1,513 research outputs found

    Distributed and adaptive location identification system for mobile devices

    Full text link
    Indoor location identification and navigation need to be as simple, seamless, and ubiquitous as its outdoor GPS-based counterpart is. It would be of great convenience to the mobile user to be able to continue navigating seamlessly as he or she moves from a GPS-clear outdoor environment into an indoor environment or a GPS-obstructed outdoor environment such as a tunnel or forest. Existing infrastructure-based indoor localization systems lack such capability, on top of potentially facing several critical technical challenges such as increased cost of installation, centralization, lack of reliability, poor localization accuracy, poor adaptation to the dynamics of the surrounding environment, latency, system-level and computational complexities, repetitive labor-intensive parameter tuning, and user privacy. To this end, this paper presents a novel mechanism with the potential to overcome most (if not all) of the abovementioned challenges. The proposed mechanism is simple, distributed, adaptive, collaborative, and cost-effective. Based on the proposed algorithm, a mobile blind device can potentially utilize, as GPS-like reference nodes, either in-range location-aware compatible mobile devices or preinstalled low-cost infrastructure-less location-aware beacon nodes. The proposed approach is model-based and calibration-free that uses the received signal strength to periodically and collaboratively measure and update the radio frequency characteristics of the operating environment to estimate the distances to the reference nodes. Trilateration is then used by the blind device to identify its own location, similar to that used in the GPS-based system. Simulation and empirical testing ascertained that the proposed approach can potentially be the core of future indoor and GPS-obstructed environments

    Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios

    Get PDF
    This paper presents our experience on a real case of applying an indoor localization system formonitoringolderadultsintheirownhomes. Sincethesystemisdesignedtobeusedbyrealusers, therearemanysituationsthatcannotbecontrolledbysystemdevelopersandcanbeasourceoferrors. This paper presents some of the problems that arise when real non-expert users use localization systems and discusses some strategies to deal with such situations. Two technologies were tested to provide indoor localization: Wi-Fi and Bluetooth Low Energy. The results shown in the paper suggest that the Bluetooth Low Energy based one is preferable in the proposed task

    Time of Flight and Fingerprinting Based Methods for Wireless Rogue Device Detection

    Get PDF
    Existing network detection techniques rely on SSIDs, network patterns or MAC addresses of genuine wireless devices to identify malicious attacks on the network. However, these device characteristics can be manipulated posing a security threat to information integrity, lowering detection accuracy, and weakening device protection. This research study focuses on empirical analysis to elaborate the relationship between received signal strength (RSSI) and distance; investigates methods to detect rogue devices and access points on Wi-Fi networks using network traffic analysis and fingerprint identification methods. In this paper, we conducted three experiments to evaluate the performance of RSSI and clock skews as features to detect rogue devices for indoor and outdoor locations. Results from the experiments suggest different devices connected to the same access point can be detected (p \u3c 0.05) using RSSI values. However, the magnitude of the difference was not consistent as devices were placed further from the same access point. Therefore, an optimal distance for maximizing the detection rate requires further examination. The random forest classifier provided the best performance with a mean accuracy of 79% across all distances. Our experiment on clock skew shows improved accuracy in using beacon timestamps to detect rogue APs on the network

    An indoor positioning system using Bluetooth Low Energy

    Get PDF
    In this paper, we present a Bluetooth Low Energy (BLE) based indoor positioning system developed for monitoring the daily living pattern of old people (e.g. people living with dementia) or individuals with disabilities. The proposed sensing system is composed of multiple sensors that are installed in different locations in a home environment. The specific location of the user in the building has been pre-recorded into the proposed sensing system that captures the raw Received Signal Strength Indicator (RSSI) from the BLE beacon that is attached on the user. Two methods are proposed to determine the indoor location and the tracking of the users: a trilateration-based method and fingerprinting-based method. Experiments have been carried out in different home environments to verify the proposed system and methods. The results show that our system is able to accurately track the user location in home environments and can track the living patterns of the user which, in turn, may be used to infer the health status of the user. Our results also show that the positions of the BLE beacons on the user and different quality of BLE beacons do not affect the tracking accuracy

    A Self Regulating and Crowdsourced Indoor Positioning System through Wi-Fi Fingerprinting for Multi Storey Building

    Get PDF
    [EN] Unobtrusive indoor location systems must rely on methods that avoid the deployment of large hardware infrastructures or require information owned by network administrators. Fingerprinting methods can work under these circumstances by comparing the real-time received RSSI values of a smartphone coming from existing Wi-Fi access points with a previous database of stored values with known locations. Under the fingerprinting approach, conventional methods suffer from large indoor scenarios since the number of fingerprints grows with the localization area. To that aim, fingerprinting-based localization systems require fast machine learning algorithms that reduce the computational complexity when comparing real-time and stored values. In this paper, popular machine learning (ML) algorithms have been implemented for the classification of real time RSSI values to predict the user location and propose an intelligent indoor positioning system (I-IPS). The proposed I-IPS has been integrated with multi-agent framework for betterment of context-aware service (CAS). The obtained results have been analyzed and validated through established statistical measurements and superior performance achieved

    Improving the performance of a radio-frequency localization system in adverse outdoor applications

    Get PDF
    In outdoor RF localization systems, particularly where line of sight can not be guaranteed or where multipath effects are severe, information about the terrain may improve the position estimate's performance. Given the difficulties in obtaining real data, a ray-tracing fingerprint is a viable option. Nevertheless, although presenting good simulation results, the performance of systems trained with simulated features only suffer degradation when employed to process real-life data. This work intends to improve the localization accuracy when using ray-tracing fingerprints and a few field data obtained from an adverse environment where a large number of measurements is not an option. We employ a machine learning (ML) algorithm to explore the multipath information. We selected algorithms random forest and gradient boosting; both considered efficient tools in the literature. In a strict simulation scenario (simulated data for training, validating, and testing), we obtained the same good results found in the literature (error around 2 m). In a real-world system (simulated data for training, real data for validating and testing), both ML algorithms resulted in a mean positioning error around 100 ,m. We have also obtained experimental results for noisy (artificially added Gaussian noise) and mismatched (with a null subset of) features. From the simulations carried out in this work, our study revealed that enhancing the ML model with a few real-world data improves localization’s overall performance. From the machine ML algorithms employed herein, we also observed that, under noisy conditions, the random forest algorithm achieved a slightly better result than the gradient boosting algorithm. However, they achieved similar results in a mismatch experiment. This work’s practical implication is that multipath information, once rejected in old localization techniques, now represents a significant source of information whenever we have prior knowledge to train the ML algorithm

    WiFi Access Points Line-of-Sight Detection for Indoor Positioning Using the Signal Round Trip Time

    Get PDF
    The emerging WiFi Round Trip Time measured by the IEEE 802.11mc standard promised sub-meter-level accuracy for WiFi-based indoor positioning systems, under the assumption of an ideal line-of-sight path to the user. However, most workplaces with furniture and complex interiors cause the wireless signals to reflect, attenuate, and diffract in different directions. Therefore, detecting the non-line-of-sight condition of WiFi Access Points is crucial for enhancing the performance of indoor positioning systems. To this end, we propose a novel feature selection algorithm for non-line-of-sight identification of the WiFi Access Points. Using the WiFi Received Signal Strength and Round Trip Time as inputs, our algorithm employs multi-scale selection and Machine Learning-based weighting methods to choose the most optimal feature sets. We evaluate the algorithm on a complex campus WiFi dataset to demonstrate a detection accuracy of 93% for all 13 Access Points using 34 out of 130 features and only 3 s of test samples at any given time. For individual Access Point line-of-sight identification, our algorithm achieved an accuracy of up to 98%. Finally, we make the dataset available publicly for further research
    • …
    corecore