
Electronic Communications of the EASST
Volume 51 (2012)

Proceedings of the
5th International Workshop on Petri Nets,

Graph Transformation and other Concurrency Formalisms
(PNGT 2012)

Process Evolution based on Transformation of Algebraic High-Level
Nets with Applications to Communication Platforms

Karsten Gabriel

12 pages

Guest Editors: Julia Padberg, Kathrin Hoffmann
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Process Evolution based on Transformation of Algebraic High-Level
Nets with Applications to Communication Platforms

Karsten Gabriel

kgabriel@cs.tu-berlin.de, Technische Universität Berlin

Abstract: Algebraic High-Level (AHL) nets are a well-known modelling technique
based on Petri nets with algebraic data types, which allows to model the communi-
cation structure and the data flow within one modelling framework. Transformations
of AHL-nets – inspired by the theory of graph transformations – allow in addition to
modify the communication structure. Moreover, high-level processes of AHL-nets
capture the concurrent semantics of AHL-nets in an adequate way. In this paper we
show how to model the evolution of communication platforms and scenarios based
on transformations of algebraic high-level nets and processes. All constructions and
results are illustrated by a running example showing the evolution of Apache Wave
platforms and scenarios. The evolution of platforms is modelled by the transforma-
tion of AHL-nets and that of scenarios by the transformation of AHL-net processes.
Our main result is a construction for the evolution of AHL-processes based on the
evolution of the corresponding AHL-net. This result can be used to transform sce-
narios in a communication platform according to the evolution of possibly multiple
actions of the platform.

Keywords: High-Level Nets, Processes, Transformation, Communication Platforms

1 Introduction

High-level nets based on low-level Petri nets [Roz87, Rei85] and data types in the program-
ming language ML have been studied as coloured Petri nets by Jensen [Jen91] and – using
algebraic data types – as algebraic high-level (AHL) nets in [Rei90, PER95]. Inspired by the
theory of graph transformations [Ehr79, Roz97] transformations of AHL-nets were first stud-
ied in [PER95] which – in addition to the token game – also allow to modify the net structure
by rule based transformations. The concept of processes in Petri nets is essential to model not
only sequential, but especially concurrent firing behaviour. High-level processes for algebraic
high-level nets, called AHL-net processes, have been introduced in [EHP+02, Ehr05], which are
high-level net morphisms p : K→ AN with AN being an AHL-net, based on a suitable concept
of high-level occurrence nets K.

The main aim of this paper is to give a short introduction to the integrated framework of
transformations of algebraic high-level nets and processes and to show how this can be applied
to modern communication platforms.

In Section 2 we introduce a small case study of an Apache Wave platform, which is also used as
running example for the following sections. In Section 3 we introduce AHL-nets together with
high-level processes in the sense of [Ehr05]. Rule based transformations in analogy to graph

1 / 12 Volume 51 (2012)

mailto:kgabriel@cs.tu-berlin.de

Process Evolution based on Transformation of Algebraic High-Level Nets

transformation systems [Roz97] are introduced in Section 4 for AHL-nets and AHL-processes
and applied to the evolution of Apache Wave communication platforms and waves. Our main
result presented in Section 4 shows how AHL-net processes can be transformed based on a
special kind of transformation for AHL-nets, corresponding to multiple action evolution (i. e.
the evolution of a set of features) of platforms, in contrast to single action evolution in [GE12].
Finally, the conclusion in Section 5 includes a summary of the paper.

2 Case Study: Communication Platforms and Scenarios

In this section we introduce our main case study Apache Wave which is a communication plat-
form that was originally developed by the company Google as Google Wave. Google itself has
stopped the development of Google Wave, but the development is continued by the Apache Soft-
ware Foundation as Apache Wave[Apa12].

One of the most interesting aspects of Apache Wave is the possibility to make changes on
previous contributions. Therefore, in contrast to email, text chat or forums, due to possible
changes the resulting data of the communication does not necessarily give a comprehensive
overview on all interactions of the communication. For this reason, in Apache Wave for every
communication there is a history allowing the users to replay interactions of the communication
step by step. So for the modelling of Apache Wave it is necessary that we do not only model
the systems and the communication but also the history of the communication. We have chosen
Apache Wave as running example for this paper because it includes typical modern features of
many other communication systems, such as near-real-time communication. This means that
different users can simultaneously edit the same document, and changes of one user can be seen
almost immediately by the other users. Note that we do not focus on the communication between
servers and clients in this contribution but on the communication between users.

In Apache Wave users can communicate and collaborate via so-called waves. A wave is like
a document which can contain diverse types of data that can be edited by different invited users.
The changes that are made to a wave can be simultaneously recognized by the other participating
users. In order to keep track of the changes that have been made, every wave contains also a
history of all the actions in that wave.

Apache Wave supports different types of extensions which are divided into gadgets and robots.
The extensions are programs that can be used inside of a wave. The difference between gadgets
and robots is that gadgets are not able to interact with their environment while robots can be seen
as automated users that can independently create, read or change waves, invite users or other
robots, and so on. This allows robots for example to do real-time translation or highlighting of
texts that are written by different users of a wave. Clearly, it is intended to use different robots
for different tasks and it is desired that multiple robots interact without conflicts. This makes the
modelling and analysis of Apache Wave very important in order to predict possible conflicts or
other undesired behaviour of robots.

In [EG11] we have already shown that Google Wave (and thus also Apache Wave) can be ade-
quately modelled using algebraic high-level (AHL) nets, which is an integration of the modelling
technique of low-level Petri nets [Roz87, Rei85] and algebraic data types [EM85].

Figure 1a shows a small example of the structure of an AHL-net Platform which has three

Proc. PNGT 2012 2 / 12

ECEASST

w :

wavelet

u :

user

new wavelet

n = new(user,free)

next = next(free)
id : nat

invite user

invited(o, user1) = true

n = addUser(o,user2)

user

user

user

user

user1 7 user2

user1 7 user2

n
n

o

o
n

free

next

Platform

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

user

user
o

n

(a) AHL-net Platform for an Apache Wave platform

w :

wavelet

u :

user

new wavelet

n = new(user,free)

next = next(free)

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

id : nat

invite user

invited(o, user1) = true

n = addUser(o,user2)

user

user

user

user

user1 7 user2

user1 7 user2

n

o 7 n

o

o
n

free

next

Platform'

(b) Modified AHL-net Platform′

Figure 1: Apache Wave platforms

places and four transitions with firing conditions, where the pre and post arcs are labelled with
variables of an algebraic signature. The AHL-net Platform models an Apache Wave platform
with some basic features like the creation of new waves, modifications to existing waves, and the
invitation of users to a wave which are modeled by the transitions new wavelet, insert, remove
and invite user.

A wavelet is a part of a wave that contains a user ID, a list of XML documents and a set of
users which are invited to modify the wavelet. For simplicity we model in our example only the
simple case that every wavelet contains only one single document and the documents contain
only plain text. In order to obtain a more realistic model one has to extend the used algebraic
data part of the model.

remove1

: remove

invite1

: invite user

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user user

o

u3 : u

w2 : w

user

n

u4 : u

user2
user1

o

u6 : uu5 : u

w3 : w

user2
user1

n

user

o

w4 : w

n

user

new2

: new wavelet

free

id3 : id

next

u8 : u

user

user

insert2

: insert

user

u9 : uw5 : w

n o

user

w6 : w

n

id2 : id

u7 : u

Wave

Figure 2: AHL-process Wave of a wave
As we have shown in [EG11] a suitable modelling technique for waves together with their

histories are AHL-processes with instantiations. Figure 2 shows an example of an AHL-process
Wave which abstractly models a wave that contains two wavelets created by possibly different
users. Another interesting aspect of the modelling of Apache Wave are dynamic changes to the
structure of the platform. Using rule-based transformation of AHL-nets [PER95] in the sense
of graph transformation [Roz97], we can delete and add features, leading to a new platform.
Figure 1b shows a net Platform′ which is an adaptation of our example Platform where the insert
and remove transitions have been replaced by a modify copy transition which enables the user to
replace text in a new copy of a wavelet while the original wavelet remains unchanged.

3 / 12 Volume 51 (2012)

Process Evolution based on Transformation of Algebraic High-Level Nets

In order to model also the dynamic modification of scenario nets we need also rule-based mod-
ification of AHL-process nets. Since it is possible that the communication platform is modified
at runtime there may already exist some waves that correspond to the old version of the platform.
In some cases that correspondence could be violated by the modification of the platform.

modify2

: modify copy

invite1

: invite user

new1

: new wavelet

modify1

: modify copy

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user user

o

u3 : u

w2 : w

user

n

u4 : u

user2
user1

o

u6 : uu5 : u

w3 : w

user2
user1

n

user

o

w4 : w

n

user

new2

: new wavelet

free

id3 : id

next

u8 : u

user

user

modify3

: modify copy

user

u9 : uw5 : w

n o

user

w6 : w

n

id2 : id

u7 : u

Wave'

w7 : w

o

w8 : w

o

w9 : w

o

Figure 3: Modified AHL-process Wave′

An intuitive solution is to apply the modification of the platform also to the wave, replacing
all occurrences of the old features with corresponding new ones if possible, or remove them
otherwise. For this purpose, the rule which is used for modification of the platform should be
equipped with additional information, describing how the changes of the platform affect occur-
rences of platform actions in a scenario. In the case of our example Wave and the platform
evolution described above this leads to a new wave model Wave′ depicted in Figure 3. The two
occurrences of insert as well as the occurrence of remove have been replaced by occurrences of
the transition modify copy and there are new wavelet places in the post domain of the new tran-
sitions, representing the unchanged originals. In our theorem in Section 4 we present a general
construction to obtain under certain conditions a suitable modification of scenarios based on the
evolution of the corresponding platform.

3 Modelling of Communication Platforms and Scenarios Using Al-
gebraic High-Level Nets and Processes

In the following we review the definition of AHL-nets and their processes from [Ehr05, EHP+02]
based on low-level nets in the sense of [MM90], where X⊕ is the free commutative monoid over
the set X . Note that s ∈ X⊕ is a formal sum s = ∑

n
i=1 λixi with λi ∈ N and xi ∈ X meaning that

we have λi copies of xi in s and for s′ = ∑
n
i=1 λ ′i xi we have s⊕ s′ = ∑

n
i=1 (λi +λ ′i)xi.

An algebraic high-level (AHL-) net AN = (Σ,P,T, pre, post,cond, type,A) consists of a sig-
nature Σ = (S,OP;X) with additional variables X ; a set of places P and a set of transitions T ;
pre- and post domain functions pre, post : T → (TΣ(X)⊗ P)⊕; firing conditions cond : T →
P f in(Eqns(Σ;X)); a type of places type : P→ S and a Σ-algebra A.

The signature Σ = (S,OP) consists of sorts S and operation symbols OP, TΣ(X) is the set of
terms with variables over X , the restricted product ⊗ is defined by
(TΣ(X)⊗P) = {(term, p)|term ∈ TΣ(X)type(p), p ∈ P}

Proc. PNGT 2012 4 / 12

ECEASST

and Eqns(Σ;X) are all equations over the signature Σ with variables X . An AHL-net morphism
f : AN1→ AN2 is given by f = (fΣ, fP, fT , fA) with signature morphism fΣ, functions fP and fT ,
and generalized algebra homomorphism fA satisfying the following conditions:
(1) (f #

Σ
⊗ fP)

⊕ ◦ pre1 = pre2 ◦ fT and (f #
Σ
⊗ fP)

⊕ ◦ post1 = post2 ◦ fT ,
(2) cond2 ◦ fT = P f in(f #

Σ
)◦ cond1, and

(3) type2 ◦ fP = fΣ ◦ type1.
The category defined by AHL-nets and AHL-net morphisms is denoted by AHLNets where

the composition of AHL-net morphisms is defined componentwise. An example of an Apache
Wave platform is given by the AHL-net Platform in Figure 1a (for more details, signature and
algebra see [Gab12]).

The firing behaviour of AHL-nets is defined analogously to the firing behaviour of low-level
nets. The difference is that in the high-level case all tokens are equipped with data values. More-
over, for the activation of a transition t, we additionally need an assignment v of the variables in
the environment of the transition, such that the assigned pre domain is part of the given marking
and the firing conditions of the transition are satisfied. This assignment is then used to compute
the follower marking, obtained by firing of transition t with assignment v. For an example of the
firing behaviour we refer to our technical report [Gab12].

Now, we introduce AHL-process nets based on low-level occurrence nets (see [GR83]) and
AHL-processes according to [Ehr05, EHP+02]. The net structure of a high-level occurrence net
has similar properties like a low-level occurrence net, but it captures a set of different concurrent
computations due to different initial markings. Moreover, in a low-level occurrence net with an
initial marking there is for any complete order of transitions compatible with the causal relation
a corresponding firing sequence once there is a token on all input places. This is a consequence
of the fact that in an occurrence net the causal relation is finitary. In the case of high-level
occurrence nets an initial marking additionally contains data values and in general some of the
firing conditions in a complete order of transitions are not satisfied. Hence, even in the case that
the causal relation is finitary, we cannot expect to have complete firing sequences. In order to
ensure a complete firing sequence in a high-level occurrence net there has to be an “instantiation”
of the occurrence net (see [Ehr05]). Instantiations, however, are not considered explicitly in this
paper, and we refer to our technical report [Gab12] where all constructions and results for AHL-
process nets are also shown for their instantiations. In the following definition of AHL-process
nets, in contrast to occurrence nets, we omit the requirement that the causal relation has to be
finitary, because this is not a meaningful requirement for our application domain.

Definition 1 (Algebraic High-Level Process Nets and Processes) An AHL-process net K is an
AHL -net K =(Σ,P,T, pre, post,cond, type,A) such that for all t ∈T with pre(t)=∑

n
i=1(termi, pi)

and notation •t = {p1, . . . , pn} and similarly t• we have

1. (Unarity): For all p ∈ P there exist no terms term1, term2 ∈ TΣ(X)type(p) such that
(term1, p)⊕ (term2, p)≤ pre(t) or (term1, p)⊕ (term2, p)≤ post(t),

2. (No Conflicts): •t ∩•t ′ = /0 and t •∩t ′•= /0 for all t, t ′ ∈ T, t 6= t ′, and
3. (Partial Order): the causal relation <K⊆ (P×T)∪(T×P) defined by the transitive closure

of {(p, t) ∈ P×T | p ∈ •t}∪{(t, p) ∈ T ×P | p ∈ t•} is a strict partial order.

AHL-process nets together with AHL-net morphisms between AHL-process nets form the full

5 / 12 Volume 51 (2012)

Process Evolution based on Transformation of Algebraic High-Level Nets

subcategory AHLPNets⊆AHLNets. Similar to low-level processes, an AHL-process mp of an
AHL-net AN is defined as an AHL-morphism mp : K → AN from an AHL-process net K into
the net AN. The category AHLProcs of all AHL-processes is defined as full subcategory of the
arrow category AHLNets→ such that the objects are AHL-processes.

Example 1 (Scenario) Figure 2 shows an AHL-process wave : Wave→ Platform where the
mappings of the process are indicated with colons, e. g. u1 : u means that the place u1 in the
AHL-process net Wave is mapped to the place u in the AHL-net Platform in Figure 1a. The
AHL-process describes an abstract scenario in the Apache Wave platform in which two wavelets
are created with consecutive IDs by possibly two different users. Moreover, the creator of the
first wavelet inserts some text into the wavelet, and it is open if this happens before or after the
creation of the second wavelet. After that the creator of the second wavelet is invited to the
first one, and removes something from the first wavelet before adding something to the second
wavelet.

4 Evolution of Communication Platforms and Scenarios

Due to the possibility to evolve the Apache Wave platforms by adding, removing or changing
features we need also techniques that make it possible to evolve the corresponding model of a
platform. For this reason we introduce rule-based AHL-net transformations [PER95] in the sense
of graph transformations [Roz97] in the double pushout (DPO) approach.

A production (or transformation rule) for AHL-nets is a span ρ : L l← I r→ R of injective AHL-
morphisms with isomorphic data type part, specifying a local modification of an AHL-net. It
consists of a left-hand side L, an interface I which is the part of the left-hand side which is not
deleted and a right-hand side R which additionally contains newly created net parts.

AN0
f1 //

f2 ��

AN1
g1��

AN2 g2
// AN3

(1)

Figure 4: PO

In order to add the new parts as specified in the right-hand side of a produc-
tion to an AHL-net we use pushouts of AHL-nets as gluing construction. The
diagram (1) in Figure 4 is a pushout (PO) diagram in the category AHLNets if
(1) commutes and has the following universal property: For all AHL-nets AN′3
and AHL-morphisms h1 : AN1 → AN′3, h2 : AN2 → AN′3 with h1 ◦ f1 = h2 ◦ f2
there is a unique h : AN3→ AN′3 with h◦g1 = h1 and h◦g2 = h2.

We obtain the pushout by the componentwise quotient (AN1]AN2)/≡ where≡ is the smallest
relation with f1(x) ≡ f2(x) for all x in each component of AN0. Then in the resulting AHL-net
AN3 all elements that are matched by common interface elements are identified.

L
m �� (2)

Iloo r //

c �� (3)

R
n��

AN C
d
oo

e
// AN′

Figure 5: DPO

Let ρ : L l← I r→ R be a production and m : L→ AN a (match) morphism.

Then a direct transformation AN
(p,m)⇒ AN′ in AHLNets is given by pushouts

(2) and (3) shown in Figure 5. In [PER95] a gluing condition for AHL-
nets is defined for the match m : L→ AN and it is shown that the gluing
condition is a necessary and sufficient condition for the existence of a direct
transformation of AHL-nets.

Example 2 (Evolution of Apache Wave Platform) In the bottom of Figure 6 is a production
ρ : L l← I r→ R for AHL-nets that can be used for the evolution of an Apache Wave platform.

Proc. PNGT 2012 6 / 12

ECEASST

The production describes a local modification that removes transitions insert and remove and
inserts a new transition modify copy. Moreover, the newly created transition is connected to the
former environment of the removed transitions. The production ρ can be applied to the AHL-net
Platform in Figure 1a with a (match) morphism m : L→ Platform which is an inclusion, leading
to the modified AHL-net Platform′ in Figure 1b.

w1 : w

u1 : u

user

o
l* r*

L* I*

insert

: insert

remove

: remove

w3 : w

u3 : u

user

o

w2 : w

u2 : u

w4 : w

u4 : u

user

n

user

n

w1 : w

u1 : u

w3 : w

u3 : u

w2 : w

u2 : u

w4 : w

u4 : u

w1 : w

u1 : u

user

o

R*

modify1

: modify copy

modify2

: modify copy

w3 : w

u3 : u

user

o

w2 : w

u2 : u

w4 : w

u4 : u

user

n

user

n

w5 : w

o

w6 : w

o

u :

user

user o

L
insert

...

remove

...

user
o

w :

wavelet

user
n

user
n

mpL

I

u :

user

w :

wavelet

mpI

u :

user

user
o

R

modify copy

...

w :

wavelet

user
n 7 o

mpR

L1
*

L2
*

R2
*

R1
*I1

*

I2
*

l r

Figure 6: Production for action evolution

A production for AHL-process nets ρ : L l← I r→R is defined as a span of injective AHLPNets-
morphisms l : I→ L and r : I→ R with isomorphic data type part. The gluing of AHL-nets may
produce forward or backward conflicts as well as cycles in the causal relation. So for the gluing
of two AHL-process nets via pushout construction the AHL-process nets have to be composable
in order to obtain again an AHL-process net as a result of the gluing. Composability of AHL-
process nets with respect to an interface means that the result of the gluing does not violate the
process net properties in Definition 1. Accordingly, also the transformation of AHL-nets applied
to an AHL-process net may introduce conflicts or cycles. Therefore, a transformation condition
for AHL-process nets has been defined in [Gab10], and we have shown that the transformation
condition is a necessary and sufficient condition that the direct transformation of an AHL-process
net again leads to an AHL-process net. The satisfaction of the transformation condition by a
production ρ and a match m requires that the gluing condition for AHL-nets is satsfied (see
[PER95]). Moreover, it requires that the so-called gluing relation is irreflexive and that the
application of the production does neither produce any conflicts nor violates the unarity condition
of AHL-process nets. For details we refer to our technical report [Gab12], where we consider
also the transformation of instantiations of AHL-processes. An example of the transformation of
AHL-process nets is given at the end of this section.

Now consider again the platform evolution Platform⇒ Platform′ from Example 2 and the
scenario wave of Platform in Figure 2. There is no suitable morphism wave′ : Wave→ Platform′

7 / 12 Volume 51 (2012)

Process Evolution based on Transformation of Algebraic High-Level Nets

which means that the scenario wave is not a valid scenario of the modified platform. The reason
is that the scenario wave contains occurrences of the actions insert and remove, but there is no
corresponding action in the new platform Platform′. Nonetheless, the features to insert or remove
some text in a wavelet has not been fully removed from the communication platform, but they
have been replaced by the new action modify copy which does more or less the same as the old
actions with the difference that insertion and deletion of text can be performed at once, and that
it additionally produces a copy of the original wavelet. So as discussed at the end of Section 2 an
intuitive solution is to apply the modification of the platform also to the scenario wave, leading to
a scenario wave′ : Wave′→ Platform′ as depicted in Figure 3 where all occurrences of the actions
insert and remove have been replaced by the new action modify copy.

In [GE12] we defined a construction for the transformation of scenarios based on (single)
action evolutions of platforms. An important restriction of that construction was the requirement
that the evolution of the platform can only change one single action. Since we replace two actions
in our example, it is not possible to use that construction. Moreover, the scenario evolution
based on single action evolution only allows to insert occurrences of actions in the scenario
that have been newly introduced to the platform. Therefore, even an iterated application of that
construction cannot be used for our example, since both of the actions should be replaced by the
same action modify copy which would already exist after the first iteration.

In the following, we present a more general construction for the modification of scenarios
based on the (multi) action evolution of platforms. For this purpose, since scenarios are modeled
as AHL-processes, we need productions and the direct transformation of AHL-processes.

K

mp

��

ρ∗,m∗ +3 K′

mp′

��

(ρ∗,ρ),(m∗,m) +3

AN
ρ,m

+3 AN′

(a) Transformation of AHL-process

L∗

m∗

��

mpL
""E

EE
I∗

��

l∗oo r∗ //
mpI

##G
GGG

R∗
mpR
##FF

FF

��
L

m

��

Iloo r //

��

R

��
K

mp A
AA

K0

mp0
!!D

DD
oo // K′

mp′ !!
CC

C

AN AN0oo // AN′

(b) Commuting Cube

Figure 7: Transformation of AHL-process

A production for AHL-processes is a span (ρ∗,ρ) : mpL
(l∗,l)←− mpI

(r∗,r)−→ mpR of injective

AHLProcs-morphisms as shown in the top of Figure 7b. Let (ρ∗,ρ) : mpL
(l∗,l)←− mpI

(r∗,r)−→ mpR

be a production for AHL-processes and (m∗,m) : mpL→mp a (match) morphism. Then a direct

transformation mp
(ρ∗,ρ),(m∗,m)

=⇒ mp′ is given by the commuting cube in Figure 7b where the front
and back faces are direct transformations of AHL-nets and AHL-process nets, respectively.

An action evolution is a direct transformation of AHL-nets that uses a special kind of produc-
tion that is equipped with an action evolution pattern, containing information for each transition
in the left-hand side, how an occurrence of that transition in a scenario has to be handled in order
to update the scenario according to the changes of the AHL-net.

Definition 2 (Action Evolution) A production ρ∗ : L∗ l∗← I∗ r∗→ R∗ for AHL-process nets is
called a single action evolution pattern for AHL-processes if it satisfies the following conditions:

Proc. PNGT 2012 8 / 12

ECEASST

1. (Single Action) L∗ contains only one transition and its environment, i. e. TL∗ = {tρ∗} and
for all p ∈ PL∗ : p ∈ •tρ∗ ∪ tρ∗•,

2. (Preserved Environment) ρ∗ is non-deleting on places, i. e. PL∗ = l∗P(PI∗), and
3. (Preserved Input and Output) ρ∗ preserves input and output places, i. e. for all p ∈ PI∗ :

l∗(p) ∈ IN(L∗)⇒ r∗(p) ∈ IN(R∗) and l∗(p) ∈ OUT (L∗)⇒ r∗(p) ∈ OUT (R∗), where
IN(K) = {p ∈ PK | @t ∈ TK : p ∈ t•} and OUT (K) = {p ∈ PK | @t ∈ TK : p ∈ •t} .

Moreover, a production ρ∗ for AHL-process nets is called a (multi) action evolution pattern
for AHL-processes, if it is a parallel production (i. e. the disjoint union) ρ∗ =

⊎
i∈I ρ∗i of single

action evolution patterns (ρ∗i)i∈I .

Given in addition a production ρ : L l← I r→ R for AHL-nets, a production (ρ∗,ρ) for AHL-
processes as shown in the top of Figure 7b is called a production for action evolution if

4. the transition-component mpL,T of the left-hand side is a bijection,
5. the left square is a pullback, and
6. the process net part ρ∗ is an action evolution pattern for AHL-processes.

Given a production for action evolution (ρ∗,ρ), an AHL-net AN and a transition-injective match
m : L→ AN (i. e. mT is injective), then a direct transformation AN

ρ,m
=⇒ AN′ is called action

evolution with pattern ρ∗.

Example 3 (Action Evolution) A production (ρ∗,ρ) for action evolution is shown in Figure 6
where the action evolution pattern ρ∗ is the disjoint union of two single action evolution patterns
ρ∗1 and ρ∗2 , describing the replacement of occurrences of insert and remove, respectively, by
occurrences of the new transition modify copy. Note that the left square in Figure 6 is a pullback,
but the right square only commutes, since the right-hand side R∗ contains occurrences w5 and
w6 of the place w in R which is also contained in the interface I, but there are no corresponding
places in the interface I∗.

In order to determine how the action evolution pattern of a production for action evolution
has to be used for the evolution of a corresponding AHL-process net, we have to make a choice
of matches as defined in the following. Note, however, that in a “proper” high-level net with
a sufficiently complex data type part, like our example in Figure 1, it is possible to determine
the “role” of each place by using distinctive term inscriptions for different places in the pre
respectively post domain of a transition. In that case there is only one possible choice of matches
for the elements of an action evolution to their occurrences in a corresponding AHL-process net,
and therefore, there is only one possible interpretation for the handling of these occurrences.

Definition 3 (Action Occurrences and Choices of Matches) Let AN
ρ,m
=⇒ AN′ be an action evo-

lution with pattern ρ∗ =
⊎

i∈I ρ∗i , and a process mp : K→ AN. The family occ = (occi)i∈I of all
action occurrences is defined by occi = {t ∈ TK | mp(t) = m◦mpL ◦ ιL

i (tρi)} for all i ∈I , where
ιL
i is the injection ιL

i : L∗i → L∗ and tρi is the single transition in TLi (see item 1 in Definition 2).
An AHL-morphism mi,o : L∗i → K is called match for occurrence o ∈ occi if mi,o(tρi) = o

and mi,o is compatible with m and mp, i. e. mp ◦mi,o = m ◦mpL ◦ ιL
i . A choice of matches for

9 / 12 Volume 51 (2012)

Process Evolution based on Transformation of Algebraic High-Level Nets

occurrences is a family (mi,o : L∗i → K)i∈I ,o∈occi such that for every i ∈I and o ∈ occi we have
that mi,o is a match for occurrence o.

Now, the following theorem states that for every process mp : K → AN and an action evolu-
tion AN ⇒ AN′ together with a choice of matches of occurrences there exists a corresponding
transformation of AHL-processes mp⇒mp′ with mp′ : K′→ AN′. As result we obtain a process
corresponding to the result of the action evolution, where all occurrences of the modified part in
AN have been modified in K as well. For a proof of the theorem, we refer to our technical report
[Gab12].

Theorem (Process Evolution based on Action Evolution). Let AN
ρ,m
=⇒ AN′ be an action evo-

lution with pattern ρ∗ =
⊎

i∈I ρ∗i , and mp : K → AN an AHL-process. Then for every choice
of matches for occurrences (mi,o : L∗i → K)i∈I ,o∈occi there exists a production (ρ+,ρ) for AHL-

processes and a direct transformation mp
(ρ+,ρ)
=⇒ mp′ as depicted in Figure 8. In this case, mp′ is

called process evolution of mp based on action evolution AN
ρ,m
=⇒ AN′ with pattern ρ∗.

Construction and proof sketch.

1. The action evolution pattern ρ+ is constructed as parallel production (disjoint union)

ρ+ = L+ l+← I+ r+→ R+ =
⊎

i∈I
⊎

o∈occi
ρ∗i with coproduct injections µX

i,o : X∗i → X+ for
X ∈ {L, I,R}, which together with morphisms mpX ◦ ιX

i induce unique morphisms mp+X :

X+→ X such that (ρ+,ρ) = mp+L
(l+,l)← mp+I

(r+,r)→ mp+R is a production for AHL-processes.
2. A match m+ is induced by disjoint union L+ =

⊎
i∈I

⊎
o∈occi

L∗i and matches mi,o.
3. Then, since action evolution patterns are always applicable with a given transition-injective

match as shown in [Gab12], we obtain a direct transformation K
ρ+,m+

=⇒ K′ of AHL-process
nets in the lower back of Figure 8.

4. The process mp0 : K0→ AN0 can be obtained by construction of K0 as pullback in the left
bottom of Figure 8, and the process mp′ : K′ → AN′ is induced by universal property of
the pushout in the lower right back of the cube.

5. The direct transformation mp
(ρ+,ρ)
=⇒ mp′ is given by the lower double cube in Figure 8.

L∗i

mi,o

++

µL
i,o
��

ιL
i

TTTT
T

**TTT
I∗i

��

l∗ioo r∗i //
ι I
i

UUUU
U

**UUU
R∗i

ιR
i

UUUU
U

**UUU

��
L∗

mpL

��

I∗l∗oo r∗ //
mpI

��

R∗
mpR

��
L+

m+

��

mp+L **
I+

��

l+oo r+ //
mp+I **

R+

mp+R **
��

L
m

��

Iloo r //
k

��

R
n

��
K

mpTTTT

))TTT
K0

mp0 **

f ′oo g′ // K′
mp′

**
AN AN0f
oo

g
// AN′

Figure 8: Process evolution based on action evolution

Example 4 (Evolution of Scenario based on Platform Evolution) Consider again the action
evolution Platform⇒ Platform′ via production ρ in the bottom of Figure 6, and the scenario

Proc. PNGT 2012 10 / 12

ECEASST

wave : Wave→ Platform in Figure 2. There are two occurrences of the action insert and one
occurrence of the action remove, and for each occurrence there is only one possible match for
that occurrence. Thus, our construction yields a production ρ+ containing two copies of ρ∗1 and
one copy of ρ∗2 which are depicted in the top of Figure 6. Moreover, we obtain a match m+

induced by our (unique) choice of matches, such that ρ+ is applicable with match m+ and we
obtain a new scenario wave′ : Wave′ → Platform′ depicted in Figure 3 where all occurrences
of insert and remove actions have been replaced by corresponding occurrences of modify copy
actions.

5 Conclusion

In this paper we have shown that AHL-nets, AHL-processes, and AHL-transformations can be
considered as an integrated framework for modelling the evolution of communication platforms.
In previous papers it was shown already how to use this framework to model communication
platforms like Skype [HM10, Mod12] and Google Wave [EG11]. In this paper we have extended
the general framework in order to model the evolution of Apache Wave platforms and scenarios,
where platforms are modelled by AHL-nets and scenarios by AHL-processes. The evolution on
both levels is defined by rule-based modifications in the sense of graph transformation systems
[EEPT06]. While transformations of AHL-nets are introduced already in [PER95] the corre-
sponding problem for AHL-processes is much more difficult as shown explicitely in [Gab11].

Our main result shows how AHL-net processes can be transformed semi-automatically based
on a special kind of transformation for AHL-nets, corresponding to the evolution of possibly
multiple actions of platforms. In future work we will analyse conflicts between actions in com-
munication platforms by analysis of process evolutions. Moreover, we will study under which
conditions the analysis results for given scenarios can be transferred to scenarios of evolved plat-
forms using the results presented in this paper. Finally, we are planning to develop a tool support
for the modelling and analysis of AHL-nets and their processes.

Bibliography

[Apa12] Apache Wave. http://incubator.apache.org/wave/. September 2012.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs in TCS. Springer, 2006.

[EG11] H. Ehrig, K. Gabriel. Transformation of Algebraic High-Level Nets and Amalga-
mation of Processes with Applications to Communication Platforms. International
Journal of Software and Informatics 5, Part1:207–229, 2011.

[EHP+02] H. Ehrig, K. Hoffmann, J. Padberg, P. Baldan, R. Heckel. High-Level Net Processes.
In Formal and Natural Computing. LNCS 2300, pp. 191–219. Springer, 2002.

[Ehr79] H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars (A Survey). In
Claus et al. (eds.), Graph Grammars and Their Application to Computer Science and
Biology, Lecture Notes in Computer Science, No. 73. Pp. 1–69. Springer, 1979.

11 / 12 Volume 51 (2012)

http://incubator.apache.org/wave/

Process Evolution based on Transformation of Algebraic High-Level Nets

[Ehr05] H. Ehrig. Behaviour and Instantiation of High-Level Petri Net Processes. Funda-
menta Informaticae 65(3):211–247, 2005.

[EM85] H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification 1. Springer, 1985.

[Gab10] K. Gabriel. Algebraic High-Level Nets and Processes Applied to Communication
Platforms. Technical report 2010/14, Technische Universität Berlin, 2010.

[Gab11] K. Gabriel. Modelling Evolution of Communication Platforms and Scenarios based
on Transformations of High-Level Nets and Processes – Extended Version. Technical
report 2011/08, Technische Universität Berlin, 2011.

[Gab12] K. Gabriel. Process Evolution based on Transformation of Algebraic High-Level
Nets with Applications to Communication Platforms – Extended Version. Techni-
cal report, Technische Universtät Berlin, 2012. To appear.

[GE12] K. Gabriel, H. Ehrig. Modelling evolution of communication platforms and scenar-
ios based on transformations of high-level nets and processes. Theor. Comput. Sci.
429:87–97, Apr. 2012.

[GR83] U. Goltz, W. Reisig. The Non-sequential Behavior of Petri Nets. Information and
Control 57(2/3):125–147, 1983.

[HM10] K. Hoffmann, T. Modica. Formal Modeling of Communication Platforms using Re-
configurable Algebraic High-Level Nets. ECEASST 30:1–25, 2010.

[Jen91] K. Jensen. Coloured Petri Nets: A High-level Language for System Design and Anal-
ysis. In Rozenberg (ed.), Advances in Petri Nets 1990. LNCS 483, pp. 342–416.
Springer, 1991.

[MM90] J. Meseguer, U. Montanari. Petri Nets Are Monoids. Information and Computation
88(2):105–155, 1990.

[Mod12] T. Modica. Formal Modeling, Simulation, and Validation of Communication Plat-
forms. PhD thesis, Technische Universität Berlin, 2012.

[PER95] J. Padberg, H. Ehrig, L. Ribeiro. Algebraic High-Level Net Transformation Systems.
Mathematical Structures in Computer Science 80:217–259, 1995.

[Rei85] W. Reisig. Petrinetze, Eine Einführung. Springer Verlag, Berlin, 1985.

[Rei90] W. Reisig. Petri Nets and Algebraic Specifications. Technische Universität München,
SFB-Bericht 342/1/90 B, March, 1990.

[Roz87] G. Rozenberg. Behaviour of Elementary Net Systems. In Petri Nets: Central Models
and Their Properties, Advances in Petri Nets. LNCS 254, pp. 60–94. Springer, 1987.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol 1: Foundations. World Scientific, Singapore, 1997.

Proc. PNGT 2012 12 / 12

	Introduction
	Case Study: Communication Platforms and Scenarios
	Modelling of Communication Platforms and Scenarios Using Algebraic High-Level Nets and Processes
	Evolution of Communication Platforms and Scenarios
	Conclusion

