electrical backplane, d) two test daughtercards 

 

The nature of the connection mechanism is such that the optical waveguides lie on the opposite side of the 

optical backplane to the side from which the connectors are plugged in. For this reason only the copper clad side 

of the backplane is visible when looking at the demonstration platform from the front, while the optical layer is 

visible when looking at the demonstration platform from the back as shown in Figure 3-51a. Figure 3-51b shows 

a close-up of a single waveguide on the Storlite backplane illuminated with visible light, while the backplane is 

in-situ in the demonstration chassis. 
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Figure 3-51: a) View of Storlite demonstration system from the back, b) Single waveguide illuminated 

with 635 nm visible light 

 

3.4.12 Test and measurement 

3.4.12.1. Xyratex 10 GbE LAN analyser 

In order to test the system for 10 GbE LAN applications, an in-house software tool developed by Xyratex was 

used to both generate a 10 GbE LAN test traffic stream and capture the received data and count the errors. 

Figure 3-52 shows a screen shot of the tool in operation after a 239 minute soak test with no errors recorded over 

the test period. 
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Figure 3-52: Screen shots from Xyratex proprietary 10GbE LAN test traffic generator and error counter 

showing zero errors 

 

3.4.12.2. Bit error rate estimation from error counts 

In the absence of a bit error rate tester, the bit error rate of a signal can be estimated from the error count to a 

statistical confidence level of 99% by applying the Binomial Distribution Function as described by Redd [149]. 

(1 has been adapted from [149] to describe the number of error free bits (n) that need to be received in order to 

estimate the bit error rate (BER) of the signal with a given confidence level (CL). 

CL can take on any value between 0 and 1. 
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n = −
𝑙𝑛(1 − 𝐶𝐿)

𝐵𝐸𝑅
 

 

 (1) 

 

Given a required confidence level of 99% (0.99), the number of error free bits to be received is given by (2. 

n =
4.605

𝐵𝐸𝑅
 

 

 (2) 

 

Equation (3 gives the minimum time t for which a signal of data rate (db/ds) can be measured and over which no 

errors should occur in order to estimate a bit error rate (BER) with a confidence level of 99%. 

t =
4.605

𝐵𝐸𝑅(𝑑𝑏/𝑑𝑠)
  

 

 (3) 

 

Table 3-8: Test conditions to estimate BER on a 10 Gb/s signal from error counts with a 99% confidence 

level 

Bit error rate Number of error free bits to be 

transferred 

Required error free length of test time / 

hours 

10
-12

 4.605 x 10
12

 0.13 

10
-13

 4.605 x 10
13

 1.28 

10
-14

 4.605 x 10
14

 12.79 

10
-15

 4.605 x 10
15

 127.92 

 

3.4.12.3. Parallel optical interface evaluation 

As mentioned, the purpose of the MT pins protruding through the GRIN lens ceramic support structure on the 

StorConn2 transceiver was to engage with a compliant receptacle on the optical waveguide backplane and draw 

the image points of the GRIN lens array into precise alignment with the waveguide end facets. Furthermore, this 

also allowed for a standard 6x12 MT ferrule terminated fibre jumper, of which the lowest row was populated to 

match the required offset, to be attached to the StorConn2 optical interface (Figure 3-53a), thus supporting stand-

alone testability of the photonic interface itself using MT fibre-optic patch-cords (Figure 3-53b). 
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Figure 3-53: a) Storlite transceiver opto-mechanical interface with all VCSELs activated, b) Storlite 

transceiver opto-mechanical interface with MT patchcord attached for stand-alone testing 
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The StorConnTest2 test daughtercard was powered outside the chassis through the auxiliary power connector 

rather than via the CompactPCI connector. An external 10 GbE LAN test data pattern was generated by the 

Xyratex 10 GbE LAN analyser at a data rate of 10.3 Gb/s was conveyed to the transceiver transmit ports via the 

commercial XFPs on the front end of the test line card (Figure 3-54). The optical interface was mated to an MT 

patchcord with 62.5µm fibre fan-out, allowing direct characterisation of the transmitted output from each 

channel in terms of jitter and output power on a Tektronix CSA8000B communications signal analyser. 

 

Figure 3-54: Storlite test line card (powered) with transceiver attached (without connector housing) for 

stand-alone evaluation of the transceiver with an MT patchcord 

 

The VCSELs were driven with bias and peak-to-peak modulation currents of 11.91 mA and 9.8 mA respectively. 

The measurements were consistent showing an average jitter of 31.2 ps (0.32 UI, Unit Interval expressed as a 

fraction of the bit period), which is within the jitter thresholds for both transmitter input (0.61 UI) and receiver 

output (0.363 UI) as specified by the XFP MSA [150]. In addition the VCSELs exhibited an average optical 

power of 0.43 mW. 
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3.4.12.4. Eye diagram capture 

An eye diagram is a very useful means of evaluating the integrity of a digital signal. It is a superposition of 

multiple traces of a digital signal as would be recorded on an oscilloscope, thus over a sufficient amount of time 

all transitions (0-0, 0-1, 1-0 and 1-1) will be shown, giving rise to a pattern that resembles an eye. 

A “clean” signal will exhibit little deviation from the ideal trigger point derived from the exact data rate of the 

signal, thus the superimposed signal traces will lie cleanly over each other, giving rise to an “open eye” with thin 

composite trace lines. A poor signal with high jitter, however, will deviate from the ideal trigger point, causing 

the superimposed lines to be staggered with respect to each other, and therefore the composite trace lines, the 

“sides of the eye”, will appear to become thicker. In the case of a very poor signal, the lines will be so thick that 

the central clearance will disappear entirely, giving rise to a “closed eye”. Analysis of an eye diagram can be 

used to extract a wide variety of signal characteristics including peak-to-peak jitter, extinction ratio, rise time and 

fall time. Each eye diagram shows the time  per horizontal unit in the bottom right hand corner and the full 

voltage amplitude of the signal in the top right hand corner. The time per division is determined by the data rate. 

The full voltage varies depending on the strength of the received optical signal. 

The signal eye diagrams of all four channels are recorded in Figure 3-55. Each eye diagram was measured with 

the three other sources off.  
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Figure 3-55: Eye diagrams of all four VCSEL channels driven at 10.3 Gb/s with a bias current of 11.91 

mA and a modulation current of 9.8 mA. Each VCSEL was measured with all other VCSELs off 

 

3.4.12.5. Bit error rate performance estimate 

A loop-back test was carried out whereby the MT fibre patchcord attached to the Storlite transceiver optical 

interface was configured such that the four fibres coupled to the four VCSEL ports were looped back to the four 

fibres coupled to the four PIN photodiode ports. The performance of the four bidirectional optical links was 

characterised using the Xyratex 10 GbE LAN analyser, which generated a 10 GbE LAN test pattern and 

provided an error counter on the received stream. The 10 GbE LAN test data pattern was conveyed directly from 

the VCSEL under test to the PIN photodiode coupled to it. The signal was then reconverted into a high speed 

differential signal, passed to another XFP on the front end and the output of that sent back to the 10GbE LAN 

network analyser. A four hour soak test showed unimpaired traffic throughput in the loop-back configuration 

described. Based on the testing times indicated in Table 3-8, each link was measured for over two hours with no 
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errors recorded thus demonstrating a bit error rate of at least 10
-13

 at a confidence level of 99%. In accordance 

with 10 GbE LAN specifications, the BER limit of 10
-12

 was therefore satisfied throughout the test cycle. 

 

3.4.12.6. Optical waveguide signal integrity characterisation 

A group of 12 waveguides was directly characterised by attaching two MT patchcords with 62.5µm fibre fan-out 

to the compliant receptacles at each end of the waveguide group. Optical test data generated by the proprietary 

Xyratex 10 GbE LAN network analyser with a wavelength of 850 nm and a data rate 10.3 Gb/s was launched 

into the waveguide under test through the first connected MT patchcord and extracted from the waveguide by the 

second MT patchcord. The signal was then passed to the communications signal analyser. Each of the 12 

waveguides was characterised in this fashion. The waveguide end facets had been diced but not polished. 

The characterisation activity was repeated with the ingress and egress waveguide end facets untreated (Figure 

3-56a) and treated (Figure 3-56b) with isopropanol, which served as an index damping fluid. The refractive 

index of isopropanol at 850 nm is 1.3776. As the refractive index of the core polymer is 1.56, this does not serve 

as an index matching fluid, however treating the interfaces with this fluid significantly reduces the index 

difference between the core and the material filling the gap between the waveguide end facet and the MT ferrule 

fibre. Therefore the end facet scattering losses are also reduced. It was decided to opt for the alcohol-based 

isopropanol rather than a refractive index matching oil as the former would be more easily removable, while the 

latter would have been difficult to completely remove making repeated measurements less reliable. Each eye 

diagram was measured with all other sources off. The horizontal time scale is 14 ps / horizontal division, which 

is consistent with the representation of a 10.3 Gb/s signal. The vertical voltage scale adjusts itself to the 

amplitude of the received signal and thus varies depending on the strength of the received optical signal. 
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Figure 3-56: Eye diagrams of 10.3 Gb/s optical signals after propagation through 12 waveguides under 

test. a) Eye diagrams captured without index damping fluid applied on waveguide end facets, b) Eye 

diagrams captured with index damping fluid applied on both ingress and egress waveguide end facets 
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Figure 3-57: a) Total jitter of 10.3 Gb/s signals measured across 12 waveguides without index damping 

fluid (blue graph) and with index damping fluid (red graph), b) Comparative average optical power 

measured at the communications signal analyser across 12 waveguides without index damping fluid (blue 

graph) and with index damping fluid (red graph) 

 

The application of index damping fluid on the ingress and egress waveguide end facets gave rise to average 

reduction in jitter of 65.82% and an average improvement in optical power coupling of 4.181 dB. 

It is clear from the graphs that differences in end facet quality from waveguide to waveguide can have a 

substantial impact on signal integrity. As expected the application of index damping fluid mitigates the 

differences in end facet quality and in the case of Figure 3-57a transforms the strong variation in jitter to a more 

or less uniform profile. In Figure 3-57b, it can be seen that the optical power transmission profile across the 12 
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waveguides under test is more or less maintained, but simply shifted in magnitude denoting a larger attenuation 

on those channels, the end facets of which have not been treated with isopropanol compared to those with 

isopropanol treatment. 

 

3.4.12.7. Connector interface characterisation 

The Storlite transceiver connector was docked to the optical waveguide backplane and different VCSEL 

channels activated. Fig. 33a shows the egress waveguide interface with one VCSEL channel activated and one 

waveguide illuminated with 850 nm light. Fig. 33b shows the egress waveguide interface with two non-adjacent 

VCSEL channels activated and their corresponding waveguide channels illuminated. 
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Figure 3-58: View of exposed optical backplane waveguide egress interface with Storlite connector 

attached to ingress interface. a) VCSEL channel one (furthest left) activated and 850 nm light exiting 

single egress waveguide, b) VCSEL channels one and four activated and 850 nm light exiting two egress 

waveguides 750 µm apart 

 

The transceiver connector was docked to the optical PCB and an MT patchcord to the egress waveguides at the 

other end (Fig. 34). The extracted data-stream was characterised after passage through the butt-coupled 

connection and polymer waveguides. 
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Figure 3-59: Characterisation setup for Storlite optical interface connection to optical backplane 

 

The author carried out a comparative assessment on how the preparation of the optical PCB interface surface 

affects both interface scattering losses and high-speed signal integrity in terms of jitter. The author considered 

three waveguide end facet preparations: a) diced with isopropanol applied to the ingress and egress waveguide 

end facets (best case), b) diced and polished, c) diced only (worst case). The MT patchcord was attached directly 

to the optical transceiver interface and the output directly characterised to provide a reference against which 

these use cases could be evaluated. For each of the three end facet preparations, the total jitter (deterministic 

jitter + random jitter) and the optical insertion loss was measured on each of the four VCSEL and waveguide 

channels under test. The results in Table 3-9 show the average values of total jitter in UI and relative optical loss 

in dB compared to the reference signal. All measurements were made on a single waveguide, namely the second 

waveguide from the outer most waveguide. 
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Table 3-9: Waveguide end facet characterisation 

Case Waveguide End Facet Preparation Total Jitter / UI Relative Loss / dB 

One No Waveguide (Reference) 0.3389 0 

Two Diced with Isopropanol applied to 

ingress and egress end facets 

0.3595 4.5 

Three Diced and polished 0.5593 6.9 

Four Diced only 0.8899 7.9 

 

The total link margin is determined by the difference between the nominal emission power of the source and the 

minimum amount of optical power that the receiver can capture while still able to resolve the signal to an 

acceptable quality. The nominal emission power of the ULM VCSEL is 2 mW (3.01 dBm). An exact value for 

receiver sensitivity could not be provided by the manufacturer, therefore the value for receiver sensitivity used 

has been taken from commercial transceivers with similar components operable at the same wavelength. The 

receiver sensitivity of the PDs required to resolve a 10.3 Gb/s signal is therefore taken to be 0.15 mW (-8 dBm). 

The link margin is calculated as 3.01 dBm – (-8 dBm) = 11.01 dB. Therefore, based on the values in Table 3-9, 

the loss values on all waveguides fall within the link margin, therefore in principle each waveguide could sustain 

a 10.3 Gb/s optical signal. 

 

 

Figure 3-60: Relative loss / dB and total jitter / UI for each use case listed in Table 3-9. 

 

The optical signal waveforms for the four cases outlined in Table 3-9 are shown in Figure 3-61. 
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Figure 3-61: Eye diagrams for four use cases: a) Storlite VCSEL is connected directly to communications 

signal analyser via MT fibre-optic patchcord (Reference), b) VCSEL connected to waveguide with 

isopropanol applied to ingress and egress end facets, c) VCSEL connected to waveguide with end facets 

diced and polished, d) VCSEL connected to waveguide with end facets only diced 

 

Figure 3-60 and the waveforms in Figure 3-61 show that both jitter and relative loss increase significantly as the 

surface quality of the waveguide end facets diminishes. 

The impact of the surface quality of waveguide end facets on overall waveguide insertion loss will be treated in 

more detail in the next chapter with a novel and commercially viable solution proposed and characterised to 

reduce end facet scattering losses. 

 

3.4.12.8. Full demonstrator loop-back test through optical backplane 

The demonstration platform was fully populated (Figure 3-62). The 10 GbE LAN test data pattern at a data rate 

of 10.3 Gb/s was generated by a proprietary Xyratex network analyser and conveyed along an optical fibre to a 

commercial XFP on the front end of the test line card. The XFP converted the optical signal into a differential 

electronic signal, which was routed to the dedicated Storlite transceiver VCSEL transmitter to which it was 

electrically wired on the line card PCB. The electronic test signal was then converted by the VCSEL driver and 

VCSEL on the first transceiver board into an optical signal, which was imaged into the waveguide ingress facet 

through the GRIN micro-lens in the transceiver interface. The optical signal propagated along the embedded 
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multimode waveguide to the GRIN micro-lens of the optical interface of the second transceiver attached to the 

other backplane receptacle and was imaged into the active area of the PIN photodiode. The resulting modulating 

electrical current was then converted by the TIA/LA back into a differential electronic signal. The electronic 

signal was routed along the second test card to an XFP on the front-end. The XFP converted the signal into an 

optical signal, which was conveyed by a multimode 62.5 µm graded index fibre to the communications signal 

analyser. 

Repeated four hour soak test cycles consistently showed unimpaired traffic throughput in the loop-back 

configuration described. Based on the testing times indicated in Table 3-8, each link was measured for over two 

hours with no errors recorded thus demonstrating a bit error rate of at least 10
-13

 at a confidence level of 99%. In 

accordance with 10 GbE LAN specifications, the BER limit of 10
-12

 was satisfied throughout the test cycle. 

 

 

Figure 3-62: Storlite demonstration platform populated with two test line cards with proprietary 

pluggable connectors plugged into a passive optical backplane and a passive electrical backplane. 
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3.5 Summary 

In this chapter, the invention, design and development of a first generation active pluggable optical connector 

has been described in detail, which allowed peripheral daughtercard devices to plug into and unplug from a 

passive optical backplane with embedded multimode polymer waveguides. The first generation optical connector 

required a two stage connection process, by which the active connector, mounted on a daughtercard was first 

plugged into the optical backplane, and then a user required to directly turn a cam on the connector housing to 

initiate the second, final stage of optical coupling, which brought the GRIN micro-lens and the waveguide 

interfaces into physical contact. Of course this would not be an appropriate process for a commercial connector 

in the long term as it would require users to reach into the enclosures to turn a cam each time a daughtercard was 

to be plugged in or removed. The efficiency of the module operating at 10.3 Gb/s was calculated to be 21.6 

pJ/bit. 

A technique was invented and successfully deployed to passively align and assemble optical receptacles to the 

multimode waveguide interfaces on an OPCB backplane with high precision. In order to avoid drilling notches 

either side of each waveguide interface close to the registration stubs, it was necessary to use an offset receptacle 

design, whereby the datum between the mechanical alignment slots is offset from the channel interface. This 

offset could however give rise to additional misalignment issues due to the pivoting effect between the datum 

and the channel interface. The greatest weakness of the first generation receptacle design, is that the waveguide 

end facets are exposed to the elements. In a forced air environment, this increases the risk of dust contamination 

and accumulation on the polymer acrylate end facets, which, after all, share many of the same physical 

properties as many adhesives. 

A complete demonstration platform was designed and developed to test two daughtercards connecting to a 

separate passive optical backplane and power backplane. In order to focus on the validation of the active optical 

connector and the passive alignment techniques, the design of the demonstrator was simplified, with just the two 

daughtercards facing each other. This way the simplest optical waveguide design, based on straight groups of 12 

waveguides could be used. This however would not be consistent with a typical backplane communication 

system, in which multiple daughtercards would be typically oriented in parallel rather than facing each other. 

In the next chapter, the design and development of a second generation of active OPCB connector, enhanced 

backplane waveguide receptacle and an advanced demonstration system will be detailed, which addresses all the 

concerns raised above. 
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4 SECOND GENERATION 

PLUGGABLE ACTIVE OPTICAL 

CIRCUIT BOARD CONNECTOR 

FOR POLYMER WAVEGUIDE 

BASED ELECTRO-OPTICAL 

CIRCUIT BOARDS 

 

 

4.1 Introduction 

4.1.1 FirstLight project summary 

This chapter details the activities and achievements of the FirstLight project, which advances four key 

technology enablers namely i) low-cost, high precision techniques for passive alignment and assembly of optical 

interface components onto polymer waveguides, ii) complete pluggable in-plane connector solutions for 
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polymeric OPCBs, iii) design of compact optical waveguide layouts appropriate for data system midplane form 

factors and iv) fabrication of OPCBs with embedded polymer waveguides 

As the backplane and its peripheral daughtercards are connected in a mutually orthogonal way, the author 

developed a more advanced in-plane pluggable connector technology and connection scheme whereby the 

optical interfaces of optical transceiver modules housed on the mating edge of the peripheral cards can be butt-

coupled to optical channels embedded on the backplane (Figure 4-2a). This builds on the connection 

methodology demonstrated in the Storlite project [3], however utilizing an expanded beam connection allowing 

reduced susceptibility to dust and protecting the waveguide interfaces. According to this scheme the optical axis 

of the peripheral transceiver module is again collinear with the OPCB embedded optical channels, thus 

eliminating the need for right-angled mirrors and minimising the number of boundaries incurring optical loss. 

In order to evaluate the viability of these technologies in a data centre environment, the author designed a second 

generation optical backplane connection demonstration platform, the FirstLight demonstration platform, which 

brings these technologies together into a high bandwidth density data communications enclosure. 

 

4.1.2 FirstLight system design 

Table 4-1 contains the formal designations for each circuit board type designed for the FirstLight system. 

The author carried out the full design, development and characterisation of the FirstLight active pluggable 

optical connector including the StorConn3 quad parallel optical transceiver, and the StorConnTest3 10 GbE 

LAN physical layer relay card in the FirstLight platform. 

The author jointly designed the FirstLight electro-optical backplane (StorConnOpt3) with Kai Wang of 

University College London. Specifically, the author designed the electrical circuit board layers and electrical and 

optical component layout and developed the waveguide requirements specification including the optical channel 

mapping. Kai Wang co-designed and characterised the complex optical waveguide layout, which will be detailed 

in section 4.3. 
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Table 4-1: Storlite card designations 

Card designation Description 

StorConn3 Quad parallel optical transceiver circuit 

StorConnTest3 10 GbE LAN physical layer relay card 

StorConnOpt3 Electro-optical Compact-PCI backplane 

 

The FirstLight platform (Figure 4-2a) comprised four test daughtercards (StorConnTest3), which were plugged 

electrically and optically into an electro-optical backplane (StorConnOpt3), which incorporated conventional 

copper layers for electrical power distribution and electronic signal interconnect, and an optical interconnect 

layer comprising polymer optical waveguides. 

Each StorConnTest3 daughtercard supports one active pluggable optical connector, which incorporates the 

StorConn3 quad 10 Gb/s parallel optical transceiver circuit. 

The author developed an improved iteration of the pluggable active optical connector, which incorporated a high 

speed parallel optical transceiver and a passive alignment mechanism to ensure accurate dynamic optical 

engagement between the transceiver interfaces and the embedded polymer optical waveguides in the OPCB.  

As with Storlite, the polymer waveguide layer included self-alignment features to enable passive alignment and 

assembly of proprietary optical connector receptacle devices onto the polymer waveguides. A complex optical 

interconnect pattern was designed to meet exacting specifications to demonstrate how polymer waveguides 

would perform when subjected to the routing constraints expected within a conventional midplane form factor. 

Figure 4-1a shows the fully assembled FirstLight demonstration platform with the motherboard and all four test 

daughtercards inserted. Figure 4-1b shows the fully populated FirstLight enclosure powered up. 
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Figure 4-1: a) FirstLight demonstration enclosure fully populated, b) FirstLight demonstration enclosure 

powered 

4.2 FirstLight pluggable active electro-optical backplane connector 

The author developed a prototype active pluggable connector (Figure 4-2b) to allow optical connection between 

the peripheral line cards and the optical layer embedded in the backplane. The connector comprised a parallel 

optical transceiver (StorConn3), connector housing and a pluggable engagement mechanism. The connector 

housing and engagement mechanism were designed in conjunction with US connector company Samtec. 
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Figure 4-2: FirstLight pluggable optical PCB connector concept. Pluggable active connector modules are 

inserted into the top of an optical backplane and engage with an optical layer on the bottom side of the 

backplane: (a) Electro-optical backplane connection scheme; active pluggable connectors housed on the 

edge of peripheral line cards engage with the embedded optical layer in the backplane PCB. 

(b) Active optical connector comprising a parallel optical transceiver, connector housing and engagement 

mechanism. 
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4.2.1 StorConn3 – FirstLight quad parallel optical transceiver 

A quad parallel optical transceiver circuit was designed and developed to better implement the proprietary 

connection technique and address some of the weaknesses of the preceding StorConn2 circuit including: 1) the 

need to physically turn the cam on the connector to engage the optical interface after the daughtercard has been 

fully inserted, 2) the susceptibility of the exposed optical waveguide interface and optical connector interface to 

dust and 3) the lateral rigidity of the flexible bridge section i.e. a large amount of force is required to move the 

optical interface laterally, in any direction in the plane of the transceiver circuit. 

Figure 4-3 shows a functional diagram of the StorConn3 transceiver circuit. The functional principle of the 

StorConn3 circuit is similar to that of the preceding StorConn2 transceiver, in that it will allow the photonic 

interface to float freely within a given vertical range relative to the test daughtercard on which the transceiver is 

mounted. As with StorConn2, the StorConn3 base section contains a high speed electronic array connector, 

which conveys electronic signals to and from the transceiver circuit from and to the StorConnTest3 test 

daughtercard PCB, on which the transceiver is mounted. The high speed differential signals are conveyed from 

the base section across a flexi-rigid bridge to the optical interface section. The optical interface comprises a four 

channel 850 nm VCSEL transmitter array and corresponding VCSEL driver array, and a four channel 850 nm 

PIN photodiode receiver array with corresponding TIA array. Each of the four differential electronic signals 

output from the TIA pass through a 10.7 Gb/s adaptive receive equaliser after which it is conveyed via the high 

speed electronic array connector to the StorConnTest3 test daughtercard. 

StorConn3 has the following differences compared to its predecessor: 

i. The optical interface is designed to be compliant with a 1x12 MT ferrule interface, in which 

the optical channels are located on the datum connecting the two MT pins protruding through the board, 

rather than offset. 

ii. The lens used is a geometric microlens array rather than a GRIN lens array and forms one half 

of a dual lens expanded beam optical interface, which both renders the connection less susceptible to 

dust and protects the OPCB waveguide interface. 

iii. The flexible bridge contains slots between the differential pairs in order to improve the 

mechanical flexibility in both the vertical direction (normal to the plane of the transceiver circuit) and 

the lateral direction (in the plane of the transceiver circuit) 

iv. A microcontroller is on the transceiver itself rather than the test daughtercard 
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Figure 4-3: Functional diagram of StorConn3 

 

Figure 4-4 provides an annotated view of the StorConn3 quad transceiver circuit mounted on a partially flexible 

and rigid substrate. The transceiver circuit comprised three sections: a base section (Figure 4-4e), a flexible 

bridge section (Figure 4-4d) and a moveable optical platform (Figure 4-4c). The circuit was constructed on a 

flexible laminate substrate, which was reinforced with rigid FR4 layers in the base section and optical platform 

leaving the intermediary bridge section flexible. The base section allowed for the electrical connection of the 

transceiver to the peripheral line card by means of a high speed electronic array connector provided by Samtec 

capable of supporting data rates up to 11 Gb/s.  
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Figure 4-4: Parallel optical transceiver circuit and optical interface a) Front ramped plug, b) Optical 

platform guide pins, c) Optical interface, d) Flexible bridge, e) Rigid base section, f) Microcontroller, g) 

MT compatible alignment pins, h) Micro-lens array, i) Quad VCSEL array, j) Quad PIN photodiode 

array, k) Quad VCSEL Driver array, l) Quad transimpedance amplifier/limiting amplifier TIA/LA array 
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A microcontroller (Figure 4-4f) provided a two-wire control interface through which various parameters of the 

transceiver could be externally controlled or monitored including laser bias and modulation currents, receiver 

squelch, signal detect and IC temperature read back. The design allowed for multiple transceivers to operate as 

slave devices on a single two-wire communications bus. 

The moveable optical platform contained a quad VCSEL array (Figure 4-4i), a VCSEL driver array (Figure 

4-4k), a PIN photodiode array (Figure 4-4j) and a quad transimpedance amplifier/limiting amplifier (TIA/LA) 

(Figure 4-4l). The uncooled VCSELs emitted at a nominal wavelength of 850 nm with a full beam divergence of 

30º giving rise to an N.A. of 0.26, which is 78% of the N.A of the backplane waveguides. The PIN photodiodes 

were responsive to the same wavelength and had a circular receive aperture of 70 μm diameter, which was 

chosen to be large to maximise misalignment tolerances and to reduce modal or speckle noise. The PIN 

photodiodes, which were held under reverse bias, had a nominal responsivity of 0.62 A/W and a bandwidth of 

7.8 GHz. Zarlink provided the quad VCSEL arrays, VCSEL driver arrays, TIA arrays and PIN photodiode 

arrays. 

Two MT pins were assembled into the optical interface platform. The VCSEL and photodiode arrays were pre-

attached to a lead frame, which included two MT compliant guide slots. These were used to guide the lead frame 

over the pins and thus accurately align the VCSEL and photodiode arrays to the protruding MT pins. 

An MT compliant, twelve channel microlens array (Figure 4-4h) with two MT guide holes was aligned along the 

MT pins protruding from the optical platform, over the active emitting and receiving apertures of the VCSEL 

and photodiode arrays and attached to the lead frame with UV curable adhesive. The VCSEL and photodiode 

arrays were spaced apart on the lead frame such that the VCSEL emitting apertures were aligned to the four 

micro-lenses on the left hand side and the photodiode receiving apertures were aligned to the four microlenses on 

the right hand side (as seen from above with the base section on the bottom and optical interface on the top), thus 

the central four lenses remained unused. In future, it would be easy to incorporate higher channel numbers into 

the same form factor such as 12 or even 24 channel arrays. 

Each channel was capable of sustaining a data-rate of 10.3 Gb/s giving rise to an aggregate bandwidth of 82.4 

Gb/s. The optical connection interface comprised a collimating 112 micro-lens array and a pair of mechanical 

registration pins, designed to be compliant with MT style parallel optical interfaces. This allowed for stand-alone 

testing of both the transceiver and the backplane waveguides with a lensed MT terminated fibre-optic patch-

cord. The flexible bridge section allowed the optical platform to float relative to the peripheral device, thus 

ensuring that when coupled to the backplane, the optical connection remained relatively impervious to transient 

movements and vibrations in the system (Figure 4-4d). 
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The circuit was designed to be mounted into a connector housing (Figure 4-16), which included grooves to 

enable the required movement of the optical interface during the pluggable connection process described below. 

The transceiver included guide pins on the sides of the optical platform (Figure 4-4b), which engage with slots in 

the connector housing to support the connection process described later. The transceiver also included a ramped 

plug (Figure 4-4a) on the front of the optical platform, which engages with the primary receptacle in the 

backplane in the first part of the connection process. 

 

4.2.2 StorConn3 circuit hardware design 

The StorConn3 raw card consists of a Kapton Polyimide based flexible PCB laminated onto a six layer FR4 

reinforced rigid PCB in the optical head and base sections. The bridge section of the Kapton Polyimide PCB is 

not laminated onto an FR4 reinforced rigid PCB and is therefore mechanically flexible. In order to maximise the 

mechanical flexibility of the flexible bridge, slots were cut in the substrate between the high speed differential 

pairs. 

Figure 4-5 shows the physical shape of the card and the principal dimensions of its outline. 

 

 

Figure 4-5: StorConn3 circuit board form factor 

 

4.2.2.1. PCB layer stack-up 

Figure 4-6 outlines the complete layer stack-up of this circuit board. 
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StorConn3 has eight electrical layers, of which four are signal layers (layers one, three and six), two are ground 

layers (layers two and seven) and two are power layers (layers four and five). 

The high speed differential tracks are located on the top layer (layer one) and bottom layer (layer eight) and 

designed with a controlled differential impedance of 100 Ω ± 8%. As these differential tracks are on the surface 

layers and referenced to an adjacent ground layer, they are referred to as microstrip type. 

Layers three and six are used for low speed signals such as the two-wire interface signals between the 

microcontroller and the VCSEL driver and TIA arrays. 

 

 

Figure 4-6: StorConn3 PCB layer stack-up 
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4.2.3 Dual lens coupling solution 

As misalignment tolerance is important to minimise the connection cost, an expanded beam connector design 

was devised. The micro-lens array attached to the transceiver formed one half of a dual lens arrangement, and 

the second micro-lens array was part of the secondary receptacle, assembled over the waveguide interface on the 

backplane. When coupled, the transceiver lens array in combination with the backplane lens array served to 

image the VCSEL output into the backplane waveguide and the waveguide output into the photodiode aperture.  

Simulations were carried out by Omron using Zemax ray tracing software to select the optimum configuration of 

coupled micro-lenses required to image the output of the transceiver VCSEL onto the launch facet of the 

waveguide (Figure 4-7a) and the output of the waveguide onto the receiving aperture of the photodiode (Figure 

4-7b). It was determined that the best way to achieve this with minimum insertion loss was to deploy a focusing 

micro lens array P1L12A-F1 over the transceiver interface and a collimating micro lens array P1L12A-C1 over 

the waveguide interface as shown in Figure 4-8. A total insertion loss of 0.72 dB was calculated over the dual 

lens interface between the VCSEL and the waveguide, while a total insertion loss of 1.11 dB was calculated 

between the waveguide and the photodiode. 

It should be noted that the launch profiles from both waveguide and VCSEL were again assumed in the 

simulation to have a Gaussian profile. The output of a waveguide could be assumed to be Gaussian, if the 

waveguide geometry (length, bends) is such that it will promote sufficient mode mixing, however VCSEL source 

profiles are not completely Gaussian in nature, therefore this simulation could be further optimised in future. In 

the simulation the rectangular step-index waveguide was approximated by a cylindrical MMF with a core 

diameter of 75 µm and an N.A of 0.27, in order to accommodate the limitations of the modelling capability 

available. This is designed to produce a far field pattern, which is closely similar to that of the waveguide, 

however, although this is a free space coupling arrangement, the relative distances between the waveguide and 

coupling interfaces are not large enough to fulfil the far field condition. The far field condition requires that in 

order for a distance to be safely considered in the far field domain, the distance would have to be substantially 

greater than D
2
/λ, where D is the diameter of the aperture and λ is the wavelength. Therefore in future the 

simulation model would have to take the real shape and size of the aperture into account in order to provide more 

accurate results.  
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Figure 4-7: a) Model and simulation results of optimum dual lens arrangement to image VCSEL to 

multimode ingress waveguide end facet predicting 0.72 dB loss in this transition, b) Model and simulation 

results for optimum dual lens arrangement to image egress waveguide end facet onto PD active area 

predicting 1.11 dB in this direction. (Source: Omron) 

 

The free space distance between the VCSELs, photodiodes, waveguides and their respective lens arrays was 

chosen to ensure that, at the point of interface between the two lenses, the optical beam was expanded to a width 

many times that of the source width, whether the source was the VCSEL or the waveguide. An expanded beam 

width of 105 µm was predicted at the optical mating interface between the VCSEL and waveguide, while a 195 

µm beam width was predicted at the optical mating interface between the waveguide and the photodiode. One 

crucial benefit of this arrangement was to make the connector far less susceptible to contamination as any stray 

contaminants that settle on the lens interface would block a smaller proportion of the expanded beam than they 
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would a beam of similar size to the sources.  

 

 

Figure 4-8: Dual lens coupling interface between transceiver and OPCB 
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4.2.4 StorConn3 component layout 

Table 4-2 lists the main components of the StorConn2 card. Figure 4-9 shows the component layout.  

 

Table 4-2: StorConn3 component list and description 

Item Supplier Part No. Description 

Optical Head 

VCSEL Driver Primarion 

(Acquired by Infineon 

Technologies in April 2008) 

 

PX6514 

(obsolete) 

10 Gb/s data rate per channel (40 Gb/s 

aggregate data rate) 

TIA / LA PX6524 

(obsolete) 

10Gb/s optical receive system, 

Transimpedance amplifier & Limiting 

amplifier per channel 

Passive heatsink Xyratex inventory custom Attached to PCB onto copper slugs 

forming thermal contact with VCSEL 

Driver / Optical Receiver die 

VCSEL array 

(chip) 

Zarlink Semiconductor 

 

ZL60126 10 Gb/s Vertical Cavity Surface 

Emitting Laser array (1 x 4) 

PIN array (chip) Zarlink Semiconductor 

 

ZL60131 

 

10 Gb/s PIN photodiode array (1 x 4) 

Lead frame Zarlink Semiconductor 

 

113876 Lead frame with two MT pin slots, 

which holds the VCSEL and PIN array 

at a precise distance from each other 

such as to be compliant with 1x12 MT 

ferrule interfaces 

MT pin holder and 

ramped plug 

Samtec Custom design Custom part comprised of PC-ABS 

thermoplastic to fit under optical head 

including MT pin holding slots, ramped 

plug and heat staking pillars 

 

Heatsink Bromfield Precision Custom design Custom  heatsink, which supports 
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Engineering Ltd copper slugs under the VCSEL driver 

and TIA array ICs for more efficient 

heat transfer from ICs to heatsink 

Microlens array Omron 

 

P1L 1 x 12 geometric microlens array with 

MT pin slots, compliant with 1x12 MT 

ferrule interfaces 

Flexible Bridge 

No active or passive components 

 

Base 

 

Signal equalisers Maxim 

 

MAX3805 10.7 Gb/s Adaptive Receive Equalisers 

to improve signal integrity of 10 Gb/s 

differential  signals received from 

TIA/LA 

Mezzanine 

connector 

Samtec 

 

SEAF-15-05.0-

S-10-2-A 

Copper array connector receptacle 

supporting differential signals up to and 

exceeding 10 Gb/s data rate and low 

speed control signals. 

Microcontroller Microchip PIC18LF4331 Attached to PCB onto copper slugs 

forming thermal contact with VCSEL 

Driver / Optical Receiver die 
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Figure 4-9: StorConn3 component layout: a) MT compatible alignment pins, b) lead frame holding the 

VCSEL array and PIN photodiode array, c) quad VCSEL driver array IC, d) transimpedance 

amplifier/limiting amplifier TIA/LA array IC, e) microcontroller, f) rectangular slot in PCB for copper 

slug, g) adaptive signal equalisers, h) electrical array connector 
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4.2.5 StorConn3 card assembly process 

The complete assembly of the StorConn3 card requires, in addition to the conventional process of card 

population with standard passive and active components, the direct wire-bonded assembly of the VCSEL drive 

and TIA/LA array chips in raw die form, the integration of novel thermal dissipation structures and high-

precision passive alignment processes for both chips and opto-mechanical structures. 

The assembly process and sequence is outlined below. 

 

4.2.5.1. Mezzanine connector placement 

The Samtec SE ARRAY® (SEAF) high speed mezzanine connector is designed to provide high speed 

differential (10 Gb/s) and single ended electrical connection between two parallel boards. The connector utilises 

Ball Grid Array (BGA) for solder attachment to the PCB. 

 

4.2.5.2. Equaliser chip assembly 

The Maxim MAX3805 10.7 Gb/s adaptive signal equalisers, also used on the StorConn2 transceiver circuit, 

were packaged in a thin “quad-flat no-leads” (QFN) surface mount package with a thermal pad on the base and 

had to be assembled onto the board by means of a solder reflow process. 

Subsequently, all passive components including resistors and capacitors were solder-attached to the card in the 

standard manner. 

 

4.2.5.3. MT pin holding unit assembly 

Figure 4-10 shows a custom MT pin holding unit designed by Samtec to fit under the optical head section, which 

included: 

 MT pin holding slots populated with steel MT compliant pins of 0.7 mm diameter 

 a ramped plug, which forms part of the connection mechanism 

 four heat staking pillars, which allow the part to be permanently fastened to the PCB 

 cylindircal optical platform brass guide pins 

 



Chapter 4 Second Generation Pluggable Active Optical Circuit Board Connector for Polymer 

Waveguide Based Optical Circuit Boards 

170 

 

 

Figure 4-10: MT pin holder and ramped plug part 

 

The MT pin holding unit is aligned to the bottom of the optical head section, such that its four heat staking 

pillars and MT pins are slotted through compliant holes in the PCB. 

The MT pin holder is then fastened to the PCB through a thermoplastic staking process, whereby the four 

protruding heat staking studs are then softened and deformed through temporary application of heat in order to 

create an interference fit between the studs and the PCB upon cooling. 

 

4.2.5.4. Custom heatsink and thermal dissipation structures 

The author designed a custom heatsink, which was optimally shaped to maximise heatsink volume in the 

confined space under the optical interface. The heatsink, shown in Figure 4-11, includes a rectangular clearance 

(black), which will span both the VCSEL driver and optical receiver die, which each dissipate 0.55W. The 

clearance will allow a rectangular copper slug to be inserted, which will protrude through the compliant 

rectangular clearance in the PCB (Figure 4-9f) and form direct thermal contact with the base of the die and 

transfer the heat effectively into the heatsink volume. 

 

Figure 4-11: Custom heatsink: a) heatsink design, b) optical head section prior to heatsink attachment, c) 

optical head section with heatsink attached 
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4.2.5.5. Optical driver die assembly 

The Primarion PX6514 VCSEL driver and PX6524 optical receiver die (also used on the StorConn2 transceiver 

card) were positioned over the single rectangular thermal dissipation slug and attached to the top surface of the 

slug with a thermally conductive epoxy, thus establishing a thermal channel to the underlying custom heatsink. 

The die pads were then wire-bonded to the compliant pads on the PCB. 

 

4.2.5.6. VCSEL array and photodiode array lead frame assembly 

The Zarlink ZL60126 quad VCSEL array and Zarlink ZL60131 quad PIN photodiode array die were pre-

attached to a lead frame, which held the VCSEL array and PIN array at a precise location relative to each other 

and to two MT compliant pin slots (Figure 4-12). 

 

Figure 4-12: Zarlink lead frame holding VCSEL array and PIN photodiode array 

 

Figure 4-13 shows how the lead frame is aligned onto the PCB using the MT pins protruding through the PCB 

from the MT pin holding unit under the PCB. Once the lead frame is fully descended, the bases of the VCSEL 

and PIN photodiode die will be in physical contact with their respective pads (Figure 4-13a). 
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Figure 4-13: Lead frame alignment: a) optical head with two MT pins protruding through the PCB, b) 

lead frame slots aligned over the MT pins, c) lead frame fully descended into place. During actual 

assembly the VCSEL driver and PIN photodiode array ICs will already have been secured by this time 

 

The bases of the VCSEL array and PIN array are secured in place with a thermally and electrically conductive 

solder paste. The cathode and anode pads on the VCSEL and PIN arrays were wire bonded directly to the 

recipient pads on the VCSEL driver IC and TIA/LA IC respectively, thus substantially reducing attenuation and 

signal degradation effects compared to the approach with StorConn2 where the VCSEL and PIN arrays were 

bonded to the PCB first and then to the VCSEL driver and TIA/LA array ICs.  

 

4.2.5.7. Geometric lens assembly 

Figure 4-14 shows dimensioned drawings of the Omron P1L geometric microlens array, with 12 microlenses 

and 2 MT compliant pin slots, which was designed to fit over a 1x12 MT ferrule interface to form a lensed, 

expander beam assembly. The entire part was comprised of a proprietary polycarbonate material, which was 

injection moulded. On the bottom surface there are four mounting feet and 12 protruding half convex 

microlenses. The mounting feet are the same thickness as the microlens protrusions and prevent damage to the 

microlens surfaces when the microlens assembly is placed on a flat surface. The other surface is completely flat 

and is designed to be the mating surface, which makes physical contact with the flat surface of another lensed 

MT ferrule. 
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Figure 4-14: Dimensioned drawings of Omron P1L lens array (Source: Omron) 

 

As with the lead frame, passive alignment of the microlens array is achieved by easing the MT compliant pin 

slots in the microlens assembly onto the protruding MT pins and gently manoeuvring it down into position over 

the lead frame. 

Figure 4-15 shows the optical head with the Omron microlens assembled and the MT pins protruding through 

them 

 

 

Figure 4-15: Optical interface section with Omron microlens assembled 
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4.2.6 Pluggable connector mechanism 

As shown in Figure 4-16 the transceiver circuit (Figure 4-16a) was assembled into a connector housing (Figure 

4-16b) wherein the two lateral guiding pins, which form part of the transceiver optical platform were slotted into 

compliant grooves in the housing (Figure 4-16c).  

This enabled the controlled movement of the optical platform relative to the housing as required during the two-

stage pluggable connection process, which is described as follows: As the peripheral line card is first inserted 

into the backplane, the ramped plug at the front end of the transceiver is funneled into the larger primary 

backplane receptacle and the transceiver lens array moved into position under the backplane lens array housed in 

the secondary receptacle (Figure 4-17a). 

As the connector is then pushed further into the larger backplane receptacle, the lateral guiding pins on the 

optical platform are guided along the grooves in the connector housing, which are angled such as to move the 

transceiver lens array towards the backplane lens array. The MT pins on the optical platform then engage with 

the MT compliant slots in the secondary receptacle aligning both lens arrays to each other with a high degree of 

precision (Figure 4-17b). When the peripheral line card is extracted, the connection process is reversed. 
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Figure 4-16: a) Optical transceiver circuit mounted on flexi-rigid substrate, b) Connector module housing, 

c) Grooves to enable required movement of optical interface during mating process.  
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Figure 4-17: a) Optical connector during first stage of coarse engagement with OPCB connector 

receptacle, b) Optical connector fully plugged into OPCB connector receptacle 
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4.3 StorConnOpt3 - electro-optical backplane with embedded polymeric 

waveguides 

4.3.1 Polymer optical waveguide layer 

A passive OPCB backplane was designed, which included ten electrical layers devoted to power distribution and 

low-speed signal communication and one optical polymer interconnect layer to convey high speed (10.3 Gb/s) 

serial data between peripheral active optical connectors plugged into the backplane. The optical interconnect 

layer was fabricated from an acrylate/polyurethane polymer, which was proprietary to IBM Research, exhibiting 

a propagation loss of 0.03 - 0.04 dB/cm at a wavelength of 850 nm. The optical layer stack comprised a core 

layer, sandwiched between a lower and an upper cladding, whereby the polymer in the guiding core layer had a 

higher refractive index than that in the bounding cladding layers (Figure 4-18). The refractive index of the core 

material was ncore = 1.5600, while that of the cladding was ncladding = 1.5240, giving rise to step-index multimode 

waveguides with a core - cladding index difference of ∆n = 2.3% and a numerical aperture (N.A.) of 0.33 as 

measured at a wavelength of 850 nm. Rectangular channels were patterned using a vectorial Laser Direct 

Imaging (LDI) writing process to define waveguides in the core layer with a cross-section of 70 μm x 70 μm, 

which was suitable to meet the launch and capture tolerances on the optical transmit and receive elements [151].  

 

 

Figure 4-18: Schematic illustrating waveguide embedded in lower and upper claddings (Source: IBM 

Research – Zürich) 
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4.3.2 Optical interconnect design 

A complex polymer waveguide interconnect layout was designed to form the optical layer of a 262 mm x 240 

mm electro-optical PCB and was guided by two key requirements: 

1) All midboard optical engagement interfaces were oriented in the same direction to allow line cards to be 

pluggable in arbitrary slots and interchangeable 

2) The design needed to demonstrate the routing compactness and manoeuvrability, which is typically required 

on a high density data storage system backplane. 

Therefore waveguide structures needed to be carefully designed according to a set of basic optical waveguide 

layout design rules [151] in order to minimise the optical loss in each waveguide segment and ensure aggregate 

(total) insertion loss for each waveguide falls within the receiver sensitivity threshold to allow bit error free 

signal transmission. 

The optical interconnect layer design, shown in Figure 4-19, was jointly designed by the author, Kai Wang at 

UCL and IBM Research. It was defined by a complex routing pattern (Figure 4-19a), which included four quasi-

rectangular optical engagement apertures, multiple non-orthogonal crossings and both negatively (Figure 4-19b) 

and positively (Figure 4-19c) cascading 90° bends. The engagement apertures were interconnected by a point-to-

point topology, whereby each aperture is connected by one bidirectional link (comprising two waveguides) to 

every other aperture, resulting in a total of 12 waveguides on the board. The sizes of the engagement apertures 

were determined by the form factor of the pluggable connector prototype, which will be described in the next 

section. It should be noted that the optical layout was not designed to minimise link losses, but to highlight 

different stressors. 
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Figure 4-19: a) Waveguide routing pattern with four optical engagement apertures for the FirstLight 

demonstrator, b) Negative cascading waveguide, c) Positive cascading waveguide 

 

A negative cascade is defined as one that occurs when one 90º bend is followed by another 90º bend, which 

curves in the opposite direction to the first bend, giving rise to an inflection point in the waveguide and a net 

waveguide angle change of 0º. A positive cascade occurs when one 90º bend is followed by another 90º bend, 

curving in the same direction as the first and thus giving rise to a net waveguide angle change of 180º. All, but 

two of the waveguides had four cascaded 90º bends comprising a negative cascade followed by a positive 

cascade. To minimise bend losses, a radius of curvature of 17 mm [152] was applied on all bends as this was the 

maximum permitted by the routing constraints on the board. A number of waveguides intersect in one or more 

positions to accommodate space restrictions. The crossing angles chosen range from 130º to 160º and the 

measured optical losses are 0.03 dB to 0.08 dB per crossing (Figure 4-20). 
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Figure 4-20: Top view micrographs showing two waveguides intersecting with (a) a crossing angle of 90
o
 

and (b) a crossing angle of 145
o
 (Source: IBM Research) 

 

The design of the optical layout was guided by optical insertion loss predictions, based on previous experimental 

measurements [152] carried out on photolithographically fabricated polymer acrylate test waveguide [120] 

samples. Optical bend loss over 90° waveguide bends, with radii higher than 13 mm has been previously 

measured to be at a consistent low value [151], therefore the minimum bend radii were chosen to be higher than 

13 mm in order to take polymer and waveguide fabrication into account. The power budget of each optical 

waveguide link depends on the optical transmitter output power and on the sensitivity of the receiver used in the 

system. A receiver sensitivity of -11.1 dBm [153], matching the photodiodes and receiver circuitry designed for  

the active connector, was selected as the threshold for receiving error free signals at 10.3 Gb/s for the system 

design. The output power of the optical transmitters deployed in the system was -1.48 dBm, which limited the 

maximum tolerable insertion loss in each optical link to a power budget of 9.62 dB. 

Though the relatively large minimum bend radii required at this stage would place significant routing constraints 

on future optical printed circuit board layouts, these could be effectively mitigated by refinement of 

manufacturing techniques or novel structuring of the waveguide to reduce bend loss as demonstrated by Xyratex 

[154]. 

 

4.3.3 Electro-optical PCB fabrication process 

The electro-optical backplane fabricated by Varioprint and IBM Research-Zürich was built up of ten copper 

layers and one polymeric layer. Preliminary tests on the electrical layers showed significant thickness variation 

on the complete stack-up of the PCB. Experimental characterisation of surface height variation of the optical 

substrate on the PCB was carried out by IBM Research-Zürich through surface roughness scans at various 

locations including an area containing copper fiducials, which served as alignment reference features for high 
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precision positioning of the waveguides onto the PCB (Figure 4-21a).  Scan 1 was taken on the surface near the 

edge of the optical substrate with no copper features underneath and yielded a measured surface height variation 

of ±12 µm across the PCB. Scan 2 was taken on the surface along the centre line of the substrate, which 

traversed some copper features and yielded a measured surface height variation of up to ±50 µm across the PCB 

(Figure 4-21b). 

 

 

Figure 4-21: a) Schematic of optical surface scan performed on an OPCB containing up to ten laminated 

copper layers. b) Experimental results of optical surface scan showing height variations up to ±50 µm. 

(Source: IBM Research – Zürich) 

 

If the optical layer were to have been deposited directly onto the electrical PCB surface by using the “doctor 

blade” method shown in Figure 4-22, the substrate surface variation would only be reduced by the factor of 0.6. 

This is due to the fact that the thickness of the polymer layer deposited by the doctor-blading process is 0.60 of 

the blade gap (the distance from the blade tip to the substrate). If the optical lower cladding layer were deposited 

over those features, the variations of lower cladding thickness would theoretically be reduced to ±30 µm (±50 

µm × 0.6) while the core thickness variation would be reduced to ±18 µm (±30 µm × 0.6) accordingly. 

 

Figure 4-22: Schematic depiction of polymer layer deposition using doctor blade method. (Source: IBM 

Research – Zürich) 
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Figure 4-23: Separate flexible polyimide substrate with optical polymer layers deposited and patterned. 

(Source: IBM Research – Zürich) 

 

It was consequently decided by IBM Research-Zürich that the optical layer should be fabricated on a separate 

flat flexible substrate which would later be laminated to the electrical PCB (Figure 4-23) in order to minimise the 

thickness variation of the optical waveguide features. 

A proprietary liquid cladding polymer was deposited onto a 100 μm thick polyimide substrate with a doctor-

blading process applied to control the thickness. The photosensitive polymer was uniformly cured with 

collimated ultraviolet light (365 nm) from a Mercury/Xenon (Hg/Xe) lamp to polymerise and cure the 100 μm 

thick lower cladding layer. A higher refractive index liquid core polymer was then deposited onto the lower 

cladding layer and doctor-bladed to a thickness of 70 μm. The core features were patterned using the laser direct 

imaging (LDI) technique whereby the beam of a GaN ultraviolet laser diode operating in continuous wave mode 

at 372 nm wavelength was moved across the substrate to selectively cure those parts of the core layer, which 

would form the waveguides (see Figure 4-24a). By means of a subsequent wet-chemical development process 
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step, the non-exposed parts were then removed. As the optical layers were fabricated on the comparatively 

smoother polyimide substrate, the waveguide core thickness variation was reduced to within ± 2 µm (Figure 

4-24b). 

 

 

Figure 4-24: a) Waveguides measured by microscopic top view fulfil width specification of 70 µm within ± 

2 µm. b) Waveguide heights experimentally determined by optical surface scanning satisfy target height of 

70 µm within ± 2 µm. (Source: IBM Research – Zürich) 

 

The electrical backplane was fabricated separately (Figure 4-25). Mechanical slots were milled into the 

polyimide backed optical layer and compliant pins assembled onto the electrical PCB in order to align both 

substrates together prior to a cold lamination process. Finally the optical engagement apertures were milled out 

within the outline of the backplane. The backplane was 262 mm long, 240 mm high and 4 mm thick (Figure 

4-26). 
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Figure 4-25: StorConnOpt3 electro-optical backplane prior to slots being milled out 

 

 

Figure 4-26: StorConnOpt3 electro-optical backplane with optical connector slots milled out and 

electronic CompactPCI connectors populated. A close-up view of a connector aperture is shown with a 

single curved waveguide and its egress point illuminated with 635 nm visible light. 
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4.3.4 Insertion loss measurements 

The measurements for optical insertion loss of the optical interconnects were conducted jointly by Richard 

Pitwon and Kai Wang at UCL. An ST connector packaged 850 nm VCSEL was connected to a standard 50/125 

μm step-index MM fibre with NAfibre of 0.22. The fibre core cross section and its NA were both smaller than the 

waveguide core cross section of 70 μm × 70 μm and the waveguide NAwaveguide of 0.33 respectively. This reduced 

the fibre coupling loss during the butt coupling measurement. The launch fibre was 10 m long and was wound 20 

times around a 38 mm diameter circular mandrel in order to maximise the distribution of optical power across 

the fibre modes and provide a worst case mode-filled near-field and far-field power distribution at the fibre 

launch facet (Figure 4-27). 

 

 

Figure 4-27: Far field pattern of launch fibre with and without mode filtering (Source: UCL) 
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The fibre was then butt coupled to the waveguide input facet. 

 

 

Figure 4-28: Predicted and measured values for insertion loss on a group of nine waveguides on the 

OPCB. The dashed line shows the 9.62 dB threshold 

 

The optical power at the launch facet of the fibre was measured to be -1.48 ± 0.02 dBm. The launch fibre was 

mounted on a group of motorised translation stages with sub-micron step resolution in three axes, x, y and z, to 

accurately align the fibre to the waveguide and to optimise coupling into the waveguide. A thin silicon 

photodetector with an 8 mm aperture was required to fit through the waveguide interface engagement aperture of 

the StorConnOpt3 backplane and aligned to the output facet of the waveguide in order to capture the light 

received through the waveguide and measure the waveguide insertion loss (Figure 4-29). 
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Figure 4-29: Use of large area thin silicon photodetector to fit into the mid board waveguide connector 

interface slots in order to directly measure optical output from waveguides 

 

The detector was calibrated against the light condition in the dark room where the measurements were 

conducted.  The loss measured for each waveguide included the coupling losses at the fibre-waveguide interface 

and waveguide-PD interface, absorption by the propagation medium, bend transition losses due to modal 

mismatch between waveguide segments of differing radii of curvature and losses incurred at crossing junctions. 

Though the FirstLight board contained 12 waveguides in total, the longest four waveguides were excluded from 

experimental characterisation due to damage during assembly. Insertion loss measurements were made on the 

remaining eight waveguides both with and without index matching fluid applied. The measurement results are 

shown in Figure 4-28 along with the original calculated values and highlight the strong dependence of loss on 

end facet roughness. The waveguides in the optical interconnect layout were designed to never exceed an 

insertion loss of 9.62 dB, the threshold required to achieve communication at a bit error rate of less than 10
-12

. 

Figure 4-28 includes the comparison of the calculated optical losses without index matching fluid (red column) 

and the measured insertion losses of waveguides without index matching fluid applied (blue column), which are  

on average 2.36 dB higher than the calculated predictions. The insertion losses of certain waveguides, i.e. 2, 4, 5, 

6, 7, 8 and 9 are in excess of the 9.62 dB error free threshold. The higher insertion losses are partially due to the 

higher scattering losses at the waveguide end facets, which depend on the surface roughness of the end facet in 

question. The surface roughness in turn depends on how the end facets were cut and polished. In this case the 
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waveguide end facets are located at the edges of the milled midboard optical engagement apertures. Though the 

end facet roughness of these waveguides could not be measured without damaging the OPCB, waveguides cut 

using similar milling techniques to those deployed on this board exhibit RMS surface roughness values ranging 

from 183 nm to 350 nm [155]. The grey columns in Figure 4-28 represent the calculated insertion losses with 

index matching fluid, the values for which are 2.40 dB lower than the waveguide losses calculated without index 

matching fluid applied. The green columns in Figure 4-28 represent the measured insertion losses with index 

matching fluid applied. The measured insertion losses on the eight waveguides were on average 2.93 dB lower 

than those measured without applying the index matching fluid (blue columns). The index matching fluid, 

however, is not a practical means of reducing the roughness of waveguide end facets in applications involving 

repeatable connection to the waveguides as the fluid tends to dry out gradually and may accumulate dust, which 

in turn will cause the end facet scattering losses to increase in an unpredictable manner. Therefore a more 

durable method using waveguide core polymer to smooth the end facets was developed and demonstrated to 

permanently reduce the end facet roughness. This process is shown in Figure 4-30. 

 

Figure 4-30: Process to deposit smooth thin film over waveguide end facets in order to reduce coupling 

loss [155]  
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The deployment of this technique, reported by Bagshiahi et al.[155], improved waveguide transmissivity by 0.49 

dB on average compared to waveguides with index matching fluid applied.  

Figure 4-31 shows a view of the OPCB backplane in the laboratory with a waveguide illuminated with 650 nm 

visible light. In this set-up, shown on the left hand side, the MT interface of a fibre-optic test jumper is aligned 

actively such as to butt-coupled directly to the unpopulated waveguide interface. 

 

 

Figure 4-31: Top view of OPCB backplane with one waveguide illuminated with 650 nm light 

 

4.3.5 Optical waveguide signal integrity characterisation 

Bit Error Rate (BER) tests were carried out across the eight waveguides directly using an Anritsu signal analyzer 

MT1810 and a SPF+ driver and receiver unit and applied index matching fluid at both the launch and exit facets 

of the waveguides. The SFP+ unit [153] had the same sensitivity as the XFP model employed in the system, but 

excluded the clock recovery unit, so that the quality of the raw signal could be measured. A PRBS 

(Pseudorandom binary sequence) 2
31

-1 pattern length Ethernet LAN traffic 10.3125 Gbit/s bit rate was generated 

by the MT1810 and was used to modulate the SFP+ transceiver. The optical signal was guided by a MM fibre, 
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which was butt coupled to a waveguide channel on the prototype backplane. The output from the waveguide was 

captured by another MM fibre, which was connected to the receiver port of the SFP+ unit on the BERT. We 

were able to test individual channels with this arrangement. An error rate of less than 10
-12

 was achieved through 

each of the eight waveguides under test.  
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4.4 Passive alignment and assembly method 

One crucial requirement for the commercial deployment of optical PCB technology is a low-cost technique for 

the high-yield assembly of optical interface components onto the optical layers. In order to enable high volume 

assembly it is preferable that such techniques be passive and repeatable. A proprietary fabrication technique and 

method of passively aligning and assembling parallel optical microlenses to embedded polymer waveguide 

arrays was successfully developed [24,30,31]. These form a critical part of the pluggable in-plane connection 

interface between arbitrary external optical devices, either passive or active, and a PCB embedded optical circuit. 

 

4.4.1 Improvements over Storlite design 

Unlike the Storlite connector interface, on which the waveguide array was offset from the MT pin datum, the 

waveguide array on the FirstLight version was in line with the MT pin datum thus increasing optical interface 

stability against pivoting effects. 

As before the MT pin slots were required to be incorporated into a precision moulded mount (Figure 4-32a), 

which was self-aligned to the waveguides with very high accuracy using registration features in the waveguide 

core layer situated at either side of the waveguide array. In order to accommodate the need for the waveguide 

array to be inline with the MT pin datum, slots must be machined in the PCB either side of the waveguide array 

to accommodate the “feet” of the MT mount (Figure 4-32b). 

The challenge to the PCB fabricator is that due to manufacturing tolerances the registration stubs must be 

reduced in size and brought closer to the end waveguides to allow the registration wings of the waveguide 

receptacle to engage both laterally and have enough room between the outer edges of the registration features 

and the edge of the PCB recess to engage vertically. A method of further improving robustness of the precision 

alignment method in future is outlined in section 7.2.4. 

 



Chapter 4 Second Generation Pluggable Active Optical Circuit Board Connector for Polymer 

Waveguide Based Optical Circuit Boards 

192 

 

 

Figure 4-32: Requirements specification for FirstLight waveguide receptacle: a) waveguide receptacle 

with 1x12 MT compliant interface, b) waveguide array with self-alignment features and PCB machined 

recesses, c) waveguide receptacle passively aligned over waveguides using self-alignment features 

 

4.4.2 Fabrication of passive alignment features 

The complete fabrication process for the passive alignment features on the optical layer is outlined in Figure 

4-33. The procedure involves the fabrication of passive mechanical registration features in the core layer during 

the same process step in which the waveguide cores themselves are patterned. Effectively these serve as 

additional “dummy” waveguides, which are positioned on either side of the signal waveguides and as a result 

their positional accuracy with respect to the signal waveguides is as high as those of the signal waveguides to 

each other. Instead of uniformly curing the upper cladding however, it must be selectively cured to ensure that 

the central signal waveguides are completely clad while the registration waveguides are not. The notches either 

side of the waveguide interface were milled after the waveguides were fabricated using a visual alignment 

system. 
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Figure 4-33: Fabrication process for the passive alignment features on the optical layer 
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Figure 4-34: View of the PCB layout of the FirstLight waveguide interface using the Cadence Allegro PCB 

Layout software tool. 

 

Figure 4-34 shows a view of the PCB layout for the FirstLight electro-optical backplane rendered using the 

Cadence Allegro PCB Layout software tool by Kai Wang of UCL. The sections are shown (light grey) are those 

areas in which the upper cladding must be removed i.e. not cured to provide mechanical access to the mechanical 

registration waveguides. Six communication waveguides (two sets of three waveguides) are shown in red 

between the clearance areas. These will be covered by upper cladding. Two peripheral straight “dummy 

waveguide” stubs just within the light grey clearance area serve as mechanical registration features. 

This clearance allows for direct passive mechanical registration of optical components to the waveguides with 

very high precision. In addition, the fabrication tolerances required to pattern the upper cladding for this purpose 

are far lower than those required to pattern the waveguides themselves. It is only important that the outer edges 

of the registration waveguides, which form the mechanical datum, be mechanically exposed. Preferably, the 

upper cladding should partially cover the registration waveguides in order to provide structural reinforcement 

and reduce the risk of the registration waveguides delaminating under the strain. However, this is not strictly 

necessary and as shown in Figure 4-35 and Figure 4-36 the registration waveguides in the FirstLight OPCB were 
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left completely uncovered without any adverse effects. This technique can be implemented using most 

waveguide fabrication processes. The positional tolerance of the mechanical registration features with respect to 

each other has been measured to be ±3 μm for lateral misalignment in-plane and ± 4 μm normal to the PCB plane 

[2], [156]. 

 

 

Figure 4-35: Photographs of upper cladding opening showing waveguides for signal transmission as well 

as connector alignment features (dummy waveguides). (Source: IBM Research – Zürich) 

 

 

Figure 4-36: (a) Clearance areas in upper cladding layer to provide mechanical access for optical 

connector receptacle and waveguide end facet 

(b) An exposed waveguide structure serves as a passive alignment feature for the assembly of the optical 

connector receptacle 

(Source: Varioprint) 
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4.4.3 Lensed waveguide receptacle design 

The author developed the design concept and requirements specification for the lensed connector receptacle, 

which comprised a custom moulded receptacle and discrete commercial geometric convex microlens array from 

Omron. The author worked with connector company Samtec to render the final design for the waveguide 

receptacle, which was fabricated by Samtec, who were partnering with Xyratex at the time.  

The custom receptacle included compliant structures to allow it to mechanically engage with the registration 

waveguides on the board and a recess to accommodate a standard high performance “mechanical transfer” 

connector (MT) compliant lens array. The MT compliant interface on the lens array included two 0.7 mm pin 

slots and 12 micro-lenses arranged between the slots on a 250 μm pitch between lenses. In order to ensure that 

the lens array was accurately aligned within the receptacle, the receptacle also included two MT compliant pin 

slots, the dimensions of which matched those in the lens array. The lens array was fastened to the receptacle with 

a UV curable low shrinkage optical adhesive, Dymax OP-21. 

The waveguide receptacle was fabricated through an injection moulding process in the commercial 

polycarbonate material Makrolon® AL2647. 

Figure 4-37 shows the structure of the waveguide receptacle in layers while Figure 4-38 shows a dimensioned 

schematic of the receptacle. 
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Figure 4-37: Lensed waveguide receptacle front views: a) trimmed receptacle without lens array holder 

section, b) complete receptacle, c) complete receptacle with Omron microlens array integrated and 

receptacle assembled onto OPCB 
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Figure 4-38: Dimensioned drawing of waveguide receptacle 

 

Figure 4-39 shows a photo of a lens receptacle placed next to a British ten pence coin. 

 

 

Figure 4-39: Photo of complete micro-lens receptacle assembly next to British ten pence coin 
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4.4.4 Assembly of microlens array into receptacle 

Figure 4-40 shows a lens assembly jig designed by Samtec to align the lens array into the custom receptacle and 

hold it tightly in place during the UV curing process. It is critical that the lens be properly aligned to the custom 

receptacle otherwise it will not be properly aligned to the waveguides, to which the receptacle is fastened. 

 

 

Figure 4-40: Mechanical lens assembly jig A designed to align the Omron microlens array into the custom 

receptacle a) open position, b) engaged position 

 

While the jig is in the open position (Figure 4-40a), the lens array is mounted onto compliant pins in the jig and 

the receptacle is mounted into a compliant recess. When the jig is closed (Figure 4-40b), the lens array is pressed 

into the lens receptacle and held under a strong spring tension. A UV source was subsequently applied to cure 

the adhesive between the lens and receptacle. The lens receptacle included recesses to contain and channel the 

adhesive away from sensitive areas such as the MT pin holes and the microlenses, while maximizing contact 

between those areas of the lens plate and receptacle which are neither in the signal path nor the mechanical 

registration path. It was decided to fasten the lensed receptacle to the optical PCB using a UV curable optical 

adhesive. 

 

4.4.5 Assembly of waveguide receptacle onto OPCB 

As alignment of the receptacle to the waveguides is critical, it was important that the receptacle lay flat on the 

smooth exposed lower cladding and that none of the adhesive seeped underneath it. 
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Figure 4-41a shows a photo of two connector recesses in StorConnOpt3 electro-optical backplane with 

waveguide interfaces unpopulated. Figure 4-41b shows the same recesses with a lensed waveguide receptacle 

passively aligned onto one of the waveguide interfaces. This could be done by hand as the thickness of the core 

layer was sufficient to feel the registration structures and gently push the receptacle into position. 
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Figure 4-41: a) OPCB waveguide interface without receptacle, b) OPCB waveguide interface with 

receptacle passively aligned, but not glued in 
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Figure 4-42: Receptacle assembly jig B required to register lensed receptacle with waveguide alignment 

features and hold in place during adhesive curing process. 

 

Figure 4-42 shows a mechanical jig B designed by Samtec to hold the passively aligned lensed receptacle tightly 

in position onto the optical PCB while the adhesive is applied as fillet bonds around the edges of the receptacle 

and subsequently cured. As with the lens assembly jig A described above, the receptacle assembly jig B 

contained recesses to hold the passively aligned lensed receptacle in place over the waveguides under strong 

spring tension. The shape of jig B was customised to be snap-fit into the connector aperture on the board.  

Once the lensed or “secondary” receptacle is assembled onto the OPCB, a larger primary receptacle is aligned 

accurately to the secondary receptacle by means of alignment stubs protruding from the secondary receptacle and 

subsequently bolted over the optical engagement aperture. Figure 4-43a shows an optical engagement aperture 

with just a secondary receptacle assembled and, behind it, one with both a secondary and primary receptacle 

assembled. The purpose of the primary receptacle is to provide coarse mechanical alignment of the OPCB 

connector during the mating process, while the secondary receptacle provides the precise optical alignment of 

the connector interface with the waveguide interface. Figure 4-43b shows an OPCB connector plug during the 

mating process about to engage with the primary connector receptacle mounted on the opposite side of the board. 
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Figure 4-43: a) Assembly of primary receptacle and secondary receptacle in optical engagement slots, b) 

Pluggable optical connector prior to engagement with OPCB. Parallel MT compliant optical interface is 

visible as connector starts to engage with connector receptacle 
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4.5 StorConnTest3 – FirstLight 10 Gb/s test daughtercard 

The author designed the StorConTest3 peripheral test daughtercards (Figure 4-44) to relay external 10.3 Gb/s 10 

GbE LAN test data to each other optically across the StorConnOpt3 electro-optical backplane through the 

pluggable StorConn3 optical connectors. Each test card included a reconfigurable crosspoint switch (Figure 

4-44e) to map test data from four commercial 10 Gigabit Small Form Factor Pluggable (XFP) ports on the front 

end (Figure 4-44f) to the StorConn3 transceiver housed in the pluggable connector module (Figure 4-44b) mated 

to the StorConnOpt3 electro-optical backplane (Figure 4-44a). The switch also supported multicasting, whereby 

test data on any of its inputs could be copied to multiple outputs. This way one external test stream could be 

broadcast to all four VCSEL transmitters in the connector simultaneously allowing it be characterised while fully 

stressed. An FPGA (Figure 4-44d) was present on the board to allow user communication with the XFPs, 

crosspoint switch and StorConn3 transceiver. A PCI bridge chip (Figure 4-44c) allowed a user communications 

interface to be established between a single board computer and all the line cards via the electrical Compact PCI 

bus and connectors on the StorConnOpt3 backplane. 
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Figure 4-44: Demonstration assembly with one test card inserted. a) Electro-optical backplane, b) 

FirstLight connector plugged into backplane receptacle, c) PCI bridge chip next to CompactPCI 

connector connected to electro-optical backplane providing electrical power and low speed electronic 

signal interface, d) FPGA to regulate test card, e) crosspoint switch, f) commercial XFPs 

 

4.5.1 Functional overview 

Figure 4-45 provides a functional diagram of the StorConnTest3 daughtercard, which includes the following key 

features: 

 

 The card houses four host ports to accommodate commercial XFP transceivers required for the 

transfer of 10.3 Gb/s test data between external protocol analyser and the adjoining StorConn3 

transceiver circuit. 

 Mezzanine connector to deliver all electrical and electronic signals including power, high and 

low speed and static control signals to the StorConn3 circuit. 

 FPGA to regulate the functions of the StorConnTest3 XFPs and the StorConn3 transceiver. 
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 Compact PCI bridge chip and Compact PCI connector, which allows a computer motherboard 

connected to the Compact PCI bus of the same backplane to communicate with the regulating FPGA on 

each StorConnTest3 daughtercard connected to the backplane Compact PCI bus 

 

 

 

Figure 4-45: StorConnTest3 functional diagram 
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4.5.2 StorConnTest3 component listing 

Table 4-3 lists the main components of the StorConnTest2 card, while Figure 4-46 shows the component layout. 

 

Table 4-3: StorConnTest3 key component listing 

Component Supplier Part No. Description 

 

8 x 8 crosspoint 

switch 

Vitesse 

 

VSC3008 

 

10 Gb/s  capable crosspoint switch with eight input ports 

and eight output ports allowing any of one or more 

output ports to be connected to a given input port 

XFP cages / 

connectors 

 Tyco 788862-1 / 

1489951-1 

Cages and connector bezels to accommodate different 

XFPs on host board including 850 nm multimode XFPs 

and 1310 nm singemode XFPs 

FPGA Altera 

 

EP2C8 Field programmable gate array allowing bespoke user 

programmed functionality to be loaded onto the chip 

FPGA 

configuration 

EEPROM 

Altera EPC4 EEPROM to programme the FPGA after each power 

cycle (FPGA is volatile) 

Comact PCI 

bridge 

PLX 

Technology 

 

PLX9054 Bus master I/O accelerator chip to provide a signal 

bridge between the Compact PCI backplane and the 

regulating FPGA 

 

PECL oscillator 

161.132 MHz 

Epson 

Electronics 

Q3803CA Supplies clock signal for XFP CDR signal conditioning 

at 10.3 Gb/s 

PECL differential 

clock driver 

On 

Semiconductor 

MC100EP14 

 

1 : 5 PECL clock distribution buffer to relay single 

161.132 MHz clock source to all four XFPs for CDR 

conditioning at 10.3 Gb/s 

Four way right-

angled 

connector 

Molex 53109-0410 Auxiliary four way power connector to enable board to 

be powered outside the test enclosure 
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Figure 4-46: StorConnTest3 board dimensions and component layout: a) CompactPCI connector plug, b) 

high speed electronic array connector, c) PCI bridge chip, d) FPGA to regulate test card, e) crosspoint 

switch, f) four commercial XFP cages, g) linear voltage regulators to provide different voltage supplies to 

card components, h) four banks of indicator LEDs for each XFP 
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Figure 4-47: StorConntest3 card with StorConn3 transceiver circuit (without connector module): a) 

CompactPCI connector plug, b) StorConn3 transceiver circuit, c) PCI bridge chip, d) FPGA to regulate 

test card, e) crosspoint switch, f) four commercial XFP cages, g) linear voltage regulators to provide 

different voltage supplies to card components, h) four banks of indicator LEDs for each XFP 
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4.5.2.1. Raw card stack-up 

The circuit is housed on an eight layer PCB, of which two layers, accommodating the high speed signal traces 

are composed of a Rogers dielectric material – RO4350B and the remaining layers accommodating low speed 

signals and power planes of a standard FR4 composite. 

The high speed controlled impedance tracks are routed only on layer one and layer eight and designed to 

maintain a differential impedance of 100 Ω ± 8% along the trace. 

Figure 4-48 shows the complete lay-up of this circuit board. 

 

 

Figure 4-48: StorConnTest3 raw card stack-up 

 

4.5.2.2. High speed PCB layout guidelines 

The high speed differential copper signal traces are laid out across the top and bottom layers. These layers are 

composed of a Rogers dielectric material offering greater impedance control and a lower loss tangent at 10 Gb/s 

in comparison to FR4. The use of vias is unavoidable if crossovers on the high speed transmit and receive lines 

are to be prevented. In order to minimise unwanted reflections, any vias on high speed traces pass from top to 

bottom layers and not to intermediary layers, in order to avoid stubs. A ground via is located in the vicinity of 

each high speed via. The purpose of these “stitched” vias is to accommodate the return path of the signal at all 

points along the signal path. All aspects of the circuit layout have been adapted to minimise the lengths of the 

high speed traces. 
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4.5.3 FirstLight demonstration platform 

To evaluate the viability of these technologies, the author designed a demonstration platform (Figure 4-49), 

which comprised a 10 U (445 mm) high Compact PCI chassis with a single board computer, the StorConnOpt3 

electro-optical backplane and four peripheral StorConnTest3 test daughtercards, each housing a pluggable 

StorConn3 optical connector. 

 

 

Figure 4-49: FirstLight demonstration platform fully populated with all four test line cards and powered 

up 

 

Although the backplane had been designed to accommodate eight Compact PCI slots, only five were populated. 

As shown in Figure 4-50, the bottom slot A was reserved for the single board computer motherboard, while slots 
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B, D, F and H were reserved for StorConnTest3 cards. Due to the height of the StorConn3 connector module, 

there was insufficient space to allow StorConnTest3 cards to be plugged into adjacent Compact PCI slots. 

 

Figure 4-50: Compact PCI slot population by singleboard computer motherboard and four 

StorConnTest3 daughtercards. Slots C, E and G are unpopulated as the daughtercards require a 

separation of at least 2 slots 

 

4.5.4 FirstLight platform FPGA firmware design 

The purpose of the singleboard computer motherboard located in slot A of the FirstLight platform was to run an 

operating system, through which the user can communicate with and configure any of the four StorConnTest3 

daughtercards connected to the Compact PCI bus of the same StorConnOpt3 backplane. 

The author designed and developed an extensive firmware programme for each StorConnTest3 FPGA to regulate 

and interpret the PCI commands received from the singleboard computer via the shared Compact PCI bus. The 

author wrote the programme using VHDL (VHSIC Hardware Description Language), which was loaded onto the 

Altera EP2C8 FPGA by the Altera EPC4 FPGA configuration EEPROM with each power cycle. 

The firmware code incorporated a comprehensive command map that would allow the user to read and write to 

registers in the FPGA, which in turn would read-back or configure an extensive range of parameters including: 

 General purpose static control and status LED values 

 StorConn3 transceiver parameters 

 Crosspoint switch parameters 

 Host side XFP parameters 

A comprehensive description of the complete PCI command map and required PCI command sequences is 

provided in Appendix - FirstLight platform firmware coding. 
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4.5.5 FirstLight Graphical User Interface (GUI) 

The author developed the requirements specification for a graphical user interface (GUI) to run on the operating 

system of the single board computer, allowing selective user access to any StorConnTest3 daughtercard 

connected to the same StorConnOpt3 backplane and permitting the user to configure the parameters of the 

selected StorConnTest3 card. The FirstLight GUI was developed by Xyratex software engineer Mike Horgan  

(Figure 4-51).  

 

 

Figure 4-51: FirstLight GUI overview 
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4.5.5.1. Diagnostic interfaces 

Global interface window 

 List of all StorConnTest3 daughtercards on the C-PCI bus i.e. docked in the C-PCI chassis based on 

card specific ID as stored in PLX EEPROM 

 Choice list to select between any StorConnTest3 daughtercards on the C-PCI bus 

 

PCI command exchange window 

 PCI Reset button 

 Displays the 32-bit word transactions between host and line card 

 Displays information on the BAR (space 0) offset for the selected PLX device (as stored on its 

EEPROM) 

 

4.5.5.2. Control interfaces 

Global transceiver interface window 

 Buttons for both Power Down and Transmit Disable on each of the four XFPs of the selected line card 

 XFP I²C interface control: 

 Read back on all critical XFP information e.g. Vendor ID 

 Allows read back of any user selected address on the I²C XFP EEPROM 

 Allows data write to any user selected address on the I²C XFP EEPROM 

 

4.5.5.3. StorConn3 optical transmitter interface window 

 Button for global VCSEL Driver Enable 

 Buttons for individual VCSEL channel enables 

 Scroll bars for modulation current and bias current on each VCSEL 

 Scroll bar for temperature compensation 

 Temperature read-back display (polled every five seconds when no other activity) 
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4.5.5.4. StorConn3 optical receiver interface window 

 Button for global optical receiver enable and squelch enable 

 Buttons for individual photodiode channel enables 

 Scrollbar for waveform control 

4.5.5.5. Crosspoint switch (CPS) interface window 

 Global and channel selective signal input equalisation settings: 

 no equalisation 

 minimum equalisation 

 medium equalisation 

 maximum equalisation 

 Global or individual output settings: 

 Force all outputs to 1, 0 or normal operation 

 Output power nominal or high 

 Pre-emphasis enabled or disabled 

 Pre-emphasis adjustment for varying line lengths between range 0 to 15 (450 ps to 700 ps 

respectively) 

 Switch Control: 

 Choice lists allowing mapping of switch inputs to switch outputs 

 Switch Map: 

 Displays current switch configuration i.e. what inputs are mapped to what outputs 
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4.5.6 FirstLight test and measurement results 

4.5.6.1. Direct VCSEL transmitter characterisation 

Both the bias current and the modulation current range of the VCSELs could be programmed through the 

VCSEL driver chip. 10.3 Gb/s test data was conveyed through the optical interface, the output captured through 

the fibre interface and passed to the Tektronix CSA. The variation in jitter with modulation current range was 

measured at two bias currents 8.94 mA and 10.56mA and is shown in Figure 4-52. In both cases the jitter reaches 

a steady minimal state once the modulation current range is set at ≥15 mA. 

 

Figure 4-52: Characterisation of optical jitter from VCSEL channel one operating 10.3 Gb/s with 

modulation current 

 

4.5.6.2. High speed data transmission loop-back test across demonstration platform 

An external Xyratex proprietary 10 Gb Ethernet LAN traffic source was arranged to convey a 10.3 Gb/s test data 

stream along a fibre-optic cable to one of the commercial XFP devices on the front end of a peripheral test card 

in the demonstration platform. The XFP device converted the optical data stream to a serial electronic data 

stream on the test card, which was then mapped by the crosspoint switch to one of the VCSEL transmitters in the 

connector attached to that card and reconverted into an optical data stream. As the connector was optically 

engaged to the backplane, the optical data stream was launched into a waveguide and conveyed to the receive 

element of another connector on a different test card in the chassis. The data was then converted to a serial 
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electronic data stream, mapped to an XFP port on that test card and reconverted to an optical data stream on the 

output of the XFP device. 

Finally a fibre-optic cable was connected between the XFP output port to a Tektronix CSA8000B 

communications signal analyzer where the test data was characterised. 

Figure 4-53 shows the demonstration assembly. 

 

 

Figure 4-53: FirstLight demonstration platform with optical test cables attached to XFPs 

 

 

 



Chapter 4 Second Generation Pluggable Active Optical Circuit Board Connector for Polymer 

Waveguide Based Optical Circuit Boards 

218 

 

Figure 4-54 to Figure 4-61 show the eye diagram captured across the highlighted waveguide link. 

 

 

Figure 4-54: Eye diagram of 10.3 Gb/s optical signals received from demonstration platform on selected 

waveguide under test - Channel one 

 

 

 

 

Figure 4-55: Eye diagram of 10.3 Gb/s optical signals received from demonstration platform on selected 

waveguide under test - Channel two 
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Figure 4-56: Eye diagram of 10.3 Gb/s optical signals received from demonstration platform on selected 

waveguide under test - Channel three 

 

 

 

 

 

Figure 4-57: Eye diagram of 10.3 Gb/s optical signals received from demonstration platform on selected 

waveguide under test - Channel four 
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Figure 4-58: Eye diagram of 10.3 Gb/s optical signals received from demonstration platform on selected 

waveguide under test - Channel five 

 

 

 

 

 

Figure 4-59: Eye diagram of 10.3 Gb/s optical signals received from demonstration platform on selected 

waveguide under test - Channel six 
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Figure 4-60: Eye diagram of 10.3 Gb/s optical signals received from demonstration platform on selected 

waveguide under test - Channel seven 

 

 

 

Figure 4-61: Eye diagram of 10.3 Gb/s optical signals received from demonstration platform on selected 

waveguide under test - Channel eight 

 

In total eight waveguides were tested as described and 10.3 Gb/s test data was successfully conveyed between all 

test cards and their prototype connectors with an acceptable level of signal recovery. Figure 4-54 - Figure 4-61 

show the eye diagrams corresponding to the eight waveguides under test with a schematic overlay in each case 
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identifying the waveguide and direction. The average total peak to peak jitter on the eight communication links 

including front end clock and data recovery through the exit XFP was measured to be 28.217 ps or 0.29 Unit 

Interval (UI), which is within the jitter thresholds for both transmitter input (0.61 UI) and receiver output (0.363 

UI) as specified by the XFP MSA [150]. 

 

4.6 Summary 

In this chapter, the design and development of a second generation active pluggable optical connector was 

described, which allows the two stage engagement process, validated in the first generation connector, to be 

carried out without intermediary manual interference by the user, thus overcoming the critical flaw in the 

viability of the first generation connector. 

An enhanced backplane waveguide receptacle was detailed, which exhibits no offset between the alignment slot 

datum and the channel interface thus improving accuracy compared to the first generation receptacle. Crucially, 

the receptacle housing provides a protective barrier over the waveguide interface reducing the chance of dust 

contamination. The housing on the receptacle includes a geometric micro-lens array suspended over the 

waveguide interface, while the housing on the connector includes a compliant micro-lens array suspended over 

the VCSEL and PD arrays. Together these form part of a dual expanded beam system, whereby, at the exposed 

mating interface between two lens arrays, the beam width is expanded to many times the size of the waveguide 

aperture, thus strongly reducing susceptibility to dust. 

The final demonstration system was based on a Compact PCI bus backplane system, in which a computer 

motherboard and four daughtercards with active optical connectors were oriented parallel to each other and 

connected into an electro-optical PCB backplane. A complex optical waveguide pattern was integrated into the 

OPCB backplane to allow full optical connectivity between the four daughtercards. 

The greatest disadvantage in the approach of using active optical connectors is that the optical receptacle on the 

receiving OPCB must accommodate not just the size of the optical interface, but also the body of the active 

connector mechanism, which includes the size taken up by the integrated transceiver. This means that only a 

small number of active optical connectors could be accommodated for each daughtercard due to size restrictions 

and therefore the number of optical channels supported on the OPCB would be far less than could be physically 

accommodated based on the size of the channels themselves. The relatively large size of the active optical 

connector therefore represents a bottleneck to the number of supportable channels on the OPCB. 

If a passive optical connector system were instead used, whereby the transceiver would not be local to the 
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interface but positioned somewhere else on the board, preferably close to the signal source, such as in the case of 

a midboard transceiver, then the space consumed by the now passive connector on the OPCB would be 

substantially reduced. 

The use of polymer waveguides aligns very well to low cost 850 nm VCSEL based transceivers, as most optical 

polymers exhibit the least absorption around this wavelength. However transceiver technologies, formerly 

confined to long distance telecommunications applications and operable at longer wavelengths such as 1310 nm 

and 1550 nm, are now also starting to migrate down the data centre levels in response to the need to 

accommodate increasing bandwidths over shorter distances. One can foresee a point at which it will become 

necessary for OPCBs to accommodate such interconnect, however optical polymers would be an unsuitable 

optical waveguide medium as they exhibit much higher losses at these longer wavelengths. 

In the next chapter, a new generation of OPCB will be described based on planar glass waveguides, which 

exhibit lower losses at longer wavelengths, and on which board-to-board pluggability is achieved through 

passive rather than active optical connectors allowing much higher optical interface densities to be 

accommodated. 
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5 PLUGGABLE PASSIVE 

OPTICAL CIRCUIT BOARD 

CONNECTOR FOR PLANAR GLASS 

WAVEGUIDE BASED OPTICAL 

CIRCUIT BOARDS 

 

 

5.1 Introduction 

While polymer waveguides are well suited to applications requiring 850 nm optical signals, such as low cost 

optical links based on commodity, directly modulated VCSELs, planar glass waveguides may be preferable in 

applications requiring longer wavelengths such as those around 1310 nm (O-band) or those around 1550 nm (C-

band) due to their superior transmissivity at these wavelengths. 

Deployment of electro-optical printed circuit boards (OPCBs) based on embedded planar glass waveguide 

technology in the system, would enable seamless optical connectivity from external fibre-optic networks directly 

onto the system motherboard or backplane. Furthermore the emergence of affordable longer wavelength 
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transceiver solutions based on photonic integrated circuit (PIC) technologies such as silicon photonics 

transceivers and switches [157]–[160] makes glass waveguides an attractive OPCB technology. 

 

5.1.1 Glass waveguide based optical circuit boards 

The Fraunhofer Institute of Reliability and Microintegration (Fraunhofer IZM) in Germany have spearheaded 

glass waveguide fabrication for embedded modules and OPCBs over the past decade [84], [103], [161]–[163]. 

During and after the SEPIANet project, the author has collaborated with Fraunhofer IZM extensively to help 

demonstrate the viability of glass waveguide based OPCBs in modern data centre systems [4], [83], [164], [165]. 

5.1.2 SEPIANet project 

In March 2010, the European PIANO+ funding competition was launched, which was a trans-national call for 

project proposals on "photonics-based internet access networks of the future". It was co-funded by the 

participating national funding bodies from Austria, Germany, Israel, Poland and the United Kingdom and by the 

European Commission [166]. 

In 2010, the author wrote and submitted a proposal to the Piano+ competition for a project, which would bring 

together key European fabricators and allow us to develop a technology eco-system around planar glass 

waveguide based OPCBs. The project was called System Embedded Photonics in Access Networks (SEPIANet) 

[31] and comprised the following consortium of European organisations: Fraunhofer Institute of Reliability and 

Microintegration (Fraunhofer IZM), ILFA, V-I Systems, Conjunct and TerOpta with Xyratex as lead 

organisation. 

As author and organiser of the SEPIANet proposal, the author then continued to serve as technical coordinator of 

the project and was responsible for defining the technology requirements for the SEPIANet optical backplane 

and connector platform. 

 

5.1.3 SEPIANet technology overview 

In this chapter, the key technology advances made on the SEPIANet project are described. 

Section 5.3 describes a disruptive new method developed by Fraunhofer IZM of fabricating multimode 

waveguides with elliptical graded refractive index cross-sectional profiles within the surface region of thin glass 

foils, which can be scaled to a large area PCB form factor. 
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Section 5.4 describes how the commercial PCB fabrication processes were adapted by German PCB company 

ILFA to enable planar glass waveguide panels to be reliably embedded into an OPCB backplane comprising 4 

conventional electrical PCB layers with an outer board area of 281 x 233 mm² and board thickness of 3.5 mm, 

encasing a smaller 199 x 160 mm² glass waveguide panel with a thickness of 500 µm. 

Section 5.5 describes a full suite of passive optical connector components designed and developed by the author 

and Allen Miller at Xyratex to enable pluggable optical connectivity to the glass waveguide based OPCB 

backplane for fibre-to-board and board-to-board configurations. These included fibre ferrule receptacles to 

enable direct connection of conventional parallel optical fibre cables to the OPCB embedded waveguides, and 

pluggable edge connectors to enable daughtercards to be orthogonally plugged into an OPCB backplane. An 

active, automated assembly process was developed by Fraunhofer IZM and successfully deployed for aligning 

and attaching the optical fibre ferrule receptacles to the OPCB. 

Section 5.6 describes the design, development and characterisation of the SEPIANet test and measurement 

platform comprising a sub-rack chassis, an OPCB backplane with pluggable optical board-to-board connectors 

and 5 pluggable test daughter cards. Finally, the results of a comprehensive test and measurement regime are 

reported, whereby PRBS 2
31

-1 optical test data at both 1310 nm and 850 nm was conveyed along the OPCB 

backplane embedded optical waveguides through the pluggable connector system from various optical test 

sources and validated for both fibre-to-board and board-to-board optical connectivity at data rates up to 32 Gb/s 

per channel exhibiting bit error rates of less than 10
-12

. 

 

5.1.4 Objectives 

 Co-develop a waveguide receptacle based on those already developed for polymer waveguides to be 

assembled onto planar glass waveguide based OPCBs allowing direct fibre-to-waveguide coupling 

 Define the requirements and design specifications of passive board-to-board optical connector system, 

which incorporates the waveguide receptacle, but also makes use of the commercial parallel optical ferrule 

jumpers. 

 Define the requirements and design specifications for the SEPIANet demonstration test platform, which 

incorporates a glass waveguide based OPCB backplane and peripheral test cards, which can be plugged directly 

into the OPCB backplane using the optical connectors developed. 

 Define an appropriate testing regime for SEPIANet platform and carry out test and measurement 
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5.2 Optical waveguide layout design 

In order to accommodate the interconnect topologies of target system enclosures in data centre environments, the 

optical layout for the OPCBs needed to contain waveguide groups with varied point-to-point geometries between 

edge or midboard optical connector interface points. A waveguide layout requirements specification was 

developed by the author for two interchangeable OPCB backplane variants, SEPPLANE1 and SEPPLANE2, 

which addressed this requirement.  

SEPPLANE1 contained one embedded glass waveguide panel (Figure 5-1a) of size 199 mm x 160 mm, while 

SEPPLANE2 contained two smaller glass waveguide panels in the same plane (Figure 5-1b), each of size 79.25 

mm x 160 mm. Both SEPPLANE1 and SEPPLANE2 contained edge connector interfaces, while SEPPLANE2 

also contained midboard connector interfaces. SEPPLANE2 also allowed the challenge to the PCB fabricator of 

laminating multiple glass panels into a single PCB layer to be addressed and demonstrated. This capability 

would be instrumental in future to provide optical interconnect across larger, higher density backplanes, if 

individual glass waveguide panel sizes were constrained. 

For demonstration purposes only, the designs included exposed windows in the PCB material to show sections of 

the glass waveguide panel embedded within, though in practise this would be a liability as the exposed sections 

could be damaged very easily during PCB assembly. 

 

Figure 5-1: a) SEPPLANE 1 glass panel dimensions, b) SEPPLANE2 glass panel and gap dimensions 
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Figure 5-2: Schematic layouts and photos of fully populated OPCB backplane variants: a) SEPPLANE1 

with single glass waveguide panel and connector layout, b) iterated waveguide crossover section, c) top 

view of embedded glass panel showing single waveguide illuminated, d) SEPPLANE2 with dual glass 

waveguide panel and connector layout 

 

As shown in Figure 5-3 and Figure 5-4, the SEPPLANE1 and SEPPLANE2 layouts each consisted of 8 

waveguide groups. Each group comprised a row of 12 waveguides with a centre-to-centre channel separation of 

250 µm, which is compliant with conventional parallel optical fibre interfaces such as those based on MT 
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standards. The waveguide layout groups G1-G3, G6-G8 on SEPPLANE1 and G9–G10, G15-G16 on 

SEPPLANE2 were curved over a 90° arc with varied concentric bend radii. All curved groups included 

additional straight sections. Groups G4, G11 and G14 included an S-bend, while groups G5, G12 and G13 are 

straight. Groups G5 and G13 include a section with stepped waveguide stubs crossing the main waveguide group 

orthogonally. 

 

 

Figure 5-3: SEPPLANE1 with waveguide groups G1 to G8, test card slots (vertical) 1 – 5 and connector 

positions A to D. Individual waveguides in each group are always numbered 1 – 12 going from top to 

bottom in the horizontal component section of the waveguide group 

 

Although the same waveguide layout was used on both SEPPLANE1 and SEPPLANE2, the size and shape of 

the glass panel cut-outs on SEPPLANE2 allowed the groups G4 and G5 on SEPPLANE1 to be split into two 

separate shorter groups G11, G12, G13 and G14 on SEPPLANE2. 
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Figure 5-4: SEPPLANE2 with waveguide groups G9 to G16, test card slots (vertical) 1 – 5 and connector 

positions A to D. Individual waveguides in each group are always numbered 1 – 12 going from top to 

bottom in the horizontal component section of the waveguide group 

 

 

The groups G3 and G6 on SEPPLANE1 were not used on SEPPLANE2 as the waveguides did not intersect 

orthogonally with the glass edge facet. Figure 5-5 shows schematically how non-orthogonal waveguide-to-

interface intersections will result in a waveguide cross-section and channel-to-channel pitch both increased by a 

factor of 1/cosØ, where Ø is the angle formed between the interface and the line normal to the waveguide axes. 

Therefore when coupling to a standard MT ferrule compliant optical interface the channel centres will be mis-

aligned. 
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Figure 5-5: Change of optical interface dimensions for non-orthogonal waveguide - interface intersections 

 

5.3 Glass waveguide fabrication 

The optical waveguide layout designs were prepared by Xyratex and sent to Fraunhofer IZM, who needed to first 

fabricate the graded index waveguides on a glass panel, prior to sending it to the PCB fabricator ILFA to be 

embedded into an OPCB. 

 

5.3.1 Glass waveguide fabrication process flow 

A glass waveguide fabrication process was developed by Fraunhofer IZM for panel sizes of 210 × 297 mm². At 

the time of writing, commercial glass panel thicknesses could be as low as 30 µm [164], however the glass 

panels were inherently fragile and in order to reduce the risk of damage during handling, the first generations of 

waveguides were fabricated on more mechanically robust 500 µm thick panels.  
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According to the Fraunhofer IZM fabrication process, when the glass surface is exposed to a molten salt, a 

thermo-chemical ion exchange process takes place between the glass and the salt-melt, which gives rise to a 

localised increase in refractive index on the glass surface [167]. The glass matrix must contain a sufficient 

concentration of ions that are chemically exchangeable with a counterpart ion in the salt-melt, in order to achieve 

a refractive index change suitable for waveguiding. The type of glass chosen was Schott D263Teco, a 

borosilicate glass containing monovalent sodium ions. 

 

 

Figure 5-6: Glass waveguide fabrication process flow (Source: Fraunhofer IZM) 
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The waveguide fabrication process consisted of two thermal ion-exchange steps between the salt-melt and the 

glass. The positions of the waveguides were defined by a salt-melt resistant aluminium (Al) thin film mask, 

deposited on the glass surface as shown in the schematic process flow in Figure 5-6a. The masked glass was 

dipped into a hot silver salt melt in the temperature range of 300 °C to 400 °C, which served as the source of 

silver ions for the diffusion process. The difference in concentration between the sodium ions in the glass matrix 

and the silver ions in the salt melt precipitated a thermo-chemical ion-exchange process, whereby the silver ions 

diffused isotropically into the glass forming a flattened semi-cylindrical graded refractive index profile in the 

area of the mask opening (Figure 5-6b). The refractive index decreased with distance from the diffusion interface 

at the exposed glass surface from its peak value down to the value of the bulk glass refractive index. Key figures 

of merit, such as the refractive index increase and diffusion depth were determined by the silver salt 

concentration, process duration and temperature. The diffusion process ended when the masked glass was 

removed from the salt-melt. After removal of the mask layer by chemical wet etching, a second thermal ion-

exchange process was performed, in which the panel was immersed into a silver free salt-melt as shown in 

Figure 5-6c. A reverse diffusion process took place as the silver ions were drawn back out of the glass, causing a 

decrease of refractive index at the diffusion interface on the exposed glass surface and shifting the position of the 

refractive index maximum from the glass surface deeper into the glass. By rounding off the refractive index in 

this manner, this final process step shapes the mode profile of the waveguide to both reduce propagation loss 

along the waveguide by confining the light within the bulk glass, and more closely match the mode profile of 

glass fibres, thus reducing the coupling loss between the waveguide and glass fibre when in physical contact. 

A cross-section of fabricated glass waveguides with a centre-to-centre pitch of 250 µm is shown in Figure 5-7. 

Because of the isotropic thermal diffusion behavior, the final waveguide profile has an elliptical cross section 

with a graded refractive index distribution. The process parameters applied in this case caused the refractive 

index maximum to form at a depth of 18 µm below the glass surface giving rise to a maximum difference 

between peak refractive index and that of the bulk glass in the range of 0.016. The cross section in the vertical 

dimension matches that of a 50/125 µm graded index multimode fibre with N.A= 0.2. In Figure 5-7b), x = 100 

µm represents the top surface of the glass.  
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Figure 5-7:  a) Cross-section of glass waveguide sample with thickness of 500 µm and centre-to-centre 

waveguide pitch of 250 µm. b) Refractive index profile at measurement wavelength of 678 nm as 

measured by a refractive near field (RNF) scan (Source: Fraunhofer IZM) 

 

5.3.1.1. Glass waveguide panel fabrication 

For the SEPPLANE backplane waveguide layout, a functional waveguide area was reserved for a 199 mm×160 

mm central portion of a 297×210 mm² glass panel. The layout included fiducials for process alignment as well as 

partner logos. In Figure 5-8 the glass thin film mask layout is shown in black with mask openings in white. 
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Figure 5-8: Layout diffusion mask on glass containing waveguide layout, partner logos and alignment 

marks (Source: Fraunhofer IZM) 

 

After a cleaning treatment step, an aluminium thin film of 400 nm thickness was sputtered on both sides of the 

glass panel. A photoresist layer was then deposited uniformly over the aluminium layer through a dip-coating 

process. In order to convey the desired waveguide layout pattern onto the photolithographic layer, a 14 inch 

chrome-on-glass mask was placed in contact with the glass panel on the vacuum chuck of an Orbotec Paragon 

9000 laser direct imaging (LDI) system and contact mask exposure carried out. A positioning mount was used to 

align the smaller glass panel to the centre of the 14 inch mask as shown in Figure 5-9. 
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Figure 5-9: a) Dip-coating, b) positioning mount and c) mask exposure with LDI (Source: Fraunhofer 

IZM) 

 

After exposure, the photoresist was developed and the underlying aluminium layer was structured with acid 

before removal of the photoresist. In order to account for the isotropic diffusion characteristics under the mask 

opening, a mask gap of 30 µm width was required to create a 50 µm glass waveguide. The aluminium diffusion 

mask layer on the glass panel is shown in Figure 5-10. 

 

 

Figure 5-10: Aluminium diffusion mask layer on glass panel (297 x 210 mm²) (Source: Fraunhofer IZM) 

 

Multiple aluminium masked glass panels were inserted vertically into the hot salt-melt and the ion-exchange 

process described above carried out to create the sub-surface graded index waveguide layout defined by the 
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mask pattern. The aluminium mask was then removed from the glass surface except around the partner logos and 

fiducial marks required for alignment and assembly (Figure 5-11b). In the second ion diffusion step, the glass 

panel without the mask layer was inserted vertically into a silver free salt-melt, whereby, as previously 

described, the reverse ion-exchange process caused the refractive index maximum (waveguide core centre) to 

shift to a point 18 µm below the glass surface. 

 

 

Figure 5-11: a) Detail of mask layer on glass, b) protected partner logos and fiducial marks after removing 

aluminium mask layer (Source: Fraunhofer IZM) 

 

Finally, the 297 x 210 mm² glass waveguide panel was trimmed with a CO2-laser cutting process [168] down to 

the panel size required for the OPCB backplane type: a) for SEPPLANE1, a single panel of 199 x 160 mm² or b) 

for SEPPLANE2, two smaller panels of 79.25 x 160 mm², which would be embedded with a horizontal 

separation of 40.5 mm. When compared to diamond reel cutting, the CO2-laser cutting process produced around 

a four-fold increase in edge strength and trace stability in the processed glass panels. The glass edges processed 

with this cutting method exhibited an RMS surface roughness of 40 nm, which was sufficiently low to ensure 

low-loss optical coupling [155] to the waveguides. 

 

5.3.2 Waveguide characterisation by Fraunhofer IZM 

The waveguide characterisation of the glass panel by Fraunhofer IZM prior to embedding into the OPCB 

backplane stack-up is hereby included as a reference for later measurements. 

Each waveguide core had an elliptic graded index profile, with the longer axis parallel to the glass surface due to 

the isotropic ion diffusion along the mask gap. The propagation and coupling losses on the fabricated glass 
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waveguide panel were characterised by Fraunhofer IZM at a wavelength of 1310 nm using the “cut-back 

method”, which will now be explained. 

Propagation loss is defined as the inherent attenuation of the light as it propagates along a waveguide. 

Coupling loss is defined as the amount of light lost upon entering or leaving the waveguide due, for the most 

part, to Fresnel and scattering effects at the waveguide interface. 

Insertion loss is the total loss measured across the waveguide, which includes both coupling loss and propagation 

loss. The cut-back method allows the propagation loss and the coupling loss on a given waveguide to be 

separated by comparing the insertion loss results on different lengths of the same waveguide sample. If the same 

cleaving process is used, then it can be reasonably assumed that the loss characteristics at each waveguide 

interface are the same and therefore can be assumed to represent a constant loss value on each insertion loss 

measurement with only the length dependent propagation loss contributing to the linear increase in insertion loss 

(expressed in dB) with increasing waveguide length. The coupling loss from both input and output interfaces can 

be extrapolated as the value of loss at the intercept between the linear insertion loss profile with the y-axis. 

The results of the measurements using the cut-back method are shown in Figure 5-12. The propagation loss at 

1310 nm was measured to be 0.05 dB/cm and coupling loss was 2.15 dB for a 50 µm core graded index 

multimode (GI MM) fibre launch. The results are comparable with those of previous work [83]. In addition, the 

waveguides were characterised at a wavelength of 850 nm with propagation loss measured to be 0.41 dB/cm and 

coupling loss 2.7 dB for a GI MM fibre launch. The higher propagation loss at 850 nm is most likely due to the 

formation of silver ion clusters in the glass matrix, the sizes of which give rise to stronger Rayleigh scattering of 

850 nm light than at 1310 nm light. Fraunhofer IZM expects that the propagation losses can be further reduced in 

future by a factor of 2 – 4 by process improvement and glass selection. Following the work reported in this 

thesis, Fraunhofer IZM started evaluating Gorilla glass from Corning, as a candidate for planar waveguide 

fabrication. 
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Figure 5-12: Propagation loss and coupling loss measurements based on best fitting line of cut-back 

measurements (Source: Fraunhofer IZM) 

The insertion loss measured using both SM (9/125µm step-index fibre, NA=0.11) and MM (50/125µm, graded-

index fibre, NA=0.2) launching conditions for all waveguide groups G1-G8 and corresponding bend radii are 

summarized in Table 5-1. The propagation losses for the MM launch were extrapolated based on the coupling 

loss of 2.15 dB predicted in the cut-back measurements shown in Figure 5-12 and are in agreement with the 

propagation loss predicted by those measurements. The results indicated an increase in propagation loss with 

decreasing bend radius. The waveguide crossings on group G5 with a maximum number of 10 intersections did 

not show significant increase of insertion loss. These results confirm estimations based on previous research 

[83]. Furthermore, comparison of waveguide groups with the same geometry indicate that this fabrication 

process gives rise to good uniformity across the panel, though improvements are still possible to reduce the value 

of deviation. 
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Table 5-1: Insertion, propagation and bend losses at 1310 nm of waveguide groups in SEPPLANE1 panel 

dependent on bend radii and launching condition (Source: Fraunhofer IZM) 

Group Bend Radii 

Insertion loss with 

SM launch 

Insertion and 

Propagation loss with 

MM launch 

Calculated loss in 

bend section for 

MM launch 

G1 25–27.75 mm 1.21 ± 0.24 dB 2.62 ± 0.010 dB 

0.052 dB/cm 

0.23 ± 0.10 dB 

G2 41–43.75 mm 1.10 ± 0.14 dB 

 

2.75 ± 0.10 dB 

0.052 dB/cm 

0.36 ± 0.10 dB 

G3 88.125 – 90.875 mm 1.15 ± 0.06 dB 

 

2.92 ± 0.27 dB 

0.049 dB/cm 

0.75 ± 0.27 dB 

G4 2 S-bends: RoC = 

134.0 mm, arc angle 

=14.04° 

1.76 ± 0.21 dB 

 

2.98 ± 0.09 dB 

0.042 dB/cm 0.49 ± 0.09 dB 

G5 no bend, crossings 1.72 ± 0.17 dB 

 

3.08 ± 0.21 dB 

0.047 dB/cm 

- 

G6 88.125 – 90.875 mm 1.22 ± 0.26 dB 

 

2.83 ± 0.20 dB 

0.043 dB/cm 

0.66 ± 0.20 dB 

G7 41 – 43.75 mm 0.96 ± 0.14 dB 

 

2.74 ± 0.13 dB 

0.05 dB/cm 

0.35 ± 0.13 dB 

G8 25 – 27.75 mm 1.04 ± 0.11 dB 

 

2.90 ± 0.20 dB 

0.082 dB/cm 

0.51 ± 0.20 dB 
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5.4 Electro-optical circuit board fabrication using low temperature lamination 

processes 

On the SEPIANet project, German PCB fabricator ILFA GmbH was responsible for embedding the glass 

waveguide panels produced by Fraunhofer IZM into a PCB stack-up to ensure that the integrity of the glass 

panel and the properties of the waveguides embedded therein could withstand the thermal or mechanical stresses 

inherent to the lamination process. The incorporation of different materials into a PCB layer stack-up can lead to 

problems due to dimensional expansion of the individual layers during the thermal bonding process. The 

disparity between the coefficients of thermal expansion (CTE) in different materials and the high bonding 

temperature of up to 250 °C during lamination cycles can lead to substantial built-in stress and/or bowing and 

twisting within the PCB.  

Combining different materials with similar horizontal CTEs reduces inter-material stresses and is thus inherent 

to PCB fabrication. This is evident when comparing the CTEs of copper (αCu = 16.5 10
-6

 K
-1

) and FR4 (αFR4 = 

12…14 10
-6

 K
-1

), which are of a similar order. However the incorporation of materials with very different CTEs, 

such as glass (αD263Teco = 7.2 10
-6

 K
-1

) will lead to substantial built in stresses under normal high temperature 

lamination processes, which, given the inherent fragility of glass and the influence of mechanical strain on 

refractive index, would be highly detrimental to optical transmission and signal integrity. Figure 5-13 shows a 

photo of an early OPCB prototype developed using a standard hot lamination process with a section of the 

embedded glass foil exposed in a square recess in the surrounding materials. The glass section is visibly bulging 

due to the inherent mechanical stresses caused by the different material expansions exhibited between the glass 

and the FR 4 materials bounding it as the whole assembly was heated up.  
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Figure 5-13: Glass foil laminated into PCB stack-up with conventional hot lamination technique shows 

bulging (Source: ILFA GmbH) 

 

ILFA therefore developed a substrate bonding technology based on 50 µm thick, low temperature activated 

adhesive foils to avoid thermally induced material expansion of the different materials, which is detailed in [4], 

[165]. 

By combining lamination process temperatures of around 40°C and high pressure loads during the lamination 

process, the relative thermal expansion of the individual layers in the stack-up was not sufficient to give rise to 

deleterious levels of built-in stress within the manufactured OPCB. Therefore this low temperature bonding 

process was deployed in the manufacture of the OPCBs on the SEPIANet project, none of which subsequently 

exhibited the CTE mismatch induced built-in stresses observed in the early prototypes.  

The final OPCB stack-ups of SEPPLANE1 and SEPPLANE2 with a total thickness of 3.5 mm are shown in 

Figure 5-14. The full PCB boards of both variants measured 28 mm x 23.5 mm. Both variants consisted of two 

electrical packages with solder mask, each with two electrical layers, and one optical package with either one 

glass substrate for SEPPLANE 1 or two glass substrates in the same plane for SEPPLANE 2. Figure 5-14d 

shows an unpopulated SEPPLANE 1. The OPCBs were both optically and electrically functional with the 

encased fragile glass panels shielded from direct external mechanical forces. The prototype exhibited no built-in 

stress, with no apparent bulging or twisting of the embedded glass, thus showing the advantages of the newly 

developed cold lamination technology developed by ILFA. 
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Figure 5-14: a) SEPPLANE1 stack-up with one single panel optical and two electrical packages with 

solder mask, b) SEPPLANE2 stack-up with one dual panel optical and two electrical packages, c) Photo of 

OPCB cross-section, d) photo of unpopulated OPCB backplane circuit board 

 

Although the size of waveguide panels deployed on these backplanes was restricted to 199 x 160 mm² by 

available mask sizes used for the LDI and ion-exchange process, ILFA have successfully integrated glass panels 

with a form factor of 570 mm x 420 mm and have also demonstrated that up to four smaller glass panels can be 

integrated into the same EOCB layer. Furthermore ILFA and IZM have demonstrated that they can vertically 

embed up to eight glass layers into a PCB stack-up [169]. 
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5.5 Pluggable optical connector design and assembly 

A complete passive optical connector system was designed and developed to enable test daughtercards to be 

plugged to a glass waveguide based OPCB and to enable parallel optical fibre cables to be directly connected to 

the embedded waveguide interfaces themselves (Figure 5-15). The design was tailored to satisfy the opto-

mechanical requirements of the fragile glass waveguide panel embedded in the electro-optical circuit board 

stack-up. 

 

 

Figure 5-15: Complete pluggable connection system comprising connector plug on connecting edge of 

daughtercard, backplane receptacle and fibre ferrule receptacles 
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5.5.1 MT ferrule compliant waveguide receptacle 

The author developed the design requirements specification for the waveguide receptacle to be directly 

assembled onto the glass foil edge over the embedded waveguide array. Various views of the receptacle are 

shown in Figure 5-16. 
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Figure 5-16: a) MT ferrule receptacle made of polycarbonate material, b) exposed dual glass waveguide 

array interfaces, c) front view of waveguide array interface with MT compliant receptacle port assembled, 

d) vertical offset between MT pins datum and waveguide array, e) dual ferrule mounts with MT fibre 

jumper plugged into one, f) four adjacent waveguide ferrule receptacles made of Ultem™ material 
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5.5.1.1. Receptacle design 

The receptacle was designed to accommodate a commercial MT style ferrule (Figure 5-16c), however, in order 

to avoid cutting notches into the glass panel either side of the waveguide group, the receptacle needed to 

accommodate an offset between the alignment pins and the waveguide array, which could be matched by a 

commercial 6 x 12 MT ferrule. When the ferrule receptacle is placed on the top surface of the glass panel, the 

datum between the alignment pins of the connecting ferrule must be vertically offset from the embedded 

waveguide array as shown in Figure 5-16d. This offset must be 625 µm, in order to match the offset in a 6 x 12 

MT (72 way) fibre interface between the datum between the alignment pins and the lowest row of the ferrule 

plugged into the receptacle. 

This is the same design principle on which the first generation waveguide receptacle for polymer waveguides 

was based as described in Chapter 3. 

The waveguide receptacle design was realised by opto-mechanical engineer Allen Miller at Xyratex and the 

prototypes were fabricated in polycarbonate through a precision machining process by high precision component 

fabricator Optima Pacific Optima Asia Pacific Sdn Bhd. 

 

5.5.1.2. Material choice 

Receptacles were fabricated from two different materials: polycarbonate (Figure 5-16a), which appeared as an 

opaque white colour, and Ultem™ (Figure 5-16f), which appeared as a yellow colour. Ultem™ proved to be an 

unsuitable material for the Fraunhofer IZM assembly process described below in Section 5.5.3 as it is highly 

absorptive of UV light and as such prevented curing of photosensitive adhesive through the receptacle. 

Polycarbonate however was much less absorbing of UV light and as such allowed better curing of the adhesive 

through the receptacle. 

As such polycarbonate was the preferred choice for high precision waveguide receptacles on this project. 

 

5.5.2 Board-to-board connector plug and backplane receptacle design 

A board-to-board connection system was invented and designed by Allen Miller at Xyratex. 

The connector plug section was mounted on the edge of a connecting daughtercard (Figure 5-17a) and comprised 

an internal brace and an outer housing section. The brace supported an MT style parallel optical fibre ferrule and 

attached fibre cable (Figure 5-17b) and contained an interlocking shutter system to reduce dust contamination of 

the ferrule interface. 
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The backplane receptacle comprised a shuttered head section (black), which houses its own ferrule terminated 

fibre ribbon and a clear housing section (Figure 5-17d). 

 

 

Figure 5-17: a) Pluggable connector assembled on card edge (front view), b) rear view of pluggable 

connector showing fibre ribbon from internal MT ferrule, c) pluggable connector and receptacle head, d) 

connector plugs assembled on edge of test daughtercard, e) 4 variants of full backplane receptacle with 

receptacle head (black) in different orientations relative to receptacle body (clear) 

 

During engagement, the coarse alignment structures in the plug housing section allow it to capture the compliant 

receptacle head, (Figure 5-17c), mutually opening the shutters of both plug and receptacle and bringing the high 

precision alignment structures of the internal commercial MT ferrules into engagement. An internal spring 
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system on the plug brace provides a degree of over-travel to ensure the ferrule interfaces are held together under 

force when the daughtercard is engaged. 

The backplane receptacle housing (Figure 5-17e) is designed to incorporate a short dual fibre patchcord bent by 

90° to enable the required deflection of optical signals between the optical axes of the waveguide interfaces 

(parallel to the backplane) and the daughtercard mounted connector plugs (orthogonal to the backplane). As 

shown in Figure 5-18, the short dual fibre jumpers provide a fully fibre populated 2x12 MT ferrule for vertical 

connection to the daughtercard plug, which fans out into two separate rows of 12 fibres, each terminated to the 

lowest row of a  6 row MT ferrule. This arrangement allows one vertical daughtercard connector plug to connect 

to two horizontal dual adjacent (Figure 5-18b) or opposite (Figure 5-18c) waveguide interfaces thus increasing 

interconnect density. 

This technique of optical right angle deflection is robust, reliable and mechanically decouples the fragile glass 

waveguide interface from direct stresses and strains inherent to the board to board connections. 
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Figure 5-18: OPCB backplane type SEPPLANE 1 with ferrule receptacles and jumpers populated, a) 

schematic view of ferrule receptacle populated with MT terminated fibre ribbon, b) schematic view of 

dual edge board fibre jumper (connecting to 2 adjacent interfaces), c) schematic view of dual mid-board 

fibre jumper (connecting to 2 opposite interfaces) 

 

Four different (2 single and 2 dual jumper) backplane receptacle variants were developed to accommodate 

different board positions and connector configurations. 

 

5.5.3 Board assembly of fibre ferrule receptacles 

Fraunhofer IZM carried out the assembly of the MT fibre ferrule receptacles onto the waveguide array interfaces 

using a proprietary active alignment and assembly routine to decrease misalignment and optimise coupling 

efficiency between the fibre-optic MT patchcord and 12 channel waveguide array. Their assembly process relied 

on pick-and-place assembly equipment supplied by ficonTEC with three translational and two rotational axes 

and a positional accuracy better than ±1 µm. A vacuum tool was designed to hold the MT ferrule receptacle with 

an MT terminated fibre patchcord in situ. The ficonTEC equipment included an adhesive dispensing system and 

UV curing as well as top and bottom vision control cameras for alignment purpose. For the assembly task, the 

equipment was supplemented with a separate 3-axis translation stage to position a second fibre-optic MT 
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patchcord at the launch facet of the waveguide group. For that, a two channel laser source and photodetector 

with an operating wavelength of 1310 nm were connected to the two MM fibre-optic MT patchcords for in-situ 

insertion loss measurement. During the assembly process only 1310 nm light was used to carry out insertion loss 

measurements. 

The semi-automated assembly routine consisted of the following process steps: 

a) Backplane suspension (Figure 5-19a). 

Electro-optical backplane is placed on the working stage within the ficonTec assembly rig. 

b) Launch fibre ferrule alignment (Figure 5-19b). 

An MT terminated 12 fibre ribbon is actively aligned by a 3-axis translation stage over the selected waveguide 

group. Active alignment of the entire 12 channel fibre array to the waveguide array is achieved by adjusting the 

positions of the two illuminated outer fibres in the launch ferrule (fibre 1 and fibre 12) such as to maximise light 

coupled into the corresponding outer waveguides in the group, and monitoring light exiting those waveguides 

from the other waveguide interface with a vision control camera. These serve as reference channels. 

c) Detection fibre and ferrule receptacle alignment (Figure 5-19c). 

In order to align the ferrule receptacle for assembly, it is populated with a 6 row MT ferrule terminated with a 12 

fibre ribbon on the lowest row and positioned into the PCB clearance area near the waveguide interface. Pre-

positioning of the ferrule onto the waveguide interface is achieved by scanning fiducial marks on the glass panel 

and calculating the corresponding position. An active alignment routine adjusts the position of the fibre array and 

attached ferrule receptacle to the waveguide array until the insertion loss through both the illuminated reference 

channels as measured through the corresponding butt-coupled fibres is minimised. 

d) Ferrule receptacle assembly on detection side (Figure 5-19d). 

Once the ferrule receptacle is in precise position, UV-curable adhesive is applied between the glass surface 

and receptacle at key positions and, through UV exposure, the ferrule receptacle is rigidly bonded in place 

onto the electro-optical backplane. 

e) Ferrule receptacle assembly on launch side  (Figure 5-19e) 

With a ferrule receptacle now permanently in place over one waveguide interface, the process steps c) and 

d) are repeated to align and assemble the launch ferrule receptacle onto the first waveguide interface. Upon 

completion, both waveguide interfaces bounding a given waveguide group have been successfully 

connectorised. 
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This assembly process was repeated to fully connectorise all waveguide groups on the electro-optical 

backplanes. 

 

 

 

Figure 5-19:  Ferrule receptacle assembly process steps: a) backplane suspended in ficonTEC assembly 

rig, b) active launch fibre alignment with 3-axis translation stage, c) active detection fibre and ferrule 

receptacle alignment with 5-axis translation stage, d) MT ferrule receptacle glued in place, e) fibre patch 

cord plugged into assembled MT multi-fibre ferrule 

 

5.5.4 Assembly of connector plugs and receptacles 

The connector plug housings were passively attached into compliant cut-outs on the connecting edge of the 

daughtercard, with the metal side clips on the housing providing a limited float of the plug relative to the boards. 

Figure 5-20 shows a fully assembled “SEPPLANE1” OPCB backplane with 16 MT ferrule receptacles bonded 

(Figure 5-20a) and 9 backplane receptacles assembled (Figure 5-20b). 
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Figure 5-20: a) SEPPLANE1 after assembly of all MT ferrule receptacles, b) SEPPLANE1 after assembly 

of all backplane receptacles 
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The 6×12 MT ferrule ends of the dual fibre jumpers shown in Figure 5-18 were then passively connected into the 

MT ferrule receptacles and the vertical 2×12 MT ferrule end mounted into the backplane receptacle head section. 

A spring clip was provided to ensure that the MT ferrules were held in place against the glass waveguide 

interface. The backplane receptacle housings were then fastened to the backplane with screws. The connector 

plug and receptacle MT ferrule to MT ferrule engagement mechanism was tested and validated independently on 

a mechanical test rig showing no deterioration of insertion loss or misengagements over 100 mating cycles. 

 

5.5.5 SEPIANet platform design 

The author prepared the design requirements specification for the SEPIANet platform, which comprised: 

 7U (311.15 mm) high, 84 HP (426.72 mm) sub-rack chassis with an integrated fan tray and power 

supply 

 Electro-optical backplane, type (SEPPLANE1 or  SEPPLANE2) populated with 1) electronic backplane 

receptacles to provide power and low-speed data to the daughtercards, 2) optical ferrule receptacles for 

direct cable attach and 3) backplane receptacles to enable board-to-board pluggability 

 5 test cards based on the Euro-card form factor. Three variants of test card were designed supporting an 

extensive variety of test data interfaces, optical transceiver subassemblies and optical connector plugs. Each 

test card can accommodate 4 edge connector plugs. 

 All optical fibre jumpers used were based on multimode, 50/125 µm OM3 type fibre  

 

Two test and measurement platforms, SEPDEM1 and SEPDEM2 were developed and assembled to respectively 

allow full optical characterisation of the SEPPLANE1 and SEPPLANE2 type backplane and pluggable 

interconnect systems. 
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Figure 5-21: Two test and measurement platforms SEPDEM1 and SEPDEM2 

 

Overall, three backplanes were fabricated and characterised: two of type SEPPLANE1 (designated 

SEPPLANE1a, SEPPLANE1b) and one of type SEPPLANE2 (designated SEPPLANE2a) were fabricated and 

characterised in the test and measurement platforms. 

 

5.5.5.1. Test daughtercards 

The author developed the design requirements specification for five different varieties of test daughtercard. The 

designs were rendered by Xyratex electronic designer Paul Stevens. 

The five different varieties of test daughtercard were designated SEPTEST1, SEPTEST1A, SEPTEST1C, 

SEPTEST2 and SEPTEST3. 
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The test daughtercards were designed to support a variety of different data interfaces on the front end to allow 

different data streams to be injected into the system including 10 GbE LAN (10.3 Gb/s) and 12 G SAS (12 

Gb/s), as well as user specific test data loads spanning a range of possible data rates up to 25 Gb/s. The front end 

data interfaces include Mini-SAS HD cable ports, Quad Small Form-factor Pluggable (QSFP) ports and high 

frequency SMP connectors. 

Each of these data interfaces could accommodate 4 duplex channels and can thus each be connected to a 

dedicated midboard optical engine permanently mounted to the board. 

An LED backlight card was also designed to provide back-illumination for the six partner logos when the system 

was powered up. 

 

SEPTEST1 (Figure 5-22a) housed two types of mezzanine cards, SEPTEST1A and SEPTEST1C (Figure 

5-22b). Each mezzanine card was designed to house a Conjunct optical engine and alignment brace with a data 

interface to convey test data electronically to and from the engine. The data interface port on SEPTEST1A was a 

mini-SAS HD connector allowing SAS data to be conveyed to the engine for electro-optical conversion. The 

data interface ports on SEPTEST1C were high speed (40 GHz) SMP connectors allowing 28 Gb/s test data to be 

conveyed to the engine for electro-optical conversion.  

SEPTEST2 (Figure 5-22c) was designed to house two Avago McLink midboard transceivers (12G, 2Tx + 2Rx) 

and two finisar BOA (12G, 12 Tx + 12 Rx) midboard transceivers. These transceivers were supplied by three 

data interface port types: 5 Mini-SAS HD ports (supporting 20 duplex channels), 1 QSFP port (supporting 4 

duplex channels) and 16 SMP ports (supporting 4 duplex channels). 

SEPTEST3 was designed to house one high speed Finisar BOA (25G, 12Tx + 12Rx) to which external 

electronic test data could be conveyed via 48 SMP ports for electro-optical conversion. 
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Figure 5-22: SEPIANet test cards: a) SEPTEST1 test card with vacant slots for mezzanine cards and 

populated with 1 edge connector plug, b) SEPTEST1C mezzanine card populated with alignment brace 

and MT patchcord attached, c) SEPTEST2 populated with 2 edge connector plugs, d) SEPTEST3 fully 

populated with 4 edge connector plugs 

 

The purpose for designing this variety was to also accommodate other 3
rd

 party optical engines thus providing 

alternative optical sources on the test cards driven by the same data test pattern. This was part of an extensive 

risk mitigation strategy to decouple the risk of a failure or non-delivery of one or more partner transceiver 

deliverables and enable partial demonstration of partner deliverables within the demonstration platform. 
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SEPTEST1A and SEPTEST1C could not be completed due to delays by one of the SEPIANet partners to deliver 

functional optical engines. SEPTEST3 could not be completed due to the high speed midboard optical 

transceiver assembly not being delivered. 

Limited testing with on-board engines was only carried out on SEPTEST2, however it was determined that the 

most useful testing would be based on the use of external test data being conveyed directly to the edge 

connectors of any of the test cards, as opposed to via an on-board transceiver. The reason for this is that it 

allowed for a truer characterisation of the board-to-board pluggable performance of the connector and eliminated 

the variable performance attributed to the midboard transceiver. 
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5.6 Optical interconnect test and measurement 

The author developed a comprehensive test and measurement regime for the two platforms SEPDEM1 and 

SEPDEM2 and carried out measurements jointly with Kai Wang at Xyratex. In all cases, optical test data was 

conveyed over the complete waveguide, connector and patchcord link between the measurement points 1 and 2 

and vice versa shown in Figure 5-23. The measurement points are easily accessible 2 x12 MT interfaces, to 

which external fibre-optic test cables can be connected by the tester without the need to reach into the enclosure. 

They are also chosen to emulate a mid-board transceiver that would typically be connected with a fibre-optic 

jumper to the backplane connector. 

 

 

Figure 5-23: Schematic view of complete optical connector and waveguide link under test 

 

 

5.6.1 Bidirectional insertion loss measurements 

Insertion loss measurements were carried out at 850 nm and 1310 nm for all functional waveguides in the 

system. The chosen optical sources were an 850 nm Class 1 VCSEL and a 1310 nm Class 1 DFB laser. Eight 

insertion loss measurements were taken for each waveguide: 1) 850 nm and 1310 nm, 2) received power as 

measured by a large area photodetector and the integrated photo-receiver of a Tektronix CSA8000B 

Communications Signal Analyser (CSA) each calibrated to either 850 nm or 1310 nm depending on the source, 

3) measurements in both directions along the same waveguide, in order to evaluate optical link reciprocity. 
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Figure 5-24 shows the results of insertion loss profiles measured on waveguide group G4 on SEPPLANE1. This 

is an example of one of the best performing waveguide groups tested. 

 

 

Figure 5-24: Bidirectional insertion loss on SEPPLANE1 - waveguide group 4 in both directions as 

recorded directly using a large area photodetector and CSA: a) at 1310 nm, b) at 850 nm. Propagation 

direction >>> signifies propagation from left to right along a given waveguide as viewed from the top of 

the backplane, while <<< indicates right to left propagation 
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Table 5-2 shows a summary of insertion loss measurement results and variability for the full optical connector 

and waveguide link on all waveguide groups on the 3 backplanes under test. Bidirectional measurements were 

taken into account, but only insertion loss measured directly with the photodetector were considered. As 

expected, insertion losses at 850 nm are substantially higher than those measured at 1310 nm, which is in 

compliance with the direct waveguide measurement results reported in Section 5.3.2. Upon inspection, it was 

determined that the variability in results was most likely due to sporadic glue contamination on some waveguide 

interfaces. 

 

Table 5-2: Summary of insertion loss as measured on all backplanes with 1310 nm and 850 nm optical test 

signals modulated at 10.3 Gb/s. The standard deviation of each measurement set is also shown to provide 

an indication of the measurement spread and variability of results due to contamination 

Backplane Average insertion loss / 

dB 

Standard deviation 

1310 nm 

 

SEPPLANE1a (prior to interfaces being cleaned) 7.8 3.4 

SEPPLANE1a (after interfaces have been cleaned) 3.9 0.9 

SEPPLANE1b 5.4 2.2 

SEPPLANE2a 4 1.1 

850 nm 

 

SEPPLANE1a (prior to interfaces being cleaned) 11.1 1.8 

SEPPLANE1a (after interfaces have been cleaned) 11.3 1.5 

SEPPLANE1b 12.4 1 

SEPPLANE2a 10.7 2.2 
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5.6.2 Insertion loss measurements through both daisy chained demonstration platforms 

In order to also demonstrate extended passive optical connectivity between multiple electro-optical backplane 

systems, both demonstration platforms SEPDEM1a and SEPDEM2a were daisy-chained together with passive 

fibre-optic connections (Figure 5-25) and some of the best performing waveguide groups evaluated in series 

through the pluggable connector interfaces.  

 

 

 

Figure 5-25: Schematic view of complete daisy chained link under test through both SEPDEM1b and 

SEPDEM2a 

 

Propagation direction is defined by first identifying the waveguide group in question (and if appropriate, the 

waveguide in said group), then identifying the connector position into which light is coupled into the waveguide, 

followed by a hyphen and finally identifying the connector position from which the light is extracted for 

measurement. Connector positions are defined by the daughtercard slot number, which can take the values 1 – 5, 

followed by the connector row designation, which can take the values A-D as shown in Figure 5-4. For example 

G12 3D – 1D means measurement on waveguide group 12 launching into connector position 3D and receiving 

out of connector position 1D. 

Figure 5-26 shows the bidirectional insertion loss and jitter measurements at 1310 nm as measured through 

daisy-chained link over both demonstration platforms, through SEPPLANE1b G2 in propagation direction 2A -

1B and through SEPPLANE2a G12 in propagation direction 3D-1D. The average overall insertion loss measured 

with a 1310 nm 10.3 Gb/s optical signal was 11.9 dB and average peak to peak jitter was 87 ps. 
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Figure 5-27 shows eye diagrams for waveguides 1 to 11 in this group as measured by the CSA. When the 

amplitude of the optical signals received by the CSA receiver becomes too low for the receive circuit to properly 

resolve them, then the eye diagrams begin to deteriorate. The quality of the eye diagrams in Figure 5-27 starts to 

deteriorate from 9 onwards, which is consistent with the increasing loss shown in Figure 5-26 a. An eye diagram 

for waveguide 12 could not be extracted due to excessive loss. 
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Figure 5-26: a) Bidirectional insertion loss and b) jitter measurements at 1310 nm as measured through 

daisy-chained link over both demonstration platforms, through SEPPLANE1b G2 in propagation 

direction 2A -1B and through SEPPLANE2a G12 in propagation direction 3D-1D 
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Figure 5-27: Eye diagrams measured through SEPPLANE1b G2 in propagation direction 2A-1B and 

through SEPPLANE2a G12 in propagation direction 3D-1D 
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5.6.3 Correlation between contamination and non-reciprocal insertion loss profiles 

In a number of cases, non-reciprocal insertion loss results were shown to coincide with occasional glue 

contamination on the waveguide interfaces. This contamination occurred when, in some cases, excessive glue 

was applied to the ferrule receptacles as part of the assembly process, and some glue migrated over the 

waveguide interface. The ferrule receptacle assembly process has since been improved to eliminate this type of 

problem. Further characterisation was undertaken to evaluate the correlation between non-reciprocal and 

asymmetric insertion loss profiles on given waveguide groups and the distribution of glue contamination over the 

interfaces bounding those groups. 

Figure 5-28 shows a comparison of two waveguide interfaces bounding waveguide group G5 on SEPPLANE1b 

before and after the removal of glue contamination from the interfaces. 

As measurements were taken in both directions for each waveguide group, the non-reciprocality of waveguide 

performance could be assessed depending on which direction the optical signals were conveyed through the link.  

A strong correlation is shown between the insertion loss profiles for optical signals conveyed through a 

waveguide in a given direction and the pattern of glue contamination on the waveguide interface, into which the 

light is launched. In this case insertion loss profiles prior to cleaning were highly non-reciprocal and asymmetric, 

matching the asymmetric distribution of glue over the corresponding launch interfaces. After cleaning, however, 

the insertion loss profiles became reciprocal and a substantial overall reduction in insertion loss and variability 

over the waveguide group is observed. 
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Figure 5-28: Correlation between glue contamination pattern on waveguide interfaces and bidirectional 

insertion loss profile before and after removal of glue contamination 
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5.6.4 Bidirectional signal integrity measurements at 10.3 Gb/s 

A 10.3125 Gb/s PRBS 2
31

-1
 
data pattern was generated by an Anritsu MP1800A pattern generator and BERT 

system and bidirectional signal integrity measurements were carried out on all functional waveguides at 850 nm 

and 1310 nm. 

Figure 5-29 shows the eye diagrams measured at 1310 nm for all 12 waveguides in one of the best performing 

groups, group 2 of SEPPLANE1b 

Table 5-3 shows a summary of total jitter for the full optical connector and waveguide link on all waveguide 

groups on the 3 backplanes under test as measured on the CSA. 

 

 

Figure 5-29: Eye diagrams for 10.3 Gb/s with PRBS 2
31

-1
 
test signal conveyed at 1310 nm over all 12 

waveguides of group 2 of SEPPLANE1b. A B2B eye diagram is included at the bottom 
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Table 5-3: Summary of peak to peak jitter as measured on all backplanes with 1310 nm and 850 nm 

optical test signals modulated at 10.3 Gb/s. The standard deviation of each measurement set is also shown 

to provide an indication of the measurement spread and variability of results due to contamination 

Backplane Average peak to peak 

jitter / ps 

Standard deviation 

1310 nm 

Back-to-back reference measurement 25 N/A 

SEPPLANE1a (prior to interfaces being cleaned) 47.8 23.2 

SEPPLANE1a (after interfaces have been cleaned) 35.9 21.1 

SEPPLANE1b 27.88 8.3 

SEPPLANE2a 38.8 10.28 

850 nm 

SEPPLANE1a (prior to interfaces being cleaned) 96.1 9.8 

SEPPLANE1a (after interfaces have been cleaned) 95.4 2.36 

SEPPLANE1b 84.3 21.5 

SEPPLANE2a 91.2 20.1 

 

Table 5-2 shows that SEPPLANE1a (after interfaces have been cleaned) exhibits the lowest insertion loss at 

1310 nm, while SEPPLANE2a exhibits the lowest insertion loss at 850 nm. Table 5-3 shows that SEPPLANE1b 

incurs the lowest jitter values at both 1310 nm and 850 nm. 

The variation in performance between the different SEPPLANE backplanes was most likely due to both the 

incremental differences in fabrication processes employed and the variability in the quality of assembly of the 

connector receptacles. 

 

5.6.5 Bit Error Rate characterisation of on-board 850 nm transceiver subassemblies 

Two high power 850 nm optical transceiver subassemblies were mounted on two test daughtercards connected to 

each other across a SEPPLANE1 backplane. An electrical 10.3 Gb/s test pattern was generated by the Anritsu 

BERT to drive the on-board transceiver subassembly on the launch daughtercard, which conveyed the 

corresponding modulated 850 nm optical signal through the connector and waveguide link under test to the 
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transceiver subassembly on the receiving daughtercard. The received signal was then extracted electronically and 

conveyed back to the BERT for analysis. 

Bit error free operation of BER <10
-13

 for a 10.3 Gb/s test data stream was measured consistently over multiple 2 

hour long test periods. 

 

5.6.6 Bit Error Rate characterisation up to 32 Gb/s 

An Anritsu pattern generator and Photline ModBox-850nm-28Gbps-NRZ optical modulation unit were used to 

produce 850 nm PRBS 2
31

-1 optical test signals at data rates of 15 Gb/s, 20 Gb/s, 28 Gb/s and 32 Gb/s. The 

optical test signals were conveyed in a loop back configuration through selected connector and Group 4 

waveguide links on a SEPPLANE1 type backplane and back to the Photline ModBox receiver and Anritsu 

BERT. The waveguides alone had a length of 134.65 mm. A bit error rate better than 10
-12

 was measured in each 

case. The results are summarised in Figure 5-30. 
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Figure 5-30: BER bathtub curves and eye diagrams for 850 nm optical test signals conveyed through full 

optical connector and waveguide link and corresponding B2B profiles. The increased degradation 

observed on the 32 Gb/s profile is partly due to a reduced power budget and insufficient light being 

received to resolve a clean eye 
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5.7 Summary 

In this chapter, the design and the development of a complete technology eco-system around embedded planar 

glass waveguide based OPCBs was detailed. The work was carried out in collaboration with European partners 

as part of the SEPIANet project. A suite of passive optical connectors was designed and developed to allow 

parallel optical fibre cables to connect directly to OPCB integrated glass waveguides, and a corresponding 

passive dense board-to-board connection system to allow daughtercards to plug into an OPCB backplane. These 

efforts culminated in the first successful demonstration of a fully integrated planar glass waveguide OPCB 

backplane and pluggable connector platform driven by system embedded and external 850 nm and 1310 nm 

optical transceiver technologies and validated for both fibre-to-board and board-to-board optical connectivity at 

data rates of up to 32 Gb/s. 

 

 

 

 



Chapter 6 Intellectual Property 273 

 

 

 

 

 

 

 

 

 

6 INTELLECTUAL PROPERTY 

 

This chapter provides a summary of the intellectual property portfolio developed by the author during the course 

of this programme in the field of optics and photonics. The portfolio consists of 19 patents and patent 

applications spanning optical printed circuit boards, optical waveguides, optical connectors, optical assembly and 

system embedded optical interconnects. 

The purpose of this chapter is to provide a Value Proposition for this intellectual property portfolio and to 

underline and reinforce the competitiveness of the inventions with respect to the current state of the art in 

embedded optical interconnect technologies. 

 

6.1 Introduction 

The premise of this thesis is to explore how the projected performance bottleneck in data centre systems can be 

mitigated by incorporating electro-optical printed circuit board (OPCB) and optical interconnect technology 

solutions onto the backplane, midplane [71]–[76] and the peripheral line cards (controllers, servers or disk 

drives). 

A number of key technology inhibitors to the commercial proliferation of embedded optical interconnect were 

however identified including: 

 Lack of viable connector solutions and methods of optically connecting line-cards to optical PCBs 
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 Need for low cost repeatable high-precision assembly of optical components 

 Need for low-cost methods of waveguide and optical PCB fabrication 

 Need for tighter in-plane routing of waveguides i.e. smaller bend radii to overcome routing constraints 

 Modal dispersion in planar optical waveguides currently too high to accommodate data rates >25 Gb/s 

over more than half a metre 

 Requirement for solutions to increase optical channel bandwidth density, optical link budget and 

maximum link lengths 

 Optical losses too high for longer wavelengths and signal propagation over longer waveguide distances 

 

During course of this thesis the author has developed technology solutions, know-how and an intellectual 

property portfolio to help resolve these challenges. 
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6.2 Optical intellectual property summary 

Table 6-1 contains all granted and pending patent applications that were developed and filed between 2005 and 2010. In summary there are 16 patent families with 19 separate 

patents filed of which 18 have been granted and 1 is still pending. 

Table 6-1: Summary of filed patents 

Patent 

family 

Patent 

number 

Description Official Title Inventors Priority 

Date 

Countries Patent / App 

No 

Filing / 

Grant Date 

Status 

1 P1 Optical transceiver 

connector module (Active 

pluggable optical 

backplane connector) 

Optical connector, a communication system 

and a method of connecting a user circuit to 

an optical transceiver [170] 

Richard Pitwon 

Kenneth Hopkins 

01/06/2005 US final 7625134 01/12/2009 Issued 

P2 UK GB2426831 25/04/2007 Issued 

2 P3 High-precision component 

alignment to PCB 

(Method of high precision 

alignment to optical 

waveguides 

Optical printed circuit board and 

manufacturing method  [171] 

Ian Johnson 

Richard Pitwon 

David Selviah 

Ioannis 

Papakonstantinou 

15/07/2005 US final 7936953 03/05/2011 Issued 

3 P4 Daughtercard 

interconnects 

Optical circuit board, an optical backplane 

and an optical communication system [172] 

Richard Pitwon 31/03/2006 US final 7454097 18/11/2008 Issued 

4 P5 Optical printed circuit 

board blank 

Optical printed circuit board blank, a kit and 

a method of making an optical printed 

circuit board [173] 

 

Richard Pitwon 25/05/2006 US final 7422374 08/09/2008 Issued 

P6 Europe 1860474 15/10/2014 Issued 
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5 P7 Crosstalk suppression 

(Method of optical 

crosstalk suppression in 

high density polymer 

waveguide optical PCBs) 

Optical printed circuit board, a method of 

making an optical printed circuit board and 

an optical waveguide [174] 

Richard Pitwon 16/08/2006 US final 8731343 20/05/2014 Issued 

6 P8 Multimode CWDM 

Multiplexer demultiplexer 

structures on polymer 

optical PCB and method 

of manufacturing same 

Optical wavelength division multiplexed 

multiplexer/demultiplexer for an optical 

printed circuit board and a method of 

manufacturing the same [175] 

Richard Pitwon 

David Selviah 

Ioannis 

Papakonstantinou 

27/09/2006 US final 7805033 28/09/2010 Issued 

7 P9 Method of manufacturing 

multimode CWDM 

multiplexer / demultiplexer 

structures on polymer 

optical PCB and method 

of manufacturing same 

Optical wavelength division multiplexed 

multiplexer/demultiplexer for an optical 

printed circuit board and a method of 

manufacturing the same [176] 

Richard Pitwon 

David Selviah 

Ioannis 

Papakonstantinou 

27/09/2006 US CIP 8007965 30/08/2011 Issued 

8 P10 Optical adapter module Adapter for an optical printed circuit board, 

an optical printed circuit board and a 

method of connecting an adapter to an 

optical printed circuit board [177] 

Richard Pitwon 16/02/2007 US final 7490993 17/02/2009 Issued 

9 P11 Fabricating a hybrid 

electro-optical printed 

circuit board with optical 

surface layers 

Electro-optical printed circuit board, a blank 

and a method of making an electro-optical 

printed circuit board [178] 

Richard Pitwon 27/07/2007 US final 7899278 01/03/2011 Issued 
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10 P12 Lossless tapered 

waveguides               

Method of making a waveguide and a 

waveguide made thereby [179] 

Richard Pitwon 13/02/2008 US final 9333717 10/05/2016 Issued 

11 P13 Directly pluggable 

orthogonal in-plane 

optical PCB connector 

An optical connector and a method of 

connecting a user circuit to an optical 

printed circuit board [180] 

Richard Pitwon 12/03/2010 US final 12/722908 12/03/2010 Pending 

12 P14 Optical capstan to simplify 

routing of optical 

waveguides 

An optical connector and a method of 

connecting an optical connector to an 

optical printed circuit board [181] 

Richard Pitwon 

Kenneth Hopkins 

David Milward 

12/03/2010 US final 8306374 06/11/2012 Issued 

13 P15 Optical PCB interconnect 

for storage devices 

An interconnect for a data storage system 

[182] 

Richard Pitwon 

Kenneth Hopkins 

12/03/2010 US final 8861975 14/10/2014 Issued 

14 P16 Modular interconnectable 

electro-optical backplane 

A data storage system, a modular printed 

circuit board, a backplane and a backplane 

component [183] 

Kenneth Hopkins 

Richard Pitwon 

24/05/2010 US final 8417071 09/04/2013 Issued 

 

15 

P17 Optical amplification 

devices for polymer 

optical printed circuit 

boards 

An amplification module for an optical 

printed circuit board and an optical printed 

circuit board [184] 

Richard Pitwon 01/09/2010 US final 9325146 26/04/2016 Issued 

P18 US CIP 8891932 18/11/2014 Issued 

16 P19 Design and manufacture 

of polymer optical 

waveguide amplification 

structures 

An optical PCB and a method of making an 

optical PCB [185] 

Richard Pitwon 01/09/2010 US final 8488920 16/07/2013 Issued 
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6.3 Areas of invention 

During the course of my optical research and development activities, it became apparent that there were a 

number of key challenges to the viability of system embedded optical interconnect, specifically optical 

backplanes / midplanes and the myriad technology solutions required to enable and support them. It was 

important for instance that daughterboards be able to plug optically to a backplane with embedded optical 

channels, however due to the inherently small size of optical waveguides, the task of aligning and assembling 

connector components to them with the required precision could not be overcome with conventional techniques. 

Patents 1 and 2 addressed this and have been successfully implemented and demonstrated as described in 

Chapter 3. Different variants of such optical PCB connector solutions, including right-angled, in-line and 

rotatable connectors, were developed to further enable and support future target applications in data centre 

environments (Patent families 3, 11, 12). 

Polymer multimode waveguides, which underlie many of the target applications under consideration are fraught 

with limitations to their performance including high propagation and bend losses and modal dispersion. The 

author has devised innovative new waveguide concepts, structures and fabrication methods to overcome these 

intrinsic obstacles to their commercial deployment (Patent families 5, 14 and 15). 

Electro-optical printed circuit boards (OPCBs) containing optical layers as well as electronic signal layers – are 

central to this research effort as they include optical backplanes / midplanes / motherboards and ultimately 

peripheral daughterboards. Innovations devised in this field include a method of creating reconfigurable optical 

PCBs with generic “optical sockets” (Patent family 3) and various methods of fabricating electro-optical printed 

circuit boards (Patents 4 and 9). Intellectual Property has also been generated to address how OPCBs can be 

scaled up to rack level data centre environments including how to connect many optical PCBs together to form 

“super-backplanes” (Patent family 13) and how to amplify optical signals propagating along a PCB embedded 

waveguide to increase the optical link budget and therefore maximum waveguide length (Patent families 15 and 

16). 

In addition the author devised more forward looking enhancements to further increase waveguide signal 

bandwidth including how to multiplex / demultiplex light of different wavelengths into / out of planar 

waveguides in order to increase channel bandwidth (Patent families 6 and 7). 
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6.4 Optical intellectual property portfolio 

6.4.1 Patent 1: Optical transceiver connector module [170] 

6.4.1.1. Formal abstract on published patent 

This invention provides an optical connector for connecting a user circuit to an optical backplane, in use the 

connector being adapted for mounting on a user circuit.  The connector comprises an active or passive photonic 

interface through which optical signals may be transmitted and received between a user circuit and a said optical 

backplane; a primary aligner for engagement with a corresponding aligner on a backplane to ensure alignment of 

the optical interface with the backplane; and a support for supporting the aligner and/or the optical interface on 

the connector.  The support is selected to enable relative movement between a user circuit to which the connector 

is connected in use and the aligner and/or the optical interface.  The support is preferably a flexible printed 

circuit board. 

 

6.4.1.2. Description 

As the backplane and its peripheral cards in a data communication system (Figure 6-1a) are connected in a 

mutually orthogonal way, the author invented and developed an in-plane pluggable connector technology and 

connection scheme [127] whereby the optical interfaces of optical transceiver modules housed on the mating 

edge of the peripheral cards can be butt-coupled to optical channels embedded on the midplane. This builds on 

the connection methodology demonstrated in the Storlite project [3]. According to this scheme the optical axis of 

the peripheral transceiver module is collinear with the embedded optical channels in the optical printed circuit 

board, thus eliminating the need for right-angled mirrors and minimising the number of boundaries incurring 

optical loss. 

The patented optical transceiver connector module (Figure 6-1b) comprises a parallel optical transceiver circuit, 

a self-aligning optical interface and a connector mechanism. The transceiver circuit is constructed on a flexible 

material to enable the optical interface to mechanically float with respect to the line card, thus allowing the 

critical optical connection to remain relatively immune to displacements between line card and backplane. A 

manual connection mechanism (e.g. cam lever) controls the engagement and disengagement of the transceiver 

with the optical backplane. 
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What is claimed is a board to board optical connection system based on the use of optical component and 

alignment structures assembled on a flexible PCB material, in order to allow the active optical components in the 

daughterboard connector to be mechanically aligned with an optical interface (such as an optical waveguide 

arrangement) in a receptacle optical system (such as an optical PCB). This invention thus exploits the 

mechanical (as well as electrical) properties of flexible PCB to accommodate a free-floating active optical 

component system within a transceiver connector module, such that the module remains rigid with respect to the 

host board on which it is supported, whereas the active optical components and alignment features can be free-

floating and mechanically translated into and out of registration with the optical interface on the receptacle 

optical system. 

The implication of this invention is to make possible the implementation of optical (transceiver) connection 

systems between electronic daughter-boards and an optical PCB in a large rack system, without compromising 

the critical optical alignment requirement inherent to these systems. 

 

 

 

Figure 6-1: (a) Electro-optical midplane connection scheme; active pluggable connectors housed on the 

edge of peripheral line cards engage with the embedded optical layer in the backplane PCB. 

(b) Active optical connector comprising a parallel optical transceiver, connector housing and engagement 

mechanism. 
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6.4.1.3. Implementation 

The author successfully developed and demonstrated a prototype active pluggable connector to allow optical 

connection between the peripheral line cards and the optical layer embedded in an electro-optical midplane. The 

connector comprised a parallel optical transceiver, connector housing and a pluggable engagement mechanism. 

Full details on this project are available from the following reference papers [2], [128], [129]. This work forms 

the basis of this thesis and is described in Chapter 3 and Chapter 4. 

 

 

Figure 6-2: a) Optical transceiver circuit mounted on flexi-rigid substrate, b) Connector module housing, 

c) Grooves to enable required movement of optical interface during mating process, d) Electro-optical 

midplane in FirstLight demonstration platform fully populated with all 4 test line cards and powered up, 

e) Connector module housed on line card and plugged into electro-optical backplane, f) 4 test line cards 
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6.4.2 Patent 2: High-precision passive component alignment to PCB [171] 

One crucial requirement for the commercial deployment of optical PCB (OPCB) technology is a low-cost 

technique for the high-yield assembly of optical interface components onto the optical layers. In order to enable 

high volume assembly it is preferable that such techniques be passive and repeatable. 

 

6.4.2.1. Formal abstract on published patent 

The invention provides a method of manufacturing an optical printed circuit board and an optical printed circuit 

board. The method comprises providing a support layer; on the support layer, providing an optical core layer; 

forming optical channels from the optical core layer and surrounding the optical channels with cladding thereby 

forming optical waveguides; and during said step of forming the optical channels, forming one or more 

alignment features, e.g. projections, on the optical printed circuit board. 

 

6.4.2.2. Description 

This invention concerns a method of self-alignment of components onto printed circuit boards (PCBs), which is 

very accurate with respect to other components on the PCB to very high precision.  This is particularly relevant 

when dealing with on-board optical components or optical waveguides (such as one would find in an optical 

PCB) in which precise inter-component alignment is critical. 

An optical PCB has optical waveguides to transmit light signals between components, as well as or instead of 

conventional copper conductors.  It may usually consist of a base layer of, for example, glass fibre epoxy 

laminate material, such as FR4, as in conventional PCBs.  In the area where optical waveguides are needed a 

lower optical cladding layer is first laid down.  On top of this, a layer of optical core material is laid down.  This 

has a higher refractive index than the cladding layer and will ultimately form the actual optical waveguides. 

By a conventional process of masking and etching most of the core layer is removed, leaving only salient strips 

of core material where the optical waveguides are needed.  Finally, an upper cladding layer is laid down, so that 

the strips of core material are completely surrounded by cladding material, and hence are able to function as 

optical waveguides. These layers are illustrated in Figure 6-3. 

Conventional multimode optical waveguide core layers are typically 50 – 70 μm thick; the waveguides are 

typically 50 μm across and can be fabricated to very high accuracy, currently of the order of 5 μm.  High 

accuracy is obviously a key requirement of any optical waveguide structure. 
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Figure 6-3: Fabrication process for the passive alignment features on the optical layer 

 

The key premise of this invention is to construct mechanical registration stubs out of the optical core material, in 

the core material layer, in the same step by which the optical waveguides themselves are created.  In effect, these 

registration stubs would be enlarged optical waveguides. The difference is that these registration stubs are not 

completely surrounded by cladding material; sections of core material remain exposed, particularly on their outer 

sides.  Figure 6-4 shows that the sides of the registration stubs generally will be inclined (anisotropic) rather than 
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strictly orthogonal; in some situations this can actually facilitate the positioning of the component that aligns 

with the registration stubs. 

 

 

Figure 6-4: Diagram from Pitwon precision alignment patent [144] 

 

Because the registration stubs are constructed in the same step as the optical waveguides, they are inherently 

aligned as accurately as possible relative to the waveguides.  Therefore the exposed core material can be used as 

a highly accurate registration feature for the placement of components that will interface to the optical 

waveguides. The registration features can thus be positioned to an accuracy of around 5 μm, well within the 

currently required accuracy of 15 μm.  They can be shaped so as to provide accurate registration in three 

dimensions: 

• Registration stubs including back-stops account for lateral positional precision 

• Top surface of the lower cladding layer accounts for vertical positional precision 

 

A component such as a connector receptacle, 45° mirror or optical waveguide holder may be assembled on the 

PCB using the registration stubs for highly accurate positioning with respect to other components.  The 

component can then be fixed in place in a conventional manner such as by means of the application of adhesive 

such as epoxy.  

 

A proprietary fabrication technique and method of passively aligning and assembling parallel optical microlenses 

to embedded polymer waveguide arrays was successfully developed [24,30,31]. These form a critical part of the 
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pluggable in-plane connection interface between arbitrary external optical devices, either passive or active, and a 

PCB embedded optical circuit. 

The complete fabrication process for the passive alignment features on the optical layer is outlined in [3]. The 

procedure involves the fabrication of passive mechanical registration features in the core layer during the same 

process step in which the waveguide cores themselves are patterned. Effectively these serve as additional 

“dummy” waveguides, which are positioned on either side of the signal waveguides and as a result their 

positional accuracy with respect to the signal waveguides is as high as those of the signal waveguides to each 

other. Instead of uniformly curing the upper cladding however, it must be selectively cured to ensure that the 

central signal waveguides are completely clad while the registration waveguides are not. 

This clearance allows for direct mechanical registration of arbitrary components to the waveguides. In addition, 

the fabrication tolerances required to pattern the upper cladding for this purpose are far lower than those required 

to pattern the waveguides themselves. It is only important that the outer edges of the registration waveguides, 

which form the mechanical datum, be mechanically exposed. Preferably, the upper cladding should partially 

cover the registration waveguides in order to provide structural reinforcement and reduce the risk of the 

registration waveguides delaminating under the strain. However, this is not strictly necessary and as shown in 

Figure 6-5 the registration waveguides in the FirstLight electro-optical midplane were left completely uncovered 

without any adverse effects. This technique can be implemented using most waveguide fabrication processes. 

The positional tolerance of the mechanical registration features with respect to each other has been measured to 

be ±3 μm for lateral misalignment in-plane and ± 4 μm normal to the PCB plane [2], [156]. 

 

 

Figure 6-5: Photographs of upper cladding opening on FirstLight electro-optical midplane showing 

waveguides for signal transmission as well as connector alignment features (dummy waveguides). 
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6.4.2.3. Implementation 

As part of the Storlite project in 2005 and the FirstLight project in 2008, this invention was successfully 

demonstrated through the development and verification of connector receptacles, which could be passively 

aligned to very high accuracy to polymer waveguides. The custom receptacle included compliant structures to 

allow it to mechanically engage with the registration waveguides on the board and a recess to accommodate a 

standard high performance “mechanical transfer” connector (MT) compliant lens array. 

Further details are available from following conference and academic papers [2], [3]. 

 

 

 

Figure 6-6: a) Storlite waveguide receptacle, b) FirstLight waveguide receptacles 
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6.4.3 Patent 3: Daughtercard optical waveguide interconnects  [172] 

6.4.3.1. Formal abstract on published patent 

The invention provides an optical circuit board, the circuit board comprising: a rigid support layer; a flexible 

support layer formed on the rigid support layer; and, an optical layer formed on the flexible support layer. The 

optical layer includes one or more optical waveguides extending from a first area of the optical circuit board to 

an edge of the circuit board wherein the flexible support layer extends beyond the edges of the rigid support 

layer thereby defining a flexible passive optical connector for the circuit board.  

 

6.4.3.2. Description 

Most prior art concerning optical backplane systems does not take into account the need for continuous high 

precision alignment of pluggable optical interfaces on the daughtercard to compliant interfaces on the backplane. 

Little has been done to tackle the very significant problem of movement between daughtercards and backplane, 

which will occur in any real system as a result of vibrations, air flow variations and thermal and mechanical PCB 

deformation. 

The proposed solution is based on the need for quasi free-floating optical interfaces on both the daughtercard and 

the backplane. The proposed method takes into account that electronic traces carrying high speed signals on the 

daughtercard should not be routed to a dedicated optical transceiver location on the edge of the card at the point 

of backplane interconnect. This is tolerable at current data-rates (12 Gb/s), but when data-rates increase this will 

become unmanageable. The method allows for optical transceivers to be placed at arbitrary locations on the 

daughtercard, close to the high-speed signal source to minimise trace lengths. The transceivers will then perform 

opto-electronic and electro-optic conversion somewhere on the daughtercard and direct the light into optical 

waveguides on dedicated optical layers inside the daughtercard. These waveguide layers will be deposited on 

flexible PCB material (e.g. Kapton polyimide), which itself is embedded within conventional rigid PCB material 

such as FR4. The waveguides will be routed to the edge of the daughtercard to sections where the flexible layer 

is exposed and not attached to FR4. This gives them the required mechanical flexibility Figure 6-7. 
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Figure 6-7: Electro-optic daughtercard with embedded flexible optical layers 

 

 

These optical interface sections will be supplemented with passive high precision components which contain 

mechanical alignment structures and possible optical interface supplements such as micro-lens arrays. These 

would be high precision devices, but can be mass-produced at low-cost using injection moulds. These devices 

would be assembled and aligned to the waveguides at very low-cost using Xyratex’s patented optical waveguide 

alignment method (Patent 2), in accordance with which they will contain registration features, which will self-

align with the on-board registration features. 

This patent specifically protects the concept of having embedded optical waveguides conveyed from an arbitrary 

midboard location on a PCB to a flexible edge board location. 

 

 

6.4.3.3. Implementation 

This invention was deployed on a joint demonstration system developed on a prototype data storage enclosure 

developed by the author at Xyratex in conjunction with Finisar, Vario-optics and Huber+Suhner in 2012 [186].  
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6.4.4 Patent 4: Reconfigurable optical printed circuit board  [173] 

6.4.4.1. Formal abstract on published patent 

The present invention provides an optical printed circuit board blank, comprising, a support layer; one or more 

optical waveguides formed thereon; and at least one socket for receiving an optical component, the socket 

including one or more alignment features to ensure alignment of an input/output interface of the said optical 

component when arranged in the socket with an input/output interface of at least one waveguide; and a flexible 

optical connector arranged at an edge of the circuit board, the optical connector being optically connected to the, 

or each of the, sockets, to enable optical communication between an optical component located within one, or all 

of the, sockets and the optical connector.  

 

6.4.4.2. Description 

This patent is related to patent 3 in that it protects the concept of deploying active or passive optical devices such 

as e.g. transceivers or lens arrays at arbitrary locations in the middle of an electro-optical printed circuit board. 

Through the use of high precision structures of the type outlined in Patent 2, optical “sockets” can be created at 

midboard locations, which are connected to optical waveguides in the board. These sockets can accept active or 

passive optical components (Figure 6-8), which perform operations on the PCB embedded optical channels. 

These operations could include splitting, wavelength division multiplexing or optical to electrical signal 

conversion. 
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Figure 6-8: Various passive and active optical components which are passively aligned into optical sockets 

and their associated channels through mechanical alignment features 

 

Figure 6-9 shows an implementation of this with transceiver devices and out-of-plane deflection structures, 

whereby the region below these devices will be a section where the flexible PCB material and optical polymer is 

etched out. In this void can be inserted a passive optical device which caters for 45° deflection of the light into or 

out of the transceiver and waveguide. This passive optical device would be aligned to high precision with the 

waveguides using the Xyratex patented low-cost waveguide alignment method (Patent 2: High-precision passive 

component alignment to PCB) and assembled using index matching glue to minimise optical losses. 
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Figure 6-9: Electro-optical printed circuit board with optical sockets housing optical transceiver devices 

and out-of-plane deflection structures 

 

6.4.4.3. Implementation 

In the SEPIANet project described in Chapter 5, transceiver modules are located in the middle of the test 

daughter board close to the high speed signal sources (the electrical RF connectors) to minimise electrical trace 

lengths. These modules were connected to backplane connector plug with fibre jumpers. 
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6.4.5 Patent 5: Crosstalk suppression on optical waveguides  [174] 

6.4.5.1. Formal abstract on published patent 

The present invention provides an optical printed circuit board, comprising at least one optical waveguide for 

carrying optical signals on the optical printed circuit board; and a trench formed adjacent to the at least one 

optical waveguide, wherein the trench contains a light absorptive material to absorb light that strays from at least 

one waveguide. 

 

6.4.5.2. Description 

A method is proposed of implementing strong crosstalk suppression between the waveguides of an optical PCB, 

whereby trenches are deployed between waveguides however boundary reflections suppressed. 

At every boundary between two materials of different refractive indices, an optical signal will be partially 

refracted and partially reflected. Therefore, if an unfilled trench is fabricated between the waveguides, some light 

will inevitably be reflected back. This has the effect of creating a secondary waveguide, which will give rise to 

greater optical jitter and noise (Figure 6-10). 

 

 

 

Figure 6-10: Boundary effect on leaked light with air trench 

 

If the trench is filled with some material e.g. black ink, then, although any light which has penetrated the 

boundary will be absorbed, some light will again be reflected back into the waveguide if the black ink has a 

significantly different refractive index to the cladding. 

Only if the trench is filled with a material with the same refractive index as the cladding will there be virtually no 

reflection. This is due to the fact that the signal ‘sees’ no boundary. 

Air Trench

Primary Leaked Optical Signal

Reflected Optical Signal

Refracted 

Optical Signal
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If the fill material in question is in turn doped with light absorbing impurities then the uninterrupted signal will 

eventually be absorbed. 

The patent includes a very wide variety of proposed techniques and features to enable crosstalk suppression 

between waveguides and fabricate such structures including: 

 Sparse particulate concentration in inter-waveguide trench 

 Inverted Bell Shape Trench filled with doped cladding with a varied concentration profile to 

compensate for trench width variation 

 Inverted Bell Shape Trench Fabrication by Laser Ablation 

 Inverted Bell Shape Trench Fabrication by Laser Writing 

 Inverted Bell Shape Trench Fabrication by Photolithography 

 Gaussian inter-waveguide particulate concentration (Figure 6-11) 

 Method of creating Gaussian inter-waveguide particulate concentration profile through dry deposition 

of particulates 

 Method of creating Gaussian inter-waveguide particulate concentration profile through multi-nozzle 

polymer jetting 

 

 

Figure 6-11: Graded particulate concentration to reduce back-reflection 

 

 

 

  

A
b

s
o

rb
in

g
 p

a
rt

ic
le

 

c
o

n
c
e
n

tr
a
ti

o
n

Distance



Chapter 6 Intellectual Property 294 

 

6.4.6 Patent 6: Passive optical waveguide integrated CWDM device [175] 

6.4.6.1. Formal abstract on published patent 

The invention provides an optical mux/demux for an optical printed circuit board. The mux/demux comprises: a 

first waveguide formed on a support layer for carrying a wavelength division multiplexed optical signal; a 

separator/combiner for separating the wavelength division multiplexed signal into component signals of 

corresponding wavelengths or for combining component signals into the said wavelength division multiplexed 

signal; and plural second waveguides, each for receiving or providing one or more of the said component signals, 

wherein the separator/combiner is at a predetermined location relative to the waveguides. 

 

6.4.6.2. Description 

Prior art concerning optical wavelength division multiplexing and demultiplexing structures mostly applies to 

singlemode optical waveguides and requires expensive and highly precise fabrication processes. The foremost 

example of such a structure is the Arrayed Waveguide Grating (AWG), which is a passive wavelength 

multiplexer / demultiplexer which relies on the interference of multiple single mode optical signals to separate 

one wavelength-multiplexed-signal spatially, such that each wavelength-encoded signal is directed to a separate 

waveguide. 

The application of optical PCB technology to Very Short Reach applications is still a very novel concept, but as 

“in the box” data-rates approach 10 Gb/s and beyond, it will most likely become a very attractive option. In 

addition to this, WDM structures (most likely CWDM) on the optical backplane would allow a significant 

increase in bandwidth by permitting multiple signals to be conveyed along single waveguides. One can foresee 

that interest in multimode WDM solutions on the backplane would increase with the predicted escalation of local 

bandwidth requirements. 

This invention describes planar WDM structures, which form part of the optical layer and are as such fabricated 

in the same step as the optical waveguides. In Figure 6-12 a prism structure is shown, however many different 

types of wavelength splitting structures are possible and are protected within this patent. 
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Figure 6-12: Embedded prism style WDM multiplexer / demultiplexer structure 
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6.4.7 Patent 7: Method of manufacturing multimode CWDM multiplexer / 

demultiplexer structures [176] 

6.4.7.1. Formal abstract on published patent 

The invention provides an optical mux/demux for an optical printed circuit board. The mux/demux comprises: a 

first waveguide formed on a support layer for carrying a wavelength division multiplexed optical signal; a 

separator/combiner for separating the wavelength division multiplexed signal into component signals of 

corresponding wavelengths or for combining component signals into the said wavelength division multiplexed 

signal; and plural second waveguides, each for receiving or providing one or more of the said component signals, 

wherein the separator/combiner is at a predetermined location relative to the waveguides.  

 

6.4.7.2. Description 

This patent is related to Patent 6: Passive optical waveguide integrated CWDM device and describes various 

methods of manufacturing the WDM structures described in that patent filing. These methods include creating 

the structures photolithographically Figure 6-13 and by use of laser ablation to carve out the required structures. 

 

 

Figure 6-13: Photolithographic mask to create WDM structures in photo-cureable polymer 
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6.4.8 Patent 8: Optical adapter module [177] 

6.4.8.1. Formal abstract on published patent 

The invention provides an adapter for an optical printed circuit board, the adapter comprising a socket for 

receiving a daughter card for connecting to a said optical printed circuit board; and a connector for engagement 

with the optical printed circuit board arranged such that when the connector engages with the optical printed 

circuit board an optical connection is established between the optical printed circuit board and the adapter.  

 

6.4.8.2. Description 

The invention depicts a low-cost and reliable method of connecting conventional disk drives to an electro-optic 

backplane through the use of optical adapter modules, which are assembled and fixed to the backplane. The 

concept is naturally extendable to accommodate connection of any conventional line card to an electro-optical 

backplane. 

 

 

Figure 6-14: Optical drive adapter module 
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In the key implementation the conventional electrical contacts of the line-card will interface with compliant 

contacts in the adapter module as they would to a conventional backplane receptacle e.g. SAS / SATA backplane 

connectors. 

Electro-optic conversion of designated high speed data lines is then performed by the appropriate circuitry in the 

adapter module (Figure 6-14) and the optical signals are launched into optical waveguides embedded in the 

substrate of the backplane via the proprietary parallel optical interface embedded in the module. The number of 

parallel optical interfaces per module can be extended without internal constraint. The only constraints will arise 

from the environment e.g. the real estate on the backplane available for the connector etc. 
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6.4.9 Patent 9: Fabricating a hybrid electro-optical PCB with optical surface layers 

[178] 

6.4.9.1. Formal abstract on published patent 

The invention provides a method of making an electro-optical printed circuit board, the method comprising: 

providing a support layer having thereon surface mounted electric components within a region of the support 

layer; forming one or more surface mounted optical components on the surface of the electro-optical printed 

circuit board; and during formation of the one or more surface mounted optical components shielding the region 

of the electro-optical printed circuit board where the surface mounted electric components are formed. 

 

6.4.9.2.  Description 

The proposed invention comprises a series of methods of fabricating an electro-optic PCB containing an optical 

layer on at least one of its surfaces (Figure 6-15). The methods focus on the protection from contamination of 

conventional surface interface structures on the surface during the optical PCB fabrication process. 

In one preferred example, the surface structures are protected using a photolithographic process of masking out 

the clear-out sections of the surface i.e. those sections of the surface explicitly reserved for conventional surface 

interface structures, when curing the core and cladding layers of the surface optical layer. 

In another example, a protective lid, panel or sheet is used to shield the surface interface structures from any 

contamination during the optical layer fabrication process. The panel is then removed after the optical layer has 

been deposited. 
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Figure 6-15: Electro-optical PCB with partial optical layer on surface 

 

6.4.9.3. Implementation 

On the electro-optical midplane developed for the Candeo demonstration platform in 2008 only part of the top 

surface (shown in Figure 6-16) was devoted to optical polymer interconnect, while other areas devoted to 

electrical test holes, vias and connectors were kept clear of optical material. 
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Figure 6-16: FirstLight electro-optical midplane with optical connector slots milled out and electronic 

CompactPCI connectors populated. A close-up view of a connector aperture is shown with a single curved 

waveguide and its egress point illuminated with 635 nm visible light. 
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6.4.10 Patent 10: Lossless tapered waveguides [179]  

6.4.10.1. Formal abstract on published patent 

A method of making a waveguide, the method including depositing discrete units of optical core material in a 

pattern of the waveguide, and controlling the refractive index of the discrete units such that the refractive index 

of the waveguide varies along its length. 

 

6.4.10.2. Description 

Optical waveguide tapers were investigated by UCL as part of the Storlite project (2005). The underlying idea is 

that optical waveguides should be wider at the ingress point to maximise misalignment tolerance, but as small as 

possible at the egress point to increase the probability of all light being captured by the receiving system (e.g. 

photodiode or passive optical element) given conventional lateral misalignment values. 

This has however so far not been reliably achieved, due to the critical problem of modal mismatch along the 

taper giving rise to optical leakage of the propagating signal into the cladding region along the path from a larger 

core area to the smaller core area.  Previous work on fibre tapers has shown that the choice of taper length and 

linearity of the taper can be modified to improve coupling efficiency [187][188]. 

However this invention theorises that the coupling efficiency along the physical waveguide taper may be further 

improved by varying the refractive index of the cladding material, core material or both along the taper, in order 

to generate a changing refractive index difference along the taper, such as to compensate for the NA change 

caused by the change in width (Figure 6-17). 

This patent describes various concepts and fabrication techniques to enable such structures. 
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Figure 6-17: Tapered waveguide with core index variation 
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6.4.11 Patent 11: Directly pluggable orthogonal in-plane optical PCB connector  [180] 

6.4.11.1. Formal abstract on published patent 

The invention provides an optical connector for connecting a user circuit to an optical backplane, in which the 

backplane has one or more waveguides on it for carrying optical signals, the connector comprising: a first optical 

interface provided on the user circuit for receiving optical signals from the backplane or for transmitting optical 

signals for passage along the one or more waveguides; a second optical interface provided on the backplane for 

receiving optical signals from the user circuit or for transmitting optical signals to the user circuit; alignment 

features provided on each of the user circuit and the backplane arranged to align the first and second optical 

interfaces such that upon insertion of the user circuit to the backplane, the optical interfaces are aligned in the 

direction of insertion.  

 

6.4.11.2. Description 

Currently, in order to provide a pluggable connection to an optical printed circuit board one must either use an 

out-of-plane or an in-plane optical interface. The out-of-plane optical interface would usually comprise an angled 

mirror to divert light at right-angles from the connector interface into the waveguides of the optical PCB. The 

main problem with this approach is the cost of the right-angled mirror and the additional optical loss incurred 

across the interface. The optical loss budget on an optical PCB is a critical issue and must be minimised 

wherever possible. 

The in-plane optical interface up to now has required a connector mechanism to move the optical platform 

orthogonally with respect to the direction of insertion in order to stop the mechanical registration features from 

catching. It has not been possible to create a directly pluggable connector to an in-plane interface without such a 

mechanism. The advantage of an in-plane interface is that coupling components (e.g. micro-lens arrays) do not 

include mirror or other deflection structure and are thus cheaper and incur less optical loss. 

This invention proposes a means of achieving an orthogonal connection to an in-plane optical interface, but 

without pins (or other salient registration features) so that the transceiver or optical interface can be plugged 

simply and directly without the need for a complex engagement mechanism to pull and push the optical interface 

(on the transceiver platform) in a direction orthogonal to the direction of insertion in order to stop the pins 

catching. 

Specifically, registration features are proposed which are aligned in the direction of insertion (as opposed to 

orthogonal to the direction of insertion) such that an optical device on a line card may mate directly, without the 
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need for a secondary engagement step. In a preferred example these registration features constitute alignment 

rails on one element and compliant alignment grooves on the other element. The alignment grooves and/or rails 

will be tapered to ensure that the alignment features engage smoothly and with ample misalignment tolerance at 

the first point of contact. As an optical device on a line card engages with the PCB receptacle, the rails on the 

optical device slot into the grooves of the receptacle 

 

 

Figure 6-18: Orthogonal optical connector with alignment rails and grooves. A free space lens coupling 

system allows physical contact between optical interfaces to be omitted 
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6.4.12 Patent 12: Optical capstan to simplify routing of optical waveguides [181] 

6.4.12.1. Formal abstract on published patent 

The invention provides an optical printed circuit board connector, comprising: a housing having a major plane; 

an optical interface for connection in use to another optical interface on a device to which in use the optical 

printed circuit board connector is arranged to be connected, in which the optical interface on the connector is 

mounted such that it is twistable about a vertical axis in the major plane to vary the launch angle of light from 

the interface with respect to the housing.  

 

6.4.12.2. Description 

This invention puts forward an optical PCB connector type, which will remove the dependence of the waveguide 

launch angle on the standard orientation of the connector receptacle on the optical PCB. The part of the 

connector, which houses the optical interface will be allowed to rotate around an axis orthogonal to the plane of 

the optical PCB. 

In a preferred example this will be enabled by arranging the optical interface on a flexible laminate material that 

will allow it to be twisted with respect to the body of the connector. 

The invention targets both active and passive optical connectors and either in-plane or out-of-plane connections 

to the optical PCB: 

 Active optical connectors are connectors whereby the active photonics (lasers, photodiodes) are located 

on the interface to the optical PCB usually with a lens to control the beam profile into and out of the 

waveguides. A number of previous Xyratex patents are based on active connectors. 

 Passive optical connectors are connectors where there are no active photonics on the interface, but 

rather waveguides (e.g. fibres, polymer waveguides) that are carrying light from the active photonics located 

somewhere else. These waveguides could include optical fibres or waveguides on a flexible laminate which 

have been demonstrated by Swiss PCB company Varioprint. 

 In-plane optical PCB connectors are those which inject light directly into the plane of the optical PCB 

i.e. directly into the embedded waveguides without the need for deflection of the light by mirrors. 

 Out-of-plane optical PCB connectors are those whereby the light is launched in a direction orthogonal 

to the optical PCB and captured by deflection optics such as 45º mirrors, which turn the light at right angles 

and launch it into the embedded waveguides. 

 



Chapter 6 Intellectual Property 307 

 

 

 

Figure 6-19: Rotary optical brace with angle adjustable optical interface 
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6.4.13 Patent 13: Directly pluggable orthogonal in-plane optical PCB connector  [182] 

6.4.13.1. Formal abstract on published patent 

The invention provides an interconnect for a data storage system, to enable optical communication between a 

data storage device and a backplane to which the data storage device in use is to be connected, wherein the 

interconnect includes an electrical power connection for providing power to a said data storage device; and, an 

optical engine for generating and receiving optical signals for transmission of data between the data storage 

device and the backplane.  

 

6.4.13.2. Description 

This invention comprises a design solution for a low cost pluggable intermediary optical connection scheme 

between a storage device such as a hard disk drive (HDD), solid state device (SSD), optical storage device (such 

as a CD, DVD, HDDVD, Blu-Ray), holographic storage device or the emerging optical USB standard (USB 3.0) 

to an electro-optical PCB in a data storage system, computer or media player; in short any systems in which a 

storage device plugs into a mother board or interface card to a mother board. 

The following description focuses on a preferred example of the invention applied to an array of disk drives in a 

data storage system. 

A typical electronic SAS / SATA interface will include contacts for 2 high speed bidirectional channels and 

power. The invention would seek to replace the 2 high speed bidirectional gold contacts on the SAS / SATA 

interface with a parallel optical engine, which will provide two high speed bidirectional optical links. This would 

require a dual duplex channel “optical engine” i.e. a multi-chip module to convert 2 electronic transmit lines to 2 

optical transmit lines (laser) and convert 2 optical receive lines to 2 electronic receive lines. 
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Figure 6-20: Drive dongle with optical engine incorporated 

 

6.4.13.3. Implementation 

Variations of this invention have been realised in recent years by the author including an optically enabled data 

storage system demonstrator developed on the PhoxTroT project [88].  
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6.4.14 Patent 14: Modular interconnectable electro-optical backplane  [183] 

6.4.14.1. Formal abstract on published patent 

The invention provides a component electro-optical printed circuit board backplane for assembly in a modular 

electro-optical backplane, the component electro-optical printed circuit board backplane comprising: optical 

channels for the propagation and transmission of optical data signals and electrical channels for the propagation 

and transmission of power and control signals; connectors for connection in-plane to at least one other 

component electro-optical printed circuit board; and, at least one socket for receiving, in use, a user circuit. The 

invention also provides a modular backplane made up of plural such component backplanes.  

 

6.4.14.2. Description 

The Xyratex roadmap puts forward proposals for very large scale integrated data centres, which will require 

large backplanes to support the interconnection of power, storage, controller and other devices across the rack. 

These backplanes may need to be as high as the racks and therefore potentially many metres in length. Reliable 

mass-production of printed circuit boards on this scale would pose considerable strain on the manufacturers. In 

most cases the equipment would simply not be available to build boards on this scale. If the equipment were 

available, the board size requirements would incur costly additional fabrication processes to cater for the added 

weight of the board, additional structural reinforcement and strongly impact yield and therefore the cost of the 

backplanes. An alternative solution would be that the complete backplane (henceforth “super-backplane”) be 

comprised of a number of smaller interconnectable printed circuit boards (henceforth “sub-backplanes”), each of 

which is of a standard size and configuration, which will not incur additional cost from the PCB fabricator. This 

way the super backplane can be constructed by plugging the sub-backplanes together in the correct order, and 

deconstructed by unplugging the sub-backplanes. 

When the super-backplane is constructed the sub-backplanes will need to be electrically and electronically 

connected in order to convey power, control data and low-speed bus data across the entire super-backplane. In 

this invention it is proposed that high speed data is conveyed optically in order to provide a manageable and 

future-proof solution to convey data of ever increasing signal frequencies over the longer interconnect distances 

typical of rack-scale backplanes. Therefore each sub-backplane will require pluggable electrical and electronic 

connectors and receptacles as well as pluggable optical connectors (Figure 6-21). 
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Figure 6-21: Rack scale data centres with modular interconnectable electro-optical backplanes 
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6.4.15 Patent 15: Optical amplification devices for polymer optical printed circuit boards 

[184] 

6.4.15.1. Formal abstract on published patent 

The invention provides an amplification module for an optical printed circuit board, the optical printed circuit 

board comprising plural polymer waveguide sections from independent waveguides, each of the sections being 

doped with an amplifying dopant, wherein the plural waveguide sections are routed so as to pass through an 

amplification zone in which the plural polymer waveguide sections are arranged close or adjacent to one another, 

the amplification module comprising: a pump source comprising plural light sources arranged to provide 

independently controllable levels of pump radiation to each of the plural waveguide sections. In an embodiment, 

the amplification module also includes plural polymer waveguide sections corresponding to the plural polymer 

waveguides of the printed circuit board on which in use the amplification module is to be arranged, each of the 

sections being doped with an amplifying dopant.  

 

6.4.15.2. Description 

The invention describes low cost devices to enable the on-board amplification of optical signals propagating 

along polymer waveguides embedded in an optical PCB. 

These devices comprise controllable light sources to provide orthogonal pumping of the doped polymer optical 

waveguides in designated regions known as amplification nodes, where many waveguides are aggregated (See 

section 6.4.16).  

The amplification module will be electrically connected to an electric layer of the electro-optical PCB through 

leads or stud bumps. If the optical layer is on a surface between the amplification module and the electrical 

contacts (e.g. the top surface) then clearance in the optical layer will be designed to allow access of the 

amplification module’s contacts to the contact lands on the electrical layer. 

If the optical layer is not a surface layer but embedded in the board then clearance in the layers above the 

amplification node will be required to enable optical access by the amplification module (Figure 6-22). 
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Figure 6-22: Optical amplification module arranged over an embedded polymer waveguide layer 
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6.4.16 Patent 16: Design and manufacture of polymer optical waveguide amplification 

structures [185] 

 

6.4.16.1. Formal abstract on published patent 

The invention provides an optical printed circuit board, comprising: plural polymer waveguide sections from 

independent waveguides, each of the sections being doped with an amplifying dopant; an optical pump source to 

pump the plural polymer waveguide sections, wherein the plural waveguide sections are arranged close or 

adjacent to one another such that the optical pump source is able to pump plural of the optical waveguide 

sections.  

 

6.4.16.2. Description 

The invention describes low cost design structures for polymer optical waveguides to enable the on-board 

amplification of optical signals on an optical PCB, which would be required for example to support wavelengths, 

to which the waveguide material is not suited. The invention also describes varied techniques of manufacturing 

polymer optical waveguides, which include active regions where the amplification can be carried out with an 

appropriate pump source. In order to minimise the number of pump sources the waveguide layout will be 

designed to create waveguide confluences on specified areas (amplification nodes) where the active regions of as 

many waveguides as possible can be pumped by the same source device. 

Typical backplane PCBs in data storage applications would require hundreds of high speed channels. In the High 

Performance Computing (HPC) domain there could be thousands. If embedded polymer optical waveguides 

were used to convey high speed signals in these systems then the cost of separate amplification on each 

waveguide would be prohibitive. In order to minimise the cost of optical amplification on all high speed optical 

channels it is proposed that the waveguide layout be modified such that multiple waveguides (as many as is 

convenient to the designer) be brought into close proximity at a certain point, henceforth referred to as the 

amplification node. The segment of each waveguide in an amplification node will need to be composed of an 

active material e.g. a polymer matrix doped with an appropriate amplification material such as lanthanide 

complexes or dyes in order to allow it to be pumped or energised such as to amplify any optical signals conveyed 

along the waveguides. This is similar to the principle of Erbium Doped Fibre Amplifiers except optical polymers 

can sustain greater dopant concentrations allowing the doped regions to be smaller. 
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Figure 6-23: a) Optical amplification node in which optical waveguides are brought together for collective 

pumping, b) Method of fabricating doped section of polymer waveguides 

 

 

6.5 Summary 

In this chapter, 16 patent families have been described, which seek to tackle various problems that have been 

identified over the course of the research and development activities, forming the basis of this thesis. The patents 

span diverse concepts on the theme of system embedded interconnect including connectors, assembly methods, 

waveguide structures and devices. Some patents, such as the active optical connector and high precision 

assembly method have been realised, while others set out more advanced concepts that, at the time of writing 

could not be tested. 
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7 CONCLUSION 

 

The purpose of the research described in this thesis was to develop and characterise technology solutions to 

allow optically pluggable board-to-board and fibre-to-board connections to electro-optical printed circuit boards 

(OPCBs) and to investigate the commercial viability of deploying different classes of OPCB in future data centre 

systems through the development of appropriate demonstration platforms. 

 

7.1 Summary 

7.1.1 Introduction to data centres and system embedded photonic eco-system 

In Chapter 1 the author describes the architectures of data storage and switch systems, which form the building 

blocks of modern data centres and introduces modern communication protocols and the associated trends in data 

speeds. 

In Chapter 2 the author then introduces the commercial technology eco-system, including midboard optical 

transceivers and optical connectors, which supports the migration of optical interconnect down through the 

hierarchal levels of the data centre and into system enclosures themselves. The author then explains limitations 

in PCB level electronic channels at increasing electronic signal modulation frequencies and where OPCB 

technology can provide benefits. 
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7.1.2 Pluggable active optical connectors for polymer waveguide interfaces 

In Chapter 3 and Chapter 4, the author describes his research and development activities on the Storlite and 

FirstLight projects, on which he patented, designed, developed and successfully demonstrated two generations of 

active pluggable OPCB connector, which allowed peripheral devices to plug into and unplug from an electro-

optical backplane with embedded multimode polymer waveguides. In addition, he has patented, co-developed 

with UCL and successfully implemented a technique to passively align optical devices to such waveguides with 

high precision. 

The author designed two demonstration platforms to test and validate two generations of active pluggable optical 

connector and the measurement results have shown that a complex optical interconnect pattern of polymer 

waveguides can be deployed to convey high speed optical data across a densely populated board with a rack size 

of at least 6U. 

 

7.1.3 Pluggable passive optical connectors for glass interfaces 

In Chapter 5, the development and demonstration was reported of a complete technology eco-system (family of 

interdependent technologies) around embedded planar glass multimode waveguides appropriate for data centre 

environments. Proprietary methods were deployed by Fraunhofer IZM and ILFA GmbH to respectively pattern 

waveguides into thin glass foils and laminate the resulting waveguide panels into a PCB stack-up without 

incurring stresses in the embedded glass resulting in the successful fabrication of OPCBs. The author co-

designed fibre-to-board connectors to allow parallel optical fibre cables to connect directly to OPCB integrated 

glass waveguides, and a corresponding board-to-board connection system to allow daughtercards to plug into an 

OPCB backplane. 

These efforts culminated in the first successful demonstration of a fully integrated planar glass waveguide OPCB 

backplane and pluggable connector platform driven by system embedded and external 850 nm and 1310 nm 

optical transceiver technologies and validated for both fibre-to-board and board-to-board optical connectivity at 

data rates of up to 32 Gb/s. 

In order for glass waveguide based OPCBs and their supporting technologies to be commercially viable for large 

scale manufacture and deployment in the near future, a number of challenges must still be overcome including 

glass layer number and wavelength dependence of performance i.e. how to improve transmissivity at 850 nm. 

These challenges continue to be addressed in research and development projects such as PhoxTroT. 
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7.1.4 Intellectual property 

In Chapter 6, the author reported on 19 patents or patent applications within 16 patent families that he has 

generated to protect the novel technologies, the realisation of which form the basis of this thesis, or novel, 

untested concepts that may form the basis of future work. 

 

7.2 Challenges and future work 

7.2.1 Higher density active connectors 

The Storlite and FirstLight connectors were the first active pluggable connectors demonstrated to establish an 

optical connection to multimode waveguides in an OPCB. Though the form factor of the FirstLight connector 

prototype developed was large, consuming an impractical amount of  space on both the edge of the plugging 

daughtercard and on the backplane, this prototype could be used to satisfy the interconnect requirements of a 

basic 24 drive storage array system in the following way. Due to the use of an MT compliant interface, 12 

singlex channels and their drive electronics could be substituted for the 4 duplex channels deployed in the 

FirstLight prototype without changing the size of the optical interface. A maximum of four active connectors (2 

singlex transmitter connectors and 2 singlex receiver modules) could fit on the edge of a standard data storage 

controller module in addition to the standard connectors required for power and low speed signals, allowing 48 

duplex channels to be supported per controller and thus 96 duplex channels on the backplane. This in turn would 

be sufficient to provide full interconnection to 24 drives in an enclosure. In its current form, however, such a 

form factor would be too large to lend itself to the scalability required in modern data storage systems. 

Therefore, research and development efforts into active and passive pluggable connector schemes are currently 

underway to significantly increase the density of optical links in new edge and data centre OPCB connectors. 

The photonic subcomponents assembled in the FirstLight connector were operational up to 11.6 Gb/s and 

therefore the connector could be deployed into data storage systems to carry SAS 2 data operating at 6 Gb/s. 

Furthermore subcomponents, including VCSEL driver arrays, VCSEL arrays, photodiode arrays and trans-

impedance amplifiers, are now available with similar chip sizes as those deployed in the FirstLight connector, 

which can accommodate serial data rates of over 24 Gb/s, therefore the connector could be easily upgraded to 

accommodate SAS 3 operating at 12 Gb/s per lane, PCI Express Gen 4 operating at 16 Gb/s per lane and SAS 4 

expected to operate at 24 Gb/s per lane. 
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In-plane bends will be an inextricable feature in future complex waveguide layouts on OPCBs, however, bend 

radii as large as the minimum bend radius of 17 mm deployed on the FirstLight backplane would be difficult to 

accommodate within a high density PCB layout, especially where high numbers of optical waveguides are 

involved. Research into novel waveguide structures allowing a reduction in bend loss and corresponding 

reduction in minimum bend radius should be pursued to address this issue [154]. 

The timescale of commercial deployment of OPCB technologies will be gated by the comparative cost between 

implementing high speed interconnects electronically or optically. In particular, the commoditisation and 

associated cost reduction of optical transceiver subassembly technologies will play a key role in determining 

whether a cost transition point can be reached during the lifetime of, for instance, the 12 Gb/s SAS protocol or 

whether it will have to wait for the transition to 24 Gb/s SAS predicted in 2018. 

 

7.2.2 Standardisation of polymer waveguide connectorisation 

The International Electrotechnical Commission (IEC), is a not-for-profit, non-governmental organization, 

founded in 1906, which develops International Standards and operates conformity assessment systems in the 

fields of electro-technology [189]. In 2006, an IEC working group, IEC/TC86/JWG9 (Optical functionality for 

electronic assemblies), was established to prepare international standards and specifications for OPCBs, intended 

for use with opto-electronic assemblies [190]. As technology for OPCB is an interdisciplinary field between 

optical interconnection and electronic packaging, this group was established as a joint working group (JWG) of 

both TC86 (Fibre optics) and TC91 (Electronics assembly technology). 

One important example of how this group is driving commercialization of OPCB technology is the development 

of a standard for an MT compliant optical connector, which can be assembled onto planar polymer waveguide 

structures. a and b show the construction and assembly of the polymer waveguide MT (PMT) connector. The 

PMT connector is comprised of a ferrule, cover and boot section, the external dimensions of which, once 

assembled match those of existing optical fibre based MT ferrules. The optical waveguide attachment region 

should have a maximum width of 3 mm and minimum length of 16 mm to fit within the ferrule and boot section. 

The waveguide strip should contain a centred group of 12 waveguides with a centre-to-centre pitch of 250 µm in 

direct accordance with the existing standards for single row MT fibre interfaces. The PMT ferrule is aligned to 

the optical waveguide interface on either a flexible or rigid optical waveguide strip such that the relative 

alignment of the waveguide core centres to the centres of the MT pin slots on the ferrule are in compliance with 

existing MT interface standards. The connector is typically fixed with quick-drying glue after which the 
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connector facet must be polished to ensure the waveguide end facets are in the same plane as the ferrule 

connecting surface. The waveguide end facets will typically be polished with a polishing cloth using techniques 

similar to those described in section 3.4.7.4. 

Figure 7-1Error! Reference source not found.c shows an example of a commercial PMT connector for 

multimode polymer waveguides manufactured by Japanese connector company Hakusan Mfg. Co. Ltd to allow 

direct connection to standard optical fibre MT connectors. This PMT connector was developed according to the 

requirements of the JPCA (Japan Electronics Packaging and Circuits Association) standard, JPCA-PE03-01-07S. 

 

 

 

Figure 7-1: IEC polymer MT (PMT) ferrule standard for the termination of optical waveguides a) PMT 

connector components, b) PMT connector structure after assembly, c) photo of commercial PMT 

assembled onto a polymer waveguide strip  

 

7.2.3 Connectorisation of single mode polymer waveguides 

The passive precision alignment technique invented by the author has been taken forward by Huber+Suhner and 

Vario-optics as the basis to passively assemble connector ferrules to singlemode waveguides [145]. a and b 

shows the author’s work reported in this thesis to align connector elements to multimode polymer waveguides 

using the exposed sections of the outer polymer waveguide cores to provide mechanical references. c and d show 

the same passive alignment concept deployed by Huber+Suhner to align connector elements to singlemode 

polymer waveguides. 
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Figure 7-2: Firstlight precision alignment concept deployed in singlemode polymer waveguide 

connectorisation – a) precision alignment concept diagram from Pitwon patent [171], b) shadowgraph 

photo of precision alignment of an MT compliant Storlite receptacle passively aligned to an array of 

multimode waveguides, c) concept diagram for silicon V-groove to singlemode polymer waveguide [145], 

d) photo of silicon V-groove passively aligned to singlemode polymer waveguide 

 

7.2.4 Method of futher improving robustness of passive alignment technique 

In order to accommodate the possible variation in exact position of the mechanical registration guides on the MT 

mount due to fabrication tolerances and the possible variation in position of the waveguide registration features 

due to etch tolerances, a small amount of clearance between the waveguide registration features and MT mount 

registration guides needs to be designed in. Given the very tight tolerances involved, this clearance will typically 

fall within an acceptable lateral misalignment tolerance margin for multimode step-index waveguides, but could 

be problematic for singlemode waveguides.  
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Figure 7-3: Excerpts from published passive alignment patent showing slanted registration guides a) 

straight passive alignment features will require clearance, b) slanted alignment features will require 

clearance however will allow MT mount to accurately self-centre by squeezing the registration guides 

 

Figure 7-3 shows two images from the author’s  published patent on precision alignment [171]. Figure 7-3 a) 

shows straight alignment guides, similar to those deployed in the work reported in this thesis. However, as 

shown in Figure 7-3 b), the patent also proposes slanted registration features. This will allow the registration rails 

on the MT mount to deliberately slot over and start to squeeze the slanted waveguide registration features, 

causing them to very accurately self-centre the mount with respect to the waveguides. The alignment uncertainty 

in this case will be shifted to the z-axis (parallel to waveguide optical axis), denoting the distance between the 

MT mount surface and the waveguide facet, which are normally required to be flush. Reported work by 

Papakonstantinou [191] has shown that z-axis misalignment tolerances are far higher than lateral (x-y) 

misalignment tolerances, which means that a trade-off can be explored between waveguide registration slant 

angle and possible z-axis misalignment in order to further improve the robustness of the passive alignment 

technique in future. 

 

 

 

 

 

 

 



Chapter 7 Conclusion 323 

 

7.2.5 Multilayer glass waveguide couplers 

Regarding the deployment of multiple waveguide layers in an OPCB, the fabrication of separate waveguide 

layers on both the top and bottom surfaces of a single 300µm glass panel has been achieved [161], whereby the 

waveguide layers were separated by a vertical pitch of 250 µm. In order to couple to such a double waveguide 

panel, the ferrule receptacle and glass panel around the waveguide interface would need to be modified to enable 

2 rows of a 6 x 12 MT ferrule to couple to the two waveguide rows simultaneously. The integration of multiple 

glass layers in a single OPCB is more challenging as the tolerances, which can be maintained between separate 

glass panels in a PCB stack-up, exceed those required between waveguide layers. If, however, separate 

waveguide panels in a given OPCB are not required to be accurately aligned with respect to each other, then this 

becomes more viable.  

7.2.6 High yield alignment and assembly processes on glass OPCBs 

The misalignment tolerance of fibre-to-waveguide coupling based on the multimode launch conditions was 

characterised in previous work by Fraunhofer IZM [83]. Due to the elliptical waveguide core cross-section, the 

misalignment tolerance is greater in the horizontal axis (parallel to waveguide layer) than in the vertical direction 

(perpendicular to waveguide layer), with a 1 dB misalignment tolerance of ±15 µm in the horizontal axis and ±8 

µm in the vertical axis due to asymmetric flattened cross-sectional refractive index profile. In order to maximise 

coupling efficiency with minimal risk, an active alignment process was used for the assembly of the ferrule 

receptacles onto the glass waveguide interfaces in the work reported by Xyratex and Fraunhofer IZM [4]. In 

future, however, in order to be commercially viable, the alignment and assembly process of components onto the 

glass waveguide layer would need be optimised for high yield deployment. One viable approach would be to 

adapt high-speed pick-and-place processes to be used in combination with a semi-active alignment routine in 

order to provide faster and more reliable assembly. This process will be based on the use of alignment fiducials 

on the glass for lateral horizontal alignment and the glass surface as a mechanical stop in the vertical axis during 

assembly. The positional accuracy of the fiducials with respect to the waveguide positions is very high as the 

fiducial and waveguide diffusion structures are patterned in the same process step on the aluminium mask. 

 

7.2.7 Wavelength dependent performance 

The glass waveguide technologies presented perform best at 1310 nm with comparable results for 1550 nm light, 

which will be presented in future work. Losses at 850 nm are substantially higher, due to the formation of silver 
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ion clusters in the glass matrix, which induce strong intrinsic scattering at 850 nm. This effect can be mitigated 

by changing the glass composition and improving the waveguide process. Efforts are underway to investigate 

different glasses with improved fabrication processes, with the goal to provide comparable performance at the 

key wavelengths around 850 nm, 1310 nm and 1550 nm. The author will continue research into comparative 

performance of both polymer and glass waveguides. 

 

7.3 Publications 

During the course of the PhD programme the author wrote the following papers, which were published in 

journals and conference proceedings. 

 

7.3.1 Journal papers 

1. R. Pitwon, L. Brusberg, H. Schroeder, S. Whalley, K. Wang, A. Miller, P. Stevens, A. Worrall, 

A. Messina, and A. Cole, “Pluggable Electro-Optical Circuit Board Interconnect Based on Embedded 

Graded-Index Planar Glass Waveguides,” J. Light. Technol., vol. 33, no. 4, pp. 741–754, 2015. 

2. K. Schmidtke, F. Flens, A. Worrall, R. Pitwon, F. Betschon, T. Lamprecht, and R. 

Krraehenbuhl, “960 Gb/s Optical Backplane Ecosystem Using Embedded Polymer Waveguides and 

Demonstration in a 12G SAS Storage Array,” Journal of Lightwave Technology, vol. 31, no. 24. pp. 

3970–3975, 2013. 

3. R. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. 

Dangel, D. Milward, and D. R. Selviah, “FirstLight: Pluggable optical interconnect technologies for 

polymeric electro-optical printed circuit boards in data centers,” J. Light. Technol., vol. 30, no. 21, pp. 

3316–3329, 2012. 

4. R. Pitwon, K. Hopkins, D. Milward, M. Muggeridge, D. R. Selviah, and K. Wang, “Passive 

assembly of parallel optical devices onto polymer-based optical printed circuit boards,” Circuit World, 

vol. 36, no. 4, pp. 3–11, 2010. 

5. D. R. Selviah, A. C. Walker, D. A. Hutt, K. Wang, A. McCarthy, E. A. Fernandez, I. 

Papakonstantinou, H. Baghsiahi, H. Suyal, M. Taghizadeh, P. Conway, J. Chappell, S. S. Zakariyah, D. 

Milward, R. Pitwon, K. Hopkins, M. Muggeridge, J. Rygate, J. Calver, W. Kandulski, D. J. Deshazer, 

K. Hueston, D. J. Ives, R. Ferguson, S. Harris, G. Hinde, M. Cole, H. White, N. Suyal, H. U. Rehman, 
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and C. Bryson, “Integrated optical and electronic interconnect PCB manufacturing research,” Circuit 

World, vol. 36, no. 2, pp. 5–19, 2010. 

6. I. Papakonstantinou, D. R. Selviah, R. Pitwon, and D. Milward, “Low-Cost , Precision , Self-

Alignment Technique for Coupling Laser and Photodiode Arrays to Polymer Waveguide Arrays on 

Multilayer PCBs,” Adv. Packag. IEEE Trans., vol. 31, no. 3, pp. 502–511, Aug. 2008. 

7. R. Pitwon, K. Hopkins, and D. Milward, “An optical backplane connection system with 

pluggable active board interfaces,” Circuit World, vol. 33, no. 4, pp. 20–25, 2007. 

7.3.2 Conference papers 

1. H. Schröder, L. Brusberg, R. Pitwon, S. Whalley, K. Wang, A. Miller, C. Herbst, D. Weber, 

and K.-D. Lang, “Electro-optical backplane demonstrator with integrated multimode gradient-index thin 

glass waveguide panel,” in Proc. SPIE, 2015, vol. 9368, p. 93680U–93680U–13. 

2. L. Brusberg, H. Schroeder, R. Pitwon, S. Whalley, A. Miller, C. Herbst, J. Roeder, D. Weber, 

and K. D. Lang, “Electro-optical backplane demonstrator with gradient-index multimode glass 

waveguides for board-to-board interconnection,” 2014 IEEE 64th Electronic Components and 

Technology Conference (ECTC). pp. 1033–1041, 2014. 

3. R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of 

fully enabled data center subsystem with embedded optical interconnect,” Opt. Interconnects Xiv, vol. 

8991, no. 0, p. 899110, 2014. 

4. L. Brusberg, H. Schroder, R. Pitwon, S. Whalley, C. Herbst, A. Miller, M. Neitz, J. Roder, and 

K. D. Lang, “Optical backplane for board-to-board interconnection based on a glass panel gradient-

index multimode waveguide technology,” Electron. Components Technol. Conf., pp. 260–267, 2013. 

5. R. Pitwon, H. Schröder, L. Brusberg, J. Graham-Jones, and K. Wang, “Embedded planar glass 

waveguide optical interconnect for data centre applications,” Optoelectron. INTERCONNECTS XIII, 

Proc. SPIE, vol. 8630, no. 0, p. 86300Z, 2013. 

6. R. M. Dorward, K. Symington, L. Brusberg, J. R. Kropp, A. Miller, R. Pitwon, and S. 

Whalley, “Market drivers and architectural requirements for backplane inter-connect capacities in next 

generation PON head-end equipment in the access network,” Int. Conf. Transparent Opt. Networks, vol. 

7, pp. 1–4, 2013. 
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7. K. Schmidtke, F. Flens, A. Worrall, R. Pitwon, F. Betschon, T. Lamprecht, and R. 

Kraehenbuehl, “960 Gb/s optical backplane using embedded polymer waveguides and demonstration in 

a 12G SAS storage array,” 2013 Optical Interconnects Conference. pp. 29–30, 2013. 

8. R. Pitwon, K. Wang, and A. Worrall, “Embedded Photonics Interconnect Eco-system for Data 

Center Applications,” Int. Symp. Microelectron., vol. 2013, no. 1, pp. 361–366, 2013. 

9. R. Pitwon, C. Smith, K. Wang, J. Graham-Jones, D. R. Selviah, M. Halter, and A. Worrall, 

“Polymer optical waveguides with reduced in-plane bend loss for electro-optical PCBs,” Proc. SPIE, 

vol. 8264, no. 0, p. 82640Z–82640Z–10, 2012. 

10. R. Pitwon, K. Hopkins, K. Wang, D. R. Selviah, H. Baghsiahi, B. J. Offrein, R. Dangel, F. 

Horst, M. Halter, and M. Gmür, “Design and implementation of an electro-optical backplane with 

pluggable in-plane connectors,” in Proceedings of SPIE, 2010, vol. 44, no. 0, p. 76070J–76070J–12. 

11. R. Pitwon, K. Hopkins, D. Milward, and M. Muggeridge, “Embedded optical interconnect 

technology in data storage systems,” Proc. SPIE, vol. 7716. p. 77161D–77161D–13, 2010. 

12. R. Pitwon, “Pluggable Connector Technologies for Polymeric Electro-optical backplanes,” in 

VII. ITG Workshop Photonische Aufbau- und Verbindungstechnik, 2009. 

13. Papakonstantinou, D. R. Selviah, K. Wang, R. Pitwon, K. Hopkins, and D. Milward, “Optical 

8-channel 10 Gb/s MT pluggable connector alignment technology for precision coupling of laser and 

photodiode arrays to polymer waveguide arrays for optical board-to-board interconnects,” in Electronic 

Components and Technology Conference, 2008, no. June 2008, pp. 1769–1775. 

14. R. Pitwon, K. Hopkins, and D. Milward, “An Optical Backplane Connection System with 

Pluggable Board Interfaces,” in Optical Communication Systems and Networks (509), 2006. 

 

7.3.3 Articles 

In addition, the author wrote the following online articles. 

 

1. Pitwon, R., “The Light Alternative”, IEC e-tech September / October 2014 issue 

2. Pitwon, R., “Embedded optical interconnect for use in data-storage systems“, SPIE 

Newsroom. DOI: 10.1117/2.1200912.002528 
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7.4 Invited talks and presentations 

During the course of the PhD programme, the author delivered presentations and gave a number of invited talks 

at conferences and symposia. He was also invited to give lectures at universities, summer schools and the IET on 

his research activities. 

 

1. Pitwon, R., “Evolution of optical interconnect technologies and architectures for exascale data centres”, 

3
rd

 Symposium on Optical Interconnect in Data Centres, ECOC 2015, 29
th

 September 2015 

2. Pitwon, R., “Photonic Interconnect Technologies for Data Centre Environments”, ECOC workshop on 

Optical Technologies for the Exascale Cloud Datacenter Era, ECOC 2015, 27
th

 September 2015 

3. Pitwon, R., “Migration of Optical Interconnect into Sub-TOR Data Centre Subsystems”, ITG 

Workshop, Berlin, 20
th

 May 2015 

4. Pitwon, R., “The Route to Commercial Adoption of Polymer Waveguide Interconnect for Data 

Communication”, 56
th

 Optical Packaging Technology Conference, Japan, 7
th

 November 2014 

5. Pitwon, R., Immonen, M., “HDPuG Optical Interconnect Project” ,EPIC Technology Workshop on 

Photonics Integration Circuits Packaging Standardization, 19
th

 June, 2014 

6. Pitwon, R., “Standardisation of System Embedded Optical Interconnect” ,EPIC Technology Workshop 

on Photonics Integration Circuits Packaging Standardization, 19
th

 June, 2014 

7. Pitwon, R., “Optical Circuit Board Design”, Lecture to Summer School on Optical Interconnects, 

Thessaloniki, 4
th

 June, 2014 

8. Pitwon, R., “Optical Interconnects in Data Storage Systems”, Lecture to Summer School on Optical 

Interconnects, Thessaloniki, 4
th

 June, 2014 

9. Pitwon, R., “Route to Adoption of System Embedded Optical Interconnect in Data Centre 

Environments”, 5
th

 Annual SU2P Symposium, Glasgow, 1
st
 April 2014 

10. Pitwon, R., “International standardisation of optical circuit board technologies”, Symposium on Optical 

Interconnect in Data Centers, Berlin, 19
th

 March, 2014 

11. Pitwon, R., “Electro-optically enabled data storage systems for exascale data centres”, Symposium on 

Optical Interconnect in Data Centers, Berlin, 18
th

 March, 2014 

12. Pitwon, R., “Demonstration of fully-enabled data centre subsystem with embedded optical 

interconnect”, OPTO Conference 8991, Photonics West 2014, San Francisco, 5
th

 February 2014 
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13. Pitwon, R., “Introduction to PhoxTrot project”, IEC / TC86 / JWG9 meeting, Charlotte, North Carolina, 

31
st
 October 2013 

14. Pitwon, R., “Embedded Photonics Interconnect Ecosystem for Data Center Applications”, IMAPS 46
th

 

Symposium, Florida, 1
st
 October 2013 

15. Pitwon, R. “System Embedded Photonic Interconnect Technologies for Data Centre Environments”, 

European Cluster for Optical Interconnects (ECO) Workshop, London, 25
th

 September 2013 

16. Pitwon, R. “Migration of Embedded Optical Interconnect into Data Centre Systems”, ECOC 2013, 

WS4, 22
nd

 September 2013 

17. Pitwon, R. “Optical Interconnect for Future Information Communication Technologies”, JIEP (Japan 

Institute of Electronic Packaging) conference, Tokyo, 10
th

 July 2013 

18. Pitwon, R., “Optical Data Communications Interconnect for Future Information Communication 

Technologies”, Xyratex seminar at Keio University, Tokyo, 3
rd

 July 2013 

19. Pitwon, R., “Migration of Embedded Electro-optical Interconnect Technologies into Data Centre 

Systems”, CLEO-PR & OECC/PS 2013 Workshop, Kyoto, Japan, 28
th

 June 2013 

20. Pitwon, R. “Photonic Interconnects for Data Centers & HPC Systems: The EU FP7 PhoxTroT 

Approach”, DataCentre Dynamics conference, Stockholm, 28
th

 May 2013 

21. Pitwon, R., “Optical Data Communications Interconnect Technologies for Future Information and 

Communication Technologies”, Invited talk at ECO Cluster meeting, Brussels, 28
th

 April 2013 

22. Pitwon, R., “Standards Proposal for Method of Specifying Optical Waveguide Measurements”, IEC / 

TC86 / JWG9 meeting, Kista, Sweden, 19
th

 April, 2013 

23. Pitwon, R., “Embedded Optical Interconnect Technologies for Exascale Data Centre Systems”, IEEE 

CPMT Webinar “Electro-optical Printed Circuit Board and Interconnect Technologies and their Application 

to Data Center and HPC Systems”, 13
th

 February 2013 

24. Pitwon, R. et al. “Embedded Planar Glass Waveguide Optical Interconnect for Data Centre 

Applications”, OPTO Conference, Photonics West 2013 

25. Pitwon R., “Technology Roadmap of Optical Interconnection”, ECOC 2012 WS01 Plasmonics for 

Optical Interconnects, September 2012 

26. R. Pitwon et al., “Polymer optical waveguides with reduced in-plane bend loss for electro-optical 

PCBs,” OPTO Conference, Photonics West 2012 
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27. Pitwon R., “Optical Printed Circuit Boards”, IET Lecture, 13
th

 January 2011 

28. Selviah D., Pitwon R, “Fibre Optic Connectors – A Different View”, invited talk to SEAFOM (Subsea 

Fibre Optic Monitoring Group) conference, Dublin, 7
th

 December 2010 

29. Pitwon R., “Optical Backplanes in Data Storage Applications”, invited talk to Cambridge University 

Computer Lab and Centre for Advanced Photonics (CAPE), 16
th

 November 2010 

30. Selviah D., Pitwon R, “Optical printed circuit board and connector technology”, invited talk to 74
th

 IEC 

International Electrotechnical Commission General Meeting, Seattle, 9
th

 October 2010 

31. Pitwon, R, “Optical Backplanes for Data Storage Applications”, invited talk to SEPNet (South East 

Photonics Network) meeting, Oclaro, Caswell, 1
st
 July 2010 

32. Pitwon, R., “Embedded optical interconnect technology in data storage systems“, Photonics Europe 

Conference 7716, SPIE paper 7716-31, 2010. Invited talk 

33. Pitwon, R, “Design and implementation of an electro-optical backplane with pluggable in-plane 

connectors“, Photonics West Conference 2010, SPIE Paper Number 7607-1. Invited talk 

34. Pitwon, R, “Embedded Optical Interconnect in the Data Storage Domain”, invited talk to SEPNet 

(South East Photonics Network) meeting, Havant, 30
th

 September 2009 

35. Pitwon, R, “Pluggable Connector Technologies for Polymeric Electro-optical backplanes“, invited talk 

to VII. ITG Workshop Photonische Aufbau- und Verbindungstechnik, 7/8 May 2009, Wernigerode, 

Germany 

36. Selviah, D.R., Wang, K., Papakonstantinou, I, Yau, M., Yu, G. F., Fernández, A., Walker, A., 

McCarthy A., Suyal, A., Taghizadeh, M., Hutt, D., Conway, P., Zakariyah, S., Chappell, J., Hin, T.Y., 

Milward, D., Pitwon, R., “Integrated Electrical – Optical Substrate Manufacture – The OPCB Project” , 

SUMEEPnet Scientific and Technical Conference 2008, Henry Ford College, Loughborough, UK (19
th

 

March 2008) 

37. Pitwon, R., “Design and Application of an Optical Backplane Connection System” , TecPreview talk to 

IEC DesignCon 2007 Conference, Santa Clara, California, USA, 30
th

 January 2007 

38. Pitwon, R., Hopkins, K., Milward, D., Selviah, D. R, Papakonstantinou, I., Wang, K. and Fernández, F. 

A. (2006). “High speed pluggable optical backplane connector” Fraunhofer IZM and VDI/VDE-IT 

International Symposium on Photonic Packaging: Electrical Optical Circuit Board and Optical Backplane, 

Munich, Germany, (16
th

 November 2006) 
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39. Pitwon, R., “An Optical Backplane Connection System with Pluggable Board Interfaces”, Sixth 

IASTED International Multi-Conference on Wireless and Optical Communications, Optical Communication 

Systems and Networks, July 3-5, Banff, AB, Canada (2006) 

40. Pitwon, R., “Pioneering Technologies for the Optical Era” , invited talk to Shadow Secretary of 

Education; David Willetts MP, Member of Parliament (3
rd

 February, 2006) 

41. Pitwon, R, “Verbindungstechnik für Optische Leiterplatten Anwendungen“ , invited talk to ITG-PAVT 

Meeting, Berlin (18th January 2006) 
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9 APPENDIX - FIRSTLIGHT 

PLATFORM FIRMWARE CODING 
 

9.1 PCI command structure 

The author wrote the firmware for the StorConnTest3 FPGA including the complete PCI command structure for 

the FirstLight demonstration platform allowing the user to configure or read-back the values on the FPGA 

registers of a given StorConnTest3 daughtercard connected to the StorConnOpt3 backplane for general static 

control lines, StorConn3 transceiver registers, XFP control registers, LED control lines and the crosspoint 

switch. 

 

9.1.1 General static control lines 

Table 9-1: PCI command map - PCI write and read command set for general static control status lines 

Write Format 

PCI Address - complete 32 bit address hex “80000800”  

PCI Address BAR 2 (space 0) offset 800  (e.g. el s0+800 Data)  

 

Data Bit Function Section Description User Input 

Method 

32 - 23 not used not used not used not used 

22 SC3_RXEN SC3 Optical 

Receiver window 

Global enable bit for Quad Optical 

Receiver on SC3 transceiver card 

‘0’ = Disable 

‘1’ = Enable 

Button 

21 SC3_SQEN SC3 Optical 

Receiver window 

Squelch enable bit for Quad Optical 

Receiver 

‘0’ = Disable 

‘1’ = Enable 

Button 
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20 SC3_VDEN SC3 VCSEL 

Driver Window 

Global enable bit for Quad VCSEL 

Driver 

Button 

19 SC3_Ctrl1 Reserved Spare control line to SC3 reserved for 

future functionality 

not used 

18 SC3_Ctrl2 Reserved Spare control line to SC3 reserved for 

future functionality 

not used 

17 - 12 not used not used not used not used 

11 XFP_TX_DIS3 XFP interface 

Window 

Disable bit for Tx laser of XFP 3 (right 

most XFP) 

‘0’ = Tx Laser Enabled 

‘1’ = Tx Laser Disabled 

Button or 

Schematic 

Display 

10 XFP_TX_DIS2 XFP interface 

Window 

Disable bit for Tx laser of XFP 2 

‘0’ = Tx Laser Enabled 

‘1’ = Tx Laser Disabled 

Button or 

Schematic 

Display 

9 XFP_TX_DIS1 XFP interface 

Window 

Disable bit for Tx laser of XFP 1 

‘0’ = Tx Laser Enabled 

‘1’ = Tx Laser Disabled 

Button or 

Schematic 

Display 

8 XFP_TX_DIS0 XFP interface 

Window 

Disable bit for Tx laser of XFP 0 (left 

most XFP) 

‘0’ = Tx Laser Enabled 

‘1’ = Tx Laser Disabled 

Button or 

Schematic 

Display 

     

7 XFP_PDn_Rst3 XFP interface 

Window 

Power Down bit for XFP 3 (right most 

XFP) 

‘0’ = Power up 

‘1’ = Power down 

Reset on transition from ‘1’ to ‘0’ 

Button or 

Schematic 

Display 

6 XFP_PDn_Rst2 XFP interface 

Window 

Power Down bit for XFP 2 

‘0’ = Power up 

‘1’ = Power down 

Button or 

Schematic 

Display 
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Reset on transition from ‘1’ to ‘0’ 

5 XFP_PDn_Rst1 XFP interface 

Window 

Power Down bit for XFP 1 

‘0’ = Power up 

‘1’ = Power down 

Reset on transition from ‘1’ to ‘0’ 

Button or 

Schematic 

Display 

 

 

4 XFP_PDn_Rst0 XFP interface 

Window 

Power Down bit for XFP 0 (left most 

XFP) 

‘0’ = Power up 

‘1’ = Power down 

Reset on transition from ‘1’ to ‘0’ 

Button or 

Schematic 

Display 

3 - 1 not used not used not used not used 

0 XFP_SCLK XFP interface 

Window 

Clocking rate select for all XFPs between 

161.1328 MHz (10 GbE LAN) and 

155.52 MHz (10 GbE WAN) 

‘0’ = 161.1328 MHz 

‘1’ = 155.52 MHz 

Button 

 

Read Format 

PCI Address - complete 32 bit address hex “80000800”  

PCI Address BAR 2 (space 0) offset 800  (e.g. dl s0+800 4)  

 

Table 9-2: PCI command sequence example - general IO PCI commands 

Write 

 

Command PCI offset    

 el s0 + 800    

XFP     

Power down all XFPs  XX X XX FF0 
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Power up all XFPs (reset)  XX X XX 000 

  XX X   

SC3 Transceiver      

VCSEL Driver, Optical 

Receiver and Squelch 

enabled 

 XX 7 XX XX

X 

VCSEL Driver, Optical 

Receiver and Squelch 

disabled 

 XX 0 XX XX

X 

VCSEL Driver Enabled, 

Optical receiver and 

squelch disabled 

 XX 1 XX XX

X 

VCSEL Driver disabled, 

Optical receiver and 

squelch enabled 

 XX 6 XX XX

X 

     

Read from general 

control register 

dl s0 + 800 4    
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9.1.2 XFP I
2
C interface  (XFPIO) 

9.1.2.1. XFP I
2
C read 

In order for the user to read data from an XFP register, two PLX API calls are required: 

 PCI Write to execute the XFP read instruction and provide the parameters (internal XFP 

address) 

 PCI read to read back from the FPGA the result of the previously instructed read operation 

 

Table 9-3: PCI command sequence - execute read of XFP I²C memory device 

PCI Command Seq: PCI Write Offset 8 hex (32 bit) Data Word 

 el  s0+1900 XFP 

sel 

I²C 

Address 

Data 

(R/W) 

Proc Register 

(R/O) 

XFP 3 (right most)   7F 00 - FF XX XX 

XFP 2   BF 00 - FF XX XX 

XFP 1   DF 00 - FF XX XX 

XFP 0 (left most)   EF 00 - FF XX XX 

 

This will command the FPGA to execute a read sequence on the selected XFP. The contents will be read back to 

the FPGA and stored at address: 80001c00 (or offset s0+1C00) 

 

Table 9-4: PCI command sequence - read back contents of previous read instruction 

PCI Command Seq: PCI 

Read 

Offset Specify number of Bytes to read back 

 dl  s0+1C00 4 

 

PCI Reply: XFP 

Select 

XFP 

Diagnostic 1 

Read 

Address 

Read back 

Data 

XFP Diagnostic 2 

Example: 7 (XFP3) X 00 06 XX 

 

The contents of FPGA address 80001c00 (or offset s0+1C00) will be transferred to the user interface. 
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9.1.2.1. XFP I
2
C write 

In order for the user to write data to an XFP register, one PLX API call is required: 

 PCI Write to execute the XFP write instruction and provide the parameters (internal XFP 

address and data to be written to that address) 

 

Table 9-5: PCI command sequence - execute write to XFP I²C memory device 

PCI Command 

Seq: 

PCI Write Offset 8 hex (32 bit) Data Word 

 el  s0+1800 XFP 

sel 

I²C 

Address 

Data 

(R/W) 

Proc Register 

(R/O) 

XFP 3   7F 00 - FF XX XX 

XFP 2   BF 00 - FF XX XX 

XFP 1   DF 00 - FF XX XX 

XFP 0   EF 00 - FF XX XX 

 

9.1.3 Crosspoint switch interface  (CPSIO) 

9.1.3.1. CPS read and write to configure switch 

The CPS is configured by the FPGA across a proprietary Vitesse parallel interface, by writing data to CPS 

registers. 

In order for the user to write data to a CPS register, in order to, for instance, configure a given switch output to a 

given switch input, one PLX API call is required: 

 PCI write to execute the CPS write instruction and provide the parameters (CPS output to 

input) 

 

Optionally, a PCI read can be made to the same address the write was made, in order to confirm that the write 

instruction was correctly received by the FPGA 

 

Table 9-6: PCI command sequence - CPS write sequence to configure switch 

 PCI offset write CPS Address CPS Data Execute 
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Write to CPS el s0 + 100 0 Output 0 to 7 Input 0 to 7 XXXX1 

 

Example 

Map CPS output 3 to input 5 el s0 + 100 0 3 5 00001 

 

Read from Write register dl s0 4  

   

Example 

Read last write instruction dl s0 4  

Expected 0350XXXX  

 

In order for the user to read data from a CPS register, two PLX API calls are required: 

 PCI write to execute the CPS read instruction and provide the parameters (CPS Address) 

 PCI read to read back from the FPGA the result of the previously instructed read operation 

 

Table 9-7: PCI command sequence - CPS read sequence to read switch configuration 

Execute read from CPS el s0 + 200 0 CPS Register 

(output) to read 

X XXXX1 

Example 

Read back input to which 

output 3 is mapped 

el s0+ 200 0 3 0 00001 

Expected      

 

Read from Read register dl s0 + 400 4  

 

9.1.3.2. Crosspoint Switch (CPS) output signal conditioning configuration 

The CPS also allows pre-emphasis of all its output ports. The range of output functionality is as follows: 

 The following functionalities can be applied either globally or to individual ports 

o Force all outputs to 1, 0 or normal operation 

o Output power nominal or high 
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o Pre-emphasis enabled or disabled 

o Pre-emphasis adjustment for varying line lengths between range 0 to 15 (450 ps to 

700 ps respectively) 

 Boost mode enabled / disabled for each channel 

 

Table 9-8: PCI command sequence - CPS Output pre-emphasis configuration 

 PCI offset write CPS 

Address 

CPS Data Execute 

Global Pre-emphasis Setting el s0 + 100 08 Range 0 to F (450 ps 

to 700 ps) 

XXXX1 

 

Example 

Set Global pre-emphasis to 700 

ps 

el s0 + 100 08 F 00001 

Set Global pre-emphasis to 450 

ps 

el s0 + 100 08 0 00001 

 

Individual Pre-emphasis 

Setting 

el s0 + 100 10 – 17 

(ports 0 to 

8) 

Range 0 to F (450 ps 

to 700 ps) 

XXXX1 

Set Global pre-emphasis on port 

3 to 700 ps 

el s0 + 100 13 F 00001 

Set Global pre-emphasis on port 

0 to 450 ps 

el s0 + 100 10 0 00001 

Set Global pre-emphasis on port 

8 to 700 ps 

el s0 + 100 18 F 00001 

Set Global pre-emphasis on port 

8 to 573 ps (mid point) 

el s0 + 100 18 7 00001 

 

Table 9-9: PCI command sequence - CPS global output level configuration 
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Table 9-10: PCI command sequence - CPS individual output level configuration 

 offset Address Data ex. 

   bit 3 bit 2 bit 1 bit 0  

Global Output 

Configuration 

el s0 + 

100 

09 00 = normal 

01 = outputs to 0 

10 = outputs to 1 

11 = outputs to 0 

 

0 = nominal 

output level 

1 = high 

output level 

0 = pre-emph. 

disabled 

1 = pre-emph. 

enabled 

XXXX

1 

Example 

Set global 

outputs to 

normal, high 

level with pre-

emph. enabled 

el s0 + 

100 

09 3 00001 

0 0 1 1 

Force global 

outputs to 1, 

nominal level, 

no pre-emph. 

el s0 + 

100 

09 8 00001 

1 0 0 0 

 offset Address Data ex. 

   bit 3 bit 2 bit 1 bit 0  

Individual 

Output 

Configuration 

el s0 + 

100 

18 – 1F 00 = normal 

01 = outputs to 0 

10 = outputs to 1 

11 = outputs to 0 

 

0 = nominal 

output level 

1 = high 

output level 

0 = pre-emph. 

disabled 

1 = pre-emph. 

enabled 

XXXX

1 

Example 

Set output 0 to el s0 + 18 3 00001 
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Table 9-11: PCI command sequence - CPS output boost mode configuration 

 

9.1.3.3. CPS Input Signal Equalisation Configuration 

The CPS also allows equalisation of all its input ports. The range of functionality is as follows: 

Global and individual equalisation level on the inputs between four settings: 

 No equalisation 

 Minimum equalisation 

 Medium equalisation 

 Maximum equalisation 

normal, high 

level with pre-

emph. enabled 

100 0 0 1 1 

Force output 7 

to 1, nominal 

level, no pre-

emph. 

el s0 + 

100 

1F 8 00001 

1 0 0 0 

 offset Add. Data ex. 

   bit 3 bit 2 bit 1 bit 0  

Individual 

Output 

Configuration 

Outputs 0 - 3 

el s0 + 

100 

0D output 3 

0 = boost off 

1 = boost on 

output 2 

0 = boost 

off 

1 = boost 

on 

output 1 

0 = boost off 

1 = boost on 

output 0 

0 = boost off 

1 = boost on 

XX

XX

1 

Individual 

Output 

Configuration 

Outputs 0 - 3 

el s0 + 

100 

0E output 7 

0 = boost off 

1 = boost on 

output 6 

0 = boost 

off 

1 = boost 

on 

output 5 

0 = boost off 

1 = boost on 

output 4 

0 = boost off 

1 = boost on 

XX

XX

1 



Appendix 359 

 

Table 9-12: PCI command sequence - CPS input equalisation configuration 

 PCI offset write CPS 

Address 

CPS Data Execute 

Global Equalisation Setting el s0 + 100 0A X 000 = No eq 

001 = Min eq 

011 = Med eq 

111 = Max eq 

XXXX1 

 

Example 

Set Global equalisation to no 

equalisation 

el s0 + 100 0A 0 (0000) 00001 

Set Global equalisation to 

maximum equalisation 

el s0 + 100 0A 7 (0111) 00001 

 

Individual Equalisation 

Setting 

el s0 + 100 20 - 27 

(ports 0 to 

8) 

X 000 = No eq 

001 = Min eq 

011 = Med eq 

111 = Max eq 

XXXX1 

Set equalisation on port 3 to 

medium  

el s0 + 100 23 3 (0011) 00001 

Set equalisation on port 0 to no 

equalisation 

el s0 + 100 10 0 (0000) 00001 

Set equalisation on port 8 to 

maximum 

el s0 + 100 18 7 (0111) 00001 

Set equalisation on port 3 to 

minimum 

el s0 + 100 18 1 (0001) 00001 

 

9.1.4 StorConn3 transceiver interface  (SC3IO) 

9.1.4.1. Configurable StorConn3 parameters: 

 VCSEL global functionality 
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o Waveform control 

o Temperature compensation for bias current (Imax) 

o Temperature compensation for modulation current (Imod) 

 VCSEL per channel functionality 

o Enable 

o Bias current 

o Modulation current 

o Force output high (not displayed in example GUI) 

 Optical receiver global functionality 

o Global signal detect sensitivity 

o Signal detect threshold 

o Hysteresis on/off 

o Optical output swing (nominal/high) 

 Optical receiver per channel functionality 

o Enable 

 VCSEL temperature read-back 

 VCSEL drive current read-back 

 

9.1.4.2. SC3 IO test sequence examples 

Table 9-13: PCI command sequence - execute I²C write of VCSEL Driver to turn channel 4 on 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Write VCSEL block 1 el s0+1000 A0 0C 29 79 

Write VCSEL block 2 el s0+1020 02 97 90 29 

Write VCSEL block 3 el s0+1040 79 02 97 A0 

Write VCSEL block 4 el s0+1060 00 00 00 00 

 

Execute VCSEL Write el s0+10E0 FF FF FF FF 

Check that Write Done flag 

(bit 0) = ‘1’ 

dl s0+ 1780 4 XX XX XX X1 
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Table 9-14: PCI command sequence - execute I²C write of VCSEL Driver to turn all VCSELs off 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Write VCSEL block 1 el s0+1000 A0 0C 29 79 

Write VCSEL block 2 el s0+1020 02 97 90 29 

Write VCSEL block 3 el s0+1040 79 02 97 90 

Write VCSEL block 4 el s0+1060 00 00 00 00 

 

Execute VCSEL Write el s0+10E0 FF FF FF FF 

Check that Write Done flag 

(bit 0) = ‘1’ 

dl s0+ 1780 4 XX XX XX X1 

 

Table 9-15: PCI command sequence - execute I²C write of VCSEL driver to turn all VCSELs on 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Write VCSEL block 1 el s0+1000 A0 0C 29 7A 

Write VCSEL block 2 el s0+1020 02 97 A0 29 

Write VCSEL block 3 el s0+1040 7A 02 97 A0 

Write VCSEL block 4 el s0+1060 00 00 00 00 

 

Execute VCSEL Write el s0+10E0 FF FF FF FF 

Check that Write Done flag 

(bit 0) = ‘1’ 

dl s0+ 1780 4 XX XX XX X1 

 

Read diagnostic status of VD write cycle: dl s0+1600 4 

 

Table 9-16: PCI command sequence - execute I²C read of VCSEL Driver 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Execute VCSEL Read el s0+1080 FF FF FF FF 

Check that Read Done flag 

(bit 0) = ‘1’ 

dl s0+ 1780 4 XX XX XX X1 
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Read VCSEL block 1 dl s0+1720 4 Block 1 Block 2 Block 3 Block 4 

Expected Reply 

 

 A0 0C 29 7A 

Read VCSEL block 2 dl s0+1740 4 Block 5 Block 6 Block 7 Block 8 

Expected Reply 

 

 02 97 A0 29 

Read VCSEL block 3 dl s0+1760 4 Block 9 Block 10 Block 11 Block 12 

Expected Reply 

 

 7A 02 97 A0 

Read VCSEL block 4 dl s0+1780 4 Block 13 XX XX XX 

Expected Reply 

 

 00 00 00 00 

 

Read diagnostic status of VD read cycle: dl s0+1620 4 

 

Table 9-17: PCI command sequence - execute I²C write of optical driver (TIA) to turn all photodiode 

channels on 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Write RA block 1 el s0+1100 A5 9B 00 00 

Write RA block 2 el s0+1120 00 XX XX XX 

 

Execute RA Write el s0+11E0 FF FF FF FF 

Check that Write Done flag 

(bit 0) = ‘1’ 

dl s0+ 17C0 4 XX XX XX X1 
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Table 9-18: PCI command sequence - execute I²C write of optical driver (TIA) to turn all photodiode 

channels off 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Write RA block 1 el s0+1100 A5 9B 22 22 

Write RA block 2 el s0+1120 00 XX XX XX 

 

Execute RA Write el s0+11E0 FF FF FF FF 

Check that Write Done flag 

(bit 0) = ‘1’ 

dl s0+ 17C0 4 XX XX XX X1 

Read diagnostic status of RA write cycle: dl s0+1680 4 

 

Table 9-19: PCI command sequence - execute I²C read of optical receiver 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Execute VCSEL Read el s0+1200 FF FF FF FF 

Check that Read Done flag 

(bit 0) = ‘1’ 

dl s0+ 17C0 4 XX XX XX X1 

 

Read RA block 1 dl s0+17A0 4 Block 1 Block 2 Block 3 Block 4 

Expected Reply 

(to case six above) 

 A5 9B 22 22 

Read RA block 2 dl s0+17C0 4 Block 5 XX XX XX 

Expected Reply 

(to case six above) 

 00 00 00 00 

Read diagnostic status of RA read cycle: dl s0+1660 4 

 

Table 9-20: PCI command sequence - Execute I²C read of VCSEL driver temperature 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Execute VCSEL 

Temperature Read 

el s0+1260 FF FF FF FF 

Check that Read Done flag dl s0+ 17C0 4 XX XX XX X1 
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(bit 0) = ‘1’ 

 

Read temp block dl s0+1400 4 Block 1 Block 2 XX XX 

Read diagnostic status of VD Temp read cycle: dl s0+1660 4 

 

Table 9-21: PCI command sequence - execute I²C read of VCSEL driver monitor current 

PLX Mon Command: offset 1st byte 2nd byte 3rd byte 4th byte 

Execute VCSEL Current 

Read 

el s0+1280 FF FF FF FF 

Check that Read Done flag 

(bit 0) = ‘1’ 

dl s0+ 17C0 4 XX XX XX X1 

 

Read current block dl s0+1420 4 Block 1 Block 2 XX XX 

Read diagnostic status of VD Temp read cycle: dl s0+1660 4 
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9.1.5 LED control interface (LEDIO) 

Table 9-22: PCI command map - LED control interface 

Write Format 

PCI Address - complete 32 bit address hex “80000C00”  

PCI Address BAR 2 (space 0) offset C00  (e.g. el s0+C00 Data)  

 

Data Bit Function Section Description User Input 

Method 

32 - 23 not used not used not used not used 

22 - 20 LED Mode Diagnostic 

window 

“000” Direct mode in which bits 18 – 1 

map directly to LEDs 18 – 1 

“001” LED automatic flashing mode 1 

(default) 

“010” LED automatic flashing mode 2 

“011” LED automatic flashing mode 3 

“100” LED automatic flashing mode 4 

Button 

19 not used not used not used  

18 - 1 LED 18 - 1 Diagnostic 

interface window 

Enable bit for diagnostic LEDs 18 -1  

‘0’ = Disable 

‘1’ = Enable 

Button 

0 not used not used not used not used 

 

Read Format 

PCI Address - complete 32 bit address hex “80000C00”  

PCI Address BAR 2 (space 0) offset C00  (e.g. dl s0+C00 4)  

 


