1,888 research outputs found

    Life cycle optimization for sustainable algal biofuel production using integrated nutrient recycling technology

    Get PDF
    In this study, a multi-objective optimization of sustainable integration of algal biofuel production using nutrient recycling technology, such as anaerobic digestion and hydrothermal liquefaction, is considered. Gross annual profitability and global warming potential (GWP) are the criteria chosen for the design of the algal biofuel production system. Three scenarios, such as full-scale (baseline), pilot-scale (conservative), and lab-scale (nominal), are chosen based on the expected maturity levels and nutrient demand. The results of the optimization produce Pareto sets of optimal solutions for acknowledging the trade-off between the economic and the environmental criteria of the integrated system. It is found that the anaerobic digestion (AD) technology shows better performance in terms of an environmental perspective, displacing the excessive fertilizer requirements due to its maturity in comparison with the hydrothermal liquefaction (HTL) process. However, HTL is a new, evolving, promising nutrient recycling technology which demonstrates economic preferences compared to the AD process due to its low cost of production

    Mathematical Model of \u3cem\u3eChlorella minutissima\u3c/em\u3e UTEX2341 Growth and Lipid Production Under Photoheterotrophic Fermentation Conditions

    Get PDF
    To reduce the cost of algal biomass production, mathematical model was developed for the first time to describe microalgae growth, lipid production and glycerin consumption under photoheterotrophic conditions based on logistic, Luedeking–Piret and Luedeking–Piret-like equations. All experiments were conducted in a 2 L batch reactor without considering CO2 effect on algae’s growth and lipid production. Biomass and lipid production increased with glycerin as carbon source and were well described by the logistic and Luedeking–Piret equations respectively. Model predictions were in satisfactory agreement with measured data and the mode of lipid production was growth-associated. Sensitivity analysis was applied to examine the effects of certain important parameters on model performance. Results showed that S0, the initial concentration of glycerin, was the most significant factor for algae growth and lipid production. This model is applicable for prediction of other single cell algal species but model testing is recommended before scaling up the fermentation of process

    Introducing a marine biorefinery system for the integrated production of biofuels, high-value-chemicals, and co-products:A path forward to a sustainable future

    Get PDF
    Biofuels have many environmental and practical benefits as a transportation fuel. They are among the best alternatives to fossil fuels- thanks to their capacity for negative carbon emissions, which is vital for archiving the global ambition of a net-zero economy. However, conventional biofuel production takes place on inland sites and relies on freshwater and edible crops (or land suitable for edible crop production), which has led to the food versus fuel debate. It also suffers technical and economical barriers owing to the energy balance and the cost of production compared with fossil fuels. Establishing a coastal integrated marine biorefinery (CIMB) system for the simultaneous production of biofuels, high-value chemicals, and other co-products could be the ultimate solution. The proposed system is based on coastal sites and relies entirely on marine resources including seawater, marine biomass (seaweed), and marine microorganisms (marine yeasts and marine microalgae). The system does not require the use of arable land and freshwater in any part of the production chain and should be linked to offshore renewable energy sources to increase its economic feasibility and environmental value. This article aims to introduce the CIMB system as a potential vehicle for addressing the global warming issue and speeding the global effort on climate change mitigation as well as supporting the world’s water, food and energy security. I hope these perspectives serve to draw attention into research funding for this approach

    Recent achievements in the production of biogas from microalgae

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12649-016-9604-3Microalgae are nowadays regarded as a potential biomass feedstock to help reducing our dependence on fossil fuels for transportation, electricity and heat generation. Besides, microalgae have been widely investigated as a source of chemicals, cosmetics and health products, as well as animal and human feed. Among the cutting-edge applications of microalgae biomass, anaerobic digestion has shown promising results in terms of (bio)methane production. The interest of this process lies on its potential integration within the microalgae biorefinery concept, providing on the one hand a source of bioenergy, and on the other hand nutrients (nitrogen, phosphorus and CO2) and water for microalgae cultivation. This article reports the main findings in the field, highlighting the options to increase the (bio)methane production of microalgae (i.e. pretreatment and co-digestion) and bottlenecks of the technology. Finally, energy, economic and environmental aspects are considered.Peer ReviewedPostprint (author's final draft

    Optimisation of Tray Drier Microalgae Dewatering Techniques Using Response Surface Methodology

    Get PDF
    The feasibility of the application of a tray drier in dewatering microalgae was investigated. Response surface methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimise the effect of air temperature and air velocity as independent variables on the dewatering efficiency as a response function. The significance of independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results indicate that the air supply temperature was the main parameter affecting dewatering efficiency, while air velocity had a slight effect on the process. The optimum operating conditions to achieve maximum dewatering were determined: air velocities and temperatures ranged between 4 to 10 m/s and 40 to 56 °C respectively. An optimised dewatering efficiency of 92.83% was achieved at air an velocity of 4 m/s and air temperature of 48 °C. Energy used per 1 kg of dry algae was 0.34 kWh

    Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects

    Get PDF
    AbstractMicro-algae have received considerable interest as a potential feedstock for producing sustainable transport fuels (biofuels). The perceived benefits provide the underpinning rationale for much of the public support directed towards micro-algae research. Here we examine three aspects of micro-algae production that will ultimately determine the future economic viability and environmental sustainability: the energy and carbon balance, environmental impacts and production cost. This analysis combines systematic review and meta-analysis with insights gained from expert workshops.We find that achieving a positive energy balance will require technological advances and highly optimised production systems. Aspects that will need to be addressed in a viable commercial system include: energy required for pumping, the embodied energy required for construction, the embodied energy in fertilizer, and the energy required for drying and de-watering. The conceptual and often incomplete nature of algae production systems investigated within the existing literature, together with limited sources of primary data for process and scale-up assumptions, highlights future uncertainties around micro-algae biofuel production. Environmental impacts from water management, carbon dioxide handling, and nutrient supply could constrain system design and implementation options. Cost estimates need to be improved and this will require empirical data on the performance of systems designed specifically to produce biofuels. Significant (>50%) cost reductions may be achieved if CO2, nutrients and water can be obtained at low cost. This is a very demanding requirement, however, and it could dramatically restrict the number of production locations available

    Mixing, mass transfer and energy analysis across bioreactor types in microalgal cultivation and lipid production

    Get PDF
    Microalgae are recognised as a source of lipids for bioenergy, nutrients and pharmaceuticals. Photobioreactors, closed vessels for microalgal cultivation, are known to have high energy consumption due to mixing and aeration. Sparging is commonly used for mixing and gas-liquid mass transfer in photobioreactors, but is energy intensive. The aim of this work was to reduce these energy requirements by optimising conventional sparging and considering surface aeration coupled with mechanical agitation as an alternative. An airlift photobioreactor was used as a base for comparison with two novel, surface aerated reactors: oscillatory baffled and wave photobioreactors. The three bioreactors were compared in terms of power input, mixing, CO2 mass transfer, algal growth and lipid production. Prior to comparison, each photobioreactor was optimised based on these parameters. To calculate power input, isothermal gas expansion equations were used for sparged systems and calorimetry was used for mechanically agitation systems. Mixing was investigated using a salt tracer and phenolphthalein indicator and mass transfer was measured using the gassing-in method. Scenedesmus sp., a high lipid-producer, was cultivated in low nitrate media across a range of mixing rates in each photobioreactor.In the airlift photobioreactor a critical minimum CO2 supply rate (of 2.7×10-5 m s-1) was found, below which carbon was limiting and above which energy was spent on sparging without increased productivity (0.20 g L-1 d-1 biomass; 0.03 g L-1 d-1 lipid). In the oscillatory baffled reactor, insufficient mass transfer limited algal productivity (0.11 g L-1 d-1 biomass; 0.02 g L-1 d-1 lipid). The wave reactor had high CO2 mass transfer coefficients (10 – 140 h-1) in comparison to the airlift (2.7 – 40 h-1) and oscillatory baffled reactors (6.3 – 37 h-1). Sufficient biomass productivity (0.18 g L- -1 d-1) and higher lipid productivity (0.045 g L-1 d-1) at lower power input in the wave reactor resulted in higher energy efficiency compared to the airlift reactor. Life cycle analysis of simulated algal biodiesel production showed that bioreactor energy contributed 99% of total energy consumption. Therefore, the global warming potential was reduced by 73% when the airlift reactor was operated at the critical minimum CO2 supply (with gas compression to 2 bar) and a further 19% when the wave reactor was used. This work offers an energy efficient alternative to sparging, through the generation of a well-mixed wave in a surface aerated bioreactor. It also offers methods for optimisation of energy usage with respect to mixing and aeration. Reducing bioreactor energy consumption is key to feasibility, and was demonstrated here to reduce energy-related environmental burdens

    Production of lipid-based fuels and chemicals from microalgae: An integrated experimental and model-based optimization study

    Get PDF
    Abstract Cultivation of microalgae is a promising long-term, sustainable candidate for biomass and oil for the production of fuel, food, nutraceuticals and other added-value products. Attention has been drawn to the use of computational and experimental validation studies aiming at the optimisation and the control of microalgal oil productivity either through the improvement of the growth mechanism or through the application of metabolic engineering methods to microalgae. Optimisation of such a system can be achieved through the evaluation of organic carbon sources, nutrients and water supply, leading to high oil yield. The main objective of this work is to develop a novel integrated experimental and computational approach, utilising a microalgal strain grown at bench-scale, with the aim to systematically identify the conditions that optimise growth and lipid production, in order to ultimately develop a cost-effective process to improve the system economic viability and overall sustainability. To achieve this, a detailed model has been constructed through a multi-parameter quantification methodology taking into account photo-heterotrophic biomass growth. The corresponding growth rate is based on carbon substrate concentration, nitrogen and light availability. The developed model also considers the pH of the medium. Parameter estimation was undertaken using the proposed model in conjunction with an extensive number of experimental data taken at a range of operating conditions. The model was validated and utilised to determine the optimal operating conditions for bench-scale batch lipid oil production
    • …
    corecore