2,356 research outputs found

    Process Evolution based on Transformation of Algebraic High-Level Nets with Applications to Communication Platforms

    Get PDF
    Algebraic High-Level (AHL) nets are a well-known modelling technique based on Petri nets with algebraic data types, which allows to model the communication structure and the data ïŹ‚ow within one modelling framework. Transformations of AHL-nets – inspired by the theory of graph transformations – allow in addition to modify the communication structure. Moreover, high-level processes of AHL-nets capture the concurrent semantics of AHL-nets in an adequate way. In this paper we show how to model the evolution of communication platforms and scenarios based on transformations of algebraic high-level nets and processes. All constructions and results are illustrated by a running example showing the evolution of Apache Wave platforms and scenarios. The evolution of platforms is modelled by the transformation of AHL-nets and that of scenarios by the transformation of AHL-net processes.Our main result is a construction for the evolution of AHL-processes based on the evolution of the corresponding AHL-net. This result can be used to transform scenarios in a communication platform according to the evolution of possibly multiple actions of the platform

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ‱ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ‱ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ‱ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ‱ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Integration of an object formalism within a hybrid dynamic simulation environment

    Get PDF
    PrODHyS is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of systems engineering. Its major characteristic is its ability to simulate processes described by a hybrid model. In this framework, this paper focuses on the "Object Differential Petri Net" (ODPN) formalism integrated within PrODHyS. The use of this formalism is illustrated through a didactic example relating to the field of Chemical Process System Engineering (PSE)

    Modelling Evolution of Communication Platforms and Scenarios based on Transformations of High-Level Nets and Processes : Extended Version

    Get PDF
    Algebraic High-Level (AHL) nets are a well-known modelling technique based on Petri nets with algebraic data types, which allows to model the communication structure and the data flow within one modelling framework. Transformations of AHL-nets – inspired by the theory of graph transformations – allow in addition to modify the communication structure. Moreover, high-level processes of AHL-nets capture the concurrent semantics of AHL-nets in an adequate way. Altogether we obtain a powerful integrated formal specification technique to model and analyse all kinds of communication based systems, especially different kinds of communication platforms. In this paper we show how to model the evolution of communication platforms and scenarios based on transformations of Algebraic High-Level Nets and Processes. All constructions and results are illustrated by a running example showing the evolution of Apache Wave platforms and scenarios. The evolution of platforms is modelled by the transformation of AHL-nets and that of scenarios by the transformation of AHL-net processes. The first main result shows under which conditions AHL-net processes can be extended if the corresponding AHL-net is transformed. This result can be applied to show the extension of scenarios for a given platform evolution. The second main result shows how AHL-net processes can be transformed based on a special kind of transformation for AHL-nets, corresponding to action evolution of platforms. Finally, we briefly discuss the case of multiple action evolutions

    Dynamic state reconciliation and model-based fault detection for chemical processes

    Get PDF
    In this paper, we present a method for the fault detection based on the residual generation. The main idea is to reconstruct the outputs of the system from the measurements using the extended Kalman filter. The estimations are compared to the values of the reference model and so, deviations are interpreted as possible faults. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. The use of this method is illustrated through an application in the field of chemical processe

    Subtyping for Hierarchical, Reconfigurable Petri Nets

    Full text link
    Hierarchical Petri nets allow a more abstract view and reconfigurable Petri nets model dynamic structural adaptation. In this contribution we present the combination of reconfigurable Petri nets and hierarchical Petri nets yielding hierarchical structure for reconfigurable Petri nets. Hierarchies are established by substituting transitions by subnets. These subnets are themselves reconfigurable, so they are supplied with their own set of rules. Moreover, global rules that can be applied in all of the net, are provided

    Workshop on Modelling of Objects, Components, and Agents, Aarhus, Denmark, August 27-28, 2001

    Get PDF
    This booklet contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'01), August 27-28, 2001. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" Group at the University of Hamburg, Germany. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01

    On Modelling Communication in Ubiquitous Computing Systems using Algebraic Higher Order Nets

    Get PDF
    Ubiquitous computing systems (UCSs) are designed to participate almostimperceptibly in everyday life. To ensure a solid operation, a UCS heavily depends on a reliable and efficient communication between its distributed computing components. Moreover components can join and leave the system at any time.In order to guarantee high quality systems, the use of models is inevitable especiallyat an early stage of the development process where models are the only possibilityto address a system which does not yet exist in reality. Petri nets and graph transformationsystems are established, theoretically well-founded concepts for modellingand analysing complex systems.This paper presents a formal approach for modelling core aspects of the communicationin UCSs by using Algebraic Higher Order Nets with Individual Tokens andgraph transformation. The approach is suitable to cover the different aspects ofcommunication and enables the analysis of specific properties. The approach and itssuitability are illustrated based on a running example. The feasibility of embeddingthe approach in a broader context of modelling is demonstrated in applying it to areal world system: the Living Place Hamburg

    A CSP-Based Trajectory for Designing Formally Verified Embedded Control Software

    Get PDF
    This paper presents in a nutshell a procedure for producing formally verified concurrent software. The design paradigm provides means for translating block-diagrammed models of systems from various problem domains in a graphical notation for process-oriented architectures. Briefly presented CASE tool allows code generation both for formal analysis of the models of software and code generation in a target implementation language. For formal analysis a highquality commercial formal checker is used

    Algebraic High-Level Nets and Processes Applied to Communication Platforms

    Get PDF
    Petri nets are well-known to model communication structures and algebraic specifications for modeling data types. Algebraic High-Level (AHL) nets are defined as integration of Petri nets with algebraic data types, which allows to model the communication structure and the data flow within one modelling framework. Transformations of AHL-nets – inspired by the theory of graph transformations – allow in addition to modify the communication structure. Moreover, highlevel processes of AHL-nets capture the concurrent semantics of AHL-nets in an adequate way. Altogether we obtain a powerful integrated formal specification technique to model and analyse all kinds of communication based systems. In this paper we give a comprehensive introduction of this framework. This includes main results concerning parallel independence of AHL-transformations and the transformation and amalgamation of AHL-occurrence nets and processes. Moreover, we show how this can be applied to model and analyse modern communication and collaboration platforms like Google Wave and Wikis. Especially we show how the Local Church-Rosser theorem for AHL-net tranformations can be applied to ensure the consistent integration of different platform evolutions. Moreover, the amalgamation theorem for AHL-processes shows under which conditions we can amalgamate waves of different Google Wave platforms in a compositional way
    • 

    corecore