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ABSTRACT In this paper, we present a Bluetooth Low Energy (BLE) based inmsitioning system
developed for monitoring the daily living pattern of old people (e.g. peoylgg liwith dementia) or
individuals with disabilities. The proposed sensing system is asaapof multiple sensors that are installed
in different locations in a home environment. The specific lonatf the user in the building has been pre-
recorded into the proposed sensing system that captures the raneBReigival Strength Indicator (RSSI)
from the BLE beacon that is attached on the user. Two methopioased to determine the indoor location
and the trackingf the users: a trilateration-based method and fingerprintingtbas¢hod. Experiments
have been carried out in different home environmintsrify the proposed system and methods. The results
show that our system is able to accurately track the useiolméathome environmestand can track the
living patterns of the user which, in tumaybe used to infer the health status of the user. Our resuits als
show that the positions of the BLE beacons on the user ancediffguality of BLE beac@do not affect

the tracking accuracy.

INDEX TERMS Bluetooth low energy, living patterns, indoor localizati@teived signal strength
indicator

I. INTRODUCTION and 2025 the UK alone will see a 44% rise in people 60e
In the past few years, we have witnessed considerable BL&ears old [6] An aging and disabled population presents a
progress in localization systems relying on wireless sensingignificant challenge for the health care systems [Brd¥s
technologies, which have been applied in areas includingn increasing need for home rehabilitatiorunderstand the
navigation, human mobility, life pattern mining and location- needs of older users, carers and clinicians [8]. In addition,
based services. Moreover, with the increased growth opeople spend most of their time (~90%) indoors, e.gwarla
ubiquitous smart sensing, both human mobility pattern anghlace or at home according to a National Human Awgtivi
trajectory mining are becoming popular research ai@as Pattern Survey [9]. Therefore, indoor tracking is in great
learning and discovering human acie#and living patterns  demand for all kinds of people. Understanding the indoor
[1]. GPS technologi€g] accurately geolocate users and canpatterns of users (especially for frail people and/or jgeopl
also provide a level of accuracy for outdoor activity Jiving with dementia) will help detect any anomaly ev@ng.
recognition. A number of studies have been carried out t@all at home, and epileptic seizure) of the user. Maedhe
analyze outdoor lifestyle activities [1], [3]. However, GPS |ong-term monitoring of an occupantise of their home will
technologies cannot be used for assessing indoor activitigselp with clinical decision making and diagnosticsisitalso
given that the GPS signal is not able to penetrate buildings.providing a deeper understanding of chronic conditions such
More importarty, an aging population is becoming a global as dementia, and neurological conditions.
challenge and there &growing interest in monitoring and  Considerable research effort has been spent to explore
assisting people living with dementia and people withindoor location tracking technologies including the use of
disabilities in indoor environments [4], [5]. Over recent cameras [10], ultrasound [11], RF [12], infrared [13], MVi-
decades, the number of old people has increased sagnifi. ~ [14], [15], Bluetooth [16] and etc. Among these technologies,
The European Commission had predicted that between 1994i-Fi and Bluetooth based methods have been prominently

VOLUME XX, 2017 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3012342, IEEE Access

» &
I E E E /A(C & GSS Author Name: Preparation of Papers for IEEE Access (February 2017)

used for indoor positioning. Moreover, there has beenThough the RFID is flexible in tag size, the cost of the RFID
extensive work carried out on Bluetooth and iBeacons basertader and unstable received signal strength make it
indoor localization systems [17], [18]. In the iBeaconeldas unmatured for the indoor localization applications. Beside
methodsa user’s mobile phone is localized by the iBeacons other types of RFID evolutions including millimeter warel
installed at differentaforeknown locations in a test THz passive tags are emerging [26].
environment. However, these methods are based on a proxy With the increasing use of smartphones, the method of
by localizing the user’s mobile phone to determine the location  integrating inertial sensing methods and Wi-Fi based methods
of the user. In real-world cases, people tend not tp #esr has become a popular method for indoor positioning [A7].
phones on their physical body at all times in an indoorthe area of Wi-Fi based localization, both deviceedq28]
environment, especiallp home environments. Therefore, the and device-free [15] solutions have been developed. The
location of the phone may not indicate the location ofifer.  device-free based method has the advantage wherdca dev
In order to accurately monitor the location of the usemin a does not need to be carried by the user, but the disadess
indoor environment, a tracker or sensing object whichbea  the complexity of the system and that the system ngrmall
attached/worty the user is needed. There are existing studiesnly works with and for one user.
for detecting the user’s activity and location at home with a A number of research studies focused on using Wased
body attached sensor [8], but the battery of the sensor is @ositioning method in large buildings [231] for mobile
critical issue in these sensing scenarios. Longerresearch  device users. More recently, researchers startedet@Ls
in indoa localization needs a tracker, the size of which isbased positioning method [32], [33] in indoor localizatio
suitable to carry long hours and with a long battery usage, e.@rResearchers [34] have also combined Wi-Fi fingerpgraind
longer than a month. BLE trilateration. Most of the recent works focus on thagk
The aim of this study is to develop a low-cost indoorthe user’s location via locating he smartphones [35]37]. In
localization system that is able to monitor ter’s location [38], indoor localization has been tracked by fusing the
patterns in a home setting for long term use. In thpgepave  information from analysis of RSSI from BLE beacons and
present our indoor localization system using BLE basednertial sensor data from a smartphone. Similarly, 36] [
method. BLE beacons are used as the tracking objeadarri probabilistic localization algorithm has been proposed to
by the user. e proposed indoor localization system is employ both inertial sensor from smartphones and BLE
developed based on BLE technologies integrating Raspberfyeacons. However, the disadvantage of these systeat ibd
Pis (RPi) and BLE beacons. In our evaluation scendhies, phone is required to be with the tracking obpcll times
BLE beacons can be sewed into the clothes of theoiseasr ~ which is not realistic in real indoor environment eggbcfor
be worn on the wrist of the usessplaced i their pockets  occupant with long term chronic conditions and users who d
Two algorithms in indoor localization of the trackingjemit not own a smartphoneThe current commercial indoor
are proposed including trilateration and fingerprinting. localization systems are very expensive e.g. Infsoft [40]
Considering the potential noise and obstacles in an indodocator node is around £150 per device. Our proposed system
environment, Kalman filter and Patrticle filter-basedise  providesa low-cost solution andt is feasible for real world
reduction methods have been used to smooth the coltasted deployment. In this study,afocus on exploring the location

RSSI values. of interest based approach for indoor localization instéad
The rest of paper is organized as follows. Sectioredgmts  grid based approach [41], [4@the user’s use of their home
a literature review of the related work in indoor lazatiion. is our mén concern. The location of interest-based approach

Section Il presents the system design including #ndware  simplifies the procedure of labelling in a home envirenm
and software of our developed BLE based indoor locadizati Furthermore, in this study, a number of different Bldacons
system. Section IV discusses the methods used indatiati  including tracker beacon and smart wearables are esdluat
based on the developed system. Section V presents ourln our previous study [43], we had used Wi-Fi and

Experimental results. Section VI concludes the paper. Bluetooth sensing technologies to monitor bus occupancy.
The technologies have been further extended in this, work
ll. RELATED WORK particular, focusing on the issue of performing trackihtpe

Our work is related to a range of areas including humanmccupant’s locations in home settings for low cost long-term
tracking and indoor localization. In the recent ye@asious  use. In this work, we present the detailed developnfeat o
solutions have been developed for indoor tracking argeca  |ocalization system using an RSSI based method andsdisc
based method [10], [19], inertial sensing based methdd [20the related work on RSSI based methods using Wi-Fi or
sound based method [11], [21] and RSSI based method [22B|uetooth sensing.
[24]. Combining two or more sensing technologiesn When considering the different obstructions within indoor
provide better positioning accuracy. settings, it is difficult to develop a suitable ragimpagation
Radio-frequency identification (RFID) is a wireless model. Traditionally, trilateration and triangulation hws

technology has been used in indoor localization [25] and therare used as positioning algorithms. In this work, triéien is
are two main categories: tag-oriented and reader-oriented.
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FIGURE 1. System Overview

this study include the Estimote beacons [45] and JAALEE
beacons [46]. These beacons are designed for the purpose of
indoor localization and proximity detection related purposes
The broadcast intervals of these beacons are arowwbids
(1Hz) which can be modified through a mobile application
The advantage of these beacons is the battery carrlasefe
months, up to several yesar

Nevertheless, there is an increasing popularity foarsm
FIGURE 2. Sensing node & Screenshot of BlueZ BLE sensing watches and wristbands. Most of these bands use BLE

technology to communicate with a smart phone. Unlile th

used and methods to mitigate the measurement errors an@cker BLE beacons, the broadcasting frequency ofsom
developed. In [44], Running Average, Kalman Filter andsmart wearables are not changeable and are usuallytiwmer
cascaded Kalman Filter-Particle Filter algorithmsl lieeen  that of the tracker BLE beacons. This can be an iHugaim
explored to improve proximity detection accuracy. In ourof a study is to monitor the trajectory of the user ifnaioor
work, in order to improve the accuracy in trilateratiéalman  environment and in real time however these wristbands ca

filter is applied to reduce the measurement error SIRS still be used in detecting the stay points in the indoo
environment. In this work, experiments have been caotitd
lll. SYSTEM DESIGN on different types of currently available commercial BLE

We propose an approach to monitor a user’s location  wearables on their broadcasting frequency and detection
automatically in an indoor environment. A low cost BLE accuracy, which will benefit the future work relatedBioE
beacon is worn by the user and worked as a tracking.targebeacons based low cost indoor positioning system (See
The BLE beacon broadcasts regularly (every 100millis toSection V.B.3).

1000millis). The sensing system is composed of a few BLE

enabled Raspberry Pis that are strategically positiar@td B, Raspberry Pis

the home to maximize detection and triangulation/To sense the Bluetooth packets sent by the BLE beagons,
fingerprinting. The BLE antennas mounted on the RaspberrBluetooth 4.0 LE module (BLE CSR 4.0) is attached to a
Pis are used as the sensing module that are usetbtb tthe  Raspberry Pl via a USB interface as shown in Fig.l& T
BLE packets that are sent periodically from the BeBdons  Raspberry Pi uses the BlueZ package [47] to sensmithe

In the sensing stage, there is no operation needediiuse  RSSI data from the BLE beacons. Data is saved locatheto
given that the sensors automatically sense the BLE beacd®i and then regularly uploaded to a web server. Ampleof
worn by the user and record the sensed raw data (the MA€he sensed raw data is shown in Fig. 2. Only the Mé@ess
address of the BLE beacons and its corresponding RSB to used to identify the beacon and its corresponding R3& va
Raspberry Pi which is then uploaded to a server. llniéita  were saved in this study.

processing is done on the Raspberry Pi and processesdltiata

be sent to the server for further analysis includingreiring IV. Methodology

of a machine learning classifier to recognize the lonatf the

tracking object. The overall framework of the system isA. Position Calculation

illustrated in Figl. 1) RSSI & DISTANCE
To localize the user, the first proposed method uses the
A. BLE Beacons changesn RSSI signal with respect to the signal propagation

A series of different types of BLE beacons have beed irs  distance. The relationship between the RSSI and distan
the study as the tracking targets. The tracker bea®tsin
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the previous state A=1. In the measurement processTHrel.
equations for state process and measurement process are as
follows:

| FIGURE 4. Raw RSSI values and RSSI values filtered by Kalman filter
(the blue plot is the raw RSSI values while the red plot is the filtered
FIGURE 3. Trilateration used in our sensing system results)

modelled by using a path loss model as the equation below State process:

[48]. X = Xp_q + Wy (5)

RSSI = —10+*m=*IlgD + A Q)
D = 10l(A=RsSD/(10sm)] )

Measurement Process:

Zy = X T v (6)

where D is the distance. The parameters m and A are
determined in real field tests. Line of sight experitadrave
been done to calculate these parameters (See Seclidr).V

2) TRILATERATION

Process noise covariance is Q and sensor noise c@erian
isR.
Time update equation:

We also implemented a trilateration-based algorithnthvis Xy =Xy (7)
illustrated in Fig. 3. Bgsed on the kngwn Iocatlgn efttiree P =P,,+0 (8)
reference sensors (Pi-1, Pi-2, and Pi-3), equations (34and -
are used to calculate the position of the beaconthén Measurement update equation:
Cartesian coordinate system, the coordinates of the thre K, =P, (P, +R)™ )

sensors Pi;, Pi-2, and Pi-3 are (x1, y1), (x2, y2) and (x3, y3). R o o
The distance between the beacon (green dot D (x, y) iB)Fig. X =X+ Ki(ze = %) (10)
and three sensors (D1, D2, and D3) can be determined by the P, = —-K)P,~ (11)

Euclidian distance equations shown below: , i
Parameters tuning the Kalman filter [49] were performed

Dy =+(x—x)%+ ¥ —y)? based on a trial and error basis. In this study thectsel
D, = T (v —v.)? 3 parameters are as shown pelow. Process noise covet@amce
2=V xZ)Z > )’2)2 ®) 1*e-5, Sensor noise covariance R = (0.1)"2, Baa1. As it

Dy =/ (x = x3)2 + (y — ¥3) can be seen in the Fig. 4, the fluctuation of the RSB

To simplify the equations, the location of the sensct Pi- Values have been significantly decreased after aygpityie
(x1, y1) is chosen as the origin point (0,0). The singulifi Kalman filter. After smoothing of the raw RSSI valuté®

equation is as below: smoothed values are fed to the loss path model tolaedche
s distance between the beacons and the sensors. Then the
PO S M calculated distance is used in the above trilateratigorithm
2xXp 5 "
- D12 Dy 2esy e bys? 4) Eqg. (3) and Eqg4) to locate the user’s position.
2xy3

B. Fingerprinting for Indoor Localization - Position
3) KALMAN FILTER BASED RSSI NOISE SMOOTHER Calculation

Due to different obstruc;ions in an ind_oor environment, thewe tested another approach based on fingerprinting which
raw RSSI can be very noisy. Even at a fixed locatf@RSSI  usually comprises of two-phase training and predicatitn (F
values may vary significantly (See Section V.B.1)efHfiore,  5). The first phase is training using the features edefiom

a Kalman filter is used to smooth the raw RSSI altrethis  the raw sensed RSSI signals together with known locations
case, the estimation of the state is based on timadisin of
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FIGURE 6. Grid and Lol based classification

the blue circles are the locations of labeled Lo
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Pi-3
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— indoor map view (in (b)

D).

(ground truth). Ground truth was manually labelled by the
user. The user was asked to record the start andnemaitt
each stayed area (evaluation point) the tracking
environment. Raw data collection is carried out by RifRe
sensors. The RSSI values collected by different RPobsens
were used to generate the features. For eachRRiheensors,
the mean, standard deviation and median of the R%&#s/a
were used as features for classification. In theitrgiphase,
all the collected data were labelled with ground trathrder
to train classifiers. The labellingas generated when the
beacons had been placed in the home-setting environment
Different classifiers were used in this work including @
Bayes (ii) SMO (iii) Random Forests (iv) BayesNet and (v
J48. For data segmentation, a non-overlapping windowing
method was selected. Window intervals between 1 and 10
seconds were analysed. In the prediction phase, the BLE
beacon was localised by using the sensed RSSI valaes to
the built classifiers.

For the fingerprinting method, two types of scenarioewer
proposed.

1) GRID BASED CLASSIFICATION

A rectangular area of 36 mi&s selected and divided into 36
grids, each grid was 1mx1m as shown in Fig. 6 (a),evioer
Raspberry Pi based sensors were installed. The aeted
from all the RPis were used to create the featuresdcin of
the grids. In order to train the classifier, experitadrad been
done to collect data from all the 36 grids (locationsyties
were extracted from processed RSSI signals includiegn
and standard deviation.

2) LOCATION-OF-INTEREST (LOI) BASED
CLASSIFICATION

Only certain locations in a home were of interestef@mple,
beds (Labell), desks (Label2), toilets (Label3), hobb¢l4),
tables (Label5), couches (Label6) (Fig. 6 (b)), whekerse
Raspberry Pi based sensors were installed. The ground truth
for these locations were collected to train classiférg the
trained classifiers were used to predict the lonatin unseen
cases. This method simplified the procedure of the ground
truth collection and in this case, the collectioritaf ground
truth could be done by a final user using a simple anootati
mobile app allowing them to annotate the different looatio
increasing the wide applicability of the method. Thed@n
of the Lol was based on the areas of interest andotiiets
availability in a home are considered.

V. EXPERIMENTAL SETUP AND RESULTS

Experiments were carried out in order to assess theaagcu
of the different approaches. They were carried orgafistic
conditions in an inhabited flat to evaluate the detactio
accuracy of the two proposed sensing methods.

A. Experiment Set- Up
1) LINE OF SIGHT EXPERIMENT.
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FIGURE 7. Line of sight experiment set-up.
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FIGURE 8. Floor Plan of Home #2 and #3 with the sensors’ location.
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FIGURE 9. Different commercial wearables used as the BLE beacons.

TABLE |
EXPERIMENT HOME SETTINGS
Home # Home Type No. of Installed Area Testing
Sensors (m”2) days
#1 One-bed Flat 6 36 7
#2 Two-bed Flat 6 58 1
#3 Two-bed Flat 6 108 1

Experiments have been carried out in different homes.

In order to calculate the path loss model as deseriBedtion
IV.A.1, we have carried out a line of sight experiment to
calculate its unknown parameters: We installed theasn
and BLE beacons in an empty corridor. The sensors were lef
in fixed positions. Then we changed the position of thE B
beacons for various distances between 0 and 14 rriatene-
meter steps (See Fig. 7). At every position, we deltbdata

for two minutes, provided an average of 120 RSSI samples pe
RPi.

2) INDOOR LOCALISATION EXPERIMENT.

The experiments were done in three different homengsttis
described in Table I. Only one user was involved ia th
tracking for all three different homes in this stuflye sensing
system and tracking object set-up is shown in Fig. @H{bine

#1) and Fig. 8 (Home #2 and 3). The location of thesees
(red dot) were restricted by the location of the paseekets.
The experiments had been mainly done in Home #1 and
different experiments lthbeen done by implementing the
proposed sensing system in two different classification
scenarios- grid based and Lol based. Results from these two
scenarios are presented in Section V.B.2.

For the experiments done in Home #1, both tracker beacon
and smart wearables (Fig. 9) were tested. Experimeants
carried out in two ways: static tests and dynamist&sir the
static tests, the beacons were planaafixed locatiorateach
labelled location (e.g. Label 1, Lakktc.in Fig. 8) during
the testing period. For the dynamic tests, the beasens
worn by the user and movement of the user was within 1
square meter around the center of labelled location. Fo
example, during the dynamic testing, the usas asked to
work on a laptop at the desk, watch movies on the ¢aunzh
cook in the kitchen et

B. Experiment Results

1) LINE OF SIGHT EXPERIMENT.

The raw RSSI values were collected in order to analylze va
changes against the distance. Our experiments shoviéittha
broadcasting intervals of the beacons were not fixedtipitil
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FIGURE 10. A box plot of raw RSSI values collected at different
locations in a line of sight experiment.

RS51 V5 DISTANCE

FIGURE 11. Curve fitting for RSSI values at different distance for
different sensors of one beacon (for different BLE beacons sens ed by
three RPis).

TABLE Il
PARAMETERS OBTAINED FROM CURVE FITTING
Tracker BLE Beaconl: Tracker BLE Beacon2
Parameters  Value  95% CI Parameters  Value  95% CI
m 1.876 (1.644, M 2.119 (1.895,
2.109) 2.343)
A -60.17  (-62.31, A -60.80  (-62.88,
-58.02) -58.73)
R"2 0.948 R"2 0.968
1.00 p oo o
0.95
5
3 090
k-
§ 0854
£
g 0.80 1
L% 0.754 ./
=3
g
© 0704
0654 | -~ before filtering
8 after filtering
0 2 4 6 8 10 12

Location error (m)

FIGURE 12. CDF comparison of location errors before and after filtering
for line of sight experiment.
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RSSI readings were recorded within one second and
sometimes only one RSSI reading was recorded every few
seconds. It also differed from beacon to beacon. More
importantly, the raw RSSI values can vary significasthgn

at fixed locations. A box plot (Fig. 10) is used to illastrthe
changes of the RSSI at different fixed locations forithe ¢f

sight experiment. Therefore, the smoothing method fol RSS
is proposed as descried in Section IV.A.3.

Data collected from the line of sight experiment waedus
to model the path loss model as described in Sectigh1V
The data from different sensors and curve fitting reselaar
shown in Fig. 11. In order to determine the paramétefs).

(2), the curve fitting was applied on the raw datanftbe in

line experimental tests. The pass loss model parameters
obtained through the curve fitting tool in MATLAB areosin

in Table .

To evaluate the path loss model, the estimation ofrtbe e
was calculated based on the line of sight experinidne.
errors were obtained by comparing the actual distaitbehe
calculated distance from the path loss model. In addition
Kalman filer was used to smooth the noise from theR&SI.
Table 11l shows the actual distance and computedndista
from the path loss model before and after the Kalnttznifig.
According to the results from line of sight experimerifable
I, the average location error is 0.6 within 3 metéfig. 12
shows the comparison of cumulative distribution functions
(CDF) of the location errors both before the filterind after
filtering and it can be clearly seen that after filteriegches
high probability faster.

2) INDOOR LOCALISATION EXPERIMENT -
FINGERPRINTING BASED METHOD.

Grid based classfication.

The floor plan was divided into 36 grids, each grid 1m*1m
The averaged RSSI for each of the 36 grids were cadculat
heat map was created to show the change in RSSI iothe h
setting. The location of the Pi is shown in Fig. A3.0 cross-
fold validation was used to assess the performanceanige

of selected classifiers, including BayesNet, NaiveeBa
Random Forest, SMO and J48, and the average accsracy i
95.94%. The classifications were implemented using WEKA.
The error rate for each of the grid is shown in the HFgand

it can be seen that 90% of the grids have error vaigar 0.1.

L ocation-of-interest based classfication.

The grid-based classification method presents good agcurac
however, it is very complicated to obtain the grounchtrés

our requirement is to provide a self-installable tetmg
obtaining the ground truth for every grid for a user woed b
challenging. Furthermore, we are only interested in users’
location for context awareness. The locations in a reattieg

for example, bed, couch, dining table, hob and toilettlae
locations of interest. Therefore, by using the locatien-of
interest based method, we only need to collect the droutin

in these key locations. In Home #1, we carried outr@xgats
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TABLE Ill LINE OF SIGHT ENVIRONMENT — EMPTY CORRIDOR

Beacon 1: (CE:14:C8:E6:B3:FC) before filtering

Beacon 1: (CE:14:C8:E6:B3:FC) after filtering

Averaged Actual Distance Computed Error (m) Averaged Actual Distance Computed Error (m)

RSSI (m) distance (m) RSSI (m) distance (m)

-60.74 1 0.34 0.66 -64.65 1 1.64 0.64
-69.04 2 2.66 0.66 -68.92 2 2.81 0.81
-70.30 3 2.66 0.34 -70.23 3 3.32 0.32
-77.82 4 2.15 1.85 -79.05 4 10.14 6.14
-71.86 5 2.88 2.12 -69.94 5 3.20 1.80
-72.31 6 2.66 3.34 -71.73 6 4.02 1.98
-73.24 7 2.84 4.16 -73.56 7 5.06 1.94
-74.35 8 4.75 3.25 -73.96 8 5.32 2.68
-79.57 9 4,55 4.45 -81.34 9 13.55 4.55
-80.01 10 4.36 5.64 -79.55 10 10.80 0.80
-78.48 11 3.21 7.79 -77.67 11 8.52 2.48
-78.67 12 6.49 5.51 -79.17 12 10.30 1.70
-79.22 13 4.02 8.98 -79.08 13 10.18 2.82
-80.28 14 2.14 11.86 -79.86 14 11.23 2.77
-83.22 15 7.01 7.99 -83.97 15 18.90 3.90
-83.59 16 6.99 9.01 -83.67 16 18.20 2.20
-85.26 17 8.47 8.53 -84.44 17 20.07 3.07

TABLE IV
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Home #1.
Error Rate
1+ 0.00 0.01 0.05 0.03 0.06 0.03
2+ 0.02 0.02 0.09 0.15 0.03 0.09
3- 0.00 0.01 0.03 0.05 0.01 -
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FIGURE 14. Error rates of each grid in grid-based scenario in Home #1

STATIC EXPERIMENTAL RESULT
(AT HOME #1, TRACKER BLE BEACON2)

Classifier Precision Recall F-Measure
BayesNet 96.1% 96.1% 96.1%
NaiveBayes 92.9% 92.7% 92.7%
SMO 93.7% 93.6% 93.7%
J48 98.3% 98.3% 98.3%
RandomForest 99.4% 99.4% 99.4%
TABLE V

STATIC EXPERIMENTAL RESULT
(AT HOME #1, TRACKER BLE BEACON2)
(1% TRAINING DATA, 99% TEST DATA)

Classifier Precision Recall F-Measure
BayesNet 92.7% 92.6% 92.6%
NaiveBayes 92.4% 92.3% 92.3%
SMO 92.5% 92.3% 92.3%
J48 89.4% 89.3% 89.3%
RandomForest 95.3% 95.2% 95.2%

over multiple days including both static tests and dyoa
tests. During the static tests, the sensors were kéjphaty
during the tests and in total 78440 samples had loflented.
The experimental results for different classifierspaesented
in Table IV. In our dataset, we have partitioned 8@she
training datasets and 20% as the testing dataseésallworld
scenario, it may not be feasible to collect so manyptes,
therefore, we had also trained the classifiers using 19l of
the total collected samples for static tests in HorheAs
shown in Table V, the random forest classifier hadbest
performance with precision and recall above 95%. It only
takes two minutes at each Lol to collect the dataaio the
classifiers in a new environment.

From Table IV, it can be seen that accuracy is higieer
99% for a tracker BLE beacon in a static scenario. év¥ew
in the real-world scenarios, the devices will be wayrusers
rather than being positioned on a flat surface. Toerewe
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FIGURE 15. System performance under different feature selection
window by using a tracker BLE beacon.

087CBE83966C

—NaiveBayes

FIGURE 16. System performance under different feature selection
window by using a smart wearable.

TABLE VII
DYNAMIC EXPERIMENTAL RESULT (AT HOME #1) (5% TRAINING DATA,
95% TEST DATA)
Beacon Type Classifiers  Precision Recall F-
Measure
Jaalee 91.3% 91.2% 91.2%
Estimotel 89.1% 89.1% 89.1%
Estimote2 90.2% 90.2% 90.1%
Estimote3 Random 89.8% 89.6% 89.6%
Mi band1 Forest 84.2% 84.2% 84.1%
Mi band2 87.4% 87.1% 87.1%
Lem basic 82.8% 82.7% 82.7%
Lem advance 82.6% 82.5% 82.5%
TABLE VIII
EXPERIMENT RESULTS OF BLE BEACONS ON DIFFERENT LIMB SEGMENTS
OF A SUBJECT
Location of Classifier Precision  Recall F-
the sensor Measure
Tracker BayesNet 99.7% 99.7% 99.7%
Beacon 1 NaiveBayes 99.7% 99.7% 99.7%
(Left Leg) Kstar 99.8% 99.8% 99.8%
J48 98.5% 98.5% 98.5%
RandomForest 99.7% 99.7% 99.7%
Tracker BayesNet 97.0% 97.0% 97.0%
Beacon 2 NaiveBayes 95.8% 95.8% 95.8%
(Right Leg) Kstar 97.0% 97.0% 97.0%
J48 96.2% 96.2% 96.2%
RandomForest  97.9% 97.9% 97.9%
Tracker BayesNet 94.5% 94.5% 94.5%
Beacon 4 NaiveBayes 92.2% 92.1% 92.1%
(Left Arm) Kstar 93.9% 93.7% 93.7%
Ja8 91.1% 91.1% 91.1%
RandomForest  96.1% 96.1% 96.1%
Tracker BayesNet 95.7% 95.7% 95.7%
Beacon5 NaiveBayes 93.7% 93.7% 93.6%
(Trunk) Kstar 95.7% 95.7% 95.7%
Ja8 93.1% 93.1% 93.1%
RandomForest  96.3% 96.3% 96.3%
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TABLE VI
DYNAMIC EXPERIMENTAL RESULT (AT HOME #1) (80% TRAINING DATA,
20% TEST DATA)
Beacon Classifiers Precision Recall F-
Type Measure
Jaalee BayesNet 91.5% 91.4% 91.4%
NaiveBayes 91.7% 91.5% 91.5%
SMO 93.0% 92.9% 92.9%
J48 93.5% 93.5% 93.5%
RandomForest 96.7% 96.7% 96.7%
Estimotel BayesNet 88.1% 87.9% 87.9%
NaiveBayes 86.8% 86.6% 86.6%
SMO 89.3% 89.2% 89.2%
J48 90.4% 90.4% 90.4%
RandomForest 96.1% 96.0% 96.0%
Estimote2 BayesNet 89.3% 89.3% 89.3%
NaiveBayes 88.6% 88.5% 88.5%
SMO 91.5% 91.4% 91.4%
Ja8 92.3% 92.3% 92.3%
RandomForest 95.1% 95.1% 95.1%
Estimote3 BayesNet 87.9% 87.7% 87.7%
NaiveBayes 85.4% 84.9% 84.9%
SMO 88.5% 88.5% 88.5%
Ja8 90.5% 90.5% 90.5%
RandomForest 96.4% 96.3% 96.3%
Mi band1 BayesNet 81.0% 81.0% 80.9%
NaiveBayes 74.5% 74.6% 74.3%
SMO 75.8% 75.5% 75.4%
Ja8 90.1% 90.1% 90.1%
RandomForest 95.4% 95.3% 95.4%
Mi band2 BayesNet 85.2% 85.2% 85.2%
NaiveBayes 81.1% 81.1% 81.1%
SMO 81.2% 81.1% 81.1%
J48 94.9% 94.9% 94.9%
RandomForest 98.0% 98.0% 98.0%
Lem basic BayesNet 81.0% 81.0% 80.9%
NaiveBayes 74.5% 74.6% 74.3%
SMO 75.8% 75.5% 75.4%
Ja8 89.6% 89.6% 89.6%
RandomForest 94.8% 94.8% 94.8%
Lem BayesNet 78.9% 78.8% 78.8%
advance NaiveBayes 74.8% 74.7% 74.7%
SMO 74.2% 73.9% 73.9%
Ja8 89.7% 89.7% 89.7%
RandomForest 95.1% 95.0% 95.0%

tested accuracy in a dynamic experimental scenaricevetie
the tracker beacons were placed in the pocket of a pansbn
all the smart wearables were worn by the human subjeet.
dataset was split again into 80% as training data @%@ &s
testing data. In addition, the dynamic experimentas teste
carried out over four consecutive days in order to exphare
relationship between window size and classificationiaay.
Performance was tested with different window sizes. As
shown in Fig. 15 & 16, the tracker BLE beacon and smar
wearable behaved differently when the window size was
changed. In Fig. 15, for example, the selection ofinelow

size can affect the performance of the classifieiedaalee
beacon: for all classifiers, a maximum precision iSeact
with a window size of 9 sec. For other beacons e.gprtiat
wearables, the best results are achieved with sowisize of

1 sec (see Fig. 16, the classifiers J48 and the Randwmst Fo
classifiers obtain the highest precision with a windze sf

1 sec). The classification results of different beacares
shown in Table VI. Samples collected for the dynamic
experimental tests were 59520 for each BLE beacon and eigh
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(a) Bayes Net (b) Naive Bayes (©) SMO (a) Bayes Net (b) Naive Bayes (c) SMO

() 148 (e) Random Forest (d) J48 (e) Random Forest

FIGURE 18. Confusion matrix for a smart wearable beacon using a

FIGURE 17. Confusion matrix for a tracker beacon using a window size window size of 9 sec.
of 9 sec.
Toilet 6 — . T | I T 1 -
Predicted Location | I
Moving Averaged(window size = 3s) | I
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| | |
| | |
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\ Y Time (hh:mm) I ‘ n Y I Y )
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stay for 30s and for 30s Hob and stay for
come back 30s and come back

FIGURE 19. Location Prediction of a dynamic walking test

beacons were tested. However, we only need very smallherefore, the sensing system accuracy is not significant
number of samples to build a classifier which is able affected by the location of the BLE beacons. The Beacans ca
generalize on future data. In Table VII, we baiklassifier  be attached on different segments of the body accomlihg t
using only 5% data and the precision and recall can botheed of the application. For example, for people liviritp
achieve above 90%. dementia or those with significant physical disabitity BLE
The normalized confusion matrix of both tracker beaconbeacon can be attached onto clothing.
and smart wearable beacon are shown in Fig. 17 and Fig. 18 Fig. 19 shows the results of another dynamicatkiome
respectively. It can be seen that by using classifié8sand  #1, of which the user was asked to follow a known path. Th
Random Forest, all the labels achieved classificatioruser sat in front of the desk for 3 minutes and walketi¢o
accuracies over 90%. Label 2 and Label 4 proved moréob in the kitchen and stayed there for 30 seconds anel ca
challenging in correctly classification since that thet Label  back to the desk for another 30 seconds. Then the afiexdv
1is close to Label 2 and Label 4 is very close to Lalfeee  to the couch in the living room and then walkedhi® tob in
Fig. 6 (b)). the kitchen and stayed there for 30 seconds and carkéobac
In order to select the best position to attach thE Beacon the desk at the end of the test. It can be seen froml Fighe
on a human subject, different BLE beacons have besmhatt  dynamic change of the position can be tracked accyratsst
on different parts of the body to explore how the locatibn of the time. There is some error in the previous 3 mimsre
the BLE beacons affect the positioning accuracy. Thetsesul the location of desk has been misclassified asibisdnainly
in Table VIII shows that localization accuraisyabove 90%  because the desk is so close to the bed as seeriloothgan
regardless of the attachment location of the BLE Beacons
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(a) Bayes Net (b) Naive Bayes (c) SMO

(d) J48 (e) Random Forest

FIGURE 20. Normalized confusion matrix of different classifiers in
Experimental home #2

(a) Bayes Net (b) Naive Bayes (c) SMO

Prediclsd Label

(d) J48 (e) Random Forest

FIGURE 21. Normalized confusion matrix of different classifiers in
Experimental home #3

TABLE X
EXPERIMENT RESULTS IN HOME #2 & HOME #3 (1% TRAINING, 99% TEST)

Home #2

Classifier Precision Recall F-Measure
BayesNet 89.9% 89.6% 89.6%
NaiveBayes 86.9% 86.0% 86.2%
SMO 94.9% 94.8% 94.8%
J48 94.3% 94.2% 94.2%
Random Forest 98.1% 98.1% 98.1%
Home #3
Classifier Precision Recall F-Measure
BayesNet 88.8% 87.9% 88.1%
NaiveBayes 88.6% 85.8% 86.4%
SMO 95.1% 94.8% 94.8%
J48 94.5% 94.5% 94.5%
Random Forest 98.8% 98.8% 98.8%

TABLE IX
EXPERIMENT RESULTS IN HOME #2 & HOME #3 (80% TRAINING, 20%
TEST)
Home #2
Classifier Precision Recall F-Measure
BayesNet 95.1% 94.6% 94.5%
NaiveBayes 89.4% 87.8% 88.0%
SMO 98.6% 98.6% 98.6%
J48 99.8% 99.8% 99.8%
Random Forest 99.9% 99.9% 99.9%
Home #3
Classifier Precision Recall F-Measure
BayesNet 97.2% 97.1% 97.1%
NaiveBayes 89.2% 87.5% 87.9%
SMO 97.5% 97.5% 97.5%
J48 99.7% 99.7% 99.7%
Random Forest 99.9% 99.9% 99.9%
TABLE XI
COMPARISON BETWEENDIFFERENTWEARABLES
Beacon Type Average Cost Accuracy Battery
Advertising (£) (in Life
Intervals (s) positioning)
Jalee Beacon 2.24 £10 96.7% About
(black) 1year
Estimote 1.80 £15 96.3% About
(Beacon Mint) 2 year
Estimote 1.79 £15 96.0% About
(Beacon ICE) 2 year
Estimote 1.80 £15 95.1% About
(Beacon 2 year
Blueberry)
Lem wrist band 4.03 £2 94.8% 15 days
(basic version)
Lem wrist band 3.86 £4 95.0% 7 days
(Advanced
version)
Mi band 1 411 £8 95.3% 30 days
Mi band 2 6.04 £16 99.74% 20 days
Fitbit Surge 2.72 £145 88.17% 7 days

VOLUME XX, 2017

in Fig. 6 (b). This type of error can be reduced by applging
moving average method. When the user walked to therhob i
the kitchenthe user would need to pass the bed area, which
can also be observed from Fig. 19.

In addition, as described in section V.A.2, the systam
tested in two other homes which are differentaofplan and
floor size to investigate accuracy in different home lagiout
Similar as Home #1, the same number of the sensoesused
in Home #2 and Home #3. In Home #2 and Home #3, only
static tests had been carried out. For Home #2, 45227less
had been collected from 8 beacons. For Home #3, 61933
samples had been collected from eight different tpb&t E
beacons The datasets had been split into training dataset
(80%) and test dataset (20%), and the details of the
experimental results are shown in Table TXe confusion
matrix of two Homes are presented in Fig. 20 and Fig. 21
respectively. Additionally, we had built classiSersing only
1% samples from the collected dataset and the precisin an
recall of Random Forest model can still achieve ab&% &s
in Table X
3) TEST RESULTS ON DIFFERENT WEARABLE
SENSORS.

Experiments were carried out to test different comiakrc
smart wearables in Home #1 using the classifierO48.
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results indicate that these wearables are good enouggn to people affected by stroke, Parkingodisease, epilepsy, etc.

used as the object tracker to track the people for tipopel
of indoor localization (Table XI). It is interesting teesthat
high accuracy is achieved with very cheap devices {dg

This could help the clinicians and doctors understarti an
diagnose the individuals in home rehabilitation.

LEM wrist band can be bought for GBP£S5, around USD $10)ACKNOWLEDGMENT
Wearable sensors should be selected according to the usElis work was partially supported by the European
case. For example, in an application for real-time indoo Commission as part of the Horizon 2020 programme under

localisation, a wearable sensor with a small advegdisi
interval should be selected while for long-term indafar |

contract 688082.

pattern analysis, a wearable sensor with long battery In‘éREFERE’\'CES

should be chosen.

VI. CONCLUSIONS
In this work, we proposed a low cost BLE sensing based?!
system for person localization in the home. A BLE beason i
used as the tracking object that attached on thet tzsge Our

BLE sensing based system localizes the position of tie B [3l
beacon through two proposed algorithms. One method used
the trilateration algorithm to track the position oé tBLE
beacon in a known coordinate reference frame. Anothel]
method used the fingerprinting-based method to lotete
BLE beacon in one of the 36 igrids or one of Location-of-
Interest. The smoothing method has been proposed in order 5]
remove the noise of from the raw RSSI values. Our
experimental resultdiave shown good accuracy in indoor
positioning. From our results, it can be seen thatdighracy  [6]
can be obtained in localizing around key areas/stay oint
(table, bed, etc.). Our fingerprinting based method
demonstrated that as even with low cost sensors, a hi [h
accuracy(>90%) achieved. Our results have shown this i
consistently true for different devices in different lBom

; . 8
settings. In our experiments, we had collected largesdts ]
for evaluation. Howevem real world testing, there is no need
to collect so many samples. Based on our resultsdyaramic ]

testing only 5mins data collection at each labelled location
will suffice.

The cost of the overall system is around USD$200 making/®!
it scalable for a wide range of people who would benefit from
monitoring even if they are only mildly at risk (efgeople at
the early stages of dementiafhis may enale longer
independent living with beneficial impact to both the [11]
individual, their relatives, and the national heajtstam.

In addition, Wi-Fi passive sensing approaebhares the
similar working principle with the above BLE sensing
approach. It locates the target by tracking the RSSigs in 1]
the tracked object (a Wi-Fi device, usually a snieote). It
can be useful if the mobile phone is the tracked objéere
are Wi-Fi modules available thatugsa smaller size and can
be attached to human body as that of a BLE beacon. \téowe
a Wi-Fi device usually consumes more battery than B BL
device (a BLE beacon or a smart watch).

As for future work, we will implement our system in real
world applications to investigate the indoor patterrptmople
with significant physical disabilities and for those with
neurological conditions e.g. people living with dementia, [15]
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