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ABSTRACT  In this paper, we present a Bluetooth Low Energy (BLE) based indoor positioning system 
developed for monitoring the daily living pattern of old people (e.g. people living with dementia) or 
individuals with disabilities. The proposed sensing system is composed of multiple sensors that are installed 
in different locations in a home environment. The specific location of the user in the building has been pre-
recorded into the proposed sensing system that captures the raw Received Signal Strength Indicator (RSSI) 
from the BLE beacon that is attached on the user. Two methods are proposed to determine the indoor location 
and the tracking of the users: a trilateration-based method and fingerprinting-based method. Experiments 
have been carried out in different home environments to verify the proposed system and methods. The results 
show that our system is able to accurately track the user location in home environments and can track the 
living patterns of the user which, in turn, may be used to infer the health status of the user. Our results also 
show that the positions of the BLE beacons on the user and different quality of BLE beacons do not affect 
the tracking accuracy. 

INDEX TERMS Bluetooth low energy, living patterns, indoor localization, received signal strength 
indicator

I. INTRODUCTION 
In the past few years, we have witnessed considerable BLE 
progress in localization systems relying on wireless sensing 
technologies, which have been applied in areas including 
navigation, human mobility, life pattern mining and location-
based services. Moreover, with the increased growth of 
ubiquitous smart sensing, both human mobility pattern and 
trajectory mining are becoming popular research areas for 
learning and discovering human activities and living patterns 
[1]. GPS technologies [2] accurately geolocate users and can 
also provide a level of accuracy for outdoor activity 
recognition. A number of studies have been carried out to 
analyze outdoor lifestyle activities [1], [3]. However, GPS 
technologies cannot be used for assessing indoor activities 
given that the GPS signal is not able to penetrate buildings. 

More importantly, an aging population is becoming a global 
challenge and there is a growing interest in monitoring and 
assisting people living with dementia and people with 
disabilities in indoor environments [4], [5]. Over recent 
decades, the number of old people has increased significantly. 
The European Commission had predicted that between 1995 

and 2025 the UK alone will see a 44% rise in people over 60 
years old [6]. An aging and disabled population presents a 
significant challenge for the health care systems [7]. There is 
an increasing need for home rehabilitation to understand the 
needs of older users, carers and clinicians [8]. In addition, 
people spend most of their time (~90%) indoors, e.g. at a work 
place or at home according to a National Human Activity 
Pattern Survey [9]. Therefore, indoor tracking is in great 
demand for all kinds of people. Understanding the indoor 
patterns of users (especially for frail people and/or people 
living with dementia) will help detect any anomaly event (e.g. 
fall at home, and epileptic seizure) of the user. Moreover, the 
long-term monitoring of an occupant’s use of their home will 
help with clinical decision making and diagnostics whilst also 
providing a deeper understanding of chronic conditions such 
as dementia, and neurological conditions. 

Considerable research effort has been spent to explore 
indoor location tracking technologies including the use of 
cameras [10], ultrasound [11], RF [12], infrared [13], Wi-Fi 
[14], [15], Bluetooth [16] and etc. Among these technologies, 
Wi-Fi and Bluetooth based methods have been prominently
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used for indoor positioning. Moreover, there has been 
extensive work carried out on Bluetooth and iBeacons based 
indoor localization systems [17], [18]. In the iBeacon-based 
methods, a user’s mobile phone is localized by the iBeacons 
installed at different afore-known locations in a test 
environment. However, these methods are based on a proxy 
by localizing the user’s mobile phone to determine the location 
of the user. In real-world cases, people tend not to keep their 
phones on their physical body at all times in an indoor 
environment, especially in home environments. Therefore, the 
location of the phone may not indicate the location of the user. 
In order to accurately monitor the location of the user in an 
indoor environment, a tracker or sensing object which can be 
attached/worn by the user is needed. There are existing studies 
for detecting the user’s activity and location at home with a 
body attached sensor [8], but the battery of the sensor is a 
critical issue in these sensing scenarios. Longer term research 
in indoor localization needs a tracker, the size of which is 
suitable to carry long hours and with a long battery usage, e.g. 
longer than a month. 

The aim of this study is to develop a low-cost indoor 
localization system that is able to monitor the user’s location 
patterns in a home setting for long term use. In this paper, we 
present our indoor localization system using BLE based 
method. BLE beacons are used as the tracking object carried 
by the user. The proposed indoor localization system is 
developed based on BLE technologies integrating Raspberry 
Pis (RPi) and BLE beacons. In our evaluation scenarios, the 
BLE beacons can be sewed into the clothes of the users or can 
be worn on the wrist of the users or placed in their pockets. 
Two algorithms in indoor localization of the tracking object 
are proposed including trilateration and fingerprinting. 
Considering the potential noise and obstacles in an indoor 
environment, Kalman filter and Particle filter-based noise 
reduction methods have been used to smooth the collected raw 
RSSI values.  

The rest of paper is organized as follows. Section II presents 
a literature review of the related work in indoor localization. 
Section III presents the system design including the hardware 
and software of our developed BLE based indoor localization 
system. Section IV discusses the methods used in localization 
based on the developed system. Section V presents our 
Experimental results. Section VI concludes the paper. 

II.  RELATED WORK 
Our work is related to a range of areas including human 
tracking and indoor localization. In the recent years, various 
solutions have been developed for indoor tracking e.g. camera 
based method [10], [19], inertial sensing based method [20], 
sound based method [11], [21] and RSSI based method [22]–
[24]. Combining two or more sensing technologies can 
provide better positioning accuracy. 

Radio-frequency identification (RFID) is a wireless 
technology has been used in indoor localization [25] and there 
are two main categories: tag-oriented and reader-oriented. 

Though the RFID is flexible in tag size, the cost of the RFID 
reader and unstable received signal strength make it 
unmatured for the indoor localization applications. Besides, 
other types of RFID evolutions including millimeter wave and 
THz passive tags are emerging [26]. 

With the increasing use of smartphones, the method of 
integrating inertial sensing methods and Wi-Fi based methods 
has become a popular method for indoor positioning [27]. In 
the area of Wi-Fi based localization, both device-based [28] 
and device-free [15] solutions have been developed. The 
device-free based method has the advantage where a device 
does not need to be carried by the user, but the disadvantage is 
the complexity of the system and that the system normally 
only works with and for one user. 

A number of research studies focused on using Wi-Fi based 
positioning method in large buildings [29]–[31] for mobile 
device users. More recently, researchers started to use BLE 
based positioning method [32], [33] in indoor localization. 
Researchers [34] have also combined Wi-Fi fingerprinting and 
BLE trilateration. Most of the recent works focus on tracking 
the user’s location via locating the smartphones [35]–[37]. In 
[38], indoor localization has been tracked by fusing the 
information from analysis of RSSI from BLE beacons and 
inertial sensor data from a smartphone. Similarly, in [39] 
probabilistic localization algorithm has been proposed to 
employ both inertial sensor from smartphones and BLE 
beacons. However, the disadvantage of these system is that the 
phone is required to be with the tracking object at all times, 
which is not realistic in real indoor environment especially for 
occupant with long term chronic conditions and users who do 
not own a smartphone. The current commercial indoor 
localization systems are very expensive e.g. Infsoft [40] 
locator node is around £150 per device. Our proposed system 
provides a low-cost solution and it is feasible for real world 
deployment. In this study, we focus on exploring the location 
of interest based approach for indoor localization instead of 
grid based approach [41], [42] as the user’s use of their home 
is our main concern. The location of interest-based approach 
simplifies the procedure of labelling in a home environment. 
Furthermore, in this study, a number of different BLE beacons 
including tracker beacon and smart wearables are evaluated. 

In our previous study [43], we had used Wi-Fi and 
Bluetooth sensing technologies to monitor bus occupancy. 
The technologies have been further extended in this work, in 
particular, focusing on the issue of performing tracking of the 
occupant’s locations in home settings for low cost long-term 
use. In this work, we present the detailed development of a 
localization system using an RSSI based method and discuss 
the related work on RSSI based methods using Wi-Fi or 
Bluetooth sensing. 

When considering the different obstructions within indoor 
settings, it is difficult to develop a suitable radio propagation 
model. Traditionally, trilateration and triangulation methods 
are used as positioning algorithms. In this work, trilateration is  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3012342, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 3 

FIGURE 1.  System Overview 

 

 

FIGURE 2.  Sensing node & Screenshot of BlueZ BLE sensing 

 
used and methods to mitigate the measurement errors are 
developed. In [44], Running Average, Kalman Filter and 
cascaded Kalman Filter-Particle Filter algorithms had been 
explored to improve proximity detection accuracy. In our 
work, in order to improve the accuracy in trilateration, Kalman 
filter is applied to reduce the measurement error of RSSI. 

III. SYSTEM DESIGN 
We propose an approach to monitor a user’s location 
automatically in an indoor environment. A low cost BLE 
beacon is worn by the user and worked as a tracking target. 
The BLE beacon broadcasts regularly (every 100millis to 
1000millis). The sensing system is composed of a few BLE 
enabled Raspberry Pis that are strategically positioned around 
the home to maximize detection and triangulation/ 
fingerprinting. The BLE antennas mounted on the Raspberry 
Pis are used as the sensing module that are used to detect the 
BLE packets that are sent periodically from the BLE beacons. 
In the sensing stage, there is no operation needed from the user 
given that the sensors automatically sense the BLE beacon 
worn by the user and record the sensed raw data (the MAC 
address of the BLE beacons and its corresponding RSSI) to the 
Raspberry Pi which is then uploaded to a server. Initial data 
processing is done on the Raspberry Pi and processed data will 
be sent to the server for further analysis including the training 
of a machine learning classifier to recognize the location of the 
tracking object. The overall framework of the system is 
illustrated in Fig. 1. 

A.  BLE Beacons 
A series of different types of BLE beacons have been used in 
the study as the tracking targets. The tracker beacons used in 

this study include the Estimote beacons [45] and JAALEE 
beacons [46]. These beacons are designed for the purpose of 
indoor localization and proximity detection related purposes. 
The broadcast intervals of these beacons are around 1 second 
(1Hz) which can be modified through a mobile application. 
The advantage of these beacons is the battery can last for a few 
months, up to several years. 

Nevertheless, there is an increasing popularity for smart 
watches and wristbands. Most of these bands use BLE 
technology to communicate with a smart phone. Unlike the 
tracker BLE beacons, the broadcasting frequency of some 
smart wearables are not changeable and are usually lower than 
that of the tracker BLE beacons. This can be an issue if the aim 
of a study is to monitor the trajectory of the user in an indoor 
environment and in real time however these wristbands can 
still be used in detecting the stay points in the indoor 
environment. In this work, experiments have been carried out 
on different types of currently available commercial BLE 
wearables on their broadcasting frequency and detection 
accuracy, which will benefit the future work related to BLE 
beacons based low cost indoor positioning system (See 
Section V.B.3). 

B.  Raspberry Pis 
To sense the Bluetooth packets sent by the BLE beacons, a 
Bluetooth 4.0 LE module (BLE CSR 4.0) is attached to a 
Raspberry PI via a USB interface as shown in Fig. 2. The 
Raspberry Pi uses the BlueZ package [47] to sense the raw 
RSSI data from the BLE beacons. Data is saved locally to the 
Pi and then regularly uploaded to a web server. An example of 
the sensed raw data is shown in Fig. 2. Only the MAC address 
used to identify the beacon and its corresponding RSSI value 
were saved in this study. 

IV.  Methodology 

A.  Position Calculation 

1) RSSI & DISTANCE 
To localize the user, the first proposed method uses the 
changes in RSSI signal with respect to the signal propagation 
distance. The relationship between the RSSI and distance is 
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FIGURE 3.  Trilateration used in our sensing system 

 
modelled by using a path loss model as the equation below 
[48]. 迎鯨鯨荊 噺  伐など 茅 兼 茅 健訣経 髪 畦 (1) 経 噺 など岷岫凋貸眺聴聴彫岻【岫怠待茅陳岻峅 (2) 

where D is the distance. The parameters m and A are 
determined in real field tests. Line of sight experiments have 
been done to calculate these parameters (See Section V.A.1). 

2)  TRILATERATION 
We also implemented a trilateration-based algorithm which is 
illustrated in Fig. 3. Based on the known location of the three 
reference sensors (Pi-1, Pi-2, and Pi-3), equations (3) and (4) 
are used to calculate the position of the beacon. In the 
Cartesian coordinate system, the coordinates of the three 
sensors Pi-1, Pi-2, and Pi-3 are (x1, y1), (x2, y2) and (x3, y3). 
The distance between the beacon (green dot D (x, y) in Fig. 3) 
and three sensors (D1, D2, and D3) can be determined by the 
Euclidian distance equations shown below: 

畔経怠 噺 紐岫捲 伐 捲怠岻態 髪 岫検 伐 検怠岻態経態 噺 紐岫捲 伐 捲態岻態 髪 岫検 伐 検態岻態経戴 噺 紐岫捲 伐 捲戴岻態 髪 岫検 伐 検戴岻態 (3) 

To simplify the equations, the location of the sensor Pi-1 
(x1, y1) is chosen as the origin point (0,0). The simplified 
equation is as below: 

崔 捲 噺  帖迭鉄貸帖鉄鉄袋掴鉄鉄態茅掴鉄検 噺 帖迭鉄貸帖典鉄貸態茅掴典茅掴袋槻典鉄袋掴典鉄態茅槻典
 (4) 

3)  KALMAN FILTER BASED RSSI NOISE SMOOTHER 
Due to different obstructions in an indoor environment, the 
raw RSSI can be very noisy. Even at a fixed location, the RSSI 
values may vary significantly (See Section V.B.1). Therefore, 
a Kalman filter is used to smooth the raw RSSI values. In this 
case, the estimation of the state is based on the estimation of 

the previous state A=1. In the measurement process H=1. The 
equations for state process and measurement process are as 
follows: 

FIGURE 4.  Raw RSSI values and RSSI values filtered by Kalman filter 
(the blue plot is the raw RSSI values while the red plot is the filtered  
results) 

 
State process: 捲賃 噺 捲賃貸怠 髪 拳賃 (5) 

Measurement Process: 権賃 噺 捲賃 髪 懸賃 (6) 

Process noise covariance is Q and sensor noise covariance 
is R. 

Time update equation:  捲賦賃貸 噺 捲賦賃貸怠 (7) 鶏賃 貸 噺 鶏賃貸怠 髪 芸 (8) 

Measurement update equation: 計賃 噺 鶏賃 貸岫鶏賃 貸 髪 迎岻貸怠 (9) 捲賦賃 噺 捲賦賃 貸 髪 計賃岫権賃 伐 捲賦賃貸岻 (10) 鶏賃 噺 岫荊 伐 計賃岻鶏賃 貸 (11) 

Parameters tuning the Kalman filter [49] were performed 
based on a trial and error basis. In this study the selected 
parameters are as shown below. Process noise covariance Q = 
1*e-5, Sensor noise covariance R = (0.1)^2, and 鶏待貸=1. As it 
can be seen in the Fig. 4, the fluctuation of the Raw RSSI 
values have been significantly decreased after applying the 
Kalman filter. After smoothing of the raw RSSI values, the 
smoothed values are fed to the loss path model to calculate the 
distance between the beacons and the sensors. Then the 
calculated distance is used in the above trilateration algorithm 
Eq. (3) and Eq. (4) to locate the user’s position. 

B.  Fingerprinting for Indoor Localization - Position 
Calculation 
We tested another approach based on fingerprinting which 
usually comprises of two-phase training and predication (Fig. 
5). The first phase is training using the features created from 
the raw sensed RSSI signals together with known locations  
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FIGURE 5.  Overview of the Fingerprinting based method in our system. 

 

 

(a) Grid (1m*1m) Based, location of 36 grids 

 

(b) LoI based, location of 6 interest areas 

FIGURE 6.  Grid and LoI based classification – indoor map view (in (b) 
the blue circles are the locations of labeled Lo I). 

(ground truth). Ground truth was manually labelled by the 
user. The user was asked to record the start and end time at 
each stayed area (evaluation point) in the tracking 
environment. Raw data collection is carried out by the RPi 
sensors. The RSSI values collected by different RPi sensors 
were used to generate the features. For each of the RPi sensors, 
the mean, standard deviation and median of the RSSI values 
were used as features for classification. In the training phase, 
all the collected data were labelled with ground truth in order 
to train classifiers. The labelling was generated when the 
beacons had been placed in the home-setting environment. 
Different classifiers were used in this work including (i) Naïve 
Bayes (ii) SMO (iii) Random Forests (iv) BayesNet and (v) 
J48. For data segmentation, a non-overlapping windowing 
method was selected. Window intervals between 1 and 10 
seconds were analysed. In the prediction phase, the BLE 
beacon was localised by using the sensed RSSI values to and 
the built classifiers. 

For the fingerprinting method, two types of scenarios were 
proposed. 

1)  GRID BASED CLASSIFICATION 
A rectangular area of 36 m^2 was selected and divided into 36 
grids, each grid was 1m×1m as shown in Fig. 6 (a), where four 
Raspberry Pi based sensors were installed. The data collected 
from all the RPis were used to create the features for each of 
the grids. In order to train the classifier, experiments had been 
done to collect data from all the 36 grids (locations). Features 
were extracted from processed RSSI signals including mean 
and standard deviation. 

2)  LOCATION-OF-INTEREST (LOI) BASED 
CLASSIFICATION 
Only certain locations in a home were of interest, for example, 
beds (Label1), desks (Label2), toilets (Label3), hobs (Label4), 
tables (Label5), couches (Label6) (Fig. 6 (b)), where seven 
Raspberry Pi based sensors were installed. The ground truth 
for these locations were collected to train classifiers and the 
trained classifiers were used to predict the locations in unseen 
cases. This method simplified the procedure of the ground 
truth collection and in this case, the collection of the ground 
truth could be done by a final user using a simple annotation 
mobile app allowing them to annotate the different locations, 
increasing the wide applicability of the method. The selection 
of the LoI was based on the areas of interest and the socket 
availability in a home are considered. 

V. EXPERIMENTAL SETUP AND RESULTS 
Experiments were carried out in order to assess the accuracy 
of the different approaches. They were carried out in realistic 
conditions in an inhabited flat to evaluate the detection 
accuracy of the two proposed sensing methods. 

A.  Experiment Set- Up 

1) LINE OF SIGHT EXPERIMENT. 
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FIGURE 7.  Line of sight experiment set-up. 

 

(a) Home #2 

 

(b) Home #3 

FIGURE 8.  Floor Plan of Home #2 and #3 with the sensors’ location. 

 

FIGURE 9.  Different commercial wearables used as the BLE beacons. 

 
TABLE I 

EXPERIMENT HOME SETTINGS 
Home # Home Type No. of Installed 

Sensors 
Area 
(m^2) 

Testing 
days 

#1 One-bed Flat 6 36 7 
#2 Two-bed Flat 6 58 1 
#3 Two-bed Flat 6 108 1 

Experiments have been carried out in different homes. 

 
In order to calculate the path loss model as describe in Section 
IV.A.1, we have carried out a line of sight experiment to 
calculate its unknown parameters: We installed the sensors 
and BLE beacons in an empty corridor. The sensors were left 
in fixed positions. Then we changed the position of the BLE 
beacons for various distances between 0 and 14 meters, in one-
meter steps (See Fig. 7). At every position, we collected data 
for two minutes, provided an average of 120 RSSI samples per 
RPi. 

2) INDOOR LOCALISATION EXPERIMENT.  
The experiments were done in three different home settings as 
described in Table I. Only one user was involved in the 
tracking for all three different homes in this study. The sensing 
system and tracking object set-up is shown in Fig. 6 (b) (Home 
#1) and Fig. 8 (Home #2 and 3). The location of the sensors 
(red dot) were restricted by the location of the power sockets. 
The experiments had been mainly done in Home #1 and 
different experiments had been done by implementing the 
proposed sensing system in two different classification 
scenarios – grid based and LoI based. Results from these two 
scenarios are presented in Section V.B.2. 

For the experiments done in Home #1, both tracker beacons 
and smart wearables (Fig. 9) were tested. Experiments were 
carried out in two ways: static tests and dynamic tests. For the 
static tests, the beacons were placed in a fixed location at each 
labelled location (e.g. Label 1, Label 2 etc. in Fig. 8) during 
the testing period. For the dynamic tests, the beacons were 
worn by the user and movement of the user was within 1 
square meter around the center of labelled location. For 
example, during the dynamic testing, the user was asked to 
work on a laptop at the desk, watch movies on the couch, and 
cook in the kitchen etc. 

B.  Experiment Results 

1) LINE OF SIGHT EXPERIMENT. 
The raw RSSI values were collected in order to analyze value 
changes against the distance. Our experiments showed that the 
broadcasting intervals of the beacons were not fixed. Multiple  
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FIGURE 10.  A box plot of raw RSSI values collected at different 
locations in a line of sight experiment. 

 

 

FIGURE 11.  Curve fitting for RSSI values at different distance for 
different sensors of one beacon (for different BLE beacons sens ed by 
three RPis). 

 
TABLE II  

PARAMETERS OBTAINED FROM CURVE FITTING 
Tracker BLE Beacon1:  Tracker BLE Beacon2 

Parameters Value 95% CI Parameters Value 95% CI 

m 1.876 (1.644, 
2.109) 

M 2.119   (1.895, 
2.343) 

A -60.17   (-62.31, 
-58.02) 

A -60.80  (-62.88, 
-58.73) 

R^2 0.948 R^2 0.968 

 

 

FIGURE 12. CDF comparison of location errors before and after filtering 
for line of sight experiment. 
 

RSSI readings were recorded within one second and 
sometimes only one RSSI reading was recorded every few 
seconds. It also differed from beacon to beacon. More 
importantly, the raw RSSI values can vary significantly even 
at fixed locations. A box plot (Fig. 10) is used to illustrate the 
changes of the RSSI at different fixed locations for the line of 
sight experiment. Therefore, the smoothing method for RSSI 
is proposed as descried in Section IV.A.3. 

Data collected from the line of sight experiment was used 
to model the path loss model as described in Section IV.A.1. 
The data from different sensors and curve fitting result are as 
shown in Fig. 11. In order to determine the parameters in Eq. 
(2), the curve fitting was applied on the raw data from the in 
line experimental tests. The pass loss model parameters 
obtained through the curve fitting tool in MATLAB are shown 
in Table II. 

To evaluate the path loss model, the estimation of the error 
was calculated based on the line of sight experiment. The 
errors were obtained by comparing the actual distance with the 
calculated distance from the path loss model. In addition, 
Kalman filer was used to smooth the noise from the raw RSSI. 
Table III shows the actual distance and computed distance 
from the path loss model before and after the Kalman filtering. 
According to the results from line of sight experiment in Table 
III, the average location error is 0.6 within 3 meters. Fig. 12 
shows the comparison of cumulative distribution functions 
(CDF) of the location errors both before the filtering and after 
filtering and it can be clearly seen that after filtering reaches 
high probability faster.  
 

2) INDOOR LOCALISATION EXPERIMENT - 
FINGERPRINTING BASED METHOD.  
Grid based classification. 
The floor plan was divided into 36 grids, each grid 1m*1m. 
The averaged RSSI for each of the 36 grids were calculated. A 
heat map was created to show the change in RSSI in the home 
setting. The location of the Pi is shown in Fig. 13. A 10 cross-
fold validation was used to assess the performance of a range 
of selected classifiers, including BayesNet, Naïve Bayes, 
Random Forest, SMO and J48, and the average accuracy is 
95.94%. The classifications were implemented using WEKA. 
The error rate for each of the grid is shown in the Fig. 14, and 
it can be seen that 90% of the grids have error rates under 0.1. 
Location-of-interest based classification. 
The grid-based classification method presents good accuracy; 
however, it is very complicated to obtain the ground truth. As 
our requirement is to provide a self-installable technology, 
obtaining the ground truth for every grid for a user would be 
challenging. Furthermore, we are only interested in users’ 
location for context awareness. The locations in a home setting 
for example, bed, couch, dining table, hob and toilet are the 
locations of interest. Therefore, by using the location-of- 
interest based method, we only need to collect the ground truth 
in these key locations. In Home #1, we carried out experiments 
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TABLE III  LINE OF SIGHT ENVIRONMENT – EMPTY CORRIDOR 
Beacon 1: (CE:14:C8:E6:B3:FC) before filtering Beacon 1: (CE:14:C8:E6:B3:FC) after filtering 

 Averaged 
RSSI 

Actual Distance 
(m) 

Computed 
distance (m) 

Error (m)  Averaged 
RSSI 

Actual Distance 
(m) 

Computed 
distance (m) 

Error (m) 

-60.74 1 0.34 0.66 -64.65 1 1.64 0.64 
-69.04 2 2.66 0.66 -68.92 2 2.81 0.81 
-70.30 3 2.66 0.34 -70.23 3 3.32 0.32 
-77.82 4 2.15 1.85 -79.05 4 10.14 6.14 
-71.86 5 2.88 2.12 -69.94 5 3.20 1.80 
-72.31 6 2.66 3.34 -71.73 6 4.02 1.98 
-73.24 7 2.84 4.16 -73.56 7 5.06 1.94 
-74.35 8 4.75 3.25 -73.96 8 5.32 2.68 
-79.57 9 4.55 4.45 -81.34 9 13.55 4.55 
-80.01 10 4.36 5.64 -79.55 10 10.80 0.80 
-78.48 11 3.21 7.79 -77.67 11 8.52 2.48 
-78.67 12 6.49 5.51 -79.17 12 10.30 1.70 
-79.22 13 4.02 8.98 -79.08 13 10.18 2.82 
-80.28 14 2.14 11.86 -79.86 14 11.23 2.77 
-83.22 15 7.01 7.99 -83.97 15 18.90 3.90 
-83.59 16 6.99 9.01 -83.67 16 18.20 2.20 
-85.26 17 8.47 8.53 -84.44 17 20.07 3.07 

 

FIGURE 13.  Heat map of different sensors in grid-based scenario in 
Home #1. 

 

 

FIGURE 14.  Error rates of each grid in grid-based scenario in Home #1 

 
 
 
 

TABLE IV 
STATIC EXPERIMENTAL RESULT  

(AT HOME #1, TRACKER BLE BEACON2) 
Classifier Precision Recall F-Measure 

BayesNet 96.1% 96.1% 96.1% 

NaiveBayes 92.9% 92.7% 92.7% 

SMO 93.7% 93.6% 93.7% 

J48 98.3% 98.3% 98.3% 

RandomForest 99.4% 99.4% 99.4% 

 
TABLE V 

STATIC EXPERIMENTAL RESULT  
(AT HOME #1, TRACKER BLE BEACON2)  
(1% TRAINING DATA, 99% TEST DATA) 

Classifier Precision Recall F-Measure 

BayesNet 92.7% 92.6% 92.6% 

NaiveBayes 92.4% 92.3% 92.3% 

SMO 92.5% 92.3% 92.3% 

J48 89.4% 89.3% 89.3% 

RandomForest 95.3% 95.2% 95.2% 

 

over multiple days including both static tests and dynamic 
tests. During the static tests, the sensors were kept stationary 
during the tests and in total 78440 samples had been collected. 
The experimental results for different classifiers are presented 
in Table IV. In our dataset, we have partitioned 80% as the 
training datasets and 20% as the testing datasets. In real world 
scenario, it may not be feasible to collect so many samples, 
therefore, we had also trained the classifiers using only 1% of 
the total collected samples for static tests in Home #1. As 
shown in Table V, the random forest classifier had the best 
performance with precision and recall above 95%. It only 
takes two minutes at each LoI to collect the data to train the 
classifiers in a new environment.  

From Table IV, it can be seen that accuracy is higher than 
99% for a tracker BLE beacon in a static scenario. However, 
in the real-world scenarios, the devices will be worn by users 
rather than being positioned on a flat surface. Therefore, we  
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FIGURE 15.  System performance under different feature selection 
window by using a tracker BLE beacon. 

 

FIGURE 16.  System performance under different feature selection 
window by using a smart wearable. 

 
TABLE VII 

DYNAMIC EXPERIMENTAL RESULT (AT HOME #1) (5% TRAINING DATA, 
95% TEST DATA) 

Beacon Type Classifiers Precision Recall F-
Measure 

Jaalee 

Random  
Forest 

91.3% 91.2% 91.2% 
Estimote1 89.1% 89.1% 89.1% 
Estimote2 90.2% 90.2% 90.1% 
Estimote3 89.8% 89.6% 89.6% 
Mi band1 84.2% 84.2% 84.1% 
Mi band2 87.4% 87.1% 87.1% 
Lem basic 82.8% 82.7% 82.7% 

Lem advance 82.6% 82.5% 82.5% 

 
TABLE VIII 

EXPERIMENT RESULTS OF BLE BEACONS ON DIFFERENT LIMB SEGMENTS 
OF A SUBJECT 

Location of 
the sensor 

Classifier Precision Recall F-
Measure 

Tracker 
Beacon 1 
(Left Leg) 

BayesNet 99.7% 99.7% 99.7% 
NaiveBayes 99.7% 99.7% 99.7% 

Kstar 99.8% 99.8% 99.8% 
J48 98.5% 98.5% 98.5% 

 RandomForest 99.7% 99.7% 99.7% 
Tracker 

Beacon 2 
(Right Leg) 

BayesNet 97.0% 97.0% 97.0% 
NaiveBayes 95.8% 95.8% 95.8% 

Kstar 97.0% 97.0% 97.0% 
J48 96.2% 96.2% 96.2% 

 RandomForest 97.9% 97.9% 97.9% 
Tracker 

Beacon 4 
(Left Arm) 

BayesNet 94.5% 94.5% 94.5% 
NaiveBayes 92.2% 92.1% 92.1% 

Kstar 93.9% 93.7% 93.7% 
J48 91.1% 91.1% 91.1% 

 RandomForest 96.1% 96.1% 96.1% 
Tracker 
Beacon5 
(Trunk) 

BayesNet 95.7% 95.7% 95.7% 
NaiveBayes 93.7% 93.7% 93.6% 

Kstar 95.7% 95.7% 95.7% 
 J48 93.1% 93.1% 93.1% 
 RandomForest 96.3% 96.3% 96.3% 

 

TABLE VI 
DYNAMIC EXPERIMENTAL RESULT (AT HOME #1) (80% TRAINING DATA, 

20% TEST DATA) 
Beacon 
Type 

Classifiers Precision Recall F-
Measure 

Jaalee BayesNet 91.5% 91.4% 91.4% 
NaiveBayes 91.7% 91.5% 91.5% 

SMO 93.0% 92.9% 92.9% 
J48 93.5% 93.5% 93.5% 

RandomForest 96.7% 96.7% 96.7% 
Estimote1 BayesNet 88.1% 87.9% 87.9% 

NaiveBayes 86.8% 86.6% 86.6% 
SMO 89.3% 89.2% 89.2% 
J48 90.4% 90.4% 90.4% 

 RandomForest 96.1% 96.0% 96.0% 
Estimote2 BayesNet 89.3% 89.3% 89.3% 
 NaiveBayes 88.6% 88.5% 88.5% 
 SMO 91.5% 91.4% 91.4% 
 J48 92.3% 92.3% 92.3% 
 RandomForest 95.1% 95.1% 95.1% 
Estimote3 BayesNet 87.9% 87.7% 87.7% 
 NaiveBayes 85.4% 84.9% 84.9% 
 SMO 88.5% 88.5% 88.5% 
 J48 90.5% 90.5% 90.5% 
 RandomForest 96.4% 96.3% 96.3% 
Mi band1 BayesNet 81.0% 81.0% 80.9% 

NaiveBayes 74.5% 74.6% 74.3% 
SMO 75.8% 75.5% 75.4% 
J48 90.1% 90.1% 90.1% 

RandomForest 95.4% 95.3% 95.4% 
Mi band2 BayesNet 85.2% 85.2% 85.2% 

NaiveBayes 81.1% 81.1% 81.1% 
SMO 81.2% 81.1% 81.1% 
J48 94.9% 94.9% 94.9% 

 RandomForest 98.0% 98.0% 98.0% 
Lem basic BayesNet 81.0% 81.0% 80.9% 

NaiveBayes 74.5% 74.6% 74.3% 
SMO 75.8% 75.5% 75.4% 
J48 89.6% 89.6% 89.6% 

RandomForest 94.8% 94.8% 94.8% 
Lem 
advance 

BayesNet 78.9% 78.8% 78.8% 
NaiveBayes 74.8% 74.7% 74.7% 

SMO 74.2% 73.9% 73.9% 
J48 89.7% 89.7% 89.7% 

RandomForest 95.1% 95.0% 95.0% 
 

tested accuracy in a dynamic experimental scenario where all 
the tracker beacons were placed in the pocket of a person and 
all the smart wearables were worn by the human subject. The 
dataset was split again into 80% as training data and 20% as 
testing data. In addition, the dynamic experimental tests were 
carried out over four consecutive days in order to explore the 
relationship between window size and classification accuracy. 
Performance was tested with different window sizes. As 
shown in Fig. 15 & 16, the tracker BLE beacon and smart 
wearable behaved differently when the window size was 
changed. In Fig. 15, for example, the selection of the window 
size can affect the performance of the classifier for the Jaalee 
beacon: for all classifiers, a maximum precision is achieved 
with a window size of 9 sec. For other beacons e.g. the smart 
wearables, the best results are achieved with a window size of 
1 sec (see Fig. 16, the classifiers J48 and the Random Forest 
classifiers obtain the highest precision with a window size of 
1 sec). The classification results of different beacons are 
shown in Table VI. Samples collected for the dynamic 
experimental tests were 59520 for each BLE beacon and eight  
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(a) Bayes Net (b) Naïve Bayes (c) SMO 

  

(d) J48  (e) Random Forest 

FIGURE 17.  Confusion matrix for a tracker beacon using a window size 
of 9 sec. 

   

(a) Bayes Net (b) Naïve Bayes (c) SMO 

  

(d) J48  (e) Random Forest 

FIGURE 18.  Confusion matrix for a smart wearable beacon using a 
window size of 9 sec. 

 

 

FIGURE 19.  Location Prediction of a dynamic walking test 

 

beacons were tested. However, we only need very small 
number of samples to build a classifier which is able to 
generalize on future data. In Table VII, we built a classifier 
using only 5% data and the precision and recall can both 
achieve above 90%. 

The normalized confusion matrix of both tracker beacon 
and smart wearable beacon are shown in Fig. 17 and Fig. 18 
respectively. It can be seen that by using classifiers J48 and 
Random Forest, all the labels achieved classification 
accuracies over 90%. Label 2 and Label 4 proved more 
challenging in correctly classification since that fact that Label 
1 is close to Label 2 and Label 4 is very close to Label 5 (see 
Fig. 6 (b)). 

In order to select the best position to attach the BLE beacon 
on a human subject, different BLE beacons have been attached 
on different parts of the body to explore how the location of 
the BLE beacons affect the positioning accuracy. The results 
in Table VIII shows that localization accuracy is above 90% 
regardless of the attachment location of the BLE Beacons. 

Therefore, the sensing system accuracy is not significantly 
affected by the location of the BLE beacons. The Beacons can 
be attached on different segments of the body according to the 
need of the application. For example, for people living with 
dementia or those with significant physical disability, the BLE 
beacon can be attached onto clothing. 

Fig. 19 shows the results of another dynamic test at Home 
#1, of which the user was asked to follow a known path. The 
user sat in front of the desk for 3 minutes and walked to the 
hob in the kitchen and stayed there for 30 seconds and came 
back to the desk for another 30 seconds. Then the user walked 
to the couch in the living room and then walked to the hob in 
the kitchen and stayed there for 30 seconds and came back to 
the desk at the end of the test. It can be seen from Fig. 19, the 
dynamic change of the position can be tracked accurately most 
of the time. There is some error in the previous 3 mins where 
the location of desk has been misclassified as bed, it is mainly 
because the desk is so close to the bed as seen in the floor plan 
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(a) Bayes Net (b) Naïve Bayes (c) SMO 

  

(d) J48  (e) Random Forest 

FIGURE 20.  Normalized confusion matrix of different classifiers in 
Experimental home #2 

 
TABLE IX  

EXPERIMENT RESULTS IN HOME #2 & HOME #3 (80% TRAINING, 20% 
TEST) 

Home #2 
Classifier Precision Recall F-Measure 

BayesNet 95.1% 94.6% 94.5% 
NaiveBayes 89.4% 87.8% 88.0% 

SMO 98.6% 98.6% 98.6% 
J48 99.8% 99.8% 99.8% 

Random Forest 99.9% 99.9% 99.9% 
Home #3 
Classifier Precision Recall F-Measure 

BayesNet 97.2% 97.1% 97.1% 
NaiveBayes 89.2% 87.5% 87.9% 

SMO 97.5% 97.5% 97.5% 
J48 99.7% 99.7% 99.7% 

Random Forest 99.9% 99.9% 99.9% 

 
TABLE XI  

COMPARISON BETWEEN DIFFERENT WEARABLES 
Beacon Type Average 

Advertising 
Intervals (s) 

Cost 
(£) 

Accuracy 
(in 

positioning) 

Battery 
Life 

Jalee Beacon 
(black) 

2.24 
 

£10 96.7% 
 

About 
1 year 

Estimote 
(Beacon Mint) 

1.80 
 

£15 96.3% 
 

About 
2 year 

Estimote 
(Beacon ICE) 

1.79 
 

£15 96.0% 
 

About 
2 year 

Estimote 
(Beacon 

Blueberry) 

1.80 
 

£15 95.1% 
 

About 
2 year 

Lem wrist band 
(basic version) 

 

4.03 
 

£2 94.8% 
 

15 days 

Lem wrist band 
(Advanced 

version) 
 

3.86 £4 95.0% 7 days 

Mi band 1 4.11 
 

£8 95.3% 
 

30 days 

Mi band 2 6.04 
 

£16 99.74% 
 

20 days 

Fitbit Surge 
 

2.72 £145 88.17% 7 days 

 
 

 

   

(a) Bayes Net (b) Naïve Bayes (c) SMO 

  

(d) J48  (e) Random Forest 

FIGURE 21.  Normalized confusion matrix of different classifiers in 
Experimental home #3 

 
TABLE X 

EXPERIMENT RESULTS IN HOME #2 & HOME #3 (1% TRAINING, 99% TEST) 
Home #2 
Classifier Precision Recall F-Measure 

BayesNet 89.9% 89.6% 89.6% 
NaiveBayes 86.9% 86.0% 86.2% 

SMO 94.9% 94.8% 94.8% 
J48 94.3% 94.2% 94.2% 

Random Forest 98.1% 98.1% 98.1% 
Home #3 
Classifier Precision Recall F-Measure 

BayesNet 88.8% 87.9% 88.1% 
NaiveBayes 88.6% 85.8% 86.4% 

SMO 95.1% 94.8% 94.8% 
J48 94.5% 94.5% 94.5% 

Random Forest 98.8% 98.8% 98.8% 

 
in Fig. 6 (b). This type of error can be reduced by applying a 
moving average method. When the user walked to the hob in 
the kitchen, the user would need to pass the bed area, which 
can also be observed from Fig. 19. 

In addition, as described in section V.A.2, the system was 
tested in two other homes which are different in floorplan and 
floor size to investigate accuracy in different home layouts. 
Similar as Home #1, the same number of the sensors were used 
in Home #2 and Home #3. In Home #2 and Home #3, only 
static tests had been carried out. For Home #2, 45227 samples 
had been collected from 8 beacons. For Home #3, 61933 
samples had been collected from eight different types of BLE 
beacons. The datasets had been split into training dataset 
(80%) and test dataset (20%), and the details of the 
experimental results are shown in Table IX. The confusion 
matrix of two Homes are presented in Fig. 20 and Fig. 21 
respectively. Additionally, we had built classifiers using only 
1% samples from the collected dataset and the precision and 
recall of Random Forest model can still achieve above 95% as 
in Table X.  

3) TEST RESULTS ON DIFFERENT WEARABLE 
SENSORS. 
Experiments were carried out to test different commercial 
smart wearables in Home #1 using the classifier J48. Our  
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results indicate that these wearables are good enough to be 
used as the object tracker to track the people for the purpose 
of indoor localization (Table XI). It is interesting to see that 
high accuracy is achieved with very cheap devices (e.g. The 
LEM wrist band can be bought for GBP£5, around USD $10). 
Wearable sensors should be selected according to the user 
case. For example, in an application for real-time indoor 
localisation, a wearable sensor with a small advertising 
interval should be selected while for long-term indoor life 
pattern analysis, a wearable sensor with long battery life 
should be chosen. 

VI. CONCLUSIONS 
In this work, we proposed a low cost BLE sensing based 
system for person localization in the home. A BLE beacon is 
used as the tracking object that attached on the target user. Our 
BLE sensing based system localizes the position of the BLE 
beacon through two proposed algorithms. One method used 
the trilateration algorithm to track the position of the BLE 
beacon in a known coordinate reference frame. Another 
method used the fingerprinting-based method to locate the 
BLE beacon in one of the 36 1m2 grids or one of Location-of-
Interest. The smoothing method has been proposed in order to 
remove the noise of from the raw RSSI values. Our 
experimental results have shown good accuracy in indoor 
positioning. From our results, it can be seen that high accuracy 
can be obtained in localizing around key areas/stay points 
(table, bed, etc.). Our fingerprinting based method 
demonstrated that as even with low cost sensors, a high 
accuracy (>90%) achieved. Our results have shown this is 
consistently true for different devices in different home 
settings. In our experiments, we had collected large datasets 
for evaluation. However, in real world testing, there is no need 
to collect so many samples. Based on our results from dynamic 
testing, only 5mins data collection at each labelled location 
will suffice. 

The cost of the overall system is around USD$200 making 
it scalable for a wide range of people who would benefit from 
monitoring even if they are only mildly at risk (e.g. people at 
the early stages of dementia). This may enable longer 
independent living with beneficial impact to both the 
individual, their relatives, and the national health system. 

In addition, Wi-Fi passive sensing approaches shares the 
similar working principle with the above BLE sensing 
approach. It locates the target by tracking the RSSI changes in 
the tracked object (a Wi-Fi device, usually a smartphone). It 
can be useful if the mobile phone is the tracked object. There 
are Wi-Fi modules available that have a smaller size and can 
be attached to human body as that of a BLE beacon. However, 
a Wi-Fi device usually consumes more battery than a BLE 
device (a BLE beacon or a smart watch). 

As for future work, we will implement our system in real 
world applications to investigate the indoor pattern for people 
with significant physical disabilities and for those with 
neurological conditions e.g. people living with dementia, 

people affected by stroke, Parkinson’s disease, epilepsy, etc. 
This could help the clinicians and doctors understand and 
diagnose the individuals in home rehabilitation. 

ACKNOWLEDGMENT 
This work was partially supported by the European 
Commission as part of the Horizon 2020 programme under 
contract 688082. 

REFERENCES 
[1] Y. Ye, Y. Zheng, Y. Chen, J. Feng, and X. Xie, “Mining 

individual life pattern based on location history,” in Proceedings 
- IEEE International Conference on Mobile Data Management, 
2009, doi: 10.1109/MDM.2009.11. 

[2] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Y. Ma, 
“Understanding mobility based on GPS data,” in UbiComp 2008 
- Proceedings of the 10th International Conference on 
Ubiquitous Computing, 2008, doi: 10.1145/1409635.1409677. 

[3] X. Xiao, Y. Zheng, Q. Luo, and X. Xie, “Finding similar users 
using category-based location history,” in GIS: Proceedings of 
the ACM International Symposium on Advances in Geographic 
Information Systems, 2010, doi: 10.1145/1869790.1869857. 

[4] F. J. Ordóñez, P. de Toledo, and A. Sanchis, “Sensor-based 
Bayesian detection of anomalous living patterns in a home 
setting,” Pers. Ubiquitous Comput., 2015, doi: 10.1007/s00779-
014-0820-1. 

[5] K. S. Gayathri, S. Elias, and B. Ravindran, “Hierarchical activity 
recognition for dementia care using Markov Logic Network,” 
Pers. Ubiquitous Comput., 2015, doi: 10.1007/s00779-014-
0827-7. 

[6] M. Pieper, M. Antona, and U. Cortes, “Introduction to the 
special theme: Ambient assisted living,” Eur. Res. Consort. 
Informatics Math. News, 2011. 

[7] P. Zweifel, S. Felder, and M. Meiers, “Ageing of population and 
health care expenditure: A red herring?,” Health Economics. 
1999, doi: 10.1002/(SICI)1099-1050(199909)8:6<485::AID-
HEC461>3.0.CO;2-4. 

[8] M. D’Souza, M. Ros, and M. Karunanithi, “An indoor 
localisation and motion monitoring system to determine 
behavioural activity in dementia afflicted patients in aged care,” 
Electron. J. Heal. Informatics, 2012. 

[9] T. Roberts, “We Spend 90% of Our Time Indoors. Says Who? .” 
https://www.buildinggreen.com/blog/we-spend-90-our-time-
indoors-says-who (accessed Apr. 08, 2020). 

[10] D. Van Opdenbosch, G. Schroth, R. Huitl, S. Hilsenbeck, A. 
Garcea, and E. Steinbach, “Camera-based indoor positioning 
using scalable streaming of compressed binary image 
signatures,” in 2014 IEEE International Conference on Image 
Processing, ICIP 2014, 2014, doi: 10.1109/ICIP.2014.7025567. 

[11] Y. Fukuju, M. Minami, H. Morikawa, and T. Aoyama, 
“DOLPHIN: An autonomous indoor positioning system in 
ubiquitous computing environment,” in Proceedings - IEEE 
Workshop on Software Technologies for Future Embedded 
Systems, WSTFES 2003, 2003, doi: 
10.1109/WSTFES.2003.1201360. 

[12] J. Hightower, G. Borriello, and R. Want, “SpotON: An indoor 
3D location sensing technology based on RF signal strength,” 
Uw Cse, 2000. 

[13] E. Aitenbichler and M. Mühlhäuser, “An IR local positioning 
system for smart items and devices,” in Proceedings - 23rd 
International Conference on Distributed Computing Systems 
Workshops, ICDCSW 2003, 2003, doi: 
10.1109/ICDCSW.2003.1203576. 

[14] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: 
Wireless indoor localization with little human intervention,” in 
Proceedings of the Annual International Conference on Mobile 
Computing and Networking, MOBICOM, 2012, doi: 
10.1145/2348543.2348578. 

[15] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-Based 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3012342, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 13 

Fingerprinting for Indoor Localization: A Deep Learning 
Approach,” in IEEE Transactions on Vehicular 
Technology,2017, doi: 10.1109/TVT.2016.2545523. 

[16] Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, “Bluetooth 
positioning using RSSI and triangulation methods,” in 2013 
IEEE 10th Consumer Communications and Networking 
Conference, CCNC 2013, 2013, doi: 
10.1109/CCNC.2013.6488558. 

[17] I. Oksar, “A Bluetooth signal strength based indoor localization 
method,” in International Conference on Systems, Signals, and 
Image Processing, 2014. 

[18] X. Y. Lin, T. W. Ho, C. C. Fang, Z. S. Yen, B. J. Yang, and F. 
Lai, “A mobile indoor positioning system based on iBeacon 
technology,” in Proceedings of the Annual International 
Conference of the IEEE Engineering in Medicine and Biology 
Society, EMBS, 2015, doi: 10.1109/EMBC.2015.7319507. 

[19] Q. Cai and J. K. Aggarwal, “Tracking human motion in 
structured environments using a distributed-camera system,” 
IEEE Trans. Pattern Anal. Mach. Intell., 1999, doi: 
10.1109/34.809119. 

[20] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A 
Reliable and accurate indoor localization method using phone 
inertial sensors,” in UbiComp’12 - Proceedings of the 2012 
ACM Conference on Ubiquitous Computing, 2012, doi: 
10.1145/2370216.2370280. 

[21] W. Mao, J. He, and L. Qiu, “CAT: High-precision acoustic 
motion tracking,” in Proceedings of the Annual International 
Conference on Mobile Computing and Networking, MOBICOM, 
2016, doi: 10.1145/2973750.2973755. 

[22] M. Sugano, T. Kawazoe, Y. Ohta, and M. Murata, “Indoor 
localization system using RSSI measurement of wireless sensor 
network based on ZigBee standard,” in 6th IASTED 
International Multi-Conference on Wireless and Optical 
Communications: Wireless Sensor Networks, WSN 2006, 2006. 

[23] G. V. Zàruba, M. Huber, F. A. Kamangar, and I. Chlamtac, 
“Indoor location tracking using RSSI readings from a single Wi-
Fi access point,” Wirel. Networks, 2007, doi: 10.1007/s11276-
006-5064-1. 

[24] H. S. Ahn and W. Yu, “Environmental-adaptive RSSI-based 
indoor localization,” IEEE Trans. Autom. Sci. Eng., 2009, doi: 
10.1109/TASE.2008.2009126. 

[25] S. C. Kim, Y. S. Jeong, and S. O. Park, “RFID-based indoor 
location tracking to ensure the safety of the elderly in smart 
home environments,” Pers. Ubiquitous Comput., 2013, doi: 
10.1007/s00779-012-0604-4. 

[26] K. Wu, P. Burasa, T. Djerafi, and N. Constantin, “Millimeter-
wave identification for future sensing, tracking, positioning and 
communicating systems,” in 2016 Global Symposium on 
Millimeter Waves, GSMM 2016 and ESA Workshop on 
Millimetre-Wave Technology and Applications, 2016, doi: 
10.1109/GSMM.2016.7500315. 

[27] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, 
“Zee: Zero-effort crowdsourcing for indoor localization,” in 
Proceedings of the Annual International Conference on Mobile 
Computing and Networking, MOBICOM, 2012, doi: 
10.1145/2348543.2348580. 

[28] F. Evennou and F. Marx, “Advanced integration of WiFi and 
inertial navigation systems for indoor mobile positioning,” 
EURASIP J. Appl. Signal Processing, 2006, doi: 
10.1155/ASP/2006/86706. 

[29] A. Mathisen, S. K. Sørensen, A. Stisen, H. Blunck, and K. 
Grønbæk, “A comparative analysis of Indoor WiFi Positioning 
at a large building complex,” in 2016 International Conference 
on Indoor Positioning and Indoor Navigation, IPIN 2016, 2016, 
doi: 10.1109/IPIN.2016.7743666. 

[30] A. Cramariuc, H. Huttunen, and E. S. Lohan, “Clustering 
benefits in mobile-centric WiFi positioning in multi-floor 
buildings,” in Proceedings of 2016 International Conference on 
Localization and GNSS, ICL-GNSS 2016, 2016, doi: 
10.1109/ICL-GNSS.2016.7533846. 

[31] B. Wang, X. Liu, B. Yu, R. Jia, and X. Gan, “An improved WiFi 
positioning method based on fingerprint clustering and signal 

weighted euclidean distance,” Sensors (Switzerland), 2019, doi: 
10.3390/s19102300. 

[32] X. Hou and T. Arslan, “Monte Carlo localization algorithm for 
indoor positioning using Bluetooth low energy devices,” in 2017 
International Conference on Localization and GNSS, ICL-GNSS 
2017, 2018, doi: 10.1109/ICL-GNSS.2017.8376248. 

[33] V. Chandel, N. Ahmed, S. Arora, and A. Ghose, “Inloc: An end-
to-end robust indoor localization and routing solution using 
mobile phones and ble beacons,” in 2016 International 
Conference on Indoor Positioning and Indoor Navigation, IPIN 
2016, 2016, doi: 10.1109/IPIN.2016.7743592. 

[34] C. H. Kao, R. S. Hsiao, T. X. Chen, P. S. Chen, and M. J. Pan, 
“A hybrid indoor positioning for asset tracking using Bluetooth 
low energy and Wi-Fi,” in 2017 IEEE International Conference 
on Consumer Electronics - Taiwan, ICCE-TW 2017, 2017, doi: 
10.1109/ICCE-China.2017.7990996. 

[35] G. Marini, “Towards indoor localisation analytics for modelling 
flows of movements,” in UbiComp/ISWC 2019- - Adjunct 
Proceedings of the 2019 ACM International Joint Conference on 
Pervasive and Ubiquitous Computing and Proceedings of the 
2019 ACM International Symposium on Wearable Computers, 
2019, doi: 10.1145/3341162.3349306. 

[36] K. Huang, K. He, and X. Du, “A hybrid method to improve the 
BLE-based indoor positioning in a dense bluetooth 
environment,” Sensors (Switzerland), 2019, doi: 
10.3390/s19020424. 

[37] P. Kriz, F. Maly, and T. Kozel, “Improving Indoor Localization 
Using Bluetooth Low Energy Beacons,” Mob. Inf. Syst., 2016, 
doi: 10.1155/2016/2083094. 

[38] L. Ciabattoni et al., “Real time indoor localization integrating a 
model based pedestrian dead reckoning on smartphone and BLE 
beacons,” J. Ambient Intell. Humaniz. Comput., 2019, doi: 
10.1007/s12652-017-0579-0. 

[39] M. Murata, D. Ahmetovic, D. Sato, H. Takagi, K. M. Kitani, and 
C. Asakawa, “Smartphone-based Indoor Localization for Blind 
Navigation across Building Complexes,” in 2018 IEEE 
International Conference on Pervasive Computing and 
Communications, PerCom 2018, 2018, doi: 
10.1109/PERCOM.2018.8444593. 

[40] “infsoft.” https://www.infsoft.com/technology/receiver-
hardware/infsoft-locator-nodes (accessed Jul. 08, 2020). 

[41] Y. Jin, W. S. Soh, and W. C. Wong, “Indoor localization with 
channel impulse response based fingerprint and nonparametric 
regression,” IEEE Trans. Wirel. Commun., 2010, doi: 
10.1109/TWC.2010.03.090197. 

[42] Y. Ye and B. Wang, “RMapCS: Radio Map Construction from 
Crowdsourced Samples for Indoor Localization,” IEEE Access, 
2018, doi: 10.1109/ACCESS.2018.2830415. 

[43] L. Bai, N. Ireson, S. Mazumdar, and F. Ciravegna, “Lessons 
learned using Wi-Fi and bluetooth as means to monitor public 
service usage,” in UbiComp/ISWC 2017 - Adjunct Proceedings 
of the 2017 ACM International Joint Conference on Pervasive 
and Ubiquitous Computing and Proceedings of the 2017 ACM 
International Symposium on Wearable Computers, 2017, doi: 
10.1145/3123024.3124417. 

[44] F. Zafari, I. Papapanagiotou, M. Devetsikiotis, and T. Hacker, 
“An iBeacon based Proximity and Indoor Localization System,” 
pp. 1–14, 2017, [Online]. Available: 
http://arxiv.org/abs/1703.07876. 

[45] “Estimote.” https://estimote.com/ (accessed Apr. 09, 2020). 
[46] “Jaalee GPS Locator | Bluetooth Tracking Beacon.” 

http://www.jaalee.com/ (accessed Apr. 09, 2020). 
[47] “BlueZ.” http://www.bluez.org/ (accessed Apr. 09, 2020). 
[48] K. Chintalapudi, A. P. Iyer, and V. N. Padmanabhan, “Indoor 

localization without the pain,” in Proceedings of the Annual 
International Conference on Mobile Computing and Networking, 
MOBICOM, 2010, doi: 10.1145/1859995.1860016. 

[49] G. Welch and G. Bishop, “An Introduction to the Kalman 
Filter,” In Pract., 2006, doi: 10.1.1.117.6808. 

 
  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3012342, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

14 VOLUME XX, 2017 

Lu Bai received the B.Eng. degree in biomedical 
engineering from Tianjin University, Tianjin, P.R. 
China, in 2009, and Ph. D. degree in electronic 
engineering from the University of Kent, 
Canterbury, U.K., in 2014. She was a Research 
Associate in the School of Engineering and Digital 
Arts at the University of Kent in 2015. She was a 
Research Associate in Mobile Sensing at the 
University of Sheffield in the department of 
computer science from 2016 to 2018. She was a 

KTP Associate and Data Scientist at Shearwater Systems Ltd in 2019. She 
is currently a Lecturer at Ulster University, UK. Her recent research interests 
include rehabilitation engineering, human motion analysis, kinematic 
modelling, mobile sensing and machine learning in healthcare.  

Fabio Ciravegna is Professor of Language and 
Knowledge Technologies and Head of OAK 
Group in the Department of Computer Science. 
His research field concerns Information and 
Knowledge Management over large scale in 
distributed organisations or the World Wide Web. 
He is Director of the European Project WeSenseIt 
(14 partners, €6.5m budget) on creating citizen 
observatories of water. In 2006-2010 he was 
director of the European Integrated Project IST X-

Media (15 partners, €13.6m budget) and in 2002-2005 he was director of 
the EU project Dot.Kom. He is part of the editorial board of the International 
Journal on Web Semantics. In 2009 he was General Chair of the European 
Semantic Web Conference. He holds a PhD from the University of East 
Anglia and a Doctorship from the University of Torino, Italy. 

Raymond Bond obtained his BSc(hons) and 
PhD in the School of Computing and 
Mathematics (Ulster University). Before his 
academic appointment, he worked in the IT 
industry as a Web Programmer and later held 
Research Associate positions in the subject areas 
of Connected Health and Computerised 
Electrocardiography. Subsequently, he 
coordinated the Computing and Engineering 
Professional Education Centre for Northern 
Ireland (CEPEC-NI) where he managed 
computing science courses and outreach 

activities. Raymond has research interests within biomedical and healthcare 
informatics, which is the application of digital technology in healthcare. 
This is otherwise known as digital health. Raymond's work involves the 
application of human-computer interaction and data science techniques to 
healthcare research. His work has involved health data analytics as well as 
the modelling, processing and visualisation of medical data to enhance 
clinical decision-making including the creation of decision support systems. 
He also has research interests in computerised simulation-based training in 
healthcare, usability engineering methods to improve medical devices, eye-

gaze analytics in decision science, and is also involved in developing 
computerised models for healthcare monitoring and interventions. 

Maurice Mulvenna is Professor of Computer 
Science at Ulster University. His research areas 
include computing and mental health, artificial 
intelligence, digital wellbeing, innovation and 
assistive technologies. He has been principal 
investigator on around 50% of over 150 
international research projects. Arising from his 
research, he has published over 400 papers and 
served on numerous program committees. He 
was co-chair of the 32nd British Human-
Computer Interaction conference in 2018, and 
co-chair of both the 31st European Cognitive 

Ergonomics Conference (ECCE-2019) and the 5th IEEE International 
Conference on Internet of People (IoP-2019) in 2019. He is a senior member 
of both the Institute of Electrical and Electronics Engineers and the 
Association for Computing Machinery, and a chartered fellow of the British 
Computer Society. 

 

 

 

 

 
 


