7 research outputs found

    Hybrid Multilevel Thresholding and Improved Harmony Search Algorithm for Segmentation

    Get PDF
    This paper proposes a new method for image segmentation is hybrid multilevel thresholding and improved harmony search algorithm. Improved harmony search algorithm which is a method for finding vector solutions by increasing its accuracy. The proposed method looks for a random candidate solution, then its quality is evaluated through the Otsu objective function. Furthermore, the operator continues to evolve the solution candidate circuit until the optimal solution is found. The dataset used in this study is the retina dataset, tongue, lenna, baboon, and cameraman. The experimental results show that this method produces the high performance as seen from peak signal-to-noise ratio analysis (PNSR). The PNSR result for retinal image averaged 40.342 dB while for the average tongue image 35.340 dB. For lenna, baboon and cameramen produce an average of 33.781 dB, 33.499 dB, and 34.869 dB. Furthermore, the process of object recognition and identification is expected to use this method to produce a high degree of accuracy

    A Hybrid COVID-19 Detection Model Using an Improved Marine Predators Algorithm and a Ranking-Based Diversity Reduction Strategy

    Get PDF
    Many countries are challenged by the medical resources required for COVID-19 detection which necessitates the development of a low-cost, rapid tool to detect and diagnose the virus effectively for a large numbers of tests. Although a chest X-Ray scan is a useful candidate tool the images generated by the scans must be analyzed accurately and quickly if large numbers of tests are to be processed. COVID-19 causes bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, sometimes with a rounded morphology and a peripheral lung distribution. In this work, we aim to extract rapidly from chest X-Ray images the similar small regions that may contain the identifying features of COVID-19. This paper therefore proposes a hybrid COVID-19 detection model based on an improved marine predators algorithm (IMPA) for X-Ray image segmentation. The ranking-based diversity reduction (RDR) strategy is used to enhance the performance of the IMPA to reach better solutions in fewer iterations. RDR works on finding the particles that couldn't find better solutions within a consecutive number of iterations, and then moving those particles towards the best solutions so far. The performance of IMPA has been validated on nine chest X-Ray images with threshold levels between 10 and 100 and compared with five state-of-art algorithms: equilibrium optimizer (EO), whale optimization algorithm (WOA), sine cosine algorithm (SCA), Harris-hawks algorithm (HHA), and salp swarm algorithms (SSA). The experimental results demonstrate that the proposed hybrid model outperforms all other algorithms for a range of metrics. In addition, the performance of our proposed model was convergent on all numbers of thresholds level in the Structured Similarity Index Metric (SSIM) and Universal Quality Index (UQI) metrics.</p

    Feature Extraction for Retina Image Based on Difference Approaches

    Get PDF
    Automatic disease diagnosis using biometric images is a difficult job due to image distortion, such as the presence of artifacts, less or excessive light, narrow vessel visibility and differences in inter-camera variability that affect the performance of an approaches. Almost all extraction methods in the blood vessels in the retina produce the main part of the vessel with no patalogical environment. However, an important problem for this method is that extraction errors occur if they are too focused on the thin vessels, the wide vessels will be more detectable and also artificial vessels that may appear a lot. In addition, when focusing on a wide vessel, the extraction of thin vessels tends to disappear and is low. Based on our research, different treatments are needed to extract thin vessels and wide vessels both visually and in contrast. This study aims to adopt feature extraction strategies with different techniques. The method proposed in segmentation and extraction with three different approaches, namely the pattern of shape, color, and texture. Testing segmentation and feature extraction using STARE datasets with five classes of diseases namely Choroidal Neovascularization, Branch Retinal Vein Occlusion, Histoplasmosis, Myelinated Nerve Fibers, and Coats. Image enhancement on Myelinated Nerve disease Fiber is the best result from the image of other diseases with the highest value of PSNR of 35.4933 dB and the lowest MSE of 0.0003 means that the technique is able to repair objects well. The main significance of this work is to increase the quality of segmentation results by applying the Otsu method. Testing of segmentation results shows improvements with the proposed method compared to other methods. Furthermore, the application of different feature extraction methods will get information on disease classification features based on patterns of suitable shapes, colors, and textures

    HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

    Get PDF
    Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics

    Remote sensing imagery segmentation: A hybrid approach

    Full text link
    In remote sensing imagery, segmentation techniques fail to encounter multiple regions of interest due to challenges such as dense features, low illumination, uncertainties, and noise. Consequently, exploiting vast and redundant information makes segmentation a difficult task. Existing multilevel thresholding techniques achieve low segmentation accuracy with high temporal difficulty due to the absence of spatial information. To mitigate this issue, this paper presents a new Rényi’s entropy and modified cuckoo search-based robust automatic multi-thresholding algorithm for remote sensing image analysis. In the proposed method, the modified cuckoo search algorithm is combined with Rényi’s entropy thresholding criteria to determine optimal thresholds. In the modified cuckoo search algorithm, the Lévy flight step size was modified to improve the convergence rate. An experimental analysis was conducted to validate the proposed method, both qualitatively and quantitatively against existing metaheuristic-based thresholding methods. To do this, the performance of the proposed method was intensively examined on high-dimensional remote sensing imageries. Moreover, numerical parameter analysis is presented to compare the segmented results against the gray-level co-occurrence matrix, Otsu energy curve, minimum cross entropy, and Rényi’s entropy-based thresholding. Experiments demonstrated that the proposed approach is effective and successful in attaining accurate segmentation with low time complexity
    corecore