3,031 research outputs found

    Gaussian process model based predictive control

    Get PDF
    Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. Gaussian process models contain noticeably less coefficients to be optimized. This paper illustrates possible application of Gaussian process models within model-based predictive control. The extra information provided within Gaussian process model is used in predictive control, where optimization of control signal takes the variance information into account. The predictive control principle is demonstrated on control of pH process benchmark

    The disturbance model in model based predictive control

    Get PDF
    Model Based Predictive Control (MBPC) is a control methodology which uses a process model on-line in the control computer; this model is used for calculating output predictions and optimizing control actions. The importance of the system model has been generally recognized, but less attention has been paid to the role of the disturbance model. In this paper the importance of the disturbance model is indicated with respect to the EPSAC approach to MBPC. To illustrate this importance, an example of this advanced control methodology applied to a typical mechatronic system is presented, to compare the performances obtained by using different disturbance models. It clearly shows the benefits of using an "intelligent" disturbance model instead of the "default" model generally adopted in practice

    Volterra Model Based Predictive Control, application to a Pem Fue Cell

    Get PDF
    14th Nordic Process Control Workshop - Espoo, Finland Duration: 23 Aug 2007 → 25 Aug 2007This paper presents a non linear model predictive controller for a PEM fuel cell for which the starvation control is the main objective. A second order Volterra model for control is obtained using input/output data for which the power supplied by the fuel cell is considered as a measurable disturbance. The controller developed allows to solve the nonlinear objective function in a way that it can be actually implemented in fast systems like Fuel cells. The use of a nonlinear controller is justified while comparing the outcome obtained with a linear controller of the same class

    Data-driven adaptive model-based predictive control with application in wastewater systems

    Get PDF
    This study is concerned with the development of a new data-driven adaptive model-based predictive controller (MBPC) with input constraints. The proposed methods employ subspace identification technique and a singular value decomposition (SVD)-based optimisation strategy to formulate the control algorithm and incorporate the input constraints. Both direct adaptive model-based predictive controller (DAMBPC) and indirect adaptive model-based predictive controller (IAMBPC) are considered. In DAMBPC, the direct identification of controller parameters is desired to reduce the design effort and computational load while the IAMBPC involves a two-stage process of model identification and controller design. The former method only requires a single QR decomposition for obtaining the controller parameters and uses a receding horizon approach to process input/output data for the identification. A suboptimal SVD-based optimisation technique is proposed to incorporate the input constraints. The proposed techniques are implemented and tested on a fourth order non-linear model of a wastewater system. Simulation results are presented to compare the direct and indirect adaptive methods and to demonstrate the performance of the proposed algorithms

    FPGA implementation of online finite-set model based predictive control for power electronics

    Get PDF
    Recently there has been an increase in the use of model based predictive control (MBPC) for power-electronic converters. MBPC allows fast and accurate control of multiple controlled variables for hybrid systems such as a power electronic converter and its load. The computational burden for this control scheme however is very high and often restrictive for a good implementation. This means that a suitable technology and design approach should be used. In this paper the implementation of finite-set MBPC (FS-MBPC) in field-programmable gate arrays (FPGAs) is discussed. The control is fully implemented in programmable digital logic by using a high-level design tool. This allows to obtain very good performances (both in control quality, speed and hardware utilization) and have a flexible, modular control configuration. The feasibility and performance of the FPGA implementation of FS-MBPC is discussed in this paper for a 4-level flying-capacitor converter (FCC). This is an interesting application as FS-MBPC allows the simultaneous control of the output current and the capacitor voltages, yet the high number of possible switch states results in a high computational load. The good performance is obtained by exploiting the FPGA’s strong points: parallelism and pipe-lining. In the application discussed in this paper the parallel processing for the three converter phases and a fully pipelined calculation of the prediction stage allow to realize an area-time efficient implementation

    An Economic Model-Based Predictive Control to Manage the Users' Thermal Comfort in a Building

    Get PDF
    The goal of maintaining users' thermal comfort conditions in indoor environments may require complex regulation procedures and a proper energy management. This problem is being widely analyzed, since it has a direct effect on users' productivity. This paper presents an economic model-based predictive control (MPC) whose main strength is the use of the day-ahead price (DAP) in order to predict the energy consumption associated with the heating, ventilation and air conditioning (HVAC). In this way, the control system is able to maintain a high thermal comfort level by optimizing the use of the HVAC system and to reduce, at the same time, the energy consumption associated with it, as much as possible. Later, the performance of the proposed control system is tested through simulations with a non-linear model of a bioclimatic building room. Several simulation scenarios are considered as a test-bed. From the obtained results, it is possible to conclude that the control system has a good behavior in several situations, i.e., it can reach the users' thermal comfort for the analyzed situations, whereas the HVAC use is adjusted through the DAP; therefore, the energy savings associated with the HVAC is increased.Spanish Ministry of Science and Innovation [DPI2014-56364-C2-1-R]; EU-ERDF funds; Competitiveness and ERDF funds; Fundacion Iberdrola Espana; Portuguese Foundation for Science & Technology, through IDMEC, under LAETA [ID/EMS/50022/2013

    Model based predictive control of a drum-type boiler

    Get PDF
    High fuel costs, stringent safety and pollution standards and the need to increase plant life-time have all driven the search for better boiler control. Traditional PID control cannot achieve the best possible results as it does not account for the strong interactions between the controlled variables. Much work has been done in the area of optimal control, but the improvements gained in performance have been lost to some extent by the difficulties involved in tuning such controllers. A linear predictive controller is presented in this paper, which is both fully multivariable and computationally efficient. It is also easy to tune as the controller tuning parameters are physically meaningful

    MODEL BASED PREDICTIVE CONTROL OF UNDERACTUATED NONLINEAR MECHATRONICAL SYSTEMS

    Get PDF
    The paper deals with model predictive control of underactuated nonlinear mechatronical systems along known reference path. It generalizes the state space predictive control algorithm of linear time invariant (LTI) systems to linearized time variant (LTV) systems. An algorithm is presented, which calculates the LTV model online from the nonlinear model along the reference trajectory. The LTV is then used in the framework of the predictive control to find the optimal control in closed analytical form without using online optimum search in the moving horizon. After MATLAB-based simulation results of the algorithm, successful test experiments were performed for the predictive control of a real inverted pendulum system, both in the swinging up and upper stabilization phases
    • 

    corecore