
ISSN 0105-8517

Workshop on Modelling of Objects,
Components, and Agents
Aarhus, Denmark,
August 27-28, 2001

Daniel Moldt

(Ed.)

DAIMI PB – 553
August 2001

DATALOGISK INSTITUT
AARHUS UNIVERSITET

Ny Munkegade, Bygn. 540
8000 Århus C

Preface

This booklet contains the proceedings of the workshop Modelling of Objects, Com-

ponents, and Agents (MOCA'01), August 27-28, 2001. The workshop is organi-
zed by the

"
Coloured Petri Net\ Group at the University of Aarhus, Denmark and

the
"
Theoretical Foundations of Computer Science\ Group at the University of Ham-

burg, Germany. The papers are also available in electronic form via the web pages:
http://www.daimi.au.dk/CPnets/workshop01/

Objects, components, and agents are fundamental concepts often found in the modelling of
systems. Even though they are used intensively in software engineering, the relations and
potential of mutual enhancements between Petri-net modelling and the three paradigms
have not been �nally covered. The intention of this workshop is to bring together research
and application to have a lively mutual exchange of ideas, view points, knowledge, and

experience.

The submitted papers were evaluated by a programme committee consisting of:

Wil van der Aalst (The Netherlands)
Remi Bastide (France)
Jonathan Billington (Australia)
Didier Buchs (Switzerland)

Henrik B�rbak Christensen (Denmark)
Jose-Manuel Colom (Spain)
J�org Desel (Germany)
Susanna Donatelli (Italy)

Nisse Husberg (Finland)
Ekkart Kindler (Germany)
Gabriela Kotsis (Austria)
Fabrice Kordon (France)
Charles Lakos (Australia)

Rainer Mackenthun (Germany)
Daniel Moldt (Chair) (Germany)
Kjeld Hoyer Mortensen (Denmark)
Dan Simpson (United Kingdom)

R�udiger Valk (Germany)
Tomas Vojnar (Czech Republic)

The programme committee has accepted 8 papers for presentation. They tackle the
concepts of objects, components, and agents from di�erent perspectives. Formal as well

as application aspects demonstrate how wide the range can be within which Petri nets
can be used and illustrate at the same time that there is a tendency to use more abstract
concepts for the analysis and design of Petri-net-based models.

Daniel Moldt

I

���������	���

������������������������� �!�"����$#%����&'� �)(����*��+-,/.�021 3546027�8�359:<;=0�>?9A@B1C02D	9E.�,21 FHG�,21�I5JK9�LMNGPOQMN7=RS02753�TU02VWMN3=0�>?MW75RSX�;=7?>?MWD	9ZY\[],^V`_[KMW7=RbaA,2D	J=VN9EcedSMN4 L�1 9E>?9E_/9E[]9�7?>fIgOK4h>?9D	4jii�ii�iii�iikii�iii�ii�iii�ii�i�i�iii�ii�iii�ii�iikiii l
m�n��Eoqp	� �r�ts\����quv*t*���g&xwS�����]sy� �z 9{>t1 M|759E>t4U027=3}L�,2D	JK,27597?>t46~�9{c<>t9753=MW75R)>t�59)dU8]����0^J=J=1 ,^02L��=��ii�iii�ii�iiikii�ii � lm?�\����B����!�r&h����B����� ���r���"�A�����{o�������q��� �k����������������8�7�8�J=J=VNMWL�0�>tMN,27�,2G�027�Y\cKJ=1 9�4 4 M�[]9	aA,2VN,2;=1C93 z 9E>t1CM���9E>t4���,!359VNMW7=R���9E>?�=,!35,2VW,^R�O>t,	0	�Z;=4CMW7=9�4 4v>t,	�Z;=4CMW7=9�4 4�Y�7?[KMN1 ,27=D	9�7t>�ii�iiikii�ii�iii�ii�iii�i�i�ii�iii�ii�iii�iikii�iii�i �2�
����s o�� �b#%�E� �r�8�R29�7?> _���1CMW9�7t>?93���,!3=9�VWVNMN7=R$,2G�dSMN4h>?1 MN�=;g>?93�IgOK4h>?9D	4�.)M�>t�">?�=9q���!�E9�LE>�aA,!,21C3=MN7=0�_>tMN,27}��9{>q8�J=J=1C,202L���ii�ii�i�i�iii�ii�iii�ii�iikiii�ii�iii�ii�iiikii�ii�iii�ii�iii�i�i�ii�iii�ii�iii�i�i �2�
m<��^sy�U���Qsy����b����qp��E��E� �S Z�Q� ¡��8�7�Y|cKJB91CMWD	97?>�.)M�>t��aA,!,^1 3=MN7=0�>?93�8�VWR^9�=1C02MWL z 9{>t1 Mx��9E>t4�024U@B,^1 D	02VNMW4CD¢G�,21£��,�_3=9VNMN7=R"��,2�=MNVW9�8�R^97?>t4}ikiii�ii�iii�ii�iiikii�ii�iii�ii�iii�i�i�ii�iii�ii�iii�i�i�ii�iii�ii�iii�iikii�i �2�
¤��E� ¡B���ts�w n�¡Bsy� �b����q��� ��*��H� n��s *��+-,/.�021 354¥0§¦�7=MN¨=93©8�J=J=1 ,^02L��©G�,21���,�3=9�VWMN7=R§027=3ªTU9�1 MN¨=L0k>tMN,27©,2GS��;=V�>tM�8�R297?>IgOK4h>?9D	4}iii�i�i�ii�iii�ii�iii�i�i�ii�iii�ii�iii�iikii�iii�ii�iii�ii�i�i�iii�ii�iii�ii�iikiii�ii�iii�ii�iii «2�
����¬�� �^&�#SQ®��t&'&y�E&%����)������r��¯#S��������,�3=9VNMW75R"Ig>?0�>t9{_�dS9�JK9�7=3=97?>H���!�E9L{>t4U;=4 MN7=RbaA,2VN,21 9�3 z 9{>t1CM|��9E>?4jii�iii�ii�iiikii�ii�i lk°2�
���&h��s �E�q(]�E������±����¤ª�����²Q�t��k¡B�t� ±��q����$m<���E³´�AP(�P®�B±���¯��� ��µ¶��Q���8·aA02VNL;=VN;=4U,2G z 9E>t1CM|��9{>qaA,^DbJB,27=9�7?>t4ªi�ii�iii�ii�iii�iikii�iii�ii�iii�ii�i�i�iii�ii�iii�ii�ii l � l
��E� *f(]¸����g¬ ��*}�����#S� ��eµ��ot��� �Ig>t9�J=4£+-,/.�021 354�@¹,21CDb0^V!TU91CMW¨=L�0�>tMN,27�,2G-8�R297?>C_��=024C93�Y_��Z;=4CMW7594 4�8�J=J5VWMNL0�>?MW,^7=4¯i l �2�#%�!�E���eµ����g&º¸8�J=J5VWMNL0�>?MW,^7�,2G z 9{>t1CM���9E>?4UMN7���,!359VNVWMN7=RbdSMW4»>t1 MN�=;g>?93�I=,2GP>¼.�021 9)IgOK4h>?9D	4´i�ii�iiiki lk½ �

II

Towards an Adequate Framework for Specifying and Validating

Runtime Evolving Complex Discrete-event Systems

Nasreddine Aoumeur Gunter Saake

Institut f�ur Technische Informationssysteme

Otto-von-Guericke-Universit�at Magdeburg

Postfach 4120, D{39016 Magdeburg

E-mail: faoumeur|Saakeg@iti.cs.uni-magdeburg.de

Tel.: ++49-391-67-18659 Fax: ++49-391-67-12020

Abstract

Although formal speci�cation / validation is nowadays de�nitely accepted as a necessary step in

developing reliable complex discrete-event systems, most of existing formalisms are facing chal-

lenging problems due to the multi-dimensional requirements to be met by such systems. As a

result of this unsatisfactory state of a�air, di�erent system's facets are often separately approached

by di�erent formalisms which avoid any coherent description of the whole system. Besides that,

most of formal proposals are lacking conceptual means for dynamically updating the (initial)

system's speci�cation as unavoidable consequences of technological change, user's requirement

modi�cation, etc.

As a contribution towards a satisfactory framework, we present in this paper a multi-paradigm

formalism that we argue allows coping in a coherent way with most requirements in complex

(discrete-event) systems. This formalism, referred to as evolving Co-nets, soundly integrates: (1)

Concepts from object-orientation and modularity principles for coping with the complex structure

and behaviour of such systems; (2) Timed high level Petri-nets for intrinsically mastering the

concurrent and time depending nature of such systems; (3) A true-concurrency rewriting logic-

based semantics for capturing in a simple way runtime behaviour modi�cation in this proposed

object-based Petri nets, for deriving rapid-prototypes using rewriting techniques, and last but not

least for controlling the behaviour using strategies|possible due to the reective nature of this

logic. All key features of this framework are illustrated using a non-trivial version of the European

train control systems (ETCS).

1 Introduction

Rigorous speci�cation and validation, before any eÆcient and user-friendly implementation, represents

nowadays more than ever the most crucial phase in any complex software development. Moreover,

such a precise description of future software facets with validation and veri�cation of their important

properties becomes unavoidable for software dedicated to critical systems, where any misconception

results in disastrous consequences.

Unfortunately, despite the existing of several formal approaches we are far from any widely accepted

formalism which intrinsically copes with all dimensions characterizing present-day critical systems.

Indeed with most of existing approaches, system's facets are often separately approached by di�erent

formalisms avoiding any coherent description and analysis of the whole system.

As a contribution to this vivid and complex area of research, we present in this paper a new proposal

that we argue allows to cope coherently with the following requirements in complex critical systems:

complex data and knowledge, concurrent and and distributed behaviour, real-time constraints, and

their evolution in a non-previous way.

The model we are proposing is referred to as ECo-nets (an acronym for evolving concurrent

object-oriented Petri nets). More precisely, with respect to the above multi-dimensional requirements

1

the main features of this approach may be highlighted as follows.

Object orientation with modularity: For coping with the �rst dimension, we take pro�t of

all object-oriented abstraction mechanisms (i.e. object, classi�cation, di�erent forms of inheritance,

object-composition and object interaction). Moreover, to allow an incremental description for such sys-

tems, we regard each class rather as a module with an explicit interface including observed attributes

and imported / exported messages. This notion of module is naturally extended to the notion of a

component as hierarchy of modules using di�erent forms of inheritance and object composition.

Timed high-level Petri nets: For adequately dealing with timing constraints with a full exhi-

bition of intra- and inter-object concurrency with di�erent forms of communication, we integrate all

mentioned object-oriented structuring mechanisms into an appropriate variant of timing algebraic

Petri nets. This integration has been �rstly introduced in [2].

Meta-reasoning on object Petri nets: For coping the dynamic evolution in complex discrete-

event systems, we propose a natural extension of this object Petri nets variant. The main ideas �rstly

forwarded in [1] consists in: (1) introducing meta-places those tokens are a complete transition's be-

haviour; associate three (meta-)transitions for updating, deleting or creating any behaviour as tokens;

(3) relate this meta-level with the object level through appropriate read-arcs.

Rewriting logic-based semantics: For rapid-prototyping purposes and for a clean true concur-

rency semantics, we interpret the behaviour of di�erent transitions in rewriting logic [12]. Also, for

capturing the runtime behaviour we propose a two-step valuated inference rule in this logic. The other

crucial advantages of this logic is its intrinsic reective nature [6]. We take advantages of this property

for composing di�erent transitions behaviour in a runtime way, leading to di�erent strategies which

may manifest such systems.

The proposed approach, namely ECo-nets is incrementally introduced using a non trivial version

of the European train control systems (shortly ETCS). This case study has been established as one of

two applications in a (DFG) project1. This complex case study manifests all the mentioned crucial fea-

tures of critical systems. Indeed, �rst, it is composed of several synchronously and/or asynchronously

communicating components including: trains, gates, sensors, control-light and software controllers.

Secondly, each component includes complex multi-layered data and concurrent behaviour, and shows

only part of them to other components. Thirdly, all components work under very precise and critical

timing constraints. Fourthly, the technology used in each component is rapidly changing towards a

more and more sophisticated ones.

The rest of this paper is organized as follows. In the second section we informally introduce the

ETCS case study we deal with in this paper. The third section presents how di�erent components are

formally conceived using the Co-nets approach. In the next section we concentrate on the runtime

behaviour modi�cation in Co-nets using this running application, leading to the introduction ECo-

nets. In the �fth section, using the reective level of rewriting logic, we show how strategies over

rewrite rules gouverning ECo-nets behaviour may be expressed. The last section summarizes the

achieved work, and outlines our future work. We point out however that due to space limitation our

presentation is mostly intuitive; corresponding rigorous de�nitions of all concepts may be found in [3].

1"Integration of Software Speci�cations for Engineering Applications" supported by the German Research Commu-

nity (DFG).

2

2 The European Train Control System (ETCS)

2.1 ETCS problem : technical presentation

In its technical abstract version [15] as a generalization of the railroad crossing systems [8], the ETCS

problem can be expressed as follows. A railroad crossing with several train tracks and common gates

can be represented as depicted in Figure 2.1. Sensors along every track detect oncoming and departing

trains. Based on signals from these sensors, an automatic controller signals the gate to open or close,

and also manages light-control in consequence. After receiving a signal form a sensor, the train enters

in what is called the region of interest (shortly, R); afterwards depending on the state of the gate the

train has to stop or to cross the road (I).

I

egionR
,

nCrossing

Sensors Sensors

�1 �2

dw

up

Figure 1: An abstract schema of a railroad crossing.

The technical timing requirement may be expressed as follows.

� �1 (resp. �2) represents the lower (resp. the higher) timestamp for the train to reach the road

after being detected by a sensor (or to be detected by a sensor after leaving the road). These

two limits depend among other on the current speed of the train.

� I � R ; g(t) 2 [0; 90]; with g(t) = 0 corresponding to gate down.

� f�ig of occupancy intervals : one or more trains are in I . ith occupancy is represented as

�i = [�i; �i]. �i is the time of the ith entry of a train into the crossing when no other train is in

the crossing. �i is the �rst time since �i that no train is in the crossing.

� Given two constants �1 > 0 and �2 > 0 (with dw + �1 < �1 < dw + �2 and dw + �1 < �2 <

up + �2), the problem is to develop a system to operate the crossing gate that satis�es the

following two properties:

Safety Property: t 2 [i�i) g(t) = 0 (the gate is down during all occupancy intervals.)

Liveness Property: t 62 [i[�i � �1; �i + �2]) g(t) = 90. (the gate is up when no train is in

the crossing)

2.2 ETCS : an informal OO description

In this version of ETCS we consider �ve components|as classes with encapsulated behaviour and

explicit interfaces. Four components belong to the environment, namely Train describing trains trav-

eling on controlled tracks, Gate as operating road-crossing gates, Sensors for automatically detecting

trains approaching the gates, and Light-Control for managing the lights at each gate. The Controller

3

component corresponds to the controlling software system to be installed for operating the gates. Us-

ing OO notations adopted from [16] and slightly adapted for emphasizing the distinction between any

component's local and observed features and the inter-component interaction, we depicted in Figure

2 a diagrammatic OO description of this ETCS system.

G2R

R2G

R
ai

se

The European Train Control System

P
os

it
io

n
:

..

T
ra

ck
:

..

St
at

eG
:

..

R
ep

ai
rG

L
ow

er

D
ef

cG

The Gate component

StateL : ..

EnterI

The Train Component

The Light component

DefcctS
StateS : ..

The Sensor component

Dt-in

Dt-out

TrainlNo : ..

EnterR

Stop

Exit

Position : ..

AddCar

ChgSp

LmtSp

CarNb: ..

SchedTr : ..

StateT : ..

SeatNb : ..

The Control component

Spd: ..

SoonAr : ..

NoSoonAr : ..

onG : R

onT : G

 Addschd

 Remvschd

Soon-Arv

NoSoon-Arv

Figure 2: Informal description of di�erent ETCS components

In some details, attributes and method-invocations or messages of each component are as follows:

Train component: Besides the self-explained (local) attributes |TrainNo, SeatNb, CarNb|,

there is the position pos which is an observed one. This attribute may have three values: E(lsewhere)

(\not in the section of interest"), R (\in the region of interest"), or I (\in the railroad crossing").

Also, the current speed is represented by Spd. Finally, by StateT we refer to the state of train

which may be on (i.e. traveling) or o� expressing that the train is stopped due to gate failure for

instance. The operations acting on this (train-) state are the following. EnterR allows for changing

the attribute position from E to R, and at the same time informs the Controller component of this

arrival. EnterI (resp. Exit) corresponds to the entry (resp. leaving of) in the railroad. Besides that,

we have included an operation AddCar that allows for adding new car (with a corresponding number

of sites)2. Also, when the train received (from other components) a stop message its state becomes o�.

Gate component: This component is mainly characterized by the position of the gate that may be

Up, Down (shortly, Dw), and by the state of each track (i.e. occupied or free, shortly Oc, fr). That is,

in this version we allow a gate with several tracks. The associated messages on this state are Lower,

Raise which have to be sent by the Controller component, and also a systematic appearance of a defect

message in case of a breaking-down of the gate. In such case this message is �rst communicated to

the controller component and then broadcasted to all trains, scheduled for this gate, to be stopped

until the gate is being repaired; thus we have also another message denoted repair.

2This operation is irrelevant for the system, but it allows us to make explicit the intra-object concurrency exhibition.

4

Controller component: It uses as observed attributes: SchedTr a set of already scheduled trains

(with corresponding crossing times and associated gate and track) allowed to cross the gate, an

(boolean) attribute SoonArrival indicating that a train will soon arrive (in less than Gamma units

of time), and another boolean attribute NoSoonArrival indicating that no train is scheduled for a

suÆcient time (i.e. more than Gamma) in which case the gate should be Up. Two messages are to be

considered in this component. First the scheduling of a given train (i.e. its addition to the SchedTr

list). Each schedule is a tuple composed of: train identity, corresponding gate, associated track in

such gate, and the time to pass this gate. Second the removal of a scheduled train after passing a

corresponding gate. After passing a sensor, we require that the speed of the train should be less than

some constant Sp1; when a sensor is displaying a defect state such speed should be less than Sp2 (with

Sp2 < Sp1)

Sensor component: This component is mainly characterized by the state of the sensor that may be

Ok or defect (shortly, Dfc). The associated messages on this state are detect and defect; where detect

returns the time and the corresponding train, whereas defect indicates that the corresponding sensor

is not working.

Light-control component : This component is mainly characterized by the state of the light system

(i.e. as for sensor Ok, Dft), the color of light in direction of the gate as well as the one in direction of

the tracks (shortly, onG, onT. The methods that may exhibit this component are the change between

di�erent colors (i.e. Red-Yellow-Green).

3 Co-nets for components speci�cation and validation

The purpose of this section is to review and apply, in an incremental way,3 to this ETCS case study the

main Co-nets concepts for deriving a formal component-based speci�cation which can in addition be

directly validated. First, the notion of component signature is presented and applied to derive a formal

speci�cation of di�erent ETCS component signatures. Second, we highlight how the (concurrent)

behaviour of di�erent components is then derived. Third, we present how rewrite rules gouverning

such behaviour are obtained. Fourth, the general pattern for interacting di�erent components through

their observed part is sketched and applied to the ETCS problem. We note however that due to space

limitation inheritance is not addressed, and only some components are thoroughly speci�ed.

3.1 Co-nets component signature

The component signature de�nes the structure of object states and operations to be accepted by such

states. The OO signature that we propose can be informally[] described as follows:

� Object states are (algebraic) terms as tuples of the form: hIdjatr1 : val1; ::; atr k : valk; at bs1 :

val01; ::; at bsk0 : val
0

si; where Id is an observed object identity; atr1; ::; atrk are local attribute

identi�ers having as current values respectively val1; ::; valk. Attributes observed by other com-

ponents are identi�ed by at bs1; :::; at bss with val01; ::; val
0

k as respective current values.

� This object state is allowed to be split (resp. recombined) at a need. This 'splitting / recombi-

nation' is regarded as an axiom, which may take the form

hIdjattrs1; attrs2i = hIdjattrs1i � hIdjattrs2i

with attri as an abbreviation of atri1 : vali1; :::; atrik : valik. The multiset operator � will be

explained later.

� Messages are just operations but with at least one argument of object state sort, that is, they

should be sent or received by objects. We also make a clear distinction between local messages

and external ones, as imported or exported messages. Local messages trigger object states

change in a given component, whereas external ones allow for interacting di�erent components.

3Which can be seen as inherent methodology for constructing complex systems using Co-nets approach.

5

We note that for describing component signature, we adopt as syntactical notations an OBJ [7]

algebraic language notation-like.

3.1.1 Signatures of di�erent ETCS components

For the ETCS problem �ve Co-nets component signatures have to be speci�ed. But �rst we have

to specify the common (algebraic) data level for di�erent object values and message parameters. We

note that just the train component signature is described below; the other signatures are sketched in

the appendix.

In the data level speci�ed below, there are particularly the OId sort which stands for the object

identity sort, the T ime that we assume is speci�ed elsewhere, and the di�erent states of the gate (i.e.

GUp for going up, Up, etc). Finally, we have also the scheduled set of trains as a list of tuples of tuples

of the form [OId of train; [OId of gate1; tracks�number1; crossing time1]j[OId of gate2; tracks�

number2; crossing time12]j:::]:::. That is for each train we group together all road-crossings (infor-

mation) it is going to pass through. This facilitate, for instance, any removal as well as rescheduling

due to gate failure.

obj ETCS Sturcture is

protecting OId Time Bool Nat Real .

sorts Gate PositionT PositionG .

subsorts OId-Gate OId-Train < OId .

subsort Track-Nb < Nat .

sorts SchedSet Elt Color.

subsorts T-roadElt < T-roadList.

subsort nil < SchedSet .

subsort Sched-Elt < SchedSet .

op : GUp, Up, GDw, Dw : ! PositionG .

op Gr, Red : ! Color .

op : Gamma : ! Time .

op : [, ,]: OId-Gate Track-Nb Time ! T-roadElt .

op : | : T-roadElt T-roadList ! T-roadList . [assoc. comm.]

op : [,] : OId-Train T-roadList ! Sched-Elt .

op : . : SchedSet SchedSet

! SchedSet [assoc. comm.] .

op : in : Elt SchedSet ! Bool .

var S : SchedSet .

vars E, E' : Elt .

vars Now, t : Time .

eq E in nil = false .

eq E in E'.S =

if E == E' then true else E in S fi.

endo.

Train component signature: From the above OO informal description of the ETCS, the formal
train component signature may be directly derived as follows.

obj Train is

protecting ETCS Structure .

subsort Id.Train < OId .

subsort Local Train External Train < Train .

subsort EnterI AddCar < Local Train Mes .

subsort EnterR Exit < Exported Train Mes .

(* local attributes *)

op h jSpd : ; NbSeat : ;NbCar : i :

Id.Train Real NAT NAT ! Local Train.

(* observed attributes *)

op h jPos : ; StateT : i : Id.Train POSITION ! External Train .

(* local messages *)

op AddCar: Id.Train Nat ! Local Train Mes .

op ChgSp: Id.Train Real ! Local Train Mes . (* for speed change *)

(* Exported messages *)

6

op EnterR: Id.Train OId ! Exported Train Mes

op Exit: Id.Train OId ! Exported Train Mes

op EnterI: Id.Train ! Exported Train Mes .

op LmtSp: Id.Train Real ! Exported Train Mes (* for speed limitation *).

vars T : Id.Train .(* to be used in the net *).

vars P, P1 : REAL.

endo.

3.2 Co-nets component speci�cation

On the basis of a given component signature, we de�ne the notion of component speci�cation as a

Co-net in the following straightforward way.

� Co-nets places are precisely de�ned by associating with each message generator one (message)

place, that is, such messages places contain associated message instances sent or received by

objects but not yet performed (i.e. by �ring their corresponding transitions). Also, with each

object sort a (object) place is associated, that is, an object place contains current object states

with respective values. We note that places corresponding to external messages will be drawn

with bold circles.

� Co-nets transitions reect the e�ect of messages on object states to which they are addressed.

Conditions may be associated to them restricting their application. Moreover, we distinguish

between local and external transitions. Local transitions reect object states change in a given

component, whereas external ones capture the interaction between di�erent components. For

both we propose in next section appropriate general patterns.

� We deal with the real-time constraints in our approach by attaching timestamps or time internals

to transitions and to time-dependent messages. An appropriate semantics, such time-dependent

transitions will be interpreted in timed rewriting logic [10].

3.2.1 ETCS component speci�cation in Co-nets

As for the ETCS component signatures, we comment here with some details on the Train component

whereas the other component speci�cations are sketched in the appendix.

The Train Co-net component: This net as depicted in Figure 3 is composed of an object place

denoted by TRAIN containing current (object) states of di�erent trains, three places corresponding

to di�erent local messages, and four places associated with observed messages (depicted in the left

hand side with bold lines). The e�ect of each message is captured by an appropriate transition. For

instance, the e�ect of the message EnterR(T) is captured by the transition ENTER-R which takes as

input the position of the train which should be E(lsewhere). After the �ring of this transition, there

is a sending of EnterI(T) message and change of the position to R(in the region of interest) (i.e.

hT jPos : Ri)4). It is also worthwhile noting that transitions labeled by EnterI, Enter-R and Exit

are time-dependent transitions as required in the informal (technical) description.

3.3 Co-nets Component semantics

After highlighting how Co-nets components are constructed, we focus herein on the behavioural

aspects, that is, how object states' components have to change in a coherent and true concurrent

way. By coherent we speci�cally understand the respect of object uniqueness and the encapsulation

property. For this aim, we �rst propose a general pattern that has to be respected in constructing

transitions in such components (i.e. local transitions). Second, a rewrite rule is derived for each

transition on the basis of this general intra-component transition pattern.

4Remark that due to the splitting axiom only the position which is the just concerned attribute in this e�ect is

selected.

7

The Train Component as a Co-net

.

<T | Pos: R, StateT : off, Spd : 0>

 Exit(T1)

<T1 | StateT : on, Pos : E, NbCar : N, Nbseat : Ns, Spd: s1>

Exit(I)

<T
 |

P
os

 :
 R

, S
ta

te
T

:o
n>

EnterI(T,t1)

AdCar(T, Ns)

 EnterR(T1,.)

EnterI(T,t)

ChgSp(t1,s1)
<T | StateT:on, Spd:S1>

C
hg

Sp
(T

,S
)

<T| StateT:on,Spd:S>

 LmSp(T1,s1)

 Rest(T1)

LmSp(T, S)

<T
 |

P
os

 :
 I

>

AdCar(T.Nc)

<T | StateT: on, Pos : E>

<T | Spd : 0, NbCar: Nc, Nbseat: S>

TRAIN

<T | Pos: R, StateT : on, Spd : S>

<T
 |

P
os

 :
 I

, S
ta

te
T

 :
 o

n>

<T | StateT:off, Spd:0>

<T | StateT:on, Spd:min>

<T | Pos : R, StateT : on>

Stop(T)

<T
 |

P
os

 :
 E

>

EnterI(T,t1)

E
nt

er
R

(T
,t

)

 Stop(T1)

ChgSp(T,S)

<T | Spd : 0, NbC : Nc+1, Nbseat : S + Ns>

True

Restart

. . ..

RESTART

ENTERI

EXIT

LMSP

True

. . ..

. . ..

ENTER

True

True

EnterR

LmtSp

True

ADDC

. . ..

Exit

Stop

. . ..

. . ..

. . ..

CHGSP
True

True

True

CHGSP

. . ..

Stop

[�1; �2]

Figure 3: The Train Component as a Co-net.

This general transition pattern is depicted in Figure 4, and it can be intuitively explained as follows:

The contact of just the relevant parts of some object states in a given component Cp, |namely

hI1jattrs1i
5 ;..; hIk jattrski| with some messages msi1 ; ::;msip declared in this component results

in the following e�ects: (1) the messages msi1; ::;msip disappear; (2) some (parts of) object states

participating in the communication change, namely hIs1 jattrss1 i; :::; hIst jattrsst i; (3) some objects

may be explicitly deleted by sending them delete messages; and (4) new messages may be sent to

objects of Cp, namely ms0h1 ; ::;ms0hr .

Conditions on attributes values
 and messages parameters

. .

. .

t

obj

.

hIdijatri1
: vali1

; :::i

k
�
i=1

hIdijattrsii

st
�

i=s1

hIdijattrs
0
ii �

ir
�
i=i1

hIdijattrsii

Mesi1 Mesip

Mesh1 Meshr

msi1
msip

msh1 mshr

Figure 4: A general intra-component or local transition pattern

We note in this pattern that markings in di�erent places is as usual regarded as a multiset of tokens.

Such (marking) multiset is constructed using a union operator we denote by �.

3.3.1 Rewrite theory for Co-nets semantics

As we mentioned in order assign to Co-nets behaviour a true-concurrency semantics with full exhibi-

tion of intra- and inter-object concurrency instead of an interleaving or even a step-based semantics like

5With attrsi as a simpli�ed notation of atri1 : vali1 ; ::; atrik : valik .

8

for colored Petri nets [9], each transition is to be gouverned by a corresponding rewrite rule interpreted

in rewrite logic [12]. The main ideas (adapted from the algebraic net in [4]) consist in: (1) associate

with each marking mt its corresponding place p as a pair (p;mt); (2) to capture the current state of a

Co-nets as multiset over di�erent pairs (pi;mti) we introduce a new multiset generated by a union

operator we denote by
, that is, a Co-nets state is hence described as (p1;mt1)
 (p1;mt2)
 :::;

(3) in order to exhibit a maximal of concurrency we require the distributivity of
 over �, that is, if

mt1 and mt2 are two marking multisets then we always have: (p;mt1 �mt2) = (p;mt1)
 (p;mt2).

Finally, intra-object concurrency is to be ensured by the splitting / recombining axiom.

On the basis of these more or less intuitive ideas, the general rewrite rule gouverning the general

transition pattern depicted in Figure 4 take the following form:

t: (obj;
k

�
i=1
hIdijattrsii)

p

k=1

(Mesik;msik)) (obj;
t

�
k=1

hIdsk jattrs
0
sk
i �

r

�
k=1

hIdik jattrsiki)

r

k=1

(Meshk ;mshk) if Condition.

3.3.2 Application for deriving Train transitions rewrite rules

By applying this general form of rule, it is not diÆcult to generate the rules governing ETCS compo-

nents' behaviour. For instance, the rewrite rules associated with the train component are as follows:

ADDC: (Train; hT jSpd : 0; NbCar : Nc;Nbseat : Si)
 (AddC;AddCar(T;Ns)

) (Train; hT jSpd : 0; NbCar : Nc+ 1; Nbseat : S +Nsi)

ENTER: (Train; hT jPos : E; StateT : oni)

(EnterR;EnterR(T;C))
[�1;�2]
) (Train; hT jPos : R; StateT : oni)

 (EnterI;EnterI(T))

ENTERI: (Train; hT jPos : R; StateT : oni)
 (EnterI;EnterI(T))

) (Train; hT jPos : I; StateT : oni)
 (Exit;Exit(T;C))

EXIT: (Train; hT jPos : I; StateT : oni)
 (Exit;Exit(T;C))

) (Train; hT jPos : E; StateT : oni)
 (Exit;Exit(T;C))

STOP: (Train; hT jPos : R; StateT : on; Spd : Si)
 (Stop; Stop(T))

)(Train; hT jPos : R; StateT : off; Spd : 0i)

LMSP: (LmtSp; LmtSp(T;S)) (CHGSP;ChgSp(T; S)

CHGSP: (CHGSP;ChgSp(T; S)
 (Train; hT jStateT : on; Spd : S1i)

)(Train; hT jStateT : on; Spd : Si)

It is worth observing that a timestamp () and time-interval ([�1; �2]) label the two time-dependent

transitions, namely ENTER and ENTERI . Such timed-rewrite rules are interpreted in Timed

rewrite logic [17] as a straightforward extension of rewrite logic [12]. Using the four inference rules of

this logic and particularly the concurrent replacement ones (with the state splitting / merging axiom

and the distributivity of
 over �) any reachable state can be computed in true concurrent way

starting from an initial marking for di�erent places. Moreover, by simultaneously accompanying such

computation with graphical simulation most of misconception, errors and missing can be detected and

then corrected.

3.4 Co-nets components interaction

Taking into account that object state change in each component is ensured by the already described

intra-component pattern, the inter-component interaction may be made explicit as follows: The con-

tact of some external parts of some object states, namely hI1jattrs ob1i ; :::;hIkjattrs obki, which may

belong to di�erent components namely Cp1; :::; Cpm with some external messagesmsi1; ::;msip results

in the following: (1) the messagesmsi1; ::;msip disappear; (2) some external parts of object states par-

ticipating in the communication change;(3) new external messages (that may involve deletion/creation

ones) are sent to objects in di�erent components, namely ms0h1; ::;ms0hr. This inter-component inter-

action or external transition general pattern is depicted in Figure 5.

The rewrite rule associated with this transition general form presents no particular treatment, and is

deduced exactly in the same way as for the intra-component pattern.

9

.
. . Conditions on attributes values

 and messages parameters

. .

. .

t
hId

k
jatr bs

k1
: val

k1
; :::i

hId
l
jatr bs

l1
: val

l1
; :::i

Bs(obj1)
Bs(objp)

Mesoi1 Mesoip

Mesoh1
Mesohr

msi1
msip

msh1 mshr

�
i

hId1i
jattrs bs1i

i

�
j

hIdpj jattrs bspj i

�
i

hId1i
jattrs0 bs1i

i
�
j

hIdpj jattrs
0 bspj i

Figure 5: The Inter-component interaction pattern

3.4.1 Interacting di�erent ETCS components

To achieve the desired behaviour in the ETCS problem, the �ve components have to interact, with

respect to this inter-component pattern, using their imported / exported messages and observed

attributes. This interaction is depicted in Figure 6. In this interaction, for instance, the transition

Dt-I takes as inputs: (1)the detection by sensors of a given train T approaching a gate G on a track

K(i.e as input message Dt-in(T,G,K,t)); (2) and the e�ective scheduling of such train at this time t

(using the exported message (Sn(T,G,K,t)). The resulting output messages of this transition are: (1)

a sending to the train component of the message EnterR(T,G,K,now) (i.e. entering into the region of

interest 'R'); (2) a sending of a message for limiting train speed to Sp1; and (3) a sending of message

to the light component for changing its light color from green to red. The remaining transitions are

also constructed following the same reasonning.

The rewriting rules governing this interaction can be captured in a similar way, as done for the internal

behaviour, from the e�ect of each transition.

4 Runtime Evolution in Co-nets

The purpose of this subsection is, �rst, to review the main ideas and corresponding constructions

for handling runtime modi�cation that we �rst proposed in [1]. Then, we propose a more adequate

inference rule for propagating a given behaviour from the meta-level to the object level. Finally, we

show how such meta-level allows for an ETCS evolving speci�cation.

4.1 Meta-places and non-instantiated transitions constructions

For handling runtime modi�cation of Co-nets component speci�cations, the constructions we pro-

posed in [1] may be summarized as follows:

1. In order to free someCo-nets transitions6 from their rigidity, we propose to replace each of their

three components| namely input tokens inscribing their input arcs, output tokens inscribing

their output arcs and their conditions| by appropriate variables those sorts are exactly the

sorts of associated input or output places. We refer to such transitions with only variables

as inscriptions as non-instantiated transitions. Their general form is sketched in the lower

right hand-side of Figure 7. In this general pattern for non-instantiated transitions, all (arc-)

inscriptions, namely ICobj ; ICi1 ; ::; ICip for input arcs, CTobj ; CTh1 ; ::; CThr for output arcs and

TC for the condition are to be considered as appropriate variables.

2. Second, for each becoming non-instantiated transition we gather its initial (i.e. before their

replacement by variables) condition and arc inscriptions with their respective input /output

places into a a single tuple of the form: htransition id: version j (input-)multiset,

6In the same spirit as in [14], we assume that some behaviour, i.e. transitions, is �xed forever reecting minimal

properties of the speci�ed application.

10

Light

<L1 | Gate : G, aTgt : gr, aTtr: red, state : ok>

Dfct-Sc

Se
ns

or

E
xp

or
te

d
F

ea
tu

re
s

of
 th

e
Se

ns
or

 C
om

po
ne

nt

Controller

Remove

E
xp

or
te

d
F

ea
tu

re
s

of
 th

e
T

ra
in

 C
om

po
ne

nt

Soon

. . . .

Dtc(k1, T1, t1)

. . . .

T
ra

in

.
.

 .
 .

.
.

 .
 .

. . . .

Sn(t1,g1,k1,t1)

. . . .

Lower-G

LwG(g1, k1)

LW

. . . .

Dt-in

Dt-out

R
m

v(
T

rk
,G

,T
, t

1)
Sn(T, G, Trk, t)

<T
r1

 |
St

at
eT

:
ok

>

LmSp(T,sp2)

. . . .

Exported Features of the Controller Component

.

G
at

e

True

True

TrueTrue

Tf

Tr

. . . .

RepG

RepG(g1)

DefG
DefG(g1)

. . . .

Rmv(t1,g1,k1,t1)

RestL StopL

RestL(T1.T2..)

RepG(G)

DefG(G)

StopL(T.Lt)

StopL(Lt)

RestL(T.Lt)

StpT(T) ResT(T)

R
es

tL
(L

t)

.
.

 .
 .

St
pT St

pT
(T

1)

R
es

T
(T

1)

.
.

 .
 .

R
es

T

G2R(l1,g1)

. . . .

G2R

Exported Features of the Light Component

R2G
R2G(li,gi)

. . . .

R
2G

(G
)

G
2R

(G
)

Td-out(k1)

<S
1

| S
ta

tS
:

ok
>

. .

.
 .

(N
ow

 -
 t)

 <

T
ru

e

DfS(s1,g1)

Enter-R(T, G, K, now)

Enter-R(T, G, K, now)

E
x(

T
1,

K
1,

..)

.
.

 .
 .

E
xi

t
L

im
it

-S
p

Enter-R(T, G, K, now)

L
m

Sp
(T

1,
Sp

1)
E

nt
R

(T
1,

K
1,

.)

LmSp(T,sp1)

Dt-out(T,G,K, t)

Dt-in(T,G,K, t)

T
ru

e

Exit(T,Tk, G, Tm)

Lower(G, K, now)

Enter-R(T, K, G, t)

T
ru

e

<G
1

| S
ta

tG
:o

k>

. . . .

. .

.
 .

Exported Features of the Gate Component

T
ru

e

< G | StatG : Ok>

< G | StatG : Ok>

Exit(T,K, G, Tm)

R
ai

se
-G

R
ep

-G
(g

1)

. .

.
 .

R
ep

-G

D
fc

-G
(g

1)

. .

.
 .

D
fc

-G

Dfc-G(G)

RaisG(G, K, now)

R
A

IS

Rep-G(G)

. .

.
 .

R
ai

sG
(g

j,
kj

)

StopL(T1.T2..t)

.
.

 .
 .

D
T

-O

D
T

F

Sn
(T

, G
, K

, t
)

DfS(S,G)

<C1 | Gate:G1, Schd:[t1, k1, tm1]...].., StateC : ok>

Enter-R

D
T

-I

<T | StateT: Ok>

Figure 6: The Train-Gate-Controller-Sensor-Light Interacting using observed features

(output-)multiset, condition i. In this tuple transition id refers to the label of the

transition, whereas version is just a natural number indicating that this tuple can be regarded

as a particular version of a behaviour associated with this transition; this will be more clear

in the following. In particular, the precise form of such a tuple with respect to the transition

(general-pattern) T in Figure 4 takes the following form; where the index i represents a particular

version of such transition.

hT : i j (obj; ICobj)
ip

k=i1

(Mesk; ICk); (obj; CTobj)
hq

k=h1

(Mesk; CTk); Conditioni

3. Third, we consider such `behaviour' tuples as tokens w.r.t. a new place, namely meta-place

in Figure 7. This place constitutes the �rst element of the proposed meta-level. On the basis

of this behaviour as tokens, it becomes quite possible to delete some of them, modify some of

them or introduce new ones: This corresponds respectively to the transitions DEL, MODIF and

ADD in Figure 7 and their corresponding message places Del-Bh, Chg-Bh and Add-bh. We note

that the transition ADD is in fact composed of two transitions: ADD1 and ADD2 corresponding to

11

the cases of adding a new version to an existing transition behaviour or a (�rst version for) new

transition7.

4. Finally, using an appropriate read-arc we relate the two levels, i.e. the meta-place in the meta-

level with each non-instantiated transition in the object level.

. . . .
Chg-Bh(T,..)

General Pattern of Run-time Modified Internal Transitions

. . . .

. . . .

Add-Bh(T,..)
. . . .

Del-Bh(T,..)
. . . .

The Meta-object Level Gouverning the Modified Behaviour

obj

General Pattern of rigid Internal Transitions

True

Meta-Place

. .

Add-Bh

. .

. .

T

DEL
True

T(i)
TC

True

True

Del-Bh

ADD2 ADD1

MODIF

. .

Chg-Bh

Conditions on attribute values
 and message parameters

hIdijatri1
: vali1

; :::i

k
�
i=1

hIdijattrsii

st
�

i=s1

hIdijattrs
0
ii �

ir
�
i=i1

hIdijattrsii

Mesi1Mesi1
MesipMesip

Mesh1Mesh1 MeshrMeshr

msi1 msip

msh1 mshr

ICi1
ICip

CT
h1

CT
hr

ICobj

CTobj

Add Bh(T;

i

(Pi; ICi);

j

(Qj;CTj); TC)

hT
k
: n1j(obj;�

s
hId1jattrsis

i)

r
(Mesir

;mesir
); (obj;�

h

hId
0
1jattrs

0
i
h

i)

l

(Mes
h
l
;mes

h
l
); TC1i

hT : kjIC; CT; TCi

�
hT : kjIC; CT; TCi

hT : k + 1j

i

(Pi; ICi);

j

(Qj;CTj); TCj)i

hT : 1j

i

(Pi; ICi);

j

(Qj;CTj); TCj)i

Del Bh(T; i) hT : ij ; ; i
Chg Bh(T; i;

j

(P 0
j
; IC

0
j
);

h

(Q0
h
;CT

0
h
); TC0)

hT : ij

i

(Pi; ICi);

r
(Qr;CTr); TCi

hT : ij

j

(P 0
j
; IC

0
j
);

h

(Q0
h
;CT

0
h
); TC0i

hT : ij(obj; IC
obj

)

ip

i=i1

(Mesi; ICi); (obj; CTobj)
hr

j=h1

(Mesj ; CTj); TCi

Figure 7: The general pattern for handling dynamic behaviour in Co-nets

Remark: To deal with runtime behaviour modi�cation also for time-dependent transition it suÆces

just to add another component to the tuple construction in the above conceptualization. More pre-

cisely, under the assumption that the transition T (general-pattern) in Figure 7 takes tm as unit of

times or time interval then, the corresponding behaviour as tuple is:

ht : i j (obj; ICobj)
ip

k=i1

(Mesk; ICk); (obj; CTobj)
jq

k=j1

(Mesk; CTk); Condition; Tmi

.

4.1.1 Semantical part : the meta-inference rule

For theoretical underpinning of these constructions, we propose with respect to the same Co-nets

rewrite logic semantic-based an adequate inference rule that can be regarded as a more exible formu-

lation of the one proposed in [1]. The main ideas under this reformulation as described below are the

following. For each non-instantiated transition we generate a rewrite rule in the same way as we done

for usual Co-nets transitions except that we introduce a new binary operator denoted kr separating

the read-arc inscription from other pairs of place-tokens. This operator is necessary because we should

express the fact that tokens selected using a read-arc are not from the object level (i.e. the Co-nets

7The operator � capture the notion of inhibitor arc, in the sense that the inscription should not be in the current

marking.

12

state) but from the meta-level state. With respect to the general-form of non-instantiated transitions

in Figure 7 this rule labeled by tnins is derived as follows.

t
nins : (Pmeta; ht : ij(obj; ICobj)

ip

i=i1

(Mesi; ICi); (obj; CTobj)
jq

j=j1

(Mesj ; CTj); TCi kr(obj; ICobj)
ip

i=i1

(Mesi; ICi)

) (obj; CTobj)
jq

j=j1

(Mesj ; CTj) if TC

However, due to the its inference between the two-level (i.e. the meta-level through the read-arc

and the object level) , this rewrite rule cannot be directly applied, and we therefore have to gener-

ate from it a usual rewrite rule or an instantiated rule we denote by tins(i). This process consists

in selecting through di�erent substitutions (�i) a particular behaviour from the meta-place, and it

can be captured through the following inference rule where M(Pmeta) represents the current marking

of the place meta-place, while the We also mention that the notation j[Tpi]j� represents a class of

(multiset) term (over the associativity, commutativity of�) those sort is exactly the one of the place pi.

For each (meta-)rewrite rule :

t
nins : (Pmeta; ht : ij(obj; ICobj)

ip

i=i1

(Mesi; ICi); (obj; CTobj)
jq

j=j1

(Mesj ; CTj); TCi kr(obj; ICobj)
ip

i=i1

(Mesi; ICi)

) (obj; CTobj)
jq

j=j1

(Mesj ; CTj) if TC

We have:

9�o; �o0 2 [Tobj]�; 9�i 2 [TMesi]�; ::; 9�j 2 [TMesj)]�; 9� 2 [Tbool]

ht : k j(obj; �o(ICobj))
ip

i=i1

(Mesi; �i(ICi)); (obj; �o0(CTobj))
hq

j=h1

(Mesj ; �j(CTk)); �(TC)i

tins : (obj; �o(ICobj))
ip

i=i1

(Mesi; �i(ICi))) (obj; �o0(CTobj))
hq

j=h1

(Mesj ; �j(CTk)) if �(TC)

A time-dependent adaptation of this inference rule can also be straightforwardly obtained by adding

the time component.

4.1.2 Application to the ETCS case study

As we pointed out the European train control system in general are intrinsically depending to tech-

nological advances and travelers' wishes, and therefore their speci�cation should not be �xed at once;

rather it should be exible and adaptable in consequence. Moreover, due to the vitality of the system

it is more necessary to proceed such change while the system remains still working. As an application

to the conceptualization we are proposing for dealing with such runtime modi�cation, we comment

in the following on how generating a exible train component with a signi�cant part of its behaviour

becomes dynamically modi�able. Indeed, in our �rst Co-nets speci�cation of this component de-

picted in Figure 3, only one �xed way have been proposed for each elementary behaviour (reected by

transitions e�ect). This �rst description may rapidly become unsuitable with introduction of sophis-

ticated trains or new regulation. We limit ourselves here to two particular cases. Firstly, it is more

reasonable to regard the time-interval [�1; �2] needed for entering the region of interest, through the

transition ENTER, as a function of the speed, let say for instance [(S � 10) � Cst; S � Cst]; where S is

the current speed and Cst is natural constant reecting the width of this region. Secondly, it is more

logical to impose a maximal speed in transitions changing speeds (i.e. transition CHGSP).

In Figure 8 we have adapted the �rst Co-nets speci�cation for coping with such dynamic be-

haviour. More precisely, �rst we have to set the two transitions ENTER and CHGSP as subject to

modi�cation (i.e. as non-instantiated transitions). Following the above conceptualization, we have

to replace their inscriptions by appropriate variables and reported their initial behaviour as tokens

in the meta-place. We have used as variables ICei (resp. ICci), CTei (resp. CTci) and TCei (resp.

TCci) for the transition ENTER (resp. LMSP). The corresponding behaviours of these two transitions

are considered as initial or �rst versions and correspond to the two �rst (meta-)tokens in the place

Meta-place. We note that for sake of clarity we have omitted the (meta-) messages and transitions

of the meta-level that remain exactly as in Figure 7.

13

Besides these initial behaviours for the two transitions (now becoming optional), we propose to

take into account the two wished changes, namely a speed-depending interval time for entering the

region of interest and highest speed limitation. These tow new behaviour versions correspond to the

third and fourth tokens in the meta-place respectively. In the new version for the transition ENTER,

the time-interval (i.e. the last component in this tuple) is depending on the speed, and we require

that the maximal speed while entering this region is to be less that 40 for instance. In the new version

for the transition CHGSP we propose that the speed should not exceed for instance 160 when the train

is elsewhere and 40 when the train is in this region of the gate; this obviously requires the test of the

position attribute as indicated. But, what more important is that these initial or new behaviour are

perceived as tokens so they can be changed at any time by the designer of the system through the

corresponding transitions in the meta-level we have already explained.

. . . .

C
hg

Sp
(T

,S
)

<T | Pos: R, StateT : off, Spd : 0>

The Meta-object Level Gouverning the Modified Behaviour of the Train Component

AdCar(T,N)

Exit(I)

<T
 |

P
os

 :
 R

, S
ta

te
T

:o
n>

AdCar(T, Ns)

 EnterR(T1,.)

LmSp(T, S)

<T
 |

P
os

 :
 I

>

ChgSp(t1,s1)

<T | Spd : 0, NbCar: Nc, Nbseat: S>

TRAIN

<T | Pos: R, StateT : on, Spd : S>

EnterI(T,t)

<T | StateT:off, Spd:0>

<T | StateT:on, Spd:min>

<T
 |

P
os

 :
 I

, S
ta

te
T

 :
 o

n>

The Train Component as a Co-net

EnterI(T,t)

.

 Stop(T1)

 Exit(T1)

<T | Spd : 0, NbC : Nc+1, Nbseat : S + Ns>

Stop(T)

 LmSp(T1,s1)

 Rest(T1)

<T
 |

P
os

 :
 E

>

<T1 | StateT : on, Pos : E, NbCar : N, Nbseat : Ns, Spd: s1>

True

True

CHGSP

ENTERI

ENTER

Meta-Place

RESTART

. . ..

EXIT

Restart

LmtSp

. . ..

E
nt

er
R

E
xi

t

. . ..

. . ..

. . ..

. . ..

beta
True

. . ..
ADDC

CHGSP

True

LMSP

St
op

. . ..

True

True

Stop

ICe1

ICe2

TCe
CTe1

CTe2

Tm

ICc1
ICc2

TCc

CTc

hENTER : 1j(EnterR;� EnterR(T; t;))
 (TRAIN; hT jStateT : on; Pos : Ei);

(EnterI; EnterI(t1))
 (TRAIN; hT jStateT : on; Pos : Ri); True; [�1; �2]i

hCHGSP : 1j(CHGSP;ChgSp(T; S))
 (TRAIN; hT jStateT : on; Spd : S1i); (TRAIN; hT jStateT : on; Spd : Si); Truei

hENTER : 2j(EnterR;EnterR(T; t))
 (TRAIN; hT jStateT : on; Pos : E;Spd : Si);

(EnterI;EnterI(t1))
 (TRAIN; hT jStateT : on; Pos : R; Spd : S � 20i); S < 40; [(S � 20) � Cs1; S � Cs1]i

hCHGSP : 2j(CHGSP;ChgSp(T; S))
 (TRAIN; hT jStateT : on; Spd : S1; Pos : P i);

(TRAIN; hT jStateT : on; Spd : Si); ((P = E) ^ (S < 160)) _ (P 6= E) ^ (S < 40))i

hENTER : ij(EnterR; ICe1)
 (TRAIN; ICe2); (EnterI;CTe1)
 (TRAIN; CTe2); TCe; Tmi

hCHGSP : ij(CHGSP; ICc1)
 (TRAIN; ICc2); (TRAIN; CTc; TCci

Figure 8: A runtine modi�able Co-nets train component

14

5 Strategies for controling Co-nets behaviour

Besides its true concurrency nature and its operationality allowing generation of rapid-prototypes, the

key feature of rewriting logic is also its intrinsic reection capabilities. For our Co-nets framework,

the crucial advantage of this \second" meta-level is the possibility of introducing appropriate strategies

for controlling the way in which di�erent transitions should be �red. This is of great bene�t for

reecting a current functioning of a given system, without resorting to �x forever a particular way of

functioning. Moreover, this allows to free as much as possible the net from such control which led to a

very simple and exible net speci�cation. In the following, we give more detail about this level, then

we show how to apply it to the ETCS case study.

5.1 Strategies using reection in rewrite logic

Rewriting logic is reective [11], that is, there is a �nitely presented rewrite theory U that is universal

in the sense that we can represent in U any �nitely presented rewrite theory R (including U itself) as

a term R, any terms t, t0 in R as terms t, t0, and any pair (R; t) as a term (R; t), in such a way that

we have the following equivalence

(y) R ` t �! t
0 () U ` hR; ti �! hR; t0i

For a system of rewrite rules gouverning transitions behaviour as in our case, it is now quite possible to

represent it as (a pair of) datatypes, and the rewriting of any Co-nets state representing the current

marking can be now completely controlled. In this sense, an expressive language for composing

di�erent rewrite rules has been developed for the Maude language [13, 5]; that we adopt here.

First a kernel is de�ned stating how rewriting in the object level is accomplished at the meta-level.

In particular, Maude supports a strategy language kernel which de�nes the operation:

op meta-apply : Term Label Nat � > Term.

A term meta-apply(t,l,n) is evaluated by converting the meta-term t to the term it represents8 and

matching the resulting term against all rules with the given label l. The �rst n successful matches are

discarded, and if there is an (n + 1)th successful match its rule is applied, and the resulting term is

converted to a meta-term and returned; otherwise, error� is returned.

The strategy language STRAT de�ned in [5] extends the kernel with operations to compose strate-

gies, and also with operations to create and manipulate a solution tree obtained by the application

of a strategy. It de�nes sorts Strategy and StrategyExp for strategies, and sorts SolTree and

SolTreeExp for the solution tree. The main operations de�ned on strategies are:

� operations de�ning basic strategies:

op idle : � > Strategy . //* idle is an empty strategy *//

op apply : Label � > Strategy // application of a given rule // .

op rew => with : Term SolTreeExp Strategy � > StrategyExp .

failure : � > StrategyExp .

� operations de�ning solution trees :

op ? : � > SolTreeExp .

op apply : Label � > Strategy .

op rew => with : Term SolTreeExp Strategy � > StrategyExp .

failure : � > StrategyExp .

� operations that compose strategies:

op ; : Strategy Strategy � > Strategy // application of two strategies in sequence // .

8The data-type meta-representation of an object term is a list based one; for instance, a natural term s(s(0)) + s(0)

is represented by 0 + [0s [0s [00]];0 s [00]].

15

op ; ; orelse : Strategy Strategy Strategy � > Strategy // a choice between two strategies //.

op iterate : Strategy � > Strategy // repetitive application of a given strategy until it is no-more

applied //.

For a more detail about the semantics of these operations, the reader may particularly consult [5].

5.2 Application to the ETCS system

As we pointed out the meta-level we propose for dynamically evolving Co-nets speci�cation is in

itself not suÆcient for expressing particularly how di�erent system transitions are performed. Indeed,

�rst recalling that usually in Petri nets a transition may be �red as soon as it become �rable, and

there is no way for controlling the order in which transitions have to be �red. These diÆculties induce

that the designer of the system should decided whether (s)he let irrelevant such order or opt for a

default order and integrate it directly in the model|leading in most of real-case to very complex Petri

net which works only for this default strategy.

Obviously in specifying the ETCS problem we have decided for the �rst solution, that is, no control

at all of di�erent system elementary behaviour or transitions. In fact, we did not state, for instance,

when should the speed be e�ectively limited in the train component, or when should the train enter the

region of interest, etc. But imagine that we have decided for a particular �xed strategy; for instance,

�rst limit the speed then enter into the region of interest, enter the crossing road and then exit it; and

only then perform change of car numbers, or restart stopped trains, etc. It is very hard to imagine

how complex and arti�cial would be the resulting net for such a default strategy. For instance, for

�ring the transition ENTER we have to be sure that the transitions LMSP and CHGSP have already been

�red in this order. This means that we have to add an arti�cial output place to the CHGSP transition

for indicating its �ring, and relate this place through an arti�cial transition to the EnterR as output

place.

Fortunately due to to this rewrite logic meta-reection, the ETCS speci�cation of di�erent compo-

nents as well as interaction remains unchanged while we can formulate any strategy we would like to

have. For instance, taking into account as label the name of di�erent transitions, the above 'default'

strategy we would like to have may be simply expressed by the following:

iterate(LMSP ;CHGSP ;ENTER;ENTERI ;EXIT)�)

The meta-level of rewriting logic would respects this strategy. Moreover, we can associate complex

conditions on applying such strategies.

6 Conclusions

We presented in this paper a general-purpose framework, referred to as Co-nets, particularly suited

for specifying / validating complex distributed object-based critical discrete-event systems, but also

for dynamically manipulating their behaviour. Methodologically this framework may be regarded as

three layer-based one. The �rst layer is a sound integration object oriented abstraction mechanisms

with modularity constructs into an appropriate variety of algebraic Petri nets. The second layer is

meta-level one, and it allows for dynamically creating, modifying and/or deleting any elementary

behaviour while the system remain still running. The third layer takes pro�t of the reection capabili-

ties of rewrite logic|as semantics for Co-nets behaviour|for dynamically describing as appropriate

strategies reecting the real-functioning of the complex .

We have illustrated this framework using a non-trivial speci�cation of a variant of European train

control system (ETCS). This case study demonstrates in particular the suitability of this framework

for dealing complex real-world distributed systems in a very exible. However, after achieving this �rst

step we are conscious that much more work remains ahead. Particularly, we are planning to extend

this case study variant to more complex one. Also, we are focusing on the integration of temporal

aspects for verifying, and not only validating system properties.

16

References

[1] N. Aoumeur. Specifying Distributed and Dynamically Evolving Information Systems Using an Extended

Co-Nets Approach. In G. Saake, K. Schwarz, and C T�urker, editors, Transactions and Database Dy-

namics, volume 1773 of Lecture Notes in Computer Science, Berlin, pages 91{111. Springer-Verlag, 2000.

Selected papers from the 8th International Workshop on Foundations of Models and Languages for Data

and Objects, Sep. 1999, Germany.

[2] N. Aoumeur and G. Saake. Towards an Object Petri Nets Model for Specifying and Validating Distributed

Information Systems. In M. Jarke and A. Oberweis, editors, Proc. of the 11th Int. Conf. on Advanced

Information Systems Engineering, CAiSE'99, volume 1626 of Lecture Notes in Computer Science, pages

381{395. Springer-Verlag, 1999.

[3] N. Aoumeur and G. Saake. Co-nets: A Formal OO Framework for Specifying and Validating Distributed

Information Systems. Preprint Nr. 2, Fakult�at f�ur Informatik, Universit�at Magdeburg, 2000.

[4] M. Bettaz, M. Maouche, M. Soualmi, and S. Boukebeche. Protocol Speci�cation using ECATNets.

Res�eaux et Informatique R�epartie, 3(1):7{35, 1993.

[5] M. Clavel, F. Duran, S. Eker, J. Meseguer, and M. Stehr. Maude : Speci�cation and Program-

ming in Rewriting Logic. Technical report, SRI, Computer Science Laboratory, March 1999. URL :

http://maude.csl.sri.com.

[6] M. Clavel and J. Meseguer. Reection and Strategies in rewriting logic. In G. Kiczales, editor, Proc. of

Reection'96, pages 263{288. Xerox PARC, 1996.

[7] Goguen, J. et al. Introducing OBJ. Technical Report SRI-CSL-92-03, Computer Science Laboratory, SRI

International, 1992.

[8] C.L. Heitmeyer and N. Lynch. The Generalized Railroad Crossing : A Case study in Formal Veri�cation

of real-time Systems. In Proc. of the IEE Real-Time Systems Symposium, 1994.

[9] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and practical Use - Volume 1 : Basic

Concepts. EATCS Monographs in Computer Science, 26, 1992.

[10] P. Kosiuczenko and Wirsing. Timed Rewriting Logic with an Application to Object-Based Speci�cation.

Science of Computer Programming, 28:225{246, 1997.

[11] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. In J. Meseguer, edi-

tor, Proc. of First International Workshop on Rewriting Logic, volume 4 of Electronic Notes in Theoretical

Computer Science, pages 189{224, 1996.

[12] J. Meseguer. Conditional rewriting logic as a uni�ed model for concurrency. Theoretical Computer

Science, 96:73{155, 1992.

[13] J. Meseguer. Solving the Inheritance Anomaly in Concurrent Object-Oriented Programming. In

ECOOP'93 - Object-Oriented Programming, volume 707 of Lecture Notes in Computer Science, pages

220{246. Springer Verlag, 1993.

[14] Conrad S, J. Ramos, G. Saake, and C. Sernadas. Evolving Logical Speci�cation in Information Systems.

In J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems, chapter 7, pages

167{198. Kluwer Academic Publishers, Boston, 1998.

[15] E. Schneider. Referenzfallstudie Verkehrsleittechnik. Informatik-bericht, Technische Universit�at Braun-

schweig, 2000. URL : http://www.ifra.ing.tu-bs.de/ m33/spezi (In German).

[16] P. Wegner. Concepts and paradigms of Object-Oriented Programming. OOPS Messenger, 1:7{87, 1990.

[17] M. Wirsing and A. Knapp. A Formal Approach to Object-Oriented Software Engineering. In J. Meseguer,

editor, Proc. of the First Inter. Workshop on Rewriting Logic, volume 4. Electronic Notes in Theoretical

Computer Science, 1996.

Gate component signature:

obj Gate is

protecting Object-state GRC Structure .

subsort Id.Gate < OId .

subsort Local Gate External Gate < Gate .

subsort DEFECT REPAIR RAISE LOWER < Obs Gate Mes .

17

(* observed attributes *)

op h jPosition : i :

Id.Gate POSITION-G ! External Gate .

(* Exported messages *)

op Lower: OId Id.Gate ! LOWER .

op Raise: OId Id.Gate ! RAISE .

op Defect: OId Id.Gate ! DEFECT .

op Repair: OId Id.Gate ! REPAIR .

endo.

<G | Pos : Dw, Trk : T.[Tk,fr], SateG : ok>

<G | SateG : off>

<G | SateG : off>Rep(G)

<G | SateG : ok>

 Raise(G,r1)

GATE

Rep(G1)

 Dfct(G)

 Lw(G1,..)

<G | SateG : ok>

Lower(G,Tk)

<G | Pos : Up, Trk : T.[Tk,fr], SateG : ok>

<G | Pos : Dw, Trk: T1.[Tk,oc].T2, SateG : ok>

<G | Pos : St, Trk:T1.[Tk,fr].T2, SateG : ok>

<G | Pos : Dw, Trk : T.[Tk,oc], SateG : ok>

The Gate Component as a Co-net

< G1 | SatetG : ok, Trk : [Tk1, oc].[Tk2, fr].., Pos : Up>

Raise(G, Tk)

Dfct(G)

True

True

SOON

REPAIR

DEFECTG

Else

. . ..

St = Up or St = Dw

Lower

Raise

DFCG

. . ..

. . ..

all-free-in(T)

LOWER

Repair

. . ..

. . ..

Figure 9: The Gate Component as a Co-net.

Controller component signature:

obj Controller is

protecting Object-state GRC Structure .

subsort Id.Controller < OId .

subsort Local Controller External Controller

< Controller .

subsort REMVSCHD ADDSCHD < Local Control Mes .

subsort RESCHED SOON-ARV < Obs Control Mes .

(* local attributes *)

op h jSoonAr : ; NoSoonAr : i :

Id.Controller bool bool ! Local Controller .

(* observed attributes *)

op h jSchedTr : i :

Id.Controller SCHED-TR ! External Controller .

(* local messages *)

op Remschd : Id.Controller Id.Train Id.Gate ! REMSCHD .

op Addschd : Id.Controller Id.Train Id.Gate Time ! ADDSCHD .

(* Exported messages *)

op SonArv: Id.Controller OId ! SOON-ARV .

endo.

The Light control component signature:

obj Light is

protecting Object-state GRC Structure .

subsort Id.Light < OId .

subsort Local Light External Light

< Controller .

subsort G2R R2G DFCTL < Obs Light Mes .

(* local attributes *)

op h jatGate : ; StateL : i :

Id.Light Id.Gate StateL ! Local Light .

18

Rep(G)

RmSchd(G,T,Tk)

< C1 | Gate : G1, Schd : [T1,Tk1,t1]...[Tk,Trk,tk], StateC:ok>

Reschd

CONTROLER

<C | Gate : G, Schd: S1.S2>

<C | Gate : G, Schd: S1, StateC:off>

<C | Gate : G, Schd: S1.[T,Tk,Tm].S2, StateC:Ok>

<C | Gate : G, Schd: S1.[T,Tk,Tm].S2, StateC:Ok>

<C
 |

G
at

e
:

G
, S

ch
d:

 S
1,

 S
ta

te
C

:o
ff

>

AdSched(G, T, Tk, Tm)

<C | Gate : G, Schd: S>

Reschd(G)

R
es

ch
d(

G
)

Sn(C,G,T,Tk,Tm)

<C | Gate : G, Schd: S.[T,Tk,Tm]>

Sn(C,G,T,Tk,Tm)

<C | Gate : G, Schd: S1.[T,Tk,Tm].S2>

The Controler Component as a Co-net

<C
 |

G
at

e
:

G
, S

ch
d:

 A
dd

T
m

(S
1)

, S
ta

te
C

:o
n>

<C | Gate : G, Schd: S, StateC:off>

<C | Gate : G, Schd: S, StateC:Ok>

now = Tm+beta

not

DefcG

DefcG(G)

Stop(all-in(S))

AdSchd(G1,..)

. . ..

 Sn(G,T,Tk1,

DFCT
True

SoonAr

ADSchd

EPS12

Repair

. . ..

Restart

Rest(G1) Restr(all-in(S))

. . ..

STOP

. . .. True

 Rest(G1,..)

RMVSCHD

R
m

Sc
hd

True

 Stop(T1,T2,..)

REPAIR

SOON

. . ..
 Dfct(G1)

Rep(G1)

. . ..

Resched

. . ..

 Resched(G1)

True

True. . ..

Figure 10: The Controller Component as a Co-net.

(* observed attributes *)

op h jonT : ; onG : i :

Id.Light Color Color ! External Light .

(* observed messages *)

op G2r: Id.Light Id.Gate ! G2R .

op R2g: Id.Light Id.Gate ! R2G .

op DfctL: Id.Light Id.Gate ! DFCTL .

endo.

R2G(L,G)

<C | Gate : G, Schd: S>

The Light-Control Component as a Co-net

LIGHT-CONTROL

< L1 | atGate : G1, onT:Gr, onG:Green, StateL:ok>

G
re

en
-t

o-
R

ed

G2R(L,G)

<L | atGate : G, StateL:ok, onT:Gr, onG:Red>

<L | atGate : G, StateL:ok, onT:Red, onG:Gr>

G
re

en
-t

o-
R

ed

<C | atGate : G, StateL:off>

<C | atGate: G, StateL:ok>
Dfct(L,G)

<L | atGate : G, StateL:ok, onT:Red, onG:Gr>

<L | atGate:G, StateL : ok, onT:Gr, onG: Red>

. . .. True

. . ..

True

 G2R(l1,g1)

 G2R(l1,g1)

 Dfc(L,G))

DfcL

. . ..

RMVSCHDTrue. . ..

Figure 11: The Light controler Component as a Co-net.

19

20

Petri nets and components –
extending the DAWN approach

Jörg Desel1 and Ekkart Kindler2�

1 Katholische Universität Eichstätt, Germany, joerg.desel@ku-eichstaett.de
2 Universität Augsburg, Germany, kindler@informatik.hu-berlin.de

Abstract. The flexibility of Petri nets that allows us the combination of components
without restriction to a single general composition operator is an important advantage of
Petri nets compared to other formalisms. This flexibility supports many different types
of component interaction, reflecting various communication paradigms. We suggest not
to define the types of component interaction by adding new constructs to the language
but by restricting the legal combinations between components. In this approach, general
Petri net analysis techniques can still be applied to the overall model. For each component
interaction type, the respective restriction is formulated in a syntactical manner, thus
providing suitable communication patterns.

A particular communication pattern for message passing interaction is one of the core
ingredients of the DAWN approach. DAWN was developed for modeling and verifying
distributed message passing algorithms by a suitable composition of components that
model components of the algorithm. In DAWN, a distributed algorithm is modeled as an
algebraic Petri net and verified by a combination of Petri net techniques and temporal
logic. The structure of a net representation as well as the verification techniques employ
the particular component structure.

The DAWN approach, its underlying class of algebraic Petri nets, its communication pat-
tern, and its verification technique is surveyed and illustrated using a simple distributed
algorithm. We finally discuss how to extend the DAWN approach by other interaction
paradigms, defining new communication patterns that are also based on algebraic Petri
nets.

1 Introduction

Petri nets are a well-known formalism for modeling reactive and distributed systems. The
following strengths of Petri nets are widely accepted:

1. Petri nets provide a precise semantics – leaving no room for ambiguities1.
2. Petri nets provide a simple graphical notation. Visualizing the system together with its

behavior and discussing it with non-experts is easily possible.
3. Petri nets come with a bunch of techniques for analyzing their behavior and for verifying

their correctness. Many researchers consider these techniques the main advantage of Petri
nets.

Actually, the term ‘Petri net’ does not denote a single formalism. Rather, it is a generic term
denoting a family of related formalisms that share some common principles (see [4] for details).
In this paper, the focus is on algebraic Petri nets [16, 14, 9], which will be discussed in Sect. 2
in some more detail.

� On leave from Humboldt-Universität zu Berlin and Katholische Universität Eichstätt
1 We admit that some engineers consider this a disadvantage in the early design phase of a system.

21

For large and complex systems, the second and third advantage of Petri nets listed above do
not apply any more, because also the system models tend to be too large. It is generally agreed
that the only way to cope with complexity is to consider components and their composition
within the model. As usual for other formalisms, Petri nets can be equipped with a composition
operator such that the behavior of a composed model can be derived from the behavior of its
components (the so-called principle of compositionality). Also for Petri nets, there exist different
approaches for compositional analysis or verification. Ideally, the selection of model components
reflects the natural components of the modeled system and the composition operator reflects
the interaction principle between the system components.

These approaches have some serious drawbacks:

– There are many different interaction principles between components of systems, e.g. message
passing, synchronous communication, communication by shared variables etc., that need
different composition operators.

– For each composition operator, the semantics of a formalism has to be adequately extended.
– For each composition operator, analysis and verification techniques have to be reconsidered.
– Two components can be combined only by a single operator so that the combination of

different interaction principles is tedious.

In this paper, we proceed in the reverse direction. We do not extend the underlying Petri
net formalism. Composition of components is generally done by an arbitrary combination of
the elements of the components. For each particular interaction principle, the combination is
restricted by a syntactical rule, called communication pattern. The main advantages of this
approach are its high flexibility – arbitrary interaction principles can be allowed, and two
components can be combined in different styles at the same time – and its simple semantics –
the composed model is a Petri net by definition with well-defined semantics, and all Petri net
techniques can be applied.

In order to manage the complexity of components and their interaction, communication
patterns must be carefully designed. Clearly, a communication pattern must faithfully reflect
the respective interaction principle of the system. Moreover, the resulting net model and in
particular its graphical representation should be easy to understand. It must be simple to
identify single components and their interaction. Finally, analysis and verification techniques
should be able to employ the component structure. This way, the inherent complexity of these
techniques can be reduced whenever a suitable decomposition is known.

It turns out that this approach works well for modeling and verifying distributed systems
and algorithms that are based on the message passing paradigm with algebraic Petri nets.
The approach called DAWN (the Distributed Algorithms Working Notation) [10, 3, 18, 5, 12, 13]
uses a particular communication pattern for message passing and provides powerful verification
techniques. In order to justify our claim, we give a brief survey on the basic concepts of DAWN
(Sect. 2). Its verification technique is demonstrated for a simple distributed algorithm.

Finally, we discuss the communication pattern used for modeling distributed algorithms
(Sect. 3.2) and present new communication patterns that represent other communication para-
digms (Sect. 3.3–3.5). As the DAWN-approach and its communication pattern is based on
algebraic Petri nets, so are the new communication patterns.

2 DAWN

In this section, we give an overview on DAWN. The basic concepts of DAWN are discussed in
Sect. 2.1. These concepts are illustrated by the help of an example in Sections 2.2–2.4. Moreover,
there will be brief discussion on tool support for DAWN (Sect. 2.5).

22

2.1 Concepts

Distributed algorithms. DAWN is designed for modeling and verifying distributed algorithms.
A distributed algorithm is executed on a network of independent computation devices, which
can communicate with each other by exchanging messages. We call a computation device a
component2. Each component has its local state, which cannot be accessed by other components.
The only way of interaction is sending and receiving messages over cannels of an underlying
communication network. Usually, a distributed algorithm is not based on a fixed topology.
Rather, any topology satisfying some specification can be used. Some distributed algorithms
work on a directed ring, others work on a tree or on a fully connected graph. The topology can
even change during the run of a distributed algorithm.

Typically, the components execute identical local algorithms. However, the respective local
states as well as the neighbors in the communication network may be different for each agent.
In order not to confuse the local algorithm executed by a component with the distributed
algorithm of all components, we call the local algorithm a protocol in the rest of this paper.
Altogether, a distributed algorithm is given by

1. the protocol executed by each component,
2. initial local states for each component, and
3. a specification of the underlying communication topology.

Each communication network satisfying the specification constitutes an instance of the dis-
tributed algorithm. Typically, a distributed algorithm has infinitely many instances.

High-level nets and algebraic nets. In DAWN, a distributed algorithm is modeled as an algebraic
Petri net. An instance of a distributed algorithm is modeled by a high-level Petri net. These
concepts will be introduced below. For technical details of high-level Petri nets see [6–8] and of
algebraic Petri nets see [9].

In contrast to low-level Petri nets, high-level Petri nets have distinguishable token. For each
place, a token domain specifies the legal tokens for that place. A marking of a place is a multiset
over its token domain. In a high-level Petri net, a transition can fire in different modes. The
possible modes of a transition are defined using a set of transition variables, each of which
is associated with a domain defining its legal values. Each assignment of legal values to the
transition variables represents a mode of the transition. When a transition fires in a mode, it
consumes tokens from its input places and produces tokens on its output places. Which tokens
are consumed and which tokens are produced is defined by the inscription of the corresponding
arcs. An arc inscription is an expression, in which transition variables may occur. The tokens
consumed or produced by the occurrence of a transition in a mode are given by the evaluation
of this expression, where the transition variables take the respective values given by the mode.

In high-level Petri nets, the syntax and the semantics for the token domains and for the
arc inscriptions are fixed. Formulated in algebraic Petri net terminology, the symbols used for
token domains and for arc inscriptions are associated with a fixed algebra, which canonically
defines how to evaluate the expressions. In algebraic Petri nets, the semantics of the token do-
mains and the arc inscriptions is not fixed. An algebraic Petri net comes with a class of algebras.
Fixing an algebra from this class gives us an instance of the algebraic Petri net3, a high-level net.

2 A component is sometimes called an agent of the distributed algorithm. The term agent, however,
suggests some kind of intelligence, which does not apply here. Components are ‘stupid’ computation
devices executing their part of the distributed algorithm.

3 In order to stress the fact that an algebraic Petri net has different instances, algebraic nets are called
algebraic net schemes in [9, 13].

23

Modeling distributed algorithms. The relation of an algebraic Petri net to its instances is analog
to the relation of a distributed algorithm to its instances. We exploit this analogy in the following
way: As stated above, a distributed algorithm is modeled as an algebraic Petri net. In this
algebraic Petri net, some symbols concerning the communication topology remain without a
fixed semantics. For example, the symbol A stands for the nodes of the communication network,
the symbol N ⊆ A × A stands for the neighborhood in the communication network, and N(x)
stands for the set4 of all neighbors of x. When fixing a communication network (out of the
communication topology of the distributed algorithm), we fix the interpretation of these symbols
accordingly. In this way, there is an exact correspondence between the instances of the algebraic
Petri net and the instances of the distributed algorithm.

2.2 An example: Modeling

In order to illustrate the concepts above, let us consider an example: a simple token ring
algorithm. Its task is to allow any component of a distributed system to repeatedly require
access to its critical section and then enter its critical section whereas never more than one
component should be in its critical section at the same time.

Consider the Petri net in Fig. 1. Three components, a, b, c of a distributed system are
cyclically connected. There exists one token that is passed from component to component in
this ring. Initially, the token is with a. Each component can be idle – then it will just pass
on the token after receipt. An idle component can become requesting. Then, it will enter its
critical section as soon as it receives the token. When leaving the critical section, the component
becomes idle again.

Correctness of this algorithm concerns two properties:

(A) At no time, two components are in their critical section.
(B) If a component ever requests access to its critical section, then it will eventually enter its

critical section after this request.

Experts might recognize that the second property cannot be guaranteed without some further
assumptions. First, it is important to assume that no component can boycott the algorithm by
refusing any action. All transitions except a.2, b.2, c.2 enjoy a progress assumption; they are not
allowed to remain enabled forever without occurring. Second, one could argue that the transi-
tion a.2 moving to the requesting state of a.2 competes with the transition a.1 provided both
transitions are enabled (and similarly for the other components). To cope with this problem,
some fairness assumption would be necessary. For simplicity sake, we ignore this subtle prob-
lems and go on without fairness, despite the fact that mutual exclusion algorithms formulated
properly can be proven to work only in the presence of a fairness assumption [11].

Instead of proving the correctness of the elementary net, we proceed with modeling tech-
niques. We extend the previous example by a counter that counts the number of accesses to
the critical section. To this end, the token could be represented as a natural number that in-
creases whenever a component enters is critical section (see Figure 3). This net is already a
high-level Petri net. It has infinitely many reachable markings because the counter variable
increases beyond any bound. A low-level net unfolding of this net is hard to draw; it would
demand infinitely many copies of the places in, critical, out and of the transitions 1, 3, 4, 5 for
each component – one for each natural number n.

Folding of the three components of the low-level net of Figure 1 yields the high-level net
of Figure 2, where the symbol A stands for the (multi)set {a, b, c}. Likewise, folding of the
high-level net of Figure 3 yields the net of Figure 4, which can be considered high-level in the
two dimensions data and topology.
4 Actually, N(x) technically does not denote a set, but a multiset.

24

a.in a.outa.idle

a.request

a.critical

b.in

b.request

b.critical

b.idle b.out

c.in

c.critical

c.idle c.out

c.request

a.1

a.2

a.3 a.4

a.5

b.1

b.2

b.3 b.4

b.5

c.2

c.3

c.5

c.1

c.4

Fig. 1. The algorithm as an elementary Petri net

outidle

request

critical

1

2

3 4

5

a A

xx

x

x x

x

xx

xN(x)

x x

x x

in

Fig. 2. A high-level net representation of the algorithm

25

a.in a.outa.idle

a.request

a.critical

b.in

b.request

b.critical

b.idle b.out

c.in

c.critical

c.idle c.out

c.request

a.1

a.2

a.3 a.4

a.5

b.1

b.2

b.3 b.4

b.5

c.2

c.3

c.5

c.1

c.4

0

n n+1 n n

nn

n n n

nn

n n n

nn

n+1

n+1

n n

n n

n n

Fig. 3. The net of Figure 1 supplemented with a counter

outidle

request

critical

1

2

3 4

5

(a,0) A

(x,n+1)(x,n)

x

x x

x

xx

(x,n)(N(x),n)

(x,n) (x,n)

(x,n) (x,n)

in

Fig. 4. A high-level net representation with counter

26

In both representations, the arc annotation x can be viewed as a variable for the component.
If a transition occurs in some mode, then all variables at adjacent arcs are consistently assigned
a value. In the example of Fig. 2, only x has to be given a value of the set {a, b, c}. Initially,
transition 1 is enabled for the assignment a and transition 2 is enabled for all three assignments.
N(x) denotes the next neighbor5 in the ring for each component x. So N(a) = b, N(b) = c and
N(c) = a. In the example of Fig. 4, some tokens and, correspondingly, some arc annotations
are pairs. The first component plays the role of the component, the second of the data value
(see Sect. 3.1 for a more detailed discussion).

Up to now, we have considered two models of single instances of two different distributed
algorithms. In both cases, the underlying communication network was a directed ring with the
three nodes a, b and c. Of course, the distributed algorithm works also for a ring with four or
five nodes. In fact, it works for any directed ring. Next, we show how to represent a complete
distributed algorithm (not only a single instance of it). Surprisingly, we do not need any further
Petri net picture. We just switch from high-level nets to algebraic Petri nets.

Consider again the high-level net of Figure 2. In contrast to the above explanation, we do not
interpret the symbol A by the fixed set anymore. Now, it can be any set. Since this algorithm
depends on the assumption that one component possesses the token initially, we should require
that a is an element of A. Moreover, it is essential that the token can and, eventually, will
reach any component. This is guaranteed because the network topology is a directed ring. The
topology is represented by the symbol N . So we must specify that N defines a relation on A
such that its graph is a directed ring, no matter what A looks like. So formally, the algebraic net
is a specification of an infinite set of high-level nets. At the same time, this net can be viewed
as a parameterized high-level net, taking a,A and N as parameters. As mentioned above, these
parameters must meet some restrictions. In our example, these requirements are:

a ∈ A,
∀x ∈ A : | N(x) = 1 |, and
∀x, y ∈ A : ∃n : Nn(y) = x.

The second requirement states that each component has exactly one successor. The third re-
quirement states that each component x is reachable from any other component y in the commu-
nication network. The set of high-level nets obtained by a correct assignment of the parameters
coincides with the set of models satisfying the specification of the algebraic net. So we do not
need any new theory for parameterized high-level net – they are algebraic nets.

Finally, the net of Figure 4 can be viewed as a parameterized high-level as well. Here we
have more free parameters: the set A, its element a and a suitable relation N as above, and
moreover any interpretation of the symbols 0 and +. Taking the initial semantics of an algebraic
interpretation, the natural numbers are obtained. However, other semantics work as well.

In the following sections it will be shown how the correctness of all possible interpretations,
i.e. of all high-level nets satisfying the specification given by an algebraic net, can be proven.

2.3 An example: Specification

In Sect. 2.4, we illustrate how to verify the above algorithm in DAWN. Before, we must formalize
the specification of the algorithm.

First, we consider the mutex property, which states that never two components are in their
critical section at the same time. In our Petri net model, a component x is in its critical section

5 In general, N(x) denotes the set of all neighbors of x. In a directed ring, however, each component
has exactly one neighbor: its successor. Therefore, N(x) is a multiset with exactly one element for
each component x.

27

if there is a token x on the place critical. Thus, the multiset of tokens on the place critical
represents all components that are in their critical section at that state. Consequently, the
mutex property can be expressed by the following temporal formula:

(A) ✷ | critical | ≤ 1

The temporal operator ✷ (‘always’) states that the state formula | critical | ≤ 1 holds true in
all reachable states of the Petri net model. In a given state, a place name in a state formula
represents the multiset of tokens on that place. Altogether, the formula states that there is
always at most one component in its critical section.

The second property states that each component requesting access to the critical section will
eventually enter its critical section. This can be expressed by the following temporal formula

(B) request(x) ❀ critical(x)

The temporal operator ❀ (‘leadsto’) states that, in each execution of the Petri net model, the
following property holds: Whenever there is a state in which request(x) holds true, there will
be a state later in that execution in which critical(x) holds true. The state formula request(x)
means that there is at least one token x on the corresponding place request in a given state, and
similarly for critical(x). Altogether, the formula (B) states that each requesting component x
will eventually get access to its critical section.

2.4 An example: Verification

DAWN [18, 12, 13] combines verification techniques from Petri net theory with techniques from
temporal logic. The proofs are designed by hand, but there are techniques that allow us to fill
in missing details and to check these proofs fully automatically [2].

In order to give a flavor of these proof techniques, we give a proof for the above example.
We will introduce all notations and techniques where necessary in the proof. A more concise
introduction to DAWN and a presentation of its theoretical foundations can be found in [18,
12, 13, 2]. The proofs of properties (A) and (B) can be found in Tables 1 and 2, respectively.
The proofs consists of lines were each line has three parts: a line number, the proven property,
and a proof argument. In these proofs, we abbreviate critical by crit and request by req, in
order to have a more compact representation of the formulas.

Let us discuss these proofs in some more detail. The proof of property (A) in Table 1 is
quite simple: Line (1) says that there is always exactly one token on one of the places crit, in or
out. This property can be proven6 from a place invariant of the Petri net model. The property
of line (2) is an immediate consequence of the property proven in line (1); this is indicated by
the argument ’Weakening’.

(1) ✷ | in + crit + out | = 1 Place invariant
(2) ✷ | crit | ≤ 1 Weakening (1)

Table 1. A proof of property (A)

The proof of property (B) in Table 2 is more involved. Line (3) is another weakening of
property (1): From (1), we know that there is exactly one token on one of the places in, crit

6 In fact, this could be checked fully automatically by automated theorem provers for this and the
following lines [2].

28

and out. In line (3), we express this by the existence of some token y. Line (4) states that the
multiset of tokens on the places idle, req and crit is the set A (i.e. the multiset in which each
element of A occurs exactly once). Intuitively, this reflects the fact that each component is in
exactly one of the states idle, req, or crit. Formally, this can be proven by a place invariant
of the Petri net again. This property is weakened in line (5). On the right hand side of the
implication, we have a combination of the left hand side with the property from line (4), with
some simplifications.

(3) ✷ ∃y ∈ A : in(y) ∨ crit(y) ∨ out(y) Weakening (1)
(4) ✷ idle+ req + crit = A Place invariant
(5) ✷ (in(y) ∨ crit(y) ∨ out(y)) ⇒

(in(y) ∧ idle(y) ∨ in(y) ∧ req(y) ∨ crit(y) ∨ out(y)) Weakening (4)
(6) (in(y) ∧ idle(y)) ❀ (in(y) ∧ req(y) ∨ crit(y) ∨ out(y)) Progress: 1
(7) (in(y) ∧ req(y)) ❀ (crit(y) ∨ out(y)) Progress: 3
(8) crit(y) ❀ out(y) Progress 4
(9) out(y) ❀ in(N(y)) Progress: 4
(10) (in(y) ∨ crit(y) ∨ out(y)) ❀ in(N(y)) Proof graph 1
(11) (in(y) ∨ crit(y) ∨ out(y)) ❀ in(Nn(y)) Induction: (10)
(12) ∃n ∈ nat : x = Nn(y) Assumption (ring)
(13) (in(y) ∨ crit(y) ∨ out(y)) ❀ in(x) Subst.: (12) in (11)
(14)✷ req(x) ⇒ (req(x) ∧ ∃y ∈ A(in(y) ∨ crit(y) ∨ out(y))) Weakening (3)
(15) req(x) waitsfor in(x) Waitsfor
(16) (req(x) ∧ ∃y ∈ A : (in(y) ∨ crit(y) ∨ out(y))) ❀

(req(x) ∧ in(x)) ❀/synch (13), (15)
(17) (req(x) ∧ in(x)) ❀ crit(x) Progress: 3; 1 excl. by (4)
(18) req(x) ❀ crit(x) Transit. (14), (16), (17)

Table 2. A proof of property (B)

In lines (6)–(9) we prove some simple leadsto properties that, basically, reflect the occurrence
of one transition of the Petri net. This is indicated by the argument ’Progress’ along with
the number of the involved transition. Due to conflicts, however, it could be that in the state
indicated on the left hand side of the leadsto property another transition than the one mentioned
in the proof argument occurs. In that case, also this other transition must guarantee that the
right hand side of the leadsto property holds true after its occurrence. Let us discuss this for
line (6) in some more detail. In a state satisfying in(y)∧ idle(y) transition 1 is enabled (with x
bound to y). If this transition occurs, it moves a token y to place out; thus, out(y) is satisfied
after the occurrence. However, there are two other transitions that could be in conflict with
transition 1 in this particular mode: transition 2 and transition 3 in mode x = y. The occurrence
of transition 2 results in a state in(y) ∧ req(y); the occurrence of transition 3 results in a state
crit(y). In either case, the right hand side of the leadsto property is satisfied. The arguments
for lines (7)–(9) are quite similar. Checking the details is quite tedious; but, again, this can be
checked fully automatically.

In line (10), we combine the already proven leadsto property to a more complex one. We
start in a state satisfying the left-hand side of the leadsto property. This state is shown on the
left-hand side of the proof graph 1 in Table 3. By property (5) we know that we are in one of
the states in(y) ∧ idle(y), in(y) ∧ req(y), crit(y), or out(y) – one of the disjuncts on the right-
hand side of the implication of (5). In the proof graph this is indicated by the arcs towards the
corresponding disjuncts. The label (5) refers to the argument for these arcs. Likewise the arcs
from the other states of the proof graph are justified by leadsto properties (with a corresponding

29

in (y) critical (y) out (y)

in (y) idle (y)

in (y) request (y)

critical (y)out (y)

in (N(y))

(5)

(6)

(7)

(8)(9)

<

< <
<

Table 3. Proof graph 1

disjunct on the right-hand side). Altogether, the proof graph shows that we eventually end up
in a state satisfying in(N(y)); the proof graph (justified by lines (5)–(9) is the argument for
the property in line (10).

Line (11) is an inductive application of line (10). Line (12) states that each component x
is the nth neighbor of y for some n. This was the requirement on the communication topology.
Combining this property with (11), we know that, if there is some token y somewhere on one of
the places in, crit, or out, there will eventually be a token x on place in for each x (line (13)).

At last, we show that a request will eventually result in an access to the critical section. In
line (14) we use property (3) another time: we add it to the right-hand side of the implication.
Technically, this is a weakening of (3) again. Next we know that no transition can remove a
token x from place req, as long as in has no token x. This can be immediately checked from the
corresponding net. Only transition 3 can remove a token x from place req. But this transition
needs also a token x on place in. In combination with (13), we know that we have a token x
on places in and req eventually (line (16)). From such a state, the occurrence of transition 3
will establish crit(x). Note that transition 1 is statically in conflict with transition 3; however
from invariant (4), we know that transition 1 cannot occur as long as transition 3 is enabled.
Combining lines (14),(16), and (17) transitively gives us property (B) from the specification.

2.5 Tool support

In the previous section, we have proved that the simple token ring algorithm works for a ring
of arbitrary size. Note that we have shown safety properties as well as liveness properties of the
algorithm. Up to now, a DAWN proof is always designed by hand. This has advantages and
disadvantages.

The advantage is that the proof does not only tell that the algorithm is correct (which would
be the answer of a modelchecker in the case of correctness); the proof provides also some clue
why the algorithm is correct, and it identifies the basic arguments.

The disadvantage is that it may be quite hard and time-consuming to design a proof for a
larger system completely by hand. Even checking the validity of a proof may be quite tedious.
In order to deal with this problem, we have proposed two automatic techniques that support
the design and the checking of a DAWN proof. In [2], we have shown that automated theorem
provers can check the correctness of a proof fully automatically. Indeed, this technique can be
used to ‘guess’ a proof without being really sure; then the theorem prover can be used to check
this proof. If the proof is not yet correct, the missing arguments identified by the theorem
prover, could help to correct to proof. At least, this technique frees us from the most tedious
task: checking all the details. A prototype of this tool was implemented within a diploma thesis
[15].

30

The other technique is modelchecking. When designing a proof for some algorithm, we can
never be sure that we will eventually find a proof – for the simple reason that the algorithm
might be incorrect. In order to identify incorrectness of an algorithm, we use classical mod-
elchecking. Since the algorithm is modeled as an algebraic net, we can easily produce some
high-level instances of it (in our example, we could simply produces the instance for a ring with
5 components). Since these instances are typically finite, we can do classical modelchecking. So
we can automatically generate different instances of the algorithm and start a modelchecker.
If a modelchecker finds an instance that does not meet the requirement, we know that the
algorithm is not yet correct. So, we would better correct the algorithm, before restarting the
whole procedure. A prototype of this tool was implemented within another diploma thesis [1].

In principle, both techniques are independent of each other. Theorem proving helps us
proving correctness, modelchecking helps us proving incorrectness. Thus they nicely complement
each other and should be used in combination: While trying to find a proof with theorem prover
support, an instance generator along with a modelchecker should be run in parallel in order to
make sure that we do not work on a proof of a faulty algorithm.

Combining an automated theorem prover with a modelchecker gives us a semi-automatic

in outidle

request

critical

1

2

3 4

5

Fig. 5. The skeleton

tool for verifying parameterized distributed systems. In some cases, we can do even better.
Property (A), for example, can be proven fully automatically by considering the skeleton of the
algebraic net. Figure 5 shows the skeleton of our algebraic Petri net from Fig. 2. Basically, we
have omitted the inscriptions of the algebraic net and converted the individual tokens to single
black tokens; this gives us a classical low-level Petri net. Obviously, the skeleton satisfies the
property ✷ | critical | ≤ 1. This property follows from a classical place invariant of the skeleton
and, therefore, could be proven fully automatically. Due to some syntactical restrictions, which
we will not discuss in detail here, the property of the low-level net also holds true for the
algebraic net. Therefore, property (A) could be proven fully automatically in our example.

At least in some cases, skeletons can be used to verify properties of algebraic nets fully
automatically. Most times, this applies to invariants. Sometimes, however, it applies even to
liveness properties. A detailed investigation of this issue, however, is subject to future research.

2.6 Summary

In this section, we have illustrated the use of DAWN for modeling and verifying distributed
algorithms. The protocols of the components as well as their interaction are modeled within a
single algebraic Petri net. This results in a concise model of the distributed algorithm, without

31

any notational or technical overhead. The model captures the algorithmic idea [17, 13] of the
distributed algorithm.

The resulting models are – in most cases – small enough for formal analysis and verification.

3 Designing Petri net models

In Sect. 2, we have shown that a distributed algorithm using message passing communication
can be modeled as an algebraic Petri net. Communication between components is modeled by
transition 5, which sends a message from an agent to its neighbor. This sending operation is
reflected by the arc annotation N(x) at an outgoing arc of the transition. It will be shown that
this kind of arc annotations obeys the rule of a certain communication pattern.

We start this section with the general design principle of DAWN and its communication
pattern (message passing). Then, we will discuss some more general communication patterns.

3.1 The design principle

Before presenting the design principle of DAWN, let us ask the following question: Is every
algebraic Petri net a model of some distributed algorithm (in the sense defined in Sect. 2.1)?

The answer to this question is a clear ‘no’ ! There are algebraic Petri nets that do not model
a distributed algorithm – not even a stupid one. For example, there could be a transition that
accesses the local states of two different components – violating our requirement on distributed
algorithms. This is exactly what our design principle should exclude.

In DAWN, accessing the local states of two different components is syntactically excluded in
the following way: Each token of the Petri net can be considered as a tuple7. Now, we assume
that the first element of the token (tuple) is of type A – i. e. it represents some component of the
underlying communication network. Furthermore, we assume that a token with first element a
indicates that the token belongs to the local state of component a. Therefore, each token can
be uniquely associated with a component of the underlying communication network. We call
this component the owner of the token.

Now, we give a syntactical restriction for transitions that access the local state of a single
component [3]: all inscriptions of the adjacent arcs of this transition must be of the form (x, ...),
where x is a variable of type A. This way, we know that all tokens consumed or produced by
this transition are owned by the same component x (or rather the value assigned to x in the
particular mode). We say that the transition is local. Transitions 1–4 in Fig. 2 and in Fig. 4 meet
this requirement. We will explain in a minute why transition 5 does not meet this requirement.

Altogether, the underlying design principle associates each token with a component, its
owner. We have chosen to represent a token as a tuple and use its first element as its owner. Of
course, we could have chosen any other element of the tuple to represent the owner. But, the
first element turned out to be a sensible choice. A transition is local if all tokens consumed and
produced by an occurrence of this transition belong to the same owner.

Of course, not all actions of a distributed algorithm are local because of interactions be-
tween the components. For the moment, we call all non-local transitions interactions. In our
example, transition 5 is an interaction transition. Characterizing the legal interactions, how-
ever, depends on the communication paradigm. Therefore, the syntactical restrictions for these
interaction transitions depend on the communication paradigm. We call such restrictions com-
munication patterns. Some communication paradigms along with their communication patterns
are discussed below.

7 If it is not a tuple, we can consider it as a 1-tuple.

32

3.2 Message passing

For distributed algorithms, the communication paradigm is message passing. In a Petri net
model, sending a message to some component y can be modeled by putting a token with first
element y on some place. Therefore, we do not restrict the inscriptions of the out-going arcs of
such a transition. The inscriptions of the in-coming arcs, however, must have the form (x, ...).
We call transitions with this restriction message passing transitions.

Transition 5 in Fig. 2 and in Fig. 4 is a message passing transition. The only in-coming
arc has the inscription x (a 1-tuple with first element x). For the out-going arc, there is no
restriction (N(x) denotes the neighbor of x; thus x puts a token to the place in of its neighbor).

3.3 Synchronous communication

Next, we consider synchronous communication: a joint action of two8 components x and y.
Since it is a joint action, the action may access and change the local state of both components
x and y. We call the corresponding transitions synchronization transitions.

Syntactically, a synchronization transition can be characterized as follows: Each arc-inscription
is of the form (x, ...) or of the form (y, ...), where x and y are variables of type A.

Note that we do not require that a synchronization transition has in-coming arcs of both
forms (x, ...) and (y, ...). So, a synchronization transition can be also a local transition or a mes-
sage passing transition. If necessary, this can be easily excluded by an additional requirement.

Synchronous communication, however, is kind of magic. Two completely independent com-
ponents x and y meet each other by chance and, then, execute a joint action. Surly, this is
the right level of abstraction for some applications. For others, we would like to guarantee,
that components do meet in a controlled way. For example, a telephone call is such a controlled
synchronous interaction: one partner dials the number of the other partner. Here, we give an ad-
ditional restriction that reflects this controlled synchronization: an additional transition guard
y = exp, where exp is an expression in which only variables of in-coming arcs of the form (x, ...)
occur. This restriction guarantees, that x knows how to contact y (in a sense, x looks up the
telephone number of y in its local state).

3.4 Shared variables

Often, components communicate over a set of shared variables. The set of all shared variables
can be represented as tokens on a distinguished place, where each shared variable is represented
by a pair. The first element of the pair represents the name of the variable, the second element
represents its current value.

Now, an access to a shared variable can be modeled by a transition with an arc to and from
this place where the arc-inscriptions have the form (v, ...) (the transition variable v denotes the
name of the accessed variable). In a read access, both inscriptions must be (v, q), where q is a
transition variable denoting the value of the variable, which is not changed by a read access.
Note, however, that the usual Petri net semantics does not allow concurrent read operations
on one variable modeled this way. In a write access, the inscription of the arc leading to the
transition should be (v, q′) and the inscription of the arc leading to the place should be (v, q)
where q′ is a transition variable that does not occur in any other inscription of this transition
(the old value q′ of the variable is lost).

8 Here, we consider synchronous communication of two components only. A generalization to multi-
party-interactions, however, is straightforward.

33

3.5 Rendezvous

A rendezvous is ‘a place where people meet’. In our context, it is a place, where components meet
for common interactions. In order not to confuse Petri net places with places for rendezvous,
we call places for rendezvous locations in the following.

A rendezvous location can be represented by another distinguished Petri net place: a ren-
dezvous place. The tokens on this place are pairs, where the first element of the pair denotes a
rendezvous location, and the second element denotes a multiset of components (the components
meeting at this place).

Each component may register itself with a rendezvous location and unregister itself. The cor-
responding transitions must have an arc to and from the rendezvous place with arc-inscriptions
(l, L + x) and (l, L) where l is a variable for locations and L is a variable for multisets of com-
ponents. If the arc to the transition carries the first inscription then the transition adds x to
the rendezvous, otherwise it removes x.

A rendezvous transition is a transition with a loop to the rendezvous place with arc-
inscription (l,L), where l denotes the rendezvous location and L the multiset of components
currently meeting at this location. There are no restrictions for the other arcs of a rendezvous
transition. However, a rendezvous transition has additional transition guards: for each variable
z occurring in the first place of an arc-inscription there is a transition guard z ∈ L. This guar-
antees, that the rendezvous transition accesses only local states of components that participate
in the corresponding rendezvous.

4 Conclusion

In this paper, we claim that algebraic Petri nets in combination with communication patterns
help us to develop concise Petri net models of distributed systems. Instead of extending Petri
nets with composition operations along with sophisticated compositional semantics, we restrict
the use of algebraic Petri nets by simple communication patterns.

In order to motivate and justify this claim, we have surveyed the DAWN approach, its
underlying concepts and design principles. Its main features are:

1. The protocols executed by the different components are folded onto the same Petri net.
2. The use of algebraic Petri nets, which precisely reflect the relation between distributed

algorithms and their instances. This makes algebraic Petri nets a superb candidate for
modeling distributed algorithms.

3. Modeling interaction by communication patterns instead of explicit composition operations
avoids technical overhead and allows us to focus on the algorithmic idea.

References

1. Abdourahaman. Model checking in DAWN. Master’s thesis, Humboldt-Universität zu Berlin,
Institut für Informatik, September 2000.

2. Thomas Baar, Ekkart Kindler, and Hagen Völzer. Verifying intuition – ILF checks DAWN proofs.
In S. Donatelli and J. Kleijn, editors, Application and Theory of Petri Nets 1999, 20th International
Conference, LNCS 1639, 404–423. Springer, June 1999.

3. Jörg Desel. How distributed algorithms play the token game. In Foundations of Computer Science:
Potential – Theory – Cognition, LNCS 1337. Springer, 1997.

4. Jörg Desel and Gabriel Juhas. ‘What is a Petri net’ – informed answers for the informed reader.
In H. Ehrig, G. Juhas, J. Padberg, and G. Rozenberg, editors, Unifying Petri Nets, Advances in
Petri Nets, LNCS 2128, 1–27. Springer, 2001.

34

5. Jörg Desel and Ekkart Kindler. Proving correctness of distributed algorithms using high-level Petri
nets – a case study. In 1998 International Conference on Application of Concurrency to System
Design,177–186, Fukushima, Japan, March 1998. IEEE Computer Society Press.

6. Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level Petri nets. Theo-
retical Computer Science, 13:109–136, 1981.

7. Kurt Jensen. Coloured Petri nets and invariant methods. Theoretical Computer Science, 14:317–
336, 1981.

8. Kurt Jensen. Coloured Petri Nets, Volume 1: Basic Concepts. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1992.

9. Ekkart Kindler and Wolfgang Reisig. Algebraic system nets for modelling distributed algorithms.
Petri Net Newsletter, 51:16–31, December 1996.

10. Ekkart Kindler and Wolfgang Reisig. Verification of distributed algorithms with algebraic Petri
nets. In C. Freksa, M. Jantzen, and R. Valk, editors, Foundations of Computer Science: Potential
– Theory – Cognition, LNCS 1337, 261–270. Springer-Verlag, 1997.

11. Ekkart Kindler and Rolf Walter. Mutex needs fairness. Information Processing Letters, 62:31–39,
1997.

12. W. Reisig, E. Kindler, T. Vesper, H. Völzer, and R. Walter. Distributed algorithms for networks
of agents. In W. Reisig and G. Rozenberg, editors, Lectures on Petri Nets II: Applications, LNCS
1492, 331–385. Springer, 1998.

13. Wolfgang Reisig. Elements of Distributed Algorithms — Modeling and Analysis with Petri Nets.
Springer, 1998.

14. Wolfgang Reisig and Jacques Vautherin. An algebraic approach to high level Petri nets. In Pro-
ceedings of the VIII European Workshop on Application and Theory of Petri Nets, 1987.

15. Sebastian Unger. Automatisches Überprüfen von DAWN-Beweisen. Master’s thesis, Humboldt-
Universität zu Berlin, Institut für Informatik, September 1999.

16. Jacques Vautherin. Parallel systems specifications with coloured Petri nets and algebraic specifi-
cations. In G. Rozenberg, editor, Advances in Petri Nets, LNCS 266, 293–308. Springer-Verlag,
1987.

17. Rolf Walter. Petrinetzmodelle verteilter Algorithmen – Beweistechnik und Intuition. PhD thesis,
Humboldt-Universität zu Berlin, Institut für Informatik, 1995.

18. M. Weber, R. Walter, H. Völzer, T. Vesper, W. Reisig, S. Peuker, E. Kindler, J. Freiheit, and
J. Desel. DAWN: Petrinetzmodelle zur Verifikation Verteilter Algorithmen. Informatik-Bericht 88,
Humboldt-Universität zu Berlin, December 1997.

35

36

AN APPLICATION OF AN EXPRESSIVE COLOURED PETRI NETS MODELING

METHODOLOGY TO A BUSINESS TO BUSINESS ENVIRONMENT

JUAN FRAUSTO-SOLIS1, FRANCISCO CAMARGO-SANTACRUZ2 and FERNANDO RAMOS-QUINTANA1

Instituto Tecnológico y de Estudios Superiores de Monterrey, 1Campus Cuernavaca, 2Campus Estado de México, Km. 3.5, Carretera al

Lago de Guadalupe, Atizapán, 52926, Estado de México, México, phone ++52-5864 5560, fax ++52-5864 5557,

http://www.itesm.mx.

E-mail: 1{framos, jfrausto} @campus.mor.itesm.mx, 2fcamargo@campus.cem.itesm.mx

The dynamic nature of cooperative agent environment makes considerably more difficult the task of modeling permanent interactions

among agents. This problem becomes rather hard if more than two agents are involved. So far, traditional approaches deal with the

problem of modeling interactions in static conditions and commonly with only two agents participating concurrently in cooperative

tasks. The complex nature of such dynamic environments, such as e-business, demands to build adequate tools to manage multiple

interactions with efficient expressiveness. This problem remains one of the most important challenges in cooperative multi-agents

system research. In this paper, it is proposed an application of an efficient methodology based on Coloured Petri Nets to model

multiple interactions, which takes into account the expressiveness as its most important property. The model was tested within a

business to business (B2B) environment where concurrent interactions among buyers, suppliers and the marketplace constitute a

dynamic process that need to be permanently monitored and controlled. This methodology provides great advantages in the

representation and reasoning for the interaction mechanism modeled in cooperative information systems. The methodology integrates

mainly: a) the action basic loop in order to represent the system interactions and to model organization conversations, b) the use of

CPN for the interaction modeling and system simulation, c) the communicative acts of FIPA (Foundation for Intelligent Physical

Agents), included in the Agent Communication Language Specification.

Keywords: Agent-Oriented Software Engineering, Cooperative Information Systems, Coloured Petri Nets, Multi-Agent Systems,
Business to Business.

1. Interaction and Cooperative Information Systems
A Cooperative Information System (CIS) supports daily activities in the organization. It is a cooperative multi-agent

system [24] integrated by a set of agents, data, and procedures, working in a cooperative way. They have a common

goal, exchange information, and work together in order to achieve the objective [22]. The business to business

systems are considered CIS and they present a set of particular characteristics, by their dynamic and interactive

nature that required to be modeled in an expressive style.

To model a CIS in dynamic environments is a complex task and so the system engineer needs adequate tools in

order to appropriately manage the process of modeling, in particular in this paper, the interactions among agents

during the whole of information exchange. Static modeling approaches are insufficient for representing system

behavior over time. The reason is that they provide no way to represent how the system’s state will change as time

passes. Lacking such provisions, static models can not handle dynamic interactions properly [18]; on the contrary, a

dynamic modeling is one that can represent both the structure and the behavior of a system at any time of the

process. In a CIS, a relevant topic is the one related with the cooperation among agents, working collectively with a

37

common goal, but this is not an easy modeling task, because the need to represent several collaborative layers to get

a global view of the cooperative agents behavior expressively and, in particular, the interaction model of the system.

In order to explain the interaction role, it is proposed to satisfy it within a more general framework, which is

illustrated by the model shown in figure 1. In the model we consider that the Cooperation problem involves several

layers: a Communication layer, an Interaction layer, and the Coordination layer. At the low level we have a

Communication Protocol, which enables the information exchange among the agents of the system and produces a

change of the system state [1], [2], [20]. The Interaction mechanism is a set of behavior rules that defines the

information exchange among agents [9], [4]. The Coordination mechanism establishes the action sequence and

execution according to the agents’ individual goals and the common goal of the CIS [19], [8], [7]. Finally, at the

high level we have a Cooperation, which is a result of the mechanisms that support interactions among the agents

[17]. In figure 1, it is modeled a general cooperation situation between two agents and the relationship with the

proposed framework. Here, we represent the communication layer like a link relation between agents, the interaction

with a set of behavior rules, one set for each agent, and the coordination with an ordered set of actions for the

different agents. It is important to point out that the order set of actions, in the coordination layer, is an order

message set according to the interaction layer rules and the messages of the communication layer. By Cooperation, it

is understood the agent’s behavior to coordinate interaction and information exchange in order to achieve a common

goal. We aim to deal more specifically with the Interaction layer in this work.

Agent 1

Coordination:
{Actions,

a1.1,a1.2,...}
Interaction: Rules

Communication

Agent 2

Coordination:
{Actions,

a2.1,a2.2,...}
Interaction: Rules

Communication

DB1

Communication

Interaction

Coordination

Cooperation

Common Goal

Figure 1: A Cooperation Reference Framework.

The interaction mechanism is central for the cooperation in CIS, because it is the bridge between the

communication protocol and the coordination mechanism for the agents in the system. The interaction problem for

CIS is immersed in a natural dynamic world, consequently, the interaction modeling and control are hard to

manipulate and normally they have ambiguity and control problems. It is believed that the use of a formal method is

a feasible approach to properly deal with the associated complexity in the modeling of a CIS. This will ease us to

38

reduce ambiguity in the interaction model and allow to simulate the dynamic of the system, which is related to

multiple simultaneous interactions.

The paper is organized as follow, in section 2, it is reviewed other works in modeling the interaction using

different formal methods, and therefore clarifies the most important identified problems. In section 3, an explanation

is provided in how to reduce the complexity in the interaction modeling among agents using CPN, compared to

other works using C/E Petri Nets. In section 4, the action basic loop is introduced to build the interaction diagrams,

with the comparison between Flores's communicative acts and the FIPA communicative acts. Section 5 illustrates in

detail the IMCIS (Interaction Methodology for CIS) for the interaction modeling. The methodology is explained,

using an example, step by step, based on the knowledge of the action basic loop and the CPN modeling approach.

Finally, the conclusion and further works are presented.

2. Interaction and Formal Methods
The uses of different formal methods in order to model the interaction mechanism are present in related literature

such as: The First Order Logic [16], State Transition Diagrams [1], [14], Condition/Event (C/E) Petri Nets [12]. In

the different applications of these methods, the interaction usually shows isolatedly, that is, just between two agents;

however, agents are sometimes involved in several interactions simultaneously and they have to manage these

multiple interactions, which involve a complex problem to be solved. Some limitations of these methods are: 1) they

are practical to specify the structure of the interaction when they appear in isolated communication situations, but

they are not adapted to model complex protocols with several interactions simultaneously in CIS. 2) They are very

complex to manage and modify in order to respond to changes in the system specification. 3) The methods are good

for representing static systems, but we need to model dynamic interactions situations, and the methods pose

limitations for this. 4) The combinatory explosion of the methods when the need to model complex simultaneous

interactions in CIS arise.

The most important problems to be coped with in order to improve the performance of a model oriented to these

applications aforementioned are the following:

• The state of simultaneous interaction among more than two agents.

• The behavior of the agents in the interaction according to a precise state.

• The representation of different messages for different agents in different states.

The classic formal methods like the first order logic, state transitions diagrams, among others, are very difficult

to manipulate, and the use of other methods such as the Petri Nets become functional, but some of them lack the

expressiveness to model this kind of problem.

3. Coloured Petri Nets for Modeling Interaction
A Petri net is a formal and graphic appealing language, which is appropriate for modeling complex systems with

concurrency [18]. The Coloured Petri net are high level Petri net where each token of a different color represents an

arbitrary data values [21]. This extension increases the descriptive power for modeling. The firing of transitions is

then made dependent on the availability of an appropriately coloured token [18]. The coloured Petri nets are a good

formalism for describing concurrency, synchronization and causality [3], and are suitable for modeling, analyzing

and prototyping dynamic systems with parallel activities [8], [10] as CIS in our approach. In this work, it is

39

proposed the use of CPN, because they have relevant characteristics for modeling interaction in CIS, such as: 1) the

graphical representation, 2) the well defined semantics, 3) the formal analysis of the models and 4) the capacity for

modeling the system hierarchically. The properties of CPN should allow to model the state of the interaction

simultaneously among more than two agents and the behavior of the interaction according to its state, and

representing different message for different agents in different states. The use of CPN computer tools, such as

Design/CPN [18], helps us make a dynamic simulation of the system interaction, and to find problems before the

system implementation.

Other works that model interactions using CPN are El Fallah et al. [9], [10], [11] and Cost et al. [4], [5], [6]. El

Fallah et al., focuses on the study of multi-agent systems design, combining two aspects: 1) Distributed observation

to capture the interactions between agents and 2) CPN as a formalism to identify interaction-oriented designs. Cost

et al., focuses in the construction of a language for conversation specification, named Protolingua within the

framework of the Jackal agent development environment, and they proposed use CPN as a model underlying a

language for conversation specification. They do not deal with the problem of complexity and expressivities.

A central point in this work is how to reduce the associated complexity in the modeling of the interaction

among agents in a CIS. In figure 2 we can observe a model used in Demazeau et al. [12] with C/E Petri Nets, where

three agents or entities are represented: Entity i-1, Entity i and Entity i+1, and m messages, where i=1..n represent

the total agents in the system, and j=1..m represent the total message number in the system. Their approach uses a

“message line concept“, which is modeled with C/E PN, where the virtual medium linking two agents, capable of

exchanging m different sorts of messages, consists of k lines like the ones shown in figure 2, and where the dotted

line represents the virtual medium. The agents are modeled with C/E PN. The C/E PN details, such as place and

transitions, are evident to the system engineer, in the virtual medium, and the complexity of the model is associated

with the number of links among agents and message lines. In this model the incorporation of new simultaneous

interactions among agents is harder to represent, because we need to model and include new message lines, and the

associated complexity is increased in m2*s links, where s is the number of additional agents which are participating

in the interaction and m is the total number of messages.

Box (i-1,j)

Box (i-1,j-1)

Entity (i-1)

Box (i,j)

Box (i,j-1)

Entity (i)

Box (i+1,j)

Box (i+1,j-1)

Entity (i+1)

Virtual Medium

Entities

Line for message (j-1)

Line for message (j)

Figure 2: Demazeau Interaction Model.

40

It can be compared with the same problem represented in the proposed approach in figure 3, where we can see

a CPN inside each agent and modeling each message that is part of the interaction relationship of the system,

represented by a link between agents. CPN is not used in order to model the virtual medium, and when it is needed

to incorporate new simultaneous interactions or agents, the agent and its message representation are only modified

using the CPN color declarations.

Agent i-1

Agent i

Agent i+1

Message j

Message j-1 Message j

Message j-1

Message j

Message j-1

Figure 3: The Proposed Interaction Model.

If more than two agents are interacting, the use of a virtual medium to model the interaction is very difficult.

Instead, by using this approach based on CPN, this difficulty is reduced considerably. We can see in [12] the

associated complexity in terms of the number of links between agents interactions, according to the message

numbers (m), and the systems agents (n). In the model presented in figure 2, the complexity is O(m2*n). While in the

proposed model of figure 3, using CPN for modeling agent interaction, the associated complexity is O(n2), but, there

is message independency because we just take the interactions among agents. The differences between our approach

and the Demazeau approach are: 1) in the modeling of the virtual medium, such as in our approach, we use

distributed systems techniques and we do not need to model this explicitly, 2) our model is independent of the

number of messages among agents and 3) when modeling a new simultaneous interaction, since the associated

complexity of [12] model is O(m2*s), and in our model’s is O(2n*s), where s is the number of additional agents

which are participating in the interaction, n is the total number of agents and m is the total number of messages.

Clearly, our modeling technique is suitable for a large scale agents applications, like a CIS, in contrast with

Demazeau’s technique, because of the latter’s combinatory explosion of the method when modeling complex

simultaneous interactions.

4. Interaction Modeling
Build the interaction diagrams is a central activity. Our analysis is centered on the system interactions, where we

determine who talks to whom and in which way. We propose the use of the action basic loop [15] for modeling the

interaction between agents. The action basic loop proposes an ontology of communicative acts: Request, Promise,

Inform and Declare. In figure 4 we can see the communicative acts and their loop position, and in figure 5 we

present the loop processes.

41

Conversation
No. 1

Agent 1 Agent 2

Request

Promise

Inform

Declare

Figure 4: Communicative Acts in the Action Basic

Loop.

Conversation
No. 1

Agent 1 Agent 2

1. Preparation 2. Negotiation

3. Execution4. Evaluation

Figure 5: The Action Basic Loop.

In the first step, agent 1 prepares the request for agent 2 in a conversation. After that, agent 1 and agent 2 make

a negotiation about the request, and agent 2 issues a promise. In the next stage, agent 2 executes the promise and

when they finish the task, they give an inform to agent 1. In the last step, agent 2 makes a declaration for the

evaluation of agent 1 work.

Many conversations are part of an interaction, and we need to build an interaction diagram, as the one shown in

figure 6, for each system interaction. The methodology proposes a documentation set and a notation for the

interaction model, but they are not shown in this paper.

Conversation
No. 1

Agent 1 Agent 2

Conversation
No. 1.1

Agent 2 Agent 3

Main Interaction

Figure 6: Interaction Diagram.

The FIPA [13] communicative acts are more expressive than the Flores’s communicative acts, for instance, the

FIPA ontology sets different types of request acts whereas Flores sets a single request act. It is proposed a

categorization of the FIPA communicative acts according to Flores communicative acts, in table 1. Our proposal is

to use the Flores’s communicative acts, for the action basic loop, but exploring the FIPA approach for improving

model expressiveness because, if we only use the four Flores basic acts, our communication language will lose

expressivity.

42

The basic action loop helps us to have a coordinate conversation between agents, and to join more that two

agents simultaneously in the coordinate conversation, building an Interaction. The works of El Fallah et al. [9] and

Cost et al. [4], have different interaction protocols and they increase the complexity, because the agents need to

recognize the interaction being used and its different states, in order to have a set of behavior rules that defines the

information exchange.

FIPA
Communicative act Request Promise Inform Declare
accept-proposal X
Agree X
Cancel X
Cfp (call for proposals) X
Confirm X
Disconfirm X
Failure X
Inform X
Inform-if (macro act) X
Inform-ref (macro act) X
not-understood X
propose X
query-if X
query-ref X
Refuse X
reject-proposal X
request X
request-when X
Request-whenever X
subscribe X

Communication for action (Flores)

Table 1: FIPA and Flores Communicative Acts.

5. IMCIS: The Methodology for Modeling Interaction in CIS [23]
CIS are complex due to their dynamic nature and the management of many simultaneous interactions, and the

software specification is hard to be implemented due to the reasons stated above. A proper structured way of

building software for the aforementioned needs is relevant to ease the specification of complex systems. In addition

to this, the problem of building powerful software tools to specify dynamic complex systems, such as CIS, has not

been dealt with enough. We center our work in two areas: analysis and design of interactions in CIS. We actually

hold different views about the system: 1) the explicit analysis and specification for the static view and 2) the implicit

analysis and specification for the dynamic view. Current works by different authors give us a static model, but the

CIS are very dynamic [22]. It is proposed to build a behavior model using the individual and the structural model. In

order to make a model of a system, we need a set of abstractions that will allow us to capture the essence of the

behavior of the system we wish to model. The CIS frequently perform complex tasks that are distributed over space

and time, and that involve discrete flows of objects and/or information. It is proposed the use of CPN in order to

represent the agent behavior and its intentions, and to simulate the resulting model. Figure 7 shows the integration of

the models. At the low layer we have the individual model, in which we describe the agents separately. At the

medium layer, we have the structural model, in which we describe the interactions among agents, and finally, at the

upper layer, we have the dynamic model, in which we observe and control the simulation of the system interaction.

43

The explicit model is built from the system specification, but the dynamic model is built from the explicit model

and simulated in the tool. The CPN model captures both the static and the dynamic behavior of the specification.

. . .

. . .
E x p l i c i t
A n a l y s i s
&
S p e c i f i c
a t i o n

I m p l i c i t
A n a l y s i s
&
S p e c i f i c a
t i o n

A g e n t s

S y s t e m
S t r u c t u r e

S y s t e m
D y n a m i c

B
e
h
a
v
i
o
r

.

. . .
E x p l i c i t
A n a l y s i s
&
S p e c i f i c
a t i o n

I m p l i c i t
A n a l y s i s
&
S p e c i f i c a
t i o n

A g e n t s

S y s t e m
S t r u c t u r e

S y s t e m
D y n a m i c

B
e
h
a
v
i
o
r

Figure 7: Methodology Views.

The IMCIS [23], the methodology for modeling interaction in CIS has the following steps:

IMCIS (Interaction Methodology for CIS) .

Explicit Analysis and Specification:

1. Identify agents and their intentions (individual model).

2. Build the agents diagram (structural model).

3. Build the interaction diagrams (structural model).

4. Design the agent ports (structural model).

5. Design the messages (structural model).

6. Specify the systems messages using Coloured Petri Nets (structural model).

Implicit Analysis and Specification:

7. Simulate the system interactions (dynamic model).

5.1. Identify agents and their intentions and build the agents diagram
The methodology can be exemplified with the following case: a business to business (B2B) environment involves

simultaneous interactions among buyers, suppliers and the marketplace that need to be controlled. A detail

description of the methodology is shown in [23]. The first step is to identify the agents and their intentions. Here we

have three agents: Buyer, Marketplace and Supplier. We build the agents set A, with agents and his intentions:

A={(Buyer, to buy a product with the best option in the market), (Marketplace, to make effective relationships

among business partners easier), (Supplier, to offer the best quality - price - volume products)}. In figure 8 we

present the agent diagram, spawned from the second steep.

44

Buyer

Marketplace

Supplier

B2B Transaction
(Order, Call for Proposals, Agreement)

Wait for Product Delivery

Figure 8: Agent Diagram.

The equivalent graph for the agent diagram is: AD={(Buyer, Marketplace, Supplier), (B2B Transaction, Call

for Proposals, Order, Wait for Product Delivery, Agreement)}.

5.2. Build the interaction diagrams
To build the interaction diagram, the main system interaction is identified as: B2B Transaction, which is composed

of four conversations: Buyer B2B Transaction Marketplace, Marketplace Call for Proposals Supplier, Marketplace

Order Supplier, Buyer Wait for Product Delivery Supplier. The interaction Marketplace Agreement Supplier is a

Context Interaction, and just gives us prerequisite information or a reference information. Figure 9 shows the

interaction diagram.

Interaction: B2B Transaction

Call for Proposals
No. 1.1

Marketplace Supplier

Order
No. 1.2

Marketplace SupplierWait for Product
Delivery
No. 1.3

Buyer Supplier

AgreementMarketplace Supplier

B2B Transaction
No. 1

Buyer Marketplace

Figure 9: Interaction Diagram B2B Transaction.

45

So a CIS specification is represented by the following expression: CIS={A, Cg, Gk, I}, where:

• Agent Set, A={(Buyer, to buy a product with the best option in the market), (Marketplace, to make

effective relationships among business partners easier), (Supplier, to offer the best quality - price - volume

products)}.

• Common Goal, Cg= To satisfy the buyer need with the best offer, and the best agreements with suppliers.

• Global Knowledge, Gk={Buyer needs, products, agreements}.

• Interaction Set, I={B2B Transaction}.

In the next step, the design of the interaction in the CIS. In tables 2 and 3, the different steps and cases in a

conversation are modeled, where the client/provider communicative acts [15] take place according to the steps in the

basic action loop and its role in the conversation.

B asic C om m unicative Acts Preparation N egotiation Execution Evaluation
C lient
R equest Start
D eclare satisfaction

N o agr S tart
N o rep S tart
V oid U se

C ancel
N o agr U se
Preparation Start
V oid S tart

C ancel m ake new request Start
D ecline to accept

N o agr Start
V oid Start

C lose
R evoked Start
D eclined U se U se

Ask recons
R evoked Start
D eclined Start

C ounter U se
D ecline counteroffer U se
Agree to counteroffer Start

N otation:
Start: C onversation Firing.
U se: C onversation U se.

Interaction

Table 2: Client Communicative Acts.

Basic Communicative Acts Preparation Negotiation Execution Evaluation
Provider
Agree Start
Decline Start
Counteroffer Start
Revoke and counteroffer Start
Revoke

No agr Use
Void Use

Report completion
No agr Start
Void Start

Ask recons
Cancel Start

Close
Canceled Use
Satisfied Use

Notation:
Start: Conversation Firing.
Use: Conversation Use.

Interaction

Table 3: Provider Communicative Acts.

46

5.3. Design the agents ports and the messages
The design of agents ports helps us to reduce the modeling complexity, in particular the links number among agents.

The design of the agents ports is shown:

Interaction: B2B Transaction (Buyer, Marketplace, Supplier).

Conversations: 1) Buyer B2B Transaction Marketplace, 2) Marketplace Call for Proposals Supplier, 3)

Marketplace Order Supplier, 4) Buyer Wait for Product Delivery Supplier.

Ports: The communicative acts are used, according to the basic interaction loop. The Buyer, Marketplace, and

Supplier play two different roles in the conversation: Client and Provider. In the Pin (Port In) and Pout (Port Out)

ports, the provider and client conversation messages are represent. The notation for port representation in Agent 1

Conversation Agent 2 is: Agent1.P(in or out) Conversation, Agent2 (m1, m2, …, mx), where mi is the i message in the

port in the conversation between Agent 1 and Agent 2, and x is the total message number. The graphic

representation is shown in figure 10.

Buyer

Marketplace

Supplier

B2B Transaction (Order, Call for Proposals, Agreement)

Wait for Product Delivery

Pin / Out Pin / Out

Pi
n

/ O
ut Pin / O

ut

Pi
n

/ O
ut

Pin / O
ut

Figure 10: Agents Ports Diagram.

The Buyer ports are:

• Buyer.Pin B2B Transaction, Marketplace (Agree, Decline, Counteroffer, Report Completion(Type), Revoke(Type),

Revoke and Counteroffer, Close(Type), Ask Recons(Type)).

• Buyer.Pout B2B Transaction, Marketplace (Request, Declare Satisfaction(Type), Cancel(Type), Cancel Make New

Request, Decline to Accept(Type), Close(Type), Ask Recons(Type), Counter, Decline Counteroffer, Agree to

Counteroffer).

• Buyer.Pin Wait for Product Delivery, Supplier (Agree, Decline, Counteroffer, Report Completion(Type), Revoke(Type),

Revoke and Counteroffer, Close(Type), Ask Recons(Type)).

• Buyer.Pout Wait for Product Delivery, Supplier (Request, Declare Satisfaction(Type), Cancel(Type), Cancel Make New

Request, Decline to Accept(Type), Close(Type), Ask Recons(Type), Counter, Decline Counteroffer, Agree to

Counteroffer).

The Marketplace ports are:

47

• Marketplace.Pin B2B Transaction , Buyer = Buyer.Pout B2B Transaction, Marketplace.

• Marketplace.Pout B2B Transaction, Buyer = Buyer.Pin B2B Transaction, Marketplace.

• Marketplace.Pin Call for Proposals/Order/Agreement , Supplier (Agree, Decline, Counteroffer, Report Completion(Type),

Revoke(Type), Revoke and Counteroffer, Close(Type), Ask Recons(Type)).

• Marketplace.Pout Call for Proposals/Order/Agreement, Supplier (Request, Declare Satisfaction(Type), Cancel(Type),

Cancel Make New Request, Decline to Accept(Type), Close(Type), Ask Recons(Type), Counter, Decline

Counteroffer, Agree to Counteroffer).

The Supplier ports are:

• Supplier.Pin Call for Proposals/Order/Agreement, Marketplace = Marketplace.Pout Call for Proposals/Order/Agreement, Supplier.

• Supplier.Pout Call for Proposals/Order/Agreement, Marketplace = Marketplace.Pin Call for Proposals/Order/Agreement, Supplier.

• Supplier.Pin Wait for Product Delivery, Buyer = Buyer.Pout Wait for Product Delivery, Supplier.

• Supplier.Pout Wait for Product Delivery, Buyer = Buyer.Pin Wait for Product Delivery, Supplier.

The Conversation Specification form shown in figures 11 and 12 is part of the documentation form set. Here the

basic information about the interaction and its conversations are described. In the example, the conversation Call for

Proposals between Marketplace and Supplier is shown. The Conversation specification form has two parts, the

conversation description shown in figure 11, and the interaction diagram shown in figure 12.

Conversation Specification:

Interaction Name:
B2B Transaction

Interaction ID:
1

Date:
July 2001

Version:
1.0

Conversation Name:
Call for Proposals

Conversation ID:
1.1

Main Conversation Goal:
To receive the best Supplier offers to the Marketplace according to the Buyer’s request.

Client:
Marketplace

 Provider:
Supplier

Figure 11: The Conversation Description.

In the conversation diagram, the exchange of communicative acts between the Marketplace (Client) and

Supplier (Provider) in each step of the action basic loop are described. All conversations in the interaction diagram

must have a conversation diagram like the one shown in figure 12. The messages are represented by the

communicative acts and they are present in each basic loop step, in tables 2 and 3.

In our example, the conversation Call for Proposals is simple, because the marketplace request product

information and economic proposals, inside a previous agreement, and the negotiation space is closed to this. The

suppliers can or can not send proposals, but the marketplace has the decision to accept or reject this, according to the

agreement. When an agents are involved in an interaction, the conversation flow is controlled by the basic action

loop. For example, in figure 12, at the evaluation step, if the marketplace returns the message Declare Satisfaction,

48

the conversation comes to an end, but if the message is Decline to accept, the conversation moves forward to the

execution step.

Call for
Proposals

No. 1.1
Marketplace Supplier

Declare
Conversation

Close

Conversation Start

Request

Inform

Promise

Preparation:
Establish the initial conditions.

Description:
Marketplace. Request (Product Information and Economic
Proposal)

Negotiation:
Negotiation the initial conditions.

Description:
Supplier.Agree
or
Supplier.Decline

Marketplace.Close (Declined)

:

Evaluation:
Declare satisfaction or in satisfaction.

Description:
Marketplace.Declare Satisfaction
or
Marketplace.Decline to Accept

Execution:
Work to satisfied the initial conditions.

Description:
Supplier.Report completion (Product Information and
Economic Propose)

Figure 12: The Detail Interaction Diagram

5.4. Specify the System Messages Using CPN and Simulate the System Interactions
The general interaction mechanism used by the Buyer, Marketplace and Supplier is modeled. Figure 13 shows the

hierarchy page BasicActionLoopForInteraction, build in Design/CPN, where the two agents, Client (Marketplace)

and Provider (Supplier), are represented and the different pages and their relationships are shown. The Client is

represented by the MainClient CPN, and the Provider by the MainProvider CPN. The fusion place mechanism is

used for interconnecting net structure on different pages. A fusion place is a place that has been equated with one or

more other places, so that the fused places act as a single place with a single marking [18]. The defined fusion set is

CommunicationMedium and it represent the common places in the interaction. The Color declaration of the

Tinteraction type is a record with a list of buyers, a marketplace, a list of suppliers, a product and a communicative

act in the interaction. The buyer, supplier, marketplace and product have its own color definition. The Tinteraction,

represent a system interaction, for example, an instance like ((Buyer 1), Marketplace, (Supplier 1, Supplier 2, … ,

Supplier n), Product x, Marketplace.Counteroffer)). In the following figures, interaction and interactiontemp are a

Tinteraction declared variables.

49

Figure 13: The General Interaction Mechanism CPN Hierarchy Page.

The first step in a general conversation shown in figure 14 is the preparation step in the MainClient CPN, and

the conversation begins with a client message request, and the provider can respond with different kinds of

messages such as agree, decline, report completion with no agreement, and counteroffer, inside the negotiation

step.

Figure 14: The Preparation Step CPN.

In a common interaction, the coordination communicative flow is:

• client request
• provider agree
• provider report completion
• client declare satisfaction

50

but, if the agents face an interaction conflict, a possible coordination communicative flow is: client request and the
provider has different options:

• Agree to accept the requirement
• Decline the request
• Report completion with no agreement
• Counteroffer to provide a new option

In our example the client counteroffer the provider with a different product, the client has different options:

• Counter to ask for a different option
• Decline counteroffer
• Cancel and make new request
• Cancel no agreement
• Declare satisfaction no agreement
• Agree to counteroffer

If the option is agree to counteroffer, the interaction flow is similar to the common interaction flow. This

interaction situation is part of the negotiation step in the MainProvider CPN, shown in figure 15, where the client

and provider have a message exchange before advancing to the next step, as seen in tables 2 and 3. In our example,

the Call for Proposals conversation shown in figure 12 has the following communicative coordination flow:

Marketplace.Request, Supplier.Agree or Supplier.Decline, Supplier.Report Completion, Marketplace.Declare

Satisfaction or Marketplace.Decline to Accept.

Figure 15: The Negotiation Step CPN.

Figure 16 shows part of the negotiation step: the countered situation, where the client or provider can accept,

reject or counteroffer the request. The countered step is central in the interaction mechanism in order to resolve

conflicts and make agreements.

51

Figure 16: The Countered Step CPN.

Figure 17 shows the execution step, where the provider works in order to satisfy the client request. The provider

can use the following messages: report completion, revoke, revoke and counteroffer. In the case of the revoke

message, the conversation probably returns to the negotiation step, and with the report completion message the

conversation moves forward to the evaluation step.

Figure 17: The Execution Step CPN.

When the conversation is at the evaluation step, presented in figure 18, the client must evaluate the provider’s

work result. The messages are: declare satisfaction, decline to accept, cancel or cancel and make new request. If

the messages are declare satisfaction or cancel, the conversation comes to an end, but if the message is decline to

accept, the conversation returns to the execution step or with cancel and make new request message, this return to

the negotiation step.

52

Figure 18: The Evaluation Step CPN.

An important aspect is how we model the interaction. There are two different instances of the color token

interaction in the marketplace – supplier call for proposal conversation:

interaction 1 = ((Buyer 1), Marketplace, (Supplier 1, Supplier 2, … , Supplier n), Product 1,

Marketplace.Declare Satisfaction))

interaction 2 = ((Buyer 2), Marketplace, (Supplier 1, Supplier 2, … , Supplier m), Product 2,

Marketplace.Request))

In the instance 1, the marketplace is in an evaluation step within interaction 1, and in the instance 2, the marketplace

is in the preparation step within interaction 2. Here, in the same CPN, multiple and simultaneous conversations are

expressively modeled and controlled according to the token instances. Each instance has different buyers, suppliers,

and products with given communicative acts within each particular conversation state.

Conclusion and Further Works
This paper provides a guide for modeling interaction in cooperative information systems by means of the use of

coloured Petri nets to deal with the associated complexity for modeling the dynamic of the system. The interaction

relations among agents are represented via an agent diagram, and formally specified using CPN. The use of CPN

formalism offers the main advantages for modeling interaction in CIS: 1) It allows to easily model the state of the

simultaneous interaction among more than two agents, 2) It allows to easily model the behavior of the interactions

according to the state of the agents, 3) It allows an easy representation of different messages for different agents in

different states, 4) It allows to simulate the system interaction dynamics.

The use of the basic action loop in order to model the organization interaction in the CIS helps to understand

and represent different situations with a common action and coordination language, like the B2B system, but need to

be tested in more application domains. The explicit and implicit analysis and specification where the system

engineer may be managing the structure complexity and the system dynamics with the use of CPN. The use of

fusion place, for modeling the system hierarchically, is a viable solution for representing the communication

medium. The colors declarations helps us model complex data types and allow us to model and control multiple

53

simultaneous interactions among agents. An attractive area is business to consumer (B2C) systems, which are high

dependent of the user decisions in the interactive model, and may required to consider temporal and fuzzy aspects

that need to be modeled with the IMCIS.
References
1. P.R Cohen and H.J. Levesque, “Communicative actions for artificial agents”, Proceedings of the International
Conference on Multi-Agent Systems, AAAI Press, San Francisco, June, 1995.
2. P.R. Cohen and H.J. Levesque, “Rational Interaction as a Basis for Communication”, Cohen P. R., Morgan, J.,
and Pollack, M. E. (eds.), in Intentions in Communication, SDF Benchmark Series, MIT Press, pp. 221-255, 1990.
3. J.M. Cordero, and M. Toro, “A Components Model based on Interaction-Nets”, ISAS/SCI 1999, Orlando, Florida,
1999.
4. R.S. Cost, Y. Chen, T. Finin, Y. Labrou and Y. Peng, “Modeling Agent Conversations with Coloured Petri Nets”,
To appear in Working Notes of the Workshop on Specifying and Implementing Conversation Policies, Autonomous
Agents ´99, Seattle, WA, May 1999.
5. R.S. Cost, Y. Chen, T. Finin, Y. Labrou and Y. Peng, “Using Coloured Petri Nets for Conversation Modeling ”,
IJCAI ´99, 1999.
6. R.S. Cost, Y. Chen, T. Finin, Y. Labrou and Y. Peng, “A Negotiation-based multi-agent system for supply chain
management ”, in Working Notes of the Agents ´99 Workshop on Agents for Electronic Commerce and Managing
the Internet-Enable Supply Chain, Seattle, WA, April 1999.
7. K. Decker, “Environment centered analysis and design of coordination mechanisms”, PhD Thesis, University of
Massachusetts Amherst, 1995.
8. A. El Fallah, and S. Haddad, “A Recursive Model for Distributed Planning”, ICMAS-96, p.307-314, 1996.
9. A.El Fallah, S. Haddad and H. Mazouzi, “Observation répartie et analyse des interaction dans un système multi-
agents”, JFIADSMA-98, Eds Hermès, Nancy 1998.
10. A. El Fallah, S. Haddad and H. Mazouzi, “Une demarche méthodologique pour l´ingénierie des protocols
d´interaction”, JFIADSMA-99, Eds Hermès, Nancy 1999.
11. A. El Fallah, S. Haddad and H. Mazouzi, “Protocol Engineering for Multi-agent Interaction”, 9th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW´99, Springer, 1999.
12. Y. Demazeau, J.L. Koning, and G. Françoise, “Formalization and pre- validation for interaction protocols on
multi-agent systems”, Distributed AI and Multi-agent Systems, p- 298-302, 1998.
13. FIPA, Foundation for Intelligent Physical Agents, “Agent Communication Language Specification”,
http://www.fipa.org, 2000.
14. F. Flores, and T. Winograd, “Understanding computer and cognition, a new foundation for design”, Addison
Wesley, 1986.
15. F. Flores, “Introducción al Ciclo Básico de la Acción (“Loop”)”, Business Design Associates, Inc., 1996.
16. A. Haddadi, “Towards a Pragmatic Theory of Interactions”, Morgan Kaufmann Publishers, San Francisco
California, United States of America, 1998.
17. M. Huhns, and M.P. Singh, “Readings in Agents”, Morgan Kaufmann Publishers, San Francisco California,
United States of America, 1998.
18. K. Jensen, “Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use”, volume 1, 2, 3, second
edition, Springer, Germany, 1997.
19. V. Lesser, “Reflections on the nature of multi-agent coordination and its implications for the agent architecture”,
Autonomous agents and multi-agent systems, Kluwer academic publishers, 1, 89-111, July 1998.
20. H. Levesque and P. Cohen, "Teamwork", Nous 25(4), Special Issue on Cognitive Science and Artificial
Intelligence, pp. 487-512. To appear in: Handbook of MultiAgent Systems, 1991.
21. D. Moldt and F. Wienberg, “Multi-agent systems based on coloured Petri nets”, Proceedings of the 18th
International Conference on Application and Theory of Petri Nets (ICATPN´97), number 1248 in Lecture Notes in
Computer Science, p-82-101, Toulouse, France, June 1997.
22. M. Papazoglou and G. Schlageter, “Cooperative Information Systems, Trends and Directions”, Academic Press,
San Diego, 1998.
23. F. Ramos-Quintana, J. Frausto-Solis and F. Camargo-Santacruz, “A Methodology for Modeling Interactions in
Cooperative Information Systems Using Coloured Petri Nets”, to appear in the International Journal of Software
Engineering and Knowledge Engineering, World Scientific, http://www.ksi.edu/ijsk.html, 2001.
24. H.J. Wooldidge and N.R. Jennings, “Intelligent Agents: Theory and Practice”, The Knowledge Engineering
Review, 10 (2), p. 115-152, 1995.

54

Agent-Oriented Modelling of Distributed

Systems with the Object Coordination Net Approach

Holger Giese

Software Engineering Group

University of Paderborn

hg@upb.de

Abstract. Object-oriented modelling is today the main stream approach for tackling the

design of distributed systems. It permits to handle the structure and behaviour of complex

real world problems. The often occurring explicit delegation between objects however results

in considerable problems in the domain of distributed systems. A more exible and open

scheme for coordination is instead required. Autonomous agents which cooperate to achieve

their goals rather than explicitly delegate tasks have therefore been proposed to overcome

these problems. However, legacy systems supporting only the explicit delegation style have

to be integrated and �ne grain interaction is often better modelled using the traditional

explicit delegation style. Therefore, in practice a purely agent-oriented approach is not

applicable. The object coordination net approach o�ers an object-oriented design technique

based on UML notations employing a special type of high-level Petri-Nets that permits to

model distributed systems using both styles in an intermixed manner. An example is used

to demonstrate how it supports the crucial aspects of distributed system design by means

of standard object-oriented and agent-oriented modelling at the same time.

1 Introduction

The systematic and predictable engineering of large software systems is an inherent diÆcult prob-

lem. When distributed systems are considered their speci�c nature further results in a set of

additional problems not present when designing traditional single computer systems. Roughly

stating these are the phenomena of distribution, heterogeneity, coordination, resource manage-

ment, and partial failures. A rather implicit resulting property is concurrency that adds its share

to the complexity of handling distributed design problems. While several problems can be handled

using available technologies, others remain inherent and have to be tackled in a more explicit

fashion. Distribution as well as system heterogeneity are handled by applying access and location

transparency o�ered by today's middleware systems. For the remaining aspects no comparable

transparent technology mapping has been developed, which ensure that the resulting systems are

predictable acceptable (cf. [35]). The great di�erence between network latency and computational

speed makes asynchronous operating as well as parallelism in several forms mandatory when scala-

bility or higher throughput requirements are demanded. Therefore, more autonomously operating

components rather than tight coupled objects are required.

Based on the success of object-oriented programming, object-oriented analysis (OOA) and

object-oriented design (OOD) [31, 36] have been developed. In contrast to structured analysis an

increasingly seamless transition through the earlier stages of the software life cycle is provided. The

objects and their types (classes) are more stable with respect to requirement and design changes

emphasising the direct mapping concept (cf. [22]). Thus, the object-oriented paradigm is a more

suitable approach for large software projects.

However, the main principles of object-orientation can be employed in quite di�erent ways.

One concept is data-driven design [31]. It starts during analysis with a domain model which is

step by step extended and re�ned using for instance additional technical classes during the design.

In contrast to data-driven design the concept of responsibility-driven design [36] tries to identify

responsibilities and map them to classes rather than use classes to represent data elements of

the problem domain. Therefore, it avoids both centralised and overly distributed designs. The

55

behaviour and data are instead well distributed and tasks are decomposed by delegation (cf. [32]).

The di�erent responsibilities of a class can be further structured when di�erent roles [29] are

distinguished. They allow to consider di�erent responsibilities in isolation and therefore improve

the separation in a design. Role and responsibility-driven design therefore results in a suitable

design for distributed systems where coordinators take care of their responsibilities by coordinating

other instances, while details are delegated to subordinated coordinators. This includes reactive as

well as proactive behaviour. By further emphasising the coordinator role stereotype and avoiding

controller stereotypes, a suitable design style for distributed systems is achieved. This design style

is also appropriate for variability and adaptability, because changes will only e�ect other parts

when the changes are so drastic that overall coordination requires adjustment.

In today's software engineering the paradigm of object-orientation is seen as the most suitable

approach for the design of distributed systems (cf. [9]). The seamless support for all phases, from

analysis to design and implementation and its successful concepts to handle the complexity of real

software projects justi�es this view. However, the common design style, which delegates behaviour

to explicitly known subordinated objects, results often in a too tight coupling. Agents have been

proposed for a long time [2, 34] as an alternative approach that due to the inherent autonomy

of each agent avoids this drawbacks of the object-oriented approach. Today, both concepts are

not further considered as contradicting paradigms. Instead, agents are rather understood as a

conceptual extension of the object-oriented paradigm [27].

In agent-oriented modelling an agent is characterised by its reactive and proactive nature, its

autonomy with respect to state and behaviour. An agent is further situated in some environment

(cf. [38]). While compared with data-driven design the agent paradigm is quite di�erent, a com-

parison with the responsibility-driven design style reveals that the essential di�erence is only the

agent autonomy and its context awareness. Therefore agent technology can be better combined

with the responsibility-driven design style which notion of responsibility does closely relate to the

agent speci�c notion of desire.

Agents are today no longer proposed with a closed world assumption in mind. Wooldridge et

al. [39] instead note that agent-based design and techniques are often more suitable employed at

the coarse-grain view of a system rather than at its �ne-grain view. Therefore, the agent concept

can be seen rather as a speci�c software architectural style. The agent realization itself might be

done using object-oriented technologies or special purpose agent languages. The agent-oriented

paradigm reects this by further distinguishing between a micro and macro view to denote design

at di�erent levels of granularities. The micro view describing the realization of a single agent. The

macro view can be related to the coarse-grain design or software architecture.

The agent paradigm currently evolves from a programming language technology to agent-

oriented software engineering [8]. Therefore, modelling techniques are required which support,

besides the pure agent-oriented style, the combination with traditionally build systems. This is

not only required for legacy system integration. It is also reasonable to ensure, that the agent-

oriented design can use object-oriented frameworks an will be able to interact with other modules

build in and object-oriented style.

The presented Object Coordination Net approach (OCoN) o�ers an object-oriented design

technique based on UML [26] the de facto standard for object-oriented modelling. The underlying

concept is a special type of high-level Petri-Nets that permits to model distributed systems sup-

porting both the object-oriented and agent-oriented style of design. The mentioned crucial aspects

for distributed system design can be modelled using the Petri net concepts contained in the visual

design language OCoN. It supports both, standard object-oriented as well as agent-oriented mod-

elling. The OCoN contract notion further supports the demanded design of coordination aspects in

a modular manner. Contracts can vary from delegation to cooperation like styles, allowing a wide

range of protocols. The contracts are further smoothly integrated into the language and ensure

the proper coordination between its participants.

The basic concepts of the approach and a short overview is presented in the following Section

2. Then, an example is presented and several design alternatives and their systematic evaluation

are discussed (see Section 3). Related work is compared in Section 4 and a �nal conclusion closes

the article.

56

2 The OCoN Approach

The Object-Coordination-Net (OCoN) approach introduced in [37] provides the required integra-

tion between object-oriented and agent-oriented modelling by means of reactive as well as proactive

contracts. It combines the mature UML structure diagrams with appropriate visual behaviour de-

scriptions based on Petri-Nets [6]. The approach further seamlessly integrates the concepts of

object-orientation, concurrency handling and resource coordination (see [15]). We further assume

the reader to be familiar with the most important diagrams of the UML (or its predecessors) and

with basic Petri-Nets [6].

...
[R1]

<<contract>>
ContractR1

res1_

[R2]

res1_

op2

op1()
op2()
op3()

res1_

op4

<<service>>

self

res2_

...

op2

op1

[S2][S1]

Contract1
<<contract>>

...

self

op1

ContractR2

...

<<contract>>

res2_
signatures

protocol net

+op1()

+op3()
#op4()

+op2()

signatures

<<implementation>>
ContractImpl

resource allocation net

[S2][S1]

ContractImpl::op1

ContractR2

<<service>>
ContractImpl::op2

Fig. 1. UML embedding of OCoN diagrams

In order to integrate the approach with the suitable parts of the UML [26] we add only spe-

ci�c elements as well as new diagrams where necessary (see Figure 1). When dealing with static

structure this can be done using the UML extension mechanisms. The common interface notion is

extended to contracts by a so-called protocol net (PN) to specify nonuniform service availability.

They are used to specify externally visible behaviour and to decouple systems by clearly distin-

guishing between an interface and its implementation. A stereotype contract is used to embed this

concept into a UML class diagram (see Figure 1 contract Contract1). In class diagrams we will

sometimes only use the UML interface shortcut (circle with interface name) instead of this com-

plete stereotype. A class may provide multiple contracts to the outside which have to be ful�lled

by implementing its public services. An instance-local description which resources are needed and

how they are coordinated is additionally required. The UML stereotype implementation is used to

denote an active UML class. Its reactive and proactive behaviour is further described by a so-called

resource allocation net (RAN) as visualised for class ContractImpl in Figure 1. If a single service

contains interesting internal parallelism or relevant resource allocation steps, this can by speci�ed

by a so-called service net (SN), otherwise a method implemented, e.g., using Java can be used

which provides an interface to legacy code. A service net is analogously integrated using a service

stereotype (see Figure 1 service ContractImpl::op1). Note that in contrast to hierarchical coloured

Petri nets [20] and their subpage mechanism such class diagrams can describe also non-hierarchical

object structures.

57

(c)

action

(a) (b)

Fig. 2. OCoN elements

In Figure 2 (a) the basic elements of the additional diagrams are presented. An action is

visualised by a square and represents in its basic form an operation call with request and reply

part. We further distinguish two sorts of pools in form of event pools (circles) and resource pools

(hexagons). The former are used to denote the control ow while the later represent the resource

environment. If the resource is even not controlled exclusively within the given net a shared pool

indicated by the double border is used. The ow relation of the net is described using pre- and

post-condition arcs that denote which resources are consumed and produced by each action. The

carrier of activity and the action executing entity is denoted by a special activation edge with

white instead of black head. The actions representing an operation call are further equipped with

a signature using ports that represent the parameters (white dot) as well as the replied results

(black dot). If in contrast an action is drawn with a shadow and without signature it describes

an externally initiated activity. This may be for example an operation call viewed from within an

instance (call forward action) or an autonomous state change visible from outside (autonomous

contract step).

Protocol nets describe the external visible states and operations of a contract. Resources are

used to declare the di�erent exclusive states and actions describe the operations available in each

speci�c state of the contract. These restrictions ensure that the resulting net is a state machine.

In service nets in contrast the usage of contracts an coordination of control ow is described.

Therefore the associated objects of a class may be visualised as resources. Additionally, an in and

out region on the left and right side of the net (see Figure 2 (c)) are used to describe the provided

parameters and required return values.

All elements of a service net with exclusion of the in and out regions may also occur in a

resource allocation net to describe the request independent behaviour of a class. The resource

allocation nets do further process incoming requests and therefore also contain skeleton tokens

for the externally provided contracts. In the standard case of an unique provided contract case

they are modelled using unnamed resource pools for each contract state. If multiple contracts with

di�erent types are provided their discriminating names are also used for the skeleton pools.

2.1 Semantics

For the purpose of the paper an informal presentation of the execution semantics is suÆcient. For

a more detailed description of the OCoN language and its complete semantics we refer to [13].

Figure 3 visualises how the �ring of a call action is interpreted in a resource allocation or service

net. The pre-condition for �ring an operation like op is speci�ed by the in-going arcs. A carrier

of activity (here of type Res) for processing the call is required alongside the parameters (here an

object of type E1) and a local pre-condition in form of a simple Event. In addition, the carrier has

not only to be of type Res, but in particular must be a resource in state [S1]. This is de�ned by the

58

Res[S2]

Event

op

E2E1

Res[S1] Res[S2]Res[S1]

op

E1

Res[S1] Res[S2]

Event

E1 E2 E2

Event

op

Fig. 3. The initiation and termination of a call action

type speci�cation for the resource, i.e., Res[S1], which restricts the overall type Res to the state

[S1] of Res. The �ring of a call to op is composed of three elementary steps: (1) consume all pre-

conditions, (2) perform some durable activity inside the service op, (3) produce all post-conditions.

The e�ect is an object of type E2 and a change of the state of the carrier, which enters state [S2].

Therefore, an action �res essentially twice during the processing of a request, once when the

request is initiated and once when such action terminates. The two steps correspond particularly

well to the input and output elements of the call action. Although the direct correspondence

with classical Petri net transition is abandoned, this method better preserves the integrity of an

operation request which includes sending requests and receiving replies.

SN

Instanceprovided
contract

used
contract

(1) (2)

(4)(3b)

(3a)

Fig. 4. OCoN architecture and net types

Besides the described local view of a call action in the calling net visualised in Figure 3, also the

request processing on the server side is required. The serving object is determined by the carrier of

activity. It will receive the request in its resource allocation net via a shaded action indicating that

the activity is externally triggered by a client. Usually, such an action will forward the request to a

corresponding service net (visualised in Figure 4). This common case of mapping a request onto a

dynamically instantiated service net result in the in Figure 2(c) visualised expansion of an action

into a service net. The general processing scheme for external request is as follows: (1) receive the

request via a provided contract in the resource allocation net, (2) forwarded it to a dynamically

created service net and (3), if required, also forward the reply back to the client. In the service

nets or resource allocation net again service requests via used contracts to other object may occur

(4).

This forwarding mechanism is di�erent from the subpage mechanism of hierarchical coloured

Petri nets [20] which replace each substitution node by a copy of its subpage. Besides, the more

dynamic creation of service net instances the usage of the resource allocation net further results

in polymorphism w.r.t. the class and state of the server object. On the client side the carrier

of activity is further determined at runtime by the binding for the activation edge pre-condition

(cf. [13]).

59

2.2 Contracts

The protocol nets, which de�ned the permitted usage sequences of a contract, can be used to

describe strict coupling and loosely coupling contracts. The in Figure 2 (b) lower action visualised

autonomous contract steps is further employed to describe proactive contract behaviour.

The contract notion does further support an eÆcient notion of behavioural subtyping (cf. [13])

and therefore permit to dynamically establish conform connections. The protocols can be further

derived combining elements of a set of standardised protocols in such a manner that besides the

protocols also full behavioural subtyping for contracts with pre- and post-conditions follows. This

builds the foundation for the dynamic but secure cooperation between an evolving community

of agents. Each agent collaboration is realized using matching used and provided contract types

and therefore the resulting interaction excludes coordination problems. This is also true for the

overall coordination when each contract is used and served independently. When an agent in

contrast coordinate multiple contracts in a way that e�ectively synchronise their processing, overall

coordination problems can in contrast not be excluded.

2.3 Contexts

In Petri nets, common resources are described by using places. By sharing such places, several sys-

tem entities can exchange and share information. Place/transition nets do not distinguish di�erent

tokens located in one place and simply de�ne enabling based upon their multiplicity. High-level

Petri nets in contrast permit the speci�cation of powerful predicates which an enabling set of

tokens is required to ful�l. This ability can be used to describe associative access in the form of

tuple spaces which is also a possible coordination paradigm [7].

The three basic access cases read, write and take can be easily mapped to related extended

Petri net edge types. The bidirectional read edge is simply a short cut for a pre- and a post-

condition edge. Whilst elegant solutions for coordination problems with this paradigm have been

developed, system designs based on associative matching and tuple spaces fail however to ensure

scalable system designs.

The OCoN approach supports shared pools (places) for entities of the same subsystem and thus

provides a notion for the embedding of tuple spaces. Not a unstructured global tuple space but a

hierarchical structured one is therefore supported. It permits the explicit import of resource pools

for implementation classes and subsystems from their run-time environment (cf. [18]). Related

agents can observe other ones via the contract states and appropriate activities can be started as

demonstrated for the decision support agents considered later in Section 3.

The direct interaction via tuple spaces using read, write and take edges is however not type

secure as connections typed via contracts. Therefore, a scheme which uses shared pools to establish

connections rather than exchange data is often the more appropriate solution. This scheme realizes

a local "service"-lookup using the contract type or any other additional provided meta-data o�ered

in the shared pool. An element that has been taken or read can be used in the next step to establish

the required connection in a typed manner.

3 Example

To demonstrate that traditional as well as agent-oriented object-oriented design models can be

described with the approach, we will consider as example the design of an intelligent decision

support system used already in [17] to discuss the visual modelling of distributed systems. It

covers the collaborative management of a given set of information resources such as mail, news

and channels and additionally should support client initiated data queries which results are later

integrated into the information base.

Using a responsibility-driven design style, we can identify that a component is required that

takes responsibility for coordinating these sets of requirements for each client. The agent [2, 34]

concept can be further employed here and therefore the identi�ed requirements can be interpreted

60

as desires of the autonomous operating central component. Besides the required data management

and data processing, the central component has to ful�l the following complex coordination tasks:

(1) each time new relevant information arrives the client wants to be informed, (2) the mail, news

and channel server have to be autonomously retrieved and (3) the tasks initiate by the client have

to be processed autonomously.

AgentImpl
<<implementation>>

Archive

ArchiveImpl
<<implementation>>

Mail

News

Channel

TaskImpl

0..*

Agent

archive

<<implementation>>

Task

tasks

mailServer

news

channels

1

1

1

agents

InformationAgent
<<subsystem>>

Fig. 5. The InformationAgent subsystem

In Figure 5 the relevant structural details of the agent-oriented design are presented. The

o�ered Agent contract provides the intended functionality to a client. It is implemented by the

implementation class AgentImpl using several other structural elements. Notable are at �rst the

subsystem wide known shared resources for a mail server, a news server and a channel. They are

used by the AgentImpl class to retrieve interesting information periodically. To handle speci�c user

initiated tasks a special Task contract as well as a realization class TaskImpl are given. To store

and manage the retrieved informations an ArchiveImpl class accessed via its Archive contract is

used.

The presented design does however not realize the "pure" agent-oriented view. While the

AgentImpl classes are conceptually agents, the style of interaction with their environment is more

of an explicit delegation kind rather than the agent typical autonomous cooperation style. The

mail, news and channel server contracts represent some sort of interfaces to non agent-oriented

legacy system parts. In practice, we have to integrate such a system and it is not reasonable

to demand a pure design with only loosely coupled contracts. Therefore, contracts can describe

loosely coupling contracts as demanded by the pure agent-oriented paradigm and strict coupling

ones. Each speci�c contract can result in a di�erent degree of coupling and preserved autonomy

for its participants.

The Mail, News and Channel contracts are traditional remote procedure based contracts which

allow only interaction in the explicit delegation style. Later in Figure 9 it will be demonstrated

that this style of explicit coupling requires speci�c treatment to preserve the autonomy of the

agent w.r.t. other system components.

The TaskDesc contract illustrated in Figure 6 describes in contrast a more asynchronous in-

teraction. The contract Task is internally used by the agent to manage a task. The initial state

[working] represents that a new created task is actually processing. When the task is processed ei-

ther successfully or aborted this will be represented using the state [done]. A progress autonomous

contract step (white square with shadow) is used to denote that this will de�nitely happen in the

future. Finally, an observer can obtain the result with the getResult operation when the state [done]

is reached. After reading the result, the task contract does not provide any further interaction.

Therefore this kind of contract is employed to manage only the life-cycle of a single task.

61

<<contract>>
Task

getResult():(Msg)

update():(set<Msg::Id>)

addTask(TaskDesc):()
status(Msg::Id,Msg::Flag):()
select(Msg::Id):(Msg)

<<contract>>
Agent

Fig. 6. The Agent and Task contracts

While the contract contains the obligation that the serving side will process the task, in contrast

to the traditional contracts such as Mail, News and Channel, this time the result is provided in an

additional protocol step and therefore contract client and server are more loosely coupled.

The Agent contract provided by the agent is also illustrated in Figure 6. In its state [actual]

the operations select, status as well as addTask are available. Via a select request the informa-

tion chunk (message) determined by a Msg::Id can be selected and obtained from the archive.

A uniquely identi�ed information chunk can be virtually modi�ed by a speci�c client using the

status command. If, for instance, it is marked for deletion any further interaction of that client

will ignore these chunks of information. The assigned ags for an information chunk are further

used to estimate their relevance and thus messages deleted by many clients may be thrown out

�rst when the agents information base has to be reduced. If a message is created or received by

a speci�c client it is initially only visible for the client itself. The client can either make it visible

for other users or erase it using the status command.

When a new message is received or a task is completed, the contract state should autonomously

change to the state [updated]. This is represented in the protocol net using a grey action with

shadow indicating that the action may occur arbitrarily (quiescent autonomous contract step).

Note, that in contrast to the progress autonomous behaviour this time progress is not guaranteed.

In state [updated] the client can synchronise its information base with the agent and obtain all

new message id's using the update operation. When a client wants to initiate speci�c queries or

analysis tasks, this can be done with the addTask operation using an appropriate task description

(TaskDesc). The result will be added to the information base of the agent and if relevant their

arrival is propagated via the [updated] state.

The contract supports a mixture of strict delegating interaction o�ered via the operations select,

status and the autonomous behaviour in form of the [updated] state and the addTask requests. While

the select and status operations are traditional remote procedure calls which deliver the intended

result with the reply, the task processing is rather autonomous. The addTask request does only

con�rm the reception, but does not deliver the result. This is done later if any relevant results are

retrieved using the autonomous state change to state [updated].

3.1 A First Design

A �rst solution for the AgentImpl class might be the one presented in Figure 7 which provides

only a single exclusive Agent contract and does essentially realize the identi�ed coordination. The

skeleton for the provided Agent contact and its processing is described by the anonymous [actual]

and [updated] pools. Two pools are used to represent the observed tasks. Two event pools and a

cycling event are used to trigger the periodical retrieving of the shared mail, news and channel

62

server (query). The archive resource is only allocated by the di�erent activities, but it implies no

speci�c coordination demand.

+select(Msg::Id):(Msg)
+update():(set<Msg::Id>)

+addTask(TaskDesc):()
+status(Msg::Id,Msg::Flag):()

AgentImpl1
<<implementation>>

-processTask():()
-query():()
-delay():()

Fig. 7. A �rst realization AgentImpl1

The right upper part of the resource allocation net builds a control loop initially �lled with

a single token. The private internal operation delay is initially enabled and will terminate after a

not further speci�ed amount of time is elapsed. Then, the private method query is started which

describes how the subsystem infrastructure containing a mail server, a news server and an infor-

mation channel is retrieved. The archive representing the agent's information base is thus initially

locked and �lled with new obtained information. As additional side e�ect the provided Agent

contract is changed from [actual] to [updated] to signal that new information chunks have been

obtained to the observing client. Note, that in the external protocol the internally triggered query

operation is w.r.t. its e�ect on the Agent contract state represented by the quiescent autonomous

contract step (see Figure 6, left).

In the left upper part the initiated tasks are observed and if terminated ([done]) their result is

added to the AgentImpl information base by the private processTask operation right like the query

operation. Again the state of the o�ered contract is also adjusted accordingly.

In the lower part containing the [actual] and [updated] pool as well as the call forward actions

update, addTask, status and select the o�ered Agent contract is realized. A skeleton token either

in the [actual] or [updated] pool represents the current state of the Agent contract. The arbitrary

autonomous state change depends on either the left upper or right upper part and the operations

processTask or query may occur as described before. Note, that for these private operations the

instance itself is the implicit carrier of activity, while for external calls the target of the request

has to be speci�ed explicitly. While the status and select operations also demand exclusive access

to the archive resource does the addTask operation simply adds an additional task instance to the

tasks[working] pool.

The described solution combines (a) the reactive serving of the Agent contract with (b) the

polling strategy for the retrieving of the mail, news and channel server. Also (c) the observation

of autonomous Task contracts is described within the same context. These three aspects and their

suitable coordination are addressed using the resource allocation net.

63

AgentImpl1::query
<<implementation>>

Fig. 8. The query service net

However, besides the overall coordination aspects and their interference described for an in-

stance in its RAN, also the speci�c behaviour of a single operation has to be described. So called

service nets as presented in Figure 8 are used for this purpose. In the AgentImpl1::query service

net the strength of Petri-Nets w.r.t. explicit parallel control ow can be seen. The internally ini-

tiated query operation does further on split into three parallel threads each processing one of the

mail, news and channel server. Their results are added to the overall archive exclusively locked in

the resource allocation net and the operation �nally terminates. Note, that the accessed context

resources mailServer, news and channels are made visible by their shared resource pools.

The property that OCoN design models are executable speci�cations can further be used to

evaluated the design. This can be used to demonstrate that the achieved degree of autonomy of the

AgentImpl for the chosen design is rather limited. In Figure 9 a screen-shot of the simulation tool

demonstrates that the design version of Figure 7 and 8 results in a reasonable problem w.r.t. the

autonomy of the agent. Consider the case that in an agent instance one query service net is active.

When additionally one of the used contracts is blocked because of a server crash or network

problems the locking of the archive and provided Agent contract enforces that no external or

internal operation can be processed. The blocking will remain until the crashed server or network

become alive again. A scenario which is quite problematic in a distributed system.

3.2 Alternative Design

While the presented solution does ensure the intended behaviour in a consistent way via locking

the archive resource wherever needed, it results in a tight coupling with the used mail, news and

channel server. Therefore a rather limited degree of autonomy for the agent can be observed. If the

query operation takes considerable time, the processing of client requests will be blocked until its

termination. Even when no such error occurs, this might be not acceptable for an interactive client

application. When mobile systems with more frequent network failures and server down-times are

considered as target platform of the system, the described problem is even more problematic. An

appropriate design should thus avoid this e�ect. One option to reduce the degree of decoupling

and improve the autonomy of the agents is to further distinguishing the query operation and the

archive update w.r.t. synchronisation.

By splitting the core query processing of the mail, news and channel server and adding the

results to the archive this problem can be circumvented. A query operation that returns a non

empty set of new retrieved messages and a processUpdate operation that takes such a set are used

to decouple the processing (cf. Figure 10). We also change the processTask operation accordingly

64

Fig. 9. Simulate a design

to avoid doubling the code describing how to add messages to the agent information base (archive).

The locking of the archive resource has thus been restricted to the operations of the update part.

The query operation has also to be adjusted (see Figure 11). Instead of adding the retrieved

results directly they are �rst united in a temporary archive (tmp) and this is returned if not empty.

Otherwise no return parameter is provided.

It is to be noted that the described improvement have been achieved without changing the agent

context and its contractual relations (cf. Figure 5). For a given set of provided and used contracts

the achieved degree of autonomy of the agent does in contrast depend on its internal behaviour. To

adjust the internal behaviour of the agent may however result in considerable semantical changes

w.r.t. the degree of overall system consistency. While in the presented example the employed busy

waiting strategy does result in an asynchronous update scheme anyway, in general bu�ering results

to improve the agent autonomy does reduce the accuracy of the data. Therefore, such changes are

65

+addTask(TaskDesc):()

+select(Msg::Id):(Msg)
+update():(set<Msg::Id>)

+status(Msg::Id,Msg::Flag):()

AgentImpl2
<<implementation>>

-processTask():(set<Msg>)
-query():(set<Msg>),()
-delay():()
-processUpdate(set<Msg>):()

Fig. 10. Asynchronous archive update

AgentImpl2::query
<<implementation>>

Fig. 11. The adjusted query service net

only appropriate when the overall system coordination of the redesign takes the reduce overall

system consistency into account.

3.3 Multi-Client Design

If instead of a single Agent contract multiple contracts should be served by a single agent to enable

a more eÆcient resource handling we have to further adjust the design.

Such a version serving multiple contracts at once is presented in Figure 12. The locking scheme

has to be further improved and some sort of �ne grain synchronisation allowing parallel access

where suitable. The external locking of archive object is omitted by instead letting the archive

object handle concurrent updates on its own. The speci�c structure of the archive can then be

66

+update():(set<Msg::Id>)

+status(Msg::Id,Msg::Flag):()
-processUpdate(set<Msg>):()+addTask(TaskDesc):()

+select(Msg::Id):(Msg)

AgentImpl4
<<implementation>>

-processTask():(set<Msg>)
-query():(set<Msg>),()
-delay():()

Fig. 12. A multi-contract-serving version

exploited by the object implementation to achieve parallelism where suitable and to protect the

object speci�c consistency and semantics locally.

The resulting resource allocation net of Figure 12 is considerable simpler than earlier versions,

because the resource allocation w.r.t. the archive is not needed any more. Note, however, that

consistent updates are now only possible w.r.t. the granularity o�ered by the Archive contract. If

multiple requests have to be combined to a consistent update, we have again to implement them

using external locks or transaction concepts.

To serve multiple instead of a single exclusive Agent contracts also demand that instead of a

single contract all of them have to be adjusted when new information is available. Instead of usual

arcs, set-valued arcs described using the UML multiplicity annotation 0::� are used. The � does

denote that all existing elements are consumed rather than only the currently available. In Figure

12, all contracts in state [actual] as well as [updated] are consumed and set to state [updated] to

exclude parallel processed update calls with inconsistent behaviour. Thus, pending requests may

be delayed until the update is processed.

AgentImpl4::processUpdate
<<implementation>>

Fig. 13. Update processing with locking

67

The processUpdate operation realization in form of a service net has therefore to access the

archive in a concurrent manner (see Figure 13). An operation addSet of the modi�ed Archive

contract is used to ensure the consistent update of the archive w.r.t. to a given set of new messages.

3.4 Use Other Agents

While the considered solutions are able to handle the requirements of a medium size con�guration,

we need more advanced strategies handling larger volumes of information. One limitation of the

presented overall design is its very speci�c support for mail, news and a channel. However, in an

evolving system new sources of informations may be added. Also currently useful one may later

on become obsolete. Therefore, a more general solution which further exploits the agent paradigm

also at the macro view is required. Instead of a single agent providing the speci�c service to

manage mail, news, and channels, a whole web of interacting agents does better suit the described

evolutionary scenario.

AgentImpl
<<implementation>>

Archive

ArchiveImpl
<<implementation>>

TaskImpl

archive

<<implementation>>

Task

tasks

agents
0..*

Agent

subagents

0..*Agent

0..*

<<subsystem>>
InformationAgent2

Fig. 14. The InformationAgent2

A modi�ed version of the InformationAgent subsystem permits that also the results of agents

which �lters and pre-processes relevant data may be used by other agents (see Figure 14). The

basic information source such as mail, news, and channels may be still integrated in the system

using the beforehand described agent types. They can be used as wrappers that encapsulate the

more tight coupling contracts of the mail, news and channel servers to represent them via contracts

of a more agent-like cooperating fashion.

A corresponding realization AgentImpl5 for the Agent contract is shown in Figure 15. Instead

of the global mail, news or channel service this time a set of Agent contracts and its update

information is used to retrieve new relevant information. Thus, the right upper part contains two

pools representing the di�erent external states of the subagents contracts. They are observed and

if one contract enters the [updated] state, the internal operation getUpdate is initiated. It is to be

noted that thus the beforehand required busy waiting to retrieve information can be circumvented.

A layered hierarchical composition of InformationAgent and InformationAgent2 subsystems can

then be used to establish the necessary infrastructure for a company wide decision support system

that e�ectively shares common interests of several people in form of shared used information agents

within the layered structure. The overall processing might be optimised by further modifying the

structure, e.g., increasing the hierarchy for very busy agents.

The layered structure may be further constructed explicitly or in an exible an adaptive man-

ner. While the �rst way ensures that errorness structures such as cyclic depending agents can be

excluded by construction, the resulting system has to be adjusted to changing demands manually.

A far more suitable approach is to let the agents itself manage their suitable cooperation. This

can be achieved when each information agent o�ers its services in a given context.

68

+update():(set<Msg::Id>)

+addTask(TaskDesc):()
-processUpdate(set<Msg>):()+status(Msg::Id,Msg::Flag):()

+select(Msg::Id):(Msg)

AgentImpl5
<<implementation>>

-processTask():()
-getUpdate():(set<Msg>)

Fig. 15. The AgentImpl5 class

Mail

News

Channel

subagents

0..*

mailServer

news

channels

1

1

1

Agent

Agent

Agent

0..*

0..*

0..*lookup

0..*

0..*0..*

0..* 0..*

<<subsystem>>

<<subsystem>>

+getAgent(AgentDesc) : Agent

-lookup[0..*] : Agent

<<subsystem>>

InformationAgent2

AgentRoom

InformationAgent

Fig. 16. Subsystem supporting dynamic cooperation of InformationAgents

In Figure 16 such a system is described using an AgentRoom subsystem which itself may

contain a number of InformationAgent and InformationAgent2 subsystems. The InformationAgent

subsystems share the common mail, news and channel server. Additionally, a number of Informa-

tionAgent2 subsystems using each other as well as the InformationAgent subsystems are described.

The contracts are associated via shared aggregation and therefore for the resulting structural

model cycles in the usage relation are excluded. The externally o�ered Agent contracts may be

provided either by an InformationAgent or InformationAgent2 subsystem. They can be obtained

from the AgentRoom subsystem interface itself.

3.5 Evaluation

The presented alternative design solutions vary w.r.t. their ensured agent autonomy and abstract

performance properties to a great extend. The identi�ed shortcomings of each design have been

used to chose suitable improvement strategies to overcome the detected problems.

69

The OCoN approach has a well founded operational semantics as well as a mapping to the

upcoming high-level Petri standard which ensures that designs can be evaluated for given usage

scenarios [13]. Such a simulation may simply make the resulting synchronisation and possible

e�ects more obvious or might result in detecting design faults. The contract protocols permit to

modularise such simulations for strict hierarchical systems. For a more detailed discussion of the

early evaluation of design alternatives with the OCoN approach based on UML scenarios identi�ed

during system analysis see [16].

4 Related Work

In the context of the UML there are attempts to employ the pure UML for agent-oriented modelling.

Sequence and collaboration diagrams are proposed in this Agent UML dialect [28, 4] to model

the overall agent interaction protocols. The importance of executable speci�cations has also be

identi�ed by the UML community and an approach to standardise an annotation language as well

as an executable model [1] are currently developed. Describing the coordination of object-oriented

and agent-oriented systems with object-oriented Petri nets permit however to overcome several

limitations and problems related to behaviour modelling with the pure UML (cf. [14]).

Modularity is a rather general requirement which engineered software systems should ful�l in

order to support their further evolution and change. A suitable design language requires therefore

that di�erent entities are separated by a contract notion. The pure syntactical interface notion

supported by most middleware approaches is not suÆcient at the semantics level. The notion of

design by contract [22] has been proposed while the provided semantical aspects are pre- and post-

conditions which fail to provide the necessary synchronisation information essential for distributed

systems. Non uniform service availability has been identi�ed by several researchers as an essential

extension of type system w.r.t. concurrency and distributed systems (cf. [25]). Especially w.r.t. the

coarse grain structure and the overall software architecture [33], higher level behavioural models

and the consideration of connectors and related protocols [3] have been proposed. In contrast to

the original contract notion of [22], agent contracts require a higher degree of autonomy between

the contract partners and assume an agreement-oriented style, whilst programming language con-

tracts tend to describe a form of delegation in which the serving side is strictly controlled by the

client side. In distributed system design, encapsulation must be guaranteed. Thus, non type-secure

approaches are not appropriate. The OCoN approach integrates an external behavioural speci�-

cation. The used protocol net provides a contractual notion with behavioural subtyping and thus

better support encapsulation by permitting behavioural abstraction.

Agents are a promising approach for the design of distributed systems and Petri nets have the

ability to model concurrency and synchronisation. Therefore their combination has great potential

to describe dynamic and exible distributed software systems (cf. [19]). One obvious advantage

is, that the analysis of system aspects become feasible [5, 30] and therefore the evaluation of

the agent-based system is supported. A number of approaches for modelling of agent-oriented

systems with high level Petri nets exist [23, 24, 10, 11]. They exploit the operational character of

high-level Petri nets models. However, non of them provides the smooth integration with UML

and a suitable behavioural contract notion that ensures correct interaction and supports dynamic

contract matching.

5 Conclusion and Future Work

For the design of distributed systems approaches such as distributed objects [9] and agent-oriented

software engineering [8] are current trends that will be united in the future. Therefore, the strict

separation of both approaches will disappear and agent-oriented development methods such as [39]

will be employed at a coarse grain design level while other parts and the design of lower granularity

may be done with the object-oriented approach. Therefore, modelling techniques which support

both views are required.

70

The presented OCoN approach supports this required smooth integration between agent-

oriented and object-oriented design. Contracts ranging from an explicit delegation style towards

loosely coupled cooperation can be used. However, still a well de�ned separation between the

contract participants is ensured.

The current support for simulation of OCoN nets is not satisfactory. Further improvements

w.r.t. the tool support is therefore required. As extensions for agent-oriented modelling support

for agent mobility are planned in further releases of the OCoN language. Also the already existing

integration with the component-based design ideas of [12], which have been not addressed in this

paper, should be further tightened to achieve an integration of all three paradigms.

Acknowledgement

My colleague Ulrich Nickel contributed to this work with fruitful discussions and careful proof
reading.

References

1. Action Semantics Consortium. Response to OMG RFP ad/98-11-01 Action Semantics for the UML,

February 2001. Version 19a.
2. G. A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. MIT Press,

1986.
3. R. Allen and D. Garlan. A Formal Basis for Architectural Connections. ACM Transactions on

Software Engineering and Methodology, 6(3):213{249, July 1997.
4. Bernhard Bauer, J�org P. M�uller, and James Odell. Agent UMl: A Formalism for Specifying Multiagent

Interaction. In Paolo Ciancarini and Michael Wooldridge, editors, Workshop on Agent-Oriented Soft-

ware Engineering (Held at the 22nd International Conference on Software Engineering (ISCE2000)),

pages 91{103. Springer Verlag, 2001.
5. J. Billington, B. B. Du, and M. Farrington. Modelling and Analysis of Multi-Agent Communication

Protocols using CP-nets. In Proc. 3rd Biennial Engineering Mathematics and Applications Conference

(EMAC'98), Adelaide, Australia, 13-16 July 1998, pages 119{122, July 1998.
6. W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets: Central Models (part I)/Applications

(part II), volume 254/255 of Lecture Notes in Computer Science. Springer Verlag, Berlin, 1987.
7. N. Carriero and D. Gelernter. How to write parallel Programs, A First Course. MIT Press, Cambridge,

MA, April 1990.
8. P. Ciancarini and M. Wooldridge, editors. Agent-Oriented Software Engineering � First International

Workshop, AOSE 2000 Limerick, Ireland, June 10, 2000 Revised Papers, volume 1957 of Lecture

Notes in Computer Science. Springer Verlag, 2001.
9. Wolfgang Emmerich. Engineering Distributed Objects. John Wiley & Sons, Inc., March 2000.
10. J. M. Fernandes and O. Belo. Modeling multi-agent system activities through colored Petri nets: an

industrial production system case study. In Proc. 16th IASTED Int. Conf. on Applied Informatics,

23-25 February 1998, Anaheim, CA, pages 17{20, 1998.
11. H. Fiorino and C. Tessier. Agent cooperation: a Petri net based model. In Proc. 3-rd Int. Conference

on Multi-Agent Systems (ICMAS'98), 3-7 July 1998, Paris, France, pages 425{426, 1998.
12. Holger Giese. Contract-based Component System Design. In Jr. Ralph H. Sprague, editor, Thirty-

Third Annual Hawaii International Conference on System Sciences (HICSS-33), Maui, Hawaii, USA.

IEEE Press, January 2000.
13. Holger Giese. Object-Oriented Design and Architecture of Distributed Systems. Berichte aus der

Informatik. Shaker Verlag, March 2001.
14. Holger Giese, J�org Graf, and Guido Wirtz. Closing the Gap Between Object-Oriented Modeling of

Structure and Behavior. In Robert France and Bernhard Rumpe, editors, UML'99 - The Second

International Conference on The Uni�ed Modeling Language Fort Collins, Colorado, USA, volume

1723 of Lecture Notes in Computer Science, pages 534{549. Springer Verlag, October 1999.
15. Holger Giese, J�org Graf, and Guido Wirtz. Seamless Visual Object-Oriented Behavior Modeling for

Distributed Software Systems. In IEEE Symposium On Visual Languages, Tokyo, Japan. IEEE Press,

September 1999.
16. Holger Giese and Guido Wirtz. Early Evaluation of Design Options for Distributed Systems. In Int.

Symposium on Software Engineering for Parallel and Distributed Systems (PDSE'2000), Limerick,

Ireland. IEEE Press, June 2000.

71

17. Holger Giese and Guido Wirtz. Visual Modeling of Object-oriented Distributed Systems. Journal of

Visual Languages and Computing, 12(2):183{202, April 2001.

18. T. Holvoet and T. Kielmann. Behavior speci�cation of active objects in open generative communica-

tion environment. In Proc. 30th Annual Hawaii Int. Conf. on System Sciences;: Software Technology

and Architecture, 7-10 January 1997, Wailea, HI, volume 1, pages 349{358, January 1997.

19. Tom Holvoet. Agents and Petri Nets. Petri Net Newsletter, (49):3{8, October 1995.

20. K. Jensen. Coloured Petri Nets Basic Concepts Analysis Methods and Practical Use Volume 1. EATCS

Monographs on Theoretical Computer Science. Springer Verlag, 1992.

21. Pekka K�ahkipuro. UML Based Performance Modeling Frameworks for Object-Oriented Distributed

Systems. In Robert France and Bernhard Rumpe, editors, UML'99 - The Second International Con-

ference on The Uni�ed Modeling Language Fort Collins, Colorado, USA, volume 1723 of Lecture Notes

in Computer Science, pages 356{371, October 1999.

22. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997. 2nd edition.

23. T. Miyamoto and S. Kumagai. A Multi Agent Net Model of Autonomous Distributed Systems. In

Proc. of Computational Engineering in Systems Applications'96 (CESE'96) Symposium on Discrete

Events and Manufacturing Systems, 9-12 July 1996, Lille, France, pages 619{623, July 1996.

24. Daniel Moldt and Frank Wienberg. Multi-Agent-Systems Based on Coloured Petri Nets. In Az�ema,

P. and Balbo, G., editors, Lecture Notes in Computer Science: 18th International Conference on

Application and Theory of Petri Nets, Toulouse, France, June 1997, volume 1248, pages 82{101,

Berlin, Germany, June 1997. Springer Verlag.

25. Oscar Nierstrasz. Regular Types for active Objects. In Proceedings OOPSLA'93, volume 28 of ACM

SIGPLAN Notices, pages 1{15, October 1993.

26. Object Management Group. OMG Uni�ed Modeling Language Speci�cation, Version 1.3, June 1999.

OMG document ad/99-06-08.

27. James Odell. Objects and Agents: Is There Room for Both? Distributed Computing, November 1999.

(www.DistributedComputing.com).

28. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Extending UML for Agents. In Gerd

Wagner, Yves Lesperance, and Eric Yu, editors, Agent-Oriented Information Systems Workshop at

the 17th National conference on Arti�cial Intelligence (AAAI2000), Austin, TX, USA, pages 3{17,

2000.

29. Trygve Reenskaug, Per Wold, and Odd Arild Lehene. Working with Objects: The OOram Software

Engineering Method. Addison-Wesley/Manning, 1996.

30. P. Rongier and A. Liegeois. Analysis and prediction of the behavior of one class of multiple foraging

robots with the help of stochastic Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and

Cybernetics (SMC'99), 12-15 October 1999, Tokyo, Japan, volume 5, pages 143{148, 1999.

31. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and

Design. Prentice Hall, 1991.

32. Rovert. C. Sharble and Samuel S. Cohen. The Object-Oriented Brewery: A Comparison of Two

Object-Oriented Development Methods. ACM SIGSOFT Software Engineering Notes, 18(2):60{73,

1993.

33. Mary Shaw and Davis Garlan. Software Architecture: Perspectives on an emerging Discipline. Prentice

Hall, 1996.

34. Y. Shoham. Agent-oriented programming. Arti�cal Intelligence, 60:51{92, 1992.

35. Jim Waldo, Geo� Wyant, Ann Wollrath, and Sam Kendal. A Note on Distributed Computing. Techre-

port, Sun Microsystems Laboratories, November 1994. TR-94-29.

36. R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Prentice Hall,

1990.

37. Guido Wirtz, J�org Graf, and Holger Giese. Ruling the Behavior of Distributed Software Components.

In H. R. Arabnia, editor, Proc. Int. Conf. on Parallel and Distributed Processing Techniques and

Applications (PDPTA'97), Las Vegas, Nevada, July 1997.

38. Michael Wooldridge and Nicholas R. Jennings. Agent Theories, Architectures, and Languages: a

Survey. In Michael Wooldridge and Nicholas R. Jennings, editors, Intelligent Agents, pages 1{22.

Springer Verlag, 1995.

39. Michael Wooldridge, Nicholas R. Jennings, and David Kinny. A methodology for agent-oriented

analysis and design. In Proceedings of the third annual conference on Autonomous Agents May 1 - 5,

1999, Seattle, WA USA, pages 69{76, 1999.

72

1. Introduction

Distributed applications designed following classical technologies, like remote method calls, have benefited from many years

of research in formal methods. On the other hand, systems incorporating mobile agents exhibit new characteristics which cannot

thoroughly be expressed and studied with previously developed formalisms. The difficulties stem either directly from the very

concept of mobile agent (process mobility, new communication patterns, dynamic discovery of services), or indirectly from pre-

existing problems which have become unavoidable with the mobile agent paradigm (security, resource management, loose cou-

pling of software components).

This paper describes an approach relying on CO-OPN/2 (Concurrent Object-Oriented Petri Nets) [3][5], a formal component-

oriented modeling language based on algebraic Petri nets. It has an associated coordination formalism COIL [6] as well as its

comprehensive tool-set, for the formal development of distributed applications, including, but not restricted to mobile agent

technology. The originality of our contribution is two-fold. First, it lies in the use of a Petri nets extension for the formal de-

scription of a form of object mobility which is very close to the real world, by opposition to a simulated mobility obtained by

updating communication links. Second, we support different degrees of abstraction in the modeling of mobile agent applica-

tions, ranging from simple sketches to concrete, implementation-ready specifications designed with all habitual structuring prin-

ciples. The benefits a software engineer can obtain from our approach are: the safety of a modeling language with well-defined

semantics, a strong integration in the development process, as well as a resulting specification with a clear graphical presenta-

tion and a structure and semantics close to current implementation paradigms.

This paper is structured as follows. Section 2 introduces our formalism, and Section 3 demonstrates its usage in the case of Mil-

ner’s mobile telephone example. Section 4 discusses our requirements for a mobile agent modelling language. Section 5 shows

a small mobile agent example in CO-OPN/2. Section 6 presents current and future activities in this framework, and Section 7

concludes the paper.

2. CO-OPN/2 and COIL

CO-OPN/2 [3] is a specification language which permits an abstract description of concurrent operations and data structures of

computer programs. CO-OPN/2 models can be developed in a dedicated environment described in [8]. This approach, as illus-

trated in Figure 1, proposes a formal and incremental development method which covers:

• Modeling by the means of a concurrent object-oriented specification language supporting refinement, analysis and simula-

tion within an inference-based environment.

An Experiment with Coordinated Algebraic Petri Nets
as Formalism for Modeling Mobile Agents

Jarle G. Hulaas Didier Buchs

University of Geneva Swiss Federal Institute of Technology

1211 Genève 4, Switzerland 1015 Lausanne, Switzerland

Jarle.Hulaas@unige.ch Didier.Buchs@epfl.ch

Abstract. This paper shows the aspects of CO-OPN/2, a formal component-oriented modeling language based

on algebraic Petri nets, that can be used for the formal modelling of distributed applications involving mobile

agent technology. The CO-OPN/2 language offers several structuring tools to make consequently sized projects

manageable, and the development environment provides a rich toolset designed to support several phases of the

software process, such as simulation, test set generation and production of executable code.

73

• Automatic generation of distributed executables with a prototyping tool, as well as incremental incorporation of hand-writ-

ten code portions in order to obtain a satisfying end-user implementation [7]. A new Java-generating version of the tool is

presented in [10].

• Specification-based test generation assorted with a test reduction technique founded on the introduction of hypotheses

about the program [2].

Different semantics of CO-OPN/2 are exploited during these phases: an abstract operational semantics is used for the logic pro-

gramming simulator as well as for the test set generation tool, while a more concrete operational semantics based e.g. on trans-

actions for prototyping of tightly coupled distributed systems. All these semantics are valid and partially complete on a subpart

of the CO-OPN/2 language with respect to its denotational semantics.

CO-OPN/2 is an object-oriented modeling language, based on ADT (Algebraic Data Types), Petri nets, and IWIM (Idealized

Workers, Idealized Managers) coordination models [6]. Hence, CO-OPN/2 concrete specifications are collections of ADT, class
and coordination modules [3][5]. Syntactically, each module has the same overall structure; it includes an interface section de-

fining all elements accessible from the outside, and a body section including the local aspects private to the module. Moreover,

class and context modules have convenient graphical representations, putting in evidence their basic Petri net model. Explaining

structuring tools such as object-orientation, genericity, sub-classing and sub-typing, are out of the scope of this paper, and can

be found in [3]. Similar models dealing with object references in Petri nets are [14] and [15].

2.1. ADT Modules
CO-OPN/2 ADT modules define data types by means of algebraic specifications. Each module describes one or more sorts (i.e.

names of data types), along with generators and operations on these sorts. The exact definition of the operations is given in the

body of the module, by means of equational axioms. For instance, Figure 2 describes a very simple ADT defining one sort (the

booleans) and one operation on this sort (the negation).

Figure 2. ADT SimpleBooleans

Java

Object model

Modelling

Final system

Analysis of properties

Simulation

Test generation

Test oracle

Tests

Refinement

Automatic implementation

Incremental implementation

CO-OPN

Figure 1. Activities covered in the CO-OPN/2 development methodology

ADT SimpleBooleans;
Interface

Sort boolean;
Generators true, false : -> boolean;
Operation not _ : boolean-> boolean;

Body
Axioms

not (true) = false;
not (false) = true;

End SimpleBooleans;

74

2.2. Class Modules
CO-OPN/2 classes are described by means of modular algebraic Petri nets with particular, parameterized external transitions,

the methods of the class. The behavior of transitions are defined by so-called behavioural axioms, corresponding to the axioms

in ADT specifications. Method calls are achieved by synchronizing external transitions, according to a transition fusion tech-

nique. Several synchronization operators (the //, .. and + operators, which repectively represent the parallel, sequential and

alternative composition) are provided by the language for expressing complex synchronization constraints. These constraints

must be satisfied in order to fire the whole event. A parallel constraint means that the related events must occur simultaneously

and consequently that enough resources are available to each event. A sequence means that the firings can occur sequentially.

An alternative means that at least one of the events can fire.

Below (Figure 3) is the code and the associated Petri net graph of a class modeling a peculiar storage system; it stores boolean

values, but delivers the negated ones. The interface defines two methods, for the injection and the ejection of values. The body

is actually a textual representation of the associated Petri net. The flow relation has the following structure:

[cond =>] event [With sync] :: Pre -> Post;

Where cond is a conjunction of equalities, sync is a synchronization expression and Pre and Post conditions are the classical

input ressources and output ressources of places in Petri nets. Free variables may be defined and used in the behavioral axioms.

In their graphical representation, transitions are thin black boxes and methods black ones.

2.3. COIL Coordination Modules
A third kind of module is present in CO-OPN/2, the COIL context modules [6], which exhibit the same overall structure as ADT

and class modules. Basically, context modules allow modeling loosely coupled distributed systems, by means of suitable coor-

dination mechanisms, more complex than the fusion of transitions seen above. In addition to the standard input ports (the meth-

ods), COIL also has a notion of output port (called gate), and both event concepts are used to enable the coordination of different

components. Coordination thus basically consists of events to events connections; the same synchronization operators as men-

tioned above may be used to this end.

Whereas classes are the means to model tightly coupled entities, contexts provide the coarser granularity needed for modeling

software components.

3. Milner’s Mobile Telephone in CO-OPN/2

As an introduction to how mobile entities are modelled with contextual coordination, we demonstrate a CO-OPN/2 version of

Milner's “mobile telephone” example [13]. Figure 4 recalls the flow-graph of this example. A center is in permanent contact

with two bases (base1, base2) by means of two channels gives and alert. With the gives channel it informs the active base about

Class NegatingStorageSystem;
Interface

Use SimpleBooleans;
Type negatingstoragesystem;
Methods put _ , get _ : boolean;

Body
Place container _ : boolean;
Axioms

put b :: -> container b;
get b :: container not(b) -> ;

Where b : boolean;
End NegatingStorageSystem;

Figure 3. Class NegatingStorageSystem

NegatingStorageSystem

put _ : boolean get _ : boolean

container _

put b

b

get b

not b

75

the next base for a given car, while it tells the receiving base about the arriving car using the alert channel. Only one car is

modeled in this simple example and is initially in contact with base1. Both channel talk and switch are used for communication

between the car and the base. The car uses the talk method to chat through its current base (which should further route the con-

versation appropriately, but this is not relevant here), which sends to the car the name of the next nearest base by means of the

switch channel.

The system is modeled by a context hierarchy: a center context containing two sub-contexts base1 and base2. These sub-con-

texts are connected together, and allow objects of class Car to migrate between them. Both sub-contexts contain a static object

base (of class Base) which manages the migration of the car. In Figure 5, contexts are represented as rounded boxes, statically

instantiated objects as ellipses and dynamically created objects as square boxes. Contexts and objects have input ports (or meth-

ods) on their membrane (represented as filled black boxes). Arcs between them represent standard method calls. In addition,

special output ports (or gates, represented as white boxes) are present on the membranes. Synchronizations can be more com-

plex than just method calls, and in this case they are represented graphically by binary tree structures (Figure 6) where the nodes

are circles surrounding the synchronization operator (for the non-commutative sequence operator, the orientation of the triangle

gives the needed additional ordering information).

CAR

BASE1 BASE2

CENTER

talk
switch

gives

alert alert

gives

Figure 4. Flow-graph of the Mobile Telephone Example

Figure 5. Contextual Model of the Example

init

init

init

init

//

talk

center

base : Basebase : Base

base1

switch switch

Car
talk

start

c : Car
alert c gives c

gives c alert c

base2

76

3.1. The center context
We model the center as a context because it can be naturally thought of as a coordination component. We simply have to de-

scribe how to connect the sub-contexts base1 and base2 through the gates gives and the methods alert in order to allow them to

exchange information. The following axiom of Figure 6:

gives In base1 c With alert In base2 c;

synchronizes the event “a car c is ready to cross from base1 to base2” with the fact “base2 is informed that a car c arrives”. The

sequence is implicitly given by the system behavior. The start method is an initialization method that must be activated explic-

itly at system start-up; start tells which bases are active or idle at that moment (for the needs of this example, only the initially

active base should instantiate a car).

3.2. The base contexts
The base contexts (i.e. the identical base1 and base2 contexts, that have to be defined separately, due to current limitations of

the formalism) can be seen as domains that cars cross (under the control of the corresponding radio cell of a cellular mobile

telephone system). Each of these contexts encapsulate a “controller” object (a statically created instance of the Base class to be

described later) which does the actual job of managing the cars inside the domain (see Figure 7 and Figure 8). Therefore, the

Base class has the same interface as the base contexts, and adds other methods for use strictly inside the context (e.g. talk). The

base context axioms simply connect the gates and methods of its interface with the corresponding object of class Base.

Context center;
Interface
Use IdleActive;
Method start;

Body
Use Car;
Use Contexts

base1,base2;
Axioms

start With
init In base1 active // init In base2 idle;

gives In base1 c With alert In base2 c;
gives In base2 c With alert In base1 c;

Where
c : car;

End center;

center

start

start With (init active) / / (init idle)

init active
init idle

gives c With alert c

alert c

gives c With alert c

alert c

Figure 6. The center context coordinating two base sub-contexts

base1

gives _ : Give car

alert _ : Take car

init _ : idleactive
init s With base . init s

base . init s

alert c With base . alert c

base . alert c

base . gives c With gives c

gives c

Figure 7. The base contexts shielding Base locations

77

3.3. The Base class
This class defines the “controllers” encapsulated inside the base contexts. Two kinds of initializations are possible: active or

idle. The method init with active as argument results in the creation, followed by the initialization, of a new car. The once place,

of type blackToken (its only value is represented as @), ensures that init is called only once. If a new car is created, its reference

is stored in the contactcar place. At this moment, the car knows its contact base (Self), and can then chat with it (see Figure 8).

Migration proceeds as follows, with base1 initialized to active, and base2 to idle. The gives gate of base1 is enabled since its

state is active and a car is referenced in its contactcar place. Inside base2, the alert method is enabled and can be called since

the state is idle. The gives gate will then consume the car token from the contactcar place, and the external coordination com-

ponent will fusion the gives gate of base1 with the alert method of base2. The synchronization of the alert method allows to

bind the parameter to the migrating car reference, so that the switch method of the car may be called to inform it of its updated

location. Finally, base2 receives the car and stores it as a token in its contactcar place. The car can then chat through its new

contact base.

Figure 8. The Base class, the instances of which are encapsulated inside base contexts.

Class Base;
Interface

Use IdleActive, Car;
Type base;
Gate gives _ : car;
Methods

talk;
alert _ : car;
init _ : idleactive;

Body
Use BlackTokens;
Place

contactcar _ : car;
state _ : idleactive;
once _ : blackToken;

Axioms
init active With c.create .. c.init(Self) ::

once @ -> state active, contactcar c;
init idle :: once @ -> state idle;
alert c With c.switch(Self) ::

state idle -> state active, contactcar c;
gives c ::

state active, contactcar c -> state idle;
Where c :car;
Initial once @;

End Base;

Base

gives _ : car

talk

alert _ : car

init _ : idleactive

contactcar _

state _

once _

@

init active

@

active

c

c . Create

(1)

c . init Self

(2)

init idle

@
idle

alert c
idle

active

c

c . switch Self

gives c

active

c

idle

Class Car;
Interface

Use Base;
Type car;
Methods

talk;
switch _ : base;
init _ : base;

Body
Place contactbase _ : base;
Axioms

talk With b.talk
:: contactbase b -> contactbase b;

switch b
:: contactbase b1 -> contactbase b;

init b :: -> contactbase b;
Where

b, b1 : base;
End Car;

Figure 9. The Car class

78

3.4. The Car class
The Car class illustrates an example of mobile entity in CO-OPN/2; in fact, nothing distinguishes it from any other class. Its

contactbase attribute contains a reference to the active base which is currently in charge of the car. This attribute is updated by

the switch method, whereas the old value is ignored. The talk method uses this reference in order to identify the particular base

the chat is to flow through (see Figure 9, previous page).

3.5. From mobile phones to mobile agents
In the previous model, we have shown how contexts are used for coordination in the mobile telephone example. The notions

introduced here allow us to naturally make an analogy between the mobile telephone example and a mobile agent system. The

correspondence of elements can be done as follows. The mobile component (the car) naturally becomes an agent. The base con-

texts correspond to the mobile agent execution environments or platforms. The Base class represents the effective execution

platform (e.g. a virtual machine) which manages the local resources and the agent’s migration. Finally the center context can

be seen as the system or network containing multiple interconnected platforms. In the following sections we first present the

additional requirements a modeling formalism needs to meet to encompass the mobile agent paradigm; then we give an over-

view of our mobile agent model.

4. CO-OPN/2 for Modeling Mobile Agents

When modelling mobile agent systems, we are interested in the expression of the following notions:

• Locality of resources in a broad sense, including code, data, computing power and services.

• Dynamic discovery of such resources.

• Mobility of code alone (i.e. mobile code), or with an associated state (i.e. mobile agents); weak versus strong migration

(i.e. whether or not the agent must explicitly manage its state in relation to its movements across execution hosts); active

(i.e. initiated by the agent itself) versus passive (i.e. initiated by the environment) migration.

• Security issues, the most relevant being privacy and integrity.

• Communication inside and outside the mobile agent system. Agents are normally expected to be able to do synchronous as

well as asynchronous communication with its local and distributed environment (e.g. with its home node). Remote commu-

nication should not be neglected, as one cannot expect agent platforms to be available on all hosts; in other words, the for-

malism should allow modeling complete, i.e. hybrid, distributed systems, combining mobile agent technology and

traditional, non-mobile components.

These categories are not necessarily entirely relevant at the level of a specification, when concentrating on functional aspects.

Nevertheless, in the current state of research, the main distinction between the mobile agent and the intelligent agent commu-

nities is that the former is almost exclusively focused on non-functional aspects, on the contrary of the latter. Many aspects of

security, such as the prevention of denial-of-service attacks, are usually too low-level to be considered before the implementa-

tion phase. Similarly, the distinction between mobile code and mobile agents (the former being viewed as an implementation-

level optimization of the latter) will often be irrelevant when modelling a distributed system. If, however, the goal is to be able

to compile the model into an executable program, then it becomes sensible to be able to express somehow such low-level no-

tions.

4.1. Locality and mobility
A simple kind of mobility, which corresponds to object association in object-oriented programming, may be easily modelled in

CO-OPN/2, as in all Petri net variants including a notion of tokens as object references1. CO-OPN/2 may thus manage mobility

in the same way as pi-calculus [13]: it is a mobility by reference passing (which could have constituted an initial version when

demonstrating the mobile telephone example earlier in this paper). They are equivalent in their way of specifying mobility; how-

ever, they differ in the sense that Petri nets are well suited for modeling causality relations between events, while process alge-

bras are better suited for composing processes. This simple way to model mobility can be used to specify distributed object

1. This also means that the language makes it possible to model completely recursive structures, where objects may be nested inside

other objects.

79

systems but is not well adapted for mobile agents since no notion of location boundaries is available: the motivation behind the

use of mobile agents is indeed that resources, such as data and services, should often be exploited locally instead of remotely

through traditional remote method calls.

The need for locality is one of the reasons why the notion of context modules was introduced in CO-OPN/2 with COIL. Contexts

provide locality information, and since objects can cross context boundaries, they allow us to model agent migration between

contexts. COIL contexts are in fact a kind of protection domain, because no external object can call methods of an object inside

a context (even if a reference is available from the outside). All interactions must be performed through special methods on the

context membrane. Once an object migrates into a context, all objects or contexts inside the receiving context become visible

to the incoming object. Until the introduction of COIL, the structuring facilities of CO-OPN/2 had the weakness that they were

essentially a tool to define visibility rules, but the operational semantics was not completely modular. Therefore, the other im-

portant contribution of COIL is that the operational semantics of CO-OPN/2 is modified to make the language truly modular:

locality is now also present in the modelled system’s behaviour, which is no longer a result of a flattening of all objects into a

single dimension, but a distributed calculus of local behaviours. Thus, contextual coordination, context boundary, locality in-

formation, object migration and context hierarchies give us the means to specify mobile code systems.

Strong, weak, active and passive mobility may be modelled in CO-OPN/2. An agent must however be in a stable state (i.e. with

no fireable internal transitions) before it can migrate.

Behaviour, on the contrary of object states, is a global information in CO-OPN/2. In other words, it is not possible to move a

CO-OPN/2 class per se from one context to another; only instances of them may move. As a consequence, mobile code, as op-

posed to mobile agents, may only be simulated1.

4.2. Security
Whereas strict object encapsulation is a good step towards the realization of secure mobile agent systems, it should additionally

be possible to change the visibility of an agent and its attributes, as well as to supervise its activity and communication according

to dynamic policies, as enforced in the Seal Calculus [16] and its implementations (see e.g. the J-SEAL2 framework [4]). We

are expecting good results with the modelling of the hierarchical control structures of the Seal Calculus by means of COIL con-

texts. The notion of context will however need to become entirely dynamic to enable this. Mobile contexts would also be very

useful to customize each agent’s security policy, whereas now, each agent has to fit into an existing unused agent context when

it arrives on a new platform. The actual implementation of our CO-OPN models should be made on a secure platform such as

that provided by J-SEAL2 in order to guarantee, in addition to the usual satisfaction of functional properties, some important

non-functional properties such as the security of private data and fair access to the platform resources.

4.3. Dynamic discovery of resources
To be faithful to the nature of open and/or large-scale environments such as the Internet, a modeling language should enable the

dynamic discovery and management of resources. This is realized to a certain extent by current agent platforms, by adding the

ability to express reflexive behaviours, and to manage the above resources as first-class objects. This may currently only be sim-

ulated in CO-OPN/2.

5. Towards A Complete Model of Mobile Agent Environment

In the previous, we described the aspects of CO-OPN/2 that are used to model mobility. Now we outline the structure of a mobile

agent system, and show the main components of a simplified mobile agent environment described with CO-OPN/2 and COIL.

The example describes a system allowing multiple mobile agents to run in an execution platform.

1. We may e.g. define models where class instances are allowed to exist and to migrate in some intermediary, uninitialized state;

such objects are then viewed as class surrogates.

80

5.1. General Architecture
The system is composed of the following classes and contexts (see Figure 10, where the square box represents a class, and the

circles are instances of classes):

Figure 10. Specification of a Host context

• An Agent class that specifies the basic structure and behavior of a mobile agent.

• A Platform class that represents the actual mobile agent execution environment. This class manages migration of agents.

• A BlackBoard class representing a shared data structure where mobile agents can insert, consult or retrieve information.

• A Host context representing the environment where mobile agents are executed. This context contains a platform and a

blackboard object, references to which are given to new agents as they enter the host, and this constitutes a model of

dynamic linking, as existing in real agent systems.

• A System context (not shown in Figure 10) that contains an arbitrary number of connected Host contexts; this is a static

structure, which means that we can unfortunately not model Hosts appearing and disappearing dynamically in the network.

Hosts have special communication channels for exchanging mobile agents: channelin and channelout. These will be used

for interconnecting the platforms, as specified in the System context.

5.2. Specification of a Basic Agent
The Agent class has two methods: destination and onarrival (Figure 11). The first one is used to ask where the agent wants to

migrate, and the second is used to update information on the agent after migration. It also has different places containing: a

reference to the current platform (platform), a reference to the current blackboard (blackboard), a flag indicating the end of the

agent activity (activity), a flag indicating if the agent is in a migration process (migration) and the new destination platform

(nexthop). Two internal transitions are used to enable the agent activity (run) and to trigger migration (migrate).

When the run transition is fired, the agent will start its main activity. In this simple example, it will get a new platform destina-

tion from the current blackboard object. This action ends the agent activity (the activity attribute is set to done) and the corre-

sponding platform id is inserted into the nexthop place (the identity is specified as an Abstract Data Type rather than a reference to a

platform object to simplify the specification). Those conditions will then enable the migrate internal transition. This transition is

synchronized with the migrate method call on the currently enclosing platform object. The agent tells its identity to the platform

(Self) and the migration attribute is updated to migrating, so no more activity is possible. This allows the agent to wait in a stable
state until the end of the migration process performed by the platform. This simple roaming agent class may be redefined in a

sub-class in order to specialize its behaviour. The developer will thus be able to concentrate on his agent’s added value, since

its basic behaviour will be inherited.

platform:Platform

init

init

Agent

channelout

channelin

Host

board : BlackBoard

get put

destination

onarrival

migrate

consult

81

5.3. The Platform Class
The Platform Class (Figure 12) has four places containing: the platform’s unique id (id), a reference to the associated blackboard

in the same context (blackboard), all active agents running in the platform (activeagents), and all agents that are ready to migrate

(readytogo). The platform has a migrate method that inserts the reference of the invoking agent in the readytogo place. Through

channelout it removes from the activeagents and the readytogo places the reference to the agent requesting to leave. Note that

this operation is synchronized with a call to the destination method of the requesting agent in order to send the agent to the

correct destination platform. Finally the channelin method will insert the newly arriving agent into the activeagents place and

this will be synchronized with the onarrival method of the incoming agent in order to update all references and to set the agent

as ready to run.

Figure 12. Specification of a mobile agent Platform

6. Perspectives

With this basic architecture, we are able to model very simple agents that migrate over multiple platforms using information

stored locally on the different platforms they come across. This shows how mobile agent migration can be specified using CO-

OPN/2 and COIL, and is the model to extend in order to be able to model more complex mobile agent environments and appli-

cations by way of specialization of agents, platforms and blackboards. We have e.g. experimented with extending and sub-class-

ing the basic Agent class in order to obtain different, more useful agent behaviors. By redefining the run transition of Agent, so

Agent

init _ _ : activity, migration

destination _ : id

onarrival _ _ : platform, blackboard

migrate _ : id

currentplatform _

currentblackboard _

activity _

migration _

nexthop _

init act mig

act

mig

0

destination id

id

onarrival p b

migrating

p1

b1

done

p

b

onplatform

working

migrate

p

onplatform

done

pmigrating

p . migrate Self

run

old

b

working

onplatform

next

done

b

onplatform

b . get next

Figure 11. Specification of a primitive mobile agent

Platform

channelout _ _ : agent, id

channelin _ _ : agent, id

init _ _ : id, blackboard

migrate _ : agentblackboard _

activeagents _

id _

readytogo _ init id b

id b

migrate a

a

channelin a id

b1id

bid

a

a . onarrival Self b

channelout a id

a

a

a . destination id

82

as to activate a method of a separate Behaviour object, we transform the initial primitive agent into a kind of “run-time” support

whereas the actual application is modelled inside the Behaviour object. Moreover, the primitive Platform class presented here

has been cleaned up and completed, by grouping all the information needed by incoming agents (e.g. the references to Self and

the blackboard) inside a single Binding object.

Several activities are taking place to complement the work described in this paper. We can mention:

• Develop extensions of COIL to provide mobile and dynamic contexts. This would enable the modelling of contexts specific

to a given agent, and following it in its migrations, in a manner close to the ambient calculus [9].

• A Java code generator to implement mobile agents automatically from their CO-OPN/2 specifications. This work is based

on the results described in [7][10] and on the J-SEAL2 mobile agent framework [4] as concrete target platform.

• Transformation of subsets of CO-OPN/2 into CPN-AMI coloured Petri nets [12] in order to formally verify CO-OPN/2

models with the analysis techniques available for classical Petri nets. Currently, only simulation is possible for analyzing

CO-OPN/2 models, due to indecidability problems which are similar to those found in all coloured Petri nets which allow

an infinite number of colours. Although this is not the purpose of this paper, verification is one of the important uses of for-

mal methods; these aspects will be studied in the future, with emphasis on how to express properties related to the locality

and globality of activities.

7. Conclusion

This paper described how it is possible to use the CO-OPN/2 language for the formal specification of distributed applications

involving mobile agents. To our knowledge, this is the first proposal for modelling true mobility with structured Petri nets, i.e.

consisting not only of dynamic updating of communication channels, but also describing a complete change of the agent’s local

environment and visibility. Related proposals can be found, e.g. in [1], but focusing more on providing a concise semantics, and

less on software development principles, thus resulting in a radically different solution, lacking e.g. the notion of modularity.

We refer the reader to the survey performed in [11] for a wider study of formal methods developed for mobile agents. The ben-

efits a software engineer can obtain from our approach are: the safety of a modelling language with well-defined semantics, a

strong integration in the development process, as well as a resulting specification with a clear graphical presentation and a struc-

ture and semantics close to current implementation paradigms. In this work, we put emphasis on formal design principles; we

believe one valuable result is that it will thus be possible to model and validate many new distributed algorithm issues found in

mobile agent applications.

Acknowledgements

The authors would like to thank Alex Villazon, Mathieu Buffo, Giovanna Di Marzo and Olivier Biberstein for their valuable

contributions. This work was funded by the Swiss National Science Foundation under grants 20-54014.98 and 20-47030.96.

Bibliography

[1] Andrea Asperti and Nadia Busi, “Mobile Petri Nets”, Technical Report UBLCS-96-10, Laboratory for Computer Science,

University of Bologna, Italy, 1996.

[2] Stéphane Barbey, Didier Buchs and Cécile Péraire, “A Theory of Specification-Based Testing for Object-Oriented Soft-

ware”, in proceedings of EDCC2 (European Dependable Computing Conference), Taormina, Italy, October 1996, Lecture

Notes in Computer Science vol. 1150, Springer-Verlag, 1996, pp. 303-320.

[3] Olivier Biberstein, Didier Buchs, and Nicolas Guelfi, ’’Object-oriented nets with algebraic specifications: The CO-OPN/2

formalism’’, In G. Agha, F. De Cindio and G. Rozenberg, editors, Advances in Petri Nets on Concurrent Object-Oriented

Programming and Petri Nets, Lecture Notes in Computer Science. Springer-Verlag, LNCS 2001, pp. 70-127.

83

[4] W. Binder, “J-SEAL2, A secure high-performance mobile agent system”, in proceedings of the IAT'99 Workshop on

Agents in Electronic Commerce, Hong Kong, Dec. 1999.

[5] Didier Buchs and Nicolas Guelfi, “A Formal Specification Framework for Object-Oriented Distributed Systems”, IEEE

Transaction on Software Engineering, vol. 26, no. 7, July 2000, pp. 635-652.

[6] Mathieu Buffo and Didier Buchs, “A Coordination Model for Distributed Object Systems”, Proceedings of the Second

International Conference on Coordination Models and Languages COORDINATION’97, September 1997, Lecture Notes

in Computer Science, vol. 1282, Springer Verlag, 1997.

[7] Didier Buchs and Jarle Hulaas, “Evolutive Prototyping of Heterogeneous Distributed Systems Using Hierarchical Alge-

braic Petri Nets”, Procs. IEEE International Conference on Systems, Man and Cybernetics, SMC’96, Beijing, China, Oct.

14-17 1996, pp. 3021-3026.

[8] Didier Buchs, Jarle Hulaas and Pascal Racloz, “Exploiting Various Levels of Semantics in CO-OPN for the SANDS Envi-

ronment Tools”, Tool Presentations, International Conference on Application and Theory of Petri Nets ICATPN’97, Tou-

louse, France, 1997, 1997, pp. 34-43.

[9] L. Cardelli and A.D. Gordon, “Mobile ambients”, in Proceedings of Foundations of Software Science and Computation

Structures (FoSSaCS), European Joint Conferences on Theory and Practice of Software (ETAPS), Springer Verlag, Ber-

lin, Germany, 1998.

[10] Stanislav Chachkov and Didier Buchs, “From Formal Specifications to Ready-to-Use Software Components: The Con-

current Object Oriented Petri Net Approach”, accepted for publication at the International Conference on Application of

Concurrency to System Design (ICACSD 2001), Newcastle upon Tyne, U.K., 25-29 June, 2001.

[11] G. Di Marzo, M. Muhugusa, C. F. Tschudin, “A Survey of Theories for Mobile Agents”, World Wide Web Journal, Spe-

cial Issue on Distributed World Wide Web Processing: Applications and Techniques of Web Agents, pp. 139-153, Baltzer

Science Publishers, 1998.

[12] Pascal Estrailler and Claude Girault, “Applying Petri Net Theory to the Modeling, Analysis and Prototyping of Distrib-

uted Systems”, in Proc. of the IEEE/SICE Int.Workshop on Emerging Technologies For Factory Automation: State of the

Art and Future Directions, Australia, August 1992.

[13] Robin Milner, “The polyadic pi-calculus: a Tutorial”, Laboratory for Foundations of Computer Science, Department of

Computer Science, University of Edinburgh, UK, No. ECS-LFCS-91-180, 1991, Appeared in Proceedings of the Interna-

tional Summer School on Logic and Algebra of Specification, Marktoberdorf, August 1991. Reprinted in Logic and Alge-

bra of Specification, eds. F. L. Bauer, W. Brauer, and H. Schwichtenberg, Springer-Verlag, 1993.

[14] R. Valk, “Concurrency in Communicating Object Petri Nets”, In G. Agha, F. De Cindio and G. Rozenberg, editors,

Advances in Petri Nets on Concurrent Object-Oriented Programming and Petri Nets, Lecture Notes in Computer Science.

Springer-Verlag, LNCS 2001, pp. 164-195.

[15] C. Lakos, “Object Oriented Modeling with Object Petri Nets”, In G. Agha, F. De Cindio and G. Rozenberg, editors,

Advances in Petri Nets on Concurrent Object-Oriented Programming and Petri Nets, Lecture Notes in Computer Science.

Springer-Verlag, LNCS 2001, pp. 1-37.

[16] J. Vitek and G. Castagna, “Seal: A framework for secure mobile computations”, In Internet Programming Languages,

1999.

84

Towards a Uni�ed Approach for Modeling and

Veri�cation of Multi Agent Systems

Michael K�ohler Heiko R�olke

University of Hamburg, Department of Computer Science

Vogt-K�olln-Stra�e 30, D-22527 Hamburg

{koehler, roelke}@informatik.uni-hamburg.de

Abstract

For complex software systems an agent-oriented design is assumed. The question of mod-

eling and veri�cation is our research area. In this presentation we outline an uni�ed approach

for multi agent systems with respect to modeling and veri�cation.

This general architecture { called Mulan { is formulated in terms of high level Petri nets,

namely reference nets. The formalism of reference nets is based on the \nets within nets"

paradigm of Valk, which �ts well in the context of agent systems.

Here, we �rst show how multi agent systems should be modeled. In the second step

we analyze which are the requirements for a veri�cation systems dealing with multi agent

systems. In both cases we arrive at the conclusion that reference nets are well suited to model

and verify central aspects of agent systems, like mobility, adaptation, and cooperation.

In this work we focus on modeling and veri�cation of agent conversations. Our approach

is based on inter-acting agent protocols. To express our ideas we have chosen the well known

producer-consumer scenario both for the model and the formal treatment.

Keywords: modeling, multi agent systems, nets within nets, reference nets, veri�cation.

1 Introduction

Correctness of software is crucial in almost every system. Agent oriented modeling is an estab-

lished approach to model complex, exible systems. The proper treatment of encapsulation and

composition raises question both in the �eld of architectural models and compositional veri�cation.

The multi agent architecture Mulan1 { designed and implemented at our department { is

completely modeled with Petri nets (cf. [KMR01]). Mulan is a Petri net based architecture,

which is both an implementation of a multi agent platform and also a framework for the modeling

of agent applications. The Mulan architecture is based on the \nets within nets" paradigm {

formulated by Valk in [Val87] for task ow systems and in [Val96, Val98] for object net systems.

Mulan is speci�ed in the reference net formalism (cf. [Kum98]) and implemented with the tool

Renew (cf. [KW98]).

Currently, agents are generally programmed using high-level languages such as Java (namely

in agent frameworks as Jackal [CFL+98]) or they are de�ned by simple scripts. A graphical

modeling technique that captures all parts of agents and their systems { as UML2 in the context

of object-orientation { is neither proposed nor in general use.3 An unifying framework based on

the visual programming concept of Petri nets { as proposed by Mulan { thus bridges the gab

between modeling and programming.

Multi agent systems rely heavily on the mechanism of composition: agent protocols are com-

posed to agent behavior, agent behavior is composed to agents, agents are composed to groups,

groups are composed within agent platforms, platforms are composed to agent systems - to name

the obvious ones. All these examples leads towards the topic of compositional veri�cation { a cen-

tral requirement for a proof system for an agent-architecture. Compositionality of proofs requires,

1Mulan stands for Multi agent nets.
2UML stands for Uni�ed Modeling Language. See for example [RJB99].
3The authors are aware of the upcoming proposals that base on UML i.e. the ones from Odell et al. [BOP00]

(AUML). To our opinion these proposals capture only parts of the agent modeling tasks and leave out important
areas such as agent mobility.

85

that a property spec(S) of the composition S = (S1jj : : : jjSn) is derivable only from the properties

spec(Si) of the components (cf. [Zwi89]):

spec(S1jj : : : jjSn) = f(spec(S1); : : : ; spec(Sn))

We will show, that compositionality in multi agent systems has to be based on the concept of

environment: In the system speci�cation of a single module, the environment is considered to be

necessarily speci�ed in addition. It is unclear whether the environment should be included in the

model (as done e.g. in [DE96]) or whether the module and its environment should be formulated

separately but connected in an \assumption-commitment" pattern { a style of reasoning that has

been proposed by Chandy and Misra in [MC81].

Our work is structured as follows: section 2 introduces in the MAS-architecture Mulan; in

section 3 we describe the general requirements towards a veri�cation system for MAS and how

they are met by Mulan; as a result we obtain the necessity to explicitly include assumptions

and commitments (A/C) in our framework.4 Such an explicit notion of A/C is expressed by the

formalism of A/C-Petri nets, described in section 4. The formalism is illustrated in section 5 by

a formal treatment of the producer-consumer scenario. The work closes with a conclusion.

2 The Mulan architecture

This section gives a short introduction to a multi agent system modeled in terms of "nets within

nets". This survey is given to make the general ideas visible that are prerequisite to the under-

standing of the concepts that follow in later sections of this paper. It is neither an introduction

to multi agent systems nor the assets and drawbacks of dividing the system into platforms are

discussed here. For a broad introduction see for example [Wei99], the special view taken in our

work is a standard proposal of the "Foundation for Intelligent Physical Agents" (FIPA) [FIP98a].

The latest publications of the FIPA can be found in [FIP].

2.1 Reference nets

Mulan is based on the special Petri net formalism of reference nets [Kum98].5 As for other net

formalisms there exist tools for the simulation of reference nets [KW98]. Reference nets show some

expansions related to "ordinary" colored Petri nets: nets as token objects, di�erent arc types, net

instances, and communication via synchronous channels. Beside this they are very similar to

coloured Petri nets as de�ned by Jensen [Jen92]. The di�erences are now shortly introduced.

Nets as tokens Reference nets implement the "nets within nets" paradigm of Valk [Val96,

Val98]. This paper follows his nomenclature and denominates the surrounding net \system net"

and the token net \object net". Certainly hierarchies of net within net relationships are permitted,

so the denominators depend on the beholder's viewpoint.

Arc types In addition to the usual arc types reference nets o�er reservation arcs, that carry

an arrow tip at both endings and reserve a token solely for one occurrence of a transition, test

arcs and inhibitor arcs. Test arcs do not draw-o� a token from a place why a token can be tested

multiple times simultaneously, even by more than one transition (test on existence). Inhibitor arcs

prevent occurrences of transitions as long as the connected places are marked.

Net instances Net instances are similar to the objects of an object oriented programming

language. They are instantiated copies of a template net like objects are instances of a class.

Di�erent instances of the same net can take di�erent states at the same time and are independent

from each other in all respects.

4The notion of \assumptions and commitments" does not rely directly on the original de�nition of Chandy and

Misra, but rather denotes a style of reasoning.
5It is assumed throughout this text that the reader is familiar with Petri nets in general as well as coloured Petri

nets. Reisig [Rei85] gives a general introduction, Jensen [Jen92] describes coloured Petri nets.

86

Synchronous channels Synchronous channels [CH94] permit a fusion of transitions (two at a

time) for the duration of one occurrence. In reference nets (see [Kum98]) a channel is identi�ed

by its name and its arguments. Channels are directed, i.e. exactly one of the two fused transitions

indicates the net instance in which the counterpart of the channel is located. The other transition

can correspondingly be addressed from any net instance. The ow of information via a synchronous

channel can take place bidirectional and is also possible within one net instance.

2.2 Architecture

Take a look at �gure 1: The gray rounded boxes enclose nets (net instances) of their own right.

The ZOOM lines enlarge object nets that are tokens in the respective system net.6 The upper

left net of the �gure is an arbitrary agent system with places containing agent platforms and

transitions modeling communication channels between the platforms.7

new

re pro

knowledge base

protocols

platforms

communication
 structure

multi agent system
agent platform

p3

p2

p4

p1

a

pi

kb

p

agent

sendreceive

outin

MOO
Z

external
communication

internal
communication

destroy

agents

out in

start stopsubcall process

protocol

conver-
sations

Figure 1: MAS as nets within nets

The �rst zoom leads to a closer view of a simpli�ed agent platform. The central place agents

contains all agents that are currently hosted on the platform. New agents can be generated (or

moved from other platforms) by transition new, agents can be destroyed or migrate to another

platform (transition destroy).

Internal message passing di�ers from the external case { so it is conceptually separated: The

internal communication transition binds two agents (the sender and the receiver of a message)

and allows them to hand over a message via call of synchronous channels. External communication

involves only one agent of the platform. For external communication as well as for agent migration

the communication transitions of the top level agent system net are needed. The interaction of

the multi agent system and the agent platform is made possible by inscribing the transitions with

synchronous channels connecting for example the transition external communication of an agent

platform with that of another one via the communication structure transition of the multi agent

system. These inscriptions are not visible in the �gure.

6Beware not to confuse this net-to-token relationship with place re�nement.
7This is just an illustrating example, the number of places and the form of interconnection has no further

meaning.

87

The remaining nets that show the structure of an agent and an example of its (dynamic)

behavior in form of protocols (protocol nets) are explained in more detail in the following sections.

Each zoom describes one central concept of multi agent systems. The relationship of the agent

system to the platforms raises needs for the concept of mobility, whereas the relationship between

the platform and the agent has to be treated by the concept of cooperation. The relationship of

agents and their protocols is captured by the concept of adaptation of intelligent agents.

2.3 Agents

An agent is a message processing entity, that is, it must be able to receive messages, possibly

process them and generate messages of its own. In this context it is to be noted that a completely

synchronous messages exchange mechanism as it is used in most object oriented programming

systems, frequently violates the idea of autonomy among agents.8

The introduced basic agent model implies an encapsulation of the agents: regardless of their

internal structure, access is only possible via a clearly de�ned communication interface. In �gure 2,

this interface is represented by the transitions receive message and send message. In the �gure,

the realization of the interface (through connection of both transitions to a messages transmis-

sion network via synchronous channels) is not represented. Several (then virtual) communication

channels can be mapped to both transitions.

The presented agent model corresponds to the fundamental assumptions about agents: Be-

cause agents should show autonomy, they must have an independent control over their actions.

Autonomy implies the ability to monitor (and, if necessary, �lter) incoming messages before an

appropriate service (procedure, method...) is called. The agent must be able to handle messages

of the same type (e.g. being asked for the same service) di�erently just because of knowing about

the message's sender. This is one of the major di�erences between objects and agents: A public

object method can be executed by any other object, protected methods o�er only a static access

control that is very often inconvenient to the programmer and user.

The processing of messages is realized by a selection mechanism for specialized subnets, that

implement the functionality of the agent, therefore (beside the selection process) its behavior.

These subnets are named protocol Petri nets (or short protocols) in the following.

Each agent can control an arbitrary number of such protocols, possesses however only one net

(in reference net nomenclature: one net page), that represents its interface to the agent system

and therewith its identity. This main net (page) is the visible interface of an agent in the multi

agent system. As mentioned before all messages that an agent sends or receives have to pass this

net.

The central point of activity of a protocol-driven agent is the selection of protocols and there-

with the commencement of conversations [CCF+99, KMR01]. Conversation consists of a set of

protocols spread over several cooperating agents. The protocol selection can basically be per-

formed pro-actively (the agent itself starts a conversation) or reactively (protocol selection based

on a conversation activated by another agent).9 This distinction corresponds to the bilateral access

to the place holding the protocols (protocols in conversation). The only di�erence in enabling and

occurrence of the transitions reactive and pro-active is the arc from the place incoming messages to

the transition reactive. So the latter transition has an additional input place: the incoming mes-

sages bu�er. It may only be enabled by incoming messages. Both the reaction to arriving messages

and the kick-o� of a (new) conversation is inuenced by the knowledge of an agent. In the case of

the pro-active protocol selection, the place knowledge base is the only proper enabling condition,

the protocols are a side condition. In simple cases the knowledge base can be implemented for

example as a subnet, advanced implementations as the connection to an inference engine are also

possible (and have been put into practise). Unfortunately this topic cannot be deepened here any

further.

8To our understanding agents are not exclusively (arti�cial) intelligent agents, but rather a general software

structuring paradigm on top of the ideas of object orientation [Jen00].
9The fundamental di�erence between pro-active and reactive actions is of great importance when dealing with

agents. An introduction to this topic is e.g. given by Wooldridge in [Woo99].

88

protocolsreactive pro-active

kb

p

processing

pi

stop

in

protcols in
conversations

incoming
messages

outgoing
messages

receive
message

send
message

knowledge base

out

Figure 2: A protocol-driven agent

A selected and activated protocol10 is also called a conversation-part because it usually includes

the exchange of messages with other agents. A conversation can however also run agent internal,

therefore without message traÆc. A freshly invoked conversation gets assigned an unambiguous

identi�cation that is not visible in the �gure. All messages belonging to a conversation carry this

identi�cation as a parameter to assign them properly. If an agent receives a messages carrying

such a reference to an existing conversation, transition in is enabled instead of transition reactive.

The net inscriptions that guarantee this enabling are not represented in �gure 2 for reasons of

simplicity. The transition in passes incoming messages to the corresponding conversation protocol

in execution. Examples for this process follow in section 2.4.

If the sending of messages to other agents is required during the run of a conversation, these

messages are passed from the protocol net over the transition out to the agent's main page and

are handed over to the message transport mechanism by the transition send message.11 The

communication between protocol net (conversation) and the agent's main net takes place via

synchronous channels.

An interesting feature of any agent derived from the (template) agent in �gure 2 is that they

cannot be blocked, neither by incoming messages nor by their protocols12 and therefore cannot

loose their autonomy.

Examples for concrete conversation protocols are to be found in the following chapter, where

a producer-consumer process is modeled exemplarily. This scenario acts also as the case study for

our veri�cation approach for Mulan.

2.4 Protocols

An important �eld of application of Petri nets is the speci�cation of processes such as that in

�gure 3, that shows a simple producer-consumer process. In order to give no room to conceptual

confusion, such nets that spread over several agents and/or distributed functional units will be

called "survey nets".

The place bu�er in the middle of the �gure represents an asynchronous coupling between the

process of producing and that of consuming. This coupling is however to that extent dependent

that it for example blocks the consumer if it is empty or, given the case that it is inscribed with a

capacity, blocks the producer when this maximal �lling is reached. In the following, producer and

10Following the object oriented nomenclature one speaks of an instantiated net or protocol (that is represented

in form of a net).
11The message transport mechanism is part of the agent system (or platform) and is therefore only sketched in

this section.
12Unless it is strictly necessary for a protocol to block the entire agent and this is explicitly modeled.

89

consume

produce receive

send

buffer

capacity

Figure 3: Producer-consumer (survey net)

consumer are introduced as autonomous agents and are modeled according to �gure 2 by means

of a reference net. The bu�er is not modeled as an independent agent, nevertheless this would

both syntactically (this will be explained in the following) and semantically (in consideration of

the level of autonomy the bu�er owns) be no problem.

An interesting point is the re-usability of the protocols: Consider a re�ned model in which the

bu�er should play an active role and should therefore be modeled as an agent of its own. The

protocols of the producer and the consumer remain structurally unchanged, only the addressees

of their messages have to be adapted. But these should be modeled dynamically in any case.

The following example assumes that the bu�er is restricted by a capacity of one item. This

restriction is for simpli�cation purposes only and may be lifted easily. The restriction is indicated

in �gure 3 by the gray place capacity under the bu�er place.

Producer The protocol of the producer agent is represented in �gure 4. The upper transitions

with the channels :start, :out, :in, and :stop are typical for all types of protocol nets. The :start

channel serves as a means to pass possibly necessary parameters to the protocol. It is called on

the agent main page (see �gure 2) either by transition reactive or pro-active. The channels :in and

:out are responsible for the communication of an operating protocol with the environment. They

connect to the transitions of the same denominators on the agent's main page. When a protocol

has �nished its task, the transition inscribed with channel :stop is enabled. By calling of this

channel the agent may delete the protocol or, more correctly, the protocol instance.

:start() :stop():out(i) :in(a)

entry exit

produce receive
acknowledge

send
produced item

item

waiting
ai

i a
acknowledge

produced
itemi i

Figure 4: Producer protocol

After the start of the protocol the transition produce produces a performative13 (here i) con-

taining an item, that is directed to the consumer. Note that in the example the performative is the

only thing that is produced. The performative will be sent over the :out channel; subsequently the

protocol is blocked waiting for an answer message. The blocking behavior is necessary to simulate

a synchronous communication between producer and bu�er. Without waiting for an answer the

producer would be able to "inundate" the bu�er with messages, what requires an in�nite bu�er

capacity. An arriving con�rmation enables the transition receive acknowledge. After occurrence

of that transition the protocol is not blocked any further and terminates (by enabling the stop

transition). The producer agent is now able to select and instantiate the produce protocol again.

13Some of the ideas that led to the agent model introduced here are partially originated in the area of the KQML-

([FL97]) or FIPA-agents ([FIP98b]). Roughly speaking a performative is a message. KQML stands for "Knowledge
Query and Manipulation Language", FIPA is the abbreviation of "Foundation for Intelligent Physical Agents".

90

Consumer The protocol net that models the consume behavior of the consumer agent (see

�gure 5) is selected (reactively) by the agent's main page to process an incoming performative

from the producer agent. It is instantiated and the :start channel is used to pass the performative

to the protocol. Beside others the performative is needed to send an acknowledge performative to

the originator of the conversation (the producer). Note that the consumer agent does not know

the producer or if there is one or several of them. The protocol works in either case.

:start(i)

exit

receive
item

:stop():out(a)

item

consume

acknowledge

send
acknowledge

i

i

a

i ii
ai

Figure 5: Consumer protocol

After receiving the item and sending the acknowledge the transition consume may occur. After

that the protocol terminates and can be deleted.

Figures 4 and 5 show the protocols that model a conversation between producer and consumer.

They are executed within agents of the type of �gure 2. The �gures form a simple example that

illustrates how to model a producer-consumer process by means of agent oriented Petri nets. The

proposed methodology to implement protocol nets in a top-down manner starting with so-called

survey nets is not the only possibility to develop protocols. One can easily think of a bottom-up

style or mixed cases especially for hierarchical protocol relationships. Unfortunately this topic can

not be deepened here.

3 Agent oriented veri�cation

The analysis of agent systems raises the need for a special style of veri�cation systems. This need

is due to the dynamics and openness of agent systems. As stated before, modeling approaches

lack a uniform basis. The same is true also for veri�cation approaches.

Most approaches handle multi agent systems (MAS) the same way as a single intelligent agents.

This style is based on the traditional arti�cial intelligence (AI) view, disregarding the needs of

MAS. It is mostly based on (modal) logical speci�cation and model checking techniques (cf. [HR00]

as an example).

In general, approaches addressing the specialties of MAS focus on one single aspect of descrip-

tion. For mobility several algebraic approaches describe the change of environment (cf. [MPW92],

[VC99] or [CGG99]). Adaptation (cf. [GPdFC98]) and cooperation (cf. [SHM99] and [CCF+99])

are addressed also.

In our point of view such approaches are insuÆcient for the analysis of an agent system, since

only parts of the system are speci�ed. It is unclear whether the combination of the isolated

formalizations leads to a correct description of what the system does. Since the integration of

the models has do be done manually by the developer this leads to an error pruning style of

construction.

So, we conclude that not only the construction of an agent system should be done on a uniform

basis but also the formal part of reasoning about it should be based on one single calculus. In the

following, we describe which characteristics such a formal basis should own.

In our Mulan-approach, we understand the central parts of a dynamic, open agent system {

mobility, adaptation, and cooperation { as parts of one central concept: compositionality.

Compositionality as the leading paradigm for agent systems Agent systems have several

specialties { all based on the paradigm of compositionality:

91

� Mobility is naturally expressible as the composition of an agent with its environment. Mo-

bility focus this point towards the dynamic change of environments during run time of an

agent system.

Compositionality is also central for the description of agent groups and their mobility: agents

are composed to groups, which can be considered as agents again.

� Cooperation of agents is also a kind of composition, at least at the technical level of interac-

tion. Since the behavior of one single agent is expressed by a set of protocols, conversations

are formed by the composition of several agent protocols.

� Adaptation is the dynamic change of agent behavior. Since behavior is a composition of

several primitive actions, adaptation must be described by the dynamic con�guration of

such an composite behavior. So, behavior is a kind of composition phenomena.

These kinds of compositionality have been shown in �gure 1 before: each zoom stands for one

composition mechanism.

3.1 Classi�cation of veri�cation approaches

The great number of publications in the very general �eld of veri�cation raises the need for a

classi�cation scheme. We propose a classi�cation scheme mainly oriented on two categories: �rst

the type of program being veri�ed and second the veri�cation time and style.

The �rst category discriminates by the kind of model which is veri�ed

1. Sequential block. The program is considered to be a monolithic block, usually build by

iteration, conditionals, and sequence. Central work is the approach by Hoare [Hoa69] for

algol-like programming languages.

2. Parallel block. The second class also deals with monolithic programs, but allows the construct

for parallel execution. The most known approach for parallel programs is due to Owicki and

Gries [OG76].

3. Top-down development. The third class incorporates the aspect of information hiding. Pro-

grams are considered to be the composition of encapsulated modules. This style of devel-

opment and veri�cation is known as the \top-down" approach. The most common proof

system has been developed by Apt, Francez, and de Roever [AFdR80].

4. Bottom-up development. The fourth class considers the veri�cation of modules on their

own. The context where modules are embedded in is not known a priori. This style of

reasoning is known as the \bottom-up" approach. A central step in the development of

bottom-up veri�cation systems is the assumption/commitment formulation by Chandy and

Misra [MC81].

While the �rst category deals with the model, the second category discriminates by the moment

veri�cation takes place and the technique being used:

1. Veri�cation is done after programming. First the system is speci�ed, then coded and after-

wards the implementation is checked in terms of the speci�cation. Central approach is the

model checking technique by Clarke and Emerson [EC82].

2. Veri�cation is done while programming. This could be done if the programmer has a central

idea how to proof the implementation while he programs. This kind of style is known as

\structured programming". All axiomatic approaches { like [Hoa69] { are examples.

3. Proof by construction. Programming and veri�cation are essentially the same. These ap-

proaches are based on constructive logic (like COQ [BBC+99]) or on property preserving

transformation (like in [Ber87]) or on structural restrictions resulting in subclasses (like in

[BT87]).

This classi�cation is oriented on the historical development of programming styles and major

veri�cation styles. This scheme is illustrated in �gure 6.

92

sequential parallel top-down bottom-up

post
model checking on

a pre-described sys-

tem

model checking on

a pre-described sys-

tem

\modular" model

checking
�
=�

while
axiomatic:

Hoare style

interference test:

Owicki/Gries

global invariants,

Unity, temporal

logic

assumption / com-

mitment style

by
constructive logic,

transformation,

subclasses

liveness preserving

composition
�
=�

�
=�

Figure 6: Classi�cation scheme for veri�cation approaches

3.2 From compositional veri�cation to agent oriented veri�cation

Which approaches are suited for the development and veri�cation of agent systems? In the fol-

lowing the central requirements of MAS are contrasted with the existing veri�cation styles, as

classi�ed before. We will show that several approaches relevant in the \normal" case are unsuited

for the special case of agent systems.

Several approaches try to lift veri�cation styles designed for object oriented programs up to

the agent context { neglecting the special needs of multi agent systems.

The �rst speciality is due to the nature of agent: agents are encapsulated, autonomous entities

which are loosely coupled. They are developed without any knowledge of the whole agent system.

Developers and agents cannot know the whole system or the state of the whole system. There is

no such thing as global knowledge for agents.

Due to encapsulation and isolated development only bottom-up veri�cation can apply to the

agent context. All approaches considering agent systems as one unit must reject the openness of

agent systems and rely on some kind of \closed agent world assumptions". Only the assumption

based style of reasoning can apply to open systems.

Since agents are considered as active entities (in contrast to passive objects), we additionally

take into account who is reasoning about the agent system. If it is the developer, we are mainly

confronted with \static" problems, if it is the agent, we are confronted with more \dynamic"

aspects. In the second case reasoning must be done automatically. This seems to be harder than

the �rst case, where it can be done semi-automatically.

Reasoning at run-time is the consequence when dealing with open systems, where no one can

know in advance, what might enter the system. Security in mobile agent systems is a central

aspect (cf. [Vig98]) which can only be achieved by structural restrictions on agents or on agent

behavior. Structural restrictions reduce the proof burden of an agent system.

If one compares these requirements with the category scheme in �gure 6, one can recognize,

that we can restrict our investigation to the \bottom-up" column and the rows \veri�cation while

and by development" (see �gure 7).

sequential parallel top-down bottom-up

post { { { {

while { { { relevant for the developer

by { { { relevant for the agent

Figure 7: Veri�cation in the agent context

Besides these major issues, which reject several approaches in advance, some additional aspects

must be handled in veri�cations systems in the agent context. These aspects might be of interest

in the context of object-orientation, too, but in the context of agents they cannot be ignored.

1. Encapsulation and modularity. A proof system must be able to express the concept of

information hiding, so it cannot be formulated in a \at" and global way.

93

2. Concurrency. Agent systems are highly independent and run concurrently. So speci�cation,

implementation, and veri�cation should not rely on totally ordered action sequences. Partial

order semantics (true concurrency) should be used instead.

3. Dynamic environment. Agent systems are conceptually based on distribution and mobility.

Therefore, a proof system must be able to describe environments and their dynamic change

in an explicit way.

4. A/C-concepts. An approach for MAS should allow to specify assumptions and commitments.

We additionally postulate, that these assumptions and commitments should not only be

visible for the veri�er but also for the developer. To avoid a gap between veri�cation and

modeling, assumption and commitments should be an integral part of the model.

5. Structural properties. The systems should allow to easily describe structural restriction in

order to guarantee e.g. security properties. These restrictions should be easily adaptable in

the modeling approach.

Due to these requirements we have chosen the paradigm of \nets within nets" [Val87, Val96,

Val98] for the developmental and formal basis of the Mulan-architecture. This approach meets

the above mentioned requirements directly or is adjusted currently by the authors. It has also the

bene�t that the \nets within nets" paradigm has it native \machine" implemented in the Renew

tool [KW98].14

This approach meets the requirements for an uni�ed approach. Like every Petri net formalism

it incorporates the concept of concurrency. The requirement of encapsulation and modularity is

ful�lled by the concept that nets could be regarded as tokens again { a view that meets well with

modularity. The remaining requirements { dynamic environment, A/C modeling and structural

guaranteed properties { are captured by the formalism of assumption/commitment Petri nets,

short: A/C Petri nets. The subclass of A/C Petri nets, that we are presenting here, deals with

protocols and is therefore called A/C-protocols.

The concepts { mobility, adaptation, and cooperation { are supported by concepts on their

own as shown in �gure 8, where we have shown the relations between the distributed arti�cial

intelligence (DAI) paradigms, the Mulan concepts, and the corresponding entities in the proof

system. These concepts cannot be explained in detail, so we sketch briey the ideas: \Distributed

markings" (cf. [K�oh00b]) describe the mobility aspect of \nets within nets" in an algebraic way.

They are especially suited for the formalization of agent groups in a distributed system. Adaptation

is based on the recon�guration of composed A/C-Petri nets. Cooperation takes place in form of

conversations, consisting of ordered A/C agent protocols.

DAI Mulan veri�cation

mobility location nets, group agents distributed markings

adaptation self-modifying protocols A/C-Petri nets

cooperation conversation conversation orders,

A/C-protocols

Figure 8: Relationship of DAI paradigms and veri�cation of Mulan models

These concepts are based on the algebraic viewpoint on nets (\Petri nets are monoids" [MM90])

which we addressed in former work for processes in object net systems (cf. [K�oh00a]). These

dependencies { and some more, that cannot be deepened here { are illustrated in �gure 9.

In the further presentation we will focus our attention mainly on the aspects of the A/C

modeling and veri�cation of agents protocols in terms of A/C-Petri nets (cf. the right part of

�gure 9).

14The work of [BDM+99] favors an approach based on linear logic instead. This work is a good argument for

our approach, since Petri nets and linear logic are strongly related (cf. [Far00]). Our approach has the additional
advantage that our models also have a graphical representation.

94

"nets in nets"

Petri nets

distributed
algorithms

MAS - verification

adaptation

groups,
proxies

agent
environments

A/C-Petri nets

self modifying
components

"nets within nets"
as basis
for mobility

well formed
conversation

mobility cooperation

A/C verification

reference- vs.
value semantics

calculus of
mobile systems

linear logic,
rewriting systems

algebra of
object net
systems

Petri net
box calculus

distributed
markings

synchronous
channels

Petri net
systems

algebra of
Petri nets

Figure 9: Foundations of MAS veri�cation

4 A/C Protocols

Our formal description of agent protocols is based on the explicit notion of assumptions and

commitments (A/C) made towards the environment. Our general model to express A/C is the

formalism of A/C-Petri nets. Starting from these A/C Petri nets we de�ne the so called classes

of basic protocols Petri nets (BPPN) and of environment based protocols Petri nets (EPPN).

4.1 A/C-Petri nets

An A/C-Petri net is a net N = (S; T; TA
; F), where the subset TA � T denotes transitions

modeling environmental actions (A stands for assumptions). The set T 0 = T n TA are the \core"

transitions of the net. Have a look at �gure 10 for an example: the un�lled transition t2 2 T
A

denotes an environmental transition, while t1; t3 2 T
0 are core transitions.

b c d
t2 t3t1

a

:c()

Figure 10: An A/C-Petri net

Environmental transitions tA 2 T
A are not enabled on their own, since it is assumed that tA

must �re synchronously with some transition tU from the environment U . Because of this, an

environmental transition tA 2 T
A is never enabled without the environment, if we consider the

A/C-Petri net on its own.

Environmental transitions are modeled by transitions in combination with the concept of syn-

chronous channels.15 In the example of �gure 10 t2 is inscribed by the up-link :c() . This approach

15Note, that synchronous channels are directly supported by the Renew tool. So, A/C-Petri nets could easily be
implemented.

95

has the advantage to allow the modeler to denote explicitly the assumptions towards the environ-

ment in the same model. This has a major advantage over the standard approach to fuse protocols

(without the explicit notion of assumptions) with a given environment and stating the correctness

of the whole model afterwards. In our approach the protocol P 0 is modeled together with the

assumptions PA (resulting in the A/C protocol PA=C). This protocol PA=C is fused independently

later on with an environment U . Since the assumptions of a protocol are de�ned in advance, we

only have to check, whether a given environment is able to ful�ll them.

A/C based veri�cation Interference-free progress is a property of special importance. Inter-

ference-free progress is described by the operator . . The formulae N :: m1 . m2 describes that

from the markingm1 the markingm2 is guaranteed to be reached (by steps of N) and during this,

additional markings m do not interfere with the sub-process of m1.
16 So, each property m1 . m2

is monotone wrt. multi set addition, so m1 +m . m2 +m is valid, too.

This property meets well with the structure of protocol nets. Since parts of protocols are

disjoint in terms of the underlying net graph, processes will be disjoint, too. A special feature of

. , that is used in this contribution, is the substitution rule. Let P;Q;R and S be expressions

denoting multi-set markings of places, then we have:

N :: P . Q+R

N :: R . S

N :: P . Q+ S

(substitution)

Have a look at the net N in �gure 10 again: There N :: a . b and N :: c . d are valid,

since t1 and t3 establishes the formulae. But N :: b . c is not valid, since the transition t2 is an

environmental one, only activated if the channel :c is activated by the environment.

We now want to specify the properties of an A/C-Petri net NA=C not in isolation, but in the

context of possible environments. So we have a look at the family of \embedded nets" dNA=Ce .
These nets are obtained by treating some (or all) environment transitions t 2 TA as simple ones:

If N = (S; T; TA
; F) is an A/C-Petri net, then 8; � E � T

A : (S; T; TA nE;F) 2 dNA=Ce.
This construction describes the embedding in an environment, which is able to synchronize

with some (or all) actions, that are assumed by NA=C . A property of the A/C-Petri nets NA=C ,

which is true for every embedding in a net of dNA=Ce (syntactically denoted as dNA=Ce ::)

is therefore true for the composition NA=C jjN 0 of NA=C with any environment N 0. This rule is

called the \embedding rule":

dNA=Ce ::

N
A=C jjN 0 ::

(embedding)

In our example the formulae remain valid under embedding: dNe :: a . b and dNe :: c . d.

Note, that dNe :: b . c is not valid, since it is invalid in one embedding, namely the inactive one.

Synchronous channels Without going into detail17 we describe the notion of a synchronous

channel in terms of a rewriting system. Transition could be labeled with at most one up-link (de-

noted as :up if it exists) and a { possible empty { set of down-links, denoted as f:down1 ; : : : ; :downn g.
A transition t is denoted by the operator (�?�!�) as (t?:up !:down1 ; : : : ; :downn). The special

case of a transition without an up-link is denoted as (t?�!:down1 ; : : : ; :downn), the case of zero

down-links analogously as (t?:up !�), no channels as (t?�!�).
The semantics of the net system is described by a concurrent transition system. Two transitions

with matching up- and down-link ch could be fused dynamically: t1==cht2. This fusion discharges

the channel :ch .

(t1?:chup !(:ch + CH1)) :
P
si !

P
sj

(t2?:ch !CH2) :
P
sk !

P
sl

CH1 \ CH2 = ;
((t1==

ch
t2)?:chup !(CH1 + CH2)) :

P
si +
P
sk !

P
sj +
P
sl

16Interference-free progress wrt. additional tokens makes . more restrictive than conventional leads-to proper-

ties, since it relates progress with causality.
17The complete description of the underlying algebra can be found in [K�oh01].

96

The requirement CH1 \ CH2 = ; prevents cyclic dependencies.
Not all transitions of the transition system are relevant for the semantics. A transition t is

included in the semantics of the systems { denoted by the Greek letter � { if it has no remaining

links:
(t?�!�) :

P
I
si !

P
J
sj

� :
P

I
si !

P
J
sj

A special case we are faced with is the fusion of two transitions (t1?:up1 !�), (t2?:up2 !�) by a

third one (t3?�!:up1 ; :up2) having exactly these two down-links. This special case is denoted by

t1 � t2, if t3 has empty pre- and post sets. t1 � t2 models a symmetric synchronization, which we

use to express CSP-like channels.

4.2 Basic Protocol Petri nets

In �gure 11 the frame of a basic protocol Petri net (BPPN) is shown. A basic protocol has a

starting point (entry), and an exit point (exit), as well as places for each incoming message (in

Msgi) and outgoing ones (out Msgj). The inner structure of a BPPN is abstracted away, only the

interface is shown here.

Let P:I denote the index set of incoming messages, P:J for outgoing ones. It should be able to

treat the component as one single transition, that is independent from the outside: Each marking

m = P:entry +
P

P:I
P:ini, denoting the initial state for the BPPN leads to a marking where the

�nal marking P:exit+
P

P:J
P:outj is reached:

18

P :: P:entry +
X

P:I

P:ini .P:exit+
X

P:J

P:outj

entry exit
[] component

out
Msg n

out
Msg 1

in
Msg 1

in
Msg m

- - - - - - - - - - - -

- - - - - - - - - - - -

Figure 11: A basic Petri net protocol

BPPN are well suited to specify the behavior of a \server protocol", since it reacts towards

incoming messages with outgoing ones. They are not suited to specify a \client protocol" which

works correctly only if an outgoing request message is replied by a server { a situation we are faced

with in the producer-consumer scenario: so, we need a way to specify that a new item should only

be produced by the producer, if the last one is con�rmed by the consumer.

If we have a look at �gure 4 and 5, it is not clear at the �rst moment where the fundamental

di�erence is between them, since at the interface-level they look almost the same. So we have to

lift some of the information up to the interface-level. This is done in the formalism of environment

based protocols (EPPN).

4.3 Protocol nets with environment assumptions

Assumptions, that are fundamental for the correctness of a protocols, should be included in the

model itself and should be visible to the developer. These assumptions towards the environment

18Note that in the general case only one input message and also only one output message is needed, since having
several messages means synchronization. A single message can of course contain several parameters.

97

are described in terms of the \assumption/commitment" paradigm (inspired by [MC81]). We

distinguish four di�erent kinds of messages to express assumptions and commitments: in-, out-,

request- and reply-messages (cf. �gure 12):

[] protocol

entry exit

in
msg m

out
msg n

out
msg 1

in
msg 1...

reply
msg p

...
request
msg p

reply
msg 1

request
msg 1

Figure 12: Protocol P 0 with four types of messages

1. Incoming messages, which can be considered as parameters (in msgi, 0 � i � m).

2. Outgoing messages, which are the reaction towards the incoming messages (out msgj, 0 �
j � n).

3. Outgoing messages, which are assumed to be replied (request msgk, 1 � k � p).

4. Incoming messages, which are assumed to be a reply towards a former request (reply msgk,

1 � k � p).

Such a protocol net is called environment based protocol Petri net (EPPN). An EPPN in-

tegrates the assumptions made by the protocol. The assumption is, that the environment will

connect each request-place with a reply place. Thus, the correctness for an EPPN can be checked

by connecting each request to a reply place via an environmental transition. This integration en-

ables us to describe correctness of a protocol under the consideration of environment assumptions.

This construction yields in another protocol net PU . The protocol PU is obtained if a set of

transitions fu1; : : : ; upg is added, so that each request-place requestk is connected by uk with the

corresponding reply-place replyk (cf. �gure 13). These transitions uk model the environment U ,

modeled as the net U = (frequestk; replyk : 1 � k � pg; TU ; FU), where TU = fu1; : : : ; upg and

(x; y) 2 Fu () 9k : 1 � k � p ^ ((x; y) = (requestk; uk) _ (x; y) = (uk; replyk)). All request- and

reply-places are removed from the interface by this construction, only the entry-, the exit- and all

in msg- and out msg-places are visible at the interface-level.

If we want to emphasize that we are speaking about protocol P and not about PU , we denote

P explicitly as P 0. Only the inner component P 0 has request msg- and reply msg-places visible at

the interface.

The component PU describes the commitments, whereas the environment model U describes

the assumptions of P 0. Correctness of an EPPN could only be established in combination with

the environment, so the component PU seems to be { at least preliminarily { the right candidate.

De�nition 1 A protocol P is well formed w.r.t. the environment U , i� the protocol PU with

integrated environment U ful�lls:

P
U :: entry +

X

I

ini . exit+
X

J

outj

4.4 Correctness in terms of A/C

EPPN have to be considered in combination with a well behaving environment. Up to now this

fact has to be reected by analyzing the protocol P in combination with an explicitly given

environment. Here, we have the simplest environment U (resulting in the extension PU).

98

[]

entry
exit

in
msg m

reply
msg 1

environment p

request
msg 1

request
msg p

reply
msg p

out
msg n

out
msg 1... ...

in
msg 1

...

waiting p

waiting 1

receive
send

environment 1

:

Figure 13: Protocol PU with integrated environment assumptions

As we have pointed out earlier, this approach is undesirable, since the environment is unknown

in advance. As we have stated also, the modeling of the assumptions towards the environment

rather than the environment itself plays a central role in the description of agent systems. There-

fore, the notion of assumptions and commitments is used for describing the correctness of protocols.

A protocol P is de�ned by the assumption, that all request messages are �nally replied by the

environment. Under this assumption the commitment, that all out messages are produced on

termination, could be ful�lled.

Theorem 1 An EPPN P with environment U is well formed w.r.t. U , i� it ful�lls

P :: entry +
X

I

ini .
X

K

waitk +
X

K

reqk

and

P ::
X

K

waitk +
X

K

replk . exit+
X

J

outj:

In this case the environment assumption:

U ::
X

K

reqk .
X

K

replk

establishes the commitment of the protocol:

P :: entry +
X

I

ini . exit+
X

J

outj

4.5 Explicit notion of assumptions and commitments

EPPN could be formally described and analyzed in terms of the A/C notion. This approach

should be enhanced by one step: A/C notions should not only establish the possibility for modular

correctness proofs { it should further be an integral part of the Petri net model. Assumptions

towards the environment are integrated in the model of the protocol P . This approach enables

the modeler to describe directly the scenario assumed. Petri net protocols allowing this style of

modeling are called A/C-protocols.

In the Mulan framework A/C-protocols are based on A/C-Petri nets. A/C-Petri nets are

described { as seen before { in terms of synchronous channels, more precisely by up-links: The

notion of an up-link describes the \passive" part of two synchronizing transitions. This is exactly

99

:start()

:in()

entry

receive item

:out()

acknowledgeitem

acknowledge consume :stop()

ticket-in ticket-out

exit

Figure 14: The consumer protocol

what we want for a model of the environment: an external action matching an assumption about

an external action.

So, A/C-protocols, as the model of EPPN in the framework of Mulan, contain additional

environment transitions. We pick up our introducing example of the producer-consumer scenario.

The protocols nets in �gure 4 and 5 are now described by the A/C approach (cf. �gure 14 and

15).19 As one can see, A/C-protocols inMulan describe the assumptions made by the producer in

an explicit way. The model is as expressive as the model PU in �gure 13, without the disadvantage

of including directly the environment U . This is done by the assumption part of the protocol,

depicted by un�lled net elements: the transitions with the inscription (: in() and :out() as well as

:start() and :stop()). Additionally, the places info, ticketin, and ticketout are declared to be part of

the assumptions.20 The place info contains data that is needed to match each request and reply.

waiting:start() :stop()

:out() :in()

entry exit

produce receive
acknowledge

send
produced item

acknowledge

info

item

produced
item

Figure 15: The producer protocol

How this assumption part could be exploited for veri�cation is shown in the exemplary cor-

rectness proof of the producer-consumer scenario.

5 Example: The producer-consumer scenario

The producer-consumer scenario is described by a conversation of two agents. One agent uses the

consumer protocol C (�gure 14), the other the producer protocol P (�gure 15). To express the

A/C style used for both protocols the consumer protocols is denoted as CA=C and the producer as

P
A=C . The assumptions that are made by each agent towards the other could easily be identi�ed,

since the elementary functionality of the protocols (P 0 and C0) are depicted by �lled elements,

while the assumption (PA and CA) are depicted by un�lled ones.

The consumer protocol is well formed, so we have for C0

C
0 :: entry + item . exit+ acknowledge

19Here, we abstract from the token color. This can be done, since the color is only used for documentation

purposes and does not contain an inner structure.
20Note, that places in A/C Petri nets are not subdivided like transitions into normal and environmental ones, so

this fact is only a point of presentation.

100

and for the extension CA=C with an integrated environment model

C
A=C :: entry + item . exit+ acknowledge

(CA=C
:e?:start !�) : 0 . ticketin + entry

(CA=C
:x?:stop !�) : ticketout + exit . 0

(CA=C
:c1?:in !�) : ticketin . item

(CA=C
:c2?:out !�) : acknowledge . ticketout

The producer P ist based on the request-reply interaction. Obviously P 0 describes a well

formed protocol:

P
0 :: entry . waiting+ item

P
0 :: waiting+ acknowledge . exit

The producer protocol PA=C with integrated environment ful�lls:

P
A=C :: entry . waiting+ item

P
A=C :: waiting+ acknowledge . exit

(PA=C
:e?:start !�) : 0 . entry

(PA=C
:x?:stop !�) : exit . 0

(PA=C
:c1?:out !�) : item . info

(PA=C
:c2?:in !�) : info . acknowledge

Under the assumption

P
A :: item . acknowledge

the producer protocol ful�lls the commitment

P
A=C :: entry . exit

This is proven by the following derivation

P
A=C :: entry Producer P

. waiting+ item Assumption PA

. waiting+ acknowledge Producer P

. exit

As one can see, the assumption/commitment proof style is strongly related to the analysis of

the embedded nets: dPA=Ce. In a suitable environment, the assumption part PA of the embedded

A/C protocol is activated and therefore ful�lled:

d(PA=C
:c1?:out !�)e = (PA=C

:c1?�!�) dPA=C
:c2?:out !�)e = (PA=C

:c2?�!�)

So, we have:

dPA=Ce :: item . info

dPA=Ce :: info . acknowledge

dPA=Ce :: item . acknowledge

A conversation is modeled by the composition of P and C via communication channels21. In

our example they are named c! (the channel for sending the item) and c? (the channel for receiving

the acknowledge). The conversation is denoted by P jjfc!;c?gC. In this composition the consumer's

commitments ful�ll the producer's assumption, the composition discharges the assumptions by

commitments. This can be seen from the following derivation: Assume, that channel c! links the

up-links C:c1 and P:c1:

c! = (C:c1 � P:c1) : C:ticketin + P:item . C:item+ P:info

21Do not confuse communication channels of the conversation with the synchronous channels of Renew.

101

Assume, that channel c? links the up-links C:c2 and P:c2:

c? = (C:c2 � P:c2) : C:acknowledge+ P:info . C:ticketout + P:acknowledge

Since all needed formulas of P 0 and C0 are obviously stable under embedding they hold also {

by the embedding rule { for PA=C jjfc!;c?gC
A=C . With use of the substitution rule for . it follows:

P
A=C jjfc!;c?gC

A=C :: C:entry + C:ticketin + P:entry Producer

. C:entry + C:ticketin + P:item+ P:waiting c!

. C:entry + C:item+ P:info+ P:waiting Consumer

. C:exit+ C:acknowledge+ P:info+ P:waiting c?

. C:exit+ C:ticketout + P:acknowledge+ P:waiting Producer

. C:exit+ C:ticketout + P:exit

The conversation formed by the two protocols �ts with respect to their environment assump-

tions: C:Commitment =) P:Assumption. In general, protocols, which join a conversation, are

implicitly ordered by such an implication. Such an order is called conversation order { a cen-

tral structuring element for well formed conversations; well formed conversations and acyclic A/C

proofs are therefore strongly related. Due to the limited space we cannot discuss the details here

any further.

6 Conclusion

This presentation gives insight to our unifying approach for multi agent systems, realized in the

Mulan-architecture .

The general architecture is based on high level Petri nets, namely reference nets. The formalism

of reference nets is grounded on the \nets within nets" paradigm formulated by Valk. This

paradigm �ts well, as we have shown both with respect to modeling and veri�cational aspects,

in the context of agent systems, since it can naturally express the key concepts of agent systems,

like mobility, adaptation, and cooperation. The paradigm also meets well with the requirements

of veri�cation, like concurrency, modularity, and explicit notion of environment assumptions.

Multi agent systems are based on the concepts of mobility, cooperation, and adaptation. In

this work, we have focused on one central aspect of cooperation which is described by agents

conversation. We have shown that conversations could naturally be modeled and veri�ed within

our approach of A/C Petri net protocols.

Due to size limitations of this presentation, only the key concepts could be demonstrated; we

have chosen the well known producer-consumer scenario to describe integrated A/C modeling and

veri�cation. Future publication will show in detail how the veri�cation approach, proposed by

Mulan, scales up with complex conversations and how the remaining concepts { mobility and

adaptation { are integrated into the formalism in detail.

References

[AFdR80] K. R. Apt, N. Francez, and W.P. de Roever. A proof system for communicating sequential

processes. ACM TOPLAS, 2(3):359{385, 1980.

[BBC+99] B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglaudre,

J.-Ch. Fillitre, E. Gim�enez, H. Herbelin, G. Huet, H. Laulh�ere, C. Mu~noz, C. Murthy,

C. Parent-Vigouroux, P. Loiseleur, Ch. Paulin-Mohring, A. Sabi, and B. Werner. The

Coq Proof Assistent { Reference Manual, Version 6.3.1, Coq Project, December 1999.

http://pauillac.inria.fr/coq.

[BDM+99] M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Logic Programming &

Multi-Agent Systems: a Synergic Combination for Applications and Semantics. In K.R. Apt,

V.W. Marek, M. Truszczynski, and D.S. Warren, editors, The Logic Programming Paradigm:

a 25-Year Perspective, pages 5{32. Springer Verlag, 1999.

[Ber87] G. Berthelot. Transformations and decompositions of nets. In W. Brauer, W. Reisig, and

G. Rozenberg, editors, Petri nets: Central models and their properties, number 254/255 in

LNCS. Springer-Verlag, 1987.

102

[BOP00] Bernhard Bauer, James Odell, and H. van Dyke Parunak. Extending UML for Agents. In

Proceeding of Agent-Oriented Information Systems Workshop, pages 3 { 17, 2000.

[BT87] E. Best and P.S. Thiagarajan. Some classes of live and safe Petri nets. In Klaus Voss, editor,

Concurrency and nets, pages 71{94, Berlin, Germany, 1987. Gesellschaft f�ur Mathematik und

Datenverarbeitung, Springer-Verlag.

[CCF+99] R. Scott Cost, Ye Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling agent conversation

with colored Petri nets. In Working notes on the workshop on specifying and implementing

conversation policies (Autonomous agents '99), 1999.

[CFL+98] R.S. Cost, T Finin, Y. Labrou, X. Luan, Y. Peng, L. Soboro�, J. May�eld, and A. Voughan-

nanm. Jackal: A Java-based Tool for Agent Development. In Working Notes of the Workshop

on Tools for Developing Agents, AAAI`98, pages 73{82. AAAI Press, 1998.

[CGG99] Luca Cardelli, Andrew D. Gordon, and G. Ghelli. Mobility types for mobile ambients. In

Proc. of the ICALP'99, LNCS 1644, pages 230{239. Springer-Verlag, 1999.

[CH94] S. Christensen and N.D. Hansen. Coloured Petri nets extended with channels for synchronous

communication. In Rober Valette, editor, Application and Theory of Petri Nets 1994, Proc.

of 15th Intern. Conf. Zaragoza, Spain, June 1994, LNCS, pages 159{178, June 1994.

[DE96] A. Diagne and Pascal Estraillier. Formal speci�cation and design of distributed systems. In

Proceedings of the Formal Methods for Object-based Open Distribured Systems, Paris, France,

1996. IFIP.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal logics to synthesize syn-

chronisation sceletons. Sci. Comput. Program., 2:241{266, 1982.

[Far00] B. Farwer. Linear Logic Based Calculi for Object Petri Nets. Logos Verlag, Berlin, 2000.

[FIP] Foundation for Intelligent Physical Agents. http://www.fipa.org.

[FIP98a] FIPA. FIPA 97 Speci�cation, Part 1 - Agent Management. Technical report, Foundation for

Intelligent Physical Agents, http://www.fipa.org, Oktober 1998.

[FIP98b] FIPA. FIPA 97 Speci�cation, Part 2 - Agent Communication Language. Technical report,

Foundation for Intelligent Physical Agents, http://www.fipa.org, Oktober 1998.

[FL97] Tim Finin and Yannis Labrou. A Proposal for a new KQML Speci�cation. Technical report,

University of Maryland, Februar 1997.

[GPdFC98] Gustavo M. Gois, Angelo Perkusich, Jorge C. A. de Figueiredo, and Evandro B. Costa.

Towards a multi-agent interactive learning environment oriented to the Petri net domain. In

Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC'98), 11-14 October 1998,

San Diego, USA, pages 250{255, October 1998.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communication of the ACM,

12:576{580, 1969.

[HR00] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about

systems. Cambridge University Press, 2000.

[Jen92] K. Jensen. Coloured Petri nets, Basic Methods, Analysis Methods and Practical Use, volume 1

of EATCS monographs on theoretical computer science. Springer-Verlag, 1992.

[Jen00] Nicholas R. Jennings. On agent-based software engineering. Arti�cial Intelligence, 117:277{

296, 2000.

[KMR01] Michael K�ohler, Daniel Moldt, and Heiko R�olke. Modeling the behaviour of Petri net agents.

In J. M. Colom and M. Koutny, editors, Proceedings of the 22st Conference on Application

and Theory of Petri Nets, volume 2075 of LNCS, pages 224{241. Springer-Verlag, June 2001.

[K�oh00a] Michael K�ohler. Branching process of Petri nets - an unifying approach. Technical Report

293/00, University of Hamburg, Department for Computer Science, Vogt-K�olln Str. 30, 22527

Hamburg, Germany, 2000.

[K�oh00b] Michael K�ohler. Distribution references and undecided markings. Technical Report 292/00,

University of Hamburg, Department for Computer Science, Vogt-K�olln Str. 30, 22527 Ham-

burg, Germany, 2000.

[K�oh01] Michael K�ohler. Algebraische Darstellung von Objektnetzsystemen. To be published as a

Technical Report, University of Hamburg, Department for Computer Science, Vogt-K�olln

Str. 30, 22527 Hamburg, Germany, 2001.

103

[Kum98] Olaf Kummer. Simulating synchronous channels and net instances. In J. Desel, P. Kemper,

E. Kindler, and A. Oberweis, editors, Forschungsbericht Nr. 694: 5. Workshop Algorithmen

und Werkzeuge f�ur Petrinetze, pages 73{78. Universit�at Dortmund, Fachbereich Informatik,

1998.

[KW98] Olaf Kummer and Frank Wienberg. Reference net workshop (Renew). Universit�at Hamburg,

http://www.renew.de, 1998.

[MC81] J. Misra and M. Chandy. Proofs of networks of processes. IEEE Transactions on Software

Engineering, 7(4):417{426, 1981.

[MM90] J. Meseguer and U. Montanari. Petri nets are monoids. Information and Computation,

88(2):105{155, October 1990.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1-2. Informartion

and computation, 100(1):1{77, 1992.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta informatica,

6:319{340, 1976.

[Rei85] Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The uni�ed modeling language reference manual:

The de�nitive reference to the UML from the original designers. Addison-Wesley object

technology series. Addison-Wesley, Reading, Mass., 1999.

[SHM99] A. El Fallah Seghrouchni, S. Haddad, and H. Mazouzi. A formal study of interactions in

multi-agent systems. In 14th ISCA-CATA, Cancun, Mexique, April 1999.

[Val87] R�udiger Valk. Modelling of task ow in systems of functional units. Technical Report FBI-

HH-B-124/87, Universit�at Hamburg, 1987.

[Val96] R�udiger Valk. Concurrency in communicating object Petri nets. In G. Agha, F. de Cindio,

and G. Rozenberg, editors, Advances in Petri Nets, volume 32 of Lecture Notes in Computer

Science, 1996.

[Val98] R�udiger Valk. Petri nets as token objects: An introduction to elementary object nets. In

J�org Desel and Manuel Silva, editors, Application and Theory of Petri Nets, volume 1420 of

LNCS, pages 1{25, June 1998.

[VC99] Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile computations.

Internet Programming Languages, 1999.

[Vig98] G. Vigna, editor. Mobile Agents and Security, volume 1419 of Lecture Notes in Computer

Science. Springer-Verlag, 1998.

[Wei99] G. Weiss, editor. Multiagent systems. MIT Press, 1999.

[Woo99] Michael Wooldridge. Intelligent agents. In Weiss [Wei99], chapter 1.

[Zwi89] J. Zwiers. Compositionality, concurrency, and partial correctness: proof theories for networks

of processes and their relationship. LNCS 321. Springer-Verlag, 1989.

104

Modeling State-Dependent Objects using Colored Petri Nets

Robert G. Pettit IV1 and Hassan Gomaa2

1The Aerospace Corporation, 15049 Conference Center Drive,
Chantilly, Virginia, USA 20151
rob.pettit@aero.org

2George Mason University, Department of Information and Software Engineering,
Fairfax, Virginia, USA 22030-4444

hgomaa@gmu.edu

Abstract. This paper describes an approach for using Petri nets to model and analyze the
behavioral characteristics of state-dependent objects represented in the Unified Modeling
Language (UML). Specifically, this paper describes an approach for systematically
mapping UML state-dependent objects and their corresponding statecharts into colored
Petri nets. This work is part of an on-going effort to automate the behavioral analysis of
concurrent and real-time object-oriented software designs. The benefit of this approach is
that by providing a systematic means for modeling state-dependent objects using colored
Petri nets and relating this to the larger research effort, the overall concurrent architecture
may then be modeled and analyzed using a single, cohesive technique.

Keywords: UML; Statechart; Colored Petri Net; Behavioral Analysis; COMET

1 Introduction

This paper presents an approach for using colored Petri nets to model and subsequently
validate the behavioral characteristics of state-dependent objects represented in the Unified
Modeling Language (UML) [1;2]. This research represents part of a larger effort [3] to
integrate colored Petri nets with UML software architectures created using the COMET
method [4]. The goal of this overall effort is to provide a systematic and seamless integration
of CPNs with object-oriented software architectures in order to effectively model and analyze
the behavioral properties of an architecture prior to implementation.

In COMET (Concurrent Object Modeling and Architectural Design Method), state-
dependent objects are active (asynchronous) objects that react to stimuli based on the current
state of the object. Each state-dependent object has an associated statechart that defines the
state-based behavior for that object. Typically, a state-dependent object will have one input
interface (operation) for processing events. When an event is received, the state-dependent
object will then use the encapsulated statechart information to determine the appropriate
behavior to execute. Based on the input that was received and the current state of the object,
this behavior could range from simply changing states; executing some action; sending a
message to other objects; or no behavior at all.

There are several tools currently available to simulate statechart execution. The benefit of
this approach is that by providing a systematic means for modeling state-dependent objects
using colored Petri nets and relating this to the larger research effort mentioned above, the
overall concurrent architecture may then be modeled and analyzed using a single, cohesive
technique.
 The Petri net formalism was chosen based on its modeling and analytical power for
concurrent systems. There are three general characteristics of Petri nets that make them

105

interesting in capturing concurrent, object-oriented behavioral specifications. First, Petri nets
allow the modeling of concurrency, synchronization, and resource sharing behavior of a
system. Second, there are many theoretical results associated with Petri nets for the analysis
of such issues as deadlock detection and performance analysis. Finally, the integration of
Petri nets with an object-oriented software architecture provides a means for automating
behavioral analysis.

The basic notation for Petri nets is a bipartite graph consisting of places and transitions
that alternate on a path and are connected by directional arcs [5]. In general, circles represent
places, whereas bars or boxes represent transitions. Tokens are used to mark places, and
under certain enabling conditions, transitions are allowed to fire, thus causing a change in the
placement of tokens.

A colored Petri net (CPN) is a special case of Petri net in which the tokens have
identifying attributes; in this case the color of the token [6]. At first, colored Petri nets seem
less intuitive than the basic Petri net. However, by allowing the tokens to have an associated
attribute, colored Petri nets scale to large problems much better than basic Petri nets.

2 The COMET Method

COMET is a Concurrent Object Modeling and Architectural Design Method for the
development of concurrent applications, in particular distributed and real-time applications
[4]. As the UML is now the standardized notation for describing object-oriented models [1,2],
the COMET method uses the UML notation throughout.

The COMET Object-Oriented Software Life Cycle is highly iterative. In the Requirements
Modeling phase, a use case model is developed in which the functional requirements of the
system are defined in terms of actors and use cases.

In the Analysis Modeling phase, static and dynamic models of the system are developed.
The static model defines the structural relationships among problem domain classes. Object
structuring criteria are used to determine the objects to be considered for the analysis model.
A dynamic model is then developed in which the use cases from the requirements model are
refined to show the objects that participate in each use case and how they interact with each
other. In the dynamic model, state dependent objects are defined using statecharts.

In the Design Modeling phase, an Architectural Design Model is developed. Subsystem
structuring criteria are provided to design the overall software architecture. For distributed
applications, a component based development approach is taken, in which each subsystem is
designed as a distributed self-contained component. The emphasis is on the division of
responsibility between clients and servers, including issues concerning the centralization vs.
distribution of data and control, and the design of message communication interfaces,
including synchronous, asynchronous, brokered, and group communication. Each concurrent
subsystem is then designed, in terms of active objects (tasks) and passive objects. Task
communication and synchronization interfaces are defined. The performance of real-time
designs is estimated using an approach based on rate monotonic analysis.

The aspect of the COMET method that is specifically addressed in this paper is the
emphasis on dynamic modeling, in the form of both object interaction modeling and finite
state machine modeling, describing in detail how object collaborations and statecharts
[8,9,10] work together.

106

3 Statecharts in the COMET Method

3.1 State Transition Diagrams and Statecharts

Traditionally, finite state machines were modeled by means of state transition diagrams or
state transition tables. One of the potential problems of state transition diagrams is the
proliferation of states and transitions, thereby making the state transition diagram very
cluttered and difficult to read. A very important way of simplifying state transition diagrams
was made by Harel with the introduction of statecharts [8,10], which increases the modeling
power of state transition diagrams by introducing superstates and the hierarchical
decomposition of superstates.

Significant simplification of statecharts can often be achieved through the use of
hierarchical decomposition of states, where a superstate is decomposed into two or more
interconnected substates. This decomposition is sometimes referred to as the or
decomposition, because being in the superstate means that the statechart is in one and only
one of the substates. The hierarchical statechart notation also allows a transition out of every
one of the substates on a statechart to be aggregated into a transition out of the superstate.
Careful use of this feature can significantly reduce the number of state transitions on a
statechart.

Another kind of hierarchical state decomposition supported is the and decomposition.
That is, a state on one statechart can be decomposed into two or more concurrent statecharts.
When the higher-level statechart is in the superstate, it is simultaneously in one of the
substates on the first lower-level concurrent statechart and in one of the substates on the
second lower-level concurrent statechart.

Although the name concurrent statechart implies that there is concurrent activity within
the object containing the statechart, the and decomposition can be used to show different
aspects of the same object, which are not concurrent. This latter approach is used in the
COMET method.

3.2 State Dependent Objects and Statecharts

State dependent objects are control objects whose behavior depends not only on the input
received, but also on the current state. In COMET, a state dependent object is described by
means of a statechart. A complex system can have many state dependent objects and hence
several statecharts. COMET encourages the design of objects with only one thread of control;
to address concurrency, multiple concurrent objects can be used. The Cruise Control system
described in this paper has one state dependent object and hence one statechart. However, in
other case studies given in [4], there are examples of distributed control in which the control
aspects of the system are distributed among many state dependent objects, each described by
its own statechart. If there are many objects of the same type, then each object will execute an
instance of the same statechart.

4 Modeling UML State-Dependent Objects Using Colored Petri Nets

Using the COMET method, state-dependent objects are defined to encapsulate the behavior
specified by a statechart. These state-dependent objects provide an interface for receiving
events and then perform some behavior based on the input event, the current state, and the
state-transition specifications of the encapsulated statechart.

107

To fit within the context of modeling a large-scale concurrent software architecture, the
approach used in this paper to specifically model state-dependent objects must address both
the high-level behavioral structure of state-dependent objects as well as the specific state-
dependent behavior of the associated statechart. To capture both of these aspects, the
resulting CPN model is structured using a series of hierarchical decompositions as described
in the following sections.

4.1 CPN Structural Model of State-Dependent Objects

Using our approach, the top-level CPN model captures the high-level state-dependent object
as a whole. This top-level model is illustrated in Figure 1. At this level, we can see the
interface between the state-dependent object and its surrounding environment, including
input events, output actions, the current state, and the high-level control flow within the
object.

Figure 1. Top-Level CPN Model for State-Dependent Objects

In the COMET method, state-dependent objects are modeled as active objects in UML,
thus indicating that they operate concurrently with their own thread of control. In our CPN
model, this concept is maintained by using a control token (labeled CTRL in the CPN
diagrams) to model the flow of control within the object. Each active object is modeled with
its own control token, which, in addition to modeling the flow of control, is used to model
synchronization with other objects and (with a timestamp) is used to simulate the progression
of time for each object.

A state-dependent object modeled with the CPN segment from Figure 1 would begin its
lifecycle with a control token residing in the Ready place. Thus, the ProcessInput transition
would then be enabled by the presence of an input event. Upon firing, ProcessInput would
pair the input event with the control token and pass this tuple to the EventRx place, indicating
that an event has been received and needs to be processed through the state transition
diagram. The ExecuteSTD transition is decomposed to model the specific statechart behavior
encapsulated by the state-dependent object. This decomposition is described in Section 4.2.

108

Once the statechart model has completed its execution (including any output actions), the
control token is passed to the STDComplete place. The PostProcessing transition then
increments the time tag on the control token (to simulate the processing time for the state-
dependent object to handle an event) and returns the control token to the Ready place to await
the next event.

One final note to be aware of at this level is the definition of state. The current state is
maintained in the CurrentState place. The ExecuteSTD transition (and its subsequent
decompositions) remove the current state from this place with each input event and return the
modified (new) state upon completion. The state of the object itself is actually represented by
a tuple stored at CurrentState. This tuple not only contains the “state” of the system as we
would normally consider it, but it also contains the current status of system conditions used to
make transition determinations in the statechart. Use of these conditions combined with the
state is further illustrated in Section 5 with an example from the Cruise Control System.

4.2 Top-Level CPN Statechart Model

To begin modeling, the actual state-dependent behavior is first converted to a “flattened”
representation so that all state transitions are explicitly captured between leaf states. Any
necessary conditions that were captured in the hierarchical statechart (e.g. device status) are
then represented as conditions on the state transition and are also captured as part of the
conditions in the CurrentState tuple. Furthermore, “entry” actions for UML states are
mapped to actions on the corresponding entry transition(s) to those states. Similarly, “exit”
actions are mapped to actions on the corresponding exit transitions(s). Activities that are
persistent within a given state (represented by the UML “Do” keyword) are also mapped to
actions on the entry transition(s) as these persistent activities are implemented by separate
active objects in the COMET method [4].

Working now from a flattened statechart, the ExecuteSTD transition is then decomposed
into a lower-level CPN. This first-level decomposition provides one CPN transition for each
(leaf) state in the object’s statechart. Furthermore, the places providing tokens to and
receiving tokens from ExecuteSTD are shown at this level as port places. A port place is used
as a connector between hierarchical levels of CPNs. Thus, the EventReceived place shown at
the root level providing input to ExecuteSTD is identical to all subsequent instances of
EventReceived in the various levels of ExecuteSTD’s decompositions.

Figure 2 provides an illustration of this first-level decomposition. Note that all transitions
(representing the states of the object’s statechart) are connected to the EventReceived,
STDComplete, and CurrentState places. Additionally, if a given state generates an external
action, appropriate links will also be added to handle those cases. Furthermore, each CPN
“State” transition in Figure 2 uses an arc inscription on the input arc to enable the transition
only if the current state corresponds to the state being modeled by that transition. Thus, the
State1 transition is only enabled when the current state is equal to State1 and so forth.

4.3 Modeling Behavior for Individual States

To model the specific state-dependent behavior, each of these CPN State transitions from
Figure 2 is again decomposed into a lower-level CPN segment. This final level of
decomposition is shown in Figure 3.

109

Figure 2. First Level Decomposition of CPN Statechart Model

At this level, there is one transition (State-n-DetSt) to determine the next state and the
particular action branch that needs to be taken. Once the current state is determined and the
appropriate DetSt transition is enabled (using the arc inscription from CurrentState), this
transition executes a code segment to determine the next state (newState) and the action
branch (branch) based on the current state and the input event (inputEvent). This code
segment simply consists of a case statement in the ML language that specifies the desired
output of new state and action branch for each possible input event.

After the newState and branch values are determined, a tuple containing these values is
passed to the State-n-Branch place. From this branch place, one branch is chosen based on
the value of the branch variable. Each branch is a series of alternating transitions and places
that model the behavior of the action to be performed. Each transition in a branch is labeled
by the name “Action”, followed by the branch number (0..n), followed by the step number
(a..z). In our approach, branch zero (0) will always be used when no action (other than a
possible state change) is required.

For branches with more than one step, an interim place is used to connect each transition
in the path. This interim place contains the new state tuple and is labeled by the name,
“State” followed by the branch number, followed by the previous and next step numbers. For
example, in Figure 3, the interim state along branch 1 between steps “a” and “b” is labeled,
“State-n-State1ab”.

Along these action paths, the CPN model may generate tokens to be passed as messages,
events, or operation calls to other objects. In the case of asynchronous actions, the branch
may be continued uninterrupted. However, in the case of synchronous processing, the next
step must wait for the previous step to complete before continuing. This is accomplished by
having the next transition enabled by both the interim state place and a return place from the
synchronizing action. An example of a synchronous message can be found in the Cruise
Control example of Section 5.

EventRx
P In

InternalEvent

STDComplete
P Out

Control

CurrentState

P I/OState

State1

State2

StateN

ExecuteSTD

1`(State1,…)

1`(State2,…)

1`(StateN,…)

1`newState

1`newState

1`newState

1`(inputEvent,CTRL)

1`(inputEvent,CTRL)

1`(inputEvent,CTRL)

1`CTRL
1`CTRL

1`CTRL

HS

HS

HS

110

Figure 3. Detailed State Decomposition

Finally, when a given path has completed, it’s last action is to update the CurrentState
place with the new state and to pass a control token to the STDComplete place indicating that
the current input event has now been processed.

The STDComplete place then essentially returns to the top level CPN diagram and passes
the control token to the PostProcessing transition. This transition performs any necessary
post processing actions and uses its time delay to simulate the processing time for the state-
dependent object. When this transition completes, the control token is returned to Ready
place and the model is ready to process the next input event.

At this point, the CPN model for the state-dependent object may be executed through a
simulator or analyzed by constructing an occurrence graph of the state-space using tools such
as DesignCPN [7]. The state-dependent object may be analyzed in isolation using CPN
places for the input and output stubs or it may be integrated into the CPN model of the overall
concurrent software architecture.

In the following section, we use an example from the Cruise Control System to illustrate
how a specific state-dependent object within a software architecture may be modeled using
the approach described in the above sections.

EventRx
P In

InternalEvent

STDComplete
P Out

Control

CurrentState

P I/O

State

1‘ (inputEvent,CTRL)

1‘CTRL

StateN
State-n-DetSt

C

State-n-Action1c

State-n-ActionNa

State-n-Action1b

State-n-Action1aState-n-Action0a

State-n-Branch

State-n-State1bc

State-n-State1ab

1‘CTRL

1‘newState

1‘newState

State

State

StateBranch

.

.

.

1`(StateN,…)

1`(newState,branch)

1`(newState,1)1`(newState,0)
1`(newState,N)

1`newState

1`newState

1`newState

1`newState

Input (inputEvent);
output(newState,branch);
action
case inputEvent of
 event1 => (State1,0) |
 event2 => (State2,1) |
 event3 => (State3,1);

111

5 Case Study: Cruise Control System

The Cruise Control System [4] is a real-time control system that manages the speed of an
automobile based on inputs from the driver (via a lever on the steering column). The
behavior of the cruise control is state-dependent in that the executed actions correspond not
only to the driver input, but also on the current state of the system and with the status of the
engine and the brake.

To illustrate the modeling of state-dependent objects using CPNs, we will use the state-
dependent “:CruiseControl” object and corresponding statechart from the Cruise Control
System. In this example, the :CruiseControl object accepts external inputs/events and
executes the cruise control statechart. Figure 4 provides a partial collaboration diagram
illustrating this state-dependent object along with its interfaces to the rest of the cruise control
system. As can be seen from this figure, the :CruiseControl object accepts event inputs from
the cruise control lever interface indicating whether the driver has selected to accelerate
(Accel), engaged the cruise (Cruise), turned the cruise off (Cruise Off), or requested that
cruising be resumed (Resume). Furthermore, the :CruiseControl object must accept
messages from the SpeedControl object indicating that the cruising speed has been reached
and accept inputs indicating the current status of the brake (Pressed or Released) and engine
(On or Off). Finally, in terms of output actions, the :CruiseControl object must set (or clear)
the desired speed and must send appropriate (state-based) commands to the SpeedControl
object that controls the throttle output and monitors the current speed.

The statechart for the :CruiseControl object is shown in Figure 5. The leaf (lowest-level)
states for :CruiseControl are: Idle, Initial, Accelerating, Cruising, Resuming, and Cruising
Off. It is these low-level states that will be used for the CPN state-dependent modeling.

Figure 4. Cruise Control State-Dependent Object

112

Figure 5. Cruise Control Statechart
Figure extracted from [4] with permission of Addison-Wesley Publishing.

5.1 CPN Model for Cruise Control

To start modeling the behavior of the :CruiseControl state-dependent object, we begin by
using a CPN segment to capture high-level behavioral properties of the state-dependent
object and its connections to the rest of the software architecture. This CPN segment is
illustrated in Figure 6.

At this level, the CPN models the general control flow of a state-dependent object. In the
case of the :CruiseControl object, this segment has been tailored to accept cruise control
messages as the input events via the ProcessInput transition. Additionally, the ExecuteSTD
transition is connected to CPN places corresponding to the Select and Clear operations of the
DesiredSpeed entity object as well as the places corresponding to the synchronous message
buffer for the SpeedControl object. The State colorset must also be tailored to fit the
:CruiseControl object and in this case is declared to be a tuple (specifically, a triple)
consisting of tokens representing the cruise control leaf states; the engine status; and the
brake status.

With the high-level CPN segment in place, we can now begin modeling the state-
dependent behavior of :CruiseControl by decomposing the ExecuteSTD transition into a set
of CPN transitions representing the leaf states of the cruise control statechart. This first level
decomposition is shown in Figure 7. Using the approach presented in Section 2, one CPN
transition is used for each of the six low-level states of the cruise control statechart: Idle,
Initial, Accelerating, Cruising, Resuming, and CruisingOff. Each of these CPN transitions
accepts a tuple containing the cruise control message and control token from the
EventReceived place along with the current state from the CurrentState place. When tokens
are available on both the EventReceived and CurrentState places, the transitions will then be
enabled according to the arc inscription from CurrentState. Thus, the Idle transition is only
enabled if the current state is Idle; the Initial transition is only enabled for a current state of
Initial; and so forth. Finally, the output from each of these transitions updates the

113

CurrentState place with the newState token and sends a control token to the STD Complete
place indicating that processing has been completed for the current input event.

The final step in modeling the state-dependent behavior is to decompose each of the
transitions in Figure 7 into a CPN segment capturing the behavior for each of the cruise
control states. To illustrate this final step, the CPN models for two of the cruise control states
(Idle and Accelerating) are described in detail in the following sections. The remaining CPN
models can be derived by applying this same systematic approach.

5.1.1 Idle State
The idle state is the starting point for the cruise control statechart. The CPN implementation
of the cruise control idle state is shown in Figure 8. In the cruise control statechart shown in
Figure 5, there is only one transition identified from the idle state – this occurs when the
engine is turned on and the system transitions to the initial state. However, in the CPN
implementation of the state-dependent behavior, changes in conditions that affect the cruise
control system must also be accounted for. These conditions include changes to the brake
and engine status. Thus, the implementation for the idle state not only checks for an
“EngineOn” event, but must also check for the other possibilities of “BrakeOn,” “BrakeOff,”
and “EngineOff”. When one of these three “events” occurs, the code segment of the
IdleDetSt transition sets the status variables accordingly, and sets the branch value to 0
(indicating that no further action is necessary). This new tuple is then passed to the
IdleBranch place. From the IdleBranch place, arc inscriptions determine which branch (CPN
transition) will be enabled. With the branch value set to 0, the IdleAction0a transition is
enabled and, when fired, simply updates the Current State and sends a control token to the
STD Complete place indicating that processing is complete for this input event.

The only input event that produces an action and state transition from the idle state is the
change in engine status as indicated by a ccMsg token with the value, “EngineOn”. When
this occurs, the code segment of IdleDetSt sets the output tuple to be (Initial,true,bs,1)
indicating that the state should be changed to the initial state; the engine is turned on; the
brake status (bs) is unchanged; and the action branch is 1. This tuple is then given to the
IdleBranch place and enables the IdleAction1a transition. According to the cruise control
statechart, the action that occurs when transitioning from idle to initial states is to clear the
desired speed. Thus, the IdleAction1a “calls” the clear operation by passing a control token
to the Clear_6 place and then placing the state tuple in the IdleState1ab place to continue
down this action branch. (The Clear_6 place is part of the CPN model for the DesiredSpeed
entity object of the cruise control software architecture. The number six (6) appended to the
place name represents the object identifier for DesiredSpeed.) Since we are simulating an
operation call, we need to have some synchronization so that we wait for the operation to
complete before continuing our processing. This is accomplished by having the next
transition in the branch, IdleAction1b, wait for both a state tuple in the IdleState1ab place and
a returned control token in the ClearRtn_6 place (indicating that the clear desired speed
operation has completed). Since this is the final step in the action branch, the IdleAction1b
transition updates the Current State place with the new state and conditions and sends a
control token to the STD Complete place, completing the processing of this input event.

114

Figure 6. Cruise Control Object: Top-Level CPN Segment

115

Figure 7. Cruise Control: First Level Decomposition

116

Figure 8. Cruise Control: Idle

117

5.1.2 Accelerating State
The behavior captured by the Accelerating state is slightly more significant than that
provided by the Idle state. While in the Accelerating state, the automobile is accelerating to
reach the desired cruising speed. When a “Cruise” request is detected, the system transitions
from the Accelerating state to the Cruising state. During this transition, the Desired Speed is
selected and (as indicated by the “Do” activity of the Cruising state) a “Maintain Speed”
command is sent to the SpeedControl object. The other possible transitions from the
Accelerating state are for the driver to press the brake, thus disengaging the cruise control and
transitioning to the Cruising Off state or the engine stops and the system transitions to Idle.

The CPN model for the Accelerating state is shown in Figure 9. As with the Idle state, we
again enter the model at a CPN transition (AccelDetSt) that uses a code segment to determine
the new state and the action branch used to produce any desired actions. The only transition
that produces actions from the Accelerating state is a transition to the Cruising state. Thus,
this transition is assigned action branch 1 while all other inputs are assigned branch 0 and
simply update the state and current engine and/or brake conditions.

Proceeding through branch 1, the first action is to select the desired speed. Thus, the
AccelAction1a transition sends a control token to the CPN place corresponding to the Select
Desired Speed operation call. The internal state information is transitioned to the
AccelState1ab place and the AccelAction1b transition then waits for the Select Desired Speed
operation to return as indicated by a control token in the Select_6 place. Once this has
completed, the state information is passed to the AccelState1bc place and the AccelAction1c
transition performs the next action by sending a “MaintainSpeed” synchronous message to
the SpeedControl Message buffer. Since this is a synchronous message, the AccelAction1c
transition must first retrieve a Free token from the buffer, thus indicating that the transition is
free to place a message in the Message place of the buffer. The AccelAction1c transition then
sends the ccCommand token (set to “MaintainSpeed”) to the Message place and passes the
internal state information to the AccelState1cd place. The AccelAction1d transition must now
wait for SpeedControl to retrieve the message from the buffer (since this is modeling
synchronous communication). Once SpeedControl retrieves the message, it places a control
token in the Return place and then AccelAction1d can fire, sending the updated state
information to the Current State place and the control token to the STDComplete place. At
this point, the processing for the Accelerating state is now complete and the :CruiseControl
object may process the next event.

5.1.3 Modeling the Remaining Cruise Control States
The remaining cruise control states can be modeled by decomposing the remaining CPN
transitions from Figure 7 using the same systematic approach used to model the Idle and
Accelerating states presented above. Once the remaining states have been captured at this
level, the :CruiseControl object may be analyzed using a tool such as DesignCPN [7]. As
mentioned earlier, this analysis may occur independently by using CPN places to simulate the
inputs and outputs. Alternately, the models may be integrated with the larger cruise control
architecture (by using the actual CPN places corresponding to message queues, operation
calls, etc.) to complete the behavioral modeling and analysis of the system as a whole. This
analysis may cover such aspects as deadlock detection, performance analysis against time
constraints, or checking boundary conditions to, for example, determine if the set queue sizes
can handle the observed volume of message traffic.

118

Figure 9. Cruise Control: Accelerating

119

6 Conclusions and Future Research

This paper presents a systematic, scaleable, and repeatable approach for using colored Petri
nets to model the behavior of UML objects containing statecharts, which is capable of being
automated. This approach may be integrated into the larger effort of modeling the overall
concurrent software architecture using CPNs. The resulting CPN is then used to validate
such dynamic properties as the absence of deadlock and starvation conditions as well as
providing a timing and behavioral analysis of the architecture through simulation. This
analysis through CPNs reduces the overall risk of software implementation by allowing
behavioral characteristics to be validated from an architectural design rather than waiting for
the system to be coded.

This paper represents on-going research efforts to integrate colored Petri nets with object-
oriented software design methods for concurrent and real-time systems. Future research will
explore the automatic generation of CPNs from UML. It is the goal of this continuing
research to arrive at a set of CPN translation rules that can be effectively integrated with
software design methods to provide increased reliability and analytical capabilities at
multiple levels of abstraction.

7 References

[1] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language Reference
Manual Reading, Mass.: Addison-Wesley, 1999.

[2] Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User
Guide Reading, Mass.: Addison-Wesley, 1999.

[3] Pettit, R. G. and Gomaa, H. “Validation of Dynamic Behavior in UML Using Colored
Petri Nets.” UML 2000 Behavioral Semantics Workshop. York, England. October,
2000.

[4] Gomaa, H., Designing Concurrent, Distributed, and Real-Time Applications with UML,
Addison Wesley Object Technology Series, 2000, http://www.aw.com/cseng/titles/0-
201-65793-7.

 [5] David, R. and Alla, H., "Petri Nets for Modeling of Dynamic Systems: A Survey,"
Automatica, vol. 30, no. 2, pp. 175-202, 1994.

[6] Jensen, K., Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use
Berlin, Germany: Springer-Verlag, 1997.

[7] DesignCPN. http://www.daimi.aau.dk/designCPN/.

[8] Harel, D., "On Visual Formalisms." CACM 31, 5 (May 1988), 514-530.

[9] Harel, D. and E. Gary, "Executable Object Modeling with Statecharts", Proc. 18th
International Conference on Software Engineering, Berlin, March 1996

[10] Harel, D. and M. Politi, "Modeling Reactive Systems with Statecharts", New York, NY:
McGraw-Hill, 1998.

120

A Calculus of Petri Net Components
N. Sidorova, M. Voorhoeve1, J.C.S.P. van der Woude

Eindhoven University of Technology

Abstract

A framework is developed for modeling concurrent systems. The modeled systems are
“open” in the sense that they can interact in prescribed ways with an unspecified environ-
ment. Systems are represented both as labeled Petri nets (allowing validation) and algebraic
terms (allowing analysis).

1 Introduction

The engineering of systems is often performed by combiningrequirements and models. Re-
quirements can be formulated in both natural and formal languages. It is almost impossible to
describe a system by requirements alone. Their soundness can be validated by end users, but not
their completeness: most likely systems can be constructed satisfying the requirements that are
nonetheless unacceptable to the end user. This is the reason why requirements are complemented
by models.

The systems we consider in this paper consist of many cooperating, yet independent asyn-
chronous components. Petri Nets are well suited for modeling such systems. Advantages are its
graphical nature and the decomposition of both states and events into local places and transitions.
These properties make Petri nets an excellent tool for the validation of models by non-technical
end users. Many state-of-the-art modeling techniques use Petri nets (or some derivative) for
describing concurrent activities.

It stands to reason that Petri nets have been combined with hierarchy by isolating subnets and
combining them to form large supernets. Examples are CPN [9] and ExSpect [8]. The common
way of defining the semantics for these hierarchical approaches is to “flatten” the hierarchy and
present the semantics of the complete system. So subnets obtain a semantics only in the context
they were used in, which means that - in spite of efforts to make them reusable - they cannot be
regarded as true components. True Petri net components must have a compositional semantics
of their own. Compositionality means that components with the same semantics (i.e. mapped to
the same mathematical object) must behave the same in any context.

In this paper we develop a framework for Petri net components, inspired by the theory behind
process algebra [1]. Components are regarded as algebraic terms specifying subcomponents,
their connection and the external interface. These terms are “open”; the interface fixes their
possible uses by any environment. This results in a calculus with operators for connecting com-
ponents, like fusion, relabeling and hiding of places and transitions, very similar to [12]. Each
algebraic term can be normalized, resulting in a term containing the merge of basic components
(places and transitions) that are connected by arc addition and then relabeled. These normalized

1email: wsinmarc@win.tue.nl

121

Arbitrary
terms

Hierarchical
nets

Normalized
terms

rewrite

1-1 corr.

1-1 corr.

Flat nets

subset subset

Figure 1: Correspondences between nets and terms

terms can be represented as “fl at” Petri nets with partially labeled places and transitions (com-
pare Figure 1). The state/event duality typical of Petri nets has been preserved: one can choose
to label only places (reasoning only about states and their successions) or transitions (reasoning
about possible and actual events) or combine the two.

The semantics of our component terms is indeed compositional: the (strong) bisimilarity equiv-
alence is a congruence w.r.t. our operators. We can use it to speed up verifications of closed
hierarchical nets by exploiting the hierarchy. However, the most important contribution is the
possibility to define “open” subnets (components) that can be used and reused in arbitrary con-
texts.

This paper is a development from [12] (the calculus) and [2] (the semantics: branching instead
of linear time). Both predecessor papers address P/T nets only, whereas the present paper applies
to colored nets as well, thus providing a foundation for full-fledged component specification
languages.

We have structured the paper as follows. In section 2, after some preliminary notations, we
give some general definitions and results about transition systems with events having a baglike
structure (i.e. they can occur simultaneously). In section 3, the events are pinned down further
to consumption-firing-production triples typical of Petri nets. We define atoms (unconnected
marked places and transitions) and operators for connecting them. In section 4 this calculus is
specialized still further to cover “standard” colored nets. An example script is given in section 5
to illustrate its use as a specification and design language, after which some concluding remarks
are given in section 6.

Acknowledgements: We thank our colleagues Tim Willemse, Twan Basten and Sjouke Mauw
for their support and suggestions, as well as the anonymous referees.

2 Basic Notions

Let A, B be sets. A binary relation between A and B is a subset of A×B. For relations R, S, R−1

denotes the converse of R and R � S denotes the composition of R and S. Subclasses of binary
relations are the sets of total (A → B) and partial (A →p B) functions. Function application of
f to a is denoted as f.a. We omit the dot operator if this does not cause confusion, writing e.g.

122

f (a, b) instead of f.(a, b). If r is a relation and X a set, then r [X] = {a | ∃x ∈ X : x r a}.
The set of bags with base A is denoted as B .A. For α ∈ B .A, a ∈ A, wαa denotes the weight of
a in α. The carrier C.α of α ∈ B .A is the set {a | wαa > 0}. We identify bags α ∈ B .A and
β ∈ B .B when C.α = C.β and ∀c ∈ C.α : wαc = wβc. If α ∈ B .A, β ∈ B .B, then α + β is
the element of B (A ∪ B) satisfying wα+βx = wαx + wβ x . The empty bag is denoted by 0 (its
carrier is the empty set). If no confusion can arise, we can interpret a set A as a bag with carrier
A and weights 1 throughout. Note that (B .A, +, 0) is a commutative monoid.

If r ∈ A →p B, then r̄ ∈ B .A → B .B satisfies wr̄ .αb = 	(wαa | r.a = b). So if r is the empty
function, the range of r̄ is {0}.
We shall define transition systems and the bisimilarity equivalence relation on them. Bisimilarity
abstracts as much as possible from states; two states are equivalent iff they allow the same actions
leading to equivalent states. We presuppose a universe of event labels E .

Definition 1 A transition system is a pair (S, E), where S is a state space and E ∈ E → P(S×S)

a function assigning state relations to events. The relations E .e are denoted by
e−→. If C

e−→ C ′,
there exists an event with label e leading from C to C ′.
Given a transition system (S, E), a relation Q ⊆ (S × S) is a simulation iff for every e ∈ E we
have Q−1

�

e−→ ⊆ e−→ � Q−1. A simulation Q is a bisimulation iff Q−1 is a simulation too.
States C, D are called bisimilar iff there exists a bisimulation Q such that C Q D.

A component is an equivalence class of bisimilar states in a transition system.

Note that we use a single transition system S in the definition, which is enough for our purposes.
A definition with several transition systems is not hard, but somewhat more cumbersome. A
simulation is a relation Q that satisfies the transfer property: if C Q D and C

e−→ C ′, then
there exists a D′ such that D

e−→ D′ and C ′ Q D′. A weaker equivalence relation is branching
bisimilarity [6]. This equivalence relation is most appropriate for comparing implementations to
their specification. The bisimilarity notion above is often called “strong” bisimilarity in contrast.

The state spaces of our transition systems will consist of algebraic terms describing the events
that can occur to its states. Those terms are given via SOS production rules (structured opera-
tional semantics [11]). These rules define the events that can occur in a given state; it is implicitly
assumed that no event can occur in a given state unless there is a production rule defining it (no

junk property). The syntax is
p, q, . . .

r
, where p, q, . . . are the premisses and r the conclusion.

We suppose that the set of event labels E is a commutative monoid with addition operator + and
neutral element 0. The interpretation of e + f is the simultaneous occurrence of events e and f .
The neutral element 0 indicates the absence of any visible event. Every component C will satisfy

C
0−→ C . Note that it is possible that C

0−→ C ′ with C �= C ′: the state may change without any
event being visible.

The binary free merge operator C || D allows the combination of components; there exist various
transformation operators
R, with R a binary or ternary relation between events. In the sections
to come, we will specialize these transformation operators in various ways.

123

We assume the existence of a set A of atoms with a set of relations
e−→A between them. Our

state space S is the smallest set satisfying

1. A ⊆ S

2. C, D ∈ S ⇒ C || D ∈ S

3. (R ∈ E2 ∪ E3 ∧ C ∈ S) ⇒
R .C ∈ S.

The relations
e−→ are the smallest subsets of S2 containing the

e−→A or produced from the SOS
rules given below.

C
e−→ C ′, D

f−→ D′

C || D
e+ f−→ C ′ || D′

C
e−→ C ′, e R f

R .C
f−→
R.C ′

C
d−→ �

e−→ C ′, (d, e, f) ∈ R

R.C
f−→
R .C ′

From the structure of these rules, it can be deduced that the merge and transformation operators
are congruences w.r.t. both strong and branching bisimilarity (c.f. [5]).

Theorem 1 Let B, C, D be components and R, T ⊆ E2. Then
C || D = D || C, (B || C) || D = B || (C || D),
R �
T =
T �R

Proof: We shall derive the first of these equations in order to illustrate the type of reasoning used
here. We construct the relation Q = {(C || D, D || C) | C, D ∈ S} between terms. It is sufficient
to prove that Q is a bisimulation. We must prove two transfer properties; the first is that X Q Y

and X
e−→ X ′, there exists an Y ′ such that Y

e−→ Y ′ and X Q Y ′. Since X Q Y , X must be
of the form C || D and Y of the form D || C . We have C || D

e−→ X ′ and as the only SOS rule

matching the lhs is the first, X ′ must have the form C ′ || D′ for some C ′, D′ satisfying C
f−→ C ′,

D
g−→ D′ and e = f + g. It is now easy to find a Y ′, namely D′ || C ′ satisfying the transfer

property. Since Q is symmetric, the other transfer property is identical to the first, so Q is indeed
a bisimulation.

The other two equations are derived similarly. �

3 Global Petri Nets

As a first step towards formalizing Petri net components, we decompose events into consumption,
firing and production. Unlike colored or P/T nets, firings are not associated to distinct transitions
nor consumptions/productions to distinct places, whence the term “global” .

In Figure 2, the main idea is illustrated for defining the semantics of net components, namely
the use of consumption/firing/production triples. Three components C, D, E are shown in the
figure. The component C can be transformed into D by external production of a token in place
p. By externally consuming the same token, D becomes C . By a firing step, D becomes E .

124

p qa p qa p qa
0,0,<p> 0,<a>,0

<q>,0,0
C D E

<p>,0,0

Figure 2: Illustration of events

Internal consumptions and productions (i.e. associated to a firing step) go with the firing and are
not separately indicated.

This way of associating a transition system to nets allows both state-based and action-based
reasoning. We can discover that there is one and only one token in p-labeled places of D, since
one p-token (and not more) can be externally consumed from it. We can also discover that C
contains an a-labeled transition that is not enabled but becomes so by externally adding a p-
token, and which internally consumes a p token and produces a q token, since the p-token that
was there in D has gone and a q-token has appeared after firing.

So we have indeed disguised state-based properties (the presence and absence of tokens) as
events (possible and impossible consumptions). Of course, we can have several external con-
sumptions, firings and external productions concurrently, if there are enough tokens to allow the
consumptions and firings. Tokens that are produced (either directly or by the firings) have to wait
for the next step to be used.

We will indicate how this idea has been transformed into a calculus. Our atoms are unconnected
marked places, that allow production and consumption only, and unconnected transitions that
allow firing only. The atoms can be merged and by arc addition they can become connected,
associating internal productions and/or consumptions to firings. By relabeling, we can then
redefine the component’s interface. This relabeling allows e.g. to hide tokens (disabling external
consumptions and productions), hide firings (relabeling them to 0) and introduce nondeterminism
(giving different tokens/firings the same label).

The above atoms and operators suffice to model terms that have a direct representation as partially
labeled Petri nets. Their application to arbitrary components causes a notion of hierarchy. Finally,
the operators are supplemented with a place fusion operator, extending the options for connecting
components. We can rewrite any term to a normal form that has a flat net representation.

We shall now formalize the notions above. We first set E = O × A × O, where O,A are
commutative monoids (place label, resp. action bags). We assume the set of labels to be infinite,
so “ fresh” labels are always available. We set (a, b, c) + (d, e, f) = (a + d, b + e, c + f) so E
is a commutative monoid.

We call a relation r between commutative monoids right linear iff (1) 0 r 0, (2) (a r b∧c r d) ⇒
(a + c) r (b + d) and (3) a r (b + c) ⇒ ∃a1, a2 : a = a1 + a2 ∧ a1 r b ∧ a2 r c. It is right normal
if 0 r x ⇒ x = 0 and left normal if r −1 is right normal.

From now on, let A ⊆ A, I ∈ O, r ∈ {s ∪ t | s ⊆ O2 ∧ t ⊆ A2} right linear and right normal,
v, w ⊆ (O ×A) both right linear and left normal, U ⊆ O with 0 ∈ U .

125

Definition 2 The components PI (place), TA (transition) and the operators λr (renaming), γv,w

(arc addition) and φU (place fusion) are defined by the SOS rules below.

1
x ∈ A

TA
0,x,0−→ TA

2
c ≤ I

PI
c,0,p−→ PI−c+p

3
C

c,s,p−→ C ′, c r d, p r q, s r t

λr .C
d,t,q−→ λr .C ′

4
C

d+c,s,p+q−→ C ′, d v s, q w s

γv,w.C
c,s,p−→ γv,w.C ′ 5

C (
x,0,x−→ �

c,s,p−→) C ′, x ∈ U

φU .C
c,s,p−→ φU .C ′

, Note the non-atom operators being special cases of
R, e.g. γv,w =
R with (c, s, p) R (c′, s ′, p′)
iff s = s ′ ∧ (c − c′) v s ∧ (p − p′) w s. The operator φU is the one with a ternary R.

We will discuss the notions behind this formal definition.

1. Unconnected transitions (TA) can execute any step from its parameter set A without any
state change.

2. Unconnected marked places (PI) allow an arbitrary consumption of tokens c contained in
the marking I (c ≤ I) and an arbitrary production p, resulting in a new state I − c + p.

3. The renaming operator λr allows to rename steps, consumptions and productions by re-
lation r . In most cases, the relation r will be a partial function. Hiding of steps is done
by renaming them to 0. The right linearity of q ensures that hidden steps cannot become
visible again. To allow the hiding of tokens, we can use a partial function r to shield tokens
outside dom.r from external production or consumption.

4. The arc addition operator, when used with functions instead of relations, states that an event
(0, s, 0) (i.e. a step) between γv,w.C and γv,w.C ′ will be possible iff the event (v.s, s, w.s)
existed between C, C ′ before the arc addition. A special choice of the v, w relations yields

the blocking operator ξE for certain E ⊆ A with the production rule
C

c,s,p−→ C ′, s ∈ E

ξE .C
c,s,p−→ ξE .C ′ .

5. The fusion rule states that certain states that look the same in fact become the same in φU .
So if an event (c, s, p) is possible from a state C ′′, the same event is possible from C ,
provided C ′′ can be reached from C by a token switch: consuming and producing tokens
that both are labeled x (but may differ).

Component terms are recursively defined from the places, transitions and merge and transforma-
tion operators.

Definition 3 The set C of component terms is the smallest set satisfying:

1. TA, PI ∈ C,

2. if C, D ∈ C, then C || D ∈ C,

126

3. if C ∈ C, then λr .C, ξE .C, γv,w.C, φU .C ∈ C.

We shall now derive rules by which the terms in C can be rewritten to a flat normal form. The
place fusion and blocking operators can be eliminated altogether and the other operators can be
given a certain order. We start with some basic equations, stating that the application order of
most operators can be reversed.

We define the sum of sets and relations A, B ⊆ A by A + B = {a + b | a ∈ A, b ∈ B}. If r, s
are both right linear, then so is r + s.

Theorem 2 The following equations hold.
λr .TA = Tr [A] γv,w.TA = TA∩(v−1∩w−1)[0] φU .TA = TA TA || TA′ = TA+A′
λr .PI = Pr [I] γv,w.PI = PI φU .PI = PI PI || PJ = PI+J

λr � λx = λr �x γv,w � λr = λr � γr �v�r−1,r �w�r−1 γv,w � γx,y = γv+x,w+y

φU � λr = λr � φr−1[U] φU � γv,w = γv,w � φU

Proof: We construct the obvious bisimulation between terms in each case. �

We can eliminate bijective renaming.

Theorem 3 If r is a bijection, then λr is a bijection on C with inverse λr−1 . We also have the
equation λr � γv,w = γr �v,r �w in this case. For all C, D, we have λr (C || D) = λr .C || λr .D.

Proof: By Theorem 2, λr � λr−1 = λr �r−1 , which is the identity. Again, bisimulations are con-
structed for each equation. �

We can now prove the flat net theorem: each hierarchical net (C term) can be represented as the
renaming of connected places and transitions.

Theorem 4 Each term C ∈ C can be rewritten to the normal form (λr � γv,w).(TA || PI).

Proof: We use structure induction to terms. Use the equations in Theorem 2 as rewrite rules from
left to right, proving the theorem for all terms of the form (f � g).C , with f, g transformations.
We are left with terms C || D. By the induction hypothesis, we may assume that C, D are in
normal form, so let C = (λu � γv,w).(TA || PI). With f = λu, E = γv,w.(TA || PI), we can find
a fresh set of labels and a bijective renaming r such that λr � f = f � λr−1 = f . We then have
C || D = f.E || D = f.E || λr � λr−1 .D = (λr � f).(E || λr−1 .D). Since r was injective, we can
eliminate the λr−1 by Theorem 3, obtaining the term (λr � f).(E || D′), with D′ in normal form.
We repeat the same trick with f = γv,w, E = TA || PI to obtain (λr ′ � γv,w)E || D′′. Repeating
this for D′′, we obtain a merge of places and transitions, that can be rewritten to the merge of one
place and one transition by Theorem 2. �

4 Local Petri nets

In this section we further specialize the operators of the previous section to arrive at more or less
“standard” colored nets. The firings that can occur are localized into distinct transitions and the
tokens that are consumed and produced are localized into distinct places.

127

We attach a label to every place; tokens possess the label of their place and a value in addition. A
marked place is parametrized by a bag of such tokens (with the same label). We attach a function
of labels to values (a “ record”) to every transition firing; a transition is parametrized with a set
of such records (with the same domain) (a “ table”).

The selection of operators is a compromise between power and clarity, with CPN in mind. It is
not clear whether a closer approximation of CPN is possible or worthwhile. Arc addition is split
into production and consumption. We choose one label-value pair of a firing record to go with a
label-value pair of a token.

We define fusion based on labels only: all tokens from places labeled with a fusion label are
dumped in the same place (as it were). Relabeling is split into transition and place relabeling and
does not change values. Blocking is split into encapsulation: the blocking of any step containing
a forbidden label-value pair and synchronization: the blocking of any step that does not combine
the label-value pairs to be synchronized. Hiding is split into place hiding and transition hiding
and is based on labels.

The formal definition of tha atoms and operators of our global net calculus involves rather awk-
ward notation. To get an impression of them, the reader is invited to compare the example script
in the next section. We set the monoids O and A to be bags of label-value pairs: B .(L × V),
where L is an infinite set of labels and V a set of values. The closure of a set F of functions is
set of bags that can be written alpha as a finite sum σ fi with the fi ∈ F are interpreted as bags
with weights 1.

Definition 4 We define

1. For A ⊆ (L → V), with L ⊆ L finite, we set T [A] = TB, with B the closure of A.

2. For � ∈ L, α ∈ B .V , we set P[�, α] = PI , where I is the bag with carrier � × C.α such
that wI (�, v) = wαv for v ∈ V .

3. For f ∈ (L × L) →p P(V × V), we set χ [f] = γv,0 and π [f] = γ0,v, with v =
{((�, x), (m, y)) | x f (�, m) y} (consumption/production). The function 0 has the empty
bag as range.

4. For a relation g ⊆ L× V , we define ∂[g] = ξB, with B = B .(L × V \ g) (encapsulation)
and σ [g] = ξB, with B the closure of {h ⊆ g | dom.h = dom.g ∧ h is functional}
(synchronization).

5. For L ⊆ L finite, we define φ[L] = φU , with U = L × V .

6. For h ∈ L →p L, let H = dom.h. We define θ [h] = λ1L×V ,q̄ , with 1A the identity function
on A and q = (h ∪ 1L\H) × 1V (transition relabeling, which is total!) and η[h] = λr̄ ,1,
with r = h × 1V (place relabeling, which is partial).

7. For H ⊆ L, we define τ [H] = λ1,q̄ , with q = id¬H × V (transition hiding) and υ[H] =
λr̄ ,1, with r = id¬H × V (place hiding).

128

We define labeled components, terms defining hierarchical colored Petri nets.

Definition 5 A labeled component is either a term T [A] or P[�, α] or C || D with C, D labeled
components or a F.C with F ∈ {χ [f], π [f], ∂[g], σ [g], φ[L], η[h], θ [h], υ[H], τ [H]} and C
a labeled component.

Like in the previous section, labeled components can be normalized. Because of the added
complexity, the normal form is less clear-cut. Essentially it consists of the same order: hiding,
then renaming, then a bunch of consumptions/productions applied to the merge of several places
and transitions. Minor extensions and alterations of our operators may lead to a more or less
smooth normal form. The ideas behind the normalization have been introduced in the previous
section: we establish the way that the transformations “commute” if they are in the “wrong”
order and use the “ fresh label renaming trick” to invert the order of transformation and merge.

A language is still needed for representing the functions, sets and relations between values. There
exist many languages that will fit the bill nicely.

5 Example

We can represent components textually by scripts that define functions, sets and relations to go
with the operators above. A tentative example script is given below.

E[action n, action p] :=
hide[place x, action c] in encap[c with c <> 0] in
sync[c with c=0 with n] in fuse[x] in
(C[place y renamed to x, action c] merged to
D[place x, action n,p]);

C[place y:int, action c:nat] :=
hide[action d,e] in consume[d from y with d=y] in
produce[c to y with c=y, e to y with e=y] in
(trans[d:int, e:int with e-d < 2 and d-e < 2] merged to
trans[c:nat] merged to place[y:int init <0>])

D[place x:int, action n,p] :=
consume[p from x with x>0, n from x with x<0] in
(trans[p] merged to trans[n] merged to place[x:int init empty)])

The semantics of this script is as follows:
E = (υ[{x}] � τ [{c}] � ∂[{(c,N \ {0})} � σ [{(c, {0}), (n,V)}] � φ[{x}]).(η[{(y,x)}].C || D), with
C = (τ [{d,e}] � χ [{((d,y), {(d, y) | d = y})}] � π [f]).M and
M = (T [{{(d, d), (e, e)} | d, e ∈ Z∧ −2 < d − e < 2}] || T [{{(c, c)} | c ∈ N}] || P[y, 〈0〉] and
f = {((c,y), {(c, y) | c = y}), ((e,y), {(e, y) | e = y})} and
D = (χ [{((p,x), {(p, x) | x > 0})}] � χ [{((n,x), {(n, x) | x < 0})}]).N and
N = T [{{(p, •)}}] || T [{{(n, •)}}] || P[x, 0].

129

p n

D Cy

E:

D: p n
x>0 x<0

x:int

x:int

y:int

C:

init: 0

d=y c=y

c=0

c:nat

d:int, eint
-2 < e-d < 2

c:nat
e=y

Figure 3: Colored Petri Net of example script

F

<p><n>
...

E
... ...

0

...
0

000

<n>
<p>

0 00 0 0

Figure 4: Transition system and reduction of example

Here the • signifies some value that has no importance. The identifiers in typescript font are
to be interpreted literally (i.e. as labels), the others are placeholders for the definition of sets and
functions. We can graphically represent this script by the CPN-like annotated net in Figure 3.
There, the identifiers in boldface represent the external labels.

We can normalize the above script and arrive at the following script. We will forgo a semantics
and graphical representation.

E[action n, action p] :=
hide[place x, action d,e] in
consume[d from x with d=x, p from x with x>0, n from x with x<0] in
produce[n to x with x=0, e to x with e=x] in
(trans[d:int, e:int with e-d < 2 and d-e < 2] merged to
trans[n] merged to trans[p] merged to place[x:int init <0>])

The transition system of E is shown in Figure 4. Its reduction modulo branching bisimilarity is
shown as F in the same figure.

6 Conclusion

This paper defines a semantics for colored hierarchical Petri nets, which supports both action-
oriented and state-oriented approaches, matching the dual nature of Petri nets. The compositional
nature of our framework allows the specification of components that can be implemented inde-
pendently respecting the specified interface.

130

Our paper has been inspired by process algebra, more specifically by the wish to be able to reason
about and manipulate with Petri nets like process algebra terms. When comparing our framework
to a process-algebraic one like µCRL [7], one notices the same expressive power. However, the
presence of true sequencing and choice operators in µCRL makes it better suited for specifying
technical systems like data communication protocols, whereas the added connection possibilities,
graphical nature and the step (instead of interleaving) semantics of our framework seem to give
it a slight edge for programming-in-the-large.

We already discussed the relation of this paper to [2], [12]. It is also interesting to compare our
approach to the Petri Box calculus originated by [3]. The Petri Box calculus is aimed at giving
a Petri net (and thus causal) semantics for the language B(PN)2 [4], [10], somewhat similar to
µCRL. Our aim is to use colored net components as a high-level specification and design tool.

It may be worthwhile to extend our step semantics to more “ truly concurrent” ones. This would
allow e.g. an action refinement operator in our calculus, which is not compositional in step
semantics. However, we hesitate to sacrifice the simplicity of transition systems. Our approach
gives the modeler the option of preserving the causal connections between actions by not hiding
all places (causes) between the transitions involved.

Much work is still needed to arrive at practical verifications, let alone “best practice” rules for
deriving correct models from a set of requirements, but we believe that this paper is a serious
step towards this goal.

References

[1] J.C.M. Baeten and C. Verhoef. Concrete Process Algebra. In S. Abramsky, D.M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pages
149–268. Oxford University Press, Clarendon, UK, 1995.

[2] T. Basten and M. Voorhoeve. An Algebraic Semantics for Hierarchical P/T Nets. In G. De
Michelis and M. Diaz, editors, Proceedings ATPN ’95, volume 935 of Lecture Notes in
Computer Science, pages 45–65, Torino, Italy, 1995. Springer–Verlag, Berlin.

[3] E. Best, R. Devillers, and J. Hall. The Petri Box Calculus: a New Causal Algebra with
Multilabel Communication. In G. Rozenberg, editor, Advances in Petri Nets 1992, volume
609 of Lecture Notes in Computer Science, pages 21–69. Springer–Verlag, Berlin, 1992.

[4] E. Best and R.P. Hopkins. B(PN)2 - a Basic Petri Net Programming Notation. In A. Bode,
M. Reeve, and G Wolf, editors, Proceedings PARLE ’93, pages 379–390. Springer–Verlag,
Berlin, 1993.

[5] Wan Fokkink. Rooted branching bisimulation as a congruence. Journal of Computer and
System Sciences, 60(1):13–37, 2000.

[6] R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43(3):555–600, 1996.

131

[7] J.F. Groote and M.A. Reniers. Algebraic Process Verification. In J.A. Bergstra, A. Ponse,
and S.A. Smolka, editors, Handbook of Process Algebra, pages 1151–1208. Elsevier Sci-
ence BV, Amsterdam, 2001.

[8] K.M. van Hee. Information Systems Engineering: a Formal Approach. Cambridge Univer-
sity Press, Cambridge, 1994.

[9] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
EATCS monographs on Theoretical Computer Science. Springer–Verlag, Berlin, 1992.

[10] H. Klaudel. Compositional high-level Petri net semantics of a parallel programming lan-
guage with procedures. Science of Computer Programming (to appear).
url: www.univ-paris12/˜lacl/klaudel/proc.ps.zip.

[11] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Computer Science Dept., Aarhus University, 1981.

[12] L Priese and H Wimmel. A uniform approach to true-concurrency and interleaving seman-
tics for Petri nets. Theoretical Computer Science, 206:219–256, 1998.

132

Steps Towards Formal Verification of Agent-based

 E-Business Applications

Nick Szirbik, Gerd Wagner
Dept. of Information & Technology, Eindhoven University of Technology

Postbus 513, 5600 MB Eindhoven
{g.wagner; n.b.szirbik}@tm.tue.nl

Abstract

In this preliminary report about ongoing work, we discuss the issues of formalizing the

specification of interaction process types for e-business applications and identifying
techniques for proving correctness properties for them. We introduce the concept of
coherence for interaction processes in the broader context of multiagent communication
based on agent communication languages. Interaction process types can be sepcified by
means of reaction rules in a declarative way. In order to make use of the formal analysis
techniques established for Petri nets, we investigate possibilities how to translate reaction
rules into Petri nets.

1. Introduction

In a world characterized by rapid change, e-business applications have inherently a very short
life-cycle, short time-to-market, must be adaptable for upgrade and have to follow the changes in the
business processes that are supported by these application. Their development would be less error-
prone if it would be possible to use formal verification techniques implemented with automated
reaoning technologies. Formal verification is well suited for systems with a relatively small state
space, or where the essential aspects of the system can be captured in a model that may be formally
checked. To validate the final application, testing and other validation techniques are used. However,
the validation phase can be extremely costly, and formal verification can help to avoid major errors in
the design, reducing the costs of the validation phase. Also, verification can “catch” problems which
are extremely difficult to be identified in the validation phase and usually appear late after the
deployment of the application, incurring losses for the user and costly maintenance for the application
provider.

We discuss in this paper the issue of coherence in interaction processes, which subsumes a
certain set of properties that we claim to be important to be checked for e-business applications. The
paper is structured around this concept; the next section explains relevant aspects of the agent
paradigm, section 3 is presenting the coherence concept, section 4 is explaining the action/event and
claim/commitment concepts and their usage in supporting coherence, section 5 is about the rule
specification used in the paper, section 6 explains how some particular types of rules can be
translated into Petri Nets, section 7 is presenting how inter-agent communication can be modelled,
section 8 puts some of the questions that have been raised by this reasearch and section 9 concludes
the paper. Some ideas above potential future work are also given there.

2. Agent-Oriented E-Business Modeling and the Issue of Verification

133

The objective of the research presented in this paper is to analyse the problem of, and develop a
method for, how to verifiy the coherence of e-business processes as automated interaction processes
across different orgaizations. For obtaining high-level concepts of interaction and communication, an
agent-oriented approach to e-business modeling seems to be most promising. Agent-Orientation
is emerging as a new paradigm in software and information systems engineering. It offers a range of
high-level abstractions that facilitate the conceptual and technical integration of communication and
interaction with established information system technology. Agent-Orientation is highly significant for
business systems since business processes are driven by and directed towards agents (or actors - we
treat both terms as synonyms), and hence have to comply with the physical and social dynamics of
interacting individuals and organizations. While today’s enterprise information system technology is
largely based on the metaphors of data management and data flow, Agent-Orientation emphasizes
the fundamental role of actors/agents and of communication and interaction for analysing and
designing organizations and organizational information systems. This turns out to be crucial for a
proper understanding of business processes and their underlying rules.

Interaction processes are determined by the behaviour of the participating agents. The behaviour
of natural (and artificial) agents can be described (and specified) by means of rules. Business rules
are the policies and constraints of the business, whether the “business” is banking, software
development or health care. The Object Management Group simply defines them as “declarations of
policy or conditions that must be satisfied”. They can be expressed in ordinary language (possibly
using special templates) or by means of a formal language. An interaction process type can be
specified by defining, for each participating party, a set of inter-related rules. The formal language for
such rules must include facilities for incorporating agent communication languages, message content
languages, and domain ontologies in a flexible (suitably parameterized) manner.

 There are two main questions to be answered:

1) what properties are worth and essential to be verified in such a system

2) from what details can we abstract away in order to make verification feasible (i.e.
computationally tractable).

The verification method can employ different techniques.

E-business applications are supporting interaction processes between various types of enterprises
(viewed as institutional agents). An interaction process can be defined in many ways, but we
prefer here a definition based on the agent paradigm. We interpret this paradigm in a way that
emphasizes that all the participating active entities are agents. The agents can be generally classified in
five classes: human, institutional, software, robots and animals, but only the first three are interesting
to our discussion here. E-business processes can be semi-automated or fully automated.

It is well-known that the process formalism of Petri Nets can be used for verifying certain
properties of business processes [Bas98, Aal00, Aal01]. We discuss the possibility to translate a
rule-based process specification into a Petri net An earlier attempt to translate rules into Petri Nets
has been made in [Naz93].

3. Coherence in Interaction Processes

An interaction process is a temporally ordered set of events, actions and activities perceived
and performed by agents, following a protocol that specifies the type of the interaction process. An
interaction protocol can be specified by a set of reaction rules that determine the behavior of the
involved agents. Business interactions, for example, comprise communications (message exchange),
payment transactions, product deliveries, and the performance of services. An interaction process

134

may be fully automated, e.g., in electronic commerce supply chains, in agent-mediated group
scheduling, in robotic soccer games (RoboCup), in Automatically Guided Vehicle (AGV) Systems,
and in other types of artificial multiagent systems. In many cases, however, multiagent systems consist
of institutional, human and artificial agents, and interaction processes in such mixed systems are only
semi-automated, as in an enterprise where employees (’human agents’) interact with organizational
units (’institutional agents’), with agentified information systems (’software agents’) and with
agentified machines (’robots’). In any case, agents have to interact with each other in a flexible but
coherent manner.

Examples of incoherent interactions in multiagent systems are:
• mis-understanding the message of a team mate in a robotic soccer game, or not giving way to

another AGV although it has communicated a higher order priority;
• not making any compensation offer when being unable to deliver an item after having

acknowledged the purchase order for that item, or sending a payment reminder although the
payment has already been made, in an electronic commerce supply chain;

• or cancelling an appointment with a higher priority in favour of an appointment with a lower
priority in agent-mediated group scheduling.

Incoherence may be caused by plain human user errors, by programming errors, by
miscommunication, and by unforeseen changes in the environment of an agent. While coherence is a
real concern in all types of interaction processes, it seems of particular importance for inter-
organizational processes that are automated or semi-automated by means of information
technologies.

The coherence problem in multiagent systems covers a larger domain than the sub-problem we
try to solve in the first step of our research. On a higher level the coherence of (semi-) automated
interaction processes consists of the following subproblems:

1. Enforcing linguistic coherence: avoiding miscommunication by speaking the same language
and sharing a common understanding of its terms. This requires to use
• a standard communication language (such as FIPA-ACL or ebXML) that defines

message types and their communication semantics,
• standard composition languages for expressing composite propositions and actions, and
• shared ontologies (corresponding to domain models) that define the basic vocabularies

used for denoting entities and their properties and relationships.

2. Enforcing the normative coherence of interaction processes as regulated by commitments,
claims, and norms (where norms can be conceptualized as meta-commitments, i.e., as
commitments referring to other commitments, see [Sin99]). The operational semantics of
commitments includes procedures that define how they are created and discharged, under
which (exceptional) circumstances they can be cancelled, and what happens if they are
violated. Norms and commitments constrain interaction processes. Unlike integrity
constraints, however, they may be cancelled and may be violated without crashing the
system.

3. Enforcing process integrity by

• verifying the correctness of interaction protocols (based on safety and progress
properties) at design time, and by

• checking interaction constraints and handling exceptions at runtime.

Current and forthcoming XML-based standards for electronic business communication, such as
the Electronic Business XML (ebXML) initiative by UN/CEFACT and OASIS, do not address the

135

coherence problem in general, but are focused on limited forms of linguistic coherence. Only ebXML
defines that a ’Collaboration Protocol Agreement’ must exist between two parties in order for them
to engage in automated interactions. Since the ebXML Business Process Specification Schema,
currently still under development, is based on the rather limited and implementation-oriented
definition of events and actions in UML, one may expect that the forthcoming ebXML concept of
interaction protocols will not be able to capture the semantics of (semi-)automated interactions,
including a proper treatment of the issues of normative coherence and process integrity.

In order to attack the problem of process integrity for fully automated interaction processes
(where no human agents are involved), we would like to investigate the possibilities to translate
interaction rules into Petri nets and use the well-established process verification techniques of Petri
nets. The problem to be solved is how to translate a rule set into a Petri Net that preserves its
operational semantics.

4. Actions and Events, Commitments and Claims

In a business domain, there are various types of actions performed by agents, and there are
various types of global state changes, including the progression of time (which is perceived usually as
a discrete value). For an external observer, both actions of business agents and environmental state
changes constitute events. In the internal perspective of an agent that acts in the business domain, the
actions of the other agents count as events but not the actions of the agent itself. In the external
perspective, actions create events, but not all events are created by actions. Those events that are
created by actions, such as delivering a product to the customer, are called action events. Examples
of business events that are not created by actions are: the fall of a particular stock value below a
certain threshold, the sinking of a ship in a storm, etc. In our approach, we take into consideration
only the action events.

We also make a distinction between communicative and non-communicative (e.g. physical)
actions and events. Many typical business events, such as receiving a purchase order or a sales
quotation, are communication events. Business communication may be viewed as asynchronous
point-to-point message passing. The expressions receiving a message and sending a message may be

D e p L i b r a r y C e n t r a l L i b r a r y

c o n f B o o k R e q (. . .)

r e q u e s t B o o k (

? ISBN)

d e l i v e r B o o k (. . .)

B o o k

Loan

R 2

isAvailable

d e l i v e r B o o k (. . .)

BookCopy

B o o k

Loan

isAvailable

BookCopy

F a c u l t y

M e m b e r r e q u e s t B o o k (

? ISBN)
R 1

R 3c o n f B o o k R e q

(...)

Figure 1: An interaction pattern diagram describing the process type where faculty members request books from
a department library, and where the request is forwarded to the central library, since the books are not available.

136

considered to be synonyms of perceiving a communication event and performing a communication
act. This is different from the low level concept of method invocation in object oriented
programming, because agent-oriented programming (AOP) assumes the high level semantics of
speech-act-based Agent Communication Languages (ACL) messages [Wag00a].

The second fundamental concept in business interaction processes is the commitment concept.
Representing and processing commitments and claims in information systems explicitly helps to
achieve coherent behaviour in real-life interaction processes. In [Sin99], the social dimension of
coherent behaviour is emphasised, and commitments are treated as ternary relationships between
two agents and a “context group” they belong to. For simplicity, we treat commitments as binary
relationships between two agents. Commitments to perform certain actions (or to check if certain
conditions hold) arise from specific communication acts. For instance, sending a sales quotation to a
customer commits the vendor to reserve adequate stock of the quoted items (for some time).
Likewise, acknowledging a sales order implies the creation of a commitment to deliver the ordered
items on or before the specified delivery time.

These two concepts are depending on the perspective chosen. In the perspective of a particular
agent, actions of other agents are viewed as events, and commitments of other agents may be
viewed as claims against them. In the internal perspective of an agent, a commitment refers to a
specific action to be performed when necessary for another agent (due to time for example), while a
claim refers to a specific event that must be created by an action of another agent, and has to occur
in the future. In the view of an external observer, actions are also events, and commitments are also
claims, exactly like two sides of the same coin. This means that in any model, a commitment of
agent a1 towards agent a2 to perform an action r, can also be viewed as a claim of a2 against a1
that an action r will be performed. There is no similar coupling between actions and events, because
an agent can sense an event, but due to its internal status, it may, or may not take any consequent
action. It is simpler to model claims and commitments in a Petri Net, due to their mirrored nature
(these are created and dismissed in pairs) and the related semantic is usually very clear and simple to
represent.

5. Reaction Rules

In the Agent-Object-Relationship (AOR) modeling language proposed in [Wag00a,Wag00b],
reaction rules may be visualized in Interaction Pattern Diagrams including action events and
claim/commitments. An example of such a diagram is shown in Figure 1 where reaction rules are
visualized as a circle with incoming and outgoing arrows drawn within the agent rectangle whose
reaction pattern it represents. Each reaction rule has exactly one incoming arrow with a solid
arrowhead: it represents the triggering event condition which is also responsible for instantiating the
reaction rule (binding its variables to certain values). In addition, there may be ordinary incoming
arrows representing state conditions (referring to corresponding instances of other entity types).
There are two kinds of outgoing arrows. An outgoing arrow with a dashed line denotes a mental
effect (i.e. a change of beliefs and/or commitments). An outgoing connector to an action event type
denotes the performance of an action of that type. For instance, the reaction rule R2 in Figure 1
reads as follows: When the central library receives a certain book request from a department
library, it checks if a copy of that book is available, and if this is the case, the request is
confirmed, and a new corresponding loan object as well as a commitment to deliver the
requested book in due time is created.

A reaction rule consists of an antecedent expression (its ‘body’) and a consequent expression (its
‘head’). The antecedent is composed of two parts: an event condition (where an event is represented

137

by an incoming message), and a state condition (to be checked against the state of the agent that is
executing the rule). Also, the consequent is composed of two parts: an action term and an effect
formula that specifies the state changes effected by the action performance. We use a tabular
notation for specifying reaction rules, such as in Table 1.

book request from a department library

ON Event
RECEIVE requestBook(?ISBN) FROM ?DepLib

a copy of that book is available

IF Condition
BookCopy.isAvailable(?ISBN, ?InvNo)

confirm the request
Action

SEND confBookReq(?ISBN)

a new corresponding loan object as well as a commitment to deliver the
requested book in due time is created

THEN

Effect CREATE COMMITMENT TOWARDS ?DepLib TO deliverBook(?ISBN) BY
tomorrow();

CREATE BELIEF Loan(?DepLib, ?ISBN, ?InvNo, today()

Table 1: The interaction rule R2 of Figure 1 in tabular form.

6. Translating Reaction Rules into Petri Net Transitions

Since reaction rules specify state transitions, it seems natural to relate them to Petri net transitions.
The state of an e-business scenario consists of the private state components of each agent (such as
its privately held beliefs) and of the public state components which are shared among two or more
agents, such as the current action events and commitments/claims. We are interested in those cases
where the state of a scenario can be represented by means of a certain token population of the
places of a (preferably classical) Petri net, and the behavior (i.e. the reaction rules) of the involved
agents can be represented by means of transitions in this net.

In order to obtain classical Petri nets, we have to make some severe restrictions:
• the state condition consists of a single propositional variable (or a conjunction of

propositional variables)
• the event consists of an incoming message without content parameters
• the action consists of one or more outgoing messages without content parameters
• the effect consists of a single propositional variable (or a conjunction of propositional

variables)

Rule

I n M s g

C o n d

O u t M s g

E f f e c t

Figure 2

138

Under these assumptions we obtain the PN shown in Figure 2, where InMsg and OutMsg are
places that represent message buffers, and Cond and Effect are places that represent
propositions. Notice that, while a message is consumed and can therefore be represented as a token
on an ordinary place, a state condition is normally not ‘consumed’ but rather preserved after firing
the transition. The preservation of a condition can be achieved by a reproduction arc as in Figure 2,
although this is not a very natural representation of what is really going on.

Since both a condition and an effect formula may be a negated proposition, we have to introduce
negative input and output arcs as in Figure 3.

Rule

I n M s g

P r o p 1

O u t M s g

P r o p 2

Rule

I n M s g

P r o p 1 P r o p 2before a f te r

O u t M s g

Figure 3: Firing a transition representing a reaction rule with a negative condition and a negative effect.

Thus, if the behavior of an agent is specified by a set of reaction rules satisfying the above
restrictions, we can translate it into a Petri net whose transitions may be only linked through the
propositional places (if we do not consider the technical possibility to send a message to oneself).

7. Multiagent Nets

For representing a complete process type involving several agent types, such as in Figure 1, we
may translate the rule set of each involved agent type into a single agent Petri net such that these nets
are linked to each other via the shared message buffer places. Notice that the single agent Petri nets
must not be linked via private propositional places because they can be only accessed by their
owner. We call the resulting type of Petri net a multiagent net.

Centra lL ibraryDepL ibrary

R 1

r e q u e s t B o o k

i s A v a i l a b l e

r e q u e s t B o o k

i s A v a i l a b l e

R 2

c o m m / c l a i m t o

d e l i v e r B o o k

L o a n

d e l i v e r B o o k

c o n f B o o k R e q

R 3

c o n f B o o k R e q

Figure 4: A multiagent net corresponding to the interaction pattern diagram of Figure 1.

139

The multiagent net shown in Figure 4 corresponds to the interaction pattern diagram of Figure 1.

The two single agent nets are drawn in a rectangle with rounded corners. They contain the rules and
the private beliefs of the respective agent. Both messages and commitments/claims are shared
between two or more agents, so they are drawn outside of any agent rectangle.

Since we only have one type of place in the multiagent net, it is visually less clear than the
interaction pattern diagram. However, we hope that by translating reaction rules into Petri nets, we
will be able to benefit from the formal analysis techniques that have been established for them.

9. Conclusions and future work

This research is still in a preliminary stage. We presented in this paper some techniques how to
translate an interaction process type specified by reaction rules into a Petri net. To perform
experiment with agents we are using the PROVE system (see [Szi00] and [Aer00]) that bis based on
the production rule engine JESS (Java Expert System Shell). The syntax of Jess rules is almost
similar with CLIPS, and the rules described in the AOR diagrams must be translated (by a rule
generator linked to the AOR enabled-editor) to obtain these in the format needed by the inference
engine used by the agents. In this paper, for the sake of simplicity, we are using a tabular (schema-
like) description of the rules. CLIPS code, based on predicate logic, is too cluttered to be easily
readable.

It would be nice to include verification in a more general agent-oriented development method,
where the system and the interaction processes are designed using the AOR modeling language, and
the rules can be generated automatically in CLIPS format and also translated from the AOR
description into Petri Nets. Probably, the second translation will be semi-automated, needing human
intervention to define new predicates for linking the rules in the sequences dictated by the interaction
process structure.

Another conclusion is that any multiagent system which can be described in the AOR modeling
language, where the rules have a more generic structure, can be verified in this way. The problem is
that the AOR specification of the system could take time, and it is probably simpler to translate the
interaction process directly into Petri Nets. We still have to investigate which way is the most
straightforward.

The next step in our research is to try to fully automate the translation process. Conversely, we
want to know which are the best ways to specify the rules to make them easily translatable. One of
the first guidelines is to try to program in a way which enables the chaining of rules. This is happening
however in any rule-based system which is carrying out a process, but the condition/places are not
explicitly specified.

References
[Aal00] Aalst, W.M.P.,vd, (2000), "Loosely Coupled Interorganisational Workflows: Modelling and

Analysing Workflows Crossing Organisational Boundaries", Information and Management,
vol. 32, no. 2, March 2000, pp.67-75.

[Aal01] Aalst, W.M.P., vd, (2001), "The P2P Approach to Interorganisational Workflows", Proc.
of 13th Intl. Conference on Advanced Information Systems Engineering (CAiSE’01),
Springer, Berlin.

[Aer00] Aerts, A.T.M., Szirbik, N.B., Hammer, D.K., Goossenaerts, J.B.M., Wortmann, J.C.,
(2000), “On the Design of a Mobile Agent Web for Supporting Virtual Enterprises”,
WETICE2000 Conference, Gaithersburg, NY.

[Bas98] Basten, T., (1998), In Terms of Nets: System Design with Petri Nets and Process Algebra,
PhD thesis, Eindhoven University of Technology, December 1998, Eindhoven, The
Netherlands.

140

 [Naz93] Nazareth, D.L., (1993), "Investigating the applicability of Petri Nets for Rule -Based
System Verification", IEEE Trans. on Knowledge and Data Engineering, vol5, no. 3, June
1993, pp.402-416.

[Sin99] Singh, M.P., (1999), "An Ontology for Commitments in Multi-Agent Systems", Artificial
Intelligence and Law, no. 7, July 1999, pp.97-113.

[Szi00] Szirbik, N.B., Wortmann, J.C., Hammer, D.K., Goossenaerts, J.B.M, Aerts, A.T.M.,
(2000), “Mediating Negotiations in a Virtual Enterprise via Mobile Agents”, AIWORC2000,
Buffalo, NY.

[Wag98] Wagner, G., (1998), Foundations of Knowledge Systems with Applications to Databases
and Agents, Kluwer Academic Publishers.

[Wag00a] Wagner, G., (2000), "Agent-Oriented Analysis and Design of the Organizational
Information Systems", Proc. of Fourth IEEE Intl. Workshop on Databases and Information
Systems, May 2000, Vilnius, Lithuania.

[Wag00b] Wagner, G., (2000), "The Agent-Object-Relationship Meta-Model: Towards a Unified
Conceptual View of State and Dynamics", Technical Report, Eindhoven Univ. of Technology,
October 2000, Eindhoven,
 http://tmitwww.tm.tue.nl/staff/gwagner/AOR.pdf

141

142

Application of Petri Nets in Modelling Distributed Software Systems

– Abstract –

Guido Wirtz
Distributed Systems Group, Computer Science Institute,

Westfälische Wilhelms-Universität, Einsteinstraße 62, 48149 Münster, GERMANY
guidow@math.uni-muenster.de

There is a fairly long tradition in suggesting that Petri nets and their underlying concepts are
a suitable tool for different phases of the software development process. The emphasis, clearly, has
been put on obtaining adequate system models during the design phase. Taking the users view,
the benefits mentioned usually, are the simple, easy to understand visual notation combined with
the expressiveness of modelling nondeterminism as well as concurrency, and the intuitive semantics
of playing the token game, i.e., the model is operational and can be evaluated through simulation.
Looking at the theoretical background, there is a clear syntax and semantics for the graphical as well
as other related formalisms, which – besides simulation – allows for the analysis of nets and their
transformation into executable code.

Taking a view on the state-of-the-art in the software engineering community and the formalisms and
languages used, we see a completely different picture. There are many other notations and formalisms
in high and frequent use, e.g., the Unified Modelling Language with various notations, thanks to
Harel’s statecharts at least one formalism among them. Petri-Nets usually find their applications in
some rather specific areas like, e.g., telecommunication protocols.

So, what went wrong with Petri-Nets in software engineering ? First of all, a lot of steps during
software development have their own traditional notations. For describing the static aspects of soft-
ware like, e.g., modules and their dependencies or entity-relation-like structure diagrams, Petri-Nets
may not be suitable at all. Second, software engineers often neglect the benefits of Petri-Nets related
to concurrency by totally ignoring concurrency and related issues. The primary reason for the situ-
ation, however, is the mismatch between the folklore about Petri-Net benefits and the problem that
the expressiveness of basic Petri net formalisms, i.e., place-transition nets and variants, is insufficient
to handle many real-life modelling problems because of their mere size. Although there are extensions
towards high-level Petri-Nets around for more than 20 years now and methods for modularization or
refinement while preserving properties of the parts are under investigation for nearly as long, the re-
sulting net formalisms tend to lose their benefit of being easy to understand frequently. Developments
in software engineering, in particular the introduction of object oriented concepts have added their
share to the problem. Adapting Petri-Net formalisms to object-orientation does not make the formal-
ism any easier and often the problems users experience with object-oriented Petri-Nets are problems
with object-orientation altogether.

Nevertheless, there is a chance to overcome some of these problems and make Petri-Nets a successful
candidate for several steps and aspects of software engineering where they are suited for. (There is,
however, no need to draw structure diagrams with Petri-Nets.) At least, this holds in the context of
distributed software systems for several good reasons.

In distributed systems software projects, concurrency is a topic and can not be ignored without
jeopardizing the success of the entire project. So, the unique potential of Petri-Nets for describing
concurrency, resource scheduling, coordination of conflicting goals and so on is of practical use. More-
over, distributed software systems, which are often close to standard middleware layers, are accepted
as being of a high complexity that cannot be hidden from the developer. In contrast, the explicit gov-
ernment of these problems in detail is required to obtain useful systems with a guaranteed behaviour.

143

In distributed systems, structuring mechanisms for breaking complexity are as needed as in stan-
dard software. Unfortunately, the classical notions of abstraction and interfaces are fixed to static
aspects like names, parameter types and so on. Interacting parts of a distributed system are more
concerned about behaviour, e.g., availability of requested services, the chance for being blocked for
some time or even permanently. Here, Petri-Nets and their capabilities for analysis can be of great help
for designing protocols with behaviour. The coordination of resources in a distributed implementation
may also be described using Petri-Nets and the possible effects can be investigated for, e.g., proving
the behaviour protocols correct under specific resource assumptions.

There are more possibilities for applying Petri-Nets during design. When using agents as a
metaphor to structure systems during software development, to give one more example, the behaviour
of agents, the different context situations provided for agents as well as the effects of interaction be-
tween different agents or with the context on the state of an agent or the context can be described by
Petri-Nets.

For nowadays object-oriented software development processes, there are a number of challenges to
be solved before Petri-Nets have the chance to gain the level of general acceptance in the modelling
community that matches their potential benefits:

• Identify specific aspects in the different steps of object-oriented software development where
the application of Petri-Nets can be a benefit and support these aspects by adequate Petri-Net
languages and tools.

• Find methods to apply families of Petri-Net variants in a sequence ranging from their informal
use to a level of detail that allows for strong analysis and/or code generation without losing too
much information, e.g., analysis results, through the different steps. At least, there should be a
(coarse) notion of consistency between the different levels of detail.

• Identify methods to solve the well-known issues of modularity and scalability in a manner that
fits into the software development process and remains understandable to software engineers.

• How much of the underlying semantics of object-oriented high-level Petri-Nets and related mod-
els have to be visible to (can be hidden from) the user without making the formalism unusable
at all ? At the moment, supporting a sufficient amount of hiding seems to be the more severe
problem.

These goals are centered around the question how to fit Petri-Nets into the used software development
process rather than tayloring the process around Petri-Nets. There is no realistic chance to achieve the
latter. The manner in which some of the challenges should be tackled, seem to depend on the needs
of the application domain at hand, and so we will have different suitable Petri-Net-based formalisms
and notations for different areas rather than a single fit-them-all approach.

Taking one more step, the applicability of the modelling power of Petri-Nets is not restricted to
software engineering for distributed systems. Component-based complex sequential systems may need
as much coordination, interfaces with behaviour descriptions and possibilities to check their potential
interaction patterns as distributed systems. Under many circumstances, agent-oriented modelling may
be a good idea to obtain flexible models of sequential software. Moreover, the entire range of high-
level modelling, namely business process modelling and workflow modelling are promising candidates.
Because the needs for modelling concurrency and ressource scheduling have been recognized in these
areas for years, even today the acceptance of Petri-Nets is much higher there than in the software
community.

Note: a version of the full paper can be obtained as a Technical Report from the author’s homepage
(URL: http://wwwmath.uni-muenster.de/cs/u/versys/index.html).

144

