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Abstract -- Model Based Predictive Control (MBPC) is a 

control methodology which uses a process model on-line in the 
control computer; this model is used for calculating output 
predictions and optimizing control actions. The importance of the 
system model has been generally recognized, but less attention 
has been paid to the role of the disturbance model. In this paper 
the importance of the disturbance model is indicated with respect 
to the EPSAC approach to MBPC. To illustrate this importance, 
an example of this advanced control methodology applied to a 
typical mechatronic system is presented, to compare the 
performances obtained by using different disturbance models. It 
clearly shows the benefits of using an ‘intelligent’ disturbance 
model instead of the ‘default’ model generally adopted in 
practice.  
 

Index Terms -- disturbance model, disturbance rejection, 
mechatronics, model, prediction, predictive control. 

I. INTRODUCTION 

ODEL Based Predictive Control (MBPC) is nowadays 
one of the most important control strategies generously 
accepted in industry. This is due to its capability to deal 

with multivariable and non-linear processes, constraints and 
modeling errors, as well as unusual dynamic behavior of 
processes.  

During the last decades, MBPC has become an important, 
distinctive part of control theory and application. A great 
interest has been shown for this methodology resulting in 
many excellent reviews and books [1-6].  

The MBPC methodology is based on a model of the 
process, which is used for calculating the prediction of the 
controlled variables. It is characterized by: 

 explicit on-line use of the process model to forecast the 
process output at future time instants; 

 calculation of an optimal control strategy based on the 
minimization of one or more cost functions, possibly 
including constraints on the process variables. 

The initial predictive algorithms were utilizing linear 
models and a large number of algorithms have appeared in the 
literature [7-10], mainly differing in: 
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 the type of model used to represent the process and its 
disturbances; 

 the cost function(s) to be minimized, with or without 
constraints. 

Taking into account that the PID controller is still the bread 
and butter of the instrumentation engineer in everyday 
industrial practice, it is important to realize that MBPC 
requires the extra-effort of identifying a process model. This 
involves a model for the dynamic system itself as well as a 
model for the disturbances. While PID generally deals with 
control loops situated at the lower level of the control 
pyramid, the more advanced MBPC covers the optimization 
level and it has an important role to play in future process and 
production industries. 

The purpose of this paper is to emphasize the role of the 
disturbance model in the EPSAC approach to MBPC 
[9],[11],[12]. This role has generally been sub-estimated. 

The content of this paper is as follows. The 2nd section 
describes the MBPC methodology used. The 3rd section 
presents in detail the role of the disturbance model and its 
importance, with 2 design solutions: the default design and the 
optimized design. A comparison between these 2 designs and 
the classical PID controller is presented in the 4th section, 
using a typical mechatronic control example. 

II. MBPC METHODOLOGY 

Being one of the earlier predictive controllers, EPSAC 
[9],[11],[12] is based on a generic process model: 
 

( ) ( ) ( )y t x t n t= +                             (1) 
 
which is illustrated in Fig. 1, with: 
- y(t):  (measured) process output; 
- u(t):  process input; 
- x(t):  model output; 
-   n(t): process (y) vs model (x)  disturbance; 
-   t: discrete-time index. 

Fig. 1.   Generic Process Model 
The disturbance n(t) includes the effects in the measured 

output y(t) which do not come from the model input u(t) via 
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the available model. These non-measurable disturbances have 
a stochastic character with non-zero average value, which can 
be modeled by a coloured noise process: 

 
1

1

( )( ) ( )
( )

C qn t e t
D q

−

−=                          (2) 

with: 
- e(t): uncorrelated (white) noise with zero mean value; 
-  C(q-1), D(q-1): monic polynomials in the backward shift 

operator q-1 of orders nc and nd. 
This filter C(q-1)/D(q-1) is considered to be a design filter. It 

plays an important role in MBPC (which has generally not 
been recognized appropriately). It will be further presented in 
detail in Section III. 

A. Prediction Algorithm 
The model output x(t) represents the effect of the control 

input u(t) on the process output y(t) and is also a non-
measurable signal, and the relationship between u(t) and x(t) is 
given by the generic dynamic system model: 

 
[ ]( ) ( 1), ( 2), , ( 1), ( 2),x t f x t x t u t u t= − − − −       (3). 

 
The fundamental step in MBPC methodology consists in 

prediction of the process output y(t+k) at time instant t, 
indicated by { }2( | ), 1y t k t k N+ = … , over the prediction 
horizon N2, and based on: 

- measurements available at sampling time instant t: 
{ }( ), ( 1), , ( 1), ( 2),y t y t u t u t− − − ; 

- future values of the input signal (postulated at time t): 
{ }( | ), ( 1 | ),u t t u t t+ . 

Using the generic process model (1), the predicted values of 
the output are: 
 

( | ) ( | ) ( | )y t k t x t k t n t k t+ = + + +                (4) 
 
Prediction of x(t+k|t) and of n(t+k|t) can be done respectively 
by recursion of the process model (3) and by using filtering 
techniques on the noise model (2) [11],[12]. 

B. Control Algorithm 
In EPSAC for linear models, the future response is then 

considered as being the cumulative result of two effects: 
 

base optimize( | ) ( | ) ( | )y t k t y t k t y t k t+ = + + +          (5) 
 
The two contributions have the following origins: 
 

base ( | )y t k t+ : 
• effect of past control {u(t-1), u(t-2), ...} (initial 

conditions at time t); 
• effect of a base future control scenario, called 

base ( | ), 0u t k t k+ ≥ , which is defined a priori; some 
ideas on how to choose ubase are presented in [11],[12]; 

for linear systems the choice is irrelevant, a simple 
choice being { }base ( | ) 0, 0u t k t k+ ≡ ≥ ; 

• effect of future (predicted) disturbances n(t+k|t). 
The component base ( | )y t k t+  can be easily obtained using 

(2)(3)(4) taking ( | )baseu t k t+  as the model input for (3). 
 

optimize ( | )y t k t+ : 
• effect of the optimizing future control actions 

{ }( | ), ( 1| ), ( 1| )uu t t u t t u t N tδ δ δ+ + −…  with 

base( | ) ( | ) ( | )u t k t u t k t u t k tδ + = + − + . 
 

Refer to Fig. 2 for the concepts of base and optimizing 
controls. Notice that u(t+k|t) is constrained to be constant from 
k=Nu on (and this is realized by selecting ubase(t+k|t) constant 
from k=Nu on and by imposing that δu(t+k|t) should be 
constant from k=Nu on). The design parameter Nu is called the 
control horizon (a well-known concept in MBPC-literature). 

 
Fig. 2.   The EPSAC concept of base/optimizing controls 

 
From Fig. 2 it is obvious that the component 

optimize ( | )y t k t+  is the cumulative effect of a series of impulse 
inputs and a step input: 

• an impulse with amplitude ( | )u t tδ  occurring at time t, 
resulting in a contribution ( | )kh u t tδ  to the process 
output at time t+k  (k sampling periods later); 

• an impulse with amplitude ( 1 | )u t tδ +  occurring at time 
t+1, resulting in a contribution 1 ( 1 | )kh u t tδ− +  to the 
predicted process output at time t+k (k-1 sampling 
periods later); 

• etc;  
• finally a step ( 1 | )uu t N tδ + −  at time 1−+ uNt , 

resulting in a contribution 1 ( 1| )
uk N ug u t N tδ− + + −  to the 

predicted process output at time t+k. 
The cumulative effect of all impulses and the step is: 

 
optimize 1

1

( | ) ( | ) ( 1 | )

... ( 1 | )
u

k k

k N u

y t k t h u t t h u t t

g u t N t

δ δ

δ
−

− +

+ = + + +

+ + + −
   (6) 

The parameters 
21 2, ,... ,...k Ng g g g are the coefficients of the 

unit step response of the system, i.e. the response of the 
system for a stepwise change of the input (with amplitude 1). 
The parameters 

21 2, ,... ,...k Nh h h h  are the coefficients of the unit 
impulse response of the system and can be easily calculated 

u(t+k|t)
u

Nu =4
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u
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from the step response coefficients and vice versa: 
1k k kh g g −= −  (and 0 -1 0 -1... ... 0h h g g= = = = = ≡ ). 

Using (5) and (6), the key EPSAC-MBPC equation: 
 

= +Y Y GU                              (7) 
 
is obtained, where:  
 

[ ]
[ ]
[ ]

1 1 1 1

1 1 1

2 2 2 2

1 2
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            (8) 

 
The controller output is then the result of minimizing the 

cost function: 
 

2

1

2( ) [ ( | ) ( | )]
N

k N
V r t k t y t k t

=

= + − +∑U                (9) 

 
with ( | )r t k t+ the desired reference trajectory and the 
horizons N1, N2 being design parameters. 

It is now straightforward to derive the solution. The cost 
function (9) is a quadratic form in U, having the following 
structure using the matrix notation from (8) and with R 
defined similarly to Y: 

 
1( ) [ ] [ ]V −= − − − −U R Y GU R Y GU               (10) 

 
which leads after minimization w.r.t. U to the optimal 
solution: 
 

* 1[ ] ( )T T−= −U G G G R Y                       (11) 
 

The matrix GTG which has to be inverted has dimension Nu 
x Nu. For the default case Nu=1, this results in a simple scalar 
control law. Only the first element )/( ttuδ in U* is required in 
order to compute the actual control input applied to the 
process: 

 
base base( ) ( | ) ( | ) ( | ) (1)u t u t t u t t u t tδ ∗= + = + U       (12) 

 
At the next sampling instant t+1, the whole procedure is 

repeated taking into account the new measurement 
information y(t+1). This is called the principle of receding 
horizon control, another well-known MBPC-concept.  

III. ROLE OF THE DISTURBANCE MODEL 

A. Default Design 
As described in the beginning of section II, the disturbance 

n(t) includes all effects in the measured output y(t) which do 
not come from the model output x(t). This is a fictitious (and 
thus non-measurable) signal and it includes effects of process 
disturbances, effects of other (un-modeled) process inputs, 
measurement noise, model errors, etc.  

The net effect of all these unknown disturbances has a 
stochastic character with non-zero average value and can be 
modeled by a colored noise process as in (2): 
 

1

1

( )( ) ( )
( )

C qn t e t
D q

−

−=  

 
where the filter C(q-1)/D(q-1) is the disturbance model. 

It is common practice in the MBPC approach to consider 
this filter as a design filter. It can be used - in order to improve 
the quality of the control performance - to “supply” 
information to the controller about the type of disturbances 
that can be expected.  

The simplest way to design this filter is to neglect it, thus 
make it equal to 1. In doing this, not any information about the 
disturbance is given to the controller! In fact, this results in 
‘telling’ to the MBPC-controller that the disturbance 

( ) ( )n t e t= , defined as uncorrelated noise with zero-mean 
average value. As a consequence then, the controller will not 
take any specific action to remove non-zero-mean 
disturbances. Usually, the disturbance has in practice a non-
zero average component, and a steady-state control error can 
thus be expected as the result of a permanent disturbance. 

A better choice for the disturbance model might be: 
 

11

1

1
1

)(
)(

−−

−

−
=

qqD
qC                          (13) 

 
resulting in a disturbance signal n(t) with non-zero average 
value. In this case the MBPC-controller will intrinsically take 
action to remove steady-state errors, similar to the effect of the 
integrator in a PID-type controller. Notice that (13) is the 
‘default’ disturbance model that is usually applied in practice. 

B. Intelligent Design 
The ‘default’ disturbance model (13) still does not supply 

too much useful information to the MBPC-controller about the 
type of disturbance that is acting upon the process. Its main 
advantage is that it is easy-to-design (in fact, there is no 
design at all!). 

In practical applications it is generally not difficult to obtain 
supplementary information about the kind of disturbance 
acting on the process. The disturbance signal n(t) can be 
reconstructed using the generic model (1): n(t)=y(t)-x(t), by 
measuring the process output y and calculating the model 
output x with the system model (3). 
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As n(t) has usually the character of a correlated (colored) 
random signal, a useful and simple approach is then to 
calculate its PSD using a spectral analysis software, to detect 
around which frequency (frequencies) the main disturbance 
energy is situated. 

Assume as an example that the spectrum of these 
disturbances leads to the conclusion that the main energy is 
around a certain frequency f0. Then a more ‘intelligent’ filter 
C(q-1)/D(q-1) can be designed so that it has a band-pass 
characteristic around this frequency. 

One way to design such filter is to use special digital filter 
design techniques (e.g. a Butterworth-filter), which may not 
be necessarily the simplest and most straightforward 
approach. Moreover it will lead to a rather complex 
disturbance filter, which introduces some drawbacks from the 
MBPC-point-of-view (drawbacks which are not further 
elaborated here). Moreover, an accurate filter design is not 
really necessary from the control point of view (which is 
shown experimentally in Section IV). 

C. Disturbance Filter 
An alternative simple, effective and straightforward method 

to design the disturbance filter will now be presented. In order 
to indicate the presence of disturbance energy around the 
frequency f0 it is sufficient to place one of the poles in its 
transfer function near the unit circle (around frequency f0), 
resulting in a peak in the frequency response: 
 

1

1 1

( ) (...)(...)
( ) (1 )(...)(...)j

C q
D q ae qα

−

− −=
−

                   (14) 

 
with 02 sf Tα π=  and 1a ≅  (Ts is the sampling period and 

1a ≤  for stability). 
Indeed, the filter frequency response is obtained by: 

• interpreting q as the complex variable ssTz e=  
• replacing the Laplace-operator by 2s j j fω π= = . 

This then leads to a factor 02 ( )1 sj f f Tae π −−  in (14), which 
approaches zero around the frequency f=f0. As this factor is in 
the denominator of expression (14), it will result in a peak in 
the modulus of the frequency response. 

The design parameter a can be used: 
• to create a sharp and high peak (by taking a close to 1, 

e.g. a=0.99; in the limit it can be equal to 1); this can 
be done in case the location f0 of the main disturbance 
energy is well-known; 

• or to flatten-out the shape of the peak (by making a 
somewhat smaller than 1, e.g. a=0.90); this allows to 
express some uncertainty about the exact location of 
the disturbance energy. 

In conclusion, an effective disturbance filter would thus be: 
  

)1)(1)(1(
1

)(
)(

1111

1

−−−+−−

−

−−−
=

qaeqaeqqD
qC

jj αα
        (15) 

IV. MECHATRONIC APPLICATION 
The method can be applied to most kind of processes. As an 

example we will focus on the field of mechatronic systems, by 
applying it to a system with typical transfer function: 
 

1 2

( )
(1 )(1 )

KH s
s s sτ τ

=
+ +

                  (16) 

 
This transfer function is indeed typical for many electro-

mechanical position servos, the smaller time constant τ1 
representing the dynamics of the electrical actuator, the bigger 
time-constant τ2 representing the dynamics of the mechanical 
load, and the pure integrator being the link between velocity 
and position. Practical examples are manifold, e.g. a parabolic 
antenna positioning system, a robot arm, an active suspension 
system, a laser beam positioning system, … 

As an example let us further focus on an antenna position 
system, where the objective is to control the antenna position 
towards a fixed target (setpoint is zero) despite severe wind 
disturbances with main energy around 2Hz.  

The control loop block scheme is then given in Fig.3. In the 
simulation the wind disturbance is generated as band-pass 
filtered noise by means of a 4th-order Butterworth filter with 
pass-band [1.75 … 2.25]Hz. Also notice that the wind acts as 
a disturbing torque on the mechanical structure, thus being an 
input-disturbance. The sampling period was Ts=20ms. 

 
Fig. 3.   Mechatronic Control Loop 

 
As a reference for the MBPC-results, a PID-controller has 

also been designed: 
 

1( ) (1 )p d
i

R s K T s
T s

= + +                   (17) 

 
using a frequency-domain design software with the 
specification: phase-margin=50°, and resulting in the PID-
parameters: Kp=22.7; Ti=0.60; Td=0.15. 

The MBPC design parameters were Nu=1; N1=1; N2=2 and 
the ‘intelligent’ disturbance filter was here (with a=1 and 
α=2π*2*0.020=0.25): 
 

   
1

1 1 0.25 1 0.25 1

( ) 1
( ) (1 )(1 )(1 )j j

C q
D q q e q e q

−

− − + − − −=
− − −

        (18) 

 
The comparison between PID, default and intelligent 

MBPC control performance is depicted in Figs.4-6 below. 
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As expected, MBPC leads to better performance compared 
to PID (at the expense of a more complicated control 
algorithm). The default MBPC reduces the disturbance 
amplitude to about 1/3 compared to PID (Figs.4/5). However, 
the ‘real’ improvement is obtained when switching from 
default to intelligent MBPC (Figs.5/6).  

Finally, it might also be interesting to evaluate and compare 
the control energy required by the several methods. In Figs.7-
9 the controller output is depicted for each method. 

The conclusion is that the MBPC requires about 2-times the 
effort of PID. However, the real interesting thing is that no 
extra control effort is required by the intelligent MBPC 
compared to the default MBPC! (when comparing Figs. 8/9 in 
detail, the 2 signals are however not identical). 

V. CONCLUSIONS 
The first and the most important step in applying MBPC is 

the identification of the system model. The second step is 
usually the tuning of the design parameters (prediction and 
control horizons).  

However, MBPC also gives the possibility to specify a 
disturbance model, next to the system model. An intelligent 
design of this disturbance model allows to supply to the 
controller useful information regarding the type of 
disturbance. In doing so, the controller will be very effective 
in suppressing this disturbance. 
   A smart choice of this disturbance filter can then result in: 

• elimination of steady-state errors; 
• but also in suppressing specific disturbances; 
• and increasing robustness against modeling errors. 
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Fig. 4.   Process output y(t) for PID 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.   Process output y(t) for default MBPC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.   Process output y(t) for intelligent MBPC 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.   Controller output u(t) for PID 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.   Controller output u(t) for default MBPC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.   Controller output u(t) for intelligent MBPC 
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