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Abstract. The vast majority of hardware architectures use a carefully
timed reference signal to clock their computational logic. However, stan-
dard distribution solutions are not fault-tolerant. In this work, we present
a simple grid structure as a more reliable clock propagation method and
study it by means of simulation experiments. Fault-tolerance is achieved
by forwarding clock pulses on arrival of the second of three incoming
signals from the previous layer.
A key question is how well neighboring grid nodes are synchronized, even
without faults. Analyzing the clock skew under typical-case conditions is
highly challenging. Because the forwarding mechanism involves taking
the median, standard probabilistic tools fail, even when modeling link
delays just by unbiased coin flips.
Our statistical approach provides substantial evidence that this system
performs surprisingly well. Specifically, in an “infinitely wide” grid of
height H, the delay at a pre-selected node exhibits a standard deviation
of O(H1/4) (≈ 2.7 link delay uncertainties for H = 2000) and skew
between adjacent nodes of o(log logH) (≈ 0.77 link delay uncertainties
for H = 2000). We conclude that the proposed system is a very promising
clock distribution method. This leads to the open problem of a stochastic
explanation of the tight concentration of delays and skews. More generally,
we believe that understanding our very simple abstraction of the system
is of mathematical interest in its own right.

Keywords: pulse propagation · clock tree replacement · self-stabilizing
hardware · fault tolerance

1 Introduction

When designing high reliability systems, any critical subsystem susceptible to
failure must exhibit sufficient redundancy. Traditionally, clocking of synchronous
systems is performed by clock trees or other structures that cannot sustain
faulty components [23]. This imposes limits on scalability on the size of clock
domains; for instance, in multi-processor systems typically no or only very loose
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synchronization is maintained between different processors [6,18]. Arguably, this
suggests that fault-tolerant clocking methods that are competitive – or even better
– in terms of synchronization quality and other parameters (ease of layouting,
amount of circuitry, energy consumption, etc.) would be instrumental in the
design of larger synchronous systems.

To the best of our knowledge, at least until 20, or perhaps even 10 years
ago, there is virtually no work on fault-tolerance of clocking schemes beyond
production from the hardware community; due to the size and degree of minia-
turization of systems at the time, clock trees and their derivatives were simply
sufficiently reliable in practice. That this has changed is best illustrated by an
upsurge of interest in single event upsets of the clocking subsystem in the last
decade [1,3,4,5,14,16,20,22]. However, with ever larger systems and smaller compo-
nents in place, achieving acceptable trade-offs between reliability, synchronization
quality, and energy consumption requires to go beyond these techniques.

On the other hand, there is a significant body of work on fault-tolerant
synchronization from the area of distributed systems. Classics are the Srikanth-
Toueg [19] and Lynch-Welch [21] algorithms, which maintain synchronization even
in face of a large minority (strictly less than one third) of Byzantine faulty nodes.1

Going beyond this already very strong fault model, a line of works [7,10,11,12,15]
additionally consider self-stabilization, the ability of a system to recover from an
unbounded number of transient faults. The goal is for the system to stabilize,
i.e., recover nominal operation, after transient faults have ceased. Note that the
combination makes for a very challenging setting and results in extremely robust
systems: even if some nodes remain faulty, the system will recover from transient
faults, which is equivalent to recover synchronization when starting from an
arbitrary state despite interference from Byzantine faulty nodes.

While these fault-tolerance properties are highly desirable, unsurprisingly
they also come at a high price. All of the aforementioned works assume a fully
connected system, i.e., direct connections between each pair of nodes. Due to the
strong requirements, it is not hard to see that this is essentially necessary [9]:
in order to ensure that each non-faulty node can synchronize to the majority of
correct nodes, its degree must exceed the number of faults, or it might become
effectively disconnected. In fact, it actually must have more correct neighbors than
faulty ones, or a faulty majority of neighbors might falsely appear to provide the
correct time. Note that emulating full connectivity using a crossbar or some other
sparser network topology defeats the purpose, as the system then will be brought
down by a much smaller number of faults in the communication infrastructure
connecting the nodes. Accordingly, asking for such extreme robustness must
result in solutions that do not scale well.

A suitable relaxation of requirements is proposed in [8]. Instead of assuming
that Byzantine faults are also distributed across the system in a worst-case fashion,

1 Distributed systems are typically modeled by network graphs, where the nodes are
the computational devices and edges represent communication links. A Byzantine
faulty node may deviate from the protocol in an arbitrary fashion, i.e., it models
worst-case faults and/or malicious attacks on the system.



the authors of this work require that faults are “spread out.” More specifically,
they propose a grid-like network they call HEX, through which a clock signal can
be reliably distributed, so long as for each node at most one of its four in-neighbors
is faulty. Note that for the purposes of this paper, we assume that the problem
of fault-tolerant clock signal generation has already been sufficiently addressed
(e.g. using [11]), but the signal still needs to be distributed. Provided that nodes
fail independently, this means that the probability of failure of individual nodes
that can likely be sustained becomes roughly 1/

√
n, where n is the total number

of nodes; this is to be contrasted with a system without fault-tolerance, in which
components must fail with probability at most roughly 1/n. The authors also
show how to make HEX self-stabilizing. Unfortunately, however, the approach has
poor synchronization performance even in face of faults obeying the constraint
of at most one fault in each in-neighborhood. While it is guaranteed that the
clock signal propagates through the grid, nodes that fail to propagate the clock
signal cause a “detour” resulting in a clock skew between neighbors of at least
one maximum end-to-end communication delay d.2 This is much larger than
the uncertainty u in the end-to-end delay: As clocking systems can be (and are)
engineered for this purpose, the end-to-end delay will vary between d− u and d
for some u � d. To put this into perspective, in a typical system u will be a
fraction of a clock cycle, while d may easily be half of a clock cycle or more.

This is inherent to the structure of the HEX grid, see Figure 1. It seeks
to propagate the clock signal from layer to layer, where each node has two in-
neighbors on the preceding and two in-neighbors on their own layer. Because the
possibility of a fault requires nodes to wait for at least two neighbors indicating a
clock pulse before doing so themselves, a faulty node refusing to send any signal
implies that its two out-neighbors on the next layer need to wait for at least one
signal from their own layer. This adds at least one hop to the path along which
the signal is propagated, causing an additional delay of at least roughly d.

Our Contribution We propose a novel clock distribution topology that overcomes
the above shortcoming of HEX. As in our topology nodes have in- and out-
degrees of 3 and it is inspired by HEX, we refer to it as TRIX; see Figure 2
for an illustration of the grid structure. Similar to HEX, the clock signal is
propagated through layers, but for each node, all of its three in-neighbors are on
the preceding layer. This avoids the pitfall of faulty nodes significantly slowing
down the propagation of the signal. If at most one in-neighbor is faulty, each
node still has two correct in-neighbors on the preceding layer, as demonstrated in
Figure 3. Hence, we can now focus on fault-free executions, because single isolated
faults only introduce an additional uncertainty of at most u� d. Predictions in
this model are therefore still meaningful for systems with rare and non-malicious
faults.

2 d includes the wire delay as well as the time required for local computations. As the
grid is highly uniform and links connect close-by nodes, the reader should expect this
value to be roughly the same for all links.
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Fig. 1: A crashing node in a HEX grid causes
a large skew between neighbors in the same
layer, even with all links having exactly the
same delay. Thick links cause nodes to pulse,
dotted links mean that the transmitted pulse
was too late to be considered, and faint dotted
links do not transmit a pulse.

column

la
y
er

Fig. 2: The basic topology of
TRIX. Only wires incident to the
central node are shown; the same
pattern is applied at other nodes.
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Fig. 3: A crashing node in a TRIX grid
causes no significant skew, compared to
Figure 1. In fact, in absence of uncer-
tainty, isolated crashes can be ignored
entirely.
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Fig. 4: Worst-case assignment of wire
delays causing large skew for TRIX.
Squiggly lines indicate slow wires,
straight ones fast wires. The symbol
ď stands for d− u.



The TRIX topology is acyclic, which conveniently means that self-stabilization
is trivial to achieve, as any incorrect state is “flushed out” from the system.

Despite its apparent attractiveness and even greater simplicity, we note that
this choice of topology should not be obvious. The fact that nodes do not check
in with their neighbors on the same layer implies that the worst-case clock
skew between neighbors grows as uH, where H is the number of layers and (for
the sake of simplicity) we assume that the skew on the first layer (which can
be seen as the “clock input”) is 0, see Figure 4. However, reaching the skew
of d between neighbors on the same layer, which is necessary to give purpose
to any link between them, takes many layers, at least d/u � 1 many. This is
in contrast to HEX, where the worst-case skew is bounded, but more easily
attained. When not assuming that delays are chosen in a worst-case manner, our
statistical experiments show it to likely take much longer before this threshold is
reached. Accordingly, in TRIX there is no need for links within the same layer
for any practical number of layers, resulting in the advantage of smaller in- and
out-degrees compared to HEX.

The main focus of this work lies on statistical experiments with the goal of
estimating the performance of a TRIX grid as clock distribution method. Note
that this is largely3 dominated by the skew between adjacent nodes in the grid,
as these will drive circuitry that needs to communicate. While the worst-case
behavior is easy to understand, it originates from a very unlikely configuration,
where one side of the grid is entirely slow and the other is fast, see Figure 4. In
contrast, correlated but gradual changes will also result in spreading out clock
skews – and any change that affects an entire region in the same way will not
affect local timing differences at all. This motivates to study the extreme case of
independent noise on each link in the TRIX grid. Choosing a simple abstraction,
we study the random process in which each link is assigned either delay 0 or
delay 1 by an independent, unbiased coin flip. Moreover, we assume “perfect”
input, i.e., each node on the initial layer signals a clock pulse at time 0, and
that the grid is infinitely wide.4 By induction over the layers, each node is then
assigned the second largest value out of the three integers obtained by adding
the respective link delay to the pulse time of each of its in-neighbors. We argue
that this simplistic abstraction captures the essence of (independent) noise on
the channels.

Due to the lack of applicable concentration bounds for such processes, we study
this random process by extensive numerical experiments. Our results provide
evidence that TRIX behaves surprisingly well in several regards, exhibiting better
concentration than one might expect. First and foremost, the skew between
neighbors appears to grow extremely slowly with the number of layers H. Even

3 Skews over longer distances are relevant for long-range communication, but have
longer communication delays and respective uncertainties. This entails larger buffers
even in absence of clock skew. We briefly show that the TRIX grid appears to behave
well also in this regard.

4 Experiments with grids of bounded width suggest that reducing width only helps,
while our goal here is to study the asymptotic behavior for large systems.



for 2000 layers, we never observed larger differences than 7 between neighbors
on the same layer. Plotting the standard deviation of the respective distribution
as a function of the layer, the experiments show a growth that is slower than
doubly logarithmic, i.e. log logH. Second, for a fixed layer, the respective skew
distribution exhibits an exponential tail falling as roughly e−λ|x| for λ ≈ 2.9.
Third, the distribution of pulsing times as a function of the layer (i.e., when
a node pulses, not the difference to its neighbors) is also concentrated around
its mean (which can easily be shown to be H/2), where the standard deviation
grows roughly as H1/4.

To support that these results are not simply artifacts of the simulation, i.e.,
that we sampled sufficiently often, we make use of the Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality [13] to show that the underlying ground truth is very close
to the observed distributions. In addition, to obtain tighter error bounds for
our asymptotic analysis of standard deviations as function of H, we leverage
the Chernoff bound (as stated in [17]) on individual values. We reach a high
confidence that the qualitative assertion that the TRIX distribution exhibits
surprisingly good concentration is well-founded. We conclude that the simple
mechanism underlying the proposed clock distribution mechanism results in a
fundamentally different behavior than existing clock distribution methods or
naive averaging schemes.

2 Preliminaries

Model We model TRIX in an abstract way that is amenable to very efficient
simulation in software. In this section, we introduce this model and discuss the
assumptions and the resulting restrictions in detail.

The network topology is a grid of height H and width W . For finite W ,
the left- and rightmost column would be connected, resulting in a cylinder. To
simplify, we choose W =∞, because we aim to focus on the behavior in large
systems. Note that a finite width will work in our favor, as it adds additional
constraints on how skews can evolve over layers; in the extreme case of W = 3,
in absence of faults skews could never become larger than 1. We refer to the grid
nodes by integer coordinates (x, y), where x ∈ Z and y ∈ N0. Layer 0 ≤ ` ≤ H
consists of the nodes (x, `), x ∈ Z.

Layer 0 is special in that its nodes represent the clock source; they always
pulse at time 0. Again, there are implicit simplifications here. First, synchronizing
the layer 0 nodes requires a suitable solution – ideally also fault-tolerant – and
cannot be done perfectly. However, our main goal here is to understand the
properties of the clock distribution grid, so the initial skew is relevant only insofar
as it affects the distribution. Some indicative simulations demonstrate that the
grid can counteract “bad” inputs to some extent, but some configurations do not
allow for this in a few layers, e.g. having all nodes with negative x coordinates
pulse much earlier than those with positive ones. Put simply, this would be a
case of “garbage-in garbage-out,” which is not the focus of this study. A more
subtle point is the unrealistic assumption that all layers of the grid have the



same width. If the layer 0 nodes are to be well-synchronized, they ought to be
physically close; arranging them in a wide line is a poor choice. Accordingly,
arranging the grid in concentric rings (or a similar structure) would be more
natural. This would, however, entail that the number of grid nodes per layer
should increase at a constant rate, in order to maintain a constant density of
nodes (alongside constant link length, etc.). However, adding additional nodes
permits to distribute skews better, therefore our simplification acts against us.

All other nodes (x, `) for ` > 0 are TRIX nodes. Each TRIX node propagates
the clock signal to the three nodes “above” it, i.e., the vertices (x − 1, y + 1),
(x, y + 1), and (x + 1, y + 1). In the case of the clock generators, the signal is
just the generated clock pulse; in case of the TRIX nodes, this signal is the
forwarded clock pulse. Each node (locally) triggers the pulse, i.e., forwards the
signal, when receiving the second signal from its predecessors; this way, a single
faulty in-neighbor cannot cause the node’s pulse to happen earlier than the first
correct in-neighbor’s signal arriving or later than the last such signal.

Pulse propagation over a comparatively long distance involves delays, and
our model focuses on the uncertainty on the wires. Specifically, we model the
wire delays using i.i.d. random variables that are fair coin flips, i.e., attain the
values 0 or 1 with probability 1/2 each.5 This reflects that any (known expected)
absolute delay does not matter, as the number of wires is the same for any path
from layer 0 (the clock generation layer) to layer ` > 0; also, this normalizes the
uncertainty to 1.

Formalizing the above, for each wire from the nodes (x + c, y) with c ∈
{−1, 0,+1} to node (x, y+1), we define wc to be the wire delay. We further define
the time tc ..= d(x+c, y)+wc at which node (x, y+1) receives the clock pulse. Then
node (x, y + 1) fires a clock pulse at the median time t ..= median{t−1, t0, t+1}.
As we assume that all clock generators (i.e., nodes with y = 0) fire, by induction
on y all d(x, y) are well-defined and finite.

This model may seem idealistic, especially our choice of the wire delay
distribution. However, in Appendix A we argue that this is not an issue.

We concentrate on two important metrics to analyze this system: absolute
delay and relative skew. The total delay d(x, y) of a node (x, y) (usually with
y = H) is the time at which this node fires. The relative skew sδ(x, y) in horizontal
distance δ is the difference in total delay; i.e., sδ(x, y) ..= d(x + h, y) − d(x, y).
Our main interests are the random variables d(H) ..= d(0, H), i.e. the delay at
the top, and s(H) ..= s1(0, H), i.e. the relative skew between neighboring nodes.

Further Notation We write N (µ, σ2) to denote the normal distribution with
mean µ and standard deviation σ.

Given the average sample value v̄ =
∑n
i=1 vi/n over a set of n sample values vi,

we compute the empiric standard deviation as (
∑n
i=1(vi − v̄)2/(n− 1))1/2.

5 This model choice is restrictive in that it deliberately neglects correlations. A par-
tial justification here is the expectation that (positive) correlations are unlikely to
introduce local “spikes” in pulse times, i.e., large skews. However, we acknowledge
that this will require further study, which must be based on realistic models of the
resulting physical implementations.



We denote the cumulative distribution function of a random variable X
as C[X]; e.g. the term C[X](x) denotes the probability that X ≤ x. We denote
the inverse function by C−1[X].

A quantile-quantile-plot relates two distributions A and B. The simplest
definition is to plot the domain of A against the domain of B, using the function
C−1[B](C[A](x)).

We define the sample space Ω as the set of possible specific assignments of
wire delays. If we need to refer to the value of some random variable X in a
sample s ∈ Ω, we write X[s].

3 Delay is Tightly Concentrated

3.1 Empiric Analysis

In this subsection, we examine d(2000), which we formally defined in Section 2.
Recall that d(2000) is the delay at layer 2000. The results are similar for other
layers and, as we will show in Section 3.3, do change slowly with increasing H.

For reference, consider a simpler system consisting of a sequence of nodes
arranged in a line topology, where each node transmits a pulse once receiving
the pulse from its predecessor. In this system, the delay at layer H would
follow a binomial distribution with mean H/2 = 1000 and standard deviation√
H/2 =

√
2000/2 ≈ 22. Recall that by the central limit theorem, for large H

this distribution will be very close to a normal distribution with the same mean
and standard deviation. In particular, it will have an exponential tail.

Figure 5 shows the estimated probability mass function of d(2000). The data
was gathered using 25 million independent simulations; in Appendix A we discuss
how we ensured that the simulations are correct.

Observe that the shape looks like a normal distribution, as one might expect.
However, it is concentrated much more tightly around its mean than for the
simple line topology considered above: The empiric standard deviation of this
sample is only 2.741.
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Figure 6 uses a quantile-quantile-plot to show that d(2000) andN (1000, 2.7412)
seem to be close to identical, as indicated by the fact that the plot is close to a
straight line. The extremes are an exception, where numerical and uncertainty
issues occur. Of course, they cannot be truly identical, even if our guess 2.741
was correct: d(2000) is discrete and has a bounded support, in contrast to
N (1000, 2.7412). However, this indicates some kind of connection we would like
to understand better.

The Dvoretzky-Kiefer-Wolfowitz inequality [13] implies that the true cumula-
tive distribution function must be within 0.0003255 (i.e., 8139 evaluations) of our
measurement with probability 1− α = 99%. For the values with low frequency
however, the Dvoretzky-Kiefer-Wolfowitz inequality yields weak error bounds.

Instead, we use that Chernoff bounds can be applied to the random variable Xk

given by sum of variables Xi,k indicating whether the i-th evaluation of the
distribution attains value k. We then vary pk, the unknown probability that the
underlying distribution attains value k, and determine the threshold pmax at
which Chernoff’s bound shows that pk ≥ pmax implied that our observed sample
had an a-priori probability of at most α′; the same procedure is used to determine
the threshold pmin for which pk ≤ pmin would imply that the observed sample has
a-priori probability at most α′. Note that we can also group together multiple
values of k into a single bucket and apply this approach to the frequency of the
overall bucket. This can be used to address all values with frequency 0 together.
Finally, we chose α′ suitably such that a union bound over all buckets6 yields the
desired probability bound of 1− α = 99% that all frequencies of the underlying
distribution are within the computed error bounds.

Due to our large number of samples, the resulting error bars for the probability
mass function are so small that they cannot be meaningfully represented in
Figure 5; in fact, on the interval [990, 1010] the error bars are at most 8.05%
(multiplicative, not additive), and on the interval [994, 1006] at most 0.93%. On
the other hand, data points outside [990, 1010] in Figure 6 should be taken as
rough indication only.

In other words, we have run a sufficient number of simulations to conclude
that the ground truth is likely to be very close to a binomial (i.e., essentially
normal) distribution with mean H/2 = 1000 and standard deviation close to
2.741; the former is easily shown, which we do next.

3.2 Stochastic Analysis

Lemma 1. E[d(H)] = H/2.

Proof. Consider the bijection f : Ω → Ω on the sample space given by f(s) = s̄,
i.e., we exchange all delays of 0 for delays of 1 and vice versa. We will show that
for a sample s with d(2000)[s] = δ it holds that d(2000)[f(s)] = H − δ. As the
wire delays are u.i.d., all points in Ω have the same weight under the probability
measure, implying that this is sufficient to show that E[d(H)] = H/2.

6 That is, the number of non-zero values to which we do not apply Dvoretzky-Kiefer-
Wolfowitz plus one (for values of frequency 0).



We prove by induction on y that d(x, y)[f(s)] = y−d(x, y)[s] for all 0 ≤ y ≤ H
and x ∈ Z; by the above discussion, evaluating this claim at (x, y) = (0, H)
completes the proof. For the base case of y = 0, recall that d(x, 0)[f(s)] =
d(x, 0)[s] = 0 by definition.

For the step from y to y + 1, consider the node at (x, y + 1) for x ∈ Z. For
c ∈ {−1, 0,+1}, the wire delay wc from (x+ c, y) to (x, y+ 1) satisfies wc[f(s)] =
1 − wc[s] by construction. By the induction hypothesis, d(x + c, y)[f(s)] =
y − d(x + c, y)[s]. Together, this yields that (x, y + 1) receives the pulse from
(x+ c, y) at time

d(x+ c, y)[f(s)] + wc[f(s)] = y + 1− (d(x+ c, y)[s] + wc[s]).

We conclude that

d(x, y + 1)[f(s)] = median
c∈{−1,0,1}

{y + 1− (d(x+ c, y)[s] + wc[s])}

= y + 1− median
c∈{−1,0,1}

{d(x+ c, y)[s] + wc[s]} = y + 1− d(x, y + 1)[s].

3.3 Asymptotics in Network Depth

As discussed earlier, forwarding the pulse signal using a line topology would result
in d(H) being a binomial distribution with mean H/2 and standard deviation√
H/2. For d(2000), we observe a standard deviation that is smaller by about an

order of magnitude.
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Fig. 7: Log-log plot of the empiric standard deviation of d(H) as a function of H.



Running simulations and computing the empiric standard deviation for various
values of H resulted in the data plotted in Figure 7 as a log-log plot. Using the
technique discussed above, we can compute error bars.7 Again, the obtained error
bounds cannot be meaningfully depicted; errors are about 1% (multiplicative,
not additive) with probability 1− α = 99%. The largest error margin is at 200
layers, with 1.35%.

Figure 7 suggests a polynomial relationship between standard deviation σ
and grid height H. The slope of the line is close to 1/4, which suggests σ ∼ Hβ

with β ≈ 1/4.
This is a quadratic improvement over the reference case of a line topology.

4 Skew is Tightly Concentrated

4.1 Empiric Analysis

In this subsection, we study s(2000), which we formally defined in Section 2.
Recall that s(2000) is the skew at layer 2000 between neighboring nodes. As we
will show in Section 4.3, the behavior for other layers is very similar. In particular,
the skews increase stunningly slowly with H.

We gathered data from 20 million simulations8, and see a high concentration
around 0 in Figure 8, with roughly half of the probability mass at 0. Note that
again the error bars cannot be represented meaningfully in Figure 8; in fact,
on the interval [−3,+3] the error bars are at most 6.1% (multiplicative, not
additive), and on the interval [−2,+2] at most 1.4%.

Observe that the skew does not follow a normal distribution at all: The
probability mass seems to drop off exponentially like e−λ|x| for λ ≈ 2.9 (where x

is the skew), and not quadratic-exponentially like e−x
2/(2σ2), as it would happen

in the normal distribution. The probability mass for 0 is a notable exception, not
matching this behavior.

The Dvoretzky-Kiefer-Wolfowitz inequality [13] implies that the true cumula-
tive distribution function must be within 0.0005147 (i.e., 5147 evaluations) of
our measurement with probability 1− α = 99%. In particular, observing skew 6
twice without observing skew −6 is well within error tolerance.

4.2 Stochastic Analysis

First, we observe that the skew is symmetric with mean 0. This is to be expected,
as the model is symmetric. It also readily follows using the same argument as
used in the proof of Lemma 1.

7 This relies on the exponential tails demonstrated in Section 3.1. Without this addi-
tional observation, the error bars for all possible skews (including large skews like
H/2) would cause large uncertainty in the standard deviation.

8 Curiously, we saw skew -7 exactly once, skew -6 never, skew +6 four times. Further
investigation showed this to be a fluke, but we want to avoid introducing bias by
picking the “nicest” sample.



Fig. 8: The estimated probability mass
function for s(2000), with a logarith-
mic y-axis. The error bounds are only
visible at the fringes.

H

sk
ew

 e
m

pi
ric

 s
td

de
v

0.74

0.75

0.76

0.77

100 1000

Fig. 9: Empiric standard deviation
of s(H) as a function of H, as a log-lin
plot.

Corollary 1. s(H) is symmetric with E[s(H)] = 0.

Proof. Consider the bijection used in the proof of Lemma 1. As shown in the
proof, for any (x, y) ∈ Z× N0 and s ∈ Ω, we have that

d(x, y)[f(s)]− d(x+ 1, y)[f(s)] = y − d(x, y)[s]− (y − d(x+ 1, y)[s])

= − (d(x, y)[s]− d(x+ 1, y)[s]).

Next we prove that the worst-case skew on layer H is indeed H, c.f. Figure 4.

Lemma 2. There is a sample s such that s(H)[s] = H.

Proof. In s, we simply let all wire delays wi of wires leading to a node with
positive x be 1, and let all wire delays wj of wires leading into a node with
non-positive x be 0. A simple proof by induction shows that for positive x we get
d(x, y)[s1] = y and for non-positive x we get d(x, y)[s1] = 0. We conclude that
s(H)[s] = d(1, y)[s]− d(0, y)[s] = H.

The constructed sample is not the only one which exhibits large skew. For
example, simultaneously changing the delay of all wires between x = 0 and x = 1
does not affect times when nodes pulse. Moreover, for all x /∈ {0, 1}, we can
concurrently change the delay of any one of their incoming wires without effect.
It is not hard to see that the total probability mass of the described samples is
small. We could not find a way to show that this is true in general; however, the
experiments from Section 4.1 strongly suggests that this is the case. (Hence our
question: How to approach statistical problems like this?)

4.3 Asymptotics in Network Depth

Again we lack proper models to describe the asymptotic behavior, and instead
calculate the empiric standard deviation from sufficiently many simulations.
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Fig. 11: Empiric standard deviation of
sδ(0, 500) as a function of horizontal
distance δ in a log-log plot.

Figure 9 shows that the skew remains small even for large values of H.9 Note
that the X-axis is logarithmic. Yet again, showing the error bars calculated using
Chernoff bounds and DKW (Dvoretzky-Kiefer-Wolfowitz) is not helpful, as we
get relative errors of about 0.6% with 99% confidence. The largest error margin
is at 100 layers and below, with an error about 0.95%.

This suggests that the standard-deviation of s(H) grows strongly sub-loga-
rithmically, possibly even converges to a finite value. In fact, the data indicates a
growth that is significantly slower than logarithmic: in Figure 10, the x-axis is
doubly logarithmic. Thus, the plot suggests that s(H) ∈ O(log logH).

Note that if we pretended that adjacent nodes exhibit independent delays,
the skew would have the same concentration as the delay. In contrast, we see
that adjacent nodes are tightly synchronized, implying strong correlation.10

4.4 Asymptotics in Horizontal Distance

So far, we have limited our attention to the skew between neighboring nodes.
In contrast, at horizontal distances δ ≥ 2H, node delays are independent, as
they do not share any wires on any path to any clock generator. Therefore, the
skew would be given by independently sampling twice from the delay distribution
and taking the difference. It remains to consider how skews develop for smaller
horizontal distances.

In Figure 11, we see that the skew grows steadily with increasing δ. These
simulations were run with H = 500 for higher precision and execution speed. Note
that the standard deviation of the skew converges to roughly

√
2 · 1.95 ≈ 2.75,

i.e.,
√

2 times the standard deviation of the delay at H = 500, as δ approaches
2 · 500 = 1000. This holds because the sum of independent random variables
has variance equal to the sum of variances of the variables. As before, depicting

9 A standard deviation below 1 link delay uncertainty is not unreasonable: Two circuits
clocked over independent links, hop-distance 1 from a perfect clock source, have
σ(skew) =

√
E[0.52] = 0.5 uncertainties.

10 For the sake of brevity, we do not show respective plots.



the error bars determined by our approach is of no use, as relative errors are
about 1.6%. The largest error margin is at horizontal distance 25, with 1.79%.

The small relative errors indicate that the log-log representation of the
data is meaningful, and suggests that the standard deviation increases roughly
proportional to δγ for γ ≈ 1/3. It is not surprising that the slope falls off towards
larger values, as we know that the curve must eventually flatten and become
constant for δ ≥ 2H = 1000. Overall, we observe that the correlation of skew at
a distance is stronger than expected, specifically γ ≈ 1/3 instead of the expected
γ ≈ 1/2 for small δ.

5 Conclusion

In this work, we studied the behavior of the TRIX grid under u.i.d. link delays,
using statistical tools. Our results clearly demonstrate that the TRIX grid
performs much better than one would expect from naive solutions, and thus
should be considered when selecting a fault-tolerant clock propagation mechanism.

Concretely, our simulation experiments show that the delay as function of
the distance H from the clock source layer is close to normally distributed with
a standard deviation that grows only as roughly H1/4, a qualitative change from
e.g. a line topology that would not be achieved by averaging or similar techniques.
Moreover, the skew between neighbors in the same layer is astonishingly small.
While not normally distributed, there is strong evidence for an exponential tail,
and the standard deviation of the distribution as function of H appears to grow
as O(log logH). Checking the skew over larger horizontal counts d (within the
same layer) shows a less surprising pattern. However, still the increase as function
of d appears to be slightly slower than

√
d.

These properties render the TRIX grid an attractive candidate for fault-
tolerant clock propagation, especially when compared to clock trees. We argue
that our results motivate further investigation, considering correlated delays based
on measurements from physical systems as well as simulation of frequency and/or
non-white phase noise. In addition, the impact of faults, physical realization as
less regular grid with a central clock source, and the imperfection of the input
provided by the clock source need to be studied.

Last but not least, we would like to draw attention to the open problem of
analyzing the stochastic process we use as an abstraction for TRIX. This is also
the reason why we lack a purely mathematical analysis. While our simulation
experiments are sufficient to demonstrate that the exhibited behavior is highly
promising, gaining an understanding of the underlying cause would allow making
qualitative and quantitative predictions beyond the considered setting. As both
the nodes’ decision rule and the topology are extremely simple, one may hope
for a general principle to emerge that can also be applied in different domains.



A Potential Systematic Errors

In this section we discuss possible sources of systematic errors in our simulations
and how we guarded against them.

A.1 Bugs

Since all experiments are software simulations, measurements have to be taken
to insure against bugs. In this regard, there are several arguments to be made,
some involving the Random Number Generator (RNG):

– We cross-validated four different implementations: (1) A very simple Python
implementation that uses system randomness; (2) a slightly more involved
Python implementation that exhaustively enumerates all possible wire delay
combinations; (3) a straight-forward C implementation using system random-
ness; and (4) an optimized C implementation with the slightly weaker RNG
“xoshiro512starstar” [2].

– Even though only implementation (4) was fast enough to be used to generate
the bulk of the results, all implementations agree on the probability distribu-
tions of delay and skew for examples they can handle. Implementation (2)
can only run up to layer 3 (H ≤ 3), implementations (1) and (3) were used
up to around layers 100 and 1000, respectively.

– Implementation (4) is short (200 lines, plus about 100 lines for the RNG [2]),
and is simple enough to be inspected manually.

– Multiple machines were used, so hardware failure can be ruled out with
sufficient confidence.

A.2 Randomness and Model

– Tests with a number of weak RNGs showed that TRIX seems to be robust
against this kind of deviation.

– Explorative simulations and validation simulations were kept strictly separate.
– For most discussions we assumed H = 2000, because this definitely covers all

practical applications. In fact, we expect that many applications only need
H = 200 or even H = 20. In this paper we use a large value for H to show
that the observed behavior is not a fluke that occurs due to low H, but that
the growth of delay and skew as function of H is indeed asymptotically slow.

– Using a larger domain only scales the result linearly, as expected.
– Using different wire delay models (e.g. choosing uniformly from {0, 0.5, 1}

instead of {0, 1}) does not significantly change the result, and in fact improves
it slightly, as expected.

– We only focused on fault-free executions. Observe that single isolated faults
only introduce an additional uncertainty of at most 1 (recall the normaliza-
tion u = 1). As faults are (supposed to be) rare and not maliciously placed,
this means that the predictions for fault-free systems have substantial and
meaningful implications also for systems with faults.



B Raw Data

In the following, we provide the data for all graphs.

Figure 5 Figure 6
x (delay) y (rate) x (delay) y (normal)

985 0.00000012 985.5 985.843
986 0.00000040 986.5 986.615
987 0.00000140 987.5 987.338
988 0.00001076 988.5 988.457
989 0.00004740 989.5 989.460
990 0.00019060 990.5 990.462
991 0.00066280 991.5 991.457
992 0.00206788 992.5 992.464
993 0.00561240 993.5 993.470
994 0.01324480 994.5 994.472
995 0.02753772 995.5 995.475
996 0.05006436 996.5 996.479
997 0.08002964 997.5 997.486
998 0.11158960 998.5 998.492
999 0.13625144 999.5 999.498

1000 0.14553656 1000.5 1000.503
1001 0.13611860 1001.5 1001.508
1002 0.11158608 1002.5 1002.515
1003 0.07996644 1003.5 1003.520
1004 0.05016040 1004.5 1004.526
1005 0.02753824 1005.5 1005.531
1006 0.01324832 1006.5 1006.537
1007 0.00557100 1007.5 1007.542
1008 0.00205200 1008.5 1008.545
1009 0.00066300 1009.5 1009.545
1010 0.00018904 1010.5 1010.552
1011 0.00004660 1011.5 1011.556
1012 0.00001044 1012.5 1012.650
1013 0.00000144 1013.5 1013.385
1014 0.00000044 1014.5 1014.363
1015 0.00000008

Figure 11
hop dist. empiric stddev

1 0.76334
2 0.94346
3 1.11873
4 1.26012
5 1.38309
6 1.49367
7 1.59118
8 1.67803
9 1.75621

10 1.83219
11 1.90233
12 1.96331
13 2.02323
14 2.07683
15 2.12580
16 2.17155
17 2.21355
18 2.25797
19 2.29356
20 2.32732
21 2.35812
22 2.38959
23 2.41912
24 2.44794
25 2.46569



Figure 7 Figures 9 and 10
x (H) y (stddev delay) y (stddev skew)

20 0.9012352 0.74096549
50 1.1147817 0.75071102

100 1.3166986 0.75573837
200 1.5567596 0.75993333
500 1.9468302 0.76314438

1000 2.3115292 0.76499614
2000 2.7406959 0.76601516
5000 3.4405614 0.76771794

Figure 8
x (skew) lowerb. rate observed rate upperb. rate

-7 0.0000000 0.0000001 0.0000010
-6 0.0000000 0.0000000 0.0000009
-5 0.0000010 0.0000022 0.0000041
-4 0.0000324 0.0000389 0.0000452
-3 0.0007020 0.0007322 0.0007578
-2 0.0142418 0.0143777 0.0144897
-1 0.2283952 0.2287592 0.2291231
0 0.5120736 0.5124375 0.5128015
1 0.2281477 0.2285116 0.2288756
2 0.0142291 0.0143650 0.0144769
3 0.0007024 0.0007326 0.0007583
4 0.0000343 0.0000410 0.0000475
5 0.0000009 0.0000020 0.0000038
6 0.0000000 0.0000002 0.0000013
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