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Abstract: PrODHyS is a general object-oriented environment which provides common 

and reusable components designed for the development and the management of dynamic 

simulation of systems engineering. Its major characteristic is its ability to simulate 

processes described by a hybrid model. In this framework, this paper focuses on the 

"Object Differential Petri Net" (ODPN) formalism integrated within PrODHyS. The use 

of this formalism is illustrated through a didactic example relating to the field of 

Chemical Process System Engineering (PSE). 
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With the evolution of the computer power, dynamic 

simulation becomes an essential tool in process 

design and analysis. It provides an efficient help to 

process engineers in the knowledge of transient 

behaviour, for the development of adapted control 

systems (sensitivity to parameters), or for the 

monitoring and diagnosis of processes in 

exploitation. However, the simulation of most 

processes requires to take into account operating 

modes often difficult to manage with purely 

continuous or purely discrete models. In that 

context, phenomena as abrupt open/closed of valves 

or material physical state evolution induce 

discontinuities in the models, involving the notion 

of hybrid dynamic systems (HDS).  

In the HDS field, many simulation tools have been 

developed by researchers. We can mention, for 

example, gPROMS (Barton and Pantelides, 1994), 

Shift (Deshpande et al., 1998), Omsim (Andersson, 

1994), Chi (Fábián et al., 1998), BaSiP (Wöllhaf et 

al., 1996). For our part, we develop since more than 

ten years a platform named PrODHyS (Process 

Object Dynamic Hybrid Simulator). It is a general 

object-oriented environment designed for the 

development and the management of dynamic 

simulation.  

 

In this framework, this paper deals more 

specifically with the package relative to the hybrid 

formalism used to describe devices in PrODHyS : 

the Object Differential Petri nets (ODPN). This 

formalism combines Petri nets, differential 

algebraic equations and object concepts. So, the 

first section makes a general overview of the 

simulation environment and its software structure. 

In section 2 and 3, the ODPN formalism and the 

simulation kernel are described. Then, the last 

sections (5 and 6) illustrate the use of ODPN 

formalism through the example of a typical process 

introduced in section 4. 

 

 

1. THE SIMULATION ENVIRONMENT 

 

1.1. Objective of PrODHyS 
 

Developed in our research department, PrODHyS 

constitutes the unification of works performed since 

several years in design and development of object 

oriented software components dedicated to process 

simulation (Hétreux et al, 2003, Jourda et al., 1996, 

Moyse, 2000, Perret, 2003, Sargousse, 1999). 

Although this platform may be connected to a 

windows graphical user interface (GUI) in order to 

simplify its accessibility to users, PrODHys is 

mostly structured as a library of common building 

blocks which allow a modular modelling and an 

equation-oriented simulation of processes. 

Furthermore, two main features characterise 

PrODHyS :  
 

• As philosophy of this environment is to 

provide general reusable software components 

in order to build various kind of complex 

specialised devices, PrODHyS is based on a 

object-oriented approach which emerges 

nowadays as an efficient and concrete response 

to extensibility, reusability and software quality 

requirements. Each elementary entity is defined 
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as an abstract object which has to be derived 

via object mechanisms (inheritance, 

aggregation, genericity, etc). Then, a flowsheet 

object is defined as a set of hierarchical and 

recursive device objects connected to each 

other by port objects, inside which material, 

energy or information flows. This “systemic” 

approach is now clearly established (Hétreux et 

al, 2002, Jourda, 1996, Marquardt, 1992, 

Nilsson, 1993).  

• PrODHys associates a hybrid model to each 

device based on the ODPN. This hybrid 

formalism offers a great level of abstraction in 

order to reduce the modelling complexity. Each 

Petri net describes the sequence of continuous 

states that a device, a recipe or material can 

reach.  

 

1.2. Software architecture of the platform 
 

The design of PrODHyS follows a software 

development process based on the object 

technology (UML, C++). Currently, this software 

consists of more than one thousand classes 

distributed into two layers and seven packages (cf. 

figure 1) : 
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figure 1. Software architecture of PrODHyS 

 

• The internal level corresponds to the simulation 
kernel of the platform. It provides the basic 

elements allowing the simulation of any dynamic 

system. This layer includes : 

- the module Disco which is the numerical 

kernel of the system. It allows an object 

representation of the continuous mathematical 

models and provides a set of solvers and 

integrators (EDA, EANL). 

- the module Hybrid which contains the set of 

classes used for the description of the ODPN 

formalism as well as the hybrid simulation 

kernel. 

• The higher level includes a set of classes 
allowing the modelling of processes. The 

modelling layer encapsulates the simulation layer 

and provides a set of general and autonomous 

entities (classes) which can be exploited by any 

user who wishes to build its own simulation 

system or prototype. This level includes : 

- the module ATOM which constitutes the 

thermodynamic data base of the system; it is 

based on an object representation of the 

material and allows the computing of 

thermodynamic properties.  

-  the module Process which gathers a set of 

generic and abstract classes, corresponding to 

a very general description of the process;  

- the module Reaction which allows the 

modelling of chemical reactions;  

- the module Device which gathers the 

"concrete" elementary devices.  

- the module CompositeDevice which contains 

devices resulting from the composition and 

the specialisation of elementary devices 

defined in the module Devive.  
 

The main advantage of separating simulation level  

and modelling level is to make possible the 

implementation of platforms dedicated to various 

fields of applications only by developing the 

suitable engineering modelling layer. 

 

 

2. HYBRID FORMALISM: THE ODPN 
 

2.1. Modelling approaches 
 

Regarding the modelling aspects of processes, two 

dynamic schemes have to be described : on the one 

hand, the continuous dynamic, often represented by 

a set of differential and algebraic equations (DAE) 

and on the other hand, the discrete dynamic, 

represented by a set of states and transitions. The 

studies about the combination of continuous and 

discrete elements have led to several formalisms. A 

classification is proposed (Zaytoon, 2001) : 
 

• approaches which extend models belonging to 

the continuous field such as unified model 

(Branicky et al., 1998) or bond-graphs with 

switches (Buisson et al., 2001); 
 

• approaches which extend models belonging to 

the discrete field. We can mention hybrid Petri 

nets (Le Bail et al., 1991), batch Petri nets 

(Demongodin, 2001), time Petri nets 

(Berthomieu et Menasche, 1983), timed 

automata (Alur et Dill, 1994); 
 

• mixed approaches in which discrete and 

continuous models collaborate in the same 

integrated structure. This category concerns  

hybrid automata (Alur et al., 1995), hybrid 

statecharts (Kesten and Pnueli, 1992), mixed 

Petri nets (Valentin-Roubinet, 1999), differential 

predicate-transition Petri nets (Champagnat et 

al., 1998). 



In our case, a hybrid formalism based on a mixed 

approach and object concepts has been adopted : 

the Object Differential Petri Nets (ODPN).  

 

2.2. Petri Net/Object Oriented paradigm  

 

These last years, many works have emphasized the 

interest to combine Petri nets (PN) and the object-

oriented concepts (OO). The studies relative to the 

PN/OO paradigm have shown that this association 

can be performed according to two approaches : 
 

• the first one aims to introduce "the objects into 

Petri nets" (Sibertin-Blanc, 1985). The subjacent 

philosophy is to model a sub-system by a single 

Petri net which handles individualised tokens 

carrying information. In this approach, each 

token is a generic entity defined by an object 

class made up of both a set of attributes 

(including state variables) and a set of methods 

which deals with these data (including 

equations). Consequently, the Petri net models 

the control structure of the system (its general 

behaviour) whereas the tokens represent the 

associated data structure (a particular version of 

this system). This mechanism, with 

individualisation of the tokens, makes the 

network more compact without information loss.  
 

• the second approach is based on “the 

introduction of Petri nets into objects" 

(Paludetto, 1990). This approach enables to 

describe the internal behaviour of the object. The 

marking of the Petri net indicates the current 

state of the object, the firing of a transition 

involves the execution of one of its methods and 

the global structure of the net specifies the legal 

execution sequences of the methods. 

 

In fact, these two approaches are not incompatible 

but complementary (Bastide, 1995). For this reason, 

the "extended combined approach" has been 

defined as an extension of the previous ones (cf. 

figure 2).  
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           figure 2. Extended combined approach 

 

It consists in introducing an infinite number of 

encapsulation levels of objects and Petri nets, thus 

allowing a complete integration of the PN/OO 

paradigm. Moreover, this approach makes possible 

the definition of hierarchical points of view of the 

system. 

 

2.3. The dynamic and behavioural aspects 
 

The modelling of the dynamic part of a system is 

based on the Differential Predicate-Transition Petri 

nets concepts. The ODPN model is characterised by 

two kind of places :  

• the discrete places : it represents a control, an 

operation, the availability of a resource or quite 

simply, a discrete state, 

• the differential places : it indicates a 

continuous behaviour whose dynamic is 

governed by a differential algebraic equations 

system. Thus, the marking of a differential 

place starts up the continuous evolution of state 

variables.  

 

2.4. The static and structural aspects 
 

To describe the static part of the system, the ODPN 

model is based on the object-oriented (OO) 

concepts. Indeed, encapsulation, inheritance, 

composition and polymorphism concepts lead to the 

definition of entities which are at the same time 

strongly consistent and slightly coupled with their 

environment, which increases their reuse 

possibilities. In addition, the structuring with 

classes generates elements whose access is 

perfectly controlled and specified through an 

interface.  

Furthermore, the inheritance and composition 

mechanism are extended to the Petri net included in 

the class definition. When a new class object is 

created by aggregation of others classes, a new 

Petri net is generally created in the composite 

object in order to control the Petri net of the 

components (inducing a master/slave relationship). 

The concept of  transition merging (Champagnat et 

al., 1998) is also used when it is about an 

association relationship. Finally, in the case of 

inheritance relationship, the “daughter” class 

inherits the net of the “mother” and if necessary, 

this net may be specialized by adding new places 

and/or transitions. 

 

2.5. Semantic of the ODPN formalism 
 

Each entity of the system is described by an object 

class made up of attributes (including the 

continuous state variables) and methods.  
 

In order to describe the dynamic and structural 

aspects of the systems, the object differential Petri 

nets is defined by a set of constitutive elements 

illustrated on figure 3. It includes : 
 

• Places :  
 

The ODPN model is characterised by a set of 

discrete  places  (single circle) and   differential 

places (depicted with two concentric octagons). 
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figure 3. Semantic of the model 

 

• Tokens 
 

Each token is defined as an instance of class. So, it 

encapsulates the entity characteristics and its own 

state variables. For this reason, it does not exist any 

global variable. Because of the extended combined 

approach, the internal behaviour of each token may 

be described by a Petri net. Furthermore, tokens 

move on a Petri net according to formal variables 

carried by the arcs. 

 

• Formal variables 
 

A formal variable is typed by an object class that 

specifies the type of tokens authorised to replace it. 

Let us note ci, an object class; a formal variable 

typed by the class ci is noted 〈ci〉; nk formal 

variables typed by the same class ci are noted 〈 )k(
ic 〉 

(for k = 1, nk). Moreover, a tuple of formal variables 

is noted 〈c1, c2, …, cn〉. 
 

In order to illustrate this notion, let us consider the 

example shown on figure 4.  
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                     figure 4. Formal variables 
 

Three formal variables are defined 〈ϕl〉, 〈ϕv〉 and 〈y〉; 
they are typed by the classes ϕl, ϕv and y 
respectively. They can be replaced only by tokens 

carrying the same inscription. As a result, 〈ϕl〉 can 
be replaced by the tokens a and c, 〈ϕv〉 can be 
replaced by the token b and 〈y〉 can be replaced by 
the token d. Let us notice that for a formal variable 

〈ϕ〉 of type ϕ (where ϕ is the mother class of classes 

ϕl et ϕv), the substitution by tokens a, b and c is 
feasible thanks to the inheritance and 

polymorphism principles. 

 

• Arcs 
 

The arc constitutes the link between the place and 

the transition. In order to ensure the consistency of 

the model, input and output arcs are explicitly typed 

(figure 4). Indeed, they carry information allowing 

to specify the token classes authorised to forward 

through the arc. The inscriptions carried by the arcs 

correspond to formal variables; thus, any token 

authorised to move on an arc replaces the formal 

variable of the same type. 

Moreover, an object differential Petri net also holds 

inhibitor arcs. An inhibitor arc is an arc that allows 

to test the lack of tokens on the place located above. 

 

• Transitions 
 

Each transition is characterised by a set of 

conditions (also called enabling functions) and 

actions (also called junction functions).  

Conditions are made up of attributes and methods 

carried by the tokens enabling the transition and/or 

coming from the object which is the owner of this 

Petri net (i.e. the object whose behaviour is 

described by this Petri net). 

In the same way, actions perform the methods 

offered by the tokens crossing the transition and/or 

methods belonging to the object which is the owner 

of this Petri net. Let us note that the aim of these 

actions not only consists in computing the initial 

values of the continuous variables, but also in 

modifying the state of tokens. 

 

 

3. THE SIMULATION KERNEL 
 

In order to implement the ODPN formalism, the 

simulation kernel is break down into three modules: 

the discrete solver (Petri net token player), the 

continuous solver (integrator based on the Gear 

method (Gear, 1971)) and a simulation manager 

which manages the interactions between the two 

solvers. The operating cycle of the simulator is then 

the following: 
 

1. First, the simulation manager builds the global 

continuous model corresponding to the initial 

marking of each Petri net and initialises all state 

variables ; 

2. The discrete solver plays the Petri nets until no 

more transition can be fired. During this step, the 

actions of each fired transitions are performed 

(among others, the initial values of states 

variables and their derivatives are computed).  



3. Then, the simulation manager concatenates the 

DAE systems associated with each marked 

differential place as well as the conditions of 

each enabled transition; 

4. Just before the integration, the continuous solver 

gets the ability to automatically calculate new 

consistent initial values for state variables, if 

necessary. Then, it performs the integration of 

the resulting global DAE system, involving the 

continuous evolution of the state variables. At 

the same time, the conditions of enabled 

transitions are monitored. The continuous solver 

is stopped as soon as an event occurs, i.e. an 

enabling function becomes true. 

5. Here, the control is given to the discrete solver; 

the transition associated with this event is fired 

and its actions are performed. Then, it sets up a 

new marking and return to 2. 

 

 

4. ILLUSTRATIVE EXAMPLE CONSIDERED 

 

A didactic example, shown on figure 5, has been 

chosen in order to illustrate the concepts 

implemented within PrODHyS. 
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figure 5. Didactic example 

 

It consists of a tank equiped with a low-level 

detector and a thermal system allowing the heating 

of the liquid phase (with an energy Q). This tank 

may be filled via two material feeds A and B 
characterized respectively by the data (FA, hA, xA) 

and (FB, hB, xB), where Ff, hf and xf are respectively 

the flow, the liquid enthalpy and the liquid 

composition vector of feed f (f=A,B). According to 
the operating conditions (i.e. boiling point reached), 

the liquid phase may flash with a vapour flow V.  
Variable Ul represents the liquid holdup in the tank. 

The outlet vapour is open on the outside. So, the 

pressure P is supposed to be constant and the 
vapour holdup Uv is neglected in front of Ul. 

Moreover, if a vapour phase exists, it is supposed it 

disappears as soon as the heating is stopped (which 

is close to the physical meaning, considering the 

ultra-fast dynamic of this hydraulic phenomenon). 

 

The mathematical model of this system at the 

thermodynamic equilibrium and in its maximal 

state (i.e., liquid/vapour) is as follows : 
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Equations (1), (2) and (3) represent respectively the 

global material balance, the partial material 

balances (nc : number of pure component) and 

energy balance. Variable h is the liquid phase 
enthalpy and variable H, the vapour phase enthalpy. 
Equation (4) determines the liquid level L according 
to Ul, the tank area Sc and the molar volume of the 

liquid phase Vml. Equations (5) and (6) represent the 

liquid/vapour equilibrium, where x and y are the 
composition vectors of respectively, the liquid 

phase and the vapour phase (xi or yi is the i
th
 element 

of x or y). Finally, equations (7), (8), (9), (10) and 
(11) are the models (denoted mC(…) for the 
constant C) used for the liquid/vapour equilibrium 

constants Ki, the liquid enthalpy h, the vapour 
enthalpy H, the liquid molar volume Vml and the 

vapour molar volume Vmv within the tank.  
 

This batch process follows the basic recipe 

described by the GRAFCET of figure 6 :  
 

1. first, the tank is filled via the input feeds A and 
B for the durations dA and dB respectively, 

 

2. then, a heating operation is started and 

maintained until the liquid level L reaches the 
threshold detected by the sensor (LOW_LEVEL). 
Indeed, as soon as the boiling point is reached, 

a vapour flow V appears and gradually reduces 
the liquid holdup Ul. 

 

It is important to note that in such a system, two 

kind of event will induce a model commutation :  
 

• commutations known as controlled resulting 

from a signal emitted by the control device and 



appearing explicitly on the GRAFCET (FEED_A, 
FEED_B, HEAT), 

 

• commutations known as autonomous resulting 

from the intrinsic evolution of the system (here, 

the material : monophasic to diphasic state). In 

this case, they do not have to appear on the 

GRAFCET. 
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LOW_LEVEL
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figure 6. Recipe associated with the example 

 

 

5. OBJECT MODELLING OF A PROCESS 
 

5.1. Structure of the simulation model 

 

To carry out the simulation of such a system, it is 

necessary to model the command part (regulator or 

automaton), the operative part (the process), and 

the communication part (exchanged signals). As a 

result, a hierarchical structure of models is defined ( 

figure 7). 
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figure 7. Structure of the simulation model 

 

The master model associated to the command level 

represents the recipe. The slave models of the 

process level describe the behaviour of the process 

in reaction to orders of the higher level. The 

communication part is characterised by signals 

exchanges which ensure the link between these two 

levels. It is based on the use of both information 

signals coming from the process and command 

signals coming from the higher level. The 

representation of these three parts is embedded in 

the ODPN model.  

5.2. Topology of the flowsheet 
 

In a general way, a device is defined as an 

enclosure which can exchange material, energy or 

information. In order to formalise these exchanges, 

an interface element named port has been 

introduced. According to the nature of the 

exchanges, two kinds of ports are identified: 
 

- communication ports which allow an information 

exchange,  

- transport ports which allow a physical exchange 

of either material or energy. In this case, the 

transfer is characterised by a flow and a 

potential. 

 

Defining the topology of a device consists in 

determining the type and the number of ports that 

the device owns. Figure 8 gives the adopted model 

in order to represent the topology of the illustrative 

example. 

 

Here, the tank owns two material input ports 

(connected to the feedings A and B respectively), an 
energy input port (connected to the heating system), 

a communication output port (to reach the liquid 

level in the tank) and a material output port (for the 

vapour outlet) connected to the surroundings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
              
                figure 8. Topology of the flowsheet 

 
5.3. Modelling of the exchanged signals 
 

The modelling of the exchanged signals within 

PrODHyS is achieved in an explicit way. Indeed, 

the device variables are encapsulated within the 

objects and are made unreachable from the outside. 

In a general way, the exchanged signals result from 

either the emission of a command or the reception 

of an information. In both cases, the nature of the 

exchanged signal is binary, discrete or real (cf. 

figure 9). 
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figure 9. Exchanged signals 

 

The signal (input or output) is thus modelled by a 

discrete place called signal place which only owns 

binary or information tokens; the state of the signal 

is then associated with the marking of this place. 

These places allow the distinction between the 

active devices (controlled) such as the material feed 

and the passive devices (not controlled) such as the 

tank (see figure 8). 

The command signal is usually managed by using 

two kind of arcs : Set() and Reset(); they are linked 

to the command element (the recipe Petri net for 

instance). Thus, while this place is marked, the 

corresponding command is supposed to be set. The 

operative elements get this signal thanks to the arcs 

Test(). Regarding the information signal, the 

marking of the discrete place informs the command 

level about the occurrence of an event on the 

process level. 

 

5.4. Modelling of the command level 
 

The command level describes the recipe which the 

process has to follow. On this level, the continuous 

aspects are often reduced to the explicit expression 

of operation durations.  
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figure 10. Recipe with exchanged signals 

The recipe of figure 6 (GRAFCET) can now be 
modelled by the Petri net of figure 10. It represents 

the command signals enabling to start the feeding 

and the heating of the tank and the information 

signals informing the command level about the 

crossing of the low level. 

 

5.5. Modelling of the process level  
 

The problematic of the hybrid modelling lies 

primarily in the management of the legal sequences 

between the various possible configurations of the 

model, i.e. the resulting differential algebraic 

system. When a process becomes complex, the 

number of possible states and thus, the number of 

configurations to be managed, may quickly be 

significant, leading to a combinatory explosion. The 

system of the illustrative example is made up of 

twelve configurations. Each one owns a specific 

differential algebraic equations system. These 

combinations are related to the "open" or "closed" 

states, the feedings (none, A, B, A and B), the 
heating of the tank and the monophasic or diphasic 

state of the material. The resulting Petri net is 

shown on figure 11.  
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figure 11. Petri net associated with the example 

 

Each configuration appears explicitly as a place. 

The events associated with the transitions are also 

indicated: a and b correspond to the feedings A and 
B; c corresponds to the heating state. The internal 
temperature is also monitored. The reach of the 

bubble point (namely represented by the following 

condition T = Tb) leads to a physical state change of 

the material and involves the crossing of a 

transition. In the same way, the vapour flow V is 
monitored and induces a physical state change of 

the material when it becomes equal to zero 

(liquid/vapour to liquid). On figure 11, the current 

state indicates that the feedings A and B are open, 
the heating is switched on and the material state is 

liquid. 

In fact, the resulting Petri net offers a monolithic 

and not structured representation. This makes it not 

easily exploitable even on this simple but tricky 

example and limits the potential reuse of the 

already developed models. 

 



6. DECOMPOSITION OF THE MODEL 
 

The integration of the object philosophy in 

PrODHyS allows to get round this difficulty. 

Indeed, several authors have shown that it was 

possible to build most of complex devices by 

composing and/or specialising a set of elementary 

devices. All the difficulty lies in the 

characterisation of these elementary devices which 

are not necessarily real devices, but rather abstract, 

autonomous, and/or generic entities, having a 

simple and predefined functionality and 

communicating via an isomorphous interface. The 

following sections specify the modelling concepts 

of the process level and show the way the extended 

combined approach is used.  

 

6.1. Modelling of the material 
 

6.1.1. The object "material" 

 

The philosophy adopted in PrODHyS is to slightly 

couple material with the device which contains it 

(based on an association relationship). Rather than 

joining the material behaviour with the device one, 

each element is separately described. The 

advantage of this decomposition is to create a 

material object reusable in any other system : 
 

• First, the global continuous model associated 

with each configuration of the system is split 

into two subsets: 

- equations (1) to (4), which depend on the tank 

and on its inlets and outlets, are assigned to 

the tank; 

- the others are assigned to the material. 
 

• In the same way, the set of variables is split into 

two subsets: 

- variables FA, FB, V, Q which are the inlets and 

outlets of the tank and L which depends on the 
tank geometry, are associated with the tank; 

- the others (P, T, xi, yi, H, h, Vml, Vmv, Ki) are 

assigned to the material. 

 

Thus, in order to dissociate the tank and the 

material behaviour, each subsystem owns a specific 

Petri net (cf. figure 12). However, the material 

behaviour remains integrated into the tank model 

thanks to a typed token m carrying the material 

object and moving on the tank Petri net.  

So, the global continuous model of the set 

“tank/material” results from the concatenation of 

the differential algebraic system attached to the 

current state of the material Petri net with the 

differential algebraic system attached to the current 

state of the device Petri net. 

Figure 12 represents, at the top, the object Tank 
whose behaviour is specified by the Petri net 

TankPN. This one consists of eight places, each one 
modelling one of the continuous states of the tank. 

The Binary token of the Petri net of figure 11 is now  

Global continuous model :  MT8 + ML
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att1
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figure 12. Tank / Phases system 

 

replaced by a Material token. The bottom of figure 

12 represents the Material object whose behaviour is 
described by the Petri net PhaseSystemPN. For this 
example, it is only made up of three places 

corresponding to the liquid state, the vapour state 

and the liquid/vapour state respectively. In order to 

avoid overloading the Petri net, let us note that the 

material type appears only on one arc of the tank 
Petri net, but it should be represented in fact on all 

the arcs of the Petri net.  

The current configuration of the global system 

shown on figure 11 (i.e. feedings A and B, heating 
and liquid state) corresponds to the marking 

indicated on figure 12. Thus, the continuous model 

results from the concatenation of the DAE system 

MT8 explicitly associated with the marked place p8 

of the tank Petri net and the DAE system ML linked 

to the Material token marking this place; indeed, the 

model ML is associated with the marked place p2 of 

the phases system Petri net (cf. figure 12). 

 

6.1.2. The object "phase" 

 

In fact, material is made up of a set of phases, each 

one being characterised by specific variables. 

Indeed, the phase is usually described by qualitative 

physical properties such as enthalpy, molar volume, 

viscosity, etc. and by quantitative ones such as 

molar or volumic holdup. It owns, consequently, 

the equations allowing to determine these variables. 

The phases system is supposed to be homogeneous 

and at the thermodynamic equilibrium. So, it is  



characterised by specific variables, the temperature 

and the pressure, and by the equations relative to 

the equilibrium between phases.  

 

In order to improve clearness and modularity, the 

model relative to the material is broken up: 
 

• a part gathers the equations and variables 

belonging to the set “phases/phases system”. The 

corresponding model is then associated with the 

differential places of the phases system Petri net. 

For example, the place corresponding to the 

liquid/vapour state contains the equations 

representing the liquid/vapour equilibrium; on 

the other hand, the place corresponding to the 

monophasic state does not own any particular 

equation.  
 

• the other part of the model gathers the equations 

and variables allowing the computation of the 

phases physical properties; they are associated 

with the differential places of the phases Petri 

nets. 

 

Thus, a new kind of token has been created: it is 

called Phase token and carries a Phase object. 
Among its attributes, this object defines a Petri net 

which describes its behaviour. The equations 

relative to the phase are thus associated with the 

places of the Phase Petri net. However, the phase 
model remains integrated into the material model 

thanks to the Phase token which moves on the 

PhaseSystem Petri net. According to the kind of 

the carried phase, these tokens are characterised by 

a specific type which specifies if it is about a 

vapour phase ϕv or a liquid phase ϕl.  

 

So, the class PhaseSystem described on figure 12 

is replaced by the model of figure 13. The Tank 
object is represented at the top and its behaviour is 

described by the attribute TankPN. It is still made 

up of eight places, each one describing one of the 

continuous states previously defined. The Material 
token moves on the tank Petri net and its behaviour 

is described by the Petri net PhaseSystemPN. Now, 
it owns only two places: the first one symbolises 

the monophasic state of the material whose nature 

depends on the token marking the place; the second 

one symbolises the liquid/vapour state indicating 

the presence of the liquid and vapour phases within 

the phases system. Regarding the Phase tokens, 
they move on the Petri net PhaseSystemPN and 
own a specific Petri net called PhasePN. This one 
is made up of two places corresponding to two 

distinct configurations (not detailed here). 

Considering the same current state (feedings A and 
B, heating and liquid state), the marking of the Petri 

nets is indicated on figure 13. The continuous 
model results from the concatenation of the DAE 

system MT8 associated with the marked place p8 of 

the tank Petri net, the DAE system MM associated 

Class  Tank

att1
att2
TankPN
meth1 …

Class PhaseSystem

att1
att2
PhaseSystemPN
meth1 …

MT1

〈m
〉

m

MT5

MT3

MT2

MT4

MT8

MT6

MT7

Class  m
att1
material
meth1

Class ϕl

att1
phase
meth1

Class ϕv

att1
phase
meth1

MM

MLV

ϕl

〈ϕ l〉

〈ϕ
l 〉

〈ϕ
l ,ϕv 〉

〈ϕv〉

〈ϕ
v 〉

p2p1

〈ϕ l,ϕ v 〉

〈ϕ
l,ϕv 〉

〈ϕ l,ϕv 〉

Class  LiquidPhase

PhasePN
meth1 …

ML1 ML2

p1 p2

Class VapourPhase

PhasePN
meth1 …

MV1 MV2

p1 p2

Global continuous model :  MT8 + MM + ML1

 
 

           figure 13. Tank / Phases system / Phases 
 
with the marked place p1 of the phases system Petri 

net and finally the DAE system ML1 associated with 

the marked place p1 of the liquid phase Petri net. 

Indeed, as material is in a liquid state, only the 

Phase token carrying the liquid phase marks the 

monophasic differential place of the phases system; 

the Phase token carrying the vapour phase does not 
exist. 

 

6.2. Modelling of ports 

 

The number and the type of ports may quickly 

increase the combinatory and so the complexity of 

the model. Moreover, this thwarts our objective 

which is to create generic and reusable models. 

For these reasons, another type of token has been 

created. It is called Port token and carries a Port 
object. The behaviour of the port is then described 

by a specific Petri net named PortPN and defined as 

an attribute of the Port object. This one is 

characterised by two places : a discrete place which 

indicates an inactive state and a differential place 

which indicates an active state. 

 



 

 

figure14. Tank/Phases system/Phases/Ports 

 

Thus, in our example, the flow variable is no longer 

directly associated with the tank but is now carried 

by the port. The combinatory of the model, related to 

the inlets and outlets, is thus reduced by replacing 

the various induced states by only one state, marked 

by a set of Port tokens. 
Regarding transport ports, the active state supposes 

that the associated flow belongs to the set of 

unknown variables of the system. On the contrary, 

when the state is inactive, flow becomes a parameter 

equal to zero. The balance equations associated with 

the continuous model of the tank Petri net remain the 

same whatever the active or inactive state of its input 

and output ports. 

 

The model associated with the system of the 

illustrative example is then made up of a set of Petri 

nets represented in figure 14. The tank is now 

described by only one place. The transition allows to 

detect a possible event. The tokens associated with 

the ports of the device mark the differential place. 

They are five: two input material Port tokens pA and 

pB, one output material Port token for the vapour 
outlet pV, one energy Port token pE and finally, one 

communication Port token pI. Each one owns a 

specific Petri net. 

 

Considering the same current state, the marking of 

the set of Petri nets is indicated in figure 14. The 

current places of Petri nets associated with the input 

material ports and the energy port are the differential 

ones. The associated flows are thus taken into 

account in the material and energy balances. On the 

contrary, the current place of the Petri net associated 

with the output material port is the discrete one: the 

associated flow appears in the balances but as a 

zero-parameter. The global continuous model 

associated with the current configuration of the 

system is then the following one: 

 

The model associated with the monophasic place of 

the phases system Petri net is empty; it does not 

contain any particular equation. In this example, the 

models of the ports are also empty. However, they 

indicate if the flow variable is considered as an 

unknown variable or as a parameter and nullify it if 

this last case is checked. On the other hand, the 

eight configurations related to the inputs/outputs of 

the tank are now replaced by only one state and the 

associated models are replaced by a single model 

MTank for which all flows are represented. The 

above equations system highlights the flows 

defined as unknown variables (surrounded) and 

those defined as zero-parameters (barred with a 

cross). 

 

In addition, let us emphasise that the model MTank is 

generic; it is set up according to a general process 

which depends on the marking of the differential 

place. Indeed, it obtains the variables and 

parameters that it needs via the tokens marking the 
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place. The model is thus formulated by using the 

formal variables 〈m〉, 〈ϕ〉, 〈p〉, which are replaced by 
the Material, Phase and Port tokens respectively 
when the place is marked. In order to illustrate these 

remarks, the following differential algebraic system 

represents how the continuous model MTank 

associated with the tank is defined. 
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where: 

 

npme/npms : number of input and output material ports; 

npee/npes : number of input and output energy ports ; 

nϕ : number of phases of the Material token; 
U : phase holdup; 

F : material flow; 

zi : molar fraction of the component i; 
Q : energy flow ; 

h : phase enthalpy ; 
L : liquid height ; 
Vm : molar volume. 

 

Equations (12), (13) and (14) are the material and 

energy balances respectively. Equations (16) and 

(17) are the models used for the molar enthalpy and 

the molar volume. Finally, equation (15) enables to 

compute the liquid height in respect with the tank 

geometry. Here, the liquid level is supposed to be 

calculated in the cylindrical part of the tank. If this 

calculation has to take into account the real shape of 

the tank, several distinct equations would be 

necessary. In this case, this would induce that the 

tank Petri net would be composed of several places.   

 

CONCLUSION 

 

The modelling of most industrial processes requires 

to take into account hybrid phenomena especially in 

chemical Process Systems Engineering. The use of 

a high level model associated with powerful 

numerical integration methods allows to build a 

robust hybrid dynamic simulator. Designed 

according to an object approach, PrODHyS 

provides a library of autonomous software 

components that may be gathered or specialised in 

order to develop a specific device. For a developer, 

the exploitation of these elementary components 

allows to speed up the design and the 

implementation of a new device. For a user, the 

exploitation of the predefined devices offered as 

"black boxes" makes easier the setting up of 

simulation campaigns. The continuous part of 

PrODHyS has been used in the OPERA project for 

real time operators training simulation (OPERA, 

1999). Concerning the new hybrid aspect, 

PrODHyS has been used with success for the 

simulation of several large systems such as a 

reactive distillation column (model made up more 

than 600 equations, (Perret et al, 2003)). These 

elements make PrODHyS an operational and 

evolutive tool.  
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