89 research outputs found

    Energy Efficiency inWireless Sensor Networks: Transmission Protocols and Performance Evaluation

    Get PDF
    Doktorgradsavhandling, Fakultet for teknologi og realfag, Universitetet i Agder, 2016Energy efficiency is one of the major goals for achieving green wireless communications. The recent growth in ubiquitous wireless connections and multimedia applications demands higher energy efficiency for wireless communications. As a part of this picture, wireless sensor networks (WSNs) need to be more energy efficient since the battery capacity of nodes in such networks is limited in the absence of energy harvesting sources. In general, an energy efficient protocol should perform as few as possible operations when delivering user information successfully across the network. Energy efficient data transmission schemes could utilize network resources more effectively to lower down the energy consumption level. In this dissertation research, we focus on improving energy efficiency for data transmission and medium access control (MAC) protocols in WSNs. While energy consumption is inevitable for transmitting and receiving data in a WSN, the other typical and dominant energy consumption activities are idle listening, overhearing, and retransmissions due to unsuccessful transmission attempts. An energy efficient MAC protocol conserves energy by minimizing all these auxiliary operations in order to prolong network lifetime. On the other hand, balanced energy consumption among nodes which mitigates energy hole across a WSN also helps to extend network lifetime. In this context, we propose two cooperative transmission (CT) based energy balancingMAC protocols for the purpose of WSN lifetime prolongation. The first one is an asynchronous cooperative transmission MAC protocol, in which nodes generate their own wakeup schedules based on their level number in a WSN topology. The second one is a receiver initiated cooperative transmission MAC protocol in which the CT is initiated by a relay node. It is demonstrated that both proposed CT MAC protocols are able to achieve significantly extended network lifetime. In addition, an energy conserving sleeping mechanism for synchronous duty cycling MAC protocols is also proposed in this thesis. It is an eventtriggered sleeping (ETS) mechanism, which triggers the sleep mode of a node based on the incoming traffic pattern to that node. The ETS mechanism eliminates overhearing in a WSN and achieves higher energy efficiency. Furthermore, we apply packet aggregation at the MAC layer in WSNs for achieving more energy efficient data transmission. In aggregated packet transmission (APT), multiple packets are transmitted as a batch in a frame within a single duty cycle instead of transmitting merely one packet per cycle. Numerical results demonstrate that APT achieves higher throughput and shorter delay, in addition to higher energy efficiency. To evaluate the performance of the proposed MAC protocols and transmission schemes, we develop discrete time Markov chain (DTMC) models and verify them by comparing the results obtained from both analysis and discrete-event based simulations. The analytical and simulation results match precisely with each other, confirming the effectiveness of the proposed protocols and schemes as well as the accuracy of the developed models

    Modelling and performability evaluation of Wireless Sensor Networks

    Get PDF
    This thesis presents generic analytical models of homogeneous clustered Wireless Sensor Networks (WSNs) with a centrally located Cluster Head (CH) coordinating cluster communication with the sink directly or through other intermediate nodes. The focus is to integrate performance and availability studies of WSNs in the presence of sensor nodes and channel failures and repair/replacement. The main purpose is to enhance improvement of WSN Quality of Service (QoS). Other research works also considered in this thesis include modelling of packet arrival distribution at the CH and intermediate nodes, and modelling of energy consumption at the sensor nodes. An investigation and critical analysis of wireless sensor network architectures, energy conservation techniques and QoS requirements are performed in order to improve performance and availability of the network. Existing techniques used for performance evaluation of single and multi-server systems with several operative states are investigated and analysed in details. To begin with, existing approaches for independent (pure) performance modelling are critically analysed with highlights on merits and drawbacks. Similarly, pure availability modelling approaches are also analysed. Considering that pure performance models tend to be too optimistic and pure availability models are too conservative, performability, which is the integration of performance and availability studies is used for the evaluation of the WSN models developed in this study. Two-dimensional Markov state space representations of the systems are used for performability modelling. Following critical analysis of the existing solution techniques, spectral expansion method and system of simultaneous linear equations are developed and used to solving the proposed models. To validate the results obtained with the two techniques, a discrete event simulation tool is explored. In this research, open queuing networks are used to model the behaviour of the CH when subjected to streams of traffic from cluster nodes in addition to dynamics of operating in the various states. The research begins with a model of a CH with an infinite queue capacity subject to failures and repair/replacement. The model is developed progressively to consider bounded queue capacity systems, channel failures and sleep scheduling mechanisms for performability evaluation of WSNs. Using the developed models, various performance measures of the considered system including mean queue length, throughput, response time and blocking probability are evaluated. Finally, energy models considering mean power consumption in each of the possible operative states is developed. The resulting models are in turn employed for the evaluation of energy saving for the proposed case study model. Numerical solutions and discussions are presented for all the queuing models developed. Simulation is also performed in order to validate the accuracy of the results obtained. In order to address issues of performance and availability of WSNs, current research present independent performance and availability studies. The concerns resulting from such studies have therefore remained unresolved over the years hence persistence poor system performance. The novelty of this research is a proposed integrated performance and availability modelling approach for WSNs meant to address challenges of independent studies. In addition, a novel methodology for modelling and evaluation of power consumption is also offered. Proposed model results provide remarkable improvement on system performance and availability in addition to providing tools for further optimisation studies. A significant power saving is also observed from the proposed model results. In order to improve QoS for WSN, it is possible to improve the proposed models by incorporating priority queuing in a mixed traffic environment. A model of multi-server system is also appropriate for addressing traffic routing. It is also possible to extend the proposed energy model to consider other sleep scheduling mechanisms other than On-demand proposed herein. Analysis and classification of possible arrival distribution of WSN packets for various application environments would be a great idea for enabling robust scientific research

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators

    Enhancing Mobility in Low Power Wireless Sensor Networks

    Get PDF
    In the early stages of wireless sensor networks (WSNs), low data rate traffic patterns are assumed as applications have a single purpose with simple sensing task and data packets are generated at a rate of minutes or hours. As such, most of the proposed communication protocols focus on energy efficiency rather than high throughput. Emerging high data rate applications motivate bulk data transfer protocols to achieve high throughput. The basic idea is to enable nodes to transmit a sequence of packets in burst once they obtain a medium. However, due to the low-power, low-cost nature, the transceiver used in wireless sensor networks is prone to packet loss. Especially when the transmitters are mobile, packet loss becomes worse. To reduce the energy expenditure caused by packet loss and retransmission, a burst transmission scheme is required that can adapt to the link dynamics and estimate the number of packets to transmit in burst. As the mobile node is moving within the network, it cannot always maintain a stable link with one specific stationary node. When link deterioration is constantly detected, the mobile node has to initiate a handover process to seamlessly transfer the communication to a new relay node before the current link breaks. For this reason, it is vital for a mobile node to (1) determine whether a fluctuation in link quality eventually results in a disconnection, (2) foresee potential disconnection well ahead of time and establish an alternative link before the disconnection occurs, and (3) seamlessly transfer communication to the new link. In this dissertation, we focus on dealing with burst transmission and handover issues in low power mobile wireless sensor networks. To this end, we begin with designing a novel mobility enabled testing framework as the evaluation testbed for all our remaining studies. We then perform an empirical study to investigate the link characteristics in mobile environments. Using these observations as guidelines, we propose three algorithms related to mobility that will improve network performance in terms of latency and throughput: i) Mobility Enabled Testing Framework (MobiLab). Considering the high fluctuation of link quality during mobility, protocols supporting mobile wireless sensor nodes should be rigorously tested to ensure that they produce predictable outcomes before actual deployment. Furthermore, considering the typical size of wireless sensor networks and the number of parameters that can be configured or tuned, conducting repeated and reproducible experiments can be both time consuming and costly. The conventional method for evaluating the performance of different protocols and algorithms under different network configurations is to change the source code and reprogram the testbed, which requires considerable effort. To this end, we present a mobility enabled testbed for carrying out repeated and reproducible experiments, independent of the application or protocol types which should be tested. The testbed consists of, among others, a server side control station and a client side traffic ow controller which coordinates inter- and intra-experiment activities. ii) Adaptive Burst Transmission Scheme for Dynamic Environment. Emerging high data rate applications motivate bulk data transfer protocol to achieve high throughput. The basic idea is to enable nodes to transmit a sequence of packets in burst once they obtain a medium. Due to the low-power and low-cost nature, the transceiver used in wireless sensor networks is prone to packet loss. When the transmitter is mobile, packet loss becomes even worse. The existing bulk data transfer protocols are not energy efficient since they keep their radios on even while a large number of consecutive packet losses occur. To address this challenge, we propose an adaptive burst transmission scheme (ABTS). In the design of the ABTS, we estimate the expected duration in which the quality of a specific link remains stable using the conditional distribution function of the signal-to-noise ratio (SNR) of received acknowledgment packets. We exploit the expected duration to determine the number of packets to transmit in burst and the duration of the sleeping period. iii) Kalman Filter Based Handover Triggering Algorithm (KMF). Maintaining a stable link in mobile wireless sensor network is challenging. In the design of the KMF, we utilized combined link quality metrics in physical and link layers, such as Received Signal Strength Indicator (RSSI) and packet success rate (PSR), to estimate link quality fluctuation online. Then Kalman filter is adopted to predict link dynamics ahead of time. If a predicted link quality fulfills handover trigger criterion, a handover process will be initiated to discover alternative relay nodes and establish a new link before the disconnection occurs. iv) Mobile Sender Initiated MAC Protocol (MSI-MAC). In cellular networks, mobile stations are always associated with the nearest base station through intra- and inter-cellular handover. The underlying process is that the quality of an established link is continually evaluated and handover decisions are made by resource rich base stations. In wireless sensor networks, should a seamless handover be carried out, the task has to be accomplished by energy-constraint, resource-limited, and low-power wireless sensor nodes in a distributed manner. To this end, we present MSI-MAC, a mobile sender initiated MAC protocol to enable seamless handover

    QoS BASED ENERGY EFFICIENT ROUTING IN WIRELESS SENSOR NETWORK

    Get PDF
    A Wireless Sensor Networks (WSN) is composed of a large number of low-powered sensor nodes that are randomly deployed to collect environmental data. In a WSN, because of energy scarceness, energy efficient gathering of sensed information is one of the most critical issues. Thus, most of the WSN routing protocols found in the literature have considered energy awareness as a key design issue. Factors like throughput, latency and delay are not considered as critical issues in these protocols. However, emerging WSN applications that involve multimedia and imagining sensors require end-to-end delay within acceptable limits. Hence, in addition to energy efficiency, the parameters (delay, packet loss ratio, throughput and coverage) have now become issues of primary concern. Such performance metrics are usually referred to as the Quality of Service (QoS) in communication systems. Therefore, to have efficient use of a sensor node’s energy, and the ability to transmit the imaging and multimedia data in a timely manner, requires both a QoS based and energy efficient routing protocol. In this research work, a QoS based energy efficient routing protocol for WSN is proposed. To achieve QoS based energy efficient routing, three protocols are proposed, namely the QoS based Energy Efficient Clustering (QoSEC) for a WSN, the QoS based Energy Efficient Sleep/Wake Scheduling (QoSES) for a WSN, and the QoS based Energy Efficient Mobile Sink (QoSEM) based Routing for a Clustered WSN. Firstly, in the QoSEC, to achieve energy efficiency and to prolong network/coverage lifetime, some nodes with additional energy resources, termed as super-nodes, in addition to normal capability nodes, are deployed. Multi-hierarchy clustering is done by having super-nodes (acting as a local sink) at the top tier, cluster head (normal node) at the middle tier, and cluster member (normal node) at the lowest tier in the hierarchy. Clustering within normal sensor nodes is done by optimizing the network/coverage lifetime through a cluster-head-selection algorithm and a sleep/wake scheduling algorithm. QoSEC resolves the hot spot problem and prolongs network/coverage lifetime. Secondly, the QoSES addressed the delay-minimization problem in sleep/wake scheduling for event-driven sensor networks for delay-sensitive applications. For this purpose, QoSES assigns different sleep/wake intervals (longer wake interval) to potential overloaded nodes, according to their varied traffic load requirement defined a) by node position in the network, b) by node topological importance, and c) by handling burst traffic in the proximity of the event occurrence node. Using these heuristics, QoSES minimizes the congestion at nodes having heavy traffic loads and ultimately reduces end-to-end delay while maximizing the throughput. Lastly, the QoSEM addresses hot spot problem, delay minimization, and QoS assurance. To address hot-spot problem, mobile sink is used, that move in the network to gather data by virtue of which nodes near to the mobile sink changes with each movement, consequently hot spot problem is minimized. To achieve delay minimization, static sink is used in addition to the mobile sink. Delay sensitive data is forwarded to the static sink, while the delay tolerant data is sent through the mobile sink. For QoS assurance, incoming traffic is divided into different traffic classes and each traffic class is assigned different priority based on their QoS requirement (bandwidth, delay) determine by its message type and content. Furthermore, to minimize delay in mobile sink data gathering, the mobile sink is moved throughout the network based on the priority messages at the nodes. Using these heuristics, QoSEM incur less end-to-end delay, is energy efficient, as well as being able to ensure QoS. Simulations are carried out to evaluate the performance of the proposed protocols of QoSEC, QoSES and QoSEM, by comparing their performance with the established contemporary protocols. Simulation results have demonstrated that when compared with contemporary protocols, each of the proposed protocol significantly prolong the network and coverage lifetime, as well as improve the other QoS routing parameters, such as delay, packet loss ratio, and throughput

    Enhancing Mobility in Low Power Wireless Sensor Networks

    Get PDF
    In the early stages of wireless sensor networks (WSNs), low data rate traffic patterns are assumed as applications have a single purpose with simple sensing task and data packets are generated at a rate of minutes or hours. As such, most of the proposed communication protocols focus on energy efficiency rather than high throughput. Emerging high data rate applications motivate bulk data transfer protocols to achieve high throughput. The basic idea is to enable nodes to transmit a sequence of packets in burst once they obtain a medium. However, due to the low-power, low-cost nature, the transceiver used in wireless sensor networks is prone to packet loss. Especially when the transmitters are mobile, packet loss becomes worse. To reduce the energy expenditure caused by packet loss and retransmission, a burst transmission scheme is required that can adapt to the link dynamics and estimate the number of packets to transmit in burst. As the mobile node is moving within the network, it cannot always maintain a stable link with one specific stationary node. When link deterioration is constantly detected, the mobile node has to initiate a handover process to seamlessly transfer the communication to a new relay node before the current link breaks. For this reason, it is vital for a mobile node to (1) determine whether a fluctuation in link quality eventually results in a disconnection, (2) foresee potential disconnection well ahead of time and establish an alternative link before the disconnection occurs, and (3) seamlessly transfer communication to the new link. In this dissertation, we focus on dealing with burst transmission and handover issues in low power mobile wireless sensor networks. To this end, we begin with designing a novel mobility enabled testing framework as the evaluation testbed for all our remaining studies. We then perform an empirical study to investigate the link characteristics in mobile environments. Using these observations as guidelines, we propose three algorithms related to mobility that will improve network performance in terms of latency and throughput: i) Mobility Enabled Testing Framework (MobiLab). Considering the high fluctuation of link quality during mobility, protocols supporting mobile wireless sensor nodes should be rigorously tested to ensure that they produce predictable outcomes before actual deployment. Furthermore, considering the typical size of wireless sensor networks and the number of parameters that can be configured or tuned, conducting repeated and reproducible experiments can be both time consuming and costly. The conventional method for evaluating the performance of different protocols and algorithms under different network configurations is to change the source code and reprogram the testbed, which requires considerable effort. To this end, we present a mobility enabled testbed for carrying out repeated and reproducible experiments, independent of the application or protocol types which should be tested. The testbed consists of, among others, a server side control station and a client side traffic ow controller which coordinates inter- and intra-experiment activities. ii) Adaptive Burst Transmission Scheme for Dynamic Environment. Emerging high data rate applications motivate bulk data transfer protocol to achieve high throughput. The basic idea is to enable nodes to transmit a sequence of packets in burst once they obtain a medium. Due to the low-power and low-cost nature, the transceiver used in wireless sensor networks is prone to packet loss. When the transmitter is mobile, packet loss becomes even worse. The existing bulk data transfer protocols are not energy efficient since they keep their radios on even while a large number of consecutive packet losses occur. To address this challenge, we propose an adaptive burst transmission scheme (ABTS). In the design of the ABTS, we estimate the expected duration in which the quality of a specific link remains stable using the conditional distribution function of the signal-to-noise ratio (SNR) of received acknowledgment packets. We exploit the expected duration to determine the number of packets to transmit in burst and the duration of the sleeping period. iii) Kalman Filter Based Handover Triggering Algorithm (KMF). Maintaining a stable link in mobile wireless sensor network is challenging. In the design of the KMF, we utilized combined link quality metrics in physical and link layers, such as Received Signal Strength Indicator (RSSI) and packet success rate (PSR), to estimate link quality fluctuation online. Then Kalman filter is adopted to predict link dynamics ahead of time. If a predicted link quality fulfills handover trigger criterion, a handover process will be initiated to discover alternative relay nodes and establish a new link before the disconnection occurs. iv) Mobile Sender Initiated MAC Protocol (MSI-MAC). In cellular networks, mobile stations are always associated with the nearest base station through intra- and inter-cellular handover. The underlying process is that the quality of an established link is continually evaluated and handover decisions are made by resource rich base stations. In wireless sensor networks, should a seamless handover be carried out, the task has to be accomplished by energy-constraint, resource-limited, and low-power wireless sensor nodes in a distributed manner. To this end, we present MSI-MAC, a mobile sender initiated MAC protocol to enable seamless handover

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks
    • …
    corecore