
INTEGRATION OF AN OBJECT FORMALISM

WITHIN A HYBRID DYNAMIC SIMULATION ENVIRONMENT

Jocelyne Perret, Gilles Hétreux, Jean-Marc Le Lann

Laboratoire de Génie Chimique (LGC - UMR 5503), département PSE, groupe Génie

Industriel

118 Route de Narbonne, 31077 Toulouse Cedex 04

E-mail: Jocelyne.Perret@ensiacet.fr, Gilles.Hetreux@ensiacet.fr,

 JeanMarc.LeLann@ensiacet.fr.

Abstract: PrODHyS is a general object-oriented environment which provides common

and reusable components designed for the development and the management of dynamic

simulation of systems engineering. Its major characteristic is its ability to simulate

processes described by a hybrid model. In this framework, this paper focuses on the

"Object Differential Petri Net" (ODPN) formalism integrated within PrODHyS. The use

of this formalism is illustrated through a didactic example relating to the field of

Chemical Process System Engineering (PSE).

Keywords: Hybrid Dynamic Systems, Simulation, Petri nets, object-oriented approach,

process system engineering.

With the evolution of the computer power, dynamic

simulation becomes an essential tool in process

design and analysis. It provides an efficient help to

process engineers in the knowledge of transient

behaviour, for the development of adapted control

systems (sensitivity to parameters), or for the

monitoring and diagnosis of processes in

exploitation. However, the simulation of most

processes requires to take into account operating

modes often difficult to manage with purely

continuous or purely discrete models. In that

context, phenomena as abrupt open/closed of valves

or material physical state evolution induce

discontinuities in the models, involving the notion

of hybrid dynamic systems (HDS).

In the HDS field, many simulation tools have been

developed by researchers. We can mention, for

example, gPROMS (Barton and Pantelides, 1994),

Shift (Deshpande et al., 1998), Omsim (Andersson,

1994), Chi (Fábián et al., 1998), BaSiP (Wöllhaf et

al., 1996). For our part, we develop since more than

ten years a platform named PrODHyS (Process

Object Dynamic Hybrid Simulator). It is a general

object-oriented environment designed for the

development and the management of dynamic

simulation.

In this framework, this paper deals more

specifically with the package relative to the hybrid

formalism used to describe devices in PrODHyS :

the Object Differential Petri nets (ODPN). This

formalism combines Petri nets, differential

algebraic equations and object concepts. So, the

first section makes a general overview of the

simulation environment and its software structure.

In section 2 and 3, the ODPN formalism and the

simulation kernel are described. Then, the last

sections (5 and 6) illustrate the use of ODPN

formalism through the example of a typical process

introduced in section 4.

1. THE SIMULATION ENVIRONMENT

1.1. Objective of PrODHyS

Developed in our research department, PrODHyS

constitutes the unification of works performed since

several years in design and development of object

oriented software components dedicated to process

simulation (Hétreux et al, 2003, Jourda et al., 1996,

Moyse, 2000, Perret, 2003, Sargousse, 1999).

Although this platform may be connected to a

windows graphical user interface (GUI) in order to

simplify its accessibility to users, PrODHys is

mostly structured as a library of common building

blocks which allow a modular modelling and an

equation-oriented simulation of processes.

Furthermore, two main features characterise

PrODHyS :

• As philosophy of this environment is to

provide general reusable software components

in order to build various kind of complex

specialised devices, PrODHyS is based on a

object-oriented approach which emerges

nowadays as an efficient and concrete response

to extensibility, reusability and software quality

requirements. Each elementary entity is defined

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as an abstract object which has to be derived

via object mechanisms (inheritance,

aggregation, genericity, etc). Then, a flowsheet

object is defined as a set of hierarchical and

recursive device objects connected to each

other by port objects, inside which material,

energy or information flows. This “systemic”

approach is now clearly established (Hétreux et

al, 2002, Jourda, 1996, Marquardt, 1992,

Nilsson, 1993).

• PrODHys associates a hybrid model to each

device based on the ODPN. This hybrid

formalism offers a great level of abstraction in

order to reduce the modelling complexity. Each

Petri net describes the sequence of continuous

states that a device, a recipe or material can

reach.

1.2. Software architecture of the platform

The design of PrODHyS follows a software

development process based on the object

technology (UML, C++). Currently, this software

consists of more than one thousand classes

distributed into two layers and seven packages (cf.

figure 1) :

MODELLINGMODELLING

SIMULATIONSIMULATION
Composite

Device

Devices
obtained by

specialisation
and composition

of elementary
devices

Odysseo/
Reaction

Modelling of
chemical
reactions

Odysseo/Device

Concrete elementary devices built
with the classes belonging to the

sub-modules Process and Reaction

ATOM

Thermodynamic database
and object representation

of the material

DISCo

Numerical kernel and
object representation of

continuous models

Hybrid
Formalism ODPN and

hybrid simulation kernel

Odysseo/
Process

General description
of the process

figure 1. Software architecture of PrODHyS

• The internal level corresponds to the simulation
kernel of the platform. It provides the basic

elements allowing the simulation of any dynamic

system. This layer includes :

- the module Disco which is the numerical

kernel of the system. It allows an object

representation of the continuous mathematical

models and provides a set of solvers and

integrators (EDA, EANL).

- the module Hybrid which contains the set of

classes used for the description of the ODPN

formalism as well as the hybrid simulation

kernel.

• The higher level includes a set of classes
allowing the modelling of processes. The

modelling layer encapsulates the simulation layer

and provides a set of general and autonomous

entities (classes) which can be exploited by any

user who wishes to build its own simulation

system or prototype. This level includes :

- the module ATOM which constitutes the

thermodynamic data base of the system; it is

based on an object representation of the

material and allows the computing of

thermodynamic properties.

- the module Process which gathers a set of

generic and abstract classes, corresponding to

a very general description of the process;

- the module Reaction which allows the

modelling of chemical reactions;

- the module Device which gathers the

"concrete" elementary devices.

- the module CompositeDevice which contains

devices resulting from the composition and

the specialisation of elementary devices

defined in the module Devive.

The main advantage of separating simulation level

and modelling level is to make possible the

implementation of platforms dedicated to various

fields of applications only by developing the

suitable engineering modelling layer.

2. HYBRID FORMALISM: THE ODPN

2.1. Modelling approaches

Regarding the modelling aspects of processes, two

dynamic schemes have to be described : on the one

hand, the continuous dynamic, often represented by

a set of differential and algebraic equations (DAE)

and on the other hand, the discrete dynamic,

represented by a set of states and transitions. The

studies about the combination of continuous and

discrete elements have led to several formalisms. A

classification is proposed (Zaytoon, 2001) :

• approaches which extend models belonging to

the continuous field such as unified model

(Branicky et al., 1998) or bond-graphs with

switches (Buisson et al., 2001);

• approaches which extend models belonging to

the discrete field. We can mention hybrid Petri

nets (Le Bail et al., 1991), batch Petri nets

(Demongodin, 2001), time Petri nets

(Berthomieu et Menasche, 1983), timed

automata (Alur et Dill, 1994);

• mixed approaches in which discrete and

continuous models collaborate in the same

integrated structure. This category concerns

hybrid automata (Alur et al., 1995), hybrid

statecharts (Kesten and Pnueli, 1992), mixed

Petri nets (Valentin-Roubinet, 1999), differential

predicate-transition Petri nets (Champagnat et

al., 1998).

In our case, a hybrid formalism based on a mixed

approach and object concepts has been adopted :

the Object Differential Petri Nets (ODPN).

2.2. Petri Net/Object Oriented paradigm

These last years, many works have emphasized the

interest to combine Petri nets (PN) and the object-

oriented concepts (OO). The studies relative to the

PN/OO paradigm have shown that this association

can be performed according to two approaches :

• the first one aims to introduce "the objects into

Petri nets" (Sibertin-Blanc, 1985). The subjacent

philosophy is to model a sub-system by a single

Petri net which handles individualised tokens

carrying information. In this approach, each

token is a generic entity defined by an object

class made up of both a set of attributes

(including state variables) and a set of methods

which deals with these data (including

equations). Consequently, the Petri net models

the control structure of the system (its general

behaviour) whereas the tokens represent the

associated data structure (a particular version of

this system). This mechanism, with

individualisation of the tokens, makes the

network more compact without information loss.

• the second approach is based on “the

introduction of Petri nets into objects"

(Paludetto, 1990). This approach enables to

describe the internal behaviour of the object. The

marking of the Petri net indicates the current

state of the object, the firing of a transition

involves the execution of one of its methods and

the global structure of the net specifies the legal

execution sequences of the methods.

In fact, these two approaches are not incompatible

but complementary (Bastide, 1995). For this reason,

the "extended combined approach" has been

defined as an extension of the previous ones (cf.

figure 2).

reference

...

reference
...

reference

Object1

method1

method2

method3

method5

method4

Object2

method1

method2

method3

Objectn

method1

method2

method3

method4

...

 figure 2. Extended combined approach

It consists in introducing an infinite number of

encapsulation levels of objects and Petri nets, thus

allowing a complete integration of the PN/OO

paradigm. Moreover, this approach makes possible

the definition of hierarchical points of view of the

system.

2.3. The dynamic and behavioural aspects

The modelling of the dynamic part of a system is

based on the Differential Predicate-Transition Petri

nets concepts. The ODPN model is characterised by

two kind of places :

• the discrete places : it represents a control, an

operation, the availability of a resource or quite

simply, a discrete state,

• the differential places : it indicates a

continuous behaviour whose dynamic is

governed by a differential algebraic equations

system. Thus, the marking of a differential

place starts up the continuous evolution of state

variables.

2.4. The static and structural aspects

To describe the static part of the system, the ODPN

model is based on the object-oriented (OO)

concepts. Indeed, encapsulation, inheritance,

composition and polymorphism concepts lead to the

definition of entities which are at the same time

strongly consistent and slightly coupled with their

environment, which increases their reuse

possibilities. In addition, the structuring with

classes generates elements whose access is

perfectly controlled and specified through an

interface.

Furthermore, the inheritance and composition

mechanism are extended to the Petri net included in

the class definition. When a new class object is

created by aggregation of others classes, a new

Petri net is generally created in the composite

object in order to control the Petri net of the

components (inducing a master/slave relationship).

The concept of transition merging (Champagnat et

al., 1998) is also used when it is about an

association relationship. Finally, in the case of

inheritance relationship, the “daughter” class

inherits the net of the “mother” and if necessary,

this net may be specialized by adding new places

and/or transitions.

2.5. Semantic of the ODPN formalism

Each entity of the system is described by an object

class made up of attributes (including the

continuous state variables) and methods.

In order to describe the dynamic and structural

aspects of the systems, the object differential Petri

nets is defined by a set of constitutive elements

illustrated on figure 3. It includes :

• Places :

The ODPN model is characterised by a set of

discrete places (single circle) and differential

places (depicted with two concentric octagons).

〈y〉 〈x,y,z〉

〈x,z〉 [Conditions]
[Actions]

{DAE System 1}

Discrete place

Differential place

{DAE System 2}

x

y

y

〈u〉
Inhibitor arc

p1

p3

p2

p4

a

b

c t

z d

〈y〉 〈x,y,z〉

〈x,z〉 [Conditions]
[Actions]

{DAE System 1}

Discrete place

Differential place

{DAE System 2}

x

yy

yy

〈u〉
Inhibitor arc

p1

p3

p2

p4

a

b

c t

z dz d

figure 3. Semantic of the model

• Tokens

Each token is defined as an instance of class. So, it

encapsulates the entity characteristics and its own

state variables. For this reason, it does not exist any

global variable. Because of the extended combined

approach, the internal behaviour of each token may

be described by a Petri net. Furthermore, tokens

move on a Petri net according to formal variables

carried by the arcs.

• Formal variables

A formal variable is typed by an object class that

specifies the type of tokens authorised to replace it.

Let us note ci, an object class; a formal variable

typed by the class ci is noted 〈ci〉; nk formal

variables typed by the same class ci are noted 〈)k(
ic 〉

(for k = 1, nk). Moreover, a tuple of formal variables

is noted 〈c1, c2, …, cn〉.

In order to illustrate this notion, let us consider the

example shown on figure 4.

CAPTION :

〈ϕ〉, 〈ϕl〉, 〈ϕv〉, 〈y〉 : formal variables of type ϕ, ϕl, ϕv, y respectively

C : condition

A : action

: instance named « a » of the class ϕlϕl a

ϕ, ϕl, ϕv, y : object classes of the system

Class y

attribute1

method1

A : 〈ϕl〉. method2(〈y〉)

〈ϕl〉 〈y〉

C :
 〈ϕl〉.method1()

 < Val ?

〈y〉〈ϕl〉

ϕl a

y d
ϕvb

ϕl cClass ϕ
attribute1 : state
attribute2 : enthalpy
attribute3 : holdup

method1

Class ϕl

attribute1

method1
method2

Class ϕv

attribute1

method1
method2

 figure 4. Formal variables

Three formal variables are defined 〈ϕl〉, 〈ϕv〉 and 〈y〉;
they are typed by the classes ϕl, ϕv and y
respectively. They can be replaced only by tokens

carrying the same inscription. As a result, 〈ϕl〉 can
be replaced by the tokens a and c, 〈ϕv〉 can be
replaced by the token b and 〈y〉 can be replaced by
the token d. Let us notice that for a formal variable

〈ϕ〉 of type ϕ (where ϕ is the mother class of classes

ϕl et ϕv), the substitution by tokens a, b and c is
feasible thanks to the inheritance and

polymorphism principles.

• Arcs

The arc constitutes the link between the place and

the transition. In order to ensure the consistency of

the model, input and output arcs are explicitly typed

(figure 4). Indeed, they carry information allowing

to specify the token classes authorised to forward

through the arc. The inscriptions carried by the arcs

correspond to formal variables; thus, any token

authorised to move on an arc replaces the formal

variable of the same type.

Moreover, an object differential Petri net also holds

inhibitor arcs. An inhibitor arc is an arc that allows

to test the lack of tokens on the place located above.

• Transitions

Each transition is characterised by a set of

conditions (also called enabling functions) and

actions (also called junction functions).

Conditions are made up of attributes and methods

carried by the tokens enabling the transition and/or

coming from the object which is the owner of this

Petri net (i.e. the object whose behaviour is

described by this Petri net).

In the same way, actions perform the methods

offered by the tokens crossing the transition and/or

methods belonging to the object which is the owner

of this Petri net. Let us note that the aim of these

actions not only consists in computing the initial

values of the continuous variables, but also in

modifying the state of tokens.

3. THE SIMULATION KERNEL

In order to implement the ODPN formalism, the

simulation kernel is break down into three modules:

the discrete solver (Petri net token player), the

continuous solver (integrator based on the Gear

method (Gear, 1971)) and a simulation manager

which manages the interactions between the two

solvers. The operating cycle of the simulator is then

the following:

1. First, the simulation manager builds the global

continuous model corresponding to the initial

marking of each Petri net and initialises all state

variables ;

2. The discrete solver plays the Petri nets until no

more transition can be fired. During this step, the

actions of each fired transitions are performed

(among others, the initial values of states

variables and their derivatives are computed).

3. Then, the simulation manager concatenates the

DAE systems associated with each marked

differential place as well as the conditions of

each enabled transition;

4. Just before the integration, the continuous solver

gets the ability to automatically calculate new

consistent initial values for state variables, if

necessary. Then, it performs the integration of

the resulting global DAE system, involving the

continuous evolution of the state variables. At

the same time, the conditions of enabled

transitions are monitored. The continuous solver

is stopped as soon as an event occurs, i.e. an

enabling function becomes true.

5. Here, the control is given to the discrete solver;

the transition associated with this event is fired

and its actions are performed. Then, it sets up a

new marking and return to 2.

4. ILLUSTRATIVE EXAMPLE CONSIDERED

A didactic example, shown on figure 5, has been

chosen in order to illustrate the concepts

implemented within PrODHyS.

Thermal
System (Q)

Vapour
outlet (V)

Command system

Feed B (FB, hB)

Low level
detector

(T, P)
(H, y)

(Ul, h, x)

Feed A (FA, hA)

Thermal
System (Q)

Vapour
outlet (V)

Command system

Feed B (FB, hB)

Low level
detector

(T, P)
(H, y)

(Ul, h, x)

Feed A (FA, hA)

figure 5. Didactic example

It consists of a tank equiped with a low-level

detector and a thermal system allowing the heating

of the liquid phase (with an energy Q). This tank

may be filled via two material feeds A and B
characterized respectively by the data (FA, hA, xA)

and (FB, hB, xB), where Ff, hf and xf are respectively

the flow, the liquid enthalpy and the liquid

composition vector of feed f (f=A,B). According to
the operating conditions (i.e. boiling point reached),

the liquid phase may flash with a vapour flow V.
Variable Ul represents the liquid holdup in the tank.

The outlet vapour is open on the outside. So, the

pressure P is supposed to be constant and the
vapour holdup Uv is neglected in front of Ul.

Moreover, if a vapour phase exists, it is supposed it

disappears as soon as the heating is stopped (which

is close to the physical meaning, considering the

ultra-fast dynamic of this hydraulic phenomenon).

The mathematical model of this system at the

thermodynamic equilibrium and in its maximal

state (i.e., liquid/vapour) is as follows :

0VFF
dt

dU
BA

l =+−− (1)

0VyxFxF
dt

)x.U(d
iiBBiAA

il =+−− ()cn,1i = (2)

0QVHhFhF
dt

)hU(d
BBAA

l =−+−− (3)

0
S
VU

L
c

mll =− (4)

0x.Ky iii =− ()cn,1i = (5)

∑
=

=−
cn

1i

ii 0)yx((6)

0)y,x,P,T(mKK ii =− ()cn,1i = (7)

0)x,P,T(mhh =− (8)

0)y,P,T(mHH =− (9)

0)x,P,T(mVV mlml =− (10)

0)y,P,T(mVV mvmv =− (11)

Equations (1), (2) and (3) represent respectively the

global material balance, the partial material

balances (nc : number of pure component) and

energy balance. Variable h is the liquid phase
enthalpy and variable H, the vapour phase enthalpy.
Equation (4) determines the liquid level L according
to Ul, the tank area Sc and the molar volume of the

liquid phase Vml. Equations (5) and (6) represent the

liquid/vapour equilibrium, where x and y are the
composition vectors of respectively, the liquid

phase and the vapour phase (xi or yi is the i
th
 element

of x or y). Finally, equations (7), (8), (9), (10) and
(11) are the models (denoted mC(…) for the
constant C) used for the liquid/vapour equilibrium

constants Ki, the liquid enthalpy h, the vapour
enthalpy H, the liquid molar volume Vml and the

vapour molar volume Vmv within the tank.

This batch process follows the basic recipe

described by the GRAFCET of figure 6 :

1. first, the tank is filled via the input feeds A and
B for the durations dA and dB respectively,

2. then, a heating operation is started and

maintained until the liquid level L reaches the
threshold detected by the sensor (LOW_LEVEL).
Indeed, as soon as the boiling point is reached,

a vapour flow V appears and gradually reduces
the liquid holdup Ul.

It is important to note that in such a system, two

kind of event will induce a model commutation :

• commutations known as controlled resulting

from a signal emitted by the control device and

appearing explicitly on the GRAFCET (FEED_A,
FEED_B, HEAT),

• commutations known as autonomous resulting

from the intrinsic evolution of the system (here,

the material : monophasic to diphasic state). In

this case, they do not have to appear on the

GRAFCET.

0

∆θpA ≥ dA

1 FEED_A

LOW_LEVEL

HEAT

2

3

4

5

FEED _B

∆θpB ≥ dB

6

figure 6. Recipe associated with the example

5. OBJECT MODELLING OF A PROCESS

5.1. Structure of the simulation model

To carry out the simulation of such a system, it is

necessary to model the command part (regulator or

automaton), the operative part (the process), and

the communication part (exchanged signals). As a

result, a hierarchical structure of models is defined (

figure 7).

PROCESS

COMMAND

Command
signals

Information
signals

S
I

M
U
L
A
T
I
O
N

K
E
R
N
E
L

figure 7. Structure of the simulation model

The master model associated to the command level

represents the recipe. The slave models of the

process level describe the behaviour of the process

in reaction to orders of the higher level. The

communication part is characterised by signals

exchanges which ensure the link between these two

levels. It is based on the use of both information

signals coming from the process and command

signals coming from the higher level. The

representation of these three parts is embedded in

the ODPN model.

5.2. Topology of the flowsheet

In a general way, a device is defined as an

enclosure which can exchange material, energy or

information. In order to formalise these exchanges,

an interface element named port has been

introduced. According to the nature of the

exchanges, two kinds of ports are identified:

- communication ports which allow an information

exchange,

- transport ports which allow a physical exchange

of either material or energy. In this case, the

transfer is characterised by a flow and a

potential.

Defining the topology of a device consists in

determining the type and the number of ports that

the device owns. Figure 8 gives the adopted model

in order to represent the topology of the illustrative

example.

Here, the tank owns two material input ports

(connected to the feedings A and B respectively), an
energy input port (connected to the heating system),

a communication output port (to reach the liquid

level in the tank) and a material output port (for the

vapour outlet) connected to the surroundings.

 figure 8. Topology of the flowsheet

5.3. Modelling of the exchanged signals

The modelling of the exchanged signals within

PrODHyS is achieved in an explicit way. Indeed,

the device variables are encapsulated within the

objects and are made unreachable from the outside.

In a general way, the exchanged signals result from

either the emission of a command or the reception

of an information. In both cases, the nature of the

exchanged signal is binary, discrete or real (cf.

figure 9).

Material output port

Energy output port

Communication output port

Material input port

Energy input port

Communication input port

Surroundings
PROCESS

Material
feed A

Material
feed B

Level
detector

Thermal
system

Tank

Command device

COMMAND

Material output port

Energy output port

Communication output port

Material output port

Energy output port

Communication output port

Material output port

Energy output port

Communication output port

Material input port

Energy input port

Communication input port

Material input port

Energy input port

Communication input port

Material input port

Energy input port

Communication input port

Surroundings
PROCESS

Material
feed A

Material
feed B

Level
detector

Thermal
system

Tank

Command device

COMMAND

a. Command signals

Command element

Operative element

Set() Reset()

Te
st

() Test()

b. Information signals

Command element

Operative element

Te
st

()

Set() Reset()

Cond.

duration

a. Command signals

Command element

Operative element

Set() Reset()

Te
st

() Test()

b. Information signals

Command element

Operative element

Te
st

()

Set() Reset()

Cond.

duration

figure 9. Exchanged signals

The signal (input or output) is thus modelled by a

discrete place called signal place which only owns

binary or information tokens; the state of the signal

is then associated with the marking of this place.

These places allow the distinction between the

active devices (controlled) such as the material feed

and the passive devices (not controlled) such as the

tank (see figure 8).

The command signal is usually managed by using

two kind of arcs : Set() and Reset(); they are linked

to the command element (the recipe Petri net for

instance). Thus, while this place is marked, the

corresponding command is supposed to be set. The

operative elements get this signal thanks to the arcs

Test(). Regarding the information signal, the

marking of the discrete place informs the command

level about the occurrence of an event on the

process level.

5.4. Modelling of the command level

The command level describes the recipe which the

process has to follow. On this level, the continuous

aspects are often reduced to the explicit expression

of operation durations.

heat

t1 feed A

{SA}

{SB}

feed B

wait
∆θpB ≥ dB

∆θpA ≥ dA

01
dt

d pB =−
θ

{SB} :

wait

t2

t3

t4 t5

FEED_A

FEED _B

HEAT

LOW_LEVEL

{SA} : 01
dt

d pA =−
θ

heat

t1 feed A

{SA}

{SB}

feed B

wait
∆θpB ≥ dB

∆θpA ≥ dA

01
dt

d pB =−
θ

{SB} : 01
dt

d pB =−
θ

{SB} :

wait

t2

t3

t4 t5

FEED_A

FEED _B

HEAT

LOW_LEVEL

{SA} : 01
dt

d pA =−
θ

{SA} : 01
dt

d pA =−
θ

figure 10. Recipe with exchanged signals

The recipe of figure 6 (GRAFCET) can now be
modelled by the Petri net of figure 10. It represents

the command signals enabling to start the feeding

and the heating of the tank and the information

signals informing the command level about the

crossing of the low level.

5.5. Modelling of the process level

The problematic of the hybrid modelling lies

primarily in the management of the legal sequences

between the various possible configurations of the

model, i.e. the resulting differential algebraic

system. When a process becomes complex, the

number of possible states and thus, the number of

configurations to be managed, may quickly be

significant, leading to a combinatory explosion. The

system of the illustrative example is made up of

twelve configurations. Each one owns a specific

differential algebraic equations system. These

combinations are related to the "open" or "closed"

states, the feedings (none, A, B, A and B), the
heating of the tank and the monophasic or diphasic

state of the material. The resulting Petri net is

shown on figure 11.

5 1

2

3

4 8

6 10

12

7 11

9

a

b

c

T ≥ Tb

V = 0

a

b

c
a

b

a

b

b

b

a

a

c

c

c

c

c

c
aa

bb

T ≥ Tb

T ≥ Tb

V = 0

V = 0

T ≥ Tb

V = 0

b

b

a

a

a

a

a

b

b

figure 11. Petri net associated with the example

Each configuration appears explicitly as a place.

The events associated with the transitions are also

indicated: a and b correspond to the feedings A and
B; c corresponds to the heating state. The internal
temperature is also monitored. The reach of the

bubble point (namely represented by the following

condition T = Tb) leads to a physical state change of

the material and involves the crossing of a

transition. In the same way, the vapour flow V is
monitored and induces a physical state change of

the material when it becomes equal to zero

(liquid/vapour to liquid). On figure 11, the current

state indicates that the feedings A and B are open,
the heating is switched on and the material state is

liquid.

In fact, the resulting Petri net offers a monolithic

and not structured representation. This makes it not

easily exploitable even on this simple but tricky

example and limits the potential reuse of the

already developed models.

6. DECOMPOSITION OF THE MODEL

The integration of the object philosophy in

PrODHyS allows to get round this difficulty.

Indeed, several authors have shown that it was

possible to build most of complex devices by

composing and/or specialising a set of elementary

devices. All the difficulty lies in the

characterisation of these elementary devices which

are not necessarily real devices, but rather abstract,

autonomous, and/or generic entities, having a

simple and predefined functionality and

communicating via an isomorphous interface. The

following sections specify the modelling concepts

of the process level and show the way the extended

combined approach is used.

6.1. Modelling of the material

6.1.1. The object "material"

The philosophy adopted in PrODHyS is to slightly

couple material with the device which contains it

(based on an association relationship). Rather than

joining the material behaviour with the device one,

each element is separately described. The

advantage of this decomposition is to create a

material object reusable in any other system :

• First, the global continuous model associated

with each configuration of the system is split

into two subsets:

- equations (1) to (4), which depend on the tank

and on its inlets and outlets, are assigned to

the tank;

- the others are assigned to the material.

• In the same way, the set of variables is split into

two subsets:

- variables FA, FB, V, Q which are the inlets and

outlets of the tank and L which depends on the
tank geometry, are associated with the tank;

- the others (P, T, xi, yi, H, h, Vml, Vmv, Ki) are

assigned to the material.

Thus, in order to dissociate the tank and the

material behaviour, each subsystem owns a specific

Petri net (cf. figure 12). However, the material

behaviour remains integrated into the tank model

thanks to a typed token m carrying the material

object and moving on the tank Petri net.

So, the global continuous model of the set

“tank/material” results from the concatenation of

the differential algebraic system attached to the

current state of the material Petri net with the

differential algebraic system attached to the current

state of the device Petri net.

Figure 12 represents, at the top, the object Tank
whose behaviour is specified by the Petri net

TankPN. This one consists of eight places, each one
modelling one of the continuous states of the tank.

The Binary token of the Petri net of figure 11 is now

Global continuous model : MT8 + ML

Class Tank

att1
att2
TankPN
meth1 …

Class PhaseSystem

att1
att2
PhaseSystemPN
meth1 …

MT1

〈m
〉

m

MT5

MT3

MT2

MT4

MT8

MT6

MT7

Class m
att1
material
meth1

ML

p1

MLV
MV

p3p2

Global continuous model : MT8 + MLGlobal continuous model : MT8 + ML

Class Tank

att1
att2
TankPN
meth1 …

Class PhaseSystem

att1
att2
PhaseSystemPN
meth1 …

MT1

〈m
〉

m

MT5

MT3

MT2

MT4

MT8

MT6

MT7

Class m
att1
material
meth1

Class m
att1
material
meth1

ML

p1

MLV
MV

p3p2

ML

p1

MLV
MV

p3p2

figure 12. Tank / Phases system

replaced by a Material token. The bottom of figure

12 represents the Material object whose behaviour is
described by the Petri net PhaseSystemPN. For this
example, it is only made up of three places

corresponding to the liquid state, the vapour state

and the liquid/vapour state respectively. In order to

avoid overloading the Petri net, let us note that the

material type appears only on one arc of the tank
Petri net, but it should be represented in fact on all

the arcs of the Petri net.

The current configuration of the global system

shown on figure 11 (i.e. feedings A and B, heating
and liquid state) corresponds to the marking

indicated on figure 12. Thus, the continuous model

results from the concatenation of the DAE system

MT8 explicitly associated with the marked place p8

of the tank Petri net and the DAE system ML linked

to the Material token marking this place; indeed, the

model ML is associated with the marked place p2 of

the phases system Petri net (cf. figure 12).

6.1.2. The object "phase"

In fact, material is made up of a set of phases, each

one being characterised by specific variables.

Indeed, the phase is usually described by qualitative

physical properties such as enthalpy, molar volume,

viscosity, etc. and by quantitative ones such as

molar or volumic holdup. It owns, consequently,

the equations allowing to determine these variables.

The phases system is supposed to be homogeneous

and at the thermodynamic equilibrium. So, it is

characterised by specific variables, the temperature

and the pressure, and by the equations relative to

the equilibrium between phases.

In order to improve clearness and modularity, the

model relative to the material is broken up:

• a part gathers the equations and variables

belonging to the set “phases/phases system”. The

corresponding model is then associated with the

differential places of the phases system Petri net.

For example, the place corresponding to the

liquid/vapour state contains the equations

representing the liquid/vapour equilibrium; on

the other hand, the place corresponding to the

monophasic state does not own any particular

equation.

• the other part of the model gathers the equations

and variables allowing the computation of the

phases physical properties; they are associated

with the differential places of the phases Petri

nets.

Thus, a new kind of token has been created: it is

called Phase token and carries a Phase object.
Among its attributes, this object defines a Petri net

which describes its behaviour. The equations

relative to the phase are thus associated with the

places of the Phase Petri net. However, the phase
model remains integrated into the material model

thanks to the Phase token which moves on the

PhaseSystem Petri net. According to the kind of

the carried phase, these tokens are characterised by

a specific type which specifies if it is about a

vapour phase ϕv or a liquid phase ϕl.

So, the class PhaseSystem described on figure 12

is replaced by the model of figure 13. The Tank
object is represented at the top and its behaviour is

described by the attribute TankPN. It is still made

up of eight places, each one describing one of the

continuous states previously defined. The Material
token moves on the tank Petri net and its behaviour

is described by the Petri net PhaseSystemPN. Now,
it owns only two places: the first one symbolises

the monophasic state of the material whose nature

depends on the token marking the place; the second

one symbolises the liquid/vapour state indicating

the presence of the liquid and vapour phases within

the phases system. Regarding the Phase tokens,
they move on the Petri net PhaseSystemPN and
own a specific Petri net called PhasePN. This one
is made up of two places corresponding to two

distinct configurations (not detailed here).

Considering the same current state (feedings A and
B, heating and liquid state), the marking of the Petri

nets is indicated on figure 13. The continuous
model results from the concatenation of the DAE

system MT8 associated with the marked place p8 of

the tank Petri net, the DAE system MM associated

Class Tank

att1
att2
TankPN
meth1 …

Class PhaseSystem

att1
att2
PhaseSystemPN
meth1 …

MT1

〈m
〉

m

MT5

MT3

MT2

MT4

MT8

MT6

MT7

Class m
att1
material
meth1

Class ϕl

att1
phase
meth1

Class ϕv

att1
phase
meth1

MM

MLV

ϕl

〈ϕ l〉

〈ϕ
l 〉

〈ϕ
l ,ϕv 〉

〈ϕv〉

〈ϕ
v 〉

p2p1

〈ϕ l,ϕ v 〉

〈ϕ
l,ϕv 〉

〈ϕ l,ϕv 〉

Class LiquidPhase

PhasePN
meth1 …

ML1 ML2

p1 p2

Class VapourPhase

PhasePN
meth1 …

MV1 MV2

p1 p2

Global continuous model : MT8 + MM + ML1

 figure 13. Tank / Phases system / Phases

with the marked place p1 of the phases system Petri

net and finally the DAE system ML1 associated with

the marked place p1 of the liquid phase Petri net.

Indeed, as material is in a liquid state, only the

Phase token carrying the liquid phase marks the

monophasic differential place of the phases system;

the Phase token carrying the vapour phase does not
exist.

6.2. Modelling of ports

The number and the type of ports may quickly

increase the combinatory and so the complexity of

the model. Moreover, this thwarts our objective

which is to create generic and reusable models.

For these reasons, another type of token has been

created. It is called Port token and carries a Port
object. The behaviour of the port is then described

by a specific Petri net named PortPN and defined as

an attribute of the Port object. This one is

characterised by two places : a discrete place which

indicates an inactive state and a differential place

which indicates an active state.

figure14. Tank/Phases system/Phases/Ports

Thus, in our example, the flow variable is no longer

directly associated with the tank but is now carried

by the port. The combinatory of the model, related to

the inlets and outlets, is thus reduced by replacing

the various induced states by only one state, marked

by a set of Port tokens.
Regarding transport ports, the active state supposes

that the associated flow belongs to the set of

unknown variables of the system. On the contrary,

when the state is inactive, flow becomes a parameter

equal to zero. The balance equations associated with

the continuous model of the tank Petri net remain the

same whatever the active or inactive state of its input

and output ports.

The model associated with the system of the

illustrative example is then made up of a set of Petri

nets represented in figure 14. The tank is now

described by only one place. The transition allows to

detect a possible event. The tokens associated with

the ports of the device mark the differential place.

They are five: two input material Port tokens pA and

pB, one output material Port token for the vapour
outlet pV, one energy Port token pE and finally, one

communication Port token pI. Each one owns a

specific Petri net.

Considering the same current state, the marking of

the set of Petri nets is indicated in figure 14. The

current places of Petri nets associated with the input

material ports and the energy port are the differential

ones. The associated flows are thus taken into

account in the material and energy balances. On the

contrary, the current place of the Petri net associated

with the output material port is the discrete one: the

associated flow appears in the balances but as a

zero-parameter. The global continuous model

associated with the current configuration of the

system is then the following one:

The model associated with the monophasic place of

the phases system Petri net is empty; it does not

contain any particular equation. In this example, the

models of the ports are also empty. However, they

indicate if the flow variable is considered as an

unknown variable or as a parameter and nullify it if

this last case is checked. On the other hand, the

eight configurations related to the inputs/outputs of

the tank are now replaced by only one state and the

associated models are replaced by a single model

MTank for which all flows are represented. The

above equations system highlights the flows

defined as unknown variables (surrounded) and

those defined as zero-parameters (barred with a

cross).

In addition, let us emphasise that the model MTank is

generic; it is set up according to a general process

which depends on the marking of the differential

place. Indeed, it obtains the variables and

parameters that it needs via the tokens marking the

Class Tank

att1
att2
TankPN
meth1

Class Port Class Port Class Port Class Port

PortPN
att1 …

PortPN
att1 …

PortPN
att1 …

PortPN
att1 …

m

pA

pV

pBpE
〈m,p〉

〈m,p〉

pA pV pB pE m

Mtank

Class Port

PortPN
att1 …

pI

pI

p1 p2 p1 p2p1 p2p1 p2

MP

p1 p2

MP MP MP MP

Class p
att1
port

meth1
meth2

Class p
att1
port

meth1
meth2

Classe PhaseSystem

att1
att2
PhaseSystemPN
meth1 …

Classe LiquidPhase

att1
PhasePN
meth1 …

Classe VapourPhase

att1
PhasePN
meth1 …

ML1 ML2

p1 p2

MV1 MV2

p1 p2

Class p
att1
port

meth1
meth2

Class p
att1
port

meth1
meth2

Class p
att1
port

meth1
meth2

Class m
att1
material
meth2

Classe ϕl

att1
phase
meth1

Classe ϕv

att1
phase
meth1

MM MLV

ϕl

〈ϕ l〉

〈ϕ
l 〉

〈ϕ
l ,ϕ

v 〉

〈ϕv〉

〈ϕv〉

p2p1

〈ϕ l,ϕ v 〉

〈ϕl,ϕv 〉

〈ϕl,ϕv 〉

MTank

ML1

0QH.Vh.Fh.F
dt

)h.U(d
BBAA

l =−+−−

0VFF
dt

dU
BA

l =+−−

0)x,P,T(mhh =−

0
S
VU

L
c

mll =−

0)x,P,T(mVV mlml =−

0y.Vx.Fx.F
dt

)x.U(d
iiBBiAA

il =+−−

place. The model is thus formulated by using the

formal variables 〈m〉, 〈ϕ〉, 〈p〉, which are replaced by
the Material, Phase and Port tokens respectively
when the place is marked. In order to illustrate these

remarks, the following differential algebraic system

represents how the continuous model MTank

associated with the tank is defined.

0F.pF.p
dt

U..md
pmspme n

1k

)k(

n

1k

)k(

n

1k

)k(

=〉〈+〉〈−















〉〈〉〈

∑∑
∑

==

=

ϕ

ϕ

 (12)

c

n

1k

i
)k()k(

n

1k

i
)k()k(

n

1k

i
)k()k(

n,1i0)z.p)(F.p(

)z.p)(F.p(

dt

)z..m)(U..m(d

pms

pme

==〉〈〉〈+

〉〈〉〈−
















〉〈〉〈〉〈〉〈

∑

∑

∑

=

=

=

ϕ

ϕϕ

 (13)

0Q.p)h.p)(F.p(

Q.p)h.p)(F.p(

dt

)h..m)(U..m(d

pespms

peepme

n

1k

)k(

n

1k

)k()k(

n

1k

)k(

n

1k

)k()k(

n

1k

)k()k(

=〉〈+〉〈〉〈+

〉〈−〉〈〉〈

−















〉〈〉〈〉〈〉〈

∑∑

∑∑

∑

==

==

=

ϕ

ϕϕ

 (14)

0
S

)V..m)(U..m(
L

c

mll =
〉ϕ〈〉〈〉ϕ〈〉〈

− (15)

0)x,P,T(mhh =− (16)

0)x,P,T(mVV mm =− (17)

where:

npme/npms : number of input and output material ports;

npee/npes : number of input and output energy ports ;

nϕ : number of phases of the Material token;
U : phase holdup;

F : material flow;

zi : molar fraction of the component i;
Q : energy flow ;

h : phase enthalpy ;
L : liquid height ;
Vm : molar volume.

Equations (12), (13) and (14) are the material and

energy balances respectively. Equations (16) and

(17) are the models used for the molar enthalpy and

the molar volume. Finally, equation (15) enables to

compute the liquid height in respect with the tank

geometry. Here, the liquid level is supposed to be

calculated in the cylindrical part of the tank. If this

calculation has to take into account the real shape of

the tank, several distinct equations would be

necessary. In this case, this would induce that the

tank Petri net would be composed of several places.

CONCLUSION

The modelling of most industrial processes requires

to take into account hybrid phenomena especially in

chemical Process Systems Engineering. The use of

a high level model associated with powerful

numerical integration methods allows to build a

robust hybrid dynamic simulator. Designed

according to an object approach, PrODHyS

provides a library of autonomous software

components that may be gathered or specialised in

order to develop a specific device. For a developer,

the exploitation of these elementary components

allows to speed up the design and the

implementation of a new device. For a user, the

exploitation of the predefined devices offered as

"black boxes" makes easier the setting up of

simulation campaigns. The continuous part of

PrODHyS has been used in the OPERA project for

real time operators training simulation (OPERA,

1999). Concerning the new hybrid aspect,

PrODHyS has been used with success for the

simulation of several large systems such as a

reactive distillation column (model made up more

than 600 equations, (Perret et al, 2003)). These

elements make PrODHyS an operational and

evolutive tool.

REFERENCES

Alur R., Dill D.L. (1994). A Theory of Timed

Automata, Theoretical Computer Science,

Vol.126, N°2, p.183-225.

Alur R., Courcoubetis C., Halbwachs N., Henzinger

T.A., Ho P.H., Nicollin X., A. Olivero, Sifakis

J. and Yovine S. (1995). The algorithmic

analysis of hybrid systems, Theoretical

Computer Science, Vol.138, p.3-34.

Andersson M. (1994). Object-Oriented Modelling

and Simulation of Hybrid Systems, Ph.D thesis,

Lund Institute of Technology, Sweden.

Barton P.I., Pantelides C.C. (1994). The Modelling

of Combined Discrete/Continuous Processes,

AIChE Journal, 40:966-979.

Bastide R. (1995). Approaches in unifying Petri

nets and the Object-Oriented Approach,

Application and Theory of Petri Nets -

Workshop on Object-Oriented Programming

and Models of Concurrency, June, Torino

(Italy).

Berthomieu B.; Menasche M. (1983). An

Enumerative Approach for Analyzing Time Petri

Nets, IFIP Congress Series, Vol.9, p.41-46.

Elsevier Science Publ. Comp. (North Holland).

Branicky M.S., Borkar V.S., Mitter S.K. (1998). A

unified framework for hybrid control : Model

and optimal control theory, IEEE Transactions

on Automatic Control, Vol.43, N°1, p.31-45.

Buisson J., Cormerais H., Richard P.Y. (2001).

Formally computing the state equations for

available configurations of bond graphs with

switches, ICBGM’2001, San Diego.

Champagnat R., Esteban P., Pingaud H., Valette R.

(1998). Modeling and simulation of a hybrid

system through Pr-Tr PN-DAE model,

ADPM’98, p.131-137, Reims (France).

Demongodin I. (2001). Generalised Batches Petri

Net: Hybrid Model for High Speed Systems with

Variable Delays, Discrete Event Dynamic

Systems: Theory and Applications, Vol.11,

n°1/2, p.137-162.

Deshpande A., Gollü A., Semenzato L. (1998). The

shift programming language for dynamic

networks of hybrid systems, IEEE Trans.

Automatic Control special issue on Hybrid

Systems.

Fábián G., van Beek D.A., Rooda J.E. (1998).

Integration of the Discrete and the Continuous

Behaviour in the Hybrid Chi Simulator,

European Simulation Multiconference,

Manchester.

Gani R., Braunschweig B.L. (2002). Software

architectures and tools for computer aided

process Engineering, Elsevier, ISBN :0-444-

50827-9.

Gear C.W. (1971). The Simultaneous Numerical

Solution of Differential-Algebraic Equations,

IEEE Transaction on Circuit Theory, CT 18 (1),

Ed. Academic Press.

Hétreux G., Théry R., Perret J., LeLann J.M., Moyse

A., (2002). Bibliothèque orientée-objet pour la

simulation dynamique des procédés :

architecture et mise en oeuvre, SIMO, Toulouse

(France),

Hétreux G., Perret J., LeLann J.M. (2003).

Bibliothèque orientée objet pour la conception

de simulateurs dynamiques hybrides, Congrès

Français de Génie des Procédés (CFGP’2003), 9-

11 September, Saint-Nazaire (France).

Jourda L. (1996). Composants logiciels Orientés

Objets pour la modélisation et la simulation des

procédés chimiques, PhD thesis, INP, Toulouse

(France)

Jourda L., Joulia X., Koehret B. (1996). Introducing

ATOM, the Applied Thermodynamic Object-

Oriented Model, Computer and Chemical

Engineering, 20A, S157-S164.

Kesten Y. and Pnueli A. (1992) Timed and hybrid

statecharts and their textual representation,

Lecture Notes in Computer Science, Vol.N°571.

Le Bail J., Alla H. and David R. (1991). Hybrid

Petri Nets, Proceedings of the European Control

Conference, p.1472-1477, Grenoble (France).

Marquardt W. (1992), An object oriented

representation of structured process model,

ESCAPE 1

Moyse A. (2000). Odysseo, plate-forme orientée-

objet pour la simulation dynamique des

procédés. PhD thesis, INP, Toulouse, France.

Nilsson. (1993), Object oriented modelling of

chemical Processes, Ph.D. thesis , Lund

Institute of Technology,

OPERA, (1999) Operators Training Distributed

Real-time Simulations, Esprit projet n°24950,

Whitepaper.

Paludetto M., Valette R., Courvoisier M. (1990).

Génération de code Ada à partir d’une

approche orientée objet Hood/Réseaux de Petri,

Journées Internationales Le Génie Logiciel et

ses Applications, p.795-826, Toulouse (France).

Perret J. (2003). Intégration des Réseaux de Petri

Différentiels à Objets dans une plateforme de

simulation dynamique hybride : application aux

procédés industriels , PhD thesis, INP, Toulouse

(France).

Perret J., Hétreux G., Thery R., LeLann J.M.

(2003). Object-oriented components for

dynamic simulation of a reactive distillation

process, European Symposium of Computer

Aided Process Engineering (ESCAPE 13), 1-4

June, Lappeenranta (Finland).

Perret J., Hétreux G., LeLann J.M. (2003). Object

hybrid formalism for modelling and simulation

of chemical processes., IFAC Conference on

Analysis and Design of Hybrid Systems

(ADHS’03), 16-18 June, Saint-Malo (France).

Sargousse A. (1999). Noyau numérique orienté-

objet dédié à la simulation des systèmes

dynamiques hybrides, PhD thesis, INP,

Toulouse (France).

Sibertin-Blanc C. (1985). High-level Petri nets with

Data structure, 6th European workshop on Petri

nets and applications, Espoo (Finland).

Valentin-Roubinet C. (1999), Hybrid Systems

modelling : Mixed Petri Nets, 3rd IMACS/IEEE

Conference CSCC 99, 4-8 Juillet, p.223-228,

Athènes (Grèce).

Wöllhaf K., Fritz M., Schulz C., Engell S. (1996).

BaSiP – Batch Process Simulation With

Dynamically Reconfigured Process Dynamics,

Supplement to Computers and Chemical

Engineering, 20(972), p.1281-1286.

Zaytoon J. (2001). Systèmes dynamiques hybrides,

HERMES Sciences publications.

