
Modelling and Performability

Evaluation of Wireless Sensor

Networks

Fredrick Adero Omondi

School of Science and Technology

Middlesex University

This thesis is submitted for the Degrees of Doctor of Philosophy

December 18, 2015

mailto:f.adero@mdx.ac.uk
http://www.mdx.ac.uk/about-us/our-schools/school-of-science-and-technology
http://www.mdx.ac.uk


I would like to dedicate this thesis to my Father, Pst. Noah E. A.

Onyiego and my late Mother, Mrs. Janet Achieng Adero



Acknowledgements

I would like to express my special gratitude to my director of studies,

Professor Orhan Gemikonakli; you have been a tremendous mentor

for me. I would like to thank you for encouraging my research and for

allowing me to grow as a research scientist. I would also like to thank

my supervisors, Dr. Enver Ever and Dr. Purav Shah, for walking me

through this journey each step at a time even during hard times. I

lack words to describe the tenderness and humility with which you

supported me socially and emotionally. I also want to thank you for

letting my defense be an enjoyable moment, and for your brilliant

comments and suggestions.

I am deeply indebted to my office friends and work colleagues who

were always there with me throughout the research period. I thank

Ammar Zayouna, Arindam Gosh, Krishna Doddapaneni, Nallini Sel-

varaj, Joshua Nwokeji, Rand Hussein, and Ali Hussein.

Special thanks to my loving parents, my late Mother Janet Achieng

Adero, who did all she could to shape my life, my step mother who

has continued to be there for my siblings and more importantly pro-

viding my dad with the hope for living. To my dad, a very special

gratitude I give to you for the best upbringing a father can offer his

children. Thanks a great deal for standing firm always as you lovingly

spelled out the moral, social and spiritual guidance to your cherished

children, a huge beneficiary I truly am. To my adored wife and chil-

dren, thanks a lot for bearing with me the pains that we have had

to undergo because of this journey. We have indeed missed out on

numerous enjoyable moments. Thanks a lot for standing by me all

this long. A new down has finally come, the hope that we have all

been waiting for has eventually come, and to God be the glory. To my



beloved brothers and sisters, I am indeed humbled by the way; you

have continued to support me and my family. The journey has been

very long but finally here I am with lots of gratitude to you all. This

journey would not have been successful without your social, physical,

emotional and spiritual support. For a moment, I sadly remember

our brother Clifford, Mother Janet and Sister Schofield, all whom we

have lost during this journey. However, I am hopeful that not very

long now; we shall surely re-unite with these loved ones at the second

advent of Christ.



Abstract

This thesis presents generic analytical models of homogeneous clus-

tered Wireless Sensor Networks (WSNs) with a centrally located Clus-

ter Head (CH) coordinating cluster communication with the sink di-

rectly or through other intermediate nodes. The focus is to integrate

performance and availability studies of WSNs in the presence of sensor

nodes and channel failures and repair/replacement. The main pur-

pose is to enhance improvement of WSN Quality of Service (QoS).

Other research works also considered in this thesis include modelling

of packet arrival distribution at the CH and intermediate nodes, and

modelling of energy consumption at the sensor nodes.

An investigation and critical analysis of wireless sensor network ar-

chitectures, energy conservation techniques and QoS requirements are

performed in order to improve performance and availability of the

network. Existing techniques used for performance evaluation of sin-

gle and multi-server systems with several operative states are inves-

tigated and analysed in details. To begin with, existing approaches

for independent (pure) performance modelling are critically analysed

with highlights on merits and drawbacks. Similarly, pure availabil-

ity modelling approaches are also analysed. Considering that pure

performance models tend to be too optimistic and pure availability

models are too conservative, performability, which is the integration

of performance and availability studies is used for the evaluation of

the WSN models developed in this study. Two-dimensional Markov

state space representations of the systems are used for performability

modelling. Following critical analysis of the existing solution tech-

niques, spectral expansion method and system of simultaneous linear



equations are developed and used to solving the proposed models. To

validate the results obtained with the two techniques, a discrete event

simulation tool is explored.

In this research, open queuing networks are used to model the be-

haviour of the CH when subjected to streams of traffic from cluster

nodes in addition to dynamics of operating in the various states. The

research begins with a model of a CH with an infinite queue capacity

subject to failures and repair/replacement. The model is developed

progressively to consider bounded queue capacity systems, channel

failures and sleep scheduling mechanisms for performability evaluation

of WSNs. Using the developed models, various performance measures

of the considered system including mean queue length, throughput,

response time and blocking probability are evaluated. Finally, energy

models considering mean power consumption in each of the possible

operative states is developed.The resulting models are in turn em-

ployed for the evaluation of energy saving for the proposed case study

model. Numerical solutions and discussions are presented for all the

queuing models developed. Simulation is also performed in order to

validate the accuracy of the results obtained.

In order to address issues of performance and availability of WSNs,

current research present independent performance and availability

studies. The concerns resulting from such studies have therefore

remained unresolved over the years hence persistence poor system

performance. The novelty of this research is a proposed integrated

performance and availability modelling approach for WSNs meant

to address challenges of independent studies. In addition, a novel

methodology for modelling and evaluation of power consumption is

also offered.

Proposed model results provide remarkable improvement on system

performance and availability in addition to providing tools for further

optimisation studies. A significant power saving is also observed from

the proposed model results. In order to improve QoS for WSN, it



is possible to improve the proposed models by incorporating priority

queuing in a mixed traffic environment. A model of multi-server sys-

tem is also appropriate for addressing traffic routing. It is also possible

to extend the proposed energy model to consider other sleep schedul-

ing mechanisms other than On-demand proposed herein. Analysis

and classification of possible arrival distribution of WSN packets for

various application environments would be a great idea for enabling

robust scientific research.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) are composed of a large number of sensing

nodes equipped with limited power and radio communication capabilities. Once

deployed the sensing nodes are used for monitoring, sensing and forwarding event

occurrences in the habitat of interest to the sink for further processing. Due

to their ability to support diverse applications and availability of low-cost end

devices (sensors), WSNs have attracted much interest in both academia and in-

dustry. The diversity of use is enhanced by technological advancement and subse-

quent explosion of inexpensive wireless communication, computation and sensing

devices Akyildiz et al. [2002]. The application areas include seismic, acoustic,

chemical, and physiological sensing that enable various applications as; battlefield

surveillance, home security, habitat monitoring, forecast systems, smart agricul-

ture, health monitoring, industrial systems, traffic control and animal tracking

among many others. Many application environments present varying Quality of

Service (QoS) requirements hence the need for optimisation for better perfor-

mance.

Performance and availability of WSNs have mainly been hindered by nodes, net-

work and link failures caused by hardware and/or software malfunctions and

environmental effects. Earlier research by [Kim et al., 2010] categorised these

as network, cluster and node failures with a complete sensor network failure ex-

perienced when the sink or a percentage of cluster heads fail. Network failures
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may also result from poor terrains and other environmental conditions leading to

channel failures.

On the other hand, the production of small-sized sensor nodes as a result of

technological advancement has introduced the demand to make the sensor com-

ponents that fit the physical size and operation requirements of the sensors. This

in turn has resulted in constrained sensor resources, including energy source,

computation power, and offered memory sizes for both operating system and

temporary storage. Limited storage can significantly cause data loss in WSNs,

especially where a Cluster Head (CH) is used to coordinate communication within

a clustered network. Data intensive applications are particularly restricted due

to a large amount of storage space required for temporary data storage. The

resource constraints eventually degrade the system performance hence the need

to optimise their usage for better performance.

In order to extend the life time of sensor nodes, two main approaches include

developing mechanisms for prolonging battery life and replacing failing nodes. In

[Chiasserini and Garetto, 2006], [Shin and Sun, 2011], [Dash et al., 2012], [Li,

2011], it is shown that node lifespan can be extended by limiting battery use

during active operations only. This is achieved by alternating sensor operation

modes between sleep and active states. Other methods include the use of Back-Up

Cluster Heads (BCH) for temporarily fall back when a CH begins to fail [Hashmi

et al., 2010], dynamically reducing transmission and data aggregation power [Gao

et al., 2010] and the use of energy aware protocols [Dash et al., 2012]. In other

studies, use of mobile nodes for repairing failing nodes and network holes has

been proposed [Dini et al., 2007], [Almasaeid and Kamal, 2009], [Liu et al., 2011],

[Jun et al., 2012]. Performance and availability measures such as end to end

delay, network capacity, mean time to failure, etc, are considered separately in

[Chiasserini and Garetto, 2006], [Hashmi et al., 2010], [Munir and Gordon-Ross,

2011], [Bruneo et al., 2010].

Continuous demand for use of WSN Technology in the presence of complexities of

various deployment environments calls for the need to improve performance and

availability of WSNs. Though several issues outlined in [Chiasserini and Garetto,

2006], [Almazydeh et al., 2010] [Bagula, 2010] make design and modelling of
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WSNs a very challenging task, nodes and network failures remain a major relia-

bility concern [Chiasserini and Garetto, 2006], [Kim et al., 2010], [Hashmi et al.,

2010]. Once deployed in hazardous environments, it becomes difficult to replace

faulty units or depleted batteries thereby degrading network performance and fi-

nally reducing the network lifespan. To prolong the lifespan of WSNs, it is possible

to use redundant nodes deployed during the initial setup, but they are activated

only when need arises to replace a failing node. A few research presented in this

area tended to separately consider the performance and availability-related is-

sues as noted in [Chiasserini and Garetto, 2006], [Munir and Gordon-Ross, 2011],

[Hashmi et al., 2010], [Bruneo et al., 2010]. To address concerns resulted from

these independent studies, the need for integrating performance and availability

modelling for WSNs is highly recommended. These studies will enable under-

standing of the general system behaviour and allow modification of the system to

meet the required QoS in terms of performance and availability in the presence

of application and environmental complexities along with failures and repairs.

Existing approaches used for performance evaluation of computer and communi-

cation systems are benchmarking, simulation and analytical modelling. Bench-

marking involves actual measurements taken with the input workloads used as

benchmarks. Though it is very accurate, the results cannot be extrapolated to

suit changes in the system. It is also very costly in terms of personnel, equip-

ment and time. Building a model of the system using existing software tools

is known as Simulation. These models are normally validated against existing

systems then altered using proposed modifications. The approach is typically

preferred since it is flexible and the results are fair and acceptable. For better

results, however, simulation models usually require long runs, which ultimately

consume higher computation time and resources. Like benchmarking, simulation

is an experimental approach.

When used to model systems, analytical approach results into efficient formu-

lae and numerical procedures. For successful use of analytical methods, one

requires high level of mathematical skills [Banks and Nicol, 2005], [Ever, 2007].

This approach has successfully been used in modelling and evaluation of per-

formance, availability, and reliability of complex computer and communication

3



systems. Once validated the approach is known to provide quick and accurate re-

sults [Trivedi, 2002a], [Banks and Nicol, 2005], [Ever, 2007]. Given that analytical

models are abstractions of the real-world problems, their model predictions ought

to be validated against actual measurements collected from the real phenomena

[Trivedi, 2002a], [Ever, 2007]. In cases where the derived solutions are not exact

and certain assumptions are made, benchmarking and/or simulation results are

recommended for validation of the analytical model [Chakka, 1995], [Ever, 2007].

In this research existing analytical approaches used for modelling and perfor-

mance evaluation of open queuing networks are used to model the complex states

of WSNs. In order to achieve some degree of mathematical tractability, the meth-

ods were employed in consideration to certain assumptions. A two-dimensional

representation of the system state space is used and spectral expansion method

together with the system of linear simultaneous equations are employed for com-

putation of the steady-state solution of the systems. The models are then vali-

dated using an event-based simulation program for the system developed using

Visual C++.

1.1 Motivation

Considering the complexities of WSN applications that are dependent upon de-

ployment environments, this thesis is motivated by the need to provide inte-

grated performance and availability/reliability models for WSNs in the face of

varying application demands and frequent node and/or network failures and re-

covery/replacement. In order to address these requirements, this work will focus

on the following key sub-questions:

1. How possible is it to integrate performance and availability studies of WSNs?

2. How does the implied infinite queue capacity of sensor nodes affect overall

sensor network performance and availability?

3. How can node and channel failures in WSNs be used to optimise system

performance?
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4. How does the use of sleep and active mechanisms for extending lifetime of

WSN affect system performance and availability?

WSNs have continued to find use in diverse application environments with vary-

ing QoS demands Chiasserini and Garetto [2006]. The demands, when considered

together with deployment and operation complexities, make modelling WSNs

networks complicated. However, in order to improve the QoS in these networks,

existing studies have concentrated on pure availability and performance stud-

ies hence avoiding related concerns. Therefore, integrating WSN performance

and availability studies is important in addressing overestimation of the system’s

ability to performance or being too conservative as known with independent per-

formance and availability studies respectively.

Considering the limited node memory and data centric applications that require

more temporary storage space [Chang et al., 2007], the assumption that sensors

have infinite capacity memory does not hold and becomes a major source of

data loss. Therefore, queueing management is crucial in the provision of better

performance subject to the desired QoS.

A common phenomena in WSNs is the recurrent node and link failures that ad-

versely degrade network performance and availability Chiasserini and Garetto

[2006],Munir and Gordon-Ross [2011]. When fault recovery and node replace-

ments mechanisms are considered, it is important to evaluate their impact on

QoS and overall network performance. Relevant studies are therefore necessary

for optimising WSN systems.

Limited energy available for sensor nodes remains a major challenge in sustaining

operations in WSN. The normal practice is to implement a sleep/wakeup scheme

to ensure the nodes are switched on when required to capture event occurrences.

The implementation of the schemes proposed may cause variations in nodes and

network operations and as a result influence the overall network performance.

In some cases such as periodic and on demand sleep scheduling schemes, high

traffic intensity may cause negative impacts hence negating the primary purpose

for their implementation. Therefore, it is essential to investigate the operation

levels to ensure desired QoS are met.
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1.2 Research Objectives and Scope

The aim of this study is to develop general analytical models for evaluating per-

formance and availability measures for WSNs with a considerable focus on ob-

taining models that provide most effective and accurate solutions for improving

WSN performance and power conservation in the presence of failures and recov-

ery/replacement. Using analytical modelling techniques, and employing some

assumptions in order to achieve a certain degree of mathematical tractability,

different complex operative states of WSNs are modelled. Using probabilistic

analysis, Markov processes, and queuing theoretic modelling technique, various

models of the system under study are developed.

In most WSN deployment, cluster-tree topology is widely used because it provides

a compromise for better performance compared to other topologies. Like in other

communication networks, WSNs are subject to failures that may result from

software or hardware errors. In some application environments, it is possible to

reconfigure or replacing failing sensor nodes. For such systems, the consistency

of the CH in handling the incoming data packets and its availability to perform

operations at a given instant of time is significant in attaining desired QoS. Recent

researches in performance modelling of WSNs indicate the need for more realistic

performance, reliability and availability models. The existing studies have mainly

proposed independent approaches to performance and availability [Chiasserini

and Garetto, 2006], [Hashmi et al., 2010], [Munir and Gordon-Ross, 2011]. A

more practical approach is to use performability analysis introduced in [Beaudry,

1978] and conceptualised by [Meyer, 1980]. This approach enables modelling a

combined performance and availability/reliability concerns together, making the

outcome be more realistic to the system under study.

Deployment of homogeneous sensors is a common practice in many application

areas. The sensors, which are pre-configured, are assumed to have infinite memory

capacity. In the traditional applications like battlefield surveillance, low data

rates are common hence; the available memory is assumed adequate for such

applications. However, the available memory resource is no longer sufficient for

use in data intensive application environment. In most cases, limited memory
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has resulted into data loss and severe performance degradation. In order to

address memory issues in WSNs, attempts have been made to manage packet

flow in the network [Qiu et al., 2011]. End-to-end delays have also been studied

[Wang et al., 2012]. However, these studies do not consider node failures and

recovery/replacement that are a common occurrence in WSNs. Additionally,

considering the effects caused by bounded queue capacities is a good practice

that may facilitate improving WSN performance. This will enable analysis of job

losses due to the behaviour of bounded queues (blocking), the mean number of

jobs in the queue (MQL) and system, and other performance measures such as

response time and throughput for accurate and useful predictions.

Limited sensor node power has remained a major challenge in WSN service provi-

sion. In order to conserve power, alternating sensor operations between sleep and

active periods is widely used [Chiasserini and Garetto, 2006]. The sleep schedul-

ing schemes used are employed in MAC-layer and routing protocols [Heinzelman

et al., 2000], [Ye et al., 2002], [Van Dam and Langendoen, 2003], [Li and Lazarou,

2004]. However, the dynamics of implementing sleep scheduling schemes intro-

duce operation challenges [Chiasserini and Garetto, 2004]. Detailed performance

studies on the available sleep/active implementation schemes are necessary to

establish the impact they introduce into the system. This is significant bearing

in mind that whilst the choice of a particular power saving scheme may be pre-

ferred in some application areas, the underlying performability trade-off’s require

consideration for optimum performance. In this study, the available sleep im-

plementation schemes are analysed for performance optimisation purposes in the

presence of node and link failures and recovery/replacement.

Once the models are developed and necessary performance and availability solu-

tions are obtained, they can be evaluated further for energy optimisation pur-

poses. Such models can provide realistic system behaviour considering that

they integrate performance and availability studies in addition to power sav-

ing schemes, which make them more robust and accurate in providing useful

predictions.

In this research, considerable attention is given to traffic analysis within the

cluster with the main focus on how the CH manages communication between
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the cluster nodes and the sink. The novelty of this research work is to address

concerns emanating from independent availability and performance studies by

proposing a modelling approach that incorporate performance and availability

(performability) studies. The resulting models are in turn used for evaluating

system performance and availability measures. Furthermore, the approach is

used to develop power consumption models employed for the evaluation of WSN

energy conservation.

Open queuing network is used to model the behaviour of the CH and spectral

expansion solution technique [Chakka, 1998] and system of linear equations em-

ployed for solving the system models. The obtained results are further validated

using simulation results. In order to address different QoS requirements using

the models developed, various performance measures are considered. The re-

sults show that it is feasible to integrate performance and availability studies to

successfully optimise WSN services. Furthermore, the results provide a pleasant

planning and deployment tool for use by WSN designers. Finally, the energy

models also provide efficient tools for regulating sleep/active operation periods

compare to tools developed using independent studies [Zhou et al., 2011], [Chi-

asserini and Garetto, 2006]. The proposed tools regulate sleep based on traffic

intensity hence eliminating energy wastage resulting from frequent sleep during

high traffic loads.

1.3 List of Publications

The work presented in this thesis has given rise to the following publications.

1. Fredrick A. Omondi, Enver Ever, Purav Shah, and Orhan Gemikonakli,

“Modelling Wireless Sensor Networks for Performability Evaluation”, In

the Proceedings of the 12th International Conference on Ad-hoc, Mobile,

and Wireless Network (ADHOC-NOW) 2013, Wroc law, Poland, July 8-10,

2013. Published in Computer Science Lecture Notes, Vol.7960, pp. (172-

184), Springer-2013. - Chapter 4

2. Fredrick A. Omondi, Enver Ever, Purav Shah, Orhan Gemikonakli and
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Leonardo Mostarda, “Performability Modelling and Analysis of Clustered

Wireless Sensor Networks with Limited Storage Capacities”, In the Proceed-

ings of the 7th International Conference on Internet and Distributed Com-

puting Systems (IDCS) 2014, Calabria, Italy, September 22-24. Published

in Computer Science Lecture Notes, Vol.8729, pp.(369–382), Springer-2014.

- Chapter 5

3. Krishna Doddapaneni, Fredrick A. Omondi, Enver Ever, Purav Shah,

Orhan Gemikonakli, and Roberto Gagliardi, “Deployment Challenges and
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of the 28th IEEE International Conference on Advanced Information Net-

working and Applications Workshops, (AINA) 2014, Victoria, BC, Canada,

May 13-16, 2014. - Chapter 2

4. Fredrick A. Omondi, Purav Shah, Orhan Gemikonakli and Enver Ever,

“A Framework for Energy Based Performability Models for Wireless Sensor

Networks”, In the 29th IEEE International Conference on Advanced Infor-

mation Networking and Applications Workshops, (AINA) 2015, Gwangju,

South Korea, March 24-27, 2015. - Chapters 6

5. Krishna Doddapaneni, Purav Shah, Enver Ever, Ali Tasiran, Fredrick A.

Omondi, Leonardo Mostarda, and Orhan Gemikonakli, “Packet Arrival

Analysis in Wireless Sensor Networks”, In the Proceedings of 29th IEEE

International Conference on Advanced Information Networking and Appli-

cations Workshops, AINA 2015, Gwangju, South Korea, March 24-27, 2015.

- Chapter 4

6. Fredrick A Omondi, Enver Ever, Purav Shah, and Orhan Gemikonakli,

“An Analytical Model for Bounded WSNs with Unreliable Cluster Heads

and Links”, In the Proceedings of the 40th IEEE Conference on Local Com-

puter Networks (LCN) 2015, Clear Waters Beach, Florida, USA, October
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Purav Shah, Leonardo Mostarda, and Orhan Gemikonakli, “Does The As-

sumption of Exponential Arrival Distribution in Wireless Sensor Networks

9



Hold?” In the International Journal of Sensor Networks (IJSNet) 2016 -

(Article under review) - Chapter 9
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Leonardo Mostarda, “Performability Modelling and Energy Consumption

Evaluation for Clustered Wireless Sensor Networks”, In the Journal of Net-

work and Computer Applications (JNCA) 2016 - (Article under review) -

Chapter 8

1.4 Thesis Outline

Chapter 2 introduces the domain of this study by providing a critical review

of related literature. A comprehensive discussion on sensor node and WSN de-

ployment architectures providing details of WSN resources and communication

channels is presented. Energy conservation mechanisms available for WSNs are

analysed. Existing performance and availability models for WSNs are investi-

gated. This chapter ends by an introduction of the system under study.

Modelling approaches and solution techniques are critically analysed and com-

pared in Chapter 3. Existing performance and availability modelling techniques

for communication systems are investigated and critically analysed. In addi-

tion, possible solution methods for two-dimensional state spaces are compared.

A detailed explanation of System of Linear Equations and Spectral Expansion

methods is given.

In chapter 4, an analytical model for a clustered WSN with unbounded queue

capacity CH is presented. A queue model for packet arrival distribution at the

CH is initially developed. An integrated performance and availability model with

inputs taken from arriving data packet is then developed to mimic the system

behaviour. The model is subsequently solved using Spectral Expansion solution

technique and Poisson approximation solution approach. The results are further

validated using results obtained from an event-driven simulation program.

In real-life situation, queuing systems do not have infinite queues, In WSN appli-
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cations for example, the available memory space is very small hence the amount

of data that can be stored is restricted. In chapter 5, bounded queue capac-

ities are introduced and incorporated in the model of chapter 4. The model is

then used to study performance and availability measures, including Mean Queue

Length (MQL), throughput, queuing delay, blocking probability and packet loss.

Results are obtained using Spectral Expansion Solution technique and validated

using an event-driven simulation program. The obtained results are critically

analysed and compared with results attained from independent performance and

availability studies.

Sleep scheduling is widely used in WSNs to conserve the limited node energy.

While this may save energy significantly, it may also hamper system perfor-

mance and increase energy consumption during heavy traffic load when some

sleep scheduling schemes are used. In chapter 6, models that employ sleep op-

erations are considered. First operation dynamics for sleep schedules in WSNs

are critically analysed, and results used to model the system behaviour. The de-

veloped models are solved using two analytical approaches: Spectral Expansion

and System of linear equations, which are further validated using a dedicated

simulation program. Using the developed models, the effects of sleep scheduling

on system performance are investigated in terms of MQL, throughput, response

time, Failure probability and blocking probability and probability of operating

in the various states. Finally, the obtained results are critically analysed and

evaluated for purposes of improving system performance.

Like other wireless networks, WSNs are subject to link failures that may arise

from environmental, interference and transceiver hardware malfunctions. These

eventually degrade system performance hence require consideration. In order to

make the models more realistic, chapter 7 presents a complete analytical model

for a clustered WSN system with unreliable links in addition to node failures. The

model considers a finite queue CH that also conserves energy by entering sleep

mode. Both failures are considered repairable and operation restored once repair

is complete. Similar to the previous cases, the model is solved using spectral

expansion technique and the system of linear simultaneous equations and the

results further validated using simulation results. The model is then used to
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evaluate system performance in terms of MQL, throughput and response time.

Furthermore, channel and node failure rates are varied in order to establish the

worst case scenarios that can still allow the system to attain desired performability

measures. Additionally, effects of limited queue capacity on system performance

are evaluated to establish the blocking probability. Finally, the results obtained

from the two solution approached are presented comparatively and validated using

simulation results.

Chapter 8 presents a model for energy evaluation based on the models presented

in chapter 7. More specifically, the composite model presented in chapter 8 is

considered for energy evaluation as a case study. The energy model considers that

power is consumed in the various operation states. For this study, mean energy

consumed in each operation state is employed for computation of the overall

CH energy consumption. The obtained results are further analysed to obtain

optimum operation range that provides best power saving for the network.

Arrival distributions of packets at the CH in WSNs may vary depending on the

application environment and pre-configurations. In chapter 9, a methodology

for modelling data arrival distribution for WSNs at the intermediary nodes and

the CHs is proposed based on experimental results. First, data delivery mod-

els for WSNs are critically analysed. Existing approaches for modelling arrival

processes, Bernoulli and Poisson, are critically analysed. Inter-arrival times for

data packets are generated using Castalia simulator that runs over OMNET++

platform. Kolmogorov-Smirnov Test is then used to identify if the empirical data

follows any known probability distribution and numerical results presented and

critical analysed.

Finally, chapter 10 presents a summary of the main contributions of the thesis

and outlines some of the possible areas for future studies.

In summary, chapter 1 introduces the domain of this research study by highlight-

ing the research question, motivation, objectives and scope of study. A list of

publications and an outline detailing work done is also given. The research be-

gins by a critical review of relevant literature in chapters 2 and 3. Related works,

WSN concepts and system under study are presented in chapter 2 while chapter
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3 presents a detailed discussion comparing modelling approaches and possible

solution techniques. In both chapters relevant terminologies are introduced.

Based on the concepts gathered, requirements of system under study and choices

of modelling approaches and solution techniques, the models for the proposed

system are progressively developed and solved. Chapter 4 introduces the pro-

posed performability modelling approach and uses it to analyse performance of

a simple infinite system model with CH breakdowns and repairs. This model

is gradually developed in the following chapters to make it more realistic to the

actual system. Chapter 5 introduces and analyses the effects of bounded queue

capacity on system performance. The model is further advanced in chapter 6 by

incorporating and analysing effects resulting from sleep operation dynamics on

performance. In addition, chapter 7 extends the model by incorporating link fail-

ures in order to evaluate how environmental conditions affect the overall system

performance. In chapter 8, an energy model is developed and used to evaluate

energy consumption of the developed performability model of chapter 7.

As an extended discussion, chapter 9 presents an initial analysis of packet arrival

distribution in WSNs by proposing an approach based on Kolmogorov-Smirnov

Test Statistic on empirical data sets. Finally, chapter 10 concludes the work done.
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Chapter 2

Literature Review

2.1 Introduction

Considering that WSNs are resource constrained, creating an infrastructure that

connects the physical world and gather information for Internet of Things (IoT)

adds more complexity to the performance WSN systems. This in turn has in-

creased the demand for improved performance and dependability of WSNs in the

wake of many application challenges Aboelaze and Aloul [2005], Akyildiz et al.

[2007]. In many application environments high failure rate exhibited in WSNs

limit their lifespan hence affecting their performance and availability thereby

degrading overall network QoS. Combined performance and availability studies

have successfully been used in modelling communication networks [Franken et al.,

1994], [Trivedi et al., 2003], [Gemikonakli et al., 2006], [Do and Chakka, 2010],

[Kirsal et al., 2011] over the years. It is possible to extend the same methodology

for modelling WSNs in order to improve their QoS. Such studies are important

in alleviating the impact on performance and availability resulting from frequent

WSN node and channel failures. In this Chapter, a detailed literature review

covering WSN architecture, existing performance and availability studies, and

energy conservation schemes is carried out in order to develop accurate and ef-

fective analytical models for performance and availability evaluation of WSNs.
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The remainder of the chapter is organised as follows: Section 2.2 presents a

discussion on WSN architecture. Section 2.3 provides a detailed discussion of

energy conservation in WSNs. In section 2.4, QoS and WSN performance are

presented followed by a detailed discussion of the system under study in section

2.5. Finally, the chapter is summarised in section 2.6.

2.2 Wireless Sensor Network Architecture

2.2.1 Wireless Sensor Nodes

A Wireless Sensor Node is an end device used for monitoring event occurrence

in the desired habitat. Several sensor nodes are usually deployed in the habitat

of interest in an ad-hoc manner. In most occasions, sensor nodes are able to

selforganize and configure themselves during deployment after which, they mostly

stay stationary. The basic architecture of the sensor node given in Figure 2.1 is

comprised of the following blocks [Islam et al., 2011], [Singhal et al., 2012]:

1. The central processing unit consisting of a microprocessor responsible for

the coordination of the sensor node operations. It is responsible for all

processing and decision-making

2. The power unit, which regulates and supplies the required energy to all the

sensor node components to perform their necessary operations

3. The Radio transceiver (RF) responsible for data transmission between the

nodes. Transceivers are responsible for relaying information through the

wireless communicating media.

4. The sensing unit composed of sensors and Analogue to Digital Converters

(ADCs). It is responsible for the detection of event occurrence within the

habitat and the conversion of the physical phenomena into analogue electri-

cal signals. The ADCs are then used to convert the signals from analogue

to digital.

5. The memory unit that is used for data storage. In most cases, sensors
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have programmable flash memory for storing programs and Random Access

Memory (RAM) for temporary data storage.

A detailed study on the composition and operations of these units is presented in

[Hill, 2003], [Villegas et al.], [Lymberopoulos and Savvides, 2008], [Kumari et al.,

2013] and [Shahzad, 2014].

Figure 2.1: Wireless Sensor Node Architecture

2.2.2 Wireless Sensor Network

Depending on initial configurations during deployment, nodes may work as routers,

gateways or end devices after deployment. Many topologies, including star, clus-

ter/tree and mesh may be used to coordinate WSN operations after deployment

[Martalò et al., 2009]. In star topology, each node maintains a single direct com-

munication path with the gateway. However, this restricts the achievable network

distance. In [Vlajic and Xia, 2006] cluster/tree topology was used. This allows

a single path of communication to the gateway while at the same time allowing

hoping through other intermediary nodes with routing capabilities. Neverthe-

less, the main drawback of this topology is loss of communication path among

dependent nodes when the cluster coordinator fails. The remedy to this is use of

mesh topology that enables multiple paths to the gateway. However, a part from
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introducing complex routing, multi-path option also increases computational cost

and network latency [Zhou and Krishnamachari, 2003], [Ebrahimi et al., 2011].

To this end, it is evident that the choice of topology is a trade-off that determines

the expected performance outcome.

Figure 2.2 shows a basic clustered WSN deployment architecture. During deploy-

ment, nodes may be configured to function either as Full-Function Device (FFD)

that effectively carries out all the operations, including data processing, routing

& sensing or Reduced-Function Device (RFD) with limited operation capabili-

ties [Salman et al., 2010]. RFD devices are only able to monitor their habitat

and forward sensed information to the CH directly or through an FFD. In this

topology, the end nodes send their information directly to the CH or through an

FFD as illustrated in Figure 2.2. From the CHs, the information is forwarded

directly or through an intermediary CH to the sink. The sink is a data collection

point linking WSN and the fixed network for further processing. From the wired

network, the processed information can then be made available and accessed by

interested parties through the Internet.

Figure 2.2: Basic WSN Cluster Deployment Architecture

The main drawback for sensor operations after deployment is limited node power.
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In some scenarios, sensors are deployed in hazardous environments where the

batteries cannot be replaced once they are depleted. This calls for the need to

optimise usage of available energy to promote longer operation time. Towards

this, energy-efficient MAC and routing protocols implementing active/sleep op-

erations were proposed in [Heinzelman et al., 2000], [Ye et al., 2002], [Lindsey

and Raghavendra, 2002], [Van Dam and Langendoen, 2003], [Akkaya and Younis,

2003], [Li and Lazarou, 2004] [Al-Karaki and Kamal, 2005], [Ghosh et al., 2009],

[Li et al., 2010], [Li et al., 2010], [Huang et al., 2012], [Tyagi and Kumar, 2013].

Other mechanisms like use of BCH have also been proposed [Hashmi et al., 2010].

Depending on the topology used, the nodes normally keep a list of their next

routes to the sink. It is assumed that nodes always have knowledge of their

neighbours and that least-cost route is usually employed depending on availabil-

ity at the time of transmission [Islam et al., 2011]. Other sources of sensor failure

may be through hardware and software failures. Software failures may be recon-

figured, while hardware failures lead to complete destruction of the nodes and

may only be remedied through replacement where possible [Kim et al., 2010].

There are schemes proposed for replacement through the provision of redundant

nodes which are kept inactive until failure occurs [Munir and Gordon-Ross, 2011].

2.2.3 Resource Allocation for Wireless Sensor Network

Compared to fixed sensor networks in which only the individual sensing system is

deployed at the place of interest, wireless sensor nodes in addition to the sensing

system also integrate all other required resources necessary for complete opera-

tions. These include energy sources, radio communication transceivers, external

memory and processor units. With all these components considered the wireless

node resources are then constrained by the physical size and cost which are de-

sired to be kept as minimal as possible [Shahzad, 2014]. This subsection presents

a discussion on the main constraints of WSNs. The challenges include energy

supply, available memory and processing capability of the sensor nodes.
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2.2.3.1 Energy Sources in WSNs

The advancement of the development of Micro-Electromechanical Sensing (MEMS)

devices supported by vast reduction in size and power consumption of CMOS cir-

cuitry has led to the production of ultra-low-cost sensing devices desired in a large

number of applications. The low-cost and small-size requirements of the wireless

sensors result into constraints of the type of energy sources and capacity that

can be integrated into a sensor node. The three main supply categories include

battery, solar sources and direct distribution.

Electromechanical energy storage in batteries is the predominant means of power

supply to wireless devices today. The main forms of battery storage available

for WSNs include Macro-Scale Batteries, which are considered very stable and

versatile in all the small power sources hence preferred for most WSN applications.

Next is a group of very small Micro-Scale Batteries. These give a small power

output due to surface area limitations hence not recommended over the later.

While power sources are fundamentally energy reservoirs, power-scavenging sources

are characterized by their power density instead of energy density. In comparison

to the energy density of the power reservoirs with usable power that is depen-

dent upon the time over which they can operate, the energy provided by power

scavenging sources only depend on how long the source stays in operation.

Energy scavenging and harvesting differ slightly depending upon the sources used.

In [Steingart, 2009], energy scavenging is used to reference environments where

the ambient sources are unknown or highly irregular while in situations where the

sources are well characterised and maintained, energy harvesting is used. In this

category, a number of energy harvesting technologies have been used in WSNs

successfully. These include the widely used solar cells both for recharging battery

and capacitors used to power WSN. Successful studies on solar cell usage from

simple to complex systems were presented in [Warneke et al., 2002], [Roundy

et al., 2003], [Jiang et al., 2005b], [Dutta et al., 2006], [González et al., 2012],

[Mukter et al., 2014]. Vibration methods that include piezoelectric materials,

inductive and capacitive systems have also been used successfully [Roundy and

Wright, 2004], [Lin et al., 2013], [Lee et al., 2014], [Lefeuvre et al., 2006] and
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[Mitcheson et al., 2008]. Thermoelectric energy generators (TEG) which produce

electrical energy directly from heat have also been used successfully to power

Wireless sensor nodes [Knight et al., 2008], [Knight and Collins, 2009], [Cassidy

and Scruggs, 2013]. TEGs are deployed at locations with steep temperature dif-

ferences in close proximity, such as interface between air and water, and, air and

soil. They can also be employed on human or animal bodies to utilise the tem-

perature difference between the bodies and the air [Dewan et al., 2014]. Detailed

chronology of work done to improve these methods were presented in [Roundy

et al., 2004], [Steingart, 2009]and [Dewan et al., 2014].

From the forgoing discussions, research work is ongoing in order to improve the

efficiency of the existing energy sources used with wireless sensors in various ap-

plication environments. These will further enhance availability and performance

hence performability studies are recommended for best QoS in WSNs.

2.2.3.2 Memory in WSN

Advance developments towards low-cost and small-size sensor nodes have also

affected the limits of the storage resources. Wireless nodes are equipped with

memories having low capacities that limit their data storage ability. On the

other hand, the choice of memory type may also be dictated by the level of power

consumed when accessing data or just for maintaining data in memory. A detailed

discussion on the choice of memory was presented in [Shahzad, 2014]. From the

data sheets, a wide range of memory categories are used in various wireless sensor

node platforms.

Though external flash and removable SD cards are used, memory available to

individual sensor nodes is still restricted, limiting the amount of data that can

be stored and/or processed at a given time. This calls for a good memory man-

agement scheme that can cope with the increasing traffic demands while at the

same time offering desired QoS.
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2.2.3.3 Micro-Controllers in WSN

In order to achieve energy efficiency required for operations, sensor nodes are

developed with low-end processors (Micro-controllers) that enable low-cost and

low-power consumption. The performance of the processor is controlled by an

on-chip limited memory with operating frequencies between 1-to-4 MHz, thereby

reducing computation capabilities of the processor [Gabriel and Popa], [Shahzad,

2014]. However, many controllers are static and able to provide frequencies be-

tween 0-to-8 MHz. Additionally, integrated on to the controller chip are Analogue

to Digital Converters (ADCs) and digital Input/Output devices for providing con-

nectivity to desired external devices like additional memories and sensors. The

choice of a good micro-controller, therefore, considers a compromise on a number

of parameters including:

1. Voltage requirements and Power consumption, which determine the

amount of voltage supply needed to run the controller. This ranges between

2.7V and 3.3V in the majority of low-voltage micro-controllers. Low-power

consuming controllers are most preferred for efficient energy saving. For

example, from [Texas, 2003] it is noted that power consumed in sleep mode

varies between controllers with a significant range of 1µA - 50µA. This

implies the need for making a better choice that may be a compromise with

other factors.

2. Wakeup time is significant reducing delays that may result from frequent

sleep given the controllers are expected to enter sleep mode most times of

operation. A quick wake-up time will ensure the processor is not kept awake

even during short periods of inactivity [Hill, 2003].

3. Peripheral support are used to provide interface between the controller

and external devices through input/output port. These include digital sen-

sors, transceivers, external memories and ADCs where analogue signals

require conversion to digital signals. A variety of peripheral devices exists,

but an excellent choice is necessary for good performance and better energy

conservation.
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2.2.4 Communication in Wireless Sensor Network

When energy harvesting is used, the technology and design considerations for the

transceivers play a key role in attaining the stringent efficiency requirements for

the low-peak power and ultra-low standby current a part from the general low

power consumption known for battery-powered WSNs. Transceivers are gener-

ally known to be the highest power consumers hence extra care must be taken

when choices are made as per application requirements. Considering that wireless

sensors primarily collect and transmit raw data to a central station for further

computation analysis, in some application scenarios, this may result to higher

bandwidth requirements. Taking the case of a clustered WSN, the CH becomes

a focal point for collecting all data and forwarding to the sink either directly or

through intermediate nodes. Depending on the type of application monitored,

the sampling frequency may vary from a few kHz up to hundreds of kHz with

data resolutions from 12-to-16 bits [Bouzid et al., 2013], [Shahzad, 2014]. Based

on the frequency and data resolution, the resulting bandwidth requirement will

also depend on the number of sensors in the network that will directly determine

the throughput requirements.

The choice of an appropriate transceiver that fulfils the required high data through-

put, while at the same time ensuring low energy consumption remains a major

challenge for WSN operations. Even though a number of transceivers have been

proposed ranging from infra-red, mobile broadband and Worldwide Interoperabil-

ity for Microwave Access (WiMAX), due to low-cost and ultra-low power con-

sumption requirements, these do not satisfy all the prerequisites. However, Wi-Fi,

Bluetooth Low Energy (BLE) and ZigBee appear promising in realising ultra-low

power and low-cost requirements over a short range. Further quantitative evalu-

ation suggests that ZigBee is the most energy efficient for communicating small

amounts of data less than 500 bytes, which is a common phenomena in WSNs.

A number of 802.15.4/ZigBee standard compliant transceivers are already in use

with many sensors. These include transceivers CC2420, CC2520 and CC2538

among many others [Chipcon Product], [Texas, 2015].
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2.3 Energy Conservation in Wireless Sensor Net-

works

In WSNs, energy is a critical resource requiring parsimonious use. In order to

address this concern, energy conservation techniques have become vital in the

design of WSN systems. Three main energy conservation techniques are identified

in literature [Anastasi et al., 2009]:

1. Duty cycling involves alternating sensor operations between active and

sleep periods depending on the network activity. A duty cycle may therefore

be defined as a ratio of time period the sensor node takes in active operation.

2. Data driven approaches involve reducing the amount of data that is

sampled by ensuring the sensing accuracy is kept within acceptable appli-

cation levels. For example considering that sampled data usually exhibit

strong spatial and/or temporal correlation [Vuran et al., 2004], the redun-

dant information is eliminated in order to alleviate energy wastage.

3. Mobility approaches involve moving nodes used to collect data from

static nodes thereby alleviating hopping scenarios where the nodes closer

to the sink deplete their energy earlier [Li and Mohapatra, 2007], [Anastasi

et al., 2009].

In this research, duty cycling conservation schemes are considered for modelling

and energy evaluation of the CH operations. In Figure 2.3 [Anastasi et al., 2009],

a taxonomy of the duty cycling schemes is presented. In this figure, duty cycling

within the active node is referred to as power management while that of the entire

network is referred to as topology control.

The novel idea of alternating node operations between Active and Sleep modes

in WSN that began as a simple implementation of a timer in most protocols

has improved over the years to be dynamically changed with traffic conditions

and the nature of application area. Technological advancements have also seen

the introduction of a second low power radio transceiver used to monitor the

radio channel for incoming data packets and wake up the controller in time to
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Figure 2.3: Taxonomy of Duty Cycling Schemes

receive the arriving packets. In order to maximise the gains of using sleep/active

operations, this idea has been integrated in the development of both MAC layer

and routing protocols [Heinzelman et al., 2000], [Ye et al., 2002], [Van Dam and

Langendoen, 2003], [Li and Lazarou, 2004], [Lindsey and Raghavendra, 2002],

[Al-Karaki and Kamal, 2005], [Tyagi and Kumar, 2013].

From Figure 2.3, two complementary approaches can be used to achieve duty

cycling. Topology control exploits network redundancy in order to prolong the

network lifetime. In this scenario, a minimum set of nodes is adaptively selected

and maintained active to ensure network connectivity. The radio transceivers for

the nodes not required for connectivity are switched to sleep mode in order to save

energy. During operations, the transceivers for the selected nodes may also enter

sleep mode in the absence of network activity and only wake up when required

to receive incoming data packets thereby saving energy further. This increases

network lifetime by a factor of 2-to-3 with respect to networks where all the nodes

are always on [Anastasi et al., 2009], [Ganesan et al., 2004], [Mainwaring et al.,

2002]. On the other side, node power management is wholly concerned with

implementation of sleep/active schedules in the sensor node. Power management

can be divided further into independent sleep/wake up protocols running on top

of MAC layer protocol, or they may be fully integrated into MAC protocols.

In the following subsections, detailed duty cycling sleep/wake up protocols are
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presented.

2.3.1 Topology Control Protocols

In this section, a densely populated WSN with some level of redundancy is con-

sidered. Generally, a large number of sensor nodes are randomly deployed in the

habitat by use of aeroplanes. In order to take care of failures occuring during

deployment or operation times, a slightly larger number of nodes are initially

deployed. The same idea is viable when topology control is employed in order

to have sufficient nodes providing coverage alternately [Ganesan et al., 2004],

[Anastasi et al., 2009]. Based on the application needs, topology control pro-

tocols dynamically adapt to the network topology allowing network operations

using minimal sensor nodes. Mechanisms of choosing the time and nodes to be

actived/deactivated are broadly classified into:

1. Location driven protocols identify the nodes to be activated based on

theirs locations that are assumed known. A typical example of such is the

Geographical Adaptive Fidelity (GAF) [Xu et al., 2001] and [Anastasi et al.,

2009] which reduces energy consumption while keeping a constant level of

routing fidelity. In GAF, the sensing area is divided into small virtual grids.

Sensor nodes in adjacent grids, say E and F , are able to communicate with

one another. The nodes in a given grid, say E, are all assumed identical and

only one of the sensor nodes stays activated at a time for routing purposes.

The nodes choose among themselves, which one is to stay active.

In GAF, sensor nodes start by exchanging discovery messages after which

they enter active phase and periodically re-broadcast the discovery message.

When operating in either discovery or active states, a sensor node may enter

the sleep state if it identifies another equivalent node is handling routing.

From sleeping state, nodes wake up after some random time then goes back

to discovery state. In order to conserve energy, load balancing is achieved

by periodically choosing the lead node, which remains active for routing

purposes. Node residual energy is used as the main metric for choosing the

lead node for the grid. A detailed discussion on GAF is presented in [Xu
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et al., 2001]. Some other location driven protocols like Geographic Random

Forwarding (GeRaF) are also presented in the literature [Zorzi and Rao,

2003b], [Zorzi and Rao, 2003a], [Casari et al., 2005].

2. Connectivity driven protocols dynamically activate/deactivate sensor

nodes in a manner that guarantee network connectivity and desired cov-

erage [Kong and Yeh, 2007]. One example in this group is Adaptive Self-

Configuring sEnsor Networks Topology (ASCENT) [Cerpa and Estrin, 2004].

In ASCENT, each node assesses its connectivity and adapts its participation

in the multi-hop network topology based on the condition of the operating

region. For example, when a node detects high packet loss, it sends out

a request for more nodes to join the network to help relay massage. On

the other side, if a node detects higher packet rate due to collision, then

it reduces its duty cycle. Prior to joining a network the nodes first probe

the local environment to establish if it is helpful to do so. The idea about

ASCENT is that the nodes base their decisions on connectivity, and locally

measured packet loss. ASCENT adaptively elects active nodes, which re-

main awake all the time while the rest of the nodes alternate between passive

and sleep states following a random time. In the passive state, the nodes

are only able to listen to the neighbouring communications in order to check

if the adjacent nodes are active. In the event of a help message from the

neighbouring nodes, the passive nodes will respond by joining active state

until packet loss is reduced to acceptable levels and the condition is stabi-

lized. More connectivity driven protocols have also been proposed. Some

of these include An Energy -Efficient Coordination Algorithm for Topology

Maintenance in Ad-Hoc Wireless Networks (SPAN) [Chen et al., 2002] and

the Adaptive Fidelity Energy Conserving Algorithm (AFECA) that uses

the observation about node density to increase radio sleep time [Xu et al.,

2000].
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2.3.2 Sleep/Wakeup Protocols

As highlighted above, a popular approach for increasing longevity of the WSNs is

to alternate sleep/active operation periods of the sensor nodes. In this approach,

sensor nodes enter the low-power mode (Sleep) many times in order to save power.

However, the nodes periodically wake up in order to check for network activity

[Keshavarzian et al., 2006]. In this section, main independent sleep/wake up

schemes implemented on top of MAC protocol are presented. These are imple-

mented at either the Network or Application layer. In [Anastasi et al., 2009], this

category of protocols are further divided into three main groups presented in the

following sections:

2.3.2.1 On-Demand Protocol

In this scheme, a node wakes up only when a neighbouring node requires commu-

nication with them, otherwise they remain in sleep mode. A second low power

radio transceiver is used to monitor the channel continually for any packet arrivals

and wakes up the main radio transceiver when the arrival occurs. In this scenario,

the CH goes to sleep automatically following service end for the last job in the

system and wakes up each time a new arrival occurs [Gu and Stankovic, 2005]

and [Ameen et al., 2010]. Once in the active state, the CH remains active for as

long as there are jobs in the system to be serviced. This implementation is found

to save energy and is ideal for applications requiring very low duty cycle. The

applications include all event-triggered scenarios such as surveillance of machine

failures, fire detections, intrusion detection, etc.

In most cases, operations of On-demand scheme are achieved using two separate

channels. The use of two radio transceivers ensure there is no transmission signal

deferral on wake up channel if the other is in use for packet transmission thereby

reducing the wake up latency. Existing On-demand protocols include Sparse

Topology and Energy Management (STEM) [Schurgers et al., 2002b], which uses

two different radio transceivers, one for wake up signals and the other for data

packet transmission. However, for STEM, in order to eliminate communication
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range limitations, the two radio transceivers do not use low power. In STEM,

the source nodes initiate a talk by sending out stream beacon signals on the

wake up channel of the intended recipient who in turn sends out a wake up

acknowledgement and turns on its radio. As an advancement to STEM, authors

in [Schurgers et al., 2002a] proposed STEM-T, which uses tone instead of beacon.

In STEM-T, the tone is sent out to all the neighbouring nodes contrary to the

intended receiver in the case of STEM. Another protocol in the same category

is the Pipelined Tone Wakeup (PTW) developed to trade-off energy saving and

latency [Yang and Vaidya, 2004]. PTW also uses two radios with a signalling

tone on the wake up channel to wake up all the neighbouring nodes like in the

case of STEM-T. However, in the case of PTW, the burden of tone detection is

shifted from the receiver to the sender. The main hindrance to the radio trigger

approach is the limited distance that the wake up signal can cover.

2.3.2.2 Scheduled rendezvous Protocol

In this scheme, all neighbouring nodes are required to wake up at the same time.

In order to achieve this, the clocks for the sensor nodes are required to be syn-

chronised. Typically, nodes periodically wake up to check for prospective commu-

nications after which they return to sleeping state until the next rendezvous time.

The protocols in this category have different ways in which the sleep/wake up

schedules are achieved. The commonly used method employs a fully synchronized

approach [Ye et al., 2002] where all nodes wake up at the same time following a

periodic pattern, say τup, stays active for a predefined period, say τon, then return

to sleeping state until the next wake-up time. This scheme is further improved by

allowing the nodes to switch off their radios when no activity is detected during

operations [Van Dam and Langendoen, 2003]. A fully synchronised scheme has

also been successfully implemented on MAC protocols like S-MAC [Van Dam and

Langendoen, 2003] and T-MAC [Wei et al., 2004]. The main disadvantage of a

fully synchronised scheme is that nodes wake up at the same time hence they all

tend to want to transmit their data packets simultaneously thus resulting into

frequent collisions. Moreover, due to fixed sleep and wake up periods, the scheme

is not flexible to the varying network conditions.
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Another approach uses staggered wake up pattern [Keshavarzian et al., 2006]

where nodes are hierarchically arranged. While nodes at the same level and same

region wake up at the same time as is the case with a fully synchronised approach,

nodes at different levels wake up at different times. Staggered approach presents a

number of advantages over a fully synchronised approach. These include reduced

collision given only a subset of nodes are in the active state in the various levels

at a given time instance. Holding onto the same reasoning, the active periods

can also be made shorter, and thus saving energy. This method also allows

lower hierarchy parent nodes to filter out unnecessary data before forwarding to

the upper hierarchy parent node. However, like a fully synchronised approach,

staggered wake up approach still faces drawbacks that include collisions since

nodes at the same level still wake up at the same times. Because of fixed active

and sleep periods, it is also not able to adapt to topology changes and traffic

variations [Anastasi et al., 2009].

As advancement to the staggered wake up approach, authors in [Anastasi et al.,

2006] have proposed an adaptive and low latency staggered scheme that sets the

length of the active period to the minimum value consistently with the current

network activity. In addition to minimising the energy consumption this scheme

also lowers average packet latency with respect to the fixed staggered scheme.

Packet collision experienced in the previous two cases is reduced by varying the

length of active periods between nodes in the same level which are further asso-

ciated with different parents [Anastasi et al., 2009].

More implementation schemes for scheduled rendezvous are studied in literature,

including Flexible Power Scheduling (FPS) which takes time-slot approach where

time is divided into slots, which are then arranged to form periodic cycles [Hohlt

et al., 2004]. In this arrangement, nodes transmit/receive packets in their assigned

slots hence maintain power only during that time-slot. An advanced FPS, namely

Twinkle, which supports broadcast traffic and sink to sensor communication, was

presented in [Hohlt and Brewer, 2006]. Other schemes include two staggered

pattern and crossed staggered pattern [Keshavarzian et al., 2006]. In [Anastasi

et al., 2009], the possibility of integrating these sleep/wake up schemes with other

multi-parent schemes is highlighted. A proposal of such schemes was presented
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in [Keshavarzian et al., 2006].

2.3.2.3 Asynchronous Protocol

Under this scheme, sensor nodes are allowed to schedule their own sleep/wake

up times. In order to guarantee connectivity, sensor node neighbours have over-

lapped active periods within a specified number of cycles. This scheme employs a

quorum based system widely used in the design of a distributed system. The two

commonly used quorum systems are cyclic and grid quorum systems [Luk and

Wong, 1997]. In quorum-based systems, a collection of sets is considered such

that the intersection of any two sets is never empty [Colbourn et al., 2001].

A Quorum based asynchronous wake up was first proposed in [Tseng et al., 2003]

where authors presented three different asynchronous sleep/wakeup schemes re-

quiring modifications to the basic IEEE 802.11 power saving mode. In [Zheng

et al., 2003], authors used a systematic approach to design an asynchronous wake

up mechanism for ad-hoc networks, which is also applicable to WSNs. In this

study, generation of wake up schedules is formulated as a block design problem

and hypothetical bounds derived under different communication models. Based

on the optimum results obtained from the theoretical framework, Asynchronous

Wakeup Protocol (AWP) capable of detecting neighbouring nodes in a finite time

without slot alignment requirement was developed. The protocol was found to be

resilient to both packet collision and variations in network topology. The basic

idea is to have each node associated with a Wakeup Schedule Function (WSF)

used to generate a wake up schedule. The condition for two neighbouring nodes

communicating is to ensure their wake up schedules overlap regardless of their

clock difference. In order to conserve power nodes turn their radios on during

active periods only. Other studies in this area include a cyclic quorum system

using different sets [Wu et al., 2007]

Unlike the AWP which ensures wake up period overlap between neighbouring

nodes, authors in [Wu et al., 2007] proposed an Asymmetric Cyclic Quorum

(ACQ) system that guarantees neighbour discovery between each member node

and the CH in a cluster and between the CHs in the network. This is because in a
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clustered environment, there is no need to insist in all-pair neighbour discoveries

between the cluster nodes. A detailed construction scheme is then presented,

which resembles the ACQ system in O(1) time. The operation is similar to

that of Quorum based Power Saving (QPS) protocols [Tseng et al., 2003], [Wu

et al., 2007] in which the time axis on each station is divided evenly into beacon

intervals where the nodes may choose to stay active or sleep. As indicated before,

in a quorum system, a cycle pattern defined is used to specify sleep/wakeup

schedules within a given (n) continuous beacon interval for each station. Since

the pattern repeats every (n) beacon intervals, (n) is therefore the cycle length.

The advantage of the QPS protocols is that a station is required to remain awake

only O(
√
n) beacon intervals [Tseng et al., 2003], [Jiang et al., 2005a] every cycle

and the guarantee of at least, one of the wake up intervals overlaps with that of

another station.

Other approaches presented in literature include Transport-layer approach which

apply quorum based wake up scheduling at the transport layer which can cooper-

ate with any MAC-Layer protocol thereby allowing reuse of most MAC protocols

[Wang et al., 2006] [Lai, 2010] Another approach is a mechanism called ”Disco”

[Dutta and Culler, 2008] which is a simple adaptation of the Schedules based on

Chinese Remainder Theorem [Niven and Mongomery, 1991] In this approach, it

is shown that Disco can ensure asynchronous neighbour discovery in bounded

time, even if nodes independently set their own duty cycles.

2.4 Quality of Service (QoS) and Wireless Sen-

sor Network Performance

Guaranteeing QoS in WSNs has remained difficult and challenging due to sensor

network resource constrains and diverse application requirements. The provision

of WSN QoS can be broadly classified into application and network categories

[Steine et al., 2015], [Bhuyan et al., 2010]. In the case of applications, QoS pro-

vision involves parameters specific to the applications. These may include sensor

node measurements, deployment and coverage and the number and type of sensor
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nodes required for particular applications. On the other hand, network QoS pro-

vision envisions how the supporting communication network will meet application

needs while efficiently using network resources such as bandwidth and conserving

the limited power available for network devices. While traditionally, QoS con-

centrated on the metrics of network level performance such as delay, throughput,

jitter and others, in addition, QoS metrics for WSNs requires consideration of

reliability and availability that aid in the provision of required QoS.

Recently, lots of studies have been proposed in the area of WSN performance

ranging from MAC layer and routing protocols [Akyildiz et al., 2007], [Ghosh

et al., 2009], [Almazydeh et al., 2010], [Huang et al., 2012] and network traffic

engineering [Chiasserini and Garetto, 2004], [Bagula, 2010], [Kim et al., 2010]

Furthermore, also reported are availability and reliability studies [Dini et al.,

2007], [Almasaeid and Kamal, 2009], [Bruneo et al., 2010], [Hashmi et al., 2010],

[Houaidia et al., 2011].However, existing studies continue to address performance

and availability concerns separately, implying that effects of performance measure

on availability and vice versa are not considered. In this section, a detailed survey

of existing studies on performance and availability/reliability is presented.

2.4.1 Performance Models for WSNs

Performance modelling and analysis continue to be of great practical and theoret-

ical importance in supporting research as well as in the design, development and

optimization of computer and communication systems and applications. The cur-

rent trend towards the use of WSNs in various application areas also brings with

it the need for more performance and availability modelling for an optimized de-

ployment of WSNs. The study of modelling and performance evaluation of WSNs

covers a diverse research area, including MAC protocols [Li et al., 2010], routing

protocols [Almazydeh et al., 2010], Energy Efficiency [Ameen et al., 2010], Data

gathering [Meghanathan, 2012], Topologies [Kamapantula et al., 2012] and radio

transmission channels [Giuseppe et al., 2007], [Cheffena, 2012]. Lots of research

in this area has covered WSN performance evaluation with a few trials on actual
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modelling of WSNs varied subject areas.

Several energy-aware MAC layer and routing protocols for WSN exist in litera-

ture. Studies in [Chung and Hwang, 2010], [Ghosh et al., 2009], [Huang et al.,

2012], [Simaiya et al., 2013] present a comparison and performance analysis of

energy aware MAC layer protocols. In [Huang et al., 2012], a detailed evolution

of MAC protocols is given. The authors further evaluate the designs of the pro-

tocols in terms of energy efficiency, data delivery performance and the overheads

required to maintain a protocol’s mechanisms. In a recent study presented in

[Lanjewar and Adane, 2014], authors have also presented a comparative study of

MAC layer protocols in terms of energy efficiency, data delivery mechanisms and

overheads incurred to maintain a protocol along with their advantages and disad-

vantage. In another study [Oller et al., 2013] a Wake-up radio system is developed

and found to present an energy-efficient solution while providing a good trade-off

between latency, packet delivery ratio and applicability. The performance of the

wake-up radio system is then compared to two well-known WSN MAC protocols,

namely B-MAC and non-beacon enabled IEEE 802.15.4. The results obtained

indicate the wake-up radio system effectively outperforms the conventional WSN

MAC approaches in terms of energy efficiency for realistic traffic loads expected

in WSN.

In [Almazydeh et al., 2010] a simulation technique is used to evaluate the per-

formance of known hierarchical routing protocols like LEACH, PEGASIS and

VGA. It was noted that PEGASIS could greatly prolong the sensor network life-

time when the transmission range is limited. VGA, however, saves more energy

than other protocols when the transmission range is further. In another study

[Baghyalakshmi et al., 2010], it was indicated that TEEN, APTEEN, SPEED,

RAP and RPAR minimize latency and conserve’s energy with their own design

techniques. It can clearly be noted that a lot of trade-offs exist for considera-

tion when choosing the right routing protocol that facilitates attaining required

performance.

Topological studies have also been carried out to identify appropriate logical com-

munication topologies between sensor nodes and the sink in a WSN [Zhou and

Krishnamachari, 2003], [Vlajic and Xia, 2006], [Lee et al., 2009], [Ebrahimi et al.,
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2011], [Wang et al., 2011a], [Mamun, 2012]. A number of topologies including

Star, Cluster/Tree and Mesh have been used to coordinate WSN operations once

deployed. In star topology, each node maintains a single communication path

with the gateway either through direct connectivity or hopping through inter-

mediary nodes [Vlajic and Xia, 2006], [Lee et al., 2009] However, this restricts

the achievable network distance. The remedy to this is the use of Mesh topology,

which enables multiple paths to the gateway. However, Mesh topology are known

to increase network latency and routing challenges before reaching the gateway

[Zhou and Krishnamachari, 2003], [Ebrahimi et al., 2011]

In [Mamun, 2012], authors presented a detailed qualitative comparison of dif-

ferent logical topologies for WSNs using different performance metrics including

energy distribution and consumption, load distribution, redundancy, scalability,

reliability, latency, Network connectedness, Lifetime and topology management

overhead. From the results, though the chain oriented topology is more promis-

ing; it requires special attention in some areas to make it more efficient. Cluster

based topologies performed very well in most of the areas, and it forms a bridge

between the under performing topologies and challenges of the high-performing

topologies. In order to conserve power further in a cluster based topology, there

has been a growing interest in unequal clustering techniques to improve the overall

network lifetime and combat the hotspot problem prevalent in multi hop WSNs.

Towards this, authors in [Ever et al., 2012] proposed an unequal clustering al-

gorithm (UHEED), which is an advancement of a Hybrid Energy-Efficient Dis-

tributed (HEED) clustering approach for ad hoc sensor networks [Younis and

Fahmy, 2004].

In [Chiasserini and Garetto, 2004], a Markov model for WSNs whose nodes may

enter sleep mode was presented, and used to investigate the system performance

in terms of energy consumption, network capacity, and data delivery delay. It was

also used to investigate the trade-offs between performance metrics and sensor dy-

namics in sleep/active modes of WSNs. In [Qiu et al., 2011], it was noted that due

to limited hardware consumption, optimizing node packet buffer and maximizing

performance are necessary to improve transmission QoS in WSNs. In the same

studies, a packet buffer evaluation method using Queuing Network Models was
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proposed where, blocking probabilities and system performance indicators of each

node were then calculated using an approximate iterative algorithm for blocking

probabilities. In this study, the buffer capacity for a single node was evaluated,

and it was concluded that sink nodes require higher-performance capacities.

In order to address convergence-related issues, a new structure was proposed,

which converges WSNs and Passive Optical Networks (PON) in [Wang et al.,

2011b]. The performance of the structure is modelled and analysed using two

M/M/1 queues in tandem. The results indicated how WSN and PON dimensions

affect the average queue length, hence may be used as a guideline for resource

allocation. In the preceding discussions, none of the authors considered the pos-

sibility of node failure during operations. Instead, they all assumed that network

nodes do not fail during operation.

In an earlier study in [Ali and Gu, 2009], authors presented a performance mod-

elling approach for WSNs as a queue network with on and off servers representing

a sensor nodes active and sleep operation states. The traffic flow and operation

state of a given node j is modelled and analysed as a single server following Jack-

son’s network with node breakdowns and repairs. In this model, Time Division

Multiple Access (TDMA) media access protocol with slot reuse is considered for

the network. Using the model, a joint distribution of the sensor node queue length

for the network is determined. From the results, the probability distribution of

the number of active nodes and blocking probability of node activation are de-

termined. However, in this study the actual node failures and repairs are not

considered.

The use of the WSN-free radio band within industrial environments faces a lot

of challenges, including significant noise from varying temperatures, strong vi-

brations and strong electromagnetic noise caused by large motors [Sexton et al.,

2005], [Tang et al., 2007]. In a bid to address these concerns, discussions on chal-

lenges, design principles, and technical approaches of WSNs for industrial appli-

cations were presented in [Gungor and Hancke, 2009]. In a recent study, authors

in [Cheffena, 2012] presented a novel complete dynamic wideband channel model,

which takes into account the noise, interferences, and multipath propagation ef-

fects present in industrial environments. The model developed is then used to
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evaluate the performance of the industrial WSNs based on IEEE802.15.4 physical

layer standards in terms of bit error rate. The advantage of using link diversity

to improve the link quality in hash industrial environment is also demonstrated.

2.4.2 Availability and Reliability Models for WSNs

The main drawbacks to the provision of high availability demanded by WSN

applications include limited lifetime, service attacks by intruders, software and

hardware failures just to mention a few. There has been recent research in this

area [Masoum et al., 2008], [Kim et al., 2010], [Munir and Gordon-Ross, 2011].

In [Thein et al., 2008], [Hashmi et al., 2010] use of BCHs is presented as a form of

redundancy when a cluster head fails. However, in both cases’ performance degra-

dation due to replacement and transfer delays between failing CH and BCH is not

accounted for. In [Munir and Gordon-Ross, 2011], a Markov model characteriz-

ing fault-tolerant sensor node for applications with high reliability requirements

is proposed based on the novel concept of determining the coverage factor.

In yet another study [Bruneo et al., 2010], reliability and reproducibility of WSN

were investigated, and it was concluded that star topology showed better reliabil-

ity and reducibility but at the cost of limited network size. This limitation was

solved using cluster topology for multi-hop communication, which is also limited

by a central point of failure at the CH automatically disconnecting child nodes

from the sink node. Further studies on the effect of unreliable WSN links on

dependability parameters and the adoption of nonlinear battery discharges were

also proposed. Research by [Almasaeid and Kamal, 2009] proposed to minimize

the number of additional nodes needed to repair the connectivity by achieving a

certain level of fault tolerance using on the minimum K-connectivity algorithm.

In order to improve coverage and connectivity when nodes begin to fail, the use

of mobile robots to replace the failed sensor nodes with new ones was proposed

[Dini et al., 2007]. Here the robot strategically places the new sensor nodes in

central locations that would enable maximum habitat coverage. In another study

[Song et al., 2010], the design and implementation of a reconfigurable robot is

presented. The robot can serve as a mobile node for wireless sensor networks
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making it adaptable to changing terrain conditions in real-world applications. A

jumping WSN robot node for use in repair of broken network connections was

also proposed by [Jun et al., 2012]. This robot provides a powerful maintenance

support for applications in unfriendly environments.

It is evident that failing nodes can be repaired through software reconfiguration

and replacement using mobile nodes in case of complete failure. Manual replace-

ment of nodes is also possible in some non-hazardous application environments.

In addition, deployment of extra sensor nodes kept inactive until need arises

during failure has also been used [Anastasi et al., 2009].

2.4.3 Performability Models for Wireless Sensor Networks

Previous research indicates limited work in the area of WSN performance and

availability modelling. Apart from modelling, other studies have attempted to

tackle known issues of energy, routing, topology, reliability and dependability in

an attempt to optimize performance of WSNs.

In [Houaidia et al., 2011] and [Jun et al., 2012], mechanisms for repairing and re-

placing failing nodes to sustain longer network life time were developed. Together

with recent work in the areas of performance and availability, this is a positive

indication of a possibility to integrate performance and availability for purposes

of modelling the system’s behaviour and analyzing performance in the presence

of failures and repairs. The modelling of WSNs for performability evaluation has

not been considered before. Such models if successfully done can provide efficient

and reliable configurations to optimize various aspects of WSNs.

Owing to the nature of WSN operations that require frequent topological reorga-

nizations and reconfiguration normally caused by active/sleep operation modes

and sensor node failures, it is appropriate to consider the effects resulting from

repairs, reconfigurations and replacement of failed sensor nodes where applicable.

For such scenarios, pure performance models that ignore failures, repairs and re-

covery are known to overestimate the system’s ability to perform [Trivedi et al.,

2003]. On the other hand, pure availability analysis tends to be conservative
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since performance considerations are not taken into account [Trivedi et al., 2003].

In order to obtain realistic composite performance and availability measures as-

sociated with failure and recovery behaviour, performability modelling has been

proposed and used successfully to model and analyse related communication and

computing systems over the years [Mitrany and Avi-Itzhak, 1968], [Chakka and

Mitrani, 1996], [Kirsal and Gemikonakli, 2009], [Ever et al., 2009], [Trivedi et al.,

2003],[Ever et al., 2013]. However, there is no record of previous research on per-

formability evaluation of WSNs. This is mostly attributed to several deployment

challenges, top among them battery power depletion, which normally reduces the

lifespan of WSN networks. With successful research being done to improve the

life span of the nodes, WSNs tend to inhibit similar characteristics of commu-

nication networks hence the available modelling and solution techniques may be

successfully used to model these networks.

To obtain realistic solutions, state space models have been employed successfully

to solve complicated systems exhibiting transitions between various independent

states [Thein et al., 2008], [Sheng-li et al., 2009]. These models may be broadly

categorized as; Markovian, Non-Markovian and Non-Homogeneous Markov mod-

els. In the literature, Quasi Birth and Death processes (QBDs) have been used ex-

tensively to model performance and reliability of various systems [Chakka, 1995],

[Ever, 2007], [Gemikonakli, 2014].

2.5 System under study

In this study, a WSN of Y stationery, identical nodes is considered. The nodes

are organised into a group of K Clusters, each with one CH coordinating cluster

operations. A cluster is formed up of the CH itself, FFD and RFD nodes working

as end devices. In order to enhance reliability and availability of the network, the

CH operations are rotated among strategically deployed FF nodes. The choice

of the CH is based on node energy levels, and other metrics deemed appropriate

[Hashmi et al., 2010], [Chiasserini and Garetto, 2004], and [Li, 2011]. To conserve

energy, CHs rotationally enter sleep mode after transferring operations to the
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next CH. For this purpose, use of the best energy-saving protocols like UHEED

[Ever et al., 2012] is assumed. The system is also assumed to have redundant

sensor nodes deployed at inception but kept inactive until the need to replace a

failing node arises [Munir and Gordon-Ross, 2011]. It is further assumed that all

nodes are equipped with omnidirectional antennas with same radius (d) and can

communicate directly with the CH based on the IEEE802.15.4/ZigBee standards.

In order to reduce the energy consumption further, nodes are capable of choosing

an arbitrary transmission power level as long as the radius d is not exceeded.

Information sensed at the nodes is forwarded to the CH, which finalises clus-

ter data aggregation. The CHs may also generate data packets based on their

observations. The total information is then transmitted by the CH to the sink

directly or through another intermediary CH. It is assumed that at least one

path exists towards the sink [Chiasserini and Garetto, 2004]. Like other com-

munication networks, this system is subject to failures, which may result from

hardware, software and channel link errors. Figure 2.4 shows the system scenario

in consideration.

Figure 2.4: Network topology of the reference scenario

A closer look at the functions of the CH indicates several possible operative states,

including active and sleep modes implemented in a couple of protocols in order

to conserve the limited power available for node operations.
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2.5.1 WSN Clustering

In most cases, the formation of WSNs is by deployment of large magnitudes of

small sensor nodes in the habitats. Once deployed, the sensor nodes that are pre-

loaded with necessary software then discover their neighbours and self-configure

themselves into a desired network. Due to inability to cope with energy and re-

source constraints of WSNs, hierarchical networks are preferred over flat networks.

Lots of clustering algorithms have been developed in order to address the con-

strains of WSNs [Anker et al., 2008], [Mamun, 2012], [Liu, 2012], [Jadidoleslamy,

2013]. Clustering is preferred in WSN deployment because of its ability to achieve

network scalability, energy efficiency, prolonged life time, reduced communication

overheads and ease of management in large scale WSNs [Jadidoleslamy, 2013].

This arrangement allows all the cluster nodes to have an opportunity to operate

as a CH in a rotational arrangement [Ameer Ahmed Abbasi, 2007]. The rotation

has also been enhanced by the introduction of BCHs used for creating redun-

dancy in the event of failure before rotation time is reached [Hashmi et al., 2010],

[Ameer Ahmed Abbasi, 2007], [Gupta and Younis, 2003]. In every cluster, the

nodes communicate directly with the CH. They operate as end devices collecting

data and transmitting to the CH, making the CH become the central point for

data aggregation. The CH is also responsible for transmission of all cluster traffic

to the base station directly or hopping through some other intermediary CHs.

Some of the benefits of using clustering include route localization, which reduces

routing table stored at individual nodes [Akkaya and Younis, 2005], conservation

of communication bandwidth by limiting inter-cluster interactions to CHs and

avoiding redundant exchange of messages among sensor nodes [Ameer Ahmed Ab-

basi, 2007]. Clustering also benefits from the ability to stabilize topology at sen-

sors’ level thereby reducing topology maintenance overhead. Under this, sensors

would only concern themselves with connection to the CH since changes at the

inter-CH never affect them. [Ameer Ahmed Abbasi, 2007], [Hou et al., 2005].

Noting that the major concern is to guarantee reduced energy consumption and

longer life time, research by [Vlajic and Xia, 2006] indicated that a good choice

of a clustering scheme is necessary. In this paper, authors also recommend a

maximum of five hops a CH can be deployed away from the sink. However in
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every cluster, two hops is recommended for deployment of nodes away from the

CH.

In [Ameer Ahmed Abbasi, 2007], a clear outline of clustering objectives is given.

These include increasing connectivity and reducing delay, which ensures a good

path for connecting all CHs to the sink at reduced delay, minimum cluster count,

which enables limiting number of hop counts to the sink and maximizing network

longevity, which determines the lifetime of the network. Together with taxon-

omy of clustering attributes, Figure 2.4, this work depicts WSN clusters as a key

medium to the provision of WSN network QoS [Bhuyan et al., 2010] and con-

centrates on modelling integrated performance and availability of these networks

when subjected to a number of metrics.

Clustering hierarchy continues to be used enormously because of the advantages

it offers in the resource management and scalability of the network among others

[Jadidoleslamy, 2013]. However, QoS handling, mobility effects and redundancy

management for ensuring network reliability remains an important trade-off for

improving performance in WSNs [Liu, 2012].

2.5.2 Cluster Head Selection

The process of choosing the CH involves consideration of a number of metrics,

which vary between protocols. Commonly used metrics include the initial and

residual energies. During first deployment, same power level is assumed for all

the nodes. Using the algorithms that vary from one protocol to another, a CH is

selected among strategically placed contending nodes that are preferably 1-hop

apart in the neighbourhood. Examples of the protocols used for clustering include

LEACH [Heinzelman et al., 2000], where CHs are rotationally selected from the

cluster nodes in order to distribute communication energy within the cluster to

all the nodes. LEACH has since been improved a lot in order to enhance its

performance. The LEACH family include TL-LEACH [Loscri et al., 2005], E-

LEACH & M-LEACH [Xiangning and Yulin, 2007], V-LEACH [Yassein et al.,

2009] and others.
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Another clustering protocol is the HEED [Younis and Fahmy, 2004] which chooses

the CH based on the nodes residual energy and the intra-cluster communication

cost. In addition, HEED ensures even distribution of the CH throughout the

network. Like in the case of LEACH, HEED also does CH election periodically.

As an improvement to HEED, Distributed Weight-based Hierarchical Clustering

Protocol (DWEHC) was developed. DWEHC improves on HEED by building

balanced cluster sizes through creation of a multi-level structure for intra-cluster

communication while at the same time limiting the number of sensor nodes that

can be attached to a parent node. Other clustering protocols include Position-

based Aggregation Node Election protocol (PANEL), Unequal Clustering Size

(UCS), Energy Efficient Clustering Scheme (EECS) and others have been devel-

oped. A detailed summary of the clustering protocols is presented in [Liu, 2012].

Further details on clustering is presented in [Anker et al., 2008], [Mamun, 2012]

and [Jadidoleslamy, 2013].

2.6 Chapter Summary

Significant studies addressing various challenges facing WSNs have been done.

However, the ever expanding use of WSN technology in diverse application en-

vironments resulting from the availability of technologically advanced low-cost

sensor devices has presented further resource constrains on WSNs hence open-

ing more research opportunities. Serious challenges facing WSN include limited

power available to the sensor nodes, constrained memory capacity, and processing

power, and radio channel interferences.

In order to address these concerns, existing studies have continued to look into the

various areas, including topology-related studies that have carried on presenting

energy aware routing protocols to help conserve the little available energy and at

the same time provide required redundancy. MAC protocols have also been de-

veloped to control sensor sleep/wake up schedules. In addition, advanced energy

aware transceivers for controlling sleep/wake up periods are proposed. Further-

more, development of micro-battery power sources has promoted the development
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and use of sensor networks in all aspects of life.

In order to optimize the use of WSNs, more research studies have continued to

address performance and availability/reliability. However, QoS has remained a

trade-off of performance metrics depending on the application area. In this sec-

tion, a detailed study on WSN resource constraints and other limitations directly

affecting performance and availability of the network is carried out. A lot of pre-

vious and current research work tend to concentrate on independent availability,

and performance studies oblivious of the results of such studies. A composite

study of availability and performance is hence necessary if optimum QoS is to be

achieved.
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Chapter 3

Modelling Approaches and

Solution Techniques

3.1 Introduction

The rapidly growing demand for use and deployment of WSNs continues to pose

a great challenge to service delivery considering the diversity of application envi-

ronments that demand varying service level requirements. In addition, resource

constrained sensor nodes require performance and availability optimization in

order to achieve meaningful results within the desired operation periods. There-

fore, it is essential to develop a new traffic model that integrates performance and

availability to address known issues emanating from independent availability and

performance studies. For this purpose, this study considers analytical models for

integrated performance and availability of clustered WSNs based on single server

systems representing the behaviour of the CH when subjected to both internally

and externally originating traffic.

The following sections provide the underpinning theoretical knowledge and dis-

cussion on the various solution approaches and their limitations for the proposed

system models with bounded and unbounded queues. In this study, the use of

Queueing theory and Markov Chain analysis is undertaken to evaluate the offered
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joint performance and availability models. The rest of the chapter is organised as

follows: Section 3.2 present evaluation methods for performance of computer and

communication systems. In Section 3.3, solution approaches for two dimensional

state space are discussed followed by the chapter summary in section 3.4

3.2 Evaluation Methods for Performance of Com-

puter and Communication Systems

3.2.1 Pure Performance Evaluation Models

Performance evaluation has been used extensively to study computer and com-

munication systems [Chakka, 1995], [Ever et al., 2012]. In this study, the same

approach has been extended to study and evaluate performance of WSNs. Under

independent performance studies, it is assumed that systems never fail during

operation hence system unavailability is of no consequence. The study of such

systems has been analysed using queuing models with one or multi server sys-

tems [Chakka et al., 2000], [Ever et al., 2009], [Wang et al., 2011b], and [Kirsal,

2013]. In WSN systems, mainly single server queuing systems have been used

[Chiasserini and Garetto, 2004], [Qiu et al., 2011], and [Wang et al., 2011b].

Cutting-edge mathematical techniques that are computationally efficient have

made analytical modelling approach the most preferable. Using this approach,

the exact or approximate solutions of the system models can be obtained. Fast

computations and formulae obtained are the main advantages of analytical mod-

elling. Queuing theory and Markov Birth and Death Processes successfully used

in performance evaluation Chakka and Mitrani [1996], Ever et al. [2009], Kirsal

et al. [2011] are used in this study. They are fundamental to modelling repre-

sentations of systems with stochastic processes. Terminologies used in queuing

theory for performance modelling are detailed in the model of WSN cluster com-

munication systems given in Figure 3.1.

In queuing theory, a single queuing station system consists of one finite or infinite

queues and one or more identical service stations. The term queue is used to mean
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Figure 3.1: Basic Cluster Queueing System

a waiting line, hence queuing theory can be defined as a theory of waiting lines.

In Figure 3.1, when a new job arrives, it is either taken in for service directly or

placed in the queue if the CH is busy. For CHs with unbounded queues, all jobs

are stored making the queue size grow as necessary to accommodate all arriving

jobs. On the other hand, if the CH is bounded, the arriving jobs are only admitted

if the queue has an empty slot. Any job arriving when the queue is full is lost. In

such systems, the CH (server) can only serve one job at a time hence its state at

a given time is either busy or idle. Kendall’s notation, A/B/c/K/m/Z has been

used to describe queuing systems [Chakka, 1995], [Ever, 2007], [Vrije, 2003]. The

notations represent the following:

1. A - represent the distribution of job arrivals

2. B - represent the distribution of service time

3. c - represent the number of servers

4. K - represent queue capacity

5. m - represent the population size

6. Z - represent the queue discipline.

The commonly used disciplines in computer and communication systems are
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First-In First-Out (FIFO), and First-Come First-Served (FCFS). In order to de-

termine the distribution of inter arrival and service times, Markov processes are

usually used [Vrije, 2003].

A Markov process is a stochastic process whose future state is purely dependent

on the current state. In other words, the prospective probabilistic behaviour of

the process depends only on the present state of the process and is not influenced

by its past history [Vrije, 2003], [Gunter et al., 2006]. The main classes of stochas-

tic processes are Markov chains and Markov processes, where a Markov chain is

defined as a discrete-time process for which the future behaviour, given the past

and the present, only depends on the present but not on the past. However, a

Markov process is defined as a continuous-time version of a Markov chain. The

discrete state Markov processes where the transitions are restricted to neighbour-

ing states, are called birth-death processes [Ever, 2007]. The discrete states of

these processes are usually represented by integers, and from state n it can only

change to state n+ 1 or state n− 1 representing arrival and departure of a job to

or from the system respectively. A typical birth and death process [Ever, 2007]

for an M/M/1 queuing system is illustrated in Figure 3.2.

0 1 i -1 i i +1

didi -1d1 d2 di +1 di +2

bi bi +1bi -1bi -2b1 b2

Figure 3.2: Markov Birth and Death Process

From Figure 3.2, bi and di illustrate birth and death transitions originating from

state i respectively. Using the relations given in [Trivedi, 2002b] it is possible to

compute the steady state probabilities (Pi) using equations 3.1 and 3.2.

Pi+1 =
bi
di+1

Pi (3.1)
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and

∑
i

Pi = 1 (3.2)

Employing the steady state probabilities, well established queuing theory formu-

lae can be used to obtained various performance evaluation measures.

The proposed clustered WSN, can be modelled using a single queueing system

with the CH centrally collecting and processing packets arriving from cluster

nodes. Additionally, the CH also forwards to the sink, packets originating from

other CHs located outside the sink’s communication radius. Let X = {X(t), t ≥
0} be a continuous time Markov chain describing transition states of the CH with

respect to packet arrivals. The process X(t) defined on a probability space( Ω,F,

Pr), with countable values in the state space E such that for a finite set 0 ≤
t1 < t2 < · · · < tn < tn+1 of “times” and a corresponding set i1, i2, . . . , in−1, i, j of

CH states in E, the Pr{X(t) = i,X(tn−1) = in−1, . . . X(t1) = i1} > 0 [Anderson,

2012]. The states of the process X can therefore be given by:

Pr{X(tn+1) = j|X(tn) = i,X(tn−1) = in−1, . . . , X(1) = i1}

= Pr{X(tn+1) = j|X(tn) = i} (3.3)

Letting s be an instance of time and considering all s and t such that 0 ≤ s ≤ t

and all i, j ∈ E the conditional probability Pr{X(t) = j|X(s) = i} of equation

3.3 depends only on t−s, and not on s and t individually. This property captures

the homogeneity of packet distribution at the CH. The conditional probability

can now be expressed by equation 3.4 and the transition function of the process

X(t) given by 3.5.

Pr{X(t) = j|X(s) = i} = Pr{X(t− s) = j|X(0) = i} (3.4)

pij(t) = Pr{X(t) = j|X(0) = i}, i, j,∈ E, t ≥ 0 (3.5)

From [Vrije, 2003], the transition between states of the CH are guided according
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to the following rules:

1. The system may jump into state i following the arrival or departure of a

data packet. It then stays in state i for an exponentially distributed time

with a mean of 1
vi

independently of how the system reached state i and

how long it took to get there. Here the mean distribution time, 1
vi

, may be

caused by arrival of the next packet, 1
λi

, or the departure from the system

after service 1
µi

.

2. If the system leaves state i, it jumps to state j(j 6= i) with probability pij

independently of the duration of the stay in state i, where
∑

j 6=i pij = 1 for

all i ∈ E.

The convention pii = 0 for all states of i is convenient and natural. This ensures

that the sojourn time in a state is unambiguously defined.

From pure performance point of view, it is usually assumed that systems never

fail. Such system models are found to be optimistic considering that systems are

always expected to fail, and the failures may have a great impact on the overall

system performance. In WSNs, systems usually fail either due to hardware,

software or when their energy source is completely depleted. Any kind of failure

in this case may result into node, cluster, or total network failures. Moreover,

network portion failures greatly impact on overall network coverage and may

degrade system performance further.

3.2.2 Pure Availability Evaluation Models

The availability of WSN systems is becoming increasingly important due to in-

creased dependency of various WSN applications requiring continuous monitoring

and also the need for fault-tolerant design. Availability is closely related to re-

liability, and is defined in ITU-T Recommendation E.800 [ITU-T, 2008] as “the

ability of a system to be in a state to perform a function or an operation at a given

instant of time, or at any instant of time within a given time interval, assum-

ing that the external resources, if required, are provided.” The main difference

between the reliability and availability is that the reliability refers to failure-free
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operation during an interval, while availability refers to failure-free operation at a

given instant of time [Trivedi, 2002b], usually the time when a device or system is

first accessed to provide a required function or service. Availability may further

be categorised as:

1. Instantaneous Availability or Point availability A(t) of a component

(or a system) is defined as the probability that the component/or system

is properly functioning at time t [Trivedi, 2002b], [Ever, 2007], and may be

described mathematically as:

A(t) = R(t)

∫ t

0

R(t− x)m(x)dx (3.6)

where R(t) is the probability of having no failure in interval (0, t) and m(x)

is the repair density. The equation shows that the system is available either

if no failures occurs in interval (0, t), or failure occurs but repair of the

system is completed before time t [Trivedi, 2002a].

In the absence of a repair or a replacement, availability A(t) is simply equal

to the reliability R(t) of the component.

2. Limiting Availability defined as the steady-state availability (A) is the

limiting value of A(t) as t → ∞. From the literature [Ever, 2007], it may

be expressed mathematically as:

lim
t→∞

A(t) = A =

1
ξ

1
ξ

+ 1
η

=
MTTF

MTTF +MTTR
(3.7)

where ξ and η are failure and repair rates respectively, and 1
ξ

and 1
η

are Mean

Time To Failure (MTTF ) and Mean Time To Repair (MTTR) respectively.

3. Interval (Average) Availability defined as the expected fraction of time

the system is up in a given interval (0→ t) may be given by:

AI(t) =
1

t

∫ t

0

A(x)dx (3.8)
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In [Trivedi, 2001], it is explained that the three availabilities relate as given in

equation 3.9

lim
t→∞

AI(t) = lim
t→∞

A(t) =
η

η + ξ
(3.9)

In order to study system reliability and availability, three model types are identi-

fied as Combinatorial, State space and Hierarchical models [Trivedi, 2001], [Ever,

2007]. In combinatorial models, three model types: reliability block diagrams,

reliability graphs and fault trees are commonly used. These model types are

similar since they capture conditions that make a system fail in terms of the

structural relationships between the system components. Reliability block dia-

grams (RBD) implemented either in series, parallel or in k-out-of-n configurations

represent the logical structure of a system with regard to how the reliability of

its components affects the system reliability. An RBD can be used to model

availability if the repair and failure times are all independent. The assumption

of independence and series-parallel structure allows very fast computation of re-

liability and availability measures. However, many system models in practice do

not follow the series-parallel structure. Symbolic Hierarchical Automated Relia-

bility/Performance Evaluator (SHARPE) software package developed by Sahner

and Trivedi in 1986 allows easy specification and solution of such models [Trivedi

and Malhotra, 1993], [Trivedi, 2001].

Reliability graph models are considered to consist of a set of nodes and edges (and

directed arcs), where the edges represent components that can fail or structural

relationships between the components [Trivedi, 2001]. The graph contains one

node, the source (meaning no arcs enters it), with no incoming edges and one

node, the sink (also called destination or terminal nodes) with no outgoing edges.

The arcs are assigned failure distributions. A system represented by a reliability

graph fails when there is no path from the source to the sink. The edges can be

assigned failure probabilities, failure rates or unavailability values or functions,

the same as reliability block diagrams. A reliability graph is equivalent to a non-

series-parallel reliability block diagram. In the reliability graph, the components

are the arcs, while in the block diagram, the components are the boxes. The non-
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series-parallel block diagram cannot be directly analysed by (or even specified

for) SHARPE, but the reliability graph can. The price for more generality is the

increased complexity of solution.

A fault tree is a pictorial representation of the sequence of events/conditions to

be met for a failure to occur [Sahner et al., 1996], [Sathaye et al., 2000]. It uses

AND,OR, and k of n logic gates to represent the combination of events in a tree-

like structure. In order to represent situations where one failure event propagates

failures along multiple paths in the fault tree, fault trees can have repeated nodes.

There exists several efficient algorithms for solving fault tree [Sathaye et al.,

2000]. Examples include; algorithms for serial - parallel systems (for fault tree

without repeated components), a multiple inversion (MVI) algorithm called the

LT algorithm for obtaining the sum of disjoint products (SDP) from mincut

set [Muppala and Trivedi, 1992] and the factoring /conditioning algorithm that

works by factoring a fault tree with repeated nodes into a set of fault trees without

repeated nodes [Sathaye et al., 2000], Satyanarayana and Prabhakar [1978]. In

[Doyle and Dugan, 1995], [Doyle et al., 1995], it is shown that binary decision

diagrams(BDD)-based algorithms can be used to solve very large fault trees.

In previous studies [Sathaye et al., 2000], Trivedi [2002b], it is noted that relia-

bility block diagram, reliability graph and fault trees cannot easily handle more

complex situations such as failure/repair dependencies and shared repair facilities.

State space representations have successfully been used to model such complex

systems. A state space model is a description of a configuration of states used as

a simple model of the system under study. State space models consist of states

and transitions between the states. Gracefully degrading systems may be able

to survive the failure of one or more active components and continue to pro-

vide service at a reduced level. Some commonly used techniques for modelling

of gracefully degradable systems include Markov reward model (MRM), Markov

chains, Stochastic reward nets and Petri nets [Trivedi, 2001] and [Sathaye et al.,

2000].

The advantage of using non-state-space models seen above is that they are ef-

ficient to specify and solve. However, the solution of these models assumes the

components are independent. For instance, in a block diagram, fault-tree or reli-
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ability graph, the components must be completely independent of one another in

their failure and repair behaviour. A failure in one component cannot affect the

operation of another component, and components cannot share a repair facility.

Markov models provide the ability to model systems that violate the assumptions

made by the non-state-space models as seen but at the cost of a state space ex-

plosion. A system having n components may require up to 2n states in a Markov

chain representation [Trivedi, 2001].

Trivedi mentions two ways of dealing with state space explosion problem as tol-

erance or avoidance [Trivedi, 2001]. Complex system tolerance must apply to

specification, storage and solution of the model. If the storage and solution

problems can be solved, the specification problem can be solved by using more

concise (and simpler) model specifications that can be automatically transformed

into Markov models. Complex models can be avoided by using hierarchical model

composition [Trivedi, 2002b]. The ability of SHARPE to combine results from

different kinds of models also makes it possible to use state-space methods for

those parts of a system that require them, and use non-state-space methods for

the more well-behaved parts of the system.

In practical system design, a pure availability model may not be enough for

gracefully degrading communication and computer systems considering that they

tend to be very conservative given they do not explicitly consider different levels

of performance of system states. A composite model for both availability and

performance is therefore necessary as the system degrades over time. A more

realistic analysis method was introduced in [Beaudry, 1978] and a conceptual

framework of performability introduced by Meyer [Meyer, 1980]. This modelling

approach is very useful for systems as they degrade and experience moments of

breakdowns and failures.

3.2.3 Performability Evaluation Models

Unlike in the preceding two sections, performability technique is used in this

section to yield a single monolithic model [Beaudry, 1978], [Neuts and Lucantoni,

1979], [Beaudry, 1978]. Such an overall model of system behaviour can potentially
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yield more accurate results than the disjoint models. Where the main concern is

performability over a specified time period, reliability issues are considered. On

the other hand, if performability at an instant of time is required, then availability

issues are considered. In both cases, the model specifies the amount of work to be

done within a given interval when the system is affected by failures and repairs.

Significant amount of work has been reported on the development of techniques

for evaluating performance and availability of computer and communication sys-

tems [Trivedi and Malhotra, 1993], [Sathaye et al., 2000], [Haverkort et al., 2001],

[Trivedi, 2002b]. Other useful approaches for performability modelling and eval-

uation have also been presented in [Ever et al., 2013], [Ever et al., 2012], [Sahner

et al., 1996], [Heimann et al., 1990], [Chakka, 1995], [Ever, 2007]. These include

Markov Reward Models (MRM), Integrated performability model/or queues with

server breakdown, Iterative Modelling approach, Completion Time Approach and

Multi State Combinatorial Approach. In [Trivedi and Malhotra, 1993], queues

with server breakdowns are considered same as integrated performability models

though treated differently because of the extensive research realised in this area.

Here priority queuing system for different customer types and queuing systems

with vacations are considered for modelling servers with failures and repairs. In

the same studies [Trivedi and Malhotra, 1993], authors discussed some tools,

which may be used for performability and reliability analysis.

Despite numerous studies reported in the area of WSN reliability, availability

and performance, there are no attempts for combined WSN performance and

availability studies. The rising concerns due to pure performance and availabil-

ity/reliability have therefore remained as major challenges to WSN applications

despite extensive studies in the area of performability. The existing performa-

bility modelling tools can be used efficiently to obtain fairly accurate results for

WSN systems with failures and breakdowns. In [Chakka, 1995], [Chakka and Mi-

trani, 1996] [Chakka et al., 2007] and [Kirsal, 2013] QBDs have extensively been

used to model Multi-Server systems with finite and infinite queuing capacities

and has been proposed in this study to model WSN systems.

QBDs is a special class of finite and infinite state Continuous Time Markov Chains

(CTMC) characterized by a probability matrix, and combines a large degree
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of modelling expressiveness with efficient solution methods [Chakka, 1995] and

[Ever, 2007]. In this approach, semi finite and infinite lattice strips of Markov

states with certain regularities are used to model the system. The transitions

into and out of particular states are then used to obtain the balance equations

for the various states. For these systems, the process becomes ergodic only if it is

irreducible, and the corresponding balance equations of state probabilities have a

normalisable unique solution. This approach has extensively been used in various

research studies [Chakka, 1995], [Chakka, 1998], [Ever, 2007], [Kirsal, 2013].

Using two-dimensional state space representation, the system state at time t can

be described using a pair of integer valued random variables, I(t) and J(t), speci-

fying sever configuration(Multi-Server operative states) and the number of jobs in

the system respectively. For example, if there are N+1 server configurations, rep-

resented by the values I(t) = 0, 1, 2, . . . , N , these N + 1 can be used to represent

the possible operative states of the model. The model assumptions are consid-

ered to ensure that I(t), t ≥ 0, is an irreducible Markov process. J(t) ≤ L is the

total number of jobs in the system at time t, including all jobs in service. Then

Z = [I(t), J(t)]; t ≥ 0 is an irreducible Markov process on a lattice strip (a QBD

process), that models the system. Its state space is (0, 1, . . . , N) × (0, 1, . . . , L)

(where L can be finite or infinite). Once the steady-state probabilities of such sys-

tems are computed, various performability measures such as mean queue length,

blocking probabilities, throughput, mean response time and others may be de-

rived using queuing theory knowledge. In [Chakka, 1995], [Ever, 2007] and [Kirsal,

2013], similar models have been analysed for exact performability modelling of

homogeneous and heterogeneous multi-server systems and some repair strategies.

In order to address the concerns of pure performance and availability arising

in WSN systems, two-dimensional representations of steady states are used in

this research. Random variables I(t) and J(t) are specified according to the

characteristics of the model and the behaviour of the system under study.
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3.3 Solution Approaches for Two-Dimensional

State Space

Existing mathematical solution approaches [Chakka, 1995], [Ever, 2007] can be

used effectively to solve obtained steady-state probabilities of the Quasi-Birth-

Death models. However, the choice of appropriate solution technique is vital con-

sidering that various approaches may exhibit certain weaknesses and strengths

that may hinder their usage with some models. Some popular mathematical

solution approaches that are likely candidates for solving WSN models include

Product Form, Seelens Method, Matrix-Geometric Method, Gauss-Seidel iter-

ative method, MRM, Spectral Expansion and System of Linear equations. In

order to ascertain validity of the models used in this study, Spectral Expansion

and System of Simultaneous equations are comparatively used where possible and

validated with a dedicated simulation program.

When two-dimensional representation is considered, the steady-state probabilities

may be defined using row vectors vj as j = 0, 1, ...., L where L can be finite or

infinite. This notation shows that elements of vector vj are the steady-state

probabilities when there are j jobs in the system.

3.3.1 Discussion on Existing Solution Methods

This section briefly discusses some well known solution methods for finding the

stationary distribution of Quasi-Birth-Death processes, some of which are com-

paratively presented in the previous works [Chakka, 1995], [Ever, 2007], [Kirsal,

2013] and [Gemikonakli, 2014]. Product form method when applied under cer-

tain assumptions provide simple exact solutions, making queuing networks a very

important, widely used tool for modelling parallel and distributed systems [Hen-

derson, 1990].
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3.3.1.1 Seleens Solution Approach

Seleens method gives an approximate solution for QBD and Quasi Simultaneous-

Multiple-Births and Simultaneous-Multiple-Deaths (QBD-M) processes Chakka

[1995]. The Markov Chain is first truncated to a finite state, which is an approx-

imation of the original process. Then, it is used together with a dynamically ad-

justed relaxation factor in an efficient iterative solution algorithm [Seelen, 1986],

[Ever, 2007]. In each iteration, the algorithm computes one of the state proba-

bilities. That means the computation time required may be proportional to the

queue capacity. However, it is stated that, the number of iterations needed for

accurate results, does not depend on the queue capacity [Seelen, 1986], [Ever,

2007]. The dependency of computation time on the number of servers is also not

stated [Ever, 2007]. The use of an appropriate value for the relaxation param-

eter is important to obtain the most accurate results. In contrast, this method

does not define any solutions to determine the value of the relaxation parameter

[Seelen, 1986], [Chakka, 1995], [Ever, 2007] and [Kirsal, 2013].

3.3.1.2 Gauss-Seidel iterative Approach

Block Gauss-Seidel iterative was developed purposefully for solving linear sys-

tem of equations iteratively [Poblet-Puig and RODRÍGUEZ-FERRAN, 2010].

In this approach the equations are examined at a time in a sequence making

the computation appear serial since each component of the new iterate depends

upon all previously computed components and the order in which the equations

are examined [Barrett et al., 1994].It was successfully used by [Meier-Hellstern,

1989] for the analysis of a queue arising in overflow models. In this method, the

infinite-state problem is first reduced to a linear equation involving vector gen-

erating functions and some unknown probabilities. The computations appear to

be serial. Since each component of the new iteration depend upon all previously

computed components, the updates cannot be done simultaneously [Ever, 2007].

There is no mention of the dependence of the number of iterations to queue ca-

pacity or the number of servers [Horton and Leutenegger, 1994] [Dayar, 1998],

[Ever, 2007]. In addition, even with the use of successive over-relaxation, conver-
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gence of this approach is slow hence not as popular as the Matrix-geometric and

Spectral Expansion solution methods.

3.3.1.3 Matrix-Geometric Solution Method

In matrix-geometric solution method, first a non-linear matrix equation is formed

from the system parameters. Then the minimal non-negative solution for the rate

matrix (R) is computed by using an iterative algorithm. Denoting the station-

ary probability of the process being in state (i, j) by π(i,j), and applying vector

notation πn = (π(n,0), . . . , π(n,0)), the probability vector can be expressed as:

πn+1 = πnR, . . . , n ≥ 1 (3.10)

The iterative computation of the rate matrix R is therefore, a key element in

matrix-geometric solution [Latouche and Ramaswami, 1999], [Gemikonakli, 2014].

This method has probabilistic interpretation for each step of the computations

[Neuts, 1981], [Ever, 2007], [Kirsal, 2013]. The main drawback of this method

is that the number of iterations for computing R cannot be predetermined and

there is a great computational requirement to obtain R. Another observation

is that in matrix-geometric method, for some values of certain parameters, the

computational requirements are uncertain and relatively large [Ever, 2007].

Matrix-geometric solution method and Spectral Expansion methods are the most

commonly used solution techniques for QBD Markov models [Chakka, 1995], [Dini

et al., 2007]. Matrix-geometric method is developed by Neuts [Neuts, 1981] and

the Spectral Expansion method has been applied to the solution of steady-state

solution of QBD Markov models by Mitrani and Chakka [Mitrani and Chakka,

1995], [Chakka, 1995], [Chakka and Mitrani, 1996] These two methods have been

critically analysed and their performances compared in [Mitrani and Chakka,

1995], [Haverkort and Ost, 1997], [Tran and Do, 2000], [Ever, 2007]. From the

previous studies, it is stated that the spectral expansion method is a better solu-

tion method, especially when more heavily loaded systems are studied and when

batch arrivals (or departures) are included in the model.
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3.3.2 Systems of Simultaneous Equations

In modelling the proposed systems, convenient use is made of state transition

diagrams to depict CTMC. The labelled directed graphs represent the states of

the CTMC identified by i and j transition rates. The CTMC can formerly be

described using the infinitesimal generator matrix G = (gi,j) and the initial state

probability vector p(0); denoting the system state at time t ∈ τ [Haverkort,

2001]. The probability vector p can be defined by p = (limt−→∞pi,j(t)). As

t −→ ∞, the Kolmogorov forward equation becomes pG = 0. The steady-state

probability can be defined as p = (p0, p1, p2, . . . ). In order to obtain the steady-

state probabilities, only the computation of system of linear equations is required:

pG = 0,
∑
i∈E

pi = 1 (3.11)

To derive the balance equations for the proposed system, transitions into and out

of the various CH states are considered. Figure 3.3 illustrate possible transitions

into and out of state j [Mitrani, 1998].

j

gj,j

gj,i

gi,j

Figure 3.3: Transitions into and out of state j

At steady-state the balance equation argument given in equation 3.12 is used to

derive equations of the system. The equations can be interpreted to say that the

average fraction of steps on which the chain makes a transition out of state j is

equal to the average fraction steps on which the chain makes as transitions into

state j Mitrani [1998]. Considering that 1−gj,j is equal to the sum of all one-step
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transition probabilities out of state j, it is possible to present the flow equation

in the form

pj

∞∑
i=0, i 6=j

gj,i =
∞∑

i=0, i 6=j

pigi,j : i, jεE (3.12)

The resulting set of linear equations, considered together with the normalisation

equation given in 3.11 are computed to obtain the limiting probabilities. Once

obtained, it is possible to use the steady-state probabilities to compute various

performance measures like MQL, throughput and delay. Since this technique can

be quite costly in terms of computation time, a sparse matrix is used in place of

a full matrix to enable computation using non-zero variable only [Gemikonakli,

2014].

3.3.3 The Spectral Expansion method

Spectral Expansion is an emerging solution technique which is useful in perfor-

mance and dependability modelling of discrete event systems. It solves some

Markov models that arise in several practical system models. It is an exact so-

lution technique for the steady-state analysis of certain two-dimensional Markov

processes in semi-infinite or finite lattice strips. These processes are mostly aris-

ing in performance and dependability problems of computing and communication

systems. In this method, first, the necessary matrices are computed by following

the given algorithm. Then eigenvectors and eigenvalues are computed to obtain

a system of linear equations. In other studies [Chakka, 1995], [Chakka and Mi-

trani, 1996], [Chakka, 1998], spectral expansion method was employed to solve

several non-trivial and complicated modelling problems occurring in computer

and communication systems. Performance measures are evaluated, and opti-

mization issues are addressed. Furthermore, a comparative study is performed

to show that the spectral expansion algorithm has an edge over most methods,

including the matrix-geometric method in computational efficiency, accuracy and

ease of use. Spectral Expansion method has also been used solve several com-

plicated modelling problems in other areas [Ameer Ahmed Abbasi, 2007], [Ever
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et al., 2009], [Ever et al., 2012], [Kirsal, 2013].

For good results, computations of accurate eigenvalues and eigenvectors are nec-

essary when using spectral expansion method since the performance measures can

be quite sensitive to these [Ever, 2007]. There are various libraries (F02, F03,

F04,F07, F12, . . . ) that provide routines to compute very sensitive eigenvalues

and eigenvectors for given matrices. Such libraries are provided by the NAG

(Numerical Algorithms Group) library [Group, 2006].

In this approach, three transition rate matrices; A, B and C are first determined

from the performability models developed. Matrix A is defined as the matrix of

instantaneous transition rates from state (i, j) to state (k, j) with zeros on the

main diagonal. These are the purely lateral transitions of the model Z explained

in subsection 3.2.3. Matrices B and C are transition matrices for one-step upward

and one-step downward transitions respectively. The two-dimensional process Z

evolves with the following instantaneous transitions:

i.) Aj(i, k): Purely lateral transition rate, from state (i, j) to state (k, j), (i =

0, 1, . . . , N ; k = 0, 1, . . . , N ; i 6= k; and j = 0, 1, . . . , L), usually caused

by a change in the operative state (i.e. a change in random variable I(t)).

ii.) Bj(i, k): One-step upward transition rate, from state (i, j) to state (k, j +

1), (i = 0, 1, . . . , N ; k = 0, 1, . . . , N ; and j = 0, 1, . . . , L), usually caused

by a job arrival into the queue.

iii.) Cj(i, k): One-step downward transition rate, from state (i, j) to state (k, j−
1), (i = 0, 1, . . . , N ; k = 0, 1, . . . , N ; and j = 0, 1, . . . , L), usually caused

by the departure of a serviced job.

The transition rate matrices do not depend on j for j ≥ M , where M(M ≥ 1)

is a threshold having an integer value [Ever, 2007], [Mitrani and Chakka, 1995],

[Chakka, 1995], [Mitrani, 1998]. This implies the matrices remain similar as

indicated in equations 3.13, 3.14 and 3.15.

Aj = A : L ≥ j ≥M (3.13)
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Bj = B : L− 1 ≥ j ≥M − 1 (3.14)

Cj = C : L ≥ j ≥M (3.15)

The spectral expansion method is applicable for systems with unbounded queuing

capacities (i.e. K ≤ L <∞) as well as systems with bounded queuing capacities

(i.e. finite L ≥ K). The solution presented is also valid for steady states of

multi-server systems. Following the spectral expansion solution, the steady-state

probabilities of the system considered can be expressed as:

P(i,j) = lim
t→∞

P (I(t) = i, J(t) = j); 0 ≤ i ≤ N and 0 ≤ j ≤ L

where N and L represent the number of operative states and finite or infinite

queue capacities respectively. Let us define certain diagonal matricesDA
j , D

B
j , D

C
j ,

DA, DB and DC of size (N + 1)× (N + 1) as follows:

DA
j (i, i) =

∑N
k=0Aj(i, k); DA(i, i) =

∑N
k=0A(i, k);

DB
j (i, i) =

∑N
k=0Bj(i, k); DB(i, i) =

∑N
k=0B(i, k);

DC
j (i, i) =

∑N
k=0Cj(i, k); DC(i, i) =

∑N
k=0C(i, k);

and Q0 = B, Q1 = A − DA − DB − DC , Q2 = C. For both bounded and

unbounded queuing systems, all state probabilities in a row can be defined as:

vj = (P0,j, P1,j, ......PN,j); j = 0, 1, 2... (3.16)

Here, for a bounded system, j is limited by finite L. In this case, when the

queue is full, the arriving jobs are lost. The matrices given above are used in the

spectral expansion solution for both bounded and unbounded queuing systems.

The steady-state balance equations for unbounded queuing systems with 0 ≤ j ≤
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L can now be written as:

v0[D
A
0 +DB

0 ] = v0A0 + v1C1 (3.17)

where DA
0 and DB

0 are diagonal matrices formed when the system is empty.

vj[D
A
j +DB

j +DC
j ] = vj−1Bj−1 + vjAj + vj+1Cj+1; 1 ≤ j ≤M − 1 (3.18)

vj[D
A +DB +DC ] = vj−1B + vjA+ vj+1C; j ≥M (3.19)

and the normalizing equation is given as follows:

∞∑
j=o

vje =
∞∑
j=0

N∑
i=0

Pi,j = 1.0 (3.20)

where e is the column vector of infinite elements each of which sums up to 1.

From Equation 3.19 one can deduce that

vjQ0 + vj+1Q1 + vj+2Q2 = 0; j ≥M − 1 (3.21)

Furthermore, the characteristic matrix polynomial Q(λ) can be defined as:

Q(λ) = Q0 +Q1λ+Q2λ
2 (3.22)

λ and ψ are eigenvalues and left-eigenvectors of Q(λ) respectively. Note that, ψ

is a row-vector defined as:

ψ = ψ0, ψ1, . . . , ψN , λ = λ0, λ1, . . . , λN and ψQ(λ) = 0; |Q(λ)| = 0.

Finally, for an unbounded system, when the stability condition is satisfied [Chakka,
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1995], [Ever, 2007] one can obtain the general solution.

Vj =
N∑
k=0

(akψkλ
j−M+1
k ); j ≥M − 1 (3.23)

and in the state probability form as:

Pi,j =
N∑
k=0

(akψk(i)λ
j−M+1
k ); j ≥M − 1 (3.24)

where, λk(k = 0, 1, ...., N) are N + 1 eigenvalues that are strictly inside the unit

circle [Chakka, 1995], [Ever, 2007] and ak(k = 0, 1, ...., N) are arbitrary constants

which can be scalar or complex-conjugates. All the ak values and the vj vectors

can be obtained using the process in [Chakka, 1995].

For the case of bounded queue with 0 ≤ j ≤ L, the balance equations are:

v0[D
A
0 +DB

0 ] = v0A0 + v1C1 (3.25)

vj[D
A
j +DB

j +DC
j ] = vj−1Bj−1 + vjAj + vj+1Cj+1; 1 ≤ j ≤M − 1 (3.26)

vj[D
A +DB +DC ] = vj−1B + vjA+ vj+1C; M ≤ j < M (3.27)

vL[DA +DC ] = vL−1B + vLA (3.28)

The normalisation equation is given as:

L∑
j=0

vje =
L∑
j=0

N∑
i=0

Pi,j = 1.0 (3.29)
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From Equation 3.27 it is possible to deduce that

vjQ0 + vj+1Q1 + vj+2Q2 = 0; (M − 1) ≤ j ≤ (L− 2) (3.30)

and the characteristic matrix polynomials can be expressed as:

Q(λ) = Q0 +Q1λ+Q2λ
2; Q̄(β) = Q2 +Q1β +Q0β

2 (3.31)

where:

ψQ(λ) = 0; |Q(λ)| = 0; φQ̄(β) = 0; |Q̄(β)| = 0

β and φ are eigenvalues and left-eigenvectors of Q̄(β) respectively. Note that, φ

is a vector defined as φ = φ0, φ1, ...., φN , β = β0, β1, ...., βN .

Furthermore,

vj =
N∑
k=0

(akψkλ
j−M+1
k + bkφkβ

L−j
k ); M − 1 ≤ j ≤ L (3.32)

This can be represented in the state probability form as given in equation 3.33.

Pi,j =
N∑
k=0

(akψkλ
j−M+1
k + bkφkβ

L−j
k ); M − 1 ≤ j ≤ L (3.33)

where λk(k = 0, 1, ...., N) and βk(k = 0, 1, ..., N) are N + 1 eigenvalues each,

that are strictly inside the unit circle [Chakka, 1995], [Ever, 2007], and, bk(k =

0, 1, ...., N) are arbitrary constants which can be scalar or complex-conjugate just

like ak. The vj vectors can be obtained as explained in the previous case. From the

Pi,j, a number of steady-state availability, reliability and performability measures

can be computed quite easily. For example, mean queue length (MQL) can be
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obtained as:

MQL =
L∑
j=0

j

N∑
i=0

Pi,j (3.34)

where L can be finite or infinite depending on whether the case concerned is

bounded or unbounded. For cases where L is finite, the percentage of jobs lost

(PJL) can be obtained by using the following equation:

PJL = 100×
N∑
i=0

Pi,L (3.35)

Once the steady-state probabilities are computed, it is possible to calculate some

other system performance measures such as mean response time and throughput

in addition to MQL and PJL shown above.

3.4 Chapter Summary

This chapter provides a description and analysis of various modelling approaches

and solution techniques used for single and multi-server systems. Pure perfor-

mance, pure availability/reliability and performability modelling techniques are

critically analysed and compared. From the analysis, composite measures of

performance and availability prove to be more realistic and accurate modelling

techniques for both single and multi-server systems since they are usually fault-

tolerant.

A critical comparison of the existing solution approaches for solving multi di-

mensional state space models is presented. The main limitations of the various

techniques and the advantages Spectral Expansion method has over the other

methods are outlined. A brief explanation of the system of simultaneous equa-

tions and spectral expansion techniques is also presented.

In the study of WSNs performability, in addition to the frequent node and chan-
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nel failures, the transition states are further complicated by the introduction of

sleep scheduling states. These require additional computations which sometimes

prevent expression of state probabilities in terms of each other. In such cases use

of simultaneous linear equations are employed as discussed in section 3.3.2. The

proposed models for the single CH can then be solved using simultaneous lin-

ear equations. Alternatively, spectral expansion exact solution technique can be

modified and used to solve the proposed models for CH performability. In some

system scenarios, the two solution approaches are used concurrently thereby val-

idating each other.

In order to ascertain the correctness of the models, an event based scheduling

approach has been used for developing a dedicated simulation program for the

system under study and used to validate the analytical solutions obtained. The

developed program is also applicable when it is not possible to obtain accurate

results due to mathematical intractability as the system becomes more complex.
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Chapter 4

Performability Modelling and

Evaluation of Unbounded

Clustered WSN

4.1 Introduction

Wireless sensor nodes are known to have constrained resources due to their size

and nature of application areas. The storage capability of the sensor nodes is

restricted by the available limited memory. In practice, most WSN deployments

assume infinite queue capacity hence loss of information is not anticipated. Such

networks are also impacted by the frequent node failures and consequently, per-

formance degradation occurs.

This chapter presents a model of a clustered WSN with an infinite queue capacity

CH. The proposed model that considers system failures and repairs /replacement

is further used to evaluate system performance and availability in terms of MQL

and Response Time (RT ). To start with, data delivery models are considered in

details for purposes of determining data arrival distribution patterns and choosing

preferred system model. Based on the system model, data packet arrival distri-

bution is then modelled following a single server queuing system. The resulting
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arrival pattern is then used to further develop the performability model.

The novelty of this study include:

1. Justifying the significance of performability studies by comparing results

obtained from independent and composite studies.

2. Modelling packet arrival distribution at the CH

3. Proposing a performability modelling methodology for WSNs using existing

solution approaches.

4. Using the proposed models to evaluate performance measures in terms of

MQL and RT .

In order to illustrate the significance of this study, performance results obtained

using a pure model are compared with results from the performability model.

The rest of the chapter is organised as follows: Section 4.2 provides a detailed

discussion of the proposed model. Section 4.3, presents a two dimensional Markov

representation of the proposed model. Experimental results and discussions are

presented in section 4.4. Finally section 4.5 presents a detailed summary of this

chapter.

4.2 Model Description

In section 2.5, the system under study presented is formed using several clusters.

The network topology given in figure 4.1 depicts the actual implementation of the

scenario. System operations and traffic distribution remain as discussed in these

sections. In this chapter, a single cluster is considered for performability studies.

The model proposed, incorporate an infinite queue at the CH to depict a typical

WSN deployment scenario. To make the model more realistic, it also integrates

failures and repairs. The model used is developed considering highlighted con-

cerns in earlier studies in the same area [Chiasserini and Garetto, 2006], [Masoum

et al., 2008], [Kim et al., 2010], [Houaidia et al., 2011], [Jun et al., 2012] as outline

in chapter 2.
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Figure 4.1: Network topology of the reference scenario

In this chapter, use of Open Queuing Networks (OQN) is discussed to model the

behaviour of a WSN cluster based on previous works of [Chiasserini and Garetto,

2006], [Qiu et al., 2011], [Wang et al., 2011b], [Chakka, 1995]. In [Chiasserini and

Garetto, 2006], open queuing networks are successfully used to model a Markov

sensor network, in which nodes may enter sleep mode. The system performance

is analysed in terms of energy consumption, network capacity and data delivery

delay. In [Chakka, 1995], the analysis of overall packet arrival rate approximations

is considered at the servers using various methods and Poisson approximation is

specified as an accurate approach in large-scale networks in which the nodes

receive arrival streams from a number of other nodes. This is based on the

fact that the superposition of many independent and relatively sparse processes

converge to Poisson distribution as the number of component processes tend to

infinity. In [Qiu et al., 2011] , authors successfully modelled WSN cluster node

behaviour using M/M/1/N with holding nodes, and the model was found to

be consistent with real data. In another study [Wang et al., 2011b], authors

successfully modelled the convergence of WSNs with PON using two M/M/1

queues in tandem. The model is then used to derive required performance metrics.

In order to improve reliability of WSNs in harsh environments, studies in [Munir

and Gordon-Ross, 2011] propose a fault-tolerant sensor node model for appli-
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cations with high reliability requirements. In [Munir and Gordon-Ross, 2011],

sensor failure probabilities are assumed to follow exponential distribution. Note

that in this study, times between failures and repair/replacement times are as-

sumed to be exponentially distributed. To allow a Markovian chain analysis, it

is possible to assume that the time to failure of all components has an exponen-

tial distribution. This signifies that the distribution of the next failure time of

a component does not depend on how long the component has been operating.

The next break-down is the result of some suddenly appearing failure (software,

signal, configuration-related failures), not of gradual deterioration. In the next

section, a model of data packet arrival at the CH is presented.

4.2.1 Data Delivery Models for Wireless Sensor Networks

In WSNs, the phenomenon characterizes application interests in a manner that

allows the applications to be oblivious to the underlying sensor network infras-

tructure and protocols. Considering the models that govern the generation of

the application traffic, it is possible to classify sensor networks in terms of the

data delivery required by the application interest. These include continuous,

event-driven, query-driven and hybrid data delivery models [Tilak et al., 2002].

In the continuous data delivery model, sensors communicate their data continu-

ously at pre-specified rates. In [Heinzelman et al., 2000], it is shown that clus-

tering is most efficient for static networks where data transmission is continuous.

However, in dynamic networks, clustering may purely be suitable at some degree

of mobility. For the event-driven data models, the sensors report information only

when an event of interest occurs. In this case, the application is interested only in

the occurrence of a specific phenomenon or set of phenomena. To illustrate this,

let us consider temperature monitoring in a green house. Temperature levels are

set such that when the target reference is reached, an alarm is raised to trigger

specific conditioning activities. On the other side, query-driven model sensors

only report their results in response to an explicit request from the application

either directly or indirectly through other sensor nodes. Finally, some applica-

tion networks allow the co-existence of the three data delivery models. This is
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presently becoming more common in WSNs where varieties of occurrences are

of interest. An example may be in an agricultural setup where events of inter-

est include, event-driven temperature monitoring, query-driven pest control, and

continuous monitoring of soil moisture content and humidity [Park and Park,

2011], [Li and Xu, 2015]. For purposes of traffic routing, unicast communication

strategy is applied considering sensor nodes have a direct communication link

with the CH as illustrated in figure 4.2.

4.2.2 Determination of Arrival Distribution

Mixed opinions are presented in the literature on the appropriate packet inter-

arrival distribution times for WSNs. Some scholars consent to use of other inter-

arrival distributions [Wang and Zhang, 2008] [Wang, 2010] while others have

shown that it is possible to use Poisson distribution for tractability reasons [Tilak

et al., 2002] [Chiasserini and Garetto, 2006] [Chung and Hwang, 2010] [Zhou

et al., 2011] [Qiu et al., 2011] [Zhen et al., 2014]. Other probabilistic distribu-

tions like Bernoulli, Log-normal and Gamma have also been mentioned in some

areas. From [Wang et al., 2012], a comparison of measured inter-arrival times

and theoretical exponential distribution graphs confirm that exponential distri-

bution closely model inter-arrival times except in low periodic traffic conditions.

However, depending on the choice of the model (discrete-time or continuous),

geometric distributions could also be used for discrete systems.

In addition to data delivery models mainly characterized by application demands,

other factors that may influence WSN arrival processes including; data collection

models like mobile sinks and configurations of the MAC layer protocols. De-

pending on the type of MAC protocols used, sleep scheduling dynamics for asyn-

chronous and synchronous schemes also determine possible arrival distributions.

As an example, use of contention based MAC protocols like T-MAC, CSMA/CA

employ exponential back-off algorithms to avoid collision during channel con-

tention making delay times non-deterministic [Van Dam and Langendoen, 2003].

Nevertheless, Bernoulli and Poisson arrival processes are widely used in WSNs.

In this study, event-based applications where nodes send data only if certain
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physical events of interest occur are considered. In this case, the generated data

are often sporadic. Considering that the occurrence of such physical events are

never frequent, the probability that the event occurs at a given time is governed

by a Poisson process, and the inter arrival time is exponentially distributed [Wang

et al., 2012]. In this thesis, Poisson distribution has been considered in all the

models for tractability reasons.

4.2.3 Choosing the Preferred Model

In a cluster based WSN topology, the CH is the centre of communication between

the cluster nodes and the sink. All cluster nodes are assumed to be directly

connected to the CH. The CH connects directly or through other CHs to the sink

forming an overall cluster tree network. The nodes independently monitor their

habitat and contend with others for channel availability to relay their observed

data to the CH. It is assumed that the CH is not aware of the next arrival

source until the arrival actually occurs. The arrival of packets at the CH is

assumed to follow Poisson distribution with mean rate λ and service time assumed

exponentially distributed with rate µ [Zhang and Li, 2012]. Service priority is

based on First Come First Served (FCFS).

In this model, the total data at the CH arrive from within the cluster (internal

sources) and externally from other CHs (external sources) forwarding data to the

sink. From IEEE 802.15.4/Zigbee standards, a maximum of 36 nodes is recom-

mended per cluster for better performance [Ergen, 2004]. This study employs

more than 30 nodes inclusive of the CH. Since a large number of independent

Poisson streams are received from the nodes, the resulting superposition of all

the arriving jobs at the CH from internal and external sources follows Poisson

distribution [Chakka et al., 2007] with rate λk where k is the index of the CH

(node k).

From the preceding discussions, the CHs operation is similar to that of an OQN

with input and output entries. When operating at steady state, average flow

entering the CH queue is same as the flow leaving the queue. The behaviour and

operation at each CH is similar and may be independently modelled using an
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M/M/1 queuing system following Jacksons theorem that treats each node in an

OQN as a single server.

4.2.4 Modelling Data Packet Arrival at the Cluster Head

This section presents the queue model of the WSN topology presented in Section

2.5. The resulting job arrival at the CH is a collection of jobs from the cluster

nodes, the sensed information by the CH itself and forwarded data from other

CHs. The jobs are assumed to be i.i.d random variables with same rate λ. The

operation is assumed to be similar at all other CHs. For this study, it is assumed

that there are N CHs, k = 1, 2, . . . , N , through which the sink may be reached.

The behaviour of a single CH, i.e. node k, is modelled as an OQN using M/M/1

queueing system. The cluster is assumed to have same number of cluster nodes

(N) in each cluster denoted by n = 1, 2, . . . , N . Considering that the number of

cluster nodes plus neighbouring CHs are taken to be more than 30, it is possible

to assume that the resulting superposition of all the job arrivals at node k from

internal and external sources follow Poisson distribution with mean arrival rate

λk [Ever et al., 2009].

Figure 4.2 shows the proposed queuing model for analyzing the single CH be-

haviour. λn and λr represent the internal and external arrival rates at node k

(CH) respectively. Similarly, qn,k and qr,k are routing probabilities from internal

cluster nodes and external CHs respectively. Once the jobs are processed at node

k, they are transmitted directly or forwarded upward to the sink through node

r. Here node r represents the next CH towards the sink. The operation at the

forwarding node r is similar to that at node k. Since the nodes are prone to

failures, it is assumed that when a node fails, it is taken into the repair process

immediately [Hashmi et al., 2010], [Liu et al., 2011]. This could be through soft-

ware reconfiguration or replacement of failing nodes. Service times, failure times,

and repair times are all assumed to be exponentially distributed with rates µk,

ξk, and ηk respectively. The interruption policy is such that service is resumed

from the point of interruption or repeat with re-sample.

Jobs leaving node k are rerouted to node r with the probability qk,r for service at
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Figure 4.2: WSN Cluster Queue Model

node r. If jobs are not routed to node r then qk,r = 0. It is assumed without loss

of generality that as far as the queue length distributions are concerned qk,k =

0, (k = 1, 2, . . . , N). In addition, qk,N+1 = 1 −
∑N

r=1 qk,r is the exit probability

from the system after a job is serviced at node k. The exit probability qk,K+1, is

assumed to be non zero for at least one value of k. This implies that at any given

time, at least one of the CHs has direct link with the sink. Let Q be the routing

probability matrix of size N × N , such that, Qk,r = qk,r; (1 ≤ k, r ≤ N). To

analyse the performability of this system, steady-state conditions are considered.

In order to model the total packet arrival at the CH, node k, Poisson approxima-

tion approach is employed. Suppose that the network is in steady state. Let λk

be the average number of jobs arriving into, and departing from, node k per unit

time. The arriving jobs are coming from internal σk and external (λr) sources.

On the average, λr leave node r per unit time; of these, a fraction qrk go to node

k. Therefore the rate of traffic from node r to node k is λrqrk (r = 1, 2, . . . , N).

Similarly, the rate of traffic from node k to node r is λkqkr. A related traffic

model was presented in [Mitrani, 1998]. The total arrival rate (λk) at the CH

node k as the sum of external and internal traffic rates can be expressed using
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equation 4.1.

λk = σk +
N∑
r=1

λrqrk; k = 1, 2, . . . , N (4.1)

Here σk represent the sum of all internal arrivals and may be expressed using

equation 4.2.

σk =
N∑
n=1

λnqnk n = 1, 2, . . . , N (4.2)

The term
∑N

r=1 λrqrk in equation 4.1 represents the externally arriving jobs from

other CHs as mentioned earlier.

In order to define the total arrival rates for each node, the row vectors λ =

(λ1, λ2, . . . , λN) and σ = (σ1, σ2, . . . , σN) can be employed. Let also Ek be the

unit matrix of size N ×N then;

λ(Ek −Q) = σ (4.3)

Letting the effective average service rate at the CH be µ̂k, and taking into account

the losses resulting from failures and repairs it can be shown that µ̂k is given by

equation 4.4, [Chakka and Mitrani, 1996], [Thomas and Mitrani, 1995], [Sheng-li

et al., 2009].

µ̂k = µk.ηk/(ηk + ξk) (4.4)

where ξk and ηk are failure and repair rates for node k respectively.

In order for the system to reach steady state operations, the effective service rate

must be greater than the effective arrival rate at the CH. Thus µ̂k > λk; k =

1, 2, . . . N is the condition for steady-state analysis. In earlier studies, [Chakka

and Mitrani, 1996], [Mitrany and Avi-Itzhak, 1968], [Thomas and Mitrani, 1995]
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the MQL for such systems are given by equation 4.5.

MQL =
λk[(ξk + ηk)

2 + ξkµ̂k]

(ξk + ηk)[ηk.µ̂k − λk(ξk + ηk)]
(4.5)

With the values of MQL and λk known, and considering that no jobs are lost,

the RT for the CH can be computed using equation 4.6.

RT = MQL/λk (4.6)

4.3 Two Dimensional Markov Representation of

the Proposed Model

In this section, presented is the performability model for the system under study.

Considering that all the sensor nodes forward information to the CH, in this

model, the routing probability matrix Q has a special form and the total amount

of arrivals to the CH can be calculated as λk = Cλ, where C is the number of

source nodes in a WSN sending packets to the CH. and λ is the average packet

generation rate of the source nodes [Wang et al., 2011b]. There are similar studies

on M/M/1 with breakdown and repairs though not in WSN area [Chakka and

Mitrani, 1996], [Thomas and Mitrani, 1995], [Sheng-li et al., 2009]. The state

transition diagram for the CH is given in figure 4.3.

In this model, it is assumed that data packets will to continue to arrive dur-

ing during failures. However, service is only possible when the server is oper-

ational. The system state at time t may be described using a pair of integer

valued random variable I(t) and J(t) specifying the CH failure and repair config-

urations, and the number of jobs in the system respectively. The operative states

I(t) in this case represents the assumed failed and working periods of the CH.

Z = [I(t), J(t)]; t ≥ 0 is an irreducible Markov process on a lattice strip (a QBD

process), that models the system. Its state space is (0, 1)x (0, 1, . . .). Similar

models [Ever et al., 2009], [Kirsal and Gemikonakli, 2009], [Chakka and Mitrani,
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Figure 4.3: State transition diagram for CH performability model

1996], [Mitrany and Avi-Itzhak, 1968], [Chakka, 1995] are analysed for exact per-

formability evaluation of various multi-sever systems with single repairman and

for both finite and infinite L for some repair strategies. It is possible to extend

the exact solution methodology for performability evaluation of WSNs.

Since the possible operative states of the CH and the number of data arrivals are

represented in the horizontal and vertical directions of the lattice respectively,

the transition matrices can be derived as:

i A is the matrix of instantaneous transition rates from (i, j) to state (l, j),(i =

0, 1; l = 0, 1; i 6= l; j = 0, 1, . . .), with zeros in the leading diagonal, caused

by a change in the state [Kirsal and Gemikonakli, 2009], [Ever et al., 2009].

These are the purely lateral transitions of the process Z. Matrix A clearly

depends on parameters ξ and η. The state transition matrices A and Aj

are of size (2)× (2) and can be given as:

A = Aj =

[
0 η

ξ 0

]

ii Matrices B and C are transition matrices for one step upward and one step
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downward transitions respectively [Kirsal and Gemikonakli, 2009], [Ever

et al., 2009]. The transition rate matrices do not depend on j for j ≥ M ,

where M is a threshold having an integer value [Ever et al., 2009]. The

respective transition matrices are:

B = Bj =

[
λ 0

0 λ

]
and C = Cj =

[
0 0

0 µ

]

Elements of matrix B are dependent on the data arrival rate (λ) at the CH while

elements of matrix C depend on the CH service rate (µ).

Spectral Expansion solution can be employed and the details of the method used

can be found in [Chakka and Mitrani, 1996] [Thomas and Mitrani, 1995]. From

the state probabilities, a number of steady-state availability, reliability, performa-

bility measures can be computed. For illustration, MQL and R are employed.

These can be obtained using equations 4.5 and 4.6 where MQL is the expected

value of J(t).

4.4 Numerical results and discussions

In this section numerical results are presented for the model considered. A com-

parative analysis is performed for two different solution approaches, namely Pois-

son approximation and Spectral Expansion. The results are very close and further

verification with simulation results are also in good agreement with a maximum

discrepancy of less than 2%.

A dedicated software written in C++ language was used to simulate the ac-

tual system. Simulation results were then compared with the analytical results

obtained by applying spectral expansion and Poisson approximation solution ap-

proaches to the Markov model of the system. All results obtained reveal good

agreement with both spectral and Poisson approximation techniques. VC++

10.0, and the NAG library (for spectral expansion only) were used to achieve all

the results presented in this study.
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The following parameters were used to obtain all results presented in this section

unless otherwise stated. The values of failure and repair/replacement rates are

chosen to ensure that repair/replacement rate ηk = 0.5/hours equivalent to mean

repair time of 2 hours, which is much higher than the failure rate ξk = 0.001/hours

translating to mean run time of 1000 hours before failures. Service rate is taken as

µk = 300/hour and arrival rates are chosen carefully to ensure the system remains

stable. The results are shown for Poisson approximation, spectral expansion

method and simulation in all the diagrams.

Figure 4.4 shows MQL as a function of λ. In order to analyse the effects of arrival

rate on the cluster size, the experiment is achieved by varying the number of nodes

in each run. The results indicate that fewer nodes are able to accommodate higher

arrival rates in contrast to the system getting saturated at low arrival rates when

many nodes are used to cover the habitat. In figure 4.5, similar results obtained

using a pure performance model is presented. MQL results obtained are kept

much lower compared to those obtained from the integrated studies considering

failures. The distinct difference in the levels confirm the effects of failures and

repair/replacement in a typical WSN network.

In both cases, in order to determine the best performance with optimum cov-

erage, a trade-off exists between MQL and appropriate number of nodes to be

used for deployment while at the same time observing the IEEE/ZigBEE802.15.4

recommended limit of 36 nodes per cluster. In other words, the model can be

used to specify the size of a cluster when a specific flow is expected from the

sensing nodes.

Figure 4.6 shows the response time as a function of the number of nodes for

various λ values. The three solution techniques show that the results are in good

agreement with best response times realised with fewer nodes in the cluster. The

model may therefore be used to select an appropriate response time operation

region for WSNs. Noting that the unit of response time is dependent upon the

units of arrival and service rates. Since these values can be dependent on the

type of application, in this study, a generic approach is adopted.

In most cases, a WSN cluster is initially populated with the maximum required
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0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

M
ea

n 
Q

ue
ue

 L
en

gt
h

 

Analytical Sources = 20
Analytical Sources = 25
Analytical Sources = 30
Analytical Sources = 35

Arrival rate (λ)/hour

Figure 4.5: MQL Vs Arrival rate-Pure Peformance

81



5 10 15 20 25 30 35 40 45 50 55
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of Sensor nodes

 

Simulation (λ = 5)
Spectral Exp. (λ = 5)
Poisson (λ = 5)
Simulation (λ = 6)
Spectral Exp.(λ = 6)
Poisson (λ = 6)

Simulation (λ = 7)
Spectral Exp.(λ = 7)
Poisson (λ = 7)
Simulation (λ = 8)
Spectral Exp.(λ = 8)
Poisson (λ = 8)

λ=7

λ=8

λ=6

λ=5

R
e
sp

o
n

se
 T

im
e
 (

h
o

u
rs

)

Figure 4.6: Variations of response time with changing number of network nodes

nodes for best coverage. In figure 4.7, the arrival rate is maintained at specific

values of λ = 5, 6, 7, 8. It is observed that there is a maximum limit for required

sensor nodes per cluster in order to maintain appropriate traffic that the CH can

handle. Similar results obtained using a pure performance model is shown in

figure 4.8. In this scenario, the results are also kept minimal compared to those

obtained using the model with failures. The margin difference between the two

results show the effects caused by system failures and how much the pure model

overestimates systems ability to perform as expected.

In figure 4.9, MQL is presented as a function of the failure rate, when arrival rate

is varied from λ = 5, 6, 7, 8 and sources maintained at K = 30. Results show the

effects of failures clearly. The purpose of this experiment is to establish failure

levels that may not adversely compromise system performance. The importance

of repair facility and high reliability demonstrate acceptable levels of system avail-

ability that ensure system performance is not compromised significantly. From

this figure, low failure rates below ξ = 0.001 are desired. Above this, the sys-

tem availability and performance is greatly compromised as illustrated with the
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mismatch and large variations in MQL.
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4.5 Chapter Summary

In this chapter, an analytical model for a clustered WSN with unbounded queue

capacity CH is presented. First, the process of arrival distribution at the CH is

determined and used to develop a queue model for packet arrivals at the CH. A

performability model whose inputs are arriving data packets is then developed

to capture the system behaviour in different operative states. In order to resolve

the proposed system model, Markov chain was used to analyse and evaluate

performance and reliability/availability.

Although Markov chain analysis is used for performance and reliability/availability

evaluation of various WSN applications in the literature, to the best of our knowl-

edge, this is the first attempt to combine performance and availability metrics.

Using a generic system model, it is proved that existing solution techniques can

be used to model WSN networks. Results indicate that performability modelling

is significant in the establishment of WSNs. In this study, two analytical mod-

elling approaches are employed in addition to the simulation program used for
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validation. The results obtained from the three approaches are in good agreement

with a maximum discrepancy less than 2% observed in figures 4.4, 4.6 and 4.7.

The model presented is useful for optimization of WSN clusters.

In order to make the model more realistic, a finite queue capacity CH is considered

in the next chapters. It is also possible to extend this model for intra and inter

cluster traffic studies.

85



Chapter 5

Performability Modelling and

Evaluation of a Clustered WSN

with a Bounded Queue

5.1 Introduction

Unlike other wireless and wired communication networks, WSNs have limited

storage memory both for operating systems and temporary data storage. Under

normal operations, this implies restricted storage capacity resulting into arriving

packets being dropped and lost whenever the queue capacity is full. This situation

may become worse in clustered networks where FFD rotate CH operations. The

self-similarity characteristic of WSNs also makes the situation more challenging

during heavy traffic bursts [Liu and Ju, 2010]. Depending on application data

intensity, different application categories may require varying queue capacities in

order to achieve desired performance. It is therefore important to analyse and

identify appropriate storage memory necessary for various WSNs application.

In this chapter, a model for a clustered WSN considering CHs with bounded

queues is presented. Like the model presented in chapter 4, this model also takes

into account failures, repairs/replacement and restoration of the CH during oper-
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ations. Similarly, the use of BCH is implied for providing redundancy during CH

failures. Once the model is developed, it is used to compute performability mea-

sures such as MQL, throughput, response time and system blocking probability.

Results obtained using a pure performance model is also presented to illustrate

effects of such systems.

The rest of the chapter is organised as follows: Section 5.2 presents a detailed

description of the extended model. The queue model is presented in section 5.3

followed by a two dimensional Markov representation of the model in section 5.4.

A detailed discussion of the obtained results is presented in section 5.5 and finally,

the chapter is summarised in section 5.6.

5.2 Model Description

In this chapter, the system description and packet arrival models remain the same

as presented in sections 2.5 and 4.2.4 respectively. However, the performability

model of section 4.3 is improved to incorporate a finite queue capacity in order

to make it more realistic to an actual system. The improved model is presented

in figure 5.1.

Originally, WSNs were meant for low to medium rate applications hence memory

was not a major concern. Conversely, the introduction of video and image sensors

in addition to bursty high data rate applications have caused additional challenges

[Akkaya and Younis, 2003]. Data intensive applications that send information to

a central server are particularly constrained due to the large queue capacities

required for temporary storage of sensed data [Chang et al., 2007]. This becomes

more challenging in clustered networks where the CH has to queue lots of data

from internal and external sources for onward transmission to the sink.

In addition to the limited queue capacity, WSN traffic does exhibit self-similarity.

Self-similar traffic is well studied in the literature [Sikdar et al., 2002], [Shuo et al.,

2008], [Liu and Ju, 2010] and is known to affect queue size greatly where traffic

bursts are experienced. In [Liu and Ju, 2010], authors proposed an Adaptive

Weighted Fair Queuing (A-WFQ) by adapting the weight of a queue according to
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the queuing delay that relates to the Hurst parameter of the Self-Similar traffic.

Here the Hurst parameter (H) is used to measure the degree of long range depen-

dence. For example, let (Xi, i = 1, 2, . . . , n) be equally spaced samples of some

Hurst parameter of a self-similar process, if V ar(X1 + · · · + Xn) of long range

dependent sequence grows at speed n2H , where Hε(1/2, 1), then the number H

is the Hurst parameter of the sequence. In this study, observations made include

delay and rapid growth of queue size when traffic has a big Hurst parameter

thereby leading to higher delay and packet loss when the queue is full. However,

other than delay, the study did not address other performance measures. Fur-

thermore, the study assumes a failure-free system environment that is not always

the case in WSNs.

In [Qiu et al., 2011], authors proposed a new evaluation method for optimizing

packet queue capacity of nodes using a queuing network model to improve the

transmission QoS. The CH behaviour was modelled using M/M/1/N queuing sys-

tem with break-down and repair/replacement. In order to evaluate the congestion

situation in the network, and also get real effective arrival rates and transmission

rates for the model, holding nodes were introduced in the queuing network model.

However, in this study, authors did not assess system throughput, blocking prob-

ability and possibility of packet loss when the queue is full. Moreover, they also

assumed a perfect working network without failures.

In another study [Tang, 2013], authors presented an analytical traffic model for an

unreliable WSN that models the dynamics of traffic flow from source node through

a set of intermediate nodes to the sink using single server queues connected in

tandem. For performance analysis purposes, they decompose the servers into

individual nodes. In their model, a finite queue capacity is considered at the

CHs. If the queue capacity for the upstream node is full, the node intending to

transmit is forced to hold back its packet until an opportunity arises. Arriving

packets are lost if they find the queue is full. This is then used for the analysis

of blocking probability of the system. In this study, only failures resulting from

power failures are considered and assumed following exponential distribution.

Other forms of failures are not considered. Moreover, the recovery considered is

for the selection of a new CH. The paper does not discuss the mechanisms used.
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Other approaches for memory management in WSN are presented in [Manjiri,

2013]. The authors first identify the concerns & research challenges related to

memory management that require consideration when designing operating sys-

tems for WSNs. The authors also reckon the significance for additional memory

for applications running real-time traffic for purposes of improving overall net-

work QoS. In addition, they also highlight possible future approaches for memory

management. However, in this paper, no consideration is made to performance

concerns in relation to system failure.

From the preceding discussions, it is evident that there is a need for a planning

and deployment tool that takes into account the storage limitation of sensor nodes

used for CHs operations. In addition, the tool should incorporate an integrated

performance and availability modelling and evaluation in order to reduce any

effects that may result from independent studies. For clustered WSNs, such a

tool would be significant for performance tuning and upgrades once the network

is operational.

5.3 Queuing Model for the System

In this section, a model incorporating the effects caused by introducing a finite

queue length on the CH is presented. All the other parameters remain as discussed

in section 4.2.4. Similarly, the total packet arrival rate at the CH remains as given

in equation 4.1. Since a finite queue is considered, jobs arriving when the queue

is full are lost. The blocking probability(PB) when the queue is full, the effective

arrival rate (λk,e) at the CH (node k) and the rate at which the jobs are lost (λk,l)

due to blocking can be computed by

PB =
N∑
i=0

Pi,L (5.1)

λk,e = λk(1− PB) (5.2)
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λk,l = λkPB (5.3)

where Pi,L is the probability of being in the operative state i when the queue is

full, N is the number of operative states and L is the maximum queue capacity.

The total arrival rates at each CH remain as defined in equation 4.3. Letting

the effective average service rate at the CH be µ̂k, and taking into account the

losses resulting from failures and repairs, the effective service rate can then be

computed using equation 4.4 [Thomas and Mitrani, 1995], [Sheng-li et al., 2009]

For steady state, the effective service rate must be greater than the effective

arrival rate at the CH. Thus µ̂k > λk,e; k = 1, 2, . . . K is the condition for steady

state analysis.

5.4 Two Dimensional Markov Representation of

the Proposed Model

In this model, since all the sensor nodes forward their information to the CH,

the matrix Q has a special form and the total amount of arrivals to CH can be

calculated as λk = Cλ, where C is the number of source nodes introduced in

section 4.3 and λ is the average packet generation rate of the sensor nodes [Wang

et al., 2011b]. The CH state transition diagram is given in figure 5.1 . The

operative states, F and R represent failed and fully active states respectively.

The model treats sleep and breakdown states as short and long breakdown periods

respectively since data will continue to arrive in both states. However, service

is only possible when the server is fully operational. The system state at time

t may be described using a pair of integer valued random variable I(t) and J(t)

specifying operative states of the CH and the number of jobs within the system

respectively. The operative states I(t) in this case represents the assumed failed

and working periods of the CH. Z = [I(t), J(t)]; t ≥ 0 is an irreducible Markov

process on a lattice strip (QBD process), that models the system. Its state space
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is (0, 1)x (0, 1, . . . , L). In order to solve this model, Spectral Expansion exact

solution methodology presented in section 3.3.3 is employed for performability

evaluation of the WSN system model.

Figure 5.1: State transition diagram for CH performability

Since the possible operative states of the CH and the number of data arrivals are

represented in the horizontal and vertical directions of the lattice respectively,

the transition matrices can be derived as:

i.) A is the matrix of instantaneous transition rates from (i, j) to state (l, j),(i =

0, 1; l = 0, 1; i 6= l; j = 0, 1, . . . , L), with zeros in the leading diagonal,

caused by a change in the state [Ever et al., 2009]. These are the purely

lateral transitions of the model Z. Matrix A clearly depends on parameters

ξ and η. The state transition matrices A and Aj are of size (2) × (2) and

can be given as shown below.

ii.) Matrices B and C are transition matrices for one step upward and one step

downward transitions respectively [Ever et al., 2009]. When there is no job

within the system, the elements of matrix C are zero. The transition rate

matrices do not depend on j for j ≥ M , where M is a threshold having
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an integer value [Ever et al., 2009]. The respective transition matrices are

shown below:

A = Aj =

[
0 η

ξ 0

]
and B = Bj =

[
λ 0

0 λ

]
and C = Cj =

[
0 0

0 µ

]

Elements of matrix B are dependent upon the data arrival rate (λ) at the CH

while elements of matrix C depend upon the CH service rate (µ).

Once the state transition matrices are established, spectral expansion solution

technique is then employed to derive steady-state probabilities for the model.

From the state probabilities, a number of steady-state availability, reliability, and

performability measures can be computed. For illustration, Attention is given to

the blocking probability described by equation 5.1, the MQL, throughput (γ),

utilization (u), and RT which may be computed using equations 5.4 through 5.7

respectively. From the model, service is only possible when there are jobs within

the system.

MQL =
L∑
j=0

j
N∑
i=0

Pi,j (5.4)

γ =
L∑
j=1

N∑
i=1

µPi,j (5.5)

u = 1−
N∑
i=0

Pi,0 (5.6)

RT = MQL/γ (5.7)

where Pi,j is the probability of the system being in state i with j jobs at a given

time during operation.
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5.5 Numerical Results and Discussions

In this section, numerical results for the model obtained using Spectral Expansion

solution approach are presented. The results are verified using a dedicated event-

driven simulation software for the actual system developed in C++ language and

validated using well known mathematical solutions. The simulation software has

also been verified to match the M/M/1/L system performance as presented in

[Cassandras et al., 2008], [Chakka, 1998]. Finally, the steady-state results are

compared with results obtained in chapter 4 in order to understand the effects

of limited memory capacity on CHs. Table 5.1 lists a summary of steady-state

performance metrics used for this study.

Table 5.1: Performance Metrics Explained

Performance Metrics Brief Description
Effective Arrival rate (λk,e) Total arrival rate excluding blocked packets
Rate of jobs lost (λk,l) Rate of data packet loss due to blocking
Mean Queue Length (MQL) Average packets in the queue at steady state
Throughput (γ) Packets departing from CH after service
Utilization (u) Fraction of time CH is busy
Response Time (RT ) Mean time packets take in the system
Blocking Probability (PB) Probability arriving packets find queue full

5.5.1 Parameter Choice

In this section, parameter choices are discussed and a summary of simulation

parameters used is presented in Table 5.2. The parameters shown are considered

throughout the evaluation of the system unless otherwise stated. In choosing the

input parameters, a generic system was considered. Though in most research

work, arrival rates of 1 packet/second is used, variation of arrival rates between

1 to 10 packets/second has also been recorded [Zhou et al., 2011]. In other areas,

mean arrival rates have been varied between λ = 1 − 15 packets/hr [Li et al.,

2011].

Assuming a 36 sources full capacity cluster operation for monitoring moisture
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content in an agricultural farmhouse, configured with the same mean arrival rate

of λ = 8 packets/hr from each cluster node (λ1 = λ2 = λ3 =, . . . ,= λC), the

effective arrival at the CH becomes λk = Cλ = 288 packets/hr, where C is

the number of of source nodes introduced in section 4.3. For stability, the CH

requires a slightly higher mean service rate per hour. Considering that the CH

has in addition internal data and control processes, a service rate of µk = 300

packets/hr was arbitrarily chosen in order to ensure steady-state condition is

reached when the CH is operating near full capacity. Arrival rates following

Poisson distribution are varied between 1−8 packets/hr from each node to ensure

the system remains stable. An arbitrary queue length of L = 50 packets was also

chosen for this study throughout the experiments.

Sensors are usually attached with a 2×AA battery pack of 2.7−3.3 volts capable

of continuous operation for 3.25 days as given in the CC2420 transceiver data

sheet. In this study, it is assumed that good mechanisms for availability are put

in place, and battery depletion is not the cause of failures. Use of backup for CHs

and solar charging systems [Munir and Gordon-Ross, 2011], [Li et al., 2011] are

just a few examples of such mechanisms. In order to model these systems, mean

failure (ξ) and repair (η) rates were assumed to be ξ = 0.001/hr and η = 0.5/hr

translating to mean failure and repair occurring after every 1000hrs and 2hrs

respectively. The small repair rate ensures the system does not stay longer in

failed state. These values are maintained during the experiment except where

specified.

Table 5.2: Simulation parameters and values

No. Parameter Type Parameter Values

1. Arrival rate λ 0 - 14
2. Service rate µ 300
3. Failure rate ξ 0.001 - 0.01
4. Repair rate η 0.5
5. Queue capacity L 10, 30, 50, 100, 500, 1000

94



5.5.2 Results and discussions

In this section, results of a pure performance model for a bounded CH is presented

in figure 5.2 for comparison purposes with the proposed performability model. In

all the four scenarios presented, MQL, response time, and Blocking probability

are all kept lower compared to results obtained using performability model figures

5.3(a), 5.4(a), and 5.5. The difference in results show the effects of failures and

repairs/replacement and can be used for system design, deployment planning,

and optimization studies.

From figure 5.3(a), the MQL is presented as a function of arrival rate λ. For every

run, a fixed number of nodes is chosen and the arrival rate λ is varied between 0

to 14 packets/hr. It is observed that for steady-state operations, the MQL is kept

below 5 jobs after which the system becomes unstable, and the MQL increases

sharply. This is contrary to the infinite system studied in chapter 4 which indicate

a slightly higher MQL value (10 jobs) before the system becomes unstable. From

the results, systems with low traffic intensity (up to λ = 5 packets/hr) are able

to accommodate more source thereby providing a wider coverage compared to

higher traffic intensity system that are restricted to fewer sources hence limited

coverage area.

Assuming an infinite queue capacity for WSN CH may therefore impact negatively

on system performance hence the need to optimize operations using the available

resources. This becomes a trade off when coverage and optimum performance are

of concern as highlighted in chapter 4.

In figure 5.3(b), the effect of varying queue capacity is compared. The number

of nodes is maintained at 30 throughout the experiment. The following queue

capacities were used; L = 10, 30, 50, 100, 500, 1000. During each run, the arrival

rate is varied from 1 to 9 packets/hr, and the MQL is recorded appropriately.

It is observed that when queue capacity is low, then MQL remains very small,

since more jobs are lost. However, as the queue capacity (L) is increased, a limit

is approached beyond which further increments do not cause any meaningful

change to MQL. Appropriate queue capacity is therefore desired for optimum

system performance.
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Figure 5.2: Pure Performance results for a Bounded WSN CH

In figure 5.4(a), the average response time for a finite system is noted to be much

less compared with the infinite systems of figure 4.6 since only a few packets may

wait in the queue at any given time. Though these results are generic, the response

times may easily be customised for particular WSN application requirements for

purposes of deployment planning and operation management.

96



0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Arrival rate (λ) packets/hour

M
ea

n
 Q

u
eu

e 
L

en
g

th

Simulation
Spectral Expansion
Simulation
Spectral Expansion
Simulation
Spectral Expansion
Simulation
Spectral Expansion

35 Nodes

30 Nodes

25 Nodes

20 Nodes

(a) MQL vs Arrival rate

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

Arrival rate (λ)packets/hr

M
ea

n
 Q

u
eu

e 
L

en
g

th

Simulation L=50
Spectral Expansion L=50
Simulation L=30
Spectral Expansion L=30
Simulation L=10
Spectral Expansion L=10
Simulation L = 100
Spectral Expansion L = 100
Simulation − Infinite
Spectral Expansion − Infinite
Spectral Expansion L=500
Spectral Expansion L=1000

(b) MQL vs Arrival Rates

Figure 5.3: Effects of variable Nodes and Buffer size on MQL

5 10 15 20 25 30 35 40 45 50 55
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of Nodes

R
es

p
o

n
se

 T
im

e 
(h

o
u

rs
)

Simulation (λ=5)
Spectral Expansion (λ=5)
Simulation (λ=6)
Spectral Expansion (λ=6)
Simulation (λ=7)
Spectral Expansion (λ=7)
Simulation (λ=8)
Spectral Expansion (λ=8)

λ = 5

λ = 8 

λ = 7 

λ = 6

(a) Varying Nodes vs Response Time (b) Failure Rate Vs Response Time

Figure 5.4: Variable Nodes and Failure Rate against Response Time

In figure 5.4(b), the response time is given as a function of the number of nodes

for various failure rates. For this experiment, queue capacity of L = 10 is used.

Arrival rate (λ) is a constant but overall arrival at the CH increases due to

increasing number of nodes. It can be observed that response time is higher when

the system exhibits high failure rates. As the number of nodes are increased, the

arrival rate also increases followed by a gradual increase in the response time.

As the number of nodes are further increased, a level of arrival rate is reached

after which any additional node results into a rapid increase in response time.

For optimum operation at higher failure rates it is preferable to maintain more
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than 20 active nodes per cluster but not more than the desired maximum of 36

nodes. From figures 5.4(a) and 5.4(b) it can be deduced that favoured response

time for better performance falls below 0.025hrs. Systems configured for much

lower response times are mostly preferable for WSNs.
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Figure 5.5: PB vs. Arrival rate w.r.t L

From figure 5.5, it is observed that at low arrival rates blocking probability re-

mains low with nearly all queue capacities. However, during heavily traffic load,

systems with low queue capacities exhibit higher blocking probabilities observed

for L = 10. For queue capacities of L = 500, the blocking probability approaches

zero, thus confirming that nearly all packets are served as the queue capacity

tends to infinity. The results in figure 5.5 show the performance of realistic WSN

systems, which do not have infinite queue capacity. From figures 5.3(b) and 5.5, it

is possible to recommend different queue capacities for various applications, which

are dependent on the volume of data generated and whether they are mission-

critical. In table 5.3, generalised queue capacity recommendations for different

applications are given. In order to optimise system performance, utilization was

maintained between 0.1 to a maximum of 0.9.
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Table 5.3: Proposed Buffer sizes for various application categories

Application Categories Buffer Sizes Application Examples
Low Data Intensive 10 -30 Smart Agriculture
Medium Data Intensive 30 - 50 Body Area Networks (BANs)
Data Intensive 50 - 100 Volcanic Erruption, Wild Fire

High Data Intensive 100 - 500
Video & Data
(Intelligent transport Systems)

Very High Data Intensive Above 500 Real time Multi-Media Applications

5.6 Chapter Summary

In this chapter, a solution technique for modelling and performability analysis of

clustered WSNs with bounded queues is presented. The study is focused upon

the behaviour of the CH as it receives and processes internal and external job ar-

rivals while at the same time, prone to possible breakdowns, repairs/replacement,

and restoration during operations. The CH is successfully modelled using an

M/M/1/L open queuing network, and its steady-state probabilities derived using

spectral expansion solution technique.

Numerical results are presented comparatively with results obtained from simu-

lation runs for various performability measures. The results which are in good

agreement with discrepancies under 2% clearly show the effects of bounded CH

queues and confirm the importance of performability modelling for WSNs. From

results, it is deduced that finite queues limit acceptable data packets at the CH at

any given time and results to loss of packets arriving when the queue is full. Vari-

ations in required queue capacities are application dependent with data intensive

applications demanding more storage as highlighted in table 5.3.

This study can be further extended to model intra and inter cluster traffic with

consideration to priority queues for mission-critical applications in a mixed ap-

plication environment. An example of this may be monitoring the spread of

pests in the agricultural farm where other applications like temperature, humid-

ity, fire and intrusion detection are also of interest. It is possible to identify and

include additional operative states of the CH in the model in order to capture

more realistic system behaviour. These may include sleep mode, channel failure,
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reduces operation state etc. Furthermore, the effects of performance and avail-

ability measures on energy consumption can also be incorporated in optimisation

studies.
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Chapter 6

Performability Modelling and

Evaluation of Clustered Wireless

Sensor Networks Implementing

Sleep Operation Dynamics

6.1 Introduction

Following rapid technological development of Micro Electro-Mechanical (MEM)

sensing devises WSNs have become more desirable for information gathering and

building reliable and efficient infrastructures for data and communication systems

thus serving as a base infrastructure for the Internet of Things (IoT) technolo-

gies. However, in the wake of high application demands in diverse environments,

performance and availability/reliability of WSNs have continued to suffer because

of sensor energy limitations [Chiasserini and Garetto, 2006]. As a result, quality

of service offered by WSNs is continuously degraded.

In order to conserve energy, alternating sensor node operations between sleep and

active modes is widely used as introduced in section 2.3. Conversely, the mecha-

nisms used for implementing sleep schedules have introduced more challenges to
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the performance and dependability of WSN systems.

This chapter analyses the effects introduced by sleep/active duty cycling oper-

ations on WSN performance and availability/reliability. First, the models are

developed considering the existing sleep scheduling mechanisms [Van Dam and

Langendoen, 2003][Anastasi et al., 2009][Tyagi and Kumar, 2013]. Quasy Birth

and Death (QBD) processes are used in turn to model the system for performa-

bility studies similar to approaches used in Chakka [1995]. The remainder of this

chapter is organised as follows: section 6.2 present operation dynamics of sleep

and active modes of WSNs, section 6.3 describes the system model. The two-

dimensional representations of the proposed sleep scheduling models for WSNs

are presented in section 6.4 followed by Numerical results and discussions in sec-

tion 6.5. Finally, the chapter summary is presented in section 6.6.

6.2 Operation Dynamics of Sleep and Active Modes

of Wireless Sensor Networks

In this section, detailed properties for sleep/active periods of WSN operations

are investigated and justified. Alternate sleep and active periods are being used

to conserve limited node energy. Various approaches are used in the literature to

model these operation states. In the active state, the node can operate normally

while the sleep state corresponds to the lowest value of node power consumption

[Chiasserini and Garetto, 2006], [Zhang and Li, 2012], and [Zhen et al., 2014].

Generally, the implementation of energy-saving schemes has been achieved using

MAC protocols. These include CSMA/CA, S-MAC, Time out MAC (T-MAC)

and others. Even though CSMA/CA has been modified for use in a number of

network platforms, the contention procedure introduces a significant overhead in

energy consumption that limits its use for WSNs. The latter two were specifically

developed to reduce the idle listening of the sensor nodes in order to reduce energy

consumption. The main goal is to turn off the radio transceiver whenever there

are no packet arrivals. In S-MAC, sleep and active periods are fixed while in

T-MAC these periods are dynamically dependent on the traffic load [Zhen et al.,
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2014].

From previous studies, it has been confirmed that T-MAC outperforms S-MAC

and CSMA in terms of energy-saving [Zhen et al., 2014], [Van Dam and Langen-

doen, 2003]. Interesting to note is the fact that T-MAC reduces idle listening by

transmitting all messages in bursts of variable lengths while allowing sleeping in

between the bursts. On the contrary, S-MAC has a fixed duty cycle. S-MAC is

a single frequency contention based protocol that divides time into fairly large

frames. In this protocol, every frame has two parts as Active and Sleeping parts.

During the active part, the sensor can communicate with its neighbours and send

any queued messages. During the sleeping part, a node turns off its radio to

preserve energy.

In other studies such as [Chiasserini and Garetto, 2006], [Zhang and Li, 2012], the

temporal evolution of the sensor states has been modelled in terms of operating

cycles. Each cycle comprises a sleep phase (S) and an active phase (A). During

phase (S), the sensor is in sleep mode, when the sensor switches to active mode

phase (A), it schedules a time in the future when it goes back to sleep. The

scheduled periods of active and sleep are expressed in time slots and may be

modelled as random variables geometrically distributed with parameters q and

p respectively [Chiasserini and Garetto, 2006]. This assumption was made for

tractability reasons and justified through results showing close approximation to

the sensor behaviour going into periodic sleep as is the case with real systems.

At the time of entering sleep mode, a sensor prolongs its active phase (A) if its

queue is not empty [Chiasserini and Garetto, 2006], [Van Dam and Langendoen,

2003]. Under this circumstance, phase (A) is extended until all the data packets

in the queue are processed. The extended phase is known as reduced active phase

(N). It is observed from [Chiasserini and Garetto, 2006] that introducing phase N

allows sensors to adapt to traffic conditions thereby preventing possible network

instability due to overloading. A similar model was used in [Zhang and Li, 2012].

However, in this work, the alternate durations the sensor may take in full active

phase (A) and semi active phase (N) are assumed to be exponentially distributed

with mean values of 1/α and 1/β respectively.
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6.2.1 Justification for Exponential Distribution for Ac-

tive/Sleep Operation Periods

Two main approaches used for implementation of Sleep/Active power saving

in WSN include software and hardware schemes [Van Dam and Langendoen,

2003],[Anastasi et al., 2009]. In the software-based scheme, the low duty cycle

is represented as a periodic wake-up scheme where a node routinely switches be-

tween active communication epoch and power efficient sleep state. In hardware-

based approaches, pure asynchronous rendezvous schemes are employed. These

approaches allow sensors to remain within the sleep state most of the time, but

only waking up when probed by the neighbours. In this arrangement, nodes no

longer use duty cycling but are instead equipped with a low-power wake-up re-

ceiver module which continuously monitors the channel. In order to communicate

with a neighbour, a node first sends a wake-up call. After successful reception

and decoding of the wake-up call the wake-up receiver sends an interrupt signal

to the node itself, which then fires up its primary radio to engage in efficient

high speed communication with the sender. After the transmission, both nodes

activate their wake-up receivers, resuming their usual activities and going back to

sleep mode. Though this approach promises good energy saving in the long run,

existing sensor nodes only have one radio system hence they may require hard-

ware alterations, which may be expensive. The extra hardware also consumes

additional energy to run the supplementary circuitry [Gu and Stankovic, 2005].

In another study [Anastasi et al., 2009], an Adaptive Staggered sLEEp Proto-

col (ASLEEP) for efficient power management in wireless sensor networks was

proposed for periodic data-acquisition applications. This protocol dynamically

adjusts the sleep schedules of the nodes to match the network demands even in

time-varying operating conditions. Moreover, it does not require a-priori knowl-

edge of the network topology or traffic pattern. The novelty of this approach is

the fact that it overrides the use of fixed duty cycling and implements an adap-

tive duty cycling scheme that automatically adjusts the Sleep/Wakeup periods

depending on the observed operating conditions.

Considering that under normal operations, the active period of the node is fully
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dependent upon the traffic intensity, an appropriate choice is necessary to regulate

idling times. In addition, using ASLEEP protocol and hardware wake-up receivers

is preferred for conserving node energy consumption. In the two approaches,

timings for sleep/active periods are not predetermined but left to depend upon

network traffic and operation dynamics.

While implementing the two schemes; hardware wake-up receivers and ASLEEP

protocol, it can be observed that the distribution of sleep/active times is a con-

tinuous process that follows i.i.d random variables. They do not depend upon the

knowledge of the present or past sleep/active times, but their arrivals are purely

dependent on present network operation dynamics. For tractability, it is possible

to assume without loss of generality that both active and sleep times are expo-

nentially distributed. In these study, hardware wake-up receivers and software,

ASLEEP schemes are considered for modelling the distribution of sleep/active

schedules. In the case of hardware, the nodes enter sleep mode after serving the

last packet and wake up on arrival of a new data packet. However, for ASLEEP,

sleep and active times are assumed exponentially distributed with random vari-

ables having a mean values 1/α and 1/β respectively as explained above. The

models developed for this study are based upon earlier studies in [Chiasserini and

Garetto, 2006], [Zhang and Li, 2012]. The novelty of our model is the inclusion

of the failed states and consideration of the bounded queues.

Considering the use of the two possible sleeping mechanisms; software ASLEEP

and hardware wake-up- receivers, two models were developed.

1. Transition into sleep mode at the completion of last service and wake up at

packet arrival. In this case, beta and alpha are not required as the arrival

and service end times of the packets are used.

2. Duty cycling using ASLEEP protocol. In this scenario, beta and alpha

play a major role in determining the required operation periods while in

the various states.

In the first case above, nothing else is required except the distribution of inter-

arrival and service times. However, in the second case, the events leading to sleep

and active operation states are considered. These include:
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1. Active State

While operating normaly, the CH schedules a time in the future when it

will go into sleep mode. Conversely, when this period ends, the following

are considered for determining the next action to take, which may either

reduce or increase the value of alpha;

a. If there are no more packets to be served, then the CH transits into

sleep mode

b. If there are packets left to be served, the CH enters into the reduced

active state (N). In this state, the CH stops receiving incoming data

packets. Nevertheless, it continues to serve the remaining data packets.

As soon as the service for the last packet is completed, the CH enters

sleep mode (S). During sleep mode, the CH does not involve in any

activity.

c. During active operation, if the CH has no more requests in the system

to serve, it will get into the idle state for a period after which it will

automatically enter sleep mode if no more data packets arrive.

2. Sleep State

Each time the CH goes into sleep mode, it re-schedules a time in the future

when it will transit back to active mode. The sleep time is assumed expo-

nentially distributed with rate β. At the end of the sleep period, the CH

checks the availability of data packets, and changes state to active mode

otherwise it prolongs sleep state in order to save energy. The dynamic

change of Sleep/Active periods based on traffic conditions can therefore be

used to determine the parameter β.

6.3 Model Description

In order to build the models, the network scenario presented in Figure 4.1 is

considered. The queue model also remains the same as presented in section 5.3.

Based on the discussions in sections 6.2 on sleep scheduling mechanisms, two
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models are proposed as an advancement to the earlier model presented in Figure

5.1. The proposed models are presented below in line with the sleep scheduling

scheme employed.

6.3.1 On-Demand Wake-Up Scheme

In Figure 6.1, On-demand wake-up schedule is considered. In this scheme, a

second radio transceiver that consumes very low power is used for continuous

monitoring of the channel for any packet arrivals while the main radio transceiver

is put to sleep. The scheme enables the CH to enter sleep mode automatically

following service end for the last job within the system and wakes up only when

a new arrival occurs [Miller and Vaidya, 2005] [Gu and Stankovic, 2005] and

[Ameen et al., 2010]. Service and arrival distribution times remain as discussed

in section 4.2.3. When wake-up radio transceivers are used, the CH remains in

the active state, as long as there are jobs within the system to be serviced.

Figure 6.1: CH Phase transition with On-Demand Protocol

6.3.2 Adaptive Duty-Cycling Scheme

Adaptive duty cycling schemes are known for adjusting sleep wake up periods

depending on the observed operating conditions. Several implementation ap-

proaches have been proposed in the literature [Van Dam and Langendoen, 2003]

[Anastasi et al., 2009] [Yang and Heinzelman, 2013].

In Figure 6.2, a block diagram of the possible CH operative states is presented.

The operative states are broadly represented in three categories as; Active mode,

Sleep mode and Node Failure mode. The active mode is further divided into Full
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operation (Denoted by phase R) and Reduced operation (Denoted by phase N)

phases. While in normal operations, the CH switches back and forth between

Active and Sleep modes. The two modes operate for a time period modelled as

random variables exponentially distributed with parameters α and β respectively.

While in the active mode, the CH may either be in phase (R) or in phase (N).

In phase (R), the CH may receive and transmit data packets or idle if there are

no data packets to be processed. Depending on the prevailing conditions the CH

may transition to any of the following states;

a.) The CH goes to sleep mode (phase S) if the active mode period expires and

there are no jobs remaining within the system to be processed.

b.) If there are jobs remaining within the system at the expiry of the active

period, the CH transitions to reduced operation’s phase. In this phase,

the CH may only process and transmit the remaining data packets and

immediately enter sleep mode at the transmission of the last data packet.

c.) While operating in any of the Active phases, the CH may fail as a result

of corrupt software configuration, battery power depletion, and hardware

malfunctions. Where repair is possible, the CH is restored back to full

active mode once repair is complete. Failure and repair times are assumed

exponentially distributed with rates ξ and η respectively. During failures,

it is assumed that a backup CH installed at inception takes up all the

responsibilities of the CH until a new choice of the CH is made from the

remaining cluster nodes.

During Sleep mode, the CH is completely cut off from network activities. It does

not receive or transmit data packets. It is assumed to be in its lowest power

consumption state. The CH only switches back to full active phase at the expiry

of the sleep period. If the CH fails while in sleep mode, it is taken into repair

and then re-instated into the system as a full-function device.

In order to explicitly explain the models proposed, the following assumptions and

notations were introduced for the sensor node under investigation.

a.) The duration a CH takes operating in full-active phase (R) is a random
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Figure 6.2: CH Phase transition with ASLEEP protocols

time distributed exponentially with a mean of 1/α . During this period,

the CH may:

i.) Generates packets following Poisson distribution with rate λ.

ii.) Receive data packets originating internally from cluster nodes and ex-

ternally from other CHs. Packet arrival distribution at the CH is

assumed to follow Poisson process with rate λk .

iii.) Process and transmit or relay data packets with random exponential

time with a mean of 1/µ .

iv.) Idle while listening to the wireless channel in readiness to receive arriv-

ing data packets. In this state, all the internal circuitry is kept ready

to operate.

b.) At the expiry of full-active phase R, the CH transitions either to sleep

or Reduced-active phase. In order to enter reduced active phase, there

must be at least one data packet in the system waiting to be processed.

In reduced active phase (N) the CH may only process and transmit the

remaining data packets in the system following a random exponential time

with a mean of 1/µ. Internal data generations and external data arrivals

are stopped to enable the CH prepare to enter sleep mode after the transfer

of all data packets in reduced-active phase. Phase N, therefore, allows the
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sensor to adapt to traffic conditions and prevent network instability due to

overloading [Chiasserini and Garetto, 2006].

c.) The duration the CH takes in sleep mode is distributed exponentially with

a mean of 1/β . While in sleep mode, the sensor is completely cut off

from the rest of the network. At the expiry of the sleep mode, the sensor

automatically reverts to full-active phase (R).

d.) The CH can only be engaged with one activity at a time, and the order of

service is based on First-Come First-Served basis (FCFS).

e.) Considering the memory limitation of the CH, a finite queue length of L is

assumed.

6.4 Two Dimensional Representation of the Sleep

Scheduling Models for WSNs

This section presents sleep scheduling models used for WSN performance and

availability evaluation. In developing the models, this study considers On-demand

and adaptive duty cyclic sleep scheduling schemes introduced in sections 6.3.1 and

6.3.2 above.

6.4.1 Model for On-demand sleep Scheduling

In the case of On-demand sleep scheduling, the important implementation feature

is the replacement of the idle state with sleep state. The model is therefore, similar

to that presented in Figure 5.1. The only difference is that the period spent in the

idle state is replaced with sleep state. All other performance parameters remain

as presented in section 5.4. The new model with sleep state is presented in figure

6.3.

The solution approach in this model is similar to that of Figure 5.1. The state

probabilities also remain the same. However, the probability of being in the sleep
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Figure 6.3: CH Performability Model based on On-Demand Protocols

state can now be given using equation 6.1.

PSLP = 1−
L∑
j=1

N∑
i=0

Pi,j + PFM0 (6.1)

Where PSLP and PFM0 are probability of being in the sleep state, and node failed

state respectively. In both states, there are no jobs within the system. Figure

6.4 shows the graph of mean times the CH spend in active and sleep operation

states with respect to variable nodes. The results were obtained using parameters

justified in section 5.5.1. A random choice for parameter values was made for this

experiment; arrival rate of λ = 5 pckts/hr, and queue capacity of L = 50 packets.

From the figure, sleep time is higher when fewer nodes are used but reduce linearly

as the nodes are increased over time. On the contrary, the CH remains active

for a longer period when more nodes are used. The lowest times are recorded

when least nodes are deployed. We also note that the mean active time remains

low under 35 sources after which it rises sharply as sources are further increased.

This is in line with 36 nodes per cluster recommended by IEEE802.15.4/Zigbee

standards.
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Figure 6.4: Active and Sleep State of Operation

6.4.2 Model for Adaptive Sleep Scheduling Schemes

In the case of adaptive duty cycling schemes, the model in Figure 5.1 is improved

to consider reduced operation phase N . The improved performability model is

presented in Figure 6.5. The model has three main operation phases namely:

Node failure phase FM , Active phase R, and Reduce operation phase N . L =

0, 1, . . . , L represent the number of jobs in the system at any given time during

operations. In phase N , S0 is the sleep state reached after serving all data packets

in phase N . The sleep state may also be reached at the expiry of active phase R

operations as discussed in section 6.3.2. N1 through NL represent the number of

packets waiting in the queue for service at the expiry of the full active period of

phase R.

From the model, packet arrival is possible during phase R of the full active mode

and in the node failure phase FM . In phase N of the active phase, the CH

can only serve the remaining data packets. In order to solve this model for

steady state probabilities, spectral expansion exact solution technique and system

of simultaneous linear equations are employed and validated using a simulation

program.
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Figure 6.5: CH Performability Model based on Adaptive Duty Cycling

The system state at time (t) may be described using a pair of integer valued

random variable I(t) and J(t) specifying the CH operative states and the number

of jobs within the system respectively. The operative states I(t) in this case

represents the Failure phase, Full operation phase, and Reduced operation phase

of the CH. Z = [I(t), J(t)]; t ≥ 0 is an irreducible Markov process on a lattice

strip (QBD process), that models the system. Its state space is given by (0, 1, 2)×
(0, 1, . . . , L). Similar models in [Chakka, 1998] [Ever et al., 2009] are analysed

for exact performability evaluation of various multi server systems with single

repairman and for both finite and infinite L for some repair strategies. It is

possible to extend the exact solution methodology for performability evaluation of

WSNs. In addition, a system of linear simultaneous equations was also employed

to solve the model.

6.4.2.1 Spectral Expansion Solution Approach

In order to use spectral expansion exact solution approach, transition matrices

are first derived from Figure 6.5 as detailed below;

i Matrix A is the matrix of instantaneous transition rates from (i, j) to state
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(l, j),(i = 0, 1, . . . , N ; l = 0, 1, . . . , N ; i 6= l; j = 0, 1, . . . , L), with zeros in

the leading diagonal, caused by a change in the operative state [Ever et al.,

2009]. These are the purely lateral transitions of the model Z. A depends

on parameters ξ, η, β and α. The state transition matrices A and Aj are of

size (3)× (3) as shown.

A =

0 η 0

ξ 0 α

ξ β 0

 and Aj =

0 η 0

ξ 0 α

ξ 0 0


ii Matrices B and C are transition matrices for one step upward and one

step downward transitions respectively [Chakka, 1995] [Ever et al., 2009].

When there is no job in the system, the elements of matrix C are all zero.

The transition rate matrices do not depend on j for j ≥ M , where M is

a threshold having an integer value. Below are the respective transition

matrices:

B = Bj =

λ 0 0

0 λ 0

0 0 0

 and Cj =

0 0 0

0 µ 0

0 0 µ


Elements of matrix B are dependent on the data arrival rate (λ) at the CH

while elements of matrix C depend on the CH service rate (µ). Once the state

transition matrices are established, use was made of spectral expansion solution

technique explained in section 3.3.3 to derive steady-state probabilities for the

model. From the state probabilities, computation of a number of steady-state

availability, reliability and performance measures are easily achievable.

6.4.2.2 Using system of Simultaneous Linear Equations

In this approach, use is made a balance equation argument based on equivalence

of inflow and outflow transitions into a state as given in equation 3.12 to develop

a set of simultaneous linear equations. Using the resulting Kolmogorov forward
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equations, the generator matrix (G) and the state probability vector (P) are

derived as explained in section 3.3.2. The resulting linear equations are then con-

sidered together with normalization equation given in part two of equation 3.11

for computation of the limiting probabilities. Using the steady-state probabili-

ties, it is possible to compute desired performance parameters like mean queue

length, throughput, delay, and others.

In this study, taking a visual balance equation from the performability model

of Figure 6.5, a set of steady-state linear equations 6.2 - 6.13 are obtained. The

obtained set of equations are further used to determine the state transition matrix

(G) given in table 6.1. The following equations illustrate transitions into the

various operative states within the system. From the performability diagram,

transitions into states with jobs between 1 < j ≤ L − 1 are similar. Equations

6.2 - 6.5 present transition states in Node failure mode Phase (FM).

For number of jobs j = 0

F0(η + λ)− ξR0 − ξS0 = 0 (6.2)

For number of jobs j = 1

F1(η + λ)− ξR1 − ξS1 − λF0 = 0 (6.3)

For number of jobs 1 < j ≤ L− 1

Fj(η + λ)− ξRj − ξSj − λFj−1 = 0 (6.4)

When the queue is full j = L

ηFL − ξRL − ξSL − λFL−1 = 0 (6.5)

The next set of equations 6.6 - 6.9 present the equations for transition states in

full active operation phase (R).
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For number of jobs j = 0

R0(ξ + λ+ α)− µR1 − ηF0 − βS0 = 0 (6.6)

For number of jobs j = 1

R1(ξ + λ+ α + µ)− µR2 − λR0 − ηF1 = 0 (6.7)

For number of jobs 1 < j ≤ L− 1

Rj(ξ + λ+ α + µ)− µRj+1 − λRj−1 − ηFj = 0 (6.8)

When the queue is full j = L

RL(ξ + µ+ α)− λR(L− 1)− ηFL = 0 (6.9)

The last set of equations 6.10 - 6.13 present the balance equation arguments for

transition states of the reduced active operation phase N .

For number of jobs j = 0

S0(ξ + β)− αR0 − µS1 = 0 (6.10)

For number of jobs j = 1

S1(ξ + µ)− µS2 − αR1 = 0 (6.11)

For number of jobs 1 < j ≤ L− 1

Sj(ξ + µ)− µSj+1 − αRj = 0 (6.12)
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When the queue is full j = L

µSL − αRL − ξFL = 0 (6.13)

Using steady-state probabilities from both solution approaches, we obtain per-

formance measures of interest using equations 6.14 - 6.19. Other performance

measure including Blocking probability, Mean queue length, throughput, utiliza-

tion and response time are obtained as discussed in section 5.4 using equations;

5.1, 5.4, 5.5, 5.6 and 5.7 respectively.
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Table 6.1: Transition Matrix G



F0 R0 S0 F1 R1 S1 F2 R2 S2 . . . F(L−2) R(L−2) S(L−2) F(L−1) R(L−1) SL−1 FL RL SL

(η + λ) −ξ −ξ 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0

−η (ξ + α + λ) −β 0 −µ 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0

0 −α (ξ + β) 0 0 −µ 0 0 0 . . . 0 0 0 0 0 0 0 0 0

−λ 0 0 (η + λ) −ξ −ξ 0 0 0 . . . 0 0 0 0 0 0 0 0 0

0 −λ 0 −η (ξ + α + λ + µ) 0 0 −µ 0 . . . 0 0 0 0 0 0 0 0 0

0 0 0 0 −α (ξ + µ) 0 0 −µ . . . 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 . . . −λ 0 0 (η + λ) −ξ −ξ 0 0 0

0 0 0 0 0 0 0 0 0 . . . 0 −λ 0 −η (λ + α + µ + ξ) 0 0 −µ 0

0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 −α (µ + ξ) 0 0 −µ
0 0 0 0 0 0 0 0 0 . . . 0 0 0 −λ 0 0 η −ξ −ξ
0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 −λ 0 −η (ξ + µ + α) 0

0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 −ξ −λ −µ
1 1 1 1 1 1 1 1 1 . . . 1 1 1 1 1 1 1 1 1



P is an ((L+1) x 1) vector given by: P = (0, 0, 0, 0, 0, 0, . . . , 0, 0, 0, 0, 0, 0, 1) and

Vector “X” for the unknowns is a (3L x 1) and is given by:

X = (F0, R0, S0, F1, R1, S1, F2, R2, S2, . . . , F(L−2), R(L−2), S(L−2), F(L−1), R(L−1), S(L−1), FL, RL, SL)
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1. Percentage of jobs lost (PJL):

This account for the number of jobs lost due to blocking. The percentage

may be computed using equation 6.14 given below.

PJL = 100%×
N∑
i=0

Pi,L (6.14)

2. Probability the system is in idle state (PR0):

During full active phase, equation 6.15 provides the probability that the

system is idling waiting for any job arrivals.

PR0 = 1− (
L∑
j=1

N∑
i=0

Pi,j + PFM0 + PS0); i = 0, 1, . . . , N ; j = 1, 2 . . . , L

(6.15)

where
∑L

j=1

∑N
i=0 Pi,j represent the busy state of the system, PF0 represent

the probability of node failed state and PS0 the probability of the system

being in sleep state. In PF0 and PS0 states, the system does not have any

job being processed or waiting for service in the queue.

3. Probability of being in Full Active Phase (R):

The probability the system is operating in full active phase (R) may be

computed by;

PR =
L∑
j=0

Pi,j; i = 1; j = 0, 1, 2 . . . , L (6.16)

4. Probability system fails with jobs in the system (PF,j)

P(F,j) =
L∑
j=1

Pi,j; i = 0; j = 1, 2, . . . , L (6.17)
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5. Probability system in sleep state (PS0):

PS0 = 1− (
L∑
j=1

N∑
i=0

Pi,j + PFM0 + PR0); i = 0, 1, . . . , N ; j = 1, 2, . . . , L

(6.18)

6. Probability the system is in reduced operation state (PNj):

PNj =
L∑
j=1

Pi,j; i = 2; j = 1, 2, . . . , L (6.19)

6.5 Numerical Results and Discussions

In order to show the effectiveness of the proposed model and analyze the effects

introduced by sleep state scheduling schemes on the performability of homoge-

neous WSNs, numerical results are presented throughout this section. The first

set of solution comparatively present results obtained using the proposed analyt-

ical techniques; Spectral Expansion and the System of Simultaneous Equations.

Both results are further validated using results obtained from a dedicated discrete

event driven simulation program developed in C++. In this work, attention is

dedicated to the influences caused by sleep scheduling on performance parameters

that may include; mean queue length, response time, throughput, blocking and

transition into the various operative states. Detailed discussion on the obtained

results are given in the following sections.

6.5.1 Parameter Choices

In order to choose active and sleep time, a ratio of the duty cycle enabling more

sleep time is considered. From literature sleep and active time rates of 0.01, 0.05

and 0.1 per hour have been used in [Chiasserini and Garetto, 2006], [Li, 2011]

respectively. In this study, a choice of sleep/active period is determined by first
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running two separate experiment in which one of the parameters is held constant

as the other is varied and appropriate values determined. The rates of sleep and

active times considered for best performance are β = 0.6/hr and α = 0.2/hr

respectively.

In this study, it is assumed that batteries do not run out of power during opera-

tion. This is so because use of good mechanisms (e.g. Solar system) for harvesting

power are employed for recharging limited battery power [Li, 2011]. In addition,

BCHs are used for redundancy purposes. The failures considered for this case

are therefore, purely software related or caused by acts of adversaries. In order

to model such systems, mean failure (ξ) and repair (η) rates of ξ = 0.001/hr and

η = 0.5/hr were employed respectively. In all the experiments, the parameter

values used remain the same as given in table 6.2 unless specified otherwise.

Table 6.2: Simulation parameters and values

λ µ ξ η β α Queue capacity (L)-packets
0-10 300 0.001 0.5 0.1 - 0.9 0.2 10, 30, 50, 100,

6.5.2 Validation of results

In the following figures, results obtained from the three solution approaches;

System of Simultaneous Equations, Spectral Expansion and simulation are com-

pared. For this purpose, a comparison of MQL, Response Time and Throughput

is presented against varying arrival rate a shown in Figures 6.6(a), 6.6(b), and

6.7 respectively. From the figures, it is notable that the system is more stable

when the low arrival rates less than λ = 6/hr are employed in contrast to higher

arrival rates. This is significant for power saving in application areas with low

to medium traffic intensities. As observed, the results from the three solution

approaches closely follow one another with discrepancies of less than 5% within

the desired traffic region.

From Figure 6.6(a), MQL is maintained low below λ = 6/hr. Further increases in

arrival rate result to the system becoming unstable, and the solution approaches

giving varying results. A similar trend is observed with Response time and
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Figure 6.6: Validation of Performance Results
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Figure 6.7: Throughput against Arrival Rate

Throughput, Figures 6.6(b) and 6.7 respectively. Using spectral technique, re-

sults become more irregular with arrival rates beyond service rate when compared
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to those obtained using system of simultaneous linear equations and simulation

approaches.
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Figure 6.8: Effects of Arrival Rate on Active Operation State

In the subsequent sections, system operation in different states is illustrated with

respect to changing arrival rates. Furthermore, presented are analyses of how

sleep scheduling affects system performance.

Figure 6.8 presents operative states within the system in the active mode. In

Figure 6.8(a), a comparison of the various active operative states is presented.

At low arrival rates, the system stays idle most of the time while the active period

with jobs is low. As arrival rate is gradually increases, active state probability

advances steadily up to a highest point beyond which, no further changes are ob-

served as arrival rates are increased. The converse is the same for idle probability

that reduces to the lowest possible point. On the other hand, minimal variations

are observed in full active, sleep, and reduced states as arrival rates are increased.

Figure 6.8(b) show the increasing trend of the probability of being in the reduced

operation state as arrival rate is increased during operation.

In figure 6.9, the effects of sleep variation on system performance is analysed. In
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Figure 6.9: How Sleep Scheduling Affect System Performance

this experiment, the number of nodes, the failure rate ξ, and queue capacity L are

fixed at 25 sources, 0.001/hr and 10 packets respectively. Sleep time is then varied

between β = 0.1− 0.8 during each run as performance parameters of interest are

observed. From Figure 6.9(a), MQL is maintained below the queue capacity of

L = 10 sources at arrival rates below λ = 12/hr. Above this rate, MQL increases
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rapidly with higher sleep rates experiencing higher MQL values as shown. From

Figure 6.9(b), throughput increases linearly below arrival rate of λ = 12/hr after

which it remains constant as arrival rates are increased further. Again at sleep

rates of β = 0.8/hr, throughput is highest and lowest at β = 0.1/hr. In Figure

6.9(c), system response time is kept below 0.05 hours when arrival rate is less than

λ = 10/hr but sharply rises as arrival is increased then exhibit minimal changes,

remaining nearly constant with further increments. Figure 6.9(d) shows blocking

analyses. The system blocking probability is kept very small when operating

below arrival rate of λ = 10/hr. However, further increments result into nearly

all jobs being blocked. Like in the previous cases at β = 0.8/hr, the probability

of arriving jobs being blocked is much higher when compared to lower sleep rate

values.
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Figure 6.10: Effects of Sleep Time on Operation Times

From Figure 6.10, Full active operation state variation with changing sleep rate is

shown. At low arrival rates, each experimental run shows the CH spending most

of its time in the full active state. Beyond arrival rates of λ = 10/hr, the full

active time is reduced a bit as shown in Figure 6.10(a). Finally in this category,

Figure 6.10(b) shows how sleep rate influences actual CH sleeping time. From

this figure, it is deduced that the CH sleeps mostly when sleep rate β = 0.1/hr

125



and reduces to a minimum as the rates are increased to β = 0.8/hr.

In the next set of experiments, system failure is analysed as sleep rate (β) and

arrival rate (λ) are varied. The remainder of the parameters are maintained as

given in table 6.2. The results are shown in figure 6.11.
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Figure 6.11: Node Failure Probabilities
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Figure 6.12: Node Fails with Jobs in the System

Figure 6.11(a) shows the overall probability of node failure during operation.

Figure 6.11(b), provides the details of node failure with jobs within the system.

It is notable that probability of Failure with jobs within the system is higher at

126



high arrival rates in all the cases. In comparison, the failure rate is also slightly

more at β = 0.8/hr than at lower values. Conversely, probability of the CH

failing with no jobs within the system is higher at low arrival rates and lower at

higher arrival rates as illustrated in Figure 6.12.

6.6 Chapter Summary

Alternating Sleep/Active operation period in WSNs has widely been used to con-

serve the limited energy resource. While this may save energy significantly, it

may also interfere negatively with desired system performance and in some cases

even facilitate more energy consumption. Several approaches have been used as

discussed in chapter 2.3.2. In this chapter, the effects of sleep scheduling on

system performance are investigated. First operation dynamics of implementing

sleep in WSNs is analysed and results used to model the system behaviour. The

developed models are then solved using two analytical approaches; Spectral Ex-

pansion and System of simultaneous linear equation which are further validated

using a dedicated simulation program developed in C++. Results obtained from

the three approaches closely match with discrepancies of below 5%.

In the case of On-Demand sleep scheduling, energy is significantly saved when

low arrival rates are prevalent. This, however, changes when high-traffic rates are

predominant due to significant use of wake-up energy. A mechanism is therefore,

necessary to categorize traffic intensity for purposes of regulating appropriate

sleep periods. Adaptive sleep scheduling has been used but this as well presents

various performance degradations. By specifying operation duty cycle, the system

operation is restricted within a given space. This situation may adversely affect

system performance due to restricted memory resources and even worse if frequent

link failures are not avoidable. The results obtained can be used by system

designers to develop a more resilient system that regulates sleep schedules in line

with traffic intensity.

Using the obtained state probabilities it is possible to extend this study to model

CH energy consumption. The need for priority queuing in a multi-application
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environment may also be incorporated. In the next chapter, in addition to sleep-

ing effects, link failure is introduced to enable a more realistic study of WSN

performability in the presence of unreliable links.
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Chapter 7

Performability Modelling and

Evaluation of Unreliable Links

and Sleeping Effects on Clustered

WSN

7.1 Introduction

In most application areas, WSNs cooperatively monitor the habitat and through

the wireless medium, transmit the information to the sink for onward processing.

The sensing nodes that contend for the communication channel are further facing

link failures hindering information flow between the sensors and the sink nodes.

This condition can become worse if power levels for the sensor nodes are low.

These two situations may eventually degrade WSN performance and availabil-

ity/reliability. Therefore, it is important to analyse performance and availability

effects resulting from channel failures in addition to the challenges introduced

by bounded queues and node failures introduced in chapters 5 and 6. In order

to obtain realistic results, this study extends the models presented in the Fig-

ures 5.1 and 6.1 by incorporating channel failures and employ Quasy Birth and

Death (QBD) processes for performability studies of WSN systems using Spectral
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Expansion and System of linear equations solution approaches.

The propagation of radio signals may be affected by several factors that eventually

degrade signal quality or in some cases complete outage. These are more prevalent

when propagating wireless signals with low power radios, typically used in WSNs.

This makes WSN radio links very unpredictable. Since WSNs are applicable in

diverse areas, the underlying factors also differ considerably. However, the factors

leading to unreliable links may be broadly classified into three areas as:

1. Interference effects, which results from concurrent transmissions from

other nodes within the WSN

2. Environmental effects that lead to multi-path propagation resulting from

background noise

3. Hardware transceivers that may distort sent signals due to their internal

noise [Nnebe, 2014].

Studies in [Mart́ınez-Sala et al., 2005], [Hrovat and Javornik, 2013], and [Nnebe,

2014] present analysis of path loss in different application areas.

A review of channel modelling for wireless body area network in medical com-

munication was presented in [Taparugssanagorn et al., 2008]. In the study, path

loss is noted to be very high when the receiver antenna is placed on a differ-

ent side from the transmit antenna. In addition, the propagating wave is noted

diffracting around the human body rather than passing through it. In another

study [Cheffena, 2012], authors presented channel modelling and evaluation of

industrial wireless sensor networks. The study presents a model that takes into

account the noise, interferences, and heavy multi-path propagation effects present

in harsh industrial environments. The model is finally used for performance eval-

uation of IEEE 802.15.4 in terms of bit error rate. A similar study is presented

in [Gungor and Hancke, 2009] with the main aim of discussing implementation

challenges and design criteria for industrial WSN. However, in these studies, node

and channel failure effects on system performance are not considered.

In an earlier study [Chiasserini and Garetto, 2006], authors proposed a Markov

model for radio interference in WSNs and used it to evaluate channel contention
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between transmitting nodes. However, in this study, CSMA/CA was employed

and collision-free data transmission was assumed. Furthermore, path loss-related

concerns are not taken into account. In all the cases above, performance degra-

dation resulting from complete channel failures and repairs are not considered.

The main focus of this chapter is therefore, to model channel failures and repairs

in addition to the CH failures. The rest of the chapter is organised as follows;

Section 7.2 presents the system model, followed by section 7.3, which presents

a two-dimensional Markov representation of the proposed model as well as an-

alytical solution approaches used to solve the model. The numerical results are

presented in section 7.4 and finally the chapter summary is given in section 7.5.

7.2 Model Description

Similar to the previous chapters, we consider the network scenario presented in

Figure 4.1. The queue model also remains the same as presented in section 5.3.

However, in this study channel failure is introduced to the performability model

presented in Figure 5.1. In order to mimic the real system scenario closely, this

study also considers systems implementing on-demand sleep schedule mechanisms

discussed in section 2.3.2.1. In these schemes the sensor nodes do not idle, in-

stead, they enter sleep mode as soon as the last job in the system is serviced [Gu

and Stankovic, 2005] [Miller and Vaidya, 2005] [Ameen et al., 2010] [Umbden-

stock et al., 2013]. The nodes are equipped with a second low power consuming

transceiver used for monitoring the channel for incoming packets and in turn

waking up the node in good time to receive the packets. Figure 7.1 is a phase

transition diagram used to mimic the behaviour of the CH. The CH is assumed to

operate in two main modes, “Active mode (phase R) and Sleep mode (phase S).”

While operating in any of the two phases, the CH or the channel may fail and

enter node failed state (phase FM) or channel failed state (phase FC) respectively

as illustrated in Figure 7.1. In the event the system goes into either FM or FC

phases, it is assumed the system enters repair facility and then it is restored back

to normal operation immediately after repair is completed.
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Figure 7.1: CH phase transition diagram

Based on the transition diagram and other traffic operation dynamics, the previ-

ous performability model presented in Figure 5.1 is developed further to incorpo-

rate channel failures. More details and proposed solution approaches for the new

model are discussed in the following sections.

7.3 Two Dimensional Markov Representation of

the Proposed Model

From Figure 7.1, a performability model incorporating channel failure and sleep

state is developed. Figures 7.2(a) and 7.2(b) are shown comparatively to highlight

the sleep and idle states. In the latter, idle times are considered as sleep periods

for the CH. Like in the previous cases, the horizontal axis (i), represent system

operative states; channel failure FC, node failure FM , and active state R. The

active state is further divided into full active R1, R2, . . . , RL and Sleep state S(LP ).

The vertical axis represents the number of jobs (j) in the system at a given time.

L represents the CH queue capacity. In this model, full service is available only

in the active state R. While in node failed state FM , the CH is only able to

receive data packets. However, in both states, arriving packets are admitted into

the CH, as long as there are empty spaces in the queue. Any packet arriving
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when the queue is full is dropped and assumed lost. When the channel fails,

the CH will not be able to receive or transmit data packets. The CH and the

nodes are forced to hold their packets until the channel is repaired and restored

before they can continue with normal operations. The total packet arrival rate

at the CH remains as given in section 4.3. i.e, λk = Cλ. Service rate µ, node

failure rate ξ and repair rate η remain as introduced in section 4.2.4. In addition,

channel failure and restoration is assumed to follow exponential distribution with

rates ζ and θ respectively. In order to solve this model, two analytical solution

approaches; Spectral Expansion and System of linear equations are used and

validated using a dedicated simulation program. The solution approaches are

explained in the following subsections.

(a) Model with Idling State (b) Model with Sleep State

Figure 7.2: CH Performability Models

Note: The difference in Figures 7.2(a) and 7.2(b) is in the operative states RO and

SLP . The values of channel repair rates, θ and θ1 are the same in both diagrams.
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7.3.1 Spectral Expansion Solution Approach

From the performability model of Figure 7.2(b), the three transition matrices A,

B, and C are determined. The system state at time t may be described using a

pair of integer valued random variable I(t) and J(t) specifying the CH operative

states, and the number of jobs in the system respectively. The operative states

I(t) in this case represents the channel and node failed states and active period of

the CH. Z = [I(t), J(t)]; t ≥ 0 is an irreducible Markov process on a lattice strip

(QBD process) that models the system. Its state space is (0, 1, 2) x (0, 1, . . . , L).

In order to solve the proposed system model, Spectral Expansion exact solution

methodology used for performability evaluation of related models and system of

linear simultaneous equations are employed.

Matrix A is defined as the matrix of instantaneous transition rates from state

(i, j) to state (l, j) with zeros on the main diagonal. These are the purely lateral

transitions of the model Z. Matrices B and C are transition matrices for one-step

upward and one-step downward transitions respectively. However, transition rate

matrices do not depend on j for j ≥M , where M is a threshold having an integer

value [Chakka, 1995]. The matrices A,B and C are of size 3× 3. Aj, Bj and Cj

matrices represent system state when j < M .

A = Aj =

0 θ1 θ

ζ 0 η

ζ ξ 0



B = Bj =

0 0 0

0 λ 0

0 0 λ

 and C = Cj =

0 0 0

0 0 0

0 0 µ


Elements of matrix B are dependent on the data arrival rate (λ) at the CH

while elements of matrix C depend on the CH service rate (µ). With state

transition matrices established, spectral expansion solution technique is then

used to derive steady-state probabilities for the system, which may be expressed

as Pi,j = limt→∞ P (I(t) = i, J(t) = j); 0 ≤ i ≤ N, 0 ≤ j ≤ L, where L is a finite
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queue length and N represent the number of operative states.

7.3.2 Using Simultaneous Linear Equations

The system of simultaneous linear equations is based on the balance equation

argument that “Outflow transition rate from a state (i, j) = Inflow transition

rate into state (i, j)”. Using this principle, a set of Kolmogorov linear equations

[Gemikonakli, 2014] are derived at steady state using equation 7.1 below.

Pi
∑
j 6=i

gi,j =
∑
j 6=i

Pigj,i; i, jεS (7.1)

The steady-state probability can be defined in terms of the state transition rate

matrix G and the state probability vector P = lim
t→∞

Pi,j(t). As t −→ ∞, the

Kolmogorov forward equation becomes PG = 0. The steady-state probability

can then be defined as; P = (P0, P1, . . . , PN). Together with the normalization

equation
∑
iεS

Pi = 1, these set of equations can be solved to obtain the limiting

state probabilities.

For this study, taking visual balance equations from the performability model

given in Figure 7.2(b), a set of steady-state linear equations 7.2 to 7.13 for the

model are derived using the flow balance equation 7.1 above. Once derived, the

steady-state linear equations are further used to determine the state transition

matrix “G” given in table 7.1.

To derive the linear equations, we consider transition into and out of the various

states independently. From Figure 7.2(b), transitions into operative states with

jobs between 1 < j ≤ L are similar. Therefore, these transitions are not shown

here. The balance equation for operating in channel failure state (FC) are given

by the following:

For number of jobs j = 0

(θ1 + θ)FCO = ζSLP + ζFMO =⇒ (θ1 + θ)FCO − ζSLP − ζFMO = 0 (7.2)
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For number of jobs j = 1

(θ1 + θ)FC1 = ζR1 + ζFM1 =⇒ (θ1 + θ)FC1 − ζR1 − ζFM1 = 0 (7.3)

For number of jobs 1 < j ≤ L− 1

(θ1 + θ)FCj = ζRj + ζFMj =⇒ (θ1 + θ)FCj − ζRj − ζFMj = 0 (7.4)

For number of jobs j = L

(θ1 + θ)FC(L) = ζR(L) + ζFM(L) =⇒ (θ1 + θ)FCL− ζRL − ζFML = 0 (7.5)

The next set of balance equations are for operating in node failed state (FM)

For number of jobs j = 0

(η+ ζ + λ)FMO = θ1FCO + ξSLP =⇒ (η+ ζ + λ)FMO − θ1FCO − ξSLP = 0 (7.6)

For number of jobs j = 1

(η + ζ + λ)FM1 = θ1FC1 + λFMO + ξR1

=⇒ (η + ζ + λ)FM1 − θ1FC1 − λFMO − ξR1 = 0 (7.7)

For number of jobs 1 < j ≤ L− 1

(η + ζ + λ)FMj = θ1FCj + λFM(j−1) + ξRj

=⇒ (η + ζ + λ)FMj − θ1FCj − λFM(j−1) − ξRj = 0 (7.8)

For number of jobs j = L

(η + ζ)FML = θ1FCL + λFM(L−1) + ξRL

=⇒ (η + ζ)FML − θ1FCL − λFM(L−1) − ξRL = 0 (7.9)

The next set of balance linear equations are developed during operations in active
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phase R. In this phase, operation is divided into active and sleep modes as earlier

indicated. The balance equations are given below;

For number of jobs j = 0

(ξ + ζ + λ)SLP = θFCO + ηFMO + µR1

=⇒ (ξ + ζ + λ)SLP − θFCO − ηFMO − µR1 = 0 (7.10)

For number of jobs j = 1

(ξ + ζ + λ+ µ)R1 = θFC1 + ηFM1 + λSLP + µR2

=⇒ (ξ + ζ + λ+ µ)R1 − θFC1 − ηFM1 − λSLP − µR2 = 0 (7.11)

For number of jobs 1 < j ≤ L− 1

(ξ + ζ + λ+ µ)Rj = θFCj + ηFMj + λR(j−1) + µR(j + 1)

=⇒ (ξ + ζ + λ+ µ)Rj − θFCj − ηFMj − λR(j−1) − µR(j+1) = 0 (7.12)

For number of jobs j = L

(ξ + ζ + µ)RL = θFCL + ηFML + λR(L−1)

=⇒ (ξ + ζ + µ)RL − θFCL − ηFML − λR(L−1) = 0 (7.13)

In order to compute the state probabilities, a program was developed in MATLAB

using inputs from the generator matrix (G) and the state probability vector P

together with the normalization equation.

From the state probabilities; a number of steady-state availability, reliability and

performance measures can be computed using the following equations.

From Figure 7.2(b), when the queue is full, any arriving packets are blocked. The

blocking probability (PB), the effective arrival rate (λk,e) and the rate at which

jobs are lost (λk,l) due to blocking can be computed using equations 5.1, 5.2 and

5.3 as discussed in section 5.3. Other performance measures including MQL,RT

and u are similarly computed using equations, 5.4, 5.7 and 5.6 respectively.
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Given service is only possible when the system is in the active state with jobs in

the system, γ may be computed using equation 7.14.

γ = µ
L∑
j=1

Pi,j; i = 2; j = 1, 2, . . . , L (7.14)

PSLP = 1− (
L∑
j=1

N∑
i=0

Pi,j + PFM,0 + PFC,0); i = 0, 1, . . . , N ; j = 0, 1, 2, . . . , L

(7.15)

Since the CH may fail in any state during operations, the probabilities of system

failing in the various states may be computed using equation 7.16.

Probability the CH fails during operation PFM

PFM =
L∑
j=0

∑
i=1

Pi,j; i = 1; j = 0, 1, . . . , L (7.16)

Probability CH fails with jobs in the system PFMi

PFMi =
L∑
j=1

Pi,j; i = 1; j = 1, 2, . . . , L (7.17)

Probability the CH fails when the system is empty PFM0

PFM0 = 1− (
L∑
j=1

N∑
i=0

Pi,j + PSLP,0 + PFC,0) i = 0, 1, . . . , N ; j = 1, 2, . . . , L

(7.18)

Likewise, the channel may fail at any time during operations. The probability of

channel failures may be computed using equations 7.19, 7.20 and 7.21.
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Probability of the channel failing during operation PFC

PFC =
L∑
j=0

Pi,j i = 0; j = 0, 1, . . . , L (7.19)

where i = 0 is the probability of the channel being in failed state with or without

any jobs in the system.

Probability channel fails when jobs are in the system PFCi

PFCi =
L∑
j=1

Pi,j; i = 0; j = 1, 2, . . . , L (7.20)

Probability the channel fails when the system is empty PFC0

PFC0 = 1−(
L∑
j=1

N∑
i=0

Pi,j+PSLP,0+PFM,0) i = 0, 1, . . . , N ; j = 1, 2, . . . , L (7.21)
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Table 7.1: Transition Matrix G



Fc0 Fm0 R0 Fc1 Fm1 R1 . . . Fm(L−2) R(L−2) Fc(L−1) Fm(L−1) R(L−1) FcL FmL RL

r1 (θ1 + θ) −ζ −ζ 0 0 0 . . . 0 0 0 0 0 0 0 0

r2 −θ1 (ζ + η + λ) −ξ 0 0 0 . . . 0 0 0 0 0 0 0 0

r3 −θ −η (η + ξ + λ) 0 0 −µ . . . 0 0 0 0 0 0 0 0

r4 0 0 0 (θ1 + θ) −ζ −ζ . . . 0 0 0 0 0 0 0 0

r5 0 −λ 0 −θ1 (ζ + η + λ) −ξ . . . 0 0 0 0 0 0 0 0

r6 0 0 −λ −θ −η (ζ + ξ + λ + µ) . . . 0 0 0 0 0 0 0 0

r7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.
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.

.

.

r8

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r9 0 0 0 0 0 0 . . . 0 0 (θ1 + θ) −ζ −ζ 0 0 0

r10 0 0 0 0 0 0 . . . −λ 0 −θ1 (ζ + η + λ) −ξ 0 0 0

r11 0 0 0 0 0 0 . . . 0 −λ −θ −η (ζ + ξ + λ + µ) 0 0 −µ
r12 0 0 0 0 0 . . . 0 0 0 0 0 (θ1 + θ) −ζ −ζ
r13 0 0 0 0 0 0 . . . 0 0 0 −λ 0 −θ1 (ζ + η) −ξ
r14 0 0 0 0 0 0 . . . 0 0 0 0 −λ −θ −η (ζ + ξ + µ)

r15 1 1 1 1 1 1 . . . 1 1 1 1 1 1 1 1



P is an ((L+1) x 1) vector given by: P = (0, 0, 0, 0, 0, 0, . . . , 0, 0, 0, 0, 0, 0, 1) and

Vector “X” for the unknowns is a (3L x 1) and is given by:

X = (Fco, FFm, R0, Fc1, FFm1, R1, Fc2, FFm2, R2, . . . , Fc(L−2), FFm(L−2), R(L−2), Fc(L−1), FFm(L−1), R(L−1), FcL, FFmL, RL)
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7.4 Numerical Results and Discussions

In order to show the effectiveness of the proposed model, experimental results are

comparatively presented in this section. Two analytical solution approaches are

used to obtain results; Spectral Expansion solution technique and Kolmogorov

Forward Equations. The obtained results are finally validated using a dedicated

simulation program developed using C++. The metrics used to evaluate the

performance of the proposed model includes MQL, response time, throughput,

and blocking probability. These are observed when the system is subjected to

numerous operating conditions, including different finite queue lengths, varying

node and channel failure rates, in addition to changing number of sources.

7.4.1 Parameter Choice

In this section, parameters used for the experiments are presented. This study

utilized 25 to 35 nodes for optimal CH operation. Considering a generic system,

use is made of parameters presented previously in section 5.5.1. Service rate

µ = 300/hr, channel restoration rate θ = 0.6/hr and CH repair rate of η = 0.5/hr

are kept the same throughout the study. Table 7.2 provides a summary of other

parameters used.

Table 7.2: Used parameters and values

Figure λ/hr ξ/hr ζ/hr Queue size(L)-Packets
7.3 & 7.4 0-12 0.001 0.001 100
7.5 & 7.6 0-9 0.001 0.001 10,30,50

7.7(a) & 7.7(b) 8 0.001 0.0001-0.01 100
7.8(a) & 7.8(b) 8 0.0001-0.01 0.001 100

7.4.2 Results and Discussions

In the first set of experiments, the effects of varying the arrival rate on the overall

system performance are established. In this experiment a constant number of
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sources, 25, 30 and 35 are maintained throughout each set of experiments as

the arrival rate is varied from λ = (1 − to − 9)pckt/hr. The obtained system

performance results are analysed and presented in terms of MQL, response time,

and throughput using Figures 7.3(a), 7.3(b), and 7.4. In Figure 7.3(a) MQL

is presented against varying arrival rates. The results clearly show that when

relatively low arrival rates are considered, systems exhibit close MQL performance

as a result of low server utilization hence shorter job queuing time. However as

the arrival rate is increased, the systems with fewer sources perform better.

0 2 4 6 8 10 12
0

5

10

15

M
ea

n
 Q

u
eu

e 
L

en
g

th

Packet arrival rate (λ)/hour

Simulation, Sources = 25
Spectral, Sources = 25
Kolmogorov, Sources = 25
Simulation, Sources = 30
Spectral, Sources = 30
Kolmogorov, Sources = 30
Simulation, Sources = 35
Spectral, Sources = 35
Kolmogorov, Sources = 35

(a) MQL Vs Arrival rate

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
R

es
po

ns
e 

Ti
m

e 
(h

o
u

rs
)

Packet arrival rate (λ)/hour

Simulation − 25 Nodes
Spectral − 25 Nodes
Kolmogorov − 25 Nodes
Simulation − 30 Nodes
Spectral − 30 Nodes
Kolmogorov − 30 Nodes
Simulation − 35 Nodes
Spectral − 35 Nodes
Kolmogorov − 35 Nodes

(b) Response time Vs Arrival rate

Figure 7.3: Effects of Variable Arrival Rate on MQL and Response Time

In Figure 7.3(b), response time is presented against arrival rate. When light

loaded systems are considered, close response time performances are observed.

However, the difference become significant when the systems are heavily loaded.

These findings can be used by engineers for planning WSN coverage during de-

ployment.

Throughput analysis is presented in Figure 7.4. It is observed that throughput

in this particular scenario is nearly same to the arriving packets. This is because

the queue capacity is high (i.e. L = 100 packets). Almost all the packets arriving

in the system are processed and forwarded to the sink. However, highly loaded

systems are observed to give higher throughput.
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Figure 7.4: Throughput Vs Arrival rate variations

In the next set of experiments, 30 sources are used to analyse the system per-

formance when subjected to changing queue capacities. For every experimental

run, a different queue length is chosen and fixed as the arrival rate is varied from

λ = 1, 2, . . . , 9/hr. The other parameters are kept constant as given in table 7.2.

Performance results are analysed in terms of MQL, response time, throughput

and blocking probability.

In Figure 7.5(a), MQL is gradually increased with the increase in arrival rate.

After arrival rate of λ = 5/hr, operating with low queue size of L = 10packets

exhibit signs of performance degradation as the arrival rate is additionally in-

creased. However, steep MQL gradients are observed with larger queue capaci-

ties as arrival rate is further increased. Depending on the queue sizes used, larger

sizes enable the system to hold more packets and shows signs of performance

degradation at higher arrival rates. In the case of response time, Figure 7.5(b),

lower queue sizes ensure a faster response is achieved. On the contrary, larger

queue sizes keep the packets for longer times in the queue hence the reason for

delayed response time.

From Figure 7.6, throughput is observed to vary linearly with an increase in

arrival rate. However, past λ = 5/hr, low queue size L = 10 packets start to

exhibit increased discrepancies between solution approaches as a sign of system
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Figure 7.5: Effects of Variable Buffer Capacity on MQL and Response Time

instability. A similar behaviour is observed with L = 30 packets past arrival

rate of λ = 8/hr. Therefore, this study confirms that larger queue capacity

enables high throughput as a compromise to increased response time and delay in

WSN systems hence may be used for performance optimisation. Finally in Figure

7.6(b), it is observed that when queue size of L = 10 packets is used; the system

starts to block packets very early and the blocking probability increases faster

and sharply as the arrival rate is increased further. The same trend is observed

when L = 30 packets past arrival rate of λ = 8/hr. However, when L = 50

packets is used, the blocking probability is kept minimal nearly for the whole

experiment period. In summary, the choice of queue capacity is a compromise

of desired QoS in relation to throughput, response time and queue length, which

may be determined by application demands.

The last set of experiment analyses effects of channel and node failures on sys-

tem throughput and MQL. In both cases, 25 sources and arrival rate of λ =

8/hr is maintained. When analysing channel failures, the node failure rate

of ξ = 0.001/hr is maintained as the channel failure rate is varied between

ζ = 0.0001, 0.0005, . . . , 0.1/hr. The same principle and similar values are used

alternately when analysing node failures. In both cases, the other parameters are
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Figure 7.6: Effects of Variable Buffer Capacity on Throughput and Blocking Probability

kept the same as given in table 7.2. Obtained results are presented comparatively

in Figure 7.8.
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Figure 7.7: Effects of Variable Channel Failure Rate on MQL and Throughput

Figures 7.7(a) and 7.8(a) illustrate the effects of variable channel and node failure
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rates on the system MQL respectively. In both cases, failure rates of below

ξ = ζ = 0.001/hr are preferred for better performance. Operating with higher

failure rates destabilizes the system and results into degraded overall performance.

For illustration purposes, Figures 7.7(b) and 7.8(b) show how these failures reduce

system throughout when both failure rates are higher than ζ = ξ = 0.001/hr

respectively.
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Figure 7.8: Effects of Variable Node Failure Rate on MQL and Throughput

In the next category of experiments, presented and analysed are results for operat-

ing in the various states. The results shown here are a subset of those presented

in Figure 7.3. The first experiment, Figure 7.9(a) illustrates system operation

modes in phase R of the active state. It is observed that in the initial stages

when arrival rate is small, the CH spends more time in the sleep state in com-

parison to active state with jobs. However, time spent in the sleep state linearly

reduces as active time with job increases linearly with the increase in arrival rate.

As the arrival rate is increased further, active time with jobs surpasses sleep time

when state probability is 0.5. The arrival rate at this point is dependent upon

the number of sources used. Higher sources reach this mark at low arrival rate

while lower sources reach it last at higher arrival rates. Beyond this point, more

increases in arrival rate decrease sleep time even more as active time with jobs is

increased further. This analysis is significant in the identification of appropriate
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time to enter the sleep state for energy conservation purposes.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ta

te
 P

ro
ba

bi
lit

y

Full Active Sources = 30
Active with jobs Sources = 30
Sleep State Sources = 30
Full Active Sources = 25
Active with jobs Sources = 25
Sleep State Sources = 25
Full Active Sources = 35
Active with jobs Sources = 35
Sleep State Sources = 35

Arrival rate (λ) /hour

(a) Operating in Active Phase (R)

0 5 10 15 20
−2

0

2

4

6

8

10
x 10

−4

Fa
ilu

re
 P

ro
ba

bi
lit

y

Chan Fail Sources = 25
Chan Fail with jobs Sour = 25
Chan Fail No jobs Sour = 25
Chan Fail Sources = 30
Chan Fail with jobs Sour = 30
Chan Fail No jobs Sour = 30
Chan Fail Sources = 35
Chan Fail with jobs Sour = 35
Chan Fail No jobs Sour = 35

Arrival rate (λ) /hour

(b) Channel Failure State

Figure 7.9: Effects of Variable Channel and Node Failure Rate on MQL and Throughput

Figure 7.9(b) shows a pattern of channel failure during operations. At low arrival

rates, the probability of the channel failing without jobs is higher compared to

periods when the arrival is higher. The opposite is the same for channel failures

with jobs in the system. However, mean failure time during operation is nearly

the same throughout the operation period. Figures 7.10(a) and 7.10(b), on the

other hand, illustrates node failure when loaded with jobs and when the system

is empty. Unlike channel failures, sharp increase and decrease are observed in

the case of node failures with and without jobs respectively. As arrival rates are

increased, the failures increase of decrease in a diminishing pattern before reaching

a maximum and minimum after which further arrival rates have no effects in the

respective cases.

Finally, Figure 7.11 shows the timing relations between active times, active times

with jobs and sleep times when observed under different queue capacities. Like

noted earlier in Figure 7.9(a), sleep time is higher at low arrival rates and de-

creases linearly as arrival rate is increased. This analyses can also be employed for
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Figure 7.10: Effects of Variable Channel and Node Failure Rate on MQL and Throughput

establishing the appropriate times to enable sleep operations in order to conserve

the limited CH energy.
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7.5 Chapter Summary

In addition to the limited resources that constrain WSN performance, wireless

communication links used are further affected by the prevailing environmental

conditions which vary from one application habitat to another. For agricultural

monitoring, terrain and changing weather conditions can be detrimental to the

communication links to the point of disconnections. On the other hand, urban

WSNs suffer from clear line of site and interference from other radio frequen-

cies that may occasionally cause link failures. In smart industry applications,

WSNs suffer from noise-related interferences that eventually degrade overall net-

work performance. It is therefore, clear that the low-power radio links used in

WSNs can be very unpredictable with side effects varying from one application

environment to another.

In this study, the model of a clustered WSN with unreliable links in addition to

the limited memory capacity and frequent node failures is presented. The model

is then used to evaluate system performance when subjected to node and channel

failures, repairs and restoration. We also incorporate, and analyze effects caused

by the widely used sleeping schedules on overall network performance.

To solve the performability models, two analytical approaches; system of linear

simultaneous equations and spectral expansion exact solution techniques were

employed and validated using a simulation program. Results obtained from the

three approaches closely match with discrepancy below 2%. The obtained results

were then analysed in two categories as; system performance and operation state

probabilities. From the results, a mechanism that can be used to control sleep

scheduling based on network traffic is proposed. This study may also be used as

a guide for developing a network deployment, and a system optimization tool for

better performance.
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Chapter 8

Modelling and Evaluation of

Clustered Wireless Sensor

Network Energy Consumption

8.1 Introduction

Limitation of power in WSN has remained critical hence optimizing the limited

power is significant for prolonging network lifetime and providing good QoS. Sev-

eral approaches are proposed in literature for maximizing WSN lifetime. These

include use of energy efficient MAC layer protocols implementing Active/Sleep

schedules [Valera et al., 2014] [Van Dam and Langendoen, 2003], energy efficient

routing protocols [Tyagi and Kumar, 2013] [Abdulaleem and Ma, 2014] and imple-

mentation of charging schemes using on-board solar systems [Corke et al., 2007]

and lately the introduction of a multi-node wireless energy transfer system based

on magnetic resonant coupling [Xie et al., 2015]. In other areas, independent

performance and availability/reliability studies have incorporated various power

saving schemes in order to further evaluate and enhance WSN performance and

availability [Chiasserini and Garetto, 2006]. Bearing in mind, the drawbacks of

using pure performance and availability studies, energy saving prototypes devel-

oped from such models are likely not to provide desired results when subjected
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to WSN systems with failures and repairs/replacement. In order to resolve these

concerns, it is important to consider integrated performance and availability mod-

els for developing energy saving models for WSNs.

This chapter presents an analytical modelling approach for comparing mean en-

ergy consumption in the various sensor node operative states and uses the pro-

totypes developed to evaluate energy consumption of the performability models

developed in chapter 7. To the best of our knowledge, this is the first study to

present an analytical modelling approach for comparing average energy consump-

tion of various configurations in the presence of failures and repairs/replacement.

Over the years several approaches and models have been proposed for energy

evaluation and performance of WSNs [Chiasserini and Garetto, 2006] [Zhang and

Li, 2012]. In [Chiasserini and Garetto, 2006], authors classified energy costs in re-

lation to the state of the system and routing dynamics. Transferring data packets

between two nodes in the network involves both transmission and receiving en-

ergy. In addition to the transceiver electronics and processing energy spent when

receiving, transmitting a packet requires energy amplification. This is assumed

to be proportional to the square distance between the communicating nodes. In

the same study energy consumed at each node due to the operational state of

the sensor and energy spent during transition from sleep to active state are also

considered. However, the energy consumed in idle mode and while switching from

active to sleep mode has not been considered. Similar approaches were used by

[Zhang and Li, 2012], [Odey and Li, 2012], [Zhang et al., 2011], [Jurdak et al.,

2010]. In addition, authors in [Jurdak et al., 2010] present energy costs for lis-

tening, sensing, sleeping and switching between the operation states. Studies in

both [Zhang and Li, 2012] and [Zhang et al., 2011], have extended the model used

in [Chiasserini and Garetto, 2006]. However, in both cases energy spent in idle

and sleep states of the model used is not given. In full active phase, the energy

cost for receiving data packets is also not considered. In another study [Odey and

Li, 2012], authors reiterate the significance of including energy costs for being in

sleep and idle states.

In a more recent study [Chan et al., 2015], authors have proposed a novel frame-

work enabling an adaptive duty cycling scheme for sensor networks that take into
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account the operating duty cycle of the node, and application-level QoS require-

ments. Using the CTMC model developed, they derive key QoS metrics including

loss probability, latency as well as power consumption, as functions of the duty

cycle. Finally, they formulate and solve the optimal operating duty cycle as non-

linear optimization problem using latency and loss probability as the constraint.

However, this study does not consider system performance effects resulting from

node and channel failures.

8.2 Energy Consumption Model

In order to model energy consumption of a WSN node and network, the possible

power consumption states are first identified and defined. Figures 7.2(a) and

7.2(b), are Markov models representing CH operating states. In these models, the

system state at time t is described using a pair of integer valued random variables

I(t) and J(t). The operative state I(t) represent node failed states, channel

failed states, and the normal working period of the CH while J(t) represent the

number of jobs in the system. At a time t, the system state may therefore

be described by Z = [I(t), J(t)], t ≥ 0. Z therefore becomes an irreducible

Markov process on a lattice strip (QBD) used to model the system whose state

space is (0, 1, . . . , N) × (0, 1, . . . , L). Here N and L represent the number of

operative states, and system’s total job holding capacity respectively. Using the

model, we identify possible energy transition events from the states. To compute

energy measures steady state probabilities are considered together with transition

energies into and out of the states. The following subsections present detailed

discussions on various factors causing energy consumption.

8.2.1 Transmission Energy

Transmission energy is the energy spent when transmitting data packets from a

given state Z(t) = [I(t), J(t)] at time t and can be calculated by the probability

of being in state (i, j) × service rate (transmission) (µ) × energy required to
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transmit one data packet. Letting Yi,j = Energy spent during transition from

state (i, j) to state i, j − 1 caused by the transmission of one packet from the

buffer, then Yi,j can be computed using equation 8.1.

Yi,j = Pi,j × µ× etx ; i = 0, 1, . . . , N ; j = 0, 1, . . . , L (8.1)

Where:

Pi,j - is the probability of being in state (i, j) at time t.

µ - is the variable data packet service rate

etx - is the energy required to transmit one data packet (Joules/packet)

In the case of a single server system, the mean energy required to transmit data

packets (Etx), from a state may therefore be computed by summing up energy

consumption for individuals transmissions.

Etx =
L∑
j=0

N∑
i=0

Pi,j × µ× etx; i = 0, 1, . . . , N ; j = 0, 1, . . . , L (8.2)

where i and j represent operative state of the system and the number of jobs in

the queue respectively.

Assuming a multi sever system with W parallel servers, then only a maximum

number of jobs equivalent to W servers can be serviced at one go if all the servers

are operational. The formula for the mean energy given in equation 8.2 then

changes to equation 8.3.

Etx = Min(j, w)
L∑
j=0

N∑
i=0

Pi,j × µ× etx; i = 0, 1, . . . , N ; j = 0, 1, . . . , L (8.3)

where (w = 1, 2, . . . ,W ) and j are the number of servers and jobs in the system

respectively. Here the minimum of j and w becomes the number of jobs in service

at any given time.
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8.2.2 Receiving Energy

This is the energy consumed by the transceiver electronics when receiving a data

packet. Since the node can only receive one data packet at a time, the energy

required to receive a data packet while in a given operating state (i, j) at time t

may be given by multiplying the state probability by packet arrival rate and en-

ergy consumed to receive one data packet. Letting Di,j be energy spent receiving

data packets from state (i, j)to state (i, j + 1), caused by the arrival of a data

packet in the system then Di,j can be computed using equation 8.4.

Di,j = Pi,j × λ× erx ; i = 0, 1, . . . , N ; j = 0, 1, . . . , L (8.4)

where:

Pi,j- is the probability of being in state (i, j) at time t

λ- is the variable packet arrival rate

erx- is the energy required to receive one data packet (Joules/packet)

The mean energy required to receive data packets (Erx) in receiving state may

therefore be computed using equation 8.5.

Erx =
L∑
j=0

N∑
i=0

Pi,j × λ× erx ; i = 0, 1, . . . , N ; j = 0, 1, . . . , L (8.5)

8.2.3 Wake-Up Energy

This is the energy required to transit from sleep state into full active state (EUP )

at the arrival of a new job. This energy constitutes energy required to wake-up

the node to be able to receive an incoming data packet. The energy required to

wake-up the sensor node can therefore be computed using equation 8.6

EUP = Pi,j × λ× eup ; i = Sleep state; j = 0 (8.6)
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From [Jurdak et al., 2010], the power required to switch the radio from sleep back

to active period is computed using equation 8.7.

eup =
(Iactive − Isleep)× β × V

2
(8.7)

where β accounts for the time required returning to active mode and the factor

2 accounting for switching back to sleep mode from active mode. V is the ap-

plied voltage and Iactive, and Isleep are currents drawn in active and sleep modes

respectively.

8.2.4 Sleep State Energy

While in sleep mode, several transceivers offer different energy levels [Odey and

Li, 2012], the transceivers differ on the number of circuitry switched off and

in the associated recovery times and start-up energy. An example is the case

of a complete shut down of the transceiver where the starting energy has to

include initialization and configuration of the radio as opposed to light sleep

mode requiring restarting of a little circuitry since operations and configurations

are maintained. The sleep energy may be computed using the equation 8.8.

Esp = Pi,j × esl × tsl; i = Sleep state; j = 0 (8.8)

Where esl and tsl are consumed power (Joules/sec) and time in (seconds) taken

in sleep state respectively.

8.2.5 Idle State Energy

In some cases, the nodes may be idle waiting for packet arrival in situations

where sleep mechanism is not implemented or where sleep scheduling is achieved

through other MAC protocols, e.g. using adaptive sleep schedule MAC protocols

[Zhou et al., 2011]. In such cases, the energy spent in the idle state is significant

enough hence should be considered in the overall energy consumption evaluation.
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Like the case with sleep state, the time taken in idle state contributes to the

amount of energy consumed. The mean idling energy may be computed using

equation 8.9.

EID =
T∑
t=0

Pi,j × eid × tid; i = idle state; j = 0; t = 0, 1, 2, . . . , T (8.9)

Where eid and tid are consumed power and time taken in idling state respectively.

tid is an instance of time varied from t− to− T .

8.2.6 Node Failed State Energy

In the event of node failure, the node is assumed to continue receiving data

packets as long as the buffer is not full hence incurring some energy costs. In

addition, restarting a node may require energy. The resulting energy expended in

this state therefore comprises receiving and rebooting energy and its mean may

be computed using equation 8.10.

EFM =
L∑
j=0

Pi,j(ηenrb + λeRx); i = FM ; j = 0, 1, 2, . . . , L (8.10)

Where η and enrb are node repair rate and the subsequent energy spent rebooting

the node after repair. FM is the node failed state.

8.2.7 Channel Failed State Energy

During operations, the channel may also fail hindering data packet transfer be-

tween the CH and the rest of the network. In such circumstances, the CH will

not be able to transmit or receive any data packets. Instead, it is assumed that

various nodes intending to transfer data to the CH will continue waiting for the

restoration of the channel after which they will contend for a chance to transmit
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their data packets. The CH on the other hand will continue to hold the data

packets in its queue until the channel is restored after which it will forward the

data packets to the sink. The mean energy spent for channel restoration may be

computed using equation 8.11.

EFC =
L∑
j=0

Pi,jθecrb; i = FC; j = 0.1.2. . . . , L (8.11)

Where θ and ecrb are channel restoration rate and the subsequent energy in

(Joules/sec) consumed during channel restoration. FC is channel failed state.

8.3 Case Study Model

In this section, using energy computations given in section 8.2, specific mean en-

ergy spent in the various operative states of the proposed performability models

given in Figures 7.2(a) and 7.2(b) are derived. The power consumption results

obtained from the two models are eventually used to compare power saving dif-

ferences between models with active/sleep implemented and those without.

The models above are similar with a slight difference in state R in which Figure

7.2(a) never gets to sleep mode, instead it stays idle for the periods when there

are no jobs in the system. On the other hand Figure 7.2(b) presents a case

in which the system always goes into sleep mode whenever there are no data

packets in the system to be served. In order to compute the energy consumption

for the models, first steady state probabilities for the various operating states are

computed as detailed in section 8.2 above. The energy consumed in each state is

then computed as detailed in the following subsections.

8.3.1 Mean Energy Spent in the Active Phase R

The Energy spent in this phase is denoted EAR. In this phase, the CH is op-

erating normally. Transitions between active/sleep modes are fully dependent
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upon the availability of the jobs in the system as seen in the above sections. The

composition of energy spent in this phase includes;

a.) Energy Spent while receiving data packets - Erx

b.) Energy spent while transmitting data packets - Etx

c.) Energy spent transiting from sleep to full operation mode - EUP

d.) Energy spent restarting the CH after node and channel failures EFM and

EFC respectively

e.) Energy spent in sleep state Esp

Since the expected number of jobs in phase R may vary over time, the energy

spent also varies accordingly. Taking into account energy consumed rebooting

the system after node failures, the mean energy spent during CH operations may

be expressed as;

EAR =
L∑
j=0

Etx + Erx + Esp + EUP + EFM Joules; i = 2; j = 0, 1, 2, . . . , L

(8.12)

In the absence of failures this may reduce to;

EAR =
L∑
j=0

Etx + Erx + Esp + EUP Joules; i = 2; j = 0, 1, 2, . . . , L (8.13)

8.3.2 Mean Energy Spent in Sleep Mode

Depending on the application area, the CH may be configured to either go into

deep or light sleep or even dynamically choose between the two depending upon

the state of the traffic [Jurdak et al., 2010]. In such cases, a significant power

consumption variation in the states is eminent. Most of the available radio
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transceivers already have the variable power consumption for sleep states in-

corporated as deep and light sleep states. In order to evaluate the power levels in

the proposed models, equation 8.8 is altered as given in equations 8.14 and 8.15

below for computation purposes.

Esp−deep =
T∑
t=0

Pi,j(tslesl1 + eup + erx) Joules; i = 2; j = 0; t = 0, 1, 2, . . . , T

(8.14)

Esp−deep =
T∑
t=0

Pi,j(tslesl2 + eup + erx) Joules; i = 2; j = 0; t = 0, 1, 2, . . . , T

(8.15)

Where esl1 and esl2 are energy spent in deep and light sleep states respectively.

From the two equations, it is possible to derive the formula for computing a

dynamically changing sleep state. For the model of Figure 7.2(a), it is important

to note that the distribution of the sleep time tsl is similar to that of idling time

in the model of Figure 7.2(b).

8.3.3 Mean Energy Spent in Idle Mode

In order to account for the energy expended while the system is operating in

idling state, the computation formula is given considering energy spent while

idling together with the energy used to receive the first data packet.

EID =
T∑
t=0

Pi,j(eidtid + λerx) Joules; i = 2; j = 0; ; t = 0, 1, 2, . . . , T (8.16)
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8.3.4 Residual Energy

With all possible energy expenditure in all the states known, letting the initial

energy be Ein, then the residual energy Ersd of the CH may be computed using

the equation provided below;

Ersd = Ein − EFR Joules (8.17)

The residual energy may then be used to determine the levels necessary for CH

operations.

8.4 Numerical Results and Discussions

Numerical results presented in this section show the effectiveness of the energy

evaluation models developed for a typical wireless CH operations based on the

radio sleep schedule mechanism. The parameters used in this numerical study are

mainly taken from the data sheets for the existing wireless motes. In tables 8.1,

8.2 and 8.3, parameter specifications for radio transceivers, Micro-controllers and

Sensors are presented. In this study Telos Mote radio transceiver (CC2420) and

controller (MSP430F4794) specifications were used for the experiments [Texas,

2003] [Texas, 2011]. In order to evaluate the overall CH energy consumption, this

study considers energy consumed when receiving and transmitting data packets

in addition to the energy consumed while transiting between the operative states.
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Table 8.1: Transceiver Parameter Specifications

Mote Transceiver
Idling

(IDW )
Deep Sleep
(ESDW )

Transmitting
(ErxW )

Receiving
(EtxW )

Full to
Reduced Mode

(FNW )

Sleep to
Full Operations

(EUPW )

Telos CC2420 0.014058 0.000066 0.05742 0.06204 0.05742 0.0041976
Mica2 CC1000 0.0222 0.000003 0.0222 0.0312 0.0222 0.0066591

Imote2.0 CC2420 0.014058 0.000066 0.05742 0.06204 0.05742 0.0041976

Table 8.2: Micro-controller (Processor) Parameters Specifications

Mote Controller
Idling

(EIDW )
Deep Sleep
(ESDW )

Running
(W )

Telos MSP430F4794 0.0000039 0.000003 0.0012
Mica2 Atmega128L 0.006 0.000024 0.015

Imote2.0 Intel PXA271 0.1395 0.001755 0.198

Table 8.3: Sensor Parameter Specifications

Mote Type Eoff Eon

Telos DS1820 0 0.003
Mica2 DS1820 0 0.003

Imote2.0 TMP175 0.000003 0.001
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To begin with, the experiments are done using the same parameters presented

in chapter 5. During each experiment, a constant number of sources, 25, 30 or

35 are maintained throughout the experiments. In all the experiments, use is

made of a fixed queue length of L = 100 packets while arrival rate is varied from

λ = 1− 20 packets/hr.

From the models of Figure 7.2, transmission energy consumption is only possible

while operating in state R. However, in addition to receiving packets in state R,

the CH may also consume energy while receiving in state FM as illustrated in

Figure 8.5(b). The overall receiving energy is therefore the sum of energy con-

sumed while receiving data packets in both states. During channel-failed state,

the CH does not spend energy to either received or transmitted data packets. Fig-

ures 8.1(a) and 8.1(b) present energy consumed while transmitting and receiving

data packets respectively. In both cases, energy increases linearly with increase

in arrival rate from low values. As the arrival rates are increased further, energy

consumption levels start to exhibit a reducing effect and finally remain constant

irrespective of increments of arrival rates. The constant consumption level is an

effect of the buffer size and implies that the buffer is full hence not able to admit

more arriving data packets.

While in sleep state, the CH consumes the lowest power to maintain circuitry

ready for wakeup in the event of data arrival. In addition, the CH spends energy

during wakeup. Figures 8.2(a) and 8.2(b) illustrate sleep and wakeup energy

consumptions respectively. In both figures, higher energy is consumed at low

arrival rates. As the arrival rate is increased, the CH becomes more busier thereby

reducing sleep time. Sleep time eventually becomes negligible at higher data

arrivals rates. Consequently, both sleep and wakeup energies fall as illustrated in

both figures. It is also observed that wakeup energy is much higher than sleep

energy.

In order to evaluate the effectiveness of the energy saving model 7.2(b), we com-

pare its energy consumption with that of the model implementing idle state 7.2(a).

The differences in energy consumption are determined by comparing idle and sleep

state energies as illustrated in Figures 8.3(a) and 8.3(b) respectively. The overall

sleep state energy for the CH life time is computed by summing up energies con-
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(a) Transmitting Energy
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(b) Receiving Energy

Figure 8.1: Energy Spent Transmitting and Receiving Data Packets
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(a) Sleeping Energy

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

E
ne

rg
y 

C
on

su
m

pt
io

n
 (

Jo
u

le
s)

Kolmog Sleep Sources = 25
Simul Sleep Sources = 25
Kolmog Sleep Sources = 30
Simul Sleep Sources = 30
Kolmog Sleep Sources = 35
Simul Sleep Sources = 35

Arrival rate (λ)/hour

(b) Wake-up Energy

Figure 8.2: Energy Spent Sleeping and Waking up from sleep state

sumed during wakeup and sleeping times. In both cases, the consumptions are

higher at low arrival rate but reduce with the same gradient and finally becoming
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(a) Iddling Energy
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Figure 8.3: Idling and Overall Sleep State Energy

almost the same at higher arrival rates. However, idling energy remains higher at

all levels of arrival rate as illustrated in Figure 8.3(a). In this figure, we observe

a similar trend where energy saving is higher at low arrival rate and reduces to

negligible levels at higher arrival rates. In Figures 8.4(a) and 8.4(b), total energy

consumed when operating with sleep and Idle states enabled are illustrated. In

both figures, low energy is consumed during low arrival rates. This increases

gradually with increasing arrival rates. Similar to transmission and receiving

energies, total energy consumed in both states becomes constant after reaching

some point determined by buffer size limitations. If the buffer sizes are known,

this observation may be used by the designers to optimize energy consumption

of sensor nodes and the overall WSN.

Finally, Figure 8.5(b) illustrates the energy consumption for receiving data pack-

ets in node failed state FM . Again, more energy is consumed at low arrival rates

since the buffer is always empty while operating in this state hence more jobs can

be stored awaiting repair completion. As arrival rates are increased, more data

packets are stored during operations hence limiting the number of packets that

can be accepted during node failure. The trend continues with increasing arrival
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Sleep

Figure 8.4: Total Energy Expended during Full operation with Sleep & Idle states

rate and finally becoming very small at higher arrival rates.
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(a) Total Energy Saving in Sleep State
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Figure 8.5: Total Energy Saving and Energy Expended in Node Failed states
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To summarise, in all the cases observed, more sources lead the CH to consume

higher amount of energy compared to fewer sources. Thus, the CH depletes its

energy faster when many sources are involved. This becomes a trade off when

configuring network coverage and may be significant in optimization studies.

In this model, we note that frequent CH wakeup may result into high-energy

consumption negating the purpose of entering sleep mode. A mechanism of con-

trolling when to enter sleep state is therefore necessary. In order to determine

control levels, we consider operations in phase R as given in Figure 7.11. During

low arrival rates, sleep time is higher, this is a perfect time for the system to

enter sleep state at the end of service for the last job and only resume when a

new arrival occurs. As soon as mean active time with jobs become greater than

mean sleep time due to increased traffic intensity, the system’s mean active time

with jobs quickly gets high hence higher energy consumptions observed as arrival

rates are further increased. In Figure 7.11, considering all the observations made

with buffer capacities of L = 10, 50 and 100 packets, if 30 nodes are deployed,

then operations below arrival rates of 4 − 5 pck/hr is preferable. Above arrival

rates of 6 pck/hr, the overall saving is very small and at times negative hence the

system should be kept in the idling state. In comparison, the observations made

in Figure 8.5(a), indicate minimal saving hence keeping the system in idling state

is preferable in order to eliminate frequent wakeup energy consumption. Table

8.4 gives a summary of proposed operation levels beyond which the CH should

not enter sleep mode based on service of last data packet.

Based on the main objective of conserving WSN energy using On-demand sleep

scheduling this study identifies the need for setting operation levels that minimize

wastage of the limited energy. The proposed model can further be used by de-

signers to developed planning, deployment, and optimization tools by considering

performability findings outlined.
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Table 8.4: Proposed limits for regulating sleep schedules

Sources Proposed Arrival Rate (λ) Proposed MQL
Normal Upper Limit Normal Upper Limit

25 6 8 1.2885 2.3177
30 5 7 1.2885 2.6585
35 4.2 6 1.70215 2.6585

8.5 Chapter Summary

Energy conservation of WSNs continues to attract research work in various ap-

plication environments due to the limitation of this resource. Despite numerous

proposals made, integrated performance and availability studies of WSNs remain

a green research area. Likewise, energy models incorporating integrated perfor-

mance and availability studies in the presence of failures are lacking. In this

chapter, models used for steady state analysis of performance and availability of

WSNs presented in the preceding chapters are further considered for evaluating

energy consumption of such systems. More precisely, consideration is given to

energy consumption of the CH.

Initially, mathematical models for obtaining energy consumption from the various

operative states are developed. To evaluate energy consumption in the various

states, mean values obtained at steady state are used to compute consumed energy

in the individual states. Summing up all the consumptions in the various states,

mean overall CH consumption is obtained. Using the model, a case study of

a clustered WSN is considered for energy evaluation under different conditions.

Results obtained are further validated using simulation results. The two sets of

results comparatively presented in all the figures closely follow each other with a

discrepancy below 0.1 %.

Using the obtained results, we determine optimal sleep operation range suitable

for On-demand sleep schedule technique that employs a second low power radio

transceiver to regulate sleep based on packet arrivals. Above the optimal levels,

we propose the system should be left to idle based on high traffic intensities. It

is also possible to consider other sleep scheduling techniques if found appropriate
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for conserving energy at high traffic intensities.

168



Chapter 9

Modelling Arrival Distributions

in Wireless Sensor Networks

9.1 Introduction

The emergence of WSNs has significantly facilitated human interaction with the

physical environment. Depending on the area of application and data collection

techniques employed, the distribution pattern of arriving data packets at the CH

from the sensing nodes may vary considerably. In addition, various MAC layer

protocols have been proposed, each influencing packet transmission differently,

thereby altering arrival patterns at the CH.

In order to characterize arrival distribution of packets in WSNs, numerous studies

compare Quantile-Quantile (Q-Q) plots with empirical data and draw conclusions

based on similarities [Chiasserini and Garetto, 2006], [Wang et al., 2012]. How-

ever, simple eye checks can easily lead to drawing incorrect evaluation of results

hence the need for more statistical analysis of the empirical data to establish the

best theoretical distributions for packet arrival rates.

In addition to the common practice of comparing empirical data with the the-

oretical exponential distributions of Q-Q plots based on simple eye checks, this

chapter presents a detailed study of the possible distributions to prevent drawing
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incorrect conclusions. In this study, the use of estimated maximum likelihood pa-

rameters of empirical distributions is made to generate theoretical distributions.

By further conducting Kolmogorov-Smirnov Test for each generated data series,

a possible corresponding theoretical distribution is obtained. In order to acquire

realistic results, the study considers properties of the commonly used CSMA/CA

and TMAC protocols that may result in different arrival distribution at the CH.

The remainder of the chapter is organised as follows: Section 9.2 present a detailed

description of the proposed model followed by mathematical models of a WSN

arrival distribution processes in section 9.3. In section 9.4, the experimental test

bed is presented followed by a detailed discussion of the obtained results in section

9.5. The chapter summary is finally presented in section 9.6.

9.2 Model Description

In this section, a generic model based on the IEEE/Zigbee 802.15.4 standards is

proposed. The model assumes deployment of a WSN with homogeneous sensor

nodes directly connected to the CH. The pattern of arriving data packets at

the CH is similar in all clusters hence the study focuses on the analysis of the

inter-arrival distribution of packets at a single CH. The resulting distribution

pattern may therefore be useful for modelling performance and availability studies

of WSNs. The reference network topology is presented in Figure 9.1. In this

arrangement the CH near to the sink connect directly to the sink and also acts

as a router to other CHs far away from the sink. The CH operation remains as

discussed in section 2.5. In order to justify the use of specific distribution patterns,

the general practise has been to compare WSN empirical data with theoretical

exponential distribution in a Q-Q plot [Chiasserini and Garetto, 2006].

In [Wang et al., 2012], authors compared theoretical exponential results with

empirical results obtained from an experiment test bed where all the nodes use

TinyOS CSMA/CA MAC protocol. Sensor nodes forward their generated pack-

ets through intermediary nodes to the final node from where they record packet

inter-arrival times. The empirical CDF of the inter arrival time are next plotted
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Figure 9.1: Network topology of the reference scenario

against the exponential distribution model. The results reveal that exponential

distribution closely models the inter arrival rates except for the low periodic traf-

fic. However, in this work, only event based application scenarios are considered.

Further more, relay traffics are not characterized and the effects of MAC protocols

other than CSMA/CA are not analysed.

In this study, we investigate and establish the best-fitting inter arrival distribution

both at the relay nodes and at the CH. Initially, we identify and characterize WSN

applications in order to determine appropriate data delivery models that mainly

depend on application requirements. Based on the delivery models, a simulation

test bed using Castalia, running on OMNET++ platform is set and investigations

performed using different arrival rates. The results are further processed using

Kolmogorov-Smirnov test as detailed in the subsequent sections.

9.3 Modelling WSN Arrival Processes

Arrival processes are well covered in the literature. Bernoulli and Poisson pro-

cesses have been used successfully to model arrivals in various WSN application

environments. However, the diversity of application areas with varying require-

ments may imply that different application environments define dissimilar arrival

processes. It is possible to characterise WSN arrival processes as either discrete-
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time or continuous-time stochastic processes. As described in [Donald et al.,

2013], A stochastic process is defined as a mathematical abstraction of an em-

pirical process whose development is governed by probabilistic laws (examples are

Poisson and Bernoulli processes). This may also be expressed from probability

theory as a family of random variables {X(t), tεT}, defined over some index set

or parameter space T representing a time range. X(t) denotes the state of the

process at time t. Depending on the nature of the time range, the process is

classified as a discrete-parameter or continuous-parameter process as follows:

1. If T is a countable sequence, for example, T = {0, 1, 2, 3, . . . }, then the

stochastic process {X(t), tεT} is said to be a discrete parameter process

defined on the index set T . The geometric distribution is well known for

modelling inter-arrival time distribution for events in this category.

2. If T is an interval or an algebraic combination of intervals, for instance,

T = {t : −∞ < t < +∞} , then the stochastic process {X(t), tεT}is called

a continuous-parameter process defined on the index set T . The exponential

distribution is well known for modelling inter-arrival time distribution for

events in this category.

From the previous sections, it is notable that arrival distribution in wireless sensor

networks may fall in either of the two processes mentioned above.

9.3.1 The Bernoulli Process

Bernoulli processes consider a discrete time period such that the kth trial is

associated with the arrival of at least one customer at the Service centre (CH)

during the k period. The random variables Xn are .i.i.d Bernoulli with common

parameter pε(0, 1). The natural sample space in this case is Ω = {0, 1}∞ . Letting

Sn = X1 + · · · + Xn ( the numbers successful packet arrivals at the CH in n

steps). The random variable Sn is binomial, with parameters n and p, so that its

172



Probability Mass Function(PMF ), is given by:

psn(k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, ...., n (9.1)

The expected value of of the random variable Sn and the variance are given in

equations 9.2 and 9.3 respectively.

E [Sn] = np (9.2)

var(Sn) = np(1− p) (9.3)

where E [Sn] denotes the expected operator.

The Bernoulli process is also associated with geometric distribution with param-

eter p representing the number T of trials up to and including the first success.

Letting T1 be the first successful arrival at the CH, then T1 = min {n|Xn = 1}.
Its PMF , mean and variance are given by equations 9.4, 9.5 and 9.6 respectively

[Gamarnik et al., 2005].

pT1(k) = (1− p)n−kp, k = 1, 2, ....; (9.4)

E [T1] =
1

p
(9.5)

var(T1) =
1− p
p2

(9.6)

Recalling that the time T until the first success is a geometric random variable,

supposing a process is watched for successful arrival for n time step without

recording any success, the remaining time until the first arrival may be expressed

as T − n, according to Bernoulli process, the future of the process after time n

constitutes an independent fresh-start Bernoulli process whose future trials until
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the first successful arrival is described by the same geometric PMF and may be

presented as:

P (Tn = t|T > n) = (1− p)t−1p = P (T = t) t = 1, 2 . . . , (9.7)

This is the memoryless property of Bernoulli process showing that when obser-

vation is started at any point in time, the future is also modelled by a Bernoulli

process, which is independent of the past.

An important random variable associated with the Bernoulli process is the time

of kth arrival. For K ≥ 1, let Yk be the kth arrival time. Formally, Yk =

min {n|Sn = k}. For convenience, let Y0 = 0. The kth inter arrival time is then

defined as T1 = Y 1, Tk = Yk − Yk−1, k = 2, 3, . . . representing the number of

trials following k−1st arrival until the next arrival. Note that Yk = T1+T2+· · ·+
Tk and T1, T2 , T3, . . . ,Tk processes are all i.i.d geometric random variables with

common parameter p. The PMF of Yk is given by equation 9.8 and is known as

Pascal PMF of order k.

P (Yk = t) = P (St−1 = k − 1 and Xt = 1) = P (St−1 = k − 1).P (Xt = 1) (9.8)

=

(
t− 1

k − 1

)
pk−1(1− p)t−k.p =

(
t− 1

k − 1

)
pk(1− p)t−k t = k, k + 1, . . .

The Mean and variance of Yk are given by equations 9.9 and 9.10.

E [Yk] = E [T1] + · · ·+ E [Tk] =
k

p
(9.9)

var(Yk) = var(T1) + · · ·+ var(Tk) =
k(1− p)

p2
(9.10)

Finally, streams of i.i.d Bernoulli arrivals at the CH from the cluster nodes are

considered. Suppose that {Xn} and {Yn} are independent Bernoulli processes

with parameters p and q, respectively. If process Zn records arrival at time n if

and only if one or both processes record an arrival and it is formally given by
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Zn = max {Xn, Yn}. The merged random variables Zn are i.i.d, with parameter

in equation 9.11 thus implying Zn is itself a Bernoulli process.

P (Zn = 1) = 1− P (Xn = 0, Yn = 0) = 1− (1− p)(1− q) = p+ q − pq (9.11)

On the other hand, splitting is a reverse if there is an arrival at time n (i.e

Xn = 1). Supposing the arriving packet finds the queue empty, then the packet

enters the queue with probability q. However, if the queue is full, then the packet

is dropped with probability (1− q). Noting that the decision to accept or discard

a packet only depends on the state of the queue and therefore, independent for

different arrivals, the accepted packets also follow Bernoulli process. Intuitively,

in each time slot, there is a probability of pq of accepted arrival independently

of what happens in the other slots. In the same manner, the process of blocking

arrivals is also a Bernoulli process with a probability of a blocked arrival at each

time slot equal to p(1− q).

9.3.2 The Poisson Process

The Poisson process is a stochastic process that counts the number of events in

a given time interval. The time between each pair of consecutive events has an

exponential distribution with parameter λ and each of these inter-arrival times

is assumed to be independent of other inter-arrival times. It can be viewed as

a continuous time analogue of the Bernoulli process applied to situations where

there is no natural way of dividing time into discrete periods.

Consider a model for arrival distribution of packets at the CH. It is possible to

characterize time into a one-minute period and record successful packet arrivals at

the CH during every minute. If arrival rate is assumed to be constant over time,

then the probability of arrivals should be the same during each period. Since it

is assumed that different time periods are independent, the sequence of successes

becomes a Bernoulli process. Taking the case of an event based and/or a hybrid

WSN applications’ environment where nodes contend for channel availability and

considering the back-off schemes configured in MAC protocols, it is possible to
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have more than one arrival within a given time slot. However, the Bernoulli

process does not keep track of the exact number of arrivals thereby hindering the

calculation of expected packet arrivals within a specified period.

In order to deal with this drawback, a limiting situation with zero length time

period may be considered and instead use made of a continuous time model.

It is possible to consider an arrival process that evolves in continuous time, in

the sense that any real number t is a likely arrival time. Letting P (k, τ) = P

(there are exactly k arrivals during an interval of length τ), and assuming this

probability is similar for all intervals of the same length τ . Let us also introduce

a positive arrival rate (intensity) λ. With these in mind, an arrival process is

called a Poisson process with rate λ if it possesses the following properties:

1. Time-homogeneity: The probability P (k, τ) of k arrivals is the same for

all intervals of the same length τ .

2. Independence: The number of arrivals during a particular interval is in-

dependent of the history of arrivals outside this interval.

3. Small Interval probabilities: The probabilities P (k, τ) satisfy

P (0, τ) = 1− λτ + 0(τ), and P (1, τ) = λτ + 01(τ)

Where 0(τ) and 01(τ) are function of τ that satisfy

lim
τ→0

0τ
τ

= 0, lim
τ→0

01τ
τ

= 0.

Suppose that the period τ is partitioned into smaller portions τ
δ

of length δ then

the probability of receiving more than one arrival within the period becomes

negligible as the length δ is made smaller. The probability of one successful

arrival within each period may be given by λδ. Similarly, the probability of

no arrival within each period is given by 1 − λδ. The process may then be

approximated using a Bernoulli process with the approximations becoming more

accurate with smaller values of δ. Thus the probability P (k, τ) of k arrivals in

time τ is approximately the same as the (binomial) probability of k successes in

n = τ/δ independent Bernoulli trials with success probability p = λδ at each trial.

Keeping the length τ of the interval fixed and letting the period length δ decrease

to zero, it can be noted that the number n of periods tend to infinity, while the
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product np remains constant and equal to λτ . Under these circumstances, it can

be proved that the binomial PMF converges to a Poisson PMF with parameter

λδ. This leads to the conclusion that

P (k, τ) =
(λτ)ke

−λτ

k!
, k = 0, 1, . . . . (9.12)

It is possible to obtain the mean and variance using equations 9.13 and 9.14.

E(Nτ) = λτ (9.13)

var(Nτ) = λτ (9.14)

Where Nτ stands for the number of arrivals during a time interval of length

τ . Assuming that the process starts at zero and there are no arrival during the

interval [0, t] and T > t then the probability law for the time T of the first arrival

may be derived using equation 9.15.

FT (t) = P (T ≤ t) = 1− P (T > t) = 1− P (0, t) = 1− e−λt, t ≥ 0. (9.15)

Differentiating the CDF FT (t) of T , and obtaining the Probability Density Func-

tion (PDF ) formula, it can be shown that

fT (t) = λe−λt t ≥ 0, (9.16)

This shows that the time until the first arrival is exponentially distributed with

parameter λ. The mean and variance are given by equations 9.17 and 9.18 re-

spectively.

E [T ] =
1

λ
(9.17)
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var [T ] =
1

λ2
(9.18)

Like with Bernoulli process, Poisson process has several parallel properties:

1. Independence and Memorylessness: Consider two disjoint sets of times

G and H, such that G = [0, 1] ∪ [4,∞] and H = [1.6, 3.8] , as an exam-

ple. If W and Y are random variables determined by what happens in

G(respectively, H), then G and H are independent.

2. Fresh-Start Property: A Poisson process starting at time t > 0 is a

probabilistic replica of the Poisson process starting at time 0, and is in-

dependent of the portion of the process prior to time t. This implies the

Poisson process starts a fresh at each time instant.

3. Memoryless Inter-Arrival Time Distribution: The exponential PDF

(Inter-arrival time in the Poisson process) is memoryless. Given time t

and past history, the future is a fresh-starting Poisson process hence the

remaining time until the next arrival has the same exponential distribution

with same parameter λ.

4. The kth Arrival Time: The time Yk of the kth arrival is the sum of

the previous inter-arrival times until kth inter-arrival time as illustrated

in equation 9.19. All the inter-arrival times are independent exponential

random variables with common parameter λ.

Yk = T1 + T2 + · · ·+ Tk; (9.19)

The PDF, mean and variance of Yk are given using equations 9.20, 9.21 and

9.22 respectively. Equation 9.20 is the Erlang PDF of order k.

fYk(y) =
λkyk−1e−λy

(k − 1)!
(9.20)

E [Yk] = E [T1] + · · ·+ E [Tk] =
k

λ
(9.21)
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var(Yk) = var(T1) + · · ·+ var(Tk) =
k

λ2
(9.22)

5. Merging of Poisson Processes: Consider a single WSN cluster as shown

earlier in Figure 9.1 coordinated with a central CH. The traffic model is

similar to that given in Figure 4.2. The CH receives traffic from cluster

nodes with rates λn and from other CH’s with rate λr. If the arrivals are

merged with rate λk whenever an arrival occurs from both sources, it turns

out that the merged process is also Poisson with rate λk = λn + λr. The

probability of packets arriving from within the cluster may be computed

using equation 9.23. Consequently, the probability of packet arriving from

other CHS may be computed using equation 9.24.

P (InternalArrival) =
λn

λn + λr
(9.23)

P (ExternalArrival) =
λr

λn + λr
(9.24)

Recalling that the length δ is chosen very small to enable only one successful

arrival within a slot, the probability p of successful arrival and probability

(1 − p) of no packets arrival both remain constant. Since the arrival rates

are independent and remain constant, this satisfy the time-homogeneity

property. Further more, since different intervals in each of the two arrival

processes are independent, the necessary conditions for a Poisson process

are met.

6. Splitting of a Poisson Process: We now consider a CH receiving and

separating packets from other CHs to be forwarded to the sink from local

packets requiring further processing before they can be forwarded to the

sink. Packets are separated with probability p and (1 − p) for local and

other CHs respectively. Packets arrive at the CH according to a Poisson

process with rate λk and each one is a local or transit packet independent

of other packets and their respective arrival times. The process of the local
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packet arrivals is therefore Poisson with rate λkp.

Time-homogeneity is satisfied by the fact that λ and p do not change with

time (constant). Moreover, the fresh start property clearly holds since there

is no dependence between events in disjoint time intervals. Again, focus-

ing on the interval of small length δ, the probability of a local arrival is

approximately the probability of a successful packet arrival, and this turns

out to be a local packet, implying λnδp. In addition, the probability of

having two arrivals at the same time is negligible compared to δ hence the

necessary properties are all met. This brings us to the conclusion that the

local packet arrivals form a Poisson process and, in particular, it can be

shown that the number Lτ of such arrivals during an interval of length τ

has a Poisson PMF with parameter λnpτ .

9.4 Simulation Test Bed

Many WSN simulators are proposed for use in various test environments [Musznicki

and Zwierzykowski, 2012] [Sundani et al., 2011] [Xian et al., 2008]. In this study,

the required simulator is to incorporate a wide range of platforms, including a

realistic wireless channel and radio model based on measured data. Based on

these, Castalia simulator using OMNET++ platform was preferred. Castalia is

highly parametric and usable in evaluating different platform characteristics for

specific applications [Sundani et al., 2011]. For this study, a part from the varied

radio and channel platforms, Castalia also offers an opportunity to manipulate

properties of the various MAC-Layer protocols.

The simulation was set up based on a WSN cluster topology with one central

CH receiving packets from all other cluster nodes as illustrated in Figure 4.2.

The main objective of the simulation runs is to record packet inter-arrival times

at the CH. In order to obtain appropriate results for investigations and evalua-

tion, the scope of the trials considered use of various parameter settings; First,

a decision is made for a suitable number cluster nodes for each test run. During

investigation clusters are set up using between 10 to 40 nodes. In addition, prop-
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erties for various MAC protocols are considered. In this case, TMAC, CSMA

and CSMA/CA were used. To provide a broad spectrum of results for effective

investigation and evaluation, nodes were set to transmit at different packet rates

to the CH. In order to represent different application scenarios, a range of packet

rates were varied from 1 packet every 5 seconds to 1 packet every 10 minutes.

During each simulation run, a record of packet inter-arrival time instances were

obtained. Other parameters used in the test include a CC2420 radio transceiver

that is compatible with IEEE 802.15.4/Zigbee standards [Chipcon Product]. The

transceiver operates at 2.4 GHz with data rates of 250 Kbps. Similarly, internal

MAC queue capacities of 32 packets, each having 105 bytes were also considered

[Latré et al., 2005].

The data obtained from simulation runs was then processed using R-Studio to

carry out Kolmogorov-Smirnov Test and statistically determine the inter-arrival

distributions. R-Studio is a free open source Integrated Development Environ-

ment (IDE) for R programming language for statistical computing and graphic.

Kolmogorov-Smirnov Test (KS Test) is a tool used in statistics to confirm the

hypothesis that a given empirical data follows known probability distributions.

The KS Test statistic quantifies the distance between the empirical distribution

function of the sample and the cdf of the reference distribution. Calculation of

the null distribution of this statistic lies under the null hypothesis the sample

drawn is from a continuous reference distribution. A detailed study on how K-S

Test works is provided in [Jean Dickinson Gibbons, 2003] [Conover, 1999].

Consider a random sample X1, X2, X3, . . . , Xn, drawn from some population, in

this case Xi representing packet inter-arrival times at the CH from the wider

WSN. From the random samples, empirical distribution function S(x) are deter-

mined. These are functions of Xi that are less than or equal to X for each

X,−∞ < X <∞ and may be computed using equation 9.25.

S(x) =
1

n

n∑
i=1

I {xi ≤ x} (9.25)

where I is the indicator function equal to 1 if xi ≤ x.
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Equation 9.25 is used as an estimator of the unknown distribution function F(x),

of the random samples (Xis). The empirical distribution function F(x) are then

compared with the hypothesised distribution function F ∗(x) to establish any good

agreement. For our case, several distributions were compared to establish possible

distributions for various data delivery models discussed in section 4.2.1. A simple

measure of the largest distance between the two functions S(x), and F ∗(x) was

proposed by Kolmogorov in 1933.

Letting the test statistic T be the greatest (denoted by “sup” for supremum)

vertical distance between S(x), and F ∗(x), T can be computed using equation 9.26

T = sup
x
|F ∗(x) − S(x)| (9.26)

The testing conditions are given as:

H0: F(x) = F ∗(x) for all X from −∞ to ∞

H1: F(x) 6= F ∗(x) for at least one value of X

The quantile and p-values are usually given in the table. However, these are

included as packages in the various statistical software programs. If T exceeds the

1−α quantile, then H0 is rejected at the level of significance α. The approximate

p-values are usually interpolated from the table. Nevertheless, in this study, R-

Studio statistical program was employed to compute the Kolmogorov-Smirnov

Tests.

9.5 Numerical Results and Discussions

This section presents results obtained using the Kolmogorov-Smirnov Test Statis-

tic (KSTS). Table 9.1 provides a summary of the established distributions of

packet inter-arrival times at the CH. Various experiments performed considered

two main MAC-Protocols; TMAC and CSMA when subjected to different traf-

fic loads. Figures 9.2 through 9.13 present the graphs obtained using different

parameters as detailed in the table. In the Figures, wta, wtf and wts represent
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waiting time of arrivals, waiting time of first part of arrivals and waiting time for

the second part of arrivals respectively. These values are obtained as means of

KSTS. In the table, LCL and UCL represent the Lower Confidence Level and

Upper Confidence Level respectively.

From the obtained results, depending on the packet rate and MAC-protocols

used, the distribution of packet inter-arrival times at the CH varies greatly. A

number of theoretical distributions observed closely matched the empirical data

sets recorded at the CH.
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Table 9.1: A Summary of the Distribution of Packet Inter-Arrival Times

Number
of Nodes

MAC
Protocol
Used

Packet rate

Number of
observations in
the Simulated
Series

ML Estimates of
the parameters of
empirical
distribution

Kolmogorov
Smirnov Test
Statistic

P-Values

Corresponding
theoretical
distribution for the
empirical data

Figures

10 None
1 pck every
5 minutes

All: 246
Used: 214

Exponential
rate: 16.11
LCL: 14.03
UCL: 18.03

Average of 87
runs
(From LCL
to UCL) : 0.09

Average of 87
runs
(From LCL
to UCL) : 0.09

Exponential 9.2(a, b, c, & d)

10 TMAC
1 pck every
5 minutes

All: 279
Used: 249
First Part: 224
Sec. Part: 23

Mixed Log-Normal
Meanlog 1 = -5.14
Sdlog1 = 0.23
Meanlog 2 = - 0.52
Sdlog 2 = 0.02
Mixing proportion: 0.09

Average of 100
runs : 0.11

Average of 100
runs : 0.15

Mixed Log-Normal
9.3(a, b, c, d,
e, & f)

10 CSMA
1 pck every
10 minutes

All: 255
Used : 255

Exponential rate = 20.86
LCL : 18.38
UCL : 23.50

Average of 141
runs : 0.04

Average of 141
runs : 0.45

Exponential 9.4 (a, b, c, & d)

10 CSMA
1 pck every
5 seconds

All: 596
Used: 596
First part: 578
Sec. part: 18

Mixed Log-Normal
Meanlog 1 = -3.78
Sdlog 1 = 1.07
Meanlog 2 = 1.59
Sdlog 2 = 0.008
Mixing proportion: 0.03

Averge of 100
runs : 0.09

Average of 100
runs : 0.035

Mixed Log-normal
at p-values 3.5% or
less. Not mixed
Log-normal at
traditional 5 or10%
significance levels

9.5(a, b, c, d, e,
f, g & h)

20 None
1 pck every
5 minutes

All : 443
Used : 411

Gamma
Shape = 1.49
Scale = 0.03

Average of 100
runs : 0.08

Average of 100
runs : 0.24

Gamma 9.6 (a, b, c, & d)

20 TMAC
1 pck every
5 minutes

All : 574
Used: 542
First part: 508
Sec. part: 34

Mixed Log-Normal
Meanlog 1 = -5.18
Sdlog 1 = 0.25
Meanlog 2 = -0.58
Sdlog 2 = 0.04
Mixing proportion: 0.06

Average of 100
runs : 0.016

Average of 100

runs : 7.66 ×e−06

An unknown
mixed
distribution

9.7(a, b, c, d, e,
f, & g)

20 CSMA
1 pck every
1 second

All: 1889
Used: 1889

Exponential
rate= 16.91
LCL = 16.91
UCL = 17.69

Average of 153
runs (From LCL
to UCL) : 0.06

Average of 153
runs (From LCL
to UCL) :

4.60×e−05

An unknown
non-Exponential
distribution

9.8(a, b, c, & d)

20 CSMA
1 pck every
5 seconds

All: 2010
Used: 2010
First part:1990
Sec. part 20

Mixed Log-Normal
Meanlog 1 = -2.94
Sdlog 1 = 0.05
Meanlog 2 = 0.10

Sdlog 2 = 0.2 ×e−04

Mixing proportion:0.001

Average of 100
runs: 0.06

Average of 100

runs: 2.62×e−03

An unknown
mixed
distribution

9.9 (a, b, c, d, e,
f, & g)

35 None
1 pck every
5 minutes

All: 644
Used: 612

Log-Normal
Meanlog = -3.59
Sdlog = 0.93
LCL = -3.66
UCL = -3.52

Average of 148
runs(From LCL
to UCL): 0.08

Average of 148
runs: (From LCL
toUCL):0.13

Log-Normal 9.10 (a, b, c, & d)

35 TMAC
1 pck every
5 minutes

All: 990
Used: 958
First part: 914
Sec. part: 44

Mixed Log-Normal
Meanlog 1 = -5.23
Sdlog 1 = 0.23
Meanlog 2 = -0.62
Sdlog 2 = 0.09
Mixing proportion: 0.05

Average 100
runs: 0.19

Average 100

runs: 3.18 ×e−14
An unknown
mixed distribution

9.11 (a, b, c, d,
e, f, & g)

40 None
1 pck every
5 minutes

All: 751
Used: 720

Log-Normal
Meanlog = -3.77
Sdlog = 0.90
LCL = -3.84
UCL = -3.71

Average of 100
runs (From LCL
to UCL): 0.08

Average of 100
runs(From LCL to
UCL):0.07

Log-Normal at
p-values 6% or less
Not Log-Normal at
traditional 10%
significance level

9.12(a, b, c & d)

40 TMAC
1 pck every
5 minutes

All: 1138
Used: 1106
First part: 1064
Sec. part: 38

Mixed Log-Normal
Meanlog 1 = -5.26
Sdlog = 0.22
Meanlog 2 = -0.62
Sdlog 2 = 0.10
Mixing proportion: 0.04

Average of 100
runs: 0.22

Average of 100
runs 0.0

An unknown
mixed distribution

9.13 (a, b, c, d, e,
& f)
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In Figures 9.2 and 9.4, the empirical data follows known exponential distribution

when a data rates of 1pck/5mins is used without consideration of MAC layer pro-

tocols. This translates to sending 12pck/hr. The same distribution is observed

when CSMA/CA is used with 10 nodes transmitting packets at 1pck/10mins

translating to 6pck/hr. The other distributions observed include Gamma distri-

bution, Figure 9.6, when 20 nodes are considered to send packets at 1pck/5mins

without the use of MAC protocols, log-normal distribution, Figure 9.10, when 35

nodes are used without considering MAC properties at data rates of 1pck every

5 minutes and Figure 9.12, log-normal at p-values below 6% observed when 40

nodes are used without MAC properties at data rates of 1pck every 5 minutes.

However, Mixed log-normal distribution is observed in Figure 9.3 when using

TMAC with 10 nodes transmitting 1pck every 5 minutes. In Figure 9.5, Mixed

Log-Normal is also observed at p-values below 3.5%.
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Figure 9.2: Comparison of Theoretical and Empirical Graphs for Exponential Distribution

Not Log-Normal is observed at traditional 10% significance level when 40 nodes

each transmitting packets at 1pck/5mins are employed without MAC properties
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as illustrated in Figure 9.12. However Not mixed log-normal at traditional 5%

or 10% is observed with 10 nodes transmitting at 1 packet every 5 seconds when

CSMA is employed.
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(f) Empirical & Theoreticl Mixed Log-Normal CDF

Figure 9.3: Comparison of Theoretical and Empirical Graphs for Mixed Log-Normal Distri-
bution

The other category observed include an Unknown Non-Exponential distribution

when using CSMA/CA and 20 nodes transmitting packets at 1pck/sec, Figure

9.8. The last group observed is an unknown mixed distribution illustrated in

Figures 9.7, 9.9, 9.11 and 9.13. Their detailed parameters are given in table 9.1.
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Figure 9.4: Comparison of Theoretical and Empirical Graphs for Exponential Distribution

An important observation with MAC properties considered is the alteration of

the inter-arrival distribution to an unknown mixed distribution because of the

internal properties. TMAC presents a worst scenario (unknown mixed distribu-

tion) when the network has 20, 35 and 40 nodes each transmitting packets to the

CH at 12pck/hr. Mixed log-normal distribution is only observed when 10 nodes

are sending packets at a constant rate. On the other hand, CSMA/CA presents

various distributions influenced by the number of source nodes and packet rates.

These include, exponential, an unknown non-exponential, mixed log-normal at

some p-values and an unknown mixed distributions as summarized in table 9.1.

However, the distributions become more distinct with no MAC properties em-

ployed. From the results, it is observed that there is no distinct packet arrival

distribution pattern at the CH. Based on application scenario and operation pa-

rameters, different distributions may be obtained. The methodology and results

obtained are therefore useful in scientific research for obtaining appropriate dis-

tributions for different WSN application scenarios.
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9.6 Chapter Summary

In this chapter, a WSN clustered model coordinated by one central CH was pro-

posed and inter-arrival time distribution for packets at the CH analysed in order

to determine the resulting empirical distribution pattern. Based on application

environment and criticality, data types are first characterised and classified into

the various delivery models. In order to establish the actual inter-arrival dis-

tribution at the CH, use was made of Castalia simulator to run a number of

simulations under varying conditions and inter-arrival times at the CH recorded.

Using Kolmogorov-Smirnov Test Statistic on the empirical data sets, the real

theoretical probability distributions were established.

Interesting observation noted is the fact that WSN packet inter-arrival time dis-

tribution at the CHs does not follow a specific probabilistic distribution pattern

consistently. However, the distribution of arrivals is influenced by delivery mod-

els used, prevailing operation conditions and influences imposed by application

protocols. It is therefore not proper to use a particular distribution for modelling

packet inter-arrival times in all WSN system scenarios. For various studies, an

evaluation of the appropriate distribution is necessary in order to provide real-

istic system models. The methods used are useful for determining appropriate

distributions in any WSN application scenario for scientific research.

Identifying the appropriate arrival distribution ensures the resulting performa-

bility and energy saving models are a more realistic mimic of the actual system

behaviour hence making related studies more relevant in the application environ-

ment. It is possible to extend this study to identify and classify relevant arrival

distributions for various WSN application scenarios.

188



Histogram of wta

wta

D
en

si
ty

0 1 2 3 4 5

0.
0

1.
0

2.
0

(a) Histogram of Inter-Arrival Times

Histogram of wtf

wtf

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25

0
10

20

(b) Histogram of Inter-arrival Time First Part

Histogram of wts

wts

D
en

si
ty

4.80 4.85 4.90 4.95

0
4

8
14

(c) Histogram of Inter-arrival Time Second Part

Histogram of lnm

lnm

D
en

si
ty

0 1 2 3 4 5

0.
0

1.
0

2.
0

(d) Histogram of Log-Normal Distribution

0 1 2 3 4 5

0
2

4

QQ−plot Mixed Log−Normal Distribution

lnm

w
ta

(e) QQ-plot for Mixed Log-Normal Distribution

0 1 2 3 4 5

0
10

25

Empirical and Theoretical Mixed Log−Normal Densities

x

dl
no

rm
M

ix
(x

, m
ea

nl
og

1 
=

 −
3.

73
02

98
, s

dl
og

1 
=

 1
.0

73
64

3,
 m

ea
nl

og
2 

=
 1

.5
88

73
61

84
, 

   
 s

dl
og

2 
=

 0
.0

07
88

27
85

, p
.m

ix
 =

 0
.0

3)

(f) Empirical & Theoreticl Mixed Log-Normal Densities

0 1 2 3 4 5

0.
0

0.
6

Empirical and Theoretical Mixed Log−Normal CDFs

x

pl
no

rm
M

ix
(x

, m
ea

nl
og

1 
=

 −
3.

73
02

98
, s

dl
og

1 
=

 1
.0

73
64

3,
 m

ea
nl

og
2 

=
 1

.5
88

73
61

84
, 

   
 s

dl
og

2 
=

 0
.0

07
88

27
85

, p
.m

ix
 =

 0
.0

3)

(g) Empirical & Theoreticl Mixed Log-Normal CDF

Figure 9.5: Comparison of Theoretical and Empirical Graphs for Mixed Log-Normal Distri-
bution
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Figure 9.6: Comparison of Theoretical and Empirical Graphs for Gamma Distribution
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Figure 9.7: Comparison of Theoretical and Empirical Graphs for An Unknown Distribution
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Figure 9.9: Comparison of Theoretical and Empirical Graphs for Mixed Log-Normal Distri-
bution
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Figure 9.10: Comparison of Theoretical and Empirical Graphs for Log-Normal Distribution
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Figure 9.11: Comparison of Theoretical and Empirical Graphs for an Unknown Distribution
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Figure 9.12: Comparison of Theoretical and Empirical Graphs for Log-Normal Distribution
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Figure 9.13: Comparison of Theoretical and Empirical Graphs for an Unknown Distribution
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Chapter 10

Conclusion

Today, smart grid, smart homes, smart industry, smart agriculture, intelligent

transportation, green environment, are infrastructure systems that connect the

world more than ever thought possible. The vision of such systems is associ-

ated with the single concept of IoT, where through the use of sensors, the entire

physical infrastructure is closely coupled with information and communication

technologies; where the intelligent monitoring and management can be achieved

via the usage of networked embedded devices. In such dynamic systems, de-

vices are interconnected to transmit useful measurement information and control

instructions via distributed sensor networks. With the rapid technological devel-

opment of sensors, WSN has become the key technology for IoT, and is regarded

as a revolutionary information-gathering method to build the information and

communication system which will greatly improve the reliability and efficiency of

infrastructure systems.

Practically, the application of WSNs to the real world is unlimited. Most of the

applications present varying QoS demands that complicate the design of WSNs

due to several resource limitations hence the need for new paradigms. Lots of

independent availability and performance studies are proposed in literature, but

these do not address concerns of independent availability and performance stud-

ies. In order to address these concerns, this thesis presents research work on per-

formability modelling of WSNs, which is a composite measure of performance and

availability that provides the most realistic modelling approach. Two-dimensional
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state space is used to represent the state of the system at a given time and spectral

expansion method and system of linear simultaneous equations used extensively

to solve the two-dimensional state space. In order to show the effectiveness of

the models developed, numerical results are presented and validated using ded-

icated discrete event-based simulation programs developed in C++ and tested

with known mathematical formulae. Some assumptions were considered to make

analytical modelling tractable.

The approaches for the evaluation of the performability of WSNs presented in this

thesis, provide powerful tools for making essential decisions for system design,

optimising parameters to fit user requirements, and examining optimal design

trade-offs. Furthermore, these models are useful for understanding the intricate

interactions between systems’ operation states and subtle effects of various factors

such as failures, repairs and delays.

Finally, sections 10.1 and 10.2 present thesis contributions and proposals of future

work respectively.

10.1 Thesis Contributions

The following is a listing of the major contributions of this thesis:

1. Performance modelling and analysis continue to play a significant role in

supporting research, system design, development and optimization of com-

puter and communication systems and applications. The high demand for

use of WSNs in various application environments also brings with it the need

for performance and availability modelling for optimization and deployment

of WSNs. Several pure performance and availability studies for WSNs exist

but no record of composite studies of such exists [Chiasserini and Garetto,

2006], [Hashmi et al., 2010], [Qiu et al., 2011], [Chan et al., 2015]. The

challenges resulting from pure performance and availability studies hence

continue to affect QoS provision in WSNs. In chapter 5, the need to in-

tegrate performance and availability modelling for WSNs is justified. The
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study presents a systematic modelling approach that considers performance

and availability together in the presence of failures, repairs/replacement and

restoration. First, a queuing model for the arriving data packets is devel-

oped. A performablity model whose inputs are data packets derived from

the queue model is developed to capture the desired system behaviour in

the various operative states. The proposed model is then analysed and eval-

uated using Markov chain. Two analytical approaches; Spectral expansion

solution techniques and Poisson approximation are employed to compute

the models and results verified using a discrete event simulation program

developed in C++.

From the results, it is confirmed that system failures degrade network per-

formances hence require to be contained within some limit for better per-

formance. In addition, setting appropriate arrival rates to adequate levels

is important in maintaining acceptable queue lengths and system response

times as per application requirements. Network coverage also plays a signif-

icant part on overall WSN performance. In order to cover a given area, the

number of clusters required is determined by desired traffic intensity that

provides optimum performance measures a part from use of maximum clus-

ter node capacity. The numerical results and the methodology are therefore,

significant to the system designers, users and scientists for development of

planning and deployment tools, operation management and optimization

studies.

2. In real-life situations, systems do not have infinite queues. This is worse in

WSNs that are equipped with limited memory capacity that are dependent

upon the physical size of the sensor nodes. As WSNs continue to find us-

age in diverse application environments, the demand for memory required

for temporary data storage and information processing also vary consid-

erably with high data intensive applications demanding more processing

and storage space. The low memory capacities offered are therefore, not

sufficient for use with all applications. Therefore, optimizing the available

memory is significant for obtaining desired performance levels with bet-

ter QoS. Additional studies are also necessary for establishment of optimal
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queue capacities necessary for use with different applications. Chapter 5

presents an advancement of the model of chapter 4 that now incorporates

bounded queues. Again, the developed performability model is resolved

using Spectral Expansion Solution technique and validated using a discrete

simulation program developed in C++. In addition to analysis of bound-

ing effects alongside node failures’ effects on performance measures that

include MQL, throughput, and response time, additional effect caused by

limiting queue capacity is also analysed. Furthermore, the systems blocking

probability is also analysed using various queue capacities and results used

to propose possible queue capacities for use in various application environ-

ments. From the results, bounded queues limit the amount of data that

can be stored as expected. These results into data packets being blocked

and lost hence may negatively influence system performance. Considering

queue capacity is useful, especially for optimisation of queue capacities at

each node. The results and methodology are therefore, very significant to

the designers and users in design production and system optimization.

3. Alternating sleep and active operation periods is widely used in WSNs to

conserve the limited energy. However, use of sleep scheduling mechanisms

may also affect WSNs performance negatively if not appropriately opti-

mised. Chapter 6 critically analyses existing approaches for sleep scheduling

and proposes appropriate models for evaluating performance and availabil-

ity for clustered WSNs. The models developed improve the model in chapter

5 by incorporating the sleeping phase of the sensor node. QBD processes

are then used for performability studies. Two analytical approaches; Spec-

tral Expansion and System of simultaneous linear equation are employed

to solve the models and the results further validated using results obtained

using a discrete event simulation program developed in C++. Two sleep

scheduling methods considered in this study are On-demand and Adaptive

sleep scheduling schemes. In both cases, system performance is degraded at

some levels of operations hence may require additional mechanisms for op-

timisation. System designers can use the results obtained to develop a more

resilient system that regulates sleep schedules in line with traffic intensity.
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4. In order to make the models more realistic to system behaviour, chapter 7

presents a critical analysis of WSN channel failures and its impact on per-

formance and availability/reliability. First, the behaviour of WSN channel

is analysed and incorporated into the system models developed in chapter

6. Specifically, use is made of On-demand sleep scheduling to develop the

new model and QBD processes employed for performability studies using

similar solution approaches. Using Spectral Expansion and System of simul-

taneous linear equations, the performability model is resolved and results

further validated using solutions obtained from a discrete event simulation

program developed in C++. The obtained results show how channel failure

affects performance parameters and may result into system degradation if

failure surpasses some levels. The results and methodology are therefore,

useful to designers and user for deployment and performance optimisation.

5. Energy conservation remains a major challenge in WSNs despite many so-

lutions proposed in various studies. Among the solutions offered, alter-

nating sleep and active operations is widely used. In chapter 8, models

developed in the preceding chapters are considered for evaluating energy

consumption of WSN systems. First, analytical models used for obtaining

energy consumed in various operative states are developed. Using the devel-

oped models in conjunction with steady-state probabilities obtained from

perfomability models, mean energy consumptions in the various operative

states are computed. As a case study, a comparison of energy consumption

between two similar models, one implementing sleep state and the other

implementing idle state is illustrated. Results show a good amount of en-

ergy saving while operating in the sleep state as expected. However, when

traffic intensity increases to some level, wake-up energy becomes greater

than sleep energy thereby negating the purpose for entering sleep state.

Based on the results, appropriate level of traffic intensity that allows opti-

mum energy saving in the sleep state is identified. The method employed

is useful for designers and researchers for development of deployment tools

and performance optimisation studies.

6. From the literature, the general practice used to determine arrival distribu-
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tion of data packets in WSNs is to compare empirical data with the the-

oretical exponential distribution of Q-Q plots and draw conclusions based

on simple eye checks. In addition, chapter 9, makes use of estimated max-

imum likelihood parameters of empirical distributions to generate theoret-

ical distributions. For each data series generated, Kolmogorov-Smirnov

Test is conducted to identify a possible corresponding theoretical distribu-

tion. Results obtained show a number of theoretical distributions, including;

Gamma, Log-normal, Mixed-log-normal, and Exponential as potential can-

didates depending on the application set operation conditions. The choice

of the right distribution is significant in ensuring realistic system models are

obtained. The numerical results and methodology are therefore, useful for

the designers, research scientist, and users of clustered WSNs for network

planning, deployment, and optimization studies.

10.2 Proposals for Future studies

Below are suggestions for future studies

1. Today, WSNs play a significant role in the acquisition and distribution of

information for IoT applications. Performance and availability/reliability

of such systems remain critical in ensuring the provision of required QoS

is achieved. In this study, a single queuing system implementing FCFS

priority is used for performability studies. However, in a multi-application

environment, different applications may require varying service priorities.

Considering priority queuing in future performability studies is therefore,

significant in ensuring provision of quality service to all applications.

2. Once deployed in the habitat, wireless sensors may relay their information to

the Sink directly or through intermediary nodes. In a clustered network, all

information is relayed to the sink through the CH, which may communicate

directly or through other intermediary CHs towards the Sink. In both cases,

the relaying nodes may have more than one next hope available to choose

from, depending on the prevailing circumstances; appropriate choice of next
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hope is determined. Multi-Server systems have been studied in related

communication systems [Ever, 2007], [Gemikonakli, 2014]. It is possible to

extend this study to consider a multi-server system for modelling available

next hopes and channels for performability studies.

3. Several approaches are proposed in the literature for scheduling sleep pe-

riods widely used for conserving power for the sensor nodes [Yang and

Vaidya, 2004], [Anastasi et al., 2009], [Ameen et al., 2010]. Based on these

approaches, a number of pure performance and availability studies have

been proposed [Chiasserini and Garetto, 2006], [Almazydeh et al., 2010],

[Qiu et al., 2011]. Such models carry with them concerns emanating from

pure performance and availability studies. In this study, a model for evalu-

ating energy is proposed and used to study energy consumption for a per-

formability model incorporating On-demand sleep scheduling scheme. Us-

ing a similar methodology it is possible to develop models for existing sleep

scheduling algorithms and evaluate them for energy consumption. Further-

more, the obtained results are significant for improving system performance

and optimisation studies.

4. Considering that WSNs have applications in diverse environments with

varying QoS demands in addition to different deployment settings, the in-

fluence caused on arrival distribution of data packets at the intermediary

nodes, and the CH may vary considerably. Moreover, the MAC protocols

and other applications protocols running on top of MAC protocols like those

for energy conservation [Heinzelman et al., 2000], [Ye et al., 2002], [Li, 2011]

may also introduce delays that ultimately alter arrival distributions. In or-

der to cover a wide range of applications and make the results more candid,

the methodology employed in chapter 9 can be used for critical analysis of

real-time WSN data collected using different data delivery models subjected

to various application conditions.

5. In this chapter, only issues pertaining to a single CH are considered. For

purposes of improving overall WSN QoS, it is possible to extend this re-

search study to consider issues of network scalability.
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