4,992 research outputs found

    Cross-layer Soft Error Analysis and Mitigation at Nanoscale Technologies

    Get PDF
    This thesis addresses the challenge of soft error modeling and mitigation in nansoscale technology nodes and pushes the state-of-the-art forward by proposing novel modeling, analyze and mitigation techniques. The proposed soft error sensitivity analysis platform accurately models both error generation and propagation starting from a technology dependent device level simulations all the way to workload dependent application level analysis

    STUDY OF SINGLE-EVENT EFFECTS ON DIGITAL SYSTEMS

    Get PDF
    Microelectronic devices and systems have been extensively utilized in a variety of radiation environments, ranging from the low-earth orbit to the ground level. A high-energy particle from such an environment may cause voltage/current transients, thereby inducing Single Event Effect (SEE) errors in an Integrated Circuit (IC). Ever since the first SEE error was reported in 1975, this community has made tremendous progress in investigating the mechanisms of SEE and exploring radiation tolerant techniques. However, as the IC technology advances, the existing hardening techniques have been rendered less effective because of the reduced spacing and charge sharing between devices. The Semiconductor Industry Association (SIA) roadmap has identified radiation-induced soft errors as the major threat to the reliable operation of electronic systems in the future. In digital systems, hardening techniques of their core components, such as latches, logic, and clock network, need to be addressed. Two single event tolerant latch designs taking advantage of feedback transistors are presented and evaluated in both single event resilience and overhead. These feedback transistors are turned OFF in the hold mode, thereby yielding a very large resistance. This, in turn, results in a larger feedback delay and higher single event tolerance. On the other hand, these extra transistors are turned ON when the cell is in the write mode. As a result, no significant write delay is introduced. Both designs demonstrate higher upset threshold and lower cross-section when compared to the reference cells. Dynamic logic circuits have intrinsic single event issues in each stage of the operations. The worst case occurs when the output is evaluated logic high, where the pull-up networks are turned OFF. In this case, the circuit fails to recover the output by pulling the output up to the supply rail. A capacitor added to the feedback path increases the node capacitance of the output and the feedback delay, thereby increasing the single event critical charge. Another differential structure that has two differential inputs and outputs eliminates single event upset issues at the expense of an increased number of transistors. Clock networks in advanced technology nodes may cause significant errors in an IC as the devices are more sensitive to single event strikes. Clock mesh is a widely used clocking scheme in a digital system. It was fabricated in a 28nm technology and evaluated through the use of heavy ions and laser irradiation experiments. Superior resistance to radiation strikes was demonstrated during these tests. In addition to mitigating single event issues by using hardened designs, built-in current sensors can be used to detect single event induced currents in the n-well and, if implemented, subsequently execute fault correction actions. These sensors were simulated and fabricated in a 28nm CMOS process. Simulation, as well as, experimental results, substantiates the validity of this sensor design. This manifests itself as an alternative to existing hardening techniques. In conclusion, this work investigates single event effects in digital systems, especially those in deep-submicron or advanced technology nodes. New hardened latch, dynamic logic, clock, and current sensor designs have been presented and evaluated. Through the use of these designs, the single event tolerance of a digital system can be achieved at the expense of varying overhead in terms of area, power, and delay

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    Study of Radiation Effects on 28nm UTBB FDSOI Technology

    Get PDF
    With the evolution of modern Complementary Metal-Oxide-Semiconductor (CMOS) technology, transistor feature size has been scaled down to nanometers. The scaling has resulted in tremendous advantages to the integrated circuits (ICs), such as higher speed, smaller circuit size, and lower operating voltage. However, it also creates some reliability concerns. In particular, small device dimensions and low operating voltages have caused nanoscale ICs to become highly sensitive to operational disturbances, such as signal coupling, supply and substrate noise, and single event effects (SEEs) caused by ionizing particles, like cosmic neutrons and alpha particles. SEEs found in ICs can introduce transient pulses in circuit nodes or data upsets in storage cells. In well-designed ICs, SEEs appear to be the most troublesome in a space environment or at high altitudes in terrestrial environment. Techniques from the manufacturing process level up to the system design level have been developed to mitigate radiation effects. Among them, silicon-on-insulator (SOI) technologies have proven to be an effective approach to reduce single-event effects in ICs. So far, 28nm ultra-thin body and buried oxide (UTBB) Fully Depleted SOI (FDSOI) by STMicroelectronics is one of the most advanced SOI technologies in commercial applications. Its resilience to radiation effects has not been fully explored and it is of prevalent interest in the radiation effects community. Therefore, two test chips, namely ST1 and AR0, were designed and tested to study SEEs in logic circuits fabricated with this technology. The ST1 test chip was designed to evaluate SET pulse widths in logic gates. Three kinds of the on-chip pulse-width measurement detectors, namely the Vernier detector, the Pulse Capture detector and the Pulse Filter detector, were implemented in the ST1 chip. Moreover, a Circuit for Radiation Effects Self-Test (CREST) chain with combinational logic was designed to study both SET and SEU effects. The ST1 chip was tested using a heavy ion irradiation beam source in Radiation Effects Facility (RADEF), Finland. The experiment results showed that the cross-section of the 28nm UTBB-FDSOI technology is two orders lower than its bulk competitors. Laser tests were also applied to this chip to research the pulse distortion effects and the relationship between SET, SEU and the clock frequency. Total Ionizing Dose experiments were carried out at the University of Saskatchewan and European Space Agency with Co-60 gammacell radiation sources. The test results showed the devices implemented in the 28nm UTBB-FDSOI technology can maintain its functionality up to 1 Mrad(Si). In the AR0 chip, we designed five ARM Cortex-M0 cores with different logic protection levels to investigate the performance of approximate logic protecting methods. There are three custom-designed SRAM blocks in the test chip, which can also be used to measure the SEU rate. From the simulation result, we concluded that the approximate logic methodology can protect the digital logic efficiently. This research comprehensively evaluates the radiation effects in the 28nm UTBB-FDSOI technology, which provides the baseline for later radiation-hardened system designs in this technology

    The IceCube Neutrino Observatory: Instrumentation and Online Systems

    Get PDF
    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review and proofin

    Simulation and Experimental Demonstration of the Importance of IR-Drops During Laser Fault-Injection

    Get PDF
    International audienceLaser fault injections induce transient faults into ICs by locally generating transient currents that temporarily flip the outputs of the illuminated gates. Laser fault injection can be anticipated or studied by using simulation tools at different abstraction levels: physical, electrical or logical. At the electrical level, the classical laser-fault injection model is based on the addition of current sources to the various sensitive nodes of CMOS transistors. However, this model does not take into account the large transient current components also induced between the VDD and GND of ICs designed with advanced CMOS technologies. These short-circuit currents provoke a significant IR-drop that contribute to the fault injection process. This paper describes our research on the assessment of this contribution. It shows through simulation and experiments that during laser fault injection campaigns, laser-induced IR-drop is always present when considering circuits designed with deep submicron technologies. It introduces an enhanced electrical fault model taking the laser-induced IR-drop into account. It also proposes a methodology that allows the use of the model to simulate laser-induced faults at the electrical level in large-scale circuits. On the basis of further simulations and experimental results, we found that, depending on the laser pulse characteristics, the number of injected faults may be underestimated by a factor of up to 2.4 if the laser-induced IR-drop is ignored. This could lead to incorrect estimations of the fault injection threshold, which is especially relevant to the design of countermeasure techniques for secure integrated systems

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    {TRIX}: {L}ow-Skew Pulse Propagation for Fault-Tolerant Hardware

    Get PDF
    The vast majority of hardware architectures use a carefully timed reference signal to clock their computational logic. However, standard distribution solutions are not fault-tolerant. In this work, we present a simple grid structure as a more reliable clock propagation method and study it by means of simulation experiments. Fault-tolerance is achieved by forwarding clock pulses on arrival of the second of three incoming signals from the previous layer. A key question is how well neighboring grid nodes are synchronized, even without faults. Analyzing the clock skew under typical-case conditions is highly challenging. Because the forwarding mechanism involves taking the median, standard probabilistic tools fail, even when modeling link delays just by unbiased coin flips. Our statistical approach provides substantial evidence that this system performs surprisingly well. Specifically, in an "infinitely wide" grid of height~HH, the delay at a pre-selected node exhibits a standard deviation of O(H1/4)O(H^{1/4}) (≈2.7\approx 2.7 link delay uncertainties for H=2000H=2000) and skew between adjacent nodes of o(log⁡log⁡H)o(\log \log H) (≈0.77\approx 0.77 link delay uncertainties for H=2000H=2000). We conclude that the proposed system is a very promising clock distribution method. This leads to the open problem of a stochastic explanation of the tight concentration of delays and skews. More generally, we believe that understanding our very simple abstraction of the system is of mathematical interest in its own right
    • 

    corecore