1,127 research outputs found

    Design and Implementation of Takagi-Sugeno Fuzzy Tracking Control for a DC-DC Buck Converter

    Get PDF
    This paper presents the design and implementation of a Takagi-Sugeno (T-S) fuzzy controller for a DC-DC buck converter using Arduino board. The proposed fuzzy controller is able to pilot the states of the buck converter to track a reference model. The T-S fuzzy model is employed, firstly, to represent exactly the dynamics of the nonlinear buck converter system, and then the considered controller is designed on the basis of a concept called Virtual Desired Variables (VDVs). In this case, a two-stage design procedure is developed: i) determine the reference model according to the desired output voltage, ii) determine the fuzzy controller gains by solving a set of Linear Matrix Inequalities (LMIs). A digital implementation of the proposed T-S fuzzy controller is carried out using the ATmega328P-based Microcontroller of the Arduino Uno board. Simulations and experimental results demonstrate the validity and effectiveness of the proposed control scheme

    Discussion of the technology and research in fuel injectors common rail system

    Get PDF
    Common rail is one of the most important components in a diesel and gasoline direct injection system. It features a high-pressure (100 bar) fuel rail feeding solenoid valves, as opposed to a low-pressure fuel pump feeding unit injectors. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 2,500 bar. The purpose of this review paper is to investigate the technology and research in fuel injectors common rail system. This review paper focuses on component of common rail injection system, pioneer of common rail injection, characteristics of common rail injection system, method to reduce smoke and NOx emission simultaneously and impact of common rail injection system. Based on our research, it can be concluded that common rail injection gives many benefit such as good for the engine performance, safe to use, and for to reduce the emission of the vehicle. Fuel injection common rail system is the modern technology that must be developed. Nowadays, our earth is polluting by vehicle output such as smoke. If the common rail system is developed, it can reduce the pollution and keep our atmosphere clean and safe

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs

    HM-Based SMVC with Adaptive Feedforward Controller Applied to DC-DC Converter

    Get PDF
    International audienceThis paper aims to provide a comprehensive study of sliding mode controller (SMC) performance for closed-loop voltage control of DC-DC three-cells buck converter based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. To fix the switching frequency, the approach is to incorporate a feedforward adaptive scheme which is effectively a variant of SM control. Further, the use of an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller to restrict the switching frequency variation feeding parameters uncertainties and loads disturbance, in order to overcome the design constraints and to mitigate the undesired transient response. The results obtained under load change, input change and reference change clearly demonstrates a great dynamic response of the proposed technique, as well as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the desired output voltage. Simulations studies in MATLAB/Simulink environment have been performed to verify the concept

    Real time hardware implementation of discrete sliding mode fuzzy controlled buck converter using digital signal processor

    Get PDF
    This paper deals with the real time hardware implementation of discrete sliding mode fuzzy control (DSMFC) for buck converter using digital signal processor (DSP). Applications like electric vehicle suspension control, flight dynamic control, robot position control and engine throttle position control; sliding mode control (SMC) plays a major role. Hardware realization is difficult with SMC strategy due to the continuous gain change results in chattering problem and actuator or contact may break. To resolve this problem the fuzzy logic (FL) approach has combined with the robust technique discrete sliding mode control (DSMC) to develop a new strategy for DSMFC. The mathematical modeling of the controller is done using MATLAB/Simulink software and practical design of the converter is also realized. The robustness of the controller is proved by introducing sudden change in input voltage as well as load with the help of switching circuit in hardware realization. The obtained practical results are verified by comparing with the simulation output and reference value

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Voltage Regulation of Boost Converter using Observer based Sliding Mode Controller

    Get PDF
    This study dealt with output voltage regulation of boost converter using observer based sliding mode controller comprises of adaptive PI sliding surface. Observer was designed to estimate the inductor current value, such that no sensor was required as a feedback. Adaptive PI sliding surface was constructed from the difference between estimated inductor current and its reference value. The stability of proposed method was ensured by using Lyapunov direct method. To test the system performance, numerical simulation was conducted. The result indicated that the integral absolute error value of proposed method was 0.19, which was 7 times less than sliding mode with PI sliding surface. Consequently, the proposed method was able to estimate accurately the inductor value, track the reference voltage perfectly, and show its robustness against parameter variations

    Nonlinear adaptive sliding mode control of a powertrain supplying fuel cell hybrid vehicle

    No full text
    International audienceThis paper presents an adaptive sliding mode based switching scheme for controlling DC-DC hybrid powertrain for propulsion of a Fuel Cell / Supercapacitor hybrid vehicle. After modeling the powertrain, a new approach to determine a nonlinear sliding surface ensuring stability of the DC/DC Boost converter is discussed. This was achieved without introducing the equivalent control aspect after transforming the instantaneous model of the Boost in a suitable form. The presented technique is also applied for trajectories tracking in the entire powertrain, which includes a dc/dc Boost converter associated to Fuel Cell stack and another Bidirectionnel dc/dc converter associated to the supercapacitor bank, which are both working in parallel to provide electricity propelling the vehicle. The control scheme is tested with driving cycle example through simulation

    Maximum Power Extraction from a Standalone Photo Voltaic System via Neuro-Adaptive Arbitrary Order Sliding Mode Control Strategy with High Gain Differentiation

    Get PDF
    In this work, a photovoltaic (PV) system integrated with a non-inverting DC-DC buck-boost converter to extract maximum power under varying environmental conditions such as irradiance and temperature is considered. In order to extract maximum power (via maximum power transfer theorem), a robust nonlinear arbitrary order sliding mode-based control is designed for tracking the desired reference, which is generated via feed forward neural networks (FFNN). The proposed control law utilizes some states of the system, which are estimated via the use of a high gain differentiator and a famous flatness property of nonlinear systems. This synthetic control strategy is named neuroadaptive arbitrary order sliding mode control (NAAOSMC). The overall closed-loop stability is discussed in detail and simulations are carried out in Simulink environment of MATLAB to endorse effectiveness of the developed synthetic control strategy. Finally, comparison of the developed controller with the backstepping controller is done, which ensures the performance in terms of maximum power extraction, steady-state error and more robustness against sudden variations in atmospheric conditions
    • …
    corecore