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Abstract 

Microalgal biomass and its lipids are long-term promising candidates for the production of fuels, 

food, nutraceuticals and other added-value products. Due to irreversible depletion of fossil fuel 

reserves for very large demands of transportation and escalating greenhouse gas emissions 

(GHGs) into the atmosphere, serious consideration has been given to microalgae-derived 

biodiesel production due to several outstanding characteristics inherent to microalgae. 

However, the current production cost of microalgal biodiesel is still too expensive to compete 

with conventional fuels. Although microalgal lipids have an immense potential in 

biotechnological applications, in order to improve the sustainability of microagal biodiesel and 

also to enable its economic viability, microalgal biomass and lipid productivities need to be 

enhanced. 

Metabolic modifications by genetic manipulation, mutagenesis or natural selection are 

approaches that have been actively evaluated to develop high productivity strains. On the other 

hand, a combination of kinetic modelling with growth experiments at different scales is widely 

utilised to optimise cultivation conditions and metabolic productivities. Optimisation of the 

microalgae growth media composition and environmental factors such as carbon source, 

nutrient, light intensity and temperature can lead to high metabolic productivities. 

The aim of this Thesis is the development of a novel integrated experimental and computational 

framework to systematically identify optimal growth conditions for biomass growth and lipid 

accumulation and to ultimately result to a cost-effective scaled-up process. To achieve this, 

experiments were initially conducted with heterotrophic growth of a well-studied chlorophyte 

microalgae species Chlamydomonas reinhardtii at bench scale under different acetate and 

nitrogen concentrations, light intensity and temperature. Based on high-fidelity experimental 

observations and on existing literature, a detailed kinetic model was constructed through a 

multi-parameter quantification methodology. The developed model was based on a 

multiplicative modelling approach, which assumes equal contribution of growth limiting factors: 

substrate (acetate), nitrogen, light intensity and temperature. The model was validated and 

utilized in optimisation studies to predict the optimal acetate and nitrogen concentrations, light 

intensity and temperature in order to achieve the highest lipid productivity possible. It was found 

that the lipid productivity can be increased by 50.9 % compared to a base case. 

Scale-up of the process offers a potential pathway to produce substantial amount of lipids for 

biodiesel production. Therefore, the quadruple substrate kinetic model was adapted to be 

applied in large-scale raceway open ponds to assess the applicability of the developed kinetic 

model in scaled-up applications. Experiments with photoautotrophic growth of C. reinhardtii in a 

2 m
3
 raceway open pond were screened.  The open pond model proposed in this study was a 

function of light intensity, temperature and nitrogen. The kinetic parameters of the model were 

estimated using in-house obtained experimental data performed in 2m
3
 raceway open pond. 

The model was validated and is able to predict both biomass growth and lipid accumulation with 

high accuracy.   
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Chapter 1 

Introduction and scope of the Thesis  

Unsustainable energy resources satisfies 88% of the global energy demand, 35% of which is oil 

consumption, 29% coal  and 24% natural gas. (Brennan and Owende, 2013). The continuous 

rise in urbanization and industrialization in the developing countries will increase the energy 

demand by 40% in the period from 2007 to 2030 (Brennan and Owende, 2010). Thus, fossil fuel 

usage will likewise continue to increase (Pittman et al., 2011, Brennan and Owende, 2010). 

Fossil fuels provide a non-renewable form of energy that is limited due to depleting resources 

and will ultimately run out due to the fast growing worldwide energy demand (Brennan and 

Owende, 2010, Hoel and Kverndokk, 1996, Thomas, 2017).  A recent study by Thomas (2017) 

showed that with the 2014 consumption rate without any imports, the Europe & Eurasia would 

consume all of its available oil reserves in 24 years, and all of its natural gas reserves in 72 

years, while their coal reserves would last for more than 600 years. On average, the world 

would consume all of its oil reserves in 64 years, natural gas in 60 years and coal over 380 

years based on 2014 consumption rates. Additionally, the use of non-renewable resources 

leads to the production of harmful greenhouse gases (GHG), carbon dioxide (CO2), nitrogen 

dioxide(NO2), sulphur dioxide (SO2), carbon monoxide (CO), and subsequently it impacts the 

environment on a negative manner generating acid rains due to sulphur dioxide (SO2) and 

global warming (Chiari and Zecca, 2011, Coady et al., 2017). For instance, as the GHG build-up 

in the atmosphere, they act like a blanket covering the planet and heat is trapped inside the 

atmosphere. This is known as the greenhouse effect and leads to a rise in the global 

temperature, the so-called global warming (Montzka et al., 2011). On the contrary, renewable 

forms of energy such as solar and wind energy as well as biofuels, are environmentally 

sustainable sources (Efroymson and Dale, 2015). Although the generation of energy by 

geothermal, hydropower, solar and wind means is successfully substituting the fossil fuel 

demand in several sectors, the increasing energy demand in the transportation sector could 

only be tackled by just a limited number of alternative renewable energy resources among 

which biofuels is the most promising (Demirbas, 2010). Bioethanol, biodiesel, biobutanol, 

biohydrogen and biomethane are the primary types of biofuels which have been commercially 

produced by various biomass sources such as forestry, energy crops, animal fat, agricultural 
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residues and fungal or bacterial microbes (Ahmad et al., 2011, Shankar and Shikha, 2017). 

According to the agreement with the Renewable Energy Directive for 2020, the EU needs to 

replace 10% of the fossil fuels demand with biofuels. In 2012, the annual EU transportation 

energy demand was about 300Mtoe and biofuels supplied around 10Mtoe - mainly biodiesel 

(about 80%) produced from rape seed and bioethanol (about 20%) from wheat, maize, beet and 

sugar cane (EASAC, 2012).    

Biofuels can be classified into four different categories based on the feedstock selection, first, 

second, third and fourth generation biofuels.First-generation biofuels - derived from starch, 

sugar, animal fats and vegetable oil by conventional extraction techniques - represent the 

majority of the current commercially available biofuels, such as bioethanol or biodiesel (Nigam 

and Singh, 2011). Second generation biofuels are produced from lignocellulosic biomass such 

as wood, bagasse, forest residues and agricultural residues such as short rotation forest 

residue and grasses (Nigam and Singh, 2011). Although first and second generation biofuels 

are renewable and environmentally friendly, the use of food crops for the production of biofuels 

has been debated by public and non-governmental organizations due to its conflict with the food 

supply (Driver et al., 2014). Additionally, they are too expensive due to high percentage of free 

fatty acid content which requires extra pre-treatment and raw material processing cost. Third 

generation biofuels produced from natural (isolated and screened from natural habitats) or 

engineered (the lipid metabolism of the strains is genetically modified to achieve higher 

productitivities) microalgae has been the proposed alternative energy source as it does not 

affect the agricultural production. Fourth generation biofuels produced are through 

photobiological solar fuels and electrofuels based on use of raw materials that are 

inexhaustible, cheap and widely available (Aro, 2016). Fourth generation biofuels are likely to 

bring fundamental breakthroughs to the biofuels field. Despite the advantages that fouth 

generation biofuels bear, the technology is still under development. Production of biofuels from 

microalgae was investigated in this thesis due its unique traits. 
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1.1. Biofuels 

Biofuels production is a well-established workflow (Demirbas and Fatih Demirbas, 2011), with 

soybeans, canola oil, palm oil, corn oil, animal fat and waste cooking oil, as the most common 

commercial sources. Traditional forestry plants have also been used in commercial scale to 

produce biofuels. However, the use of such existing biomass sources without any appropriate 

compensation may result in serious environmental problems such as deforestation (Schoneveld 

et al., 2010, Field et al., 2008). On the other hand, a wide selection of agricultural plants such as 

oil crops, rape seed, sunflower and cellulosic crops, such as switch grass and sugar canes, has 

been used for the production of biofuels raising a debate between food and fuel. Due to modern 

practices such as industrialisation, urbanisation, land degradation and desertification, dedicating 

agricultural land specifically for the production of  biofuels is unwise (Jean Vasile et al., 2016). 

Oldeman (1994) studied the impact of degradation of agricultural land and found that since 

1945, around 2 billion hectares out of the world’s 8.7 billion hectares agricultural land, pastures, 

forests and woodlands have been degraded.  

The production of biofuels from microalgae exhibits a great potential in the bio-energy field, 

overcoming the competition for agricultural land which is the major limitation of plant derived 

fuels (Chisti, 2007a, Mercer and Armenta, 2011). Microalgae species can be used for the 

production of several types of renewable biofuels: methane production by anaerobic digestion of 

microalgal biomass (Amin, 2009), biodiesel production from microalgal oil (Demirbas and Fatih 

Demirbas, 2011, Lai, 2014, Dragone et al., 2010), alcoholic fuels (bioethanol, biobutanol) from 

microbial fermentation of carbohydrate and hydrogen production by photobiology (Chisti, 

2007a). Additional fuel types can also be generated from thermochemical treatment of algal 

biomass using methods such as pyrolysis and hydrothermal liquefaction. Furthermore, 

microalgae species are useful for bioremediation processes and they can be used as nitrogen 

fixing fertilizers (Kong et al., 2010, Chisti, 2007a, Zhou et al., 2015). 

The idea of using microalgae as a source for renewable fuel production is not new (Chisti, 

2007a), but it is now being seriously considered due to the irreversible depletion of fossil fuels, 

and more importantly, the increasing concern about global warming which is mainly associated 

with fossil fuel usage. However, the use of microalgal oil for biodiesel production has not yet 

been exploited commercially as the current price for its production is still too high compared to 
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the fossil fuel diesel one (Kotasthane, 2017). Approximately 60-75% of the total cost of 

microalgal biodiesel comes from the microalgae cultivation, mainly due to the high cost of the 

carbon source, the fertilizer requirements and the high cultivation facility costs relative to the 

often low oil productivity (Driver et al., 2014). In order to bring the technology a step closer to 

industrialisation, sustainability and economic viability of the microalgal biofuel market, its 

production needs to be improved. 

1.2. Optimization of Microalgal Oil Production 

There two main methodologies that have been widely evaluated to optimise the lipid production 

are strain development and integration of mathematical modelling with growth experiments at 

different scales. The strain development is carried out mainly by genetic manipulations, 

mutagenesis or natural selection. Several studies have attempted to overexpress or knock out 

the genes that are involved in lipid biosynthesis to understand their roles in lipid accumulation 

and most of these transgenic overexpression studies, resulted in the enhanced accumulation of 

TAGs in microalgal cells (Radakovits et al., 2010, Trentacoste et al., 2013, Carrier et al., 2014). 

Furthermore, an integration of detailed mathematical kinetic models and in-house produced 

growth experimental data at different scales can be exploited for the evaluation of the growth-

limiting factors in order to achieve optimal cultivation conditions and metabolic productivities 

(Goncalves et al., 2015, Thornton et al., 2010, Pfaffinger et al., 2016, Han et al., 2015). 

Experimental studies have revealed that both the microalgal biomass growth and the lipid 

accumulation can be simultaneously and antagonistically affected by the growth media 

composition and environmental factors such as carbon source and nitrogen concentration, and 

light intensity and temperature, respectively (Breuer et al., 2015, Chen and Johns, 1994, 

Converti et al., 2009, Blair et al., 2014). Microalgal storage lipids comprise of the neutral lipid 

Triacylglycerol (TAG), stored in cytosolic and/or plastidic lipid bodies (Chisti, 2007b). The 

production rate of such lipid bodies can be increased by abiotic stress, supply nutrient 

deprivation such as of nitrogen (N) and phosphorus (P), and environmental factors such as light 

intensity and temperature stresses (Bajhaiya et al., 2016, Converti et al., 2009). The balance 

between biomass growth and lipid accumulation under extreme nutrient starvation drives 

substantial cellular lipid accumulation while significantly inhibiting cell growth, and thus net 
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volumetric lipid productivity, is a critical component (Griffiths and Harrison, 2009). Coupling 

detailed kinetic models and experiments at different scales could be a very useful framework to 

be employed to understand the relationship between growth limiting factors, lipid accumulation 

and biomass growth. Such a framework can then be utilised for the optimisation of the biomass 

growth and lipid accumulation, in order to ultimately achieve realize a positive energy balance 

for a cost effective and sustainable scaled-up biodiesel production (Béchet et al., 2013, Bernard 

et al., 2016). 

Co-limitation of both growth media composition (nutrients and carbon substrate availability) and 

environmental factors (light intensity and temperature) is commonly observed in natural 

environments (Lee et al., 2015, Béchet et al., 2013, Chisti, 2007b). Autotrophic and 

heterotrophic microalgal biomass growth are mainly limited by the carbon, nitrogen and 

phosphorus concentrations, and light intensity and temperature. In order to reveal the 

interactions between biomass growth, lipid accumulation and limiting factors, and to get a better 

understanding of microalgae growth process, the co-limitation concept has been widely applied 

in the kinetic modelling field (Solimeno et al., 2015, Mairet et al., 2011a, Franz et al., 2012, Shi 

et al., 2000, Beran and Kargi, 2005). The main assumption behind the co-limitation approach is 

that both growth media composition and environmental factors as well as their interactions 

control the microalgal biomass growth and the lipid accumulation. 

This phenomenon has been studied through two other kinetic modelling frameworks: the 

threshold and multiplicative models. The threshold model considers that the biomass growth is 

only influenced by the growth limiting factor with the lowest concentration, and consequently, 

the model becomes a single substrate growth model. On the contrary, the multiplicative 

modelling approach considers the co-limitation of two or more growth limiting parameters that 

contribute to microalgal biomass growth and lipid accumulation equally.  

Although both the threshold and the multiplicative kinetic modelling approaches are able to 

precisely predict the effects of the growth limiting factors, they are not capable of predicting the 

simultaneous effects of other co-limiting factors such as carbon and nitrogen concentrations, 

and light intensity and temperature with the same accuracy. Mathematical modelling 

approaches has widely been utilized on a theoretical basis to investigate both microalgal 

biomass growth and lipid accumulation under the simultaneous and antagonistic effect of 
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multiple growth limiting factors (Zhang et al., 1998, Yang et al., 2011, Xin et al., 2010, Yoo et al., 

2014, He et al., 2012). However, the published data are limited and they do not allow 

conclusions to be made on the kinetic interactions between microalgal biomass growth and lipid 

production with respect to the growth-limiting factors. 

1.3. Thesis objective and research contribution 

The main objective of this work is to understand the simultaneous and antagonistic effect of 

nutrient and substrate concentrations, light intensity and temperature on microalgae growth with 

a particular focus on lipid accumulation. To achieve this, a kinetic model was developed to 

provide an understanding of microalgal growth and lipid accumulation so that in conjunction with 

high fidelity experimental data, cultivation conditions could be optimised in order to improve the 

sustainability and competitiveness of algal derived biofuels industry. Additionally, the effect of 

nutrient stress, carbon substrate stress and environmental variables (light intensity and 

temperature) stress, which result in maximum lipid productivity with the least negative effect on 

microalgae growth rate, was explored. Screening of macrospic/semi-empirical microalgae 

growth kinetic models, and consequently understanding the phenomena behind them, was also 

undertaken, and a new kinetic model overcoming the problems associated with these kinetic 

models was developed. The adaptation of the developed kinetic model to be used at a raceway 

open pond scale is the last part of the research contribution presented in this Thesis. 

1.4. Thesis Structure 

This thesis is presented in “journal format” as a series of papers one published and two 

submitted for publication in scientific journals. Previous studies related to the experimentation 

and kinetic modelling of microalgal biomass growth and lipid accumulation are extensively 

reviewed in Chapter 2. The research contributions of this work are summarised as follows: 

 

1. A kinetic modelling of microalgal biomass production and lipid accumulation is constructed 

here in conjunction with experiments of various growth media compositions to define the 

optimal growth conditions resulting in maximum biomass growth and lipid accumulation. In 

order to investigate the interactions between the biomass growth, the lipid accumulation and 



21 

 

the nutrient and substrate stresses, bench scale experiments were carried out for different 

nutrient and acetate concentrations using the well-studied chlorophyte microalgal species 

Chlamydomonas reinhardtii. 

To develop a novel bench scale kinetic model, all existing single and multiple (threshold 

models and multiplicative) substrate models were identified and the phenomena behind them 

along with the weaknesses and strengths of each model were studied. Based on the 

experimental observations and the existing literature, a novel multi-parameter, predictive 

kinetic model was constructed to describe algal growth and lipid accumulation in laboratory-

scale batch systems. The constructed model takes into consideration the effects of three 

different growth limiting parameters: acetate (organic carbon substrate for the heterotrophic 

component of growth), nitrogen, light intensity as well as pH.  

An in-house developed stochastic algorithm, based on Simulated Annealing (SA), was 

coupled with a deterministic method, Sequential Quadratic Programming (SQP) applied 

through the “fmincon” function in MATLAB, to identify key parameters of the process leading 

to optimal microalgae growth and productivity for the bench-scale batch system. The 

developed kinetic model is then validated against a different set of data. Ultimately, the 

validated model was used in an optimization study to predict the optimal growth condition to 

achieve the highest biomass and the lipid productivities under the simultaneous effect of N, 

S, I. The optimal growth condition was found to be 2.1906 g L
-1

 acetate and 0.0742 g L
-1

 

nitrogen. The lipid productivity was increased by 32.85%, which corresponds to 20.5 mg L
-1

 

increase compare to the base case. The resulting optimization results were finally validated 

experimentally. This study is presented in Chapter 3. 

 

2. Environmental factors, light intensity and temperature variations are also responsible for the 

biomass growth and they have an inhibitory effect on microalgal biomass growth and lipid 

accumulation. In order to investigate the effect of light intensity and temperature, lab scale 

experiments were performed at different light intensities and temperatures and also using the 

well-studied chlorophyte microalgal species Chlamydomonas reinhardtii. 

The kinetic model developed (see Chapter 3) was extended to take into account the co-

limitation of environmental factors, light intensity and temperature. Consequently, the 

biomass growth and lipid accumulation rates of the improved model were expresses as 
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functions of the simultaneous effect of carbon substrate concentration, nitrogen 

concentration, light intensity and temperature. 

The expanded model was then validated and utilized in an optimization study to determine 

the optimal light intensity and temperature to achieve the maximum lipid productivity through 

the use of the predefined optimal acetate and nitrogen concentrations (2.1906 g L
-1

 acetate 

and 0.0742 g L
-1

 nitrogen). It was found that the computed optimal lipid productivity 

increased by 50.9 % compared to a base case, and by 13.6% compared to the previously 

computed optimal case (chapter 3). The resulting optimization results were ultimatelly 

validated experimentally. This work is described in detail in Chapter 4. 

 

3. The scale-up of the microalgal biomass growth process is necessary in order to investigate 

its economic viability and to bring the technology one step closer to commercialisation and 

industrialisation. Here, experiments were carried out in 2 m
3
 raceway open ponds to assess 

the applicability of the detailed kinetic model constructed earlier (see Chapter 4). The kinetic 

model was constructed and validated for the heterotrophic growth of C. reinhardtii. Due to 

preliminary experiments demonstrating problems of microbial contamination in open ponds 

through the use of acetate, different strategies were employed such as reduced initial 

acetate, nitrogen and biomass concentrations. However, all these strategies still resulted in 

contamination. Hence, experiments and modelling were conducted for photoautotrophic 

growth of C. reinhardtii in the absence of acetate. This work is described in Chapter 5. 

As the microalgae strain uses available atmospheric CO2 to perform photosynthesis, the 

effect of carbon source on biomass growth and lipid production has been removed from the 

corresponding kinetic model. The final open pond model considers the simultaneous effect of 

three growth limiting factors: light intensity, temperature and nitrogen. The developed model 

was used in conjunction with the in-house produced experimental data performed in 2m
3
 

raceway open ponds to define key parameters of the process which lead to the optimal 

microalgae growth and productivity.Subsequently, the model was validated and used for the 

optimization and the control of microalgal growth process to define the optimal operating 

conditions which lead to the highest lipid productivity at the open pond scale. 
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Chapters 3 to 5 each contain a preface and the paper submitted to the scientific journals with 

the discussion of the corresponding study. Finally, conclusions of this work are summarised in 

Chapter 6. 
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2. Literature Review 

2.1. Introduction 

From the previous chapters, it becomes clear that it is essential to identify alternative renewable 

sources of fuel that need to be carbon neutral so as to mitigate with CO2 emission and also to 

reduce dependence on fossil fuels towards sustainable development of biodiesel industry. Use 

of microalgae for the production of biodiesel due to is unique advantages. The economic 

viability of biodiesel production from microalgae is strictly dependent on the metabolic 

productivities of the strains. In this chapter, the state of the art in production of biodiesel from 

microalgae is presented. Initially, in section 2.2., the effects of cultivation conditions on the 

production of microalgal oils and biofuels are explained. Subsequently, in section 2.3., the effect 

of nutrient starvation and environmental factors on microalgal oil accumulation was discussed. 

Then, microalgae culture systems were studied with particular focus on the potential of each of 

the technology. Finally, optimization of microalgal lipid productivity was studied. 

2.1.1 Microalgal oil and biofuels 

Microalgae are able to produce significant amounts of lipids, proteins and carbohydrates that 

can be converted into biofuels, foods, feeds and high-value bio-products (Chisti, 2007b). 

Microalgal biomass has been considered as an alternative feedstock for biodiesel production for 

more than 50 years  (Driver et al., 2014, Chisti, 2007b). This is due to the intrinsic advantages 

that microalgae bear, such as rapid growth rate of microalgae and high oil productivity per area 

of land used (Georgianna and Mayfield, 2012). Additionally, a marine strain can be cultivated in 

saline water, or a strain may be cultivated in wastewater leading to the reduction of the use of 

resources (fresh water, nutrient fertilizer) and also mitigating air pollution. Furthermore, 

microalgae can grow on non-arable land that would not be used for traditional agricultural 

activities, considerably increasing agricultural land availability and bearing simple growing 

requirements (light, nitrogen, potassium and CO2) (Borowitzka, 1999, Dragone et al., 2010). 

Ultimately, the use of microalgae as a feedstock for the production of biomass for markets such 

as food, feed, energy, and CO2 mitigation, is considered to be a most sustainable, renewable, 

effective and environmentally friendly response to climate change and food–feed security 
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concern, and it has the potential to solve some of the future limitations of traditional biomass 

sources (Ziolkowska and Simon, 2014, Mata et al., 2010). Most importantly, it has been claimed 

that microalgal-based fuels are the only renewable energy source that has the potential to 

replace the traditional fuels and meet the global energy demand in the log-term (Vassilev and 

Vassileva, 2016).  

Microalgal oil comprises of a neutral lipid triacylglycerol (TAG) which is stored in cytosolic and/or 

plastidic oil bodies (Chisti, 2007b). The microalgal production of such oil bodies can be 

improved by abiotic stress, including starvation of nutrients like nitrogen (N) and phosphorus 

(P), and environmental factors such as light intensity and temperature stress (Bajhaiya et al., 

2016, Converti et al., 2009). Depending on the fatty acid characteristics, the lipid can be 

processed directly or it can be utilised into biolubricants, surfactants, nutritional lipids like 

omega-3 fatty acids, and most importantly, into liquid fuels and gas. The use of microalgal oil as 

feedstock for biodiesel production has not yet been commercially exploited as the current price 

of algal oil production is still too high to compete with fossil fuel diesel. Cultivation of microalgae 

accounts for 60-75% of the total cost for microalgal biodiesel production, mainly due to the high 

cost of carbon and nutrients input and the high cultivation facility costs relative to usually low oil 

productivity (Driver et al., 2014). Collet et al. (2011) recently performed a life cycle analysis 

(LCA) to assess biogas production from microalgae Chlorella vulgaris. The study shows that 

production of methane from microalgae is strongly related with the electricity demand and it 

suggests that in order to commercialise this technology, the most energy consuming steps, 

mixing and circulation costs needs to be decreased or the efficiency of the anaerobic process 

needs to be enhanced. 

Despite the disadvantages of this technology, the use of microalgal oil for biodiesel production 

offers several advantages in terms of environmental impact and sustainability. The advantages 

are: rapid growth rate and high oil content per area of land required (Georgianna and Mayfield, 

2012), reduction of GHG emissions by avoiding fossil fuel combustion and the fixation and use 

of atmospheric CO2 and/or waste organic carbon (e.g. waste glycerol), mainly for marine and 

wastewater cultivated microalgae (Pittman et al., 2011) where there is no competition for 

agricultural land, nutrients (N,P and CO2) and light (Dragone et al., 2010, Borowitzka, 1999). 

Despite the immense potential of microalgae oil and carbohydrate in biotechnological 

applications, metabolic productivity of microalgae needs to be improved in order to enhance its 



26 

 

economic viability. Strain selection and development by genetic manipulation, mutagenesis or 

natural selection are approaches that have been actively considered (Goncalves et al., 2015).  

On the other hand, kinetic modelling can be used to optimise the cultivation conditions and the 

metabolic productivity. Furthermore, production of biofuels from microalgae can be improved 

through understanding the balance between biomass growth and lipid accumulation, whereby 

extreme nutrient starvation conditions that lead to substantial cellular oil production can also 

significantly inhibit biomass growth (Béchet et al., 2013). For this reason, integrated 

mathematical and experimental studies can be an important tool to explore the enhancement of 

the lipid production process by modelling and experimentally validating microalgal metabolism 

and metabolite yields (Béchet et al., 2013, Jørgensen, 1976, Bernard et al., 2016).  Therefore, 

attention has been drawn to these combined experimental/modelling methodologies to develop 

a framework that could utilise algal strains in an integrated and cost effective way in order to 

improve the sustainability and competitiveness of the algal-derived biofuels industry.  

2.2. Effects of Cultivation Conditions 

Growth characteristics and composition of microalgae strongly depend on cultivation conditions. 

There are three major cultivation conditions: autotrophic, heterotrophic and mixotrophic.  

2.2.1. Autotrophic cultivation 

The most common microalgae cultivation method is the autotrophic cultivation (Perez-Garcia et 

al., 2011), in which the strain uses natural or artificial light as an energy source and carbon 

dioxide as a carbon source to form biomass through photosynthesis. The autotrophic cultivation 

cycle is represented in more detail in Figure 2.1 (Chen et al., 2011). Autotrophic cultivation 

provides several advantages: (a) the strain can convert sunlight into valuable chemicals by 

using inexpensive natural resources (CO2 and H2O), (b) also leading to CO2 reduction, and (c) 

microalgae grows at areas where other crops cannot grow due to salty water, excessive sun 

light and lack of essential nutrients (Chisti, 2007b, Liang et al., 2009). 
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Figure 2.1 Autotrophic cultivation (Venkata Mohan et al., 2015). In this type of cultivation, in 

order to incorporate CO2 into glucose, three ATP and two NAPDH are required, which are 

produced through charge separation, light absorption, proton gradient and water-splitting. The 

dark phase (Calvin cycle) of autotroptic cultivation consists of three main steps: CO2 fixation, 

reduction and regeneration. 

The provision of sufficient natural or artificial light triggers massive growth and high densities of 

microalgae cells. However, light supply in an autotrophic cultivation system should be limited to 

certain values - below which the more the light the higher the growth - depending on the 

microalgae species of interest (Perez-Garcia et al., 2011). Exceeding these light supply limits 

causes photo oxidation, which in turn damages the light receptors of algae and reduces the 

photosynthetic rate and productivity (Hu et al., 2008b, Van Wagenen et al., 2012). Moreover, it 

is difficult to achieve high-density microalgae culture due to both light penetration being 

inversely proportional to cell density and mutual shading of cells which result in very low 

biomass and lipid productivity (Liang et al., 2009).    
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2.2.2. Heterotrophic cultivation 

Microalgae can also use organic carbons such as sugars and organic acids as a carbon source 

in order to be able to survive (see 

Figure 2.2). External carbon sources provide prefabricated chemical energy, which is usually 

stored by algae as lipid, starch, or protein depending on the route of metabolism of the external 

carbon and the metabolic needs of the cell at that time. This mode of cultivation is called 

heterotrophic (Chen et al., 2011). Heterotrophic cultivation takes place both in the presence and 

absence of light. In photo-heterotrophic cultivation both light and carbon serve as energy 

sources while in dark conditions, organic carbon is the sole energy source. Heterotrophic 

cultivation eliminates the light dependency and thus, it provides the possibility of a significant 

increase in culture density and productivity (Chen and Johns, 1996) without any light source 

supply.  

 

Figure 2.2 Heterotrophic cultivation (Venkata Mohan et al., 2015). In heterotrophic cultivation, 

an organic carbon source is utilised through the respiration metabolism to generate biomass. 

The Acetyl-CoA is produced from an extra cellular organic carbon source available in Pyruvate 

and is then transformed into lipids in the lipogenesis phase. 

Heterotrophic cultivation processes can potentially provide a cost effective massive biomass 

growth and high-density microalgae culture method of cultivation for some algae species 
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(Perez-Garcia et al., 2011, Chen and Johns, 1996). To be able to grow heterotrophically, 

microalgae species must bear the following characteristics: (a) the ability of cell division and of 

having active metabolism without light, (b) the ability to grow in cheap and easily sterilized 

media, (c) the ability to adapt quickly to environmental changes, and (d) the ability to resist 

hydrodynamic stresses in the fermenters (Chen and Chen, 2006). Chlamydomonas, Chlorella, 

Tetraselmis, and Nitzschia are good examples of heterotrophically grown microalgae species 

(Gao et al., 2010, Chen and Johns, 1996, Nan and Dong, 2004). Glucose, organic acids, 

sugars, sugar phosphates, monohydric alcohols and sugar alcohols are the most commonly 

used carbon sources for heterotrophic cultivation (Perez-Garcia et al., 2011). Although the 

achieved cell densities are significantly higher compared to autotrophic cultivation, the organic 

carbon cost is very high when compared to all other supplementary nutrients (Meireles dos 

Santos et al., 2017). To make such systems economic viable, a cheap carbon source (e.g. 

crude glycerol derived from biodiesel production) should be used. 

2.2.3. Mixotrophic Cultivation 

Mixotrophic cultivation occurs when photosynthetic and respiratory metabolisms operate 

simultaneously (see Figure 2.3), where microalgae uses both organic compounds and CO2 as a 

carbon source to form biomass (Lee, 2007). This means that the strain is able to survive under 

either heterotrophic or phototrophic conditions, or under both. CO2 is assimilated through 

photosynthesis which is affected by light intensity, and organic carbons are fixed through the 

respiratory metabolism which is influenced by organic carbon concentration (Wang et al., 

2014a). In this mode of cultivation, lowlight intensity and low organic carbon concentration may 

limit the algae growth. On the other hand, highlight intensity and high carbon concentration may 

inhibit algae growth. 
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Figure 2.3 Mixotrophic cultivation (Venkata Mohan et al., 2015). In mixotrophic cultivation, both 

inorganic and organic carbon sources are utilised through the photosynthetic and respiration 

metabolism, respectively, to generate biomass. Acetyl-CoA is generated from both the carbon 

sources through CO2 fixation (Calvin cycle) and the extra cellular organic carbon, and is then 

transformed into lipids in the lipogenesis phase. 

The main difference with this mode of cultivation is that the organic carbon can also be used as 

energy source, while photoheterotrophy requires only light as energy source. Consequently, 

photoheterotrophy is rarely used for biodiesel production due to  the need for both organic 

carbon and light at the same time (Chen et al., 2011).  

As organic carbon can be assimilated under mixotrophic cultivation, the growth of microalgae 

does not completely depend on photosynthesis and light is not an absolute constraint for 

microalgal biomass growth. Consequently, photolimitation and photoinhibition can be decreased 

in mixotrophic cultivation when light intensity levels are too high or too low (Wang et al., 2014a). 

Compared to the heterotrophic cultivation mode that solely relies on organic carbons, 

mixotrophic cultivation offers higher productivities with an identical organic carbon source. 

Furthermore, as the organic carbon source contributes to about 45% of microalgae cultivation 
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cost  (Ogbonna and Moheimani, 2015), microalgal lipids production cost may also be reduced 

when cultivated under mixotrophic cultivation as it achieves higher productivities compare to 

heterotrophic cultivation (Wang et al., 2014a).  

Hetrotrophic cultivation of Chlorella on organic carbon substrate (acetate and glucose) has been 

used in Japan with approximately 550 t produced in 1996 (Borowitzka, 1999). Tetraselmis 

species were also grown heterotrophically in UK for a short period, however the production cost 

was too high to compete with the conventional methods and therefore the focus was given on 

autotrohically grown algae (Borowitzka, 1999). Heterotrophic culture has also being used in the 

USA for the production of long-chain polyunsaturated fatty acids (Borowitzka, 1999). Despite 

the disadvantages of heterotrophic growth, not being possible for all microalgae species and 

composition of the strain often changes under heterotrophic conditions, the culture offers 

several advantages, namely: (i) fermentation process is well studied and there is wide 

knowledge in their design and operation, (ii) high cell densities can be achieved. Consequently, 

production of microalgal lipids under heterotrophic conditions has more potential to bring the 

microalgal biodiesel production technology one step closer to industrialisation.   

2.3. Effect of nutrient starvation and environmental factors 

on microalgal oil accumulation 

The development of microalgae-derived biofuels faces great challenges due to the high 

production cost of microalgae compared to fossil-derived fuels. Several studies have been 

undertaken to improve the economic feasibility of microalgae-derived biofuels production by 

enhancing strain performances, algae culture systems, harvesting and extraction techniques 

(Zhu et al., 2014). 

Under desirable conditions, microalgae commonly produce cell wall carbohydrates, proteins and 

membrane lipids for cell structure. Moreover, under abiotic stress, including nutrients starvation 

like nitrogen (N) and phosphorus (P), and growth conditions stress like light intensity and 

temperature (Bajhaiya et al., 2016, Converti et al., 2009, Zhu et al., 2014), many microalgae 

species cease cell division and switch from photosynthetic carbon partitioning to forming energy 

rich storage compounds such as lipid and/or starch which can be processed into biofuels (Hu et 

al., 2008a, Li et al., 2012, Zhu et al., 2014). Consequently, to advance microalgal biofuel 
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production it is important to reveal the interactions between growth-limiting factors and 

metabolic productivities that results in high biomass and storage compounds production.      

2.3.1. Nutrients starvation and substrate variation 

Experiments with numerous microalgae strains have shown that biomass and storage 

compounds accumulation can be manipulated by varying the growth media composition. 

Growth media manipulation is mainly achieved through nutrient starvation. N-limitation and P-

limitation can significantly influence the microalgae biomass composition, hence they are 

considered to be the most critical nutrient limitations. Controlling these nutrients and mainly the 

concentration of N can significantly enhance lipid accumulation. For this reason, nutrients’ 

concentration manipulation is deemed to be the most affordable and convenient approach (Hu 

et al., 2008a).  

Several studies have been carried out to demonstrate the effect of N-limitation on microalgal 

lipid accumulation and are summarised in Table 2-1. A general trend of nutrient starvation 

reveals that the TAG synthesis in microalgae increases upon N-starvation. N-limitation studies 

with Botryococcus species, Chlorella vulgaris,Chlamydomonas reinhardtii and Haematococcus 

pluvialis show substantial increases in lipid concentration upon N-starvation. As a result of the 

decline in cell protein as well as chlorophyll content and the reduced cell division upon N-

limitation, the total culture volume biomass concentration decreases (Courchesne et al., 2009). 

Biomass growth and lipid accumulation are strictly dependent on substrate (organic and 

inorganic carbon depends on the cultivation condition) availability (Fan et al., 2012). High 

substrate concentration stimulates the N-limitation induced lipid production. On the other hand, 

low substrate concentration favours algae growing. The substrate uptake is induced by light in 

growing microalgae cells and it leads to an increase in storage compounds such as lipid and 

starch. This effect suggests that in dark-grown algae, increasing the substrate concentration 

does not increase the lipid accumulation during N-limitation (Fan et al., 2012). Some studies 

with Chlamydomonas Reinhardtii reveal the inhibitory effect of different substrate types and 

concentrations (see Table 2-1). As can be seen in Table 2-1, the lipid content increased 10-15% 

upon nitrogen starvation and different growth rates have been observed when grown in different 

nitrogen sources (urea, nitrate and ammonia) with the highest growth rate recorded for the 
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microalgae growth in urea and lowest for the growth in ammonia. The effect of carbon source 

has also been studied in Table 2-1. As can be seen, increasing the acetate concentration 

increases the biomass growth until a point, and then the inhibition takes place. The table also 

shows that the carbon source availability increases in the number and size of oil bodies given 

acetate boost and also the amount of oil increases steadily as the acetate concentration 

increases to the levels several-fold higher than that of the standard growth medium. 
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Table 2-1 General impact of nitrogen and acetate on the biochemical composition of oil producing algae. 

Factors Organisms Conditions Observations  References 

Nitrogen 

Botryococcus sp- 
TRG 

Nitrogen starvation Lipid content increased from 25.8% to 35.9% 

(Yeesang and Cheirsilp, 2011) 

Botryococcus sp- 
KB 

Nitrogen starvation Lipid content increased from 17.8% to 30.2% 

Botryococcus sp- 
SK 

Nitrogen starvation Lipid content increased from 15.8% to 28.4% 

Botryococcus sp- 
PSU 

Nitrogen starvation Lipid content increased from 5.7% to 14.7% 

M. aeruginosa  Nitrogen starvation 
Higher polysaccharide content under nitrogen starvation 
condition 

(Yang et al., 2012) 

C. vulgaris 
Nitrogen starvation 
(75% decrease) 

Increase in lipid synthesis from 
(Converti et al., 2009) 

5.90% to 16.41% 

H. pluvialis Nitrogen starvation 
Increase in carotenoid 

(Borowitzka et al., 1991) 
formation (13% w/w) 

C. reinhardtii Nitrogen Source 
Growth in urea  0.071 h

-1
 in nitrate 0.062 h

-1
 and in Ammonia 

0.058 h
-1

 
(Zhang et al., 1999a) 

Acetate  

C. reinhardtii C availability 
Increase in the number and size of oil bodies given acetate 
boost 

(Goodson et al., 2011) 

C. reinhardtii C availability 
The amount of oil increased steadily as the acetate 
concentration increased to the levels several-fold higher than 
that of the standard growth medium 

(Fan et al., 2012) 

C. reinhardtii C availability 
Growth yield increased from 0.4 g/L acetate to 3.4 g/L and 
decreased for 5.1 g/L acetate 

(Chen and Johns, 1996) 
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2.3.2. Environmental factors 

Apart from the essential carbon availability and macronutrients as well as micronutrients, having 

favourable environmental conditions (light intensity and temperature) are also necessary in 

algae cultivation processes to manipulate algal growth, reproduction, lipid accumulation, algae 

chemical composition and photosynthetic activity, as well as economic viability of the processes 

(Rosso et al., 1995, Singh et al., 2015, Hu et al., 2008a). Therefore, the supply and efficient 

utilisation of these two environmental factors need to be controlled in order to improve algal 

biomass growth and lipid accumulation for biofuel production. 

Many photosynthetic microalgae species are capable of heterotrophic growth, utilizing organic 

carbon under dark conditions to produce biomass and valuable products. However, for some 

algae strains, light is also required for the efficient biomass and storage compounds production, 

since the biomass growth rate of such mixotrophic cultures is dependent on a combination of 

both heterotrophic and photoautotrophic conditions (Li et al., 2012). In such cases, the light 

requirement is less than the one in photoautotrophic growth. Therefore, in order to achieve a 

desired biomass concentration with high concentration in desired products, the light intensity 

and quality needs to be controlled. 

The net algae growth rate increases with an increase in light intensity and temperature, until a 

certain point where the biomass growth rate is at its maximum. Increasing the light intensity and 

temperature beyond this point does not increase algal growth rate. On the contrary, increasing 

the light intensity causes photo oxidation, damages the light receptors of algae and reduces the 

photosynthetic rate and thus the productivity. Various studies have utilised microalgae species 

like Chlorella minutissima, Chlorella vulgaris, Enteromorpha species, Chlamydomonas 

reinhardtii, Botryococcus species, Botryococcus braunii, Nannochloropsis species and 

Dunaliella virdis to show the effect of light intensity and temperature variations, and are 

summarised in Table 2-2. A more detailed review on light intensity and temperature variations 

can be found in Singh et al. (2015) and Ras et al. (2013). The effect of light intensity studies 

with respect to different microalgae species listed in Table 2-2 shows that increasing the light 

intensity increases biomass and lipid growth rates several fold higher than the low light 
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intensities. The table also shows the inhibitory effect of light intensity where high light intensities 

reduce the biomass and lipid growth rates. The effect of different light colours has also been 

shown in the table and the maximum specific growth rates monitored are as follows: 

blue>white>green>red. Table 2-2 also shows the influence of temperature on biomass and lipid 

growth rates where similar observations as of light intensity are observed. The table shows that 

increasing the temperature until optimal point reduces the doubling time and increases the 

biomass growth rate and exceeding the optimal temperature, microalgae growth rate sharply 

decreases and at high temperatures where the strain cannot survive the growth rate becomes 

zero.    
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Table 2-2 General impact of temperature and light on the biochemical composition of oil producing algae. 

Factors Organisms Conditions Observations  References 

Temperature 

C. minutissima increased from 10 to 30 growth increased from 0.12 d
-1

 to 0.66 d
-1

 (Aleya et al., 2011) 

C. vulgaris reduced from 27 to 5 doubling time increased from 8.6 h to 48.5 h  (Maxwell et al., 1994) 

B. braunii 

increased from 
5,15,20,25,30,35,38 and 
45 

0
C 

maximum specific growth rate increases up to a 
point where the maximum specific growth rate 
becomes zero (0.095, 0.207, 0.392, 0.431, 0.496, 0 
0 and 0 d

-1
 respectively) 

(Yoshimura et al., 2013)  

increased from 25 to 32 lipid content decreased from 22% to 5% (Kalacheva et al., 2002) 

Light  

Enteromorpha sp 
increased to 90 µE m

-2 
s

-1
 

from 20 and 40 µE m
-2 

s
-1

 
Biomass increased compared to other two 
treatments 

(Sousa et al., 2007) 

C. reinhardtii Light Availability 
Chl content was 10.1 mg L-1 for dark growth, 15.3 
g.L-1 for 12-12h dark/light cycle and 18.5 mg.L-1 for 
continues illumination 

(Tamburic et al., 2011) 

Botryococcus sp 
increased to 82.5 µE m

-2 
s

-

1
 from 33 and 49.5 µE m

-2 

s
-1

 

lipid content increased in all four strains with 
increasing light intensity from 33 to 49.5 but 
decreased with increasing light intensity from 49.5 to 
82.5 µE m

-2 
s

-1
 

(Yeesang and Cheirsilp, 2011) 

B. braunii 
increased to 538 µE m

-2 
s

-1
 

from 87.5 and 200 µE m
-2 

s
-1

 

highest Lipid content was observed in 538 µE m
-2 

s
-1

 
while highest biomass concentration was observed 
in 87.5 µE m

-2 
s

-1
 

(Ruangsomboon, 2012) 

Nannochloropsis Light Colour 
maximum specific growth rate: 
blue>white>green>red 

(Das et al., 2011) 

C. vulgaris Light Colour growth rate: red>white>yellow>purple>blue>green (Yan et al., 2013) 
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2.4. Microalgae Culture Systems 

Several microalgae production systems are currently under development, ranging from open 

ponds, photobioreactors (PBRs) and fermenter vessels to hybrid systems, where all the above 

technologies can be combined into a single process. 

In many cases, maximizing the growth of algae for the production of biofuels, chemicals or other 

value adding industrial products, is the main approach followed towards the design of a 

sustainable microalgae culture system. The viability of each system is often a function of its 

structural properties, properties of the microalgae under use and climatic as well as operating 

conditions. This section reviews the microalgae growth technologies that are currently being 

deployed around the world.  

2.4.1. Open Ponds 

Algae cultivation in open pond systems has been operated since the 1950s and is the most 

common algae cultivation system, already used commercially all over the world for the 

production of nutritional products and wastewater treatment. Open pond systems are generally 

one-foot deep ponds in which algae uses sunlight to perform photosynthesis and convert 

natural solar radiation into biomass. Open-culture systems have lower energy input, operating 

cost and less installation cost. Also, open pond systems are easy to clean and suitable for large 

scale applications (Mata et al., 2010, Brennan and Owende, 2010).  

Open pond systems can be categorised into natural waters (lakes, lagoons and ponds) and 

artificial ponds or containers. The most commonly used artificial type is the raceway open pond 

(see Figure 2.4) (Jiménez et al., 2003, Mata et al., 2010). Raceway open ponds are commonly 

employed for algae cultivation as they are easy to clean and operate and their operating cost is 

low compared to PBRs and fermenters (Davis et al., 2011). Although the open race-way ponds 

are widely employed, it is difficult to achieve dense microalgae cultures. They are also limited by 

environmental factors (light and temperature) and are very sensitive to contamination and 

pollution (Pulz, 2001, Jorquera et al., 2010, Carvalho et al., 2006).  
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In order to avoid contamination and pollution from other microalgae and bacteria, selective 

environments need to be maintained by manipulating growth factors such as pH, salt level, and 

nutrients (Brennan and Owende, 2010). For instance, species of Chlorella (adaptable to 

nutrient-rich media), Dunaliella salina (adaptable very high salinity) and Spirulina (adaptable to 

high alkalinity) can thrive under these extreme conditions (Brennan and Owende, 2010).   

 

Figure 2.4 Graphical representation of a raceway open pond.  

Additionally, with respect to biomass productivity, open ponds usage leads to lower productivity 

if compared to PBRs. This is attributed to several factors,   such as evaporation losses, 

temperature fluctuation, light limitation, inefficient mixing and inefficient CO2 fixation, which are 

difficult to control in such systems. However, as the capital and operating cost of OPs are lower 

compare PBR, which will be explained in the following section, the use of open pond systems 

for microalgal-derived biofuels gets more attention. For instance, Sapphire Energy is 

constructing a commercial scale open pond production facility, aiming to produce millions of 

gallons of biofuel annually by 2017 in New Mexico (Sapphire Energy, 2012).  
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2.4.2. Photobioreactors (PBRs) 

Photobioreactors are closed systems in which specific conditions can be maintained for 

respective species. The PBRs allow monoculture cultivation of microalgae and much higher 

growth rates which in turn makes them appropriate for  use in the cosmetic and the 

pharmaceutical industries to produce high value products (Brennan and Owende, 2010). As 

closed systems, PBRs can also prevent the contamination by weed algae and bacteria. On the 

other hand, depending on the economic value of the final product, the high capital cost of PBRs 

remains the major drawback of the system (Mata et al., 2010). 

PBRs differ from open ponds in that the algae is enclosed in a transparent vessel oriented 

horizontally or vertically. In some cases, additional artificial light is used to enhance production 

and some PBRs rely solely on artificial lights (generally laboratory-scale PBRs). The most 

popular closed systems are the tubular, the flat plate and the column photobioreactors 

(Carvalho et al., 2006). The tubular PBR consists of two main parts, an airlift system and a solar 

receiver. The airlift system is responsible for the transfer of CO2 into the system and transfer of 

O2 out of the system. The solar receiver offers a platform for algae to grow. The tubular PBRs 

are the most commonly employed PBR designs. The tubular photobioreactors consist of 

transparent solar tubes and tubular array that can be aligned helix, inclined horizontally or 

vertically (Zhou et al., 2015). The graphical representation of four main types of tubular PBRs is 

given in Figure 2.5. The flat-plate PBR is the earliest form of PBRs, which consists of narrow 

panels that provides large surface area for the uniform distribution of light and high density 

cultures. Common types of flat-plate PBRs are represented in Figure 2.6. The production of 

dissolved O2 in flat-plate PBRs is lower and the photosynthetic efficiency is higher compared to 

tubular PBRs. Hence, the flat-plate PBRs are considered to be more suitable for mass 

production of  microalgal biomass than the tubular ones (Zhou et al., 2015). 
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Figure 2.5 Graphical representation of tubular PBRs: (a) parallel run horizontal tubes, (b) fence-

like layout, (c) near horizontal tube and (d) three-typed helical tubes (Zhou et al., 2015). 

 

Figure 2.6 Graphical representation of flat panel PBRs: (a) vertical flat plate with bubbling at the 

bottom, (b) near horizontal flat plate, (c) inclined flat plate, (d) flat plate rocking reactor, (e) flat 

plate with baffles, (f) vertical alveolar plates, (g) vertical flat plate with recirculation and (h) V-

shaped flat plate (Zhou et al., 2015). 

A graphical representation of three different configuration of column PBRs is shown in Figure 

2.7. The column photobioreactors are compact and easy to operate; their production cost is 

relatively low, and most importantly, their performance is better than that of the tubular 

photobioreactors. Column PBRs exhibit better performance compared to flat-plate and tubular 

PBRs due to their best-mixing effect, higher volumetric mass transfer rate, and better 

controllable mono-culturing (Zhou et al., 2015).  
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Figure 2.7 Graphical representation of column PBRs: (a) air-lift column, (b) bubble column and 

(c) air-lift column with helical flow promoter (Zhou et al., 2015). 

2.4.3. Heterotrophic Cultivation in Fermenter Vessels 

Another method of cultivation is the heterotrophic growth in fermenter vessels, which is 

becoming increasingly used in industry. This so-called heterotrophic fermentation technology is 

an alternative approach to growing algae using natural light radiation, which allows growing 

algae on organic carbon in dark. In heterotrophic fermentation, algae converts organic carbons 

into valuable oils, chemicals, nutritional and pharmaceutical products (Borowitzka, 1999). 

Microalgae cultivation in fermenter vessels (as in Figure 2.8) is well developed and bears 

several advantages over PBRs and open ponds such as: (a) low operating cost, (b) removal of 

light requirements, (c) large and existing fermentation technology database and (d) non-

dependency on weather and climatic conditions (Alabi et al., 2009).  This type of cultivation 

allows the production of algae with high enrichment of desired components which in some 
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cases is twenty-fold higher than in phototrophic production. However, heterotrophic cultivation 

of microalgae in fermenters requires sufficient oxygen supply, necessary for the catabolism of 

organic carbons and high organic carbon input (Alabi et al., 2009), which increases the 

operating cost.  

 

Figure 2.8 Representation of fermenter vessels.   
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The contamination, the space required, the water losses and the CO2 losses for microalgal oil 

production in open ponds, PBRs and fermenters are listed in Table 2-3. 

Table 2-3 Advantages and disadvantages of open ponds, photobioreactors and fermenters 

(Pulz, 2001, Chisti, 2007b, Richardson et al., 2012, Alabi et al., 2009). 

Parameter Open ponds PBR systems Fermenters 

Contamination Extremely high Low Very low 

Water losses Extremely high Almost none Almost none 

CO2 losses High Almost none Almost none 

Space required High Low Very low 

 

Although PBR systems and fermenters are deemed to be better than the open pond systems in 

terms of contamination, space required, water losses and CO2 losses, in order to make an 

appropriate selection of the cultivation method, an economic comparison between different 

systems needs to be carried out. A techno-economic analysis of the open pond and PBR 

production systems has been undertaken by Davis et al. (2011) where baseline economics for 

two microalgae pathways were studied using a set of assumptions were considered and the 

corresponding results are given in Figure 2.9. The production scales for both pathways were set 

at 10 million gallons per year of raw algal oil. In this techno-economic analysis, rigorous mass 

balances were undertaken using Aspen Plus software and the resulting costs were assessed on 

a unit level basis. The analysis considered both operating costs (labour, maintenance, 

insurance, taxes and plant life), and capita cost (land, ponds and PBRs systems, CO2 delivery, 

harvesting, extraction, digestion, inoculum system, osbl equipment and hydrotreating costs). 
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Figure 2.9 Minimum selling price required to achieve 10% rate of return for algal TAG and diesel 

production (OP = open ponds, PBR = photobioreactors) (Davis et al., 2011). 

As per Figure 2.9, although the contribution of the operating cost to the selling price of the 

microalgal biodiesel is similar for both open ponds and PBRs, their economics are mainly driven 

by the capital cost. Figure 2.9 shows that the capital cost of PBRs systems is several times 

higher than the one of open pond systems. Several studies have been published where the 

influence of the capital cost on the algal biodiesel potential is examined; while this is beyond the 

scope of this Thesis, a thorough techno-economic analysis for the comparison of open ponds 

and PBRs is provided by Davis et al. (2011), Brentner et al. (2011) and Richardson et al. 

(2012). Therefore, due to less operating and capital cost and lower energy input, open ponds 

are the most promising long term sustainable candidates for the microalgal biodiesel production 

and hence, it has been selected in this study to assess the predictviness of the developed 

kinetic model for large scale applications.   
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2.5. Optimization of Microalgal Lipid Productivity 

2.5.1. Genetic Engineering of Algae for Enhanced Lipid Production 

Although many studies showed that the nutrient starvation can enhance the lipid accumulation, 

the drawbacks associated with this approach such as decrease in cell division and hence cell 

number and subsequently a decrease in overall biomass concentration are yet to be overcome. 

Therefore, understanding the metabolic processes at the genetic and transcriptomic level is 

necessary to overcome these limitations.  

Radakovits et al. (2010) have suggested that the fatty acid supply helps to understand the 

regulation of lipids and therefore, some attempts have been made knock out or overexpress 

enzymes and proteins that are involved in the fatty acid synthesis. Several studies have 

attempted overexpress the enzymes that plays crucial role in lipid biosynthesis and they 

resulted in increased accumulation of TAGs in algal cells.  

A recent study showed that introducing genes for enzymes related to lipid synthesis, such as 

acetyl-CoA carboxylase (ACC), 3-ketoacyl-acyl carrier protein synthase III (KAS) III, and 

ATP:citrate lyase (ACL) into higher plants like Arabidopsis, Brassica napus, and tobacco 

resulted in higher production of lipids. However, no increase of lipid synthesis was observed 

when the ACC gene introduced into two different algae species, C. cryptica and Navicula 

saprophila (Gan et al., 2016). On the other hand, several successful stories have been reported 

such as Trentacoste et al. (2013) have reported that knockdown of a multifunctional 

lipase/phospholipase/acyltransferase improved lipid yields by 2.4-3.3 fold without negatively 

affecting growth in the diatom Thalassiosira pseudonana and Niu et al. (2013) have reported 

that overexpression of diacylglycerol acyltransferase (DGAT) stimulated more oil bodies, and 

the neutral lipid content increased by 35 %. Although there is a lack of successful stories up to 

date, the genetic and transcription factor engineering approaches have a great potential in lipid 

overproduction.  (Courchesne et al., 2009). 
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2.5.2. Kinetic Modelling microalgae growth 

Production of biofuels from microalgae has received increasing attention as an alternative 

energy source workflow (Lee et al., 2015, Borowitzka, 1992, Dragone et al., 2010). Microalgae 

cultivation is an important step for successful biomass production in the biofuel industry.  

Recently, attention was drawn to the cultivation of microalgae in order to increase microalgal 

biomass productivity and lipid productivity, achieve positive energy balance and environmental 

sustainability as well as improve competitiveness of algal derived biofuels industry, through 

kinetic modelling of the process (Lee et al., 2015, Flynn, 2003). In order to further develop novel 

harvesting techniques and oil extraction methods at the industrial scale, undertaken studies 

simulate closed batch systems to identify the key parameters of the process which lead to 

microalgae growth and lipid accumulation. 

 Depending on type of the knowledge that the models are based on, mathematical modelling of 

biological systems can be classified into three different perspectives, white-box, black-box and 

grey-box. White-box modelling, so-called first-principles, are obtained from a prior process 

knowledge and they are based on mass balance and phenomenological equations (Surisetty et 

al., 2010). Black-box modelling approach, so-called data-driven model, obtained by directly 

mining the process data using statistical tools, and do not need any prior knowledge of the 

process mechanism and consider that the output of the model at any time is a function of 

previous system states of interest (Gormley et al., 2007). On the other hand, grey-box modelling 

frameworks are the combination of all existing white-box and black-box modelling approaches. 

This modelling technique is utilized where knowledge of internal working of a process is limited 

and the knowledge of fundamental aspects of the process is known. Grey-box modelling 

technique provides combined benefits of both white-box and black-box models. There are some 

successful applications of grey-box modelling has been reported (Flassig et al., 2016, Baroukh 

et al., 2016, Chapman et al., 2015).  

Although the white-box and grey-box models can provide better deep understanding of the 

physicochemical relationships of the process, black-box models offer an alternative pathway for 

capturing the essential behaviour and dynamics of the biological processes utilizing a simplified 

model structure. Therefore, black-box modelling approach has been considered in this study for 

mathematical modelling of microalgal biomass growth and lipid accumulation. The black-box 
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kinetic models developed can be grouped into two categories: (i) single substrate or 

environmental factor models and (ii) multiple factor models which take into account both 

substrate and environmental variables.  

2.5.2.1. Single substrate growth kinetic models 

Microalgae growth rate depends on the availability of nutrients such as N and C sources and 

the availability of light in aquatic media. Most of the existing kinetic models such as the Monod 

model, the Haldane model, the Droop model, the Martinez-Sancho model and the Caperon 

Meyer model, are expressed as a function of a single nutrient or environmental variable (see 

Table 2-4) (Droop, 1968, Andrews, 1968, Haldane, 1930, Monod, 1949, Martínez Sancho et al., 

1997, Caperon and Meyer, 1972), and they can be categorised into two groups, the external 

and the internal (compartmental model) nutrient concentration models.  

External nutrient concentration models like the Monod, Haldane and Martinez-Sancho models, 

assume that the growth rate is dependent on an external nutrient (extracellular) concentration 

(Lee et al., 2015, Monod, 1949, Flynn, 2003). In other words, the growth rate is controlled by a 

nutrient concentration in the growth media. This group of models is utilized to predict biomass 

growth rate as measuring external nutrient concentration is easy.  

The Monod model is the first model developed and it considers only nutrient limitation 

conditions. Due to its simplicity, the Monod model has been widely used to reveal the 

relationship between microalgae growth and nutrient (N,P,C) limitation (Eriksen et al., 2006, 

Wang et al., 2014a, Chen and Johns, 1994, D'Elia and DeBoer, 1978, Klasson et al., 1993). 

However, as the model does not account for nutrient inhibition, it fails to reveal the relationship 

between biomass growth and nutrient inhibition under excessive nutrient concentrations. In 

order to overcome this limitation, Haldane modified the Monod model by adding a new term 

(S
2
/Ki) in the denominator of the growth rate expression (see Table 2-4) to describe the nutrient 

inhibition effect on microalgae growth rate at high nutrient concentrations. The Haldane 

inhibition model is mainly used in the field of enzymes and it is also known as the Andrew model 

in microbial growth context. The Andrew model has been widely applied to address high nutrient 

concentrations on biomass growth rate (Chen and Johns, 1994, Zhang et al., 1999a, Mayo, 

1997). 
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Another limitation of the Monod model is that it is not capable of predicting the microalgae 

growth under nutrient absence conditions. In reality, although there is no nutrient in the growth 

media, algae can still grow due to nutrient concentrations stored internally in their cells (Droop, 

1968, Flynn, 2005). To consider this characteristic, Martinez-Sancho proposed a modification to 

the Monod model by introducing an additional maximum specific growth rate (µm2) parameter. 

Consequently, in the absence of nutrient (S), the growth rate (µ) is equal to the maximum 

specific growth rate (µm2) (Martínez et al., 1999). 

Internal nutrient concentration models like the Droop and Caperon Meyer models, assume that 

the growth rate depends on an internal nutrient concentration in the cells, which is the amount 

of the intracellular nutrient concentration per cell, given by cell quota. These type of models are 

known as quota models. These models may predict the growth rate more realistically as they 

can address the biomass growth in the absence of external nutrients by accounting for internal 

nutrient concentration. Although the applicability of intracellular nutrient concentration models is 

limited compared to that of the extracellular ones due to the difficulty in measuring cell quota, 

they have been widely utilised to describe microalgal biomass growth rate (Kwon et al., 2013, 

Mairet et al., 2011b, Grover, 1991)..  

The first model developed that falls into this group of models is the Droop model. Due to the 

nature of the mathematical equation (see Table 2-4), when the growth rate (µ) reaches the 

maximum specific growth rate (µmax), quota (𝑞𝑠) should approach infinity which is infeasible in 

reality. In order to overcome this issue, Caperon-Meyer proposed an improved formula - a 

combination of the Droop model and the Monod model - which introduces a constant (Kc) to the 

denominator of the Droop model (Caperon and Meyer, 1972). Although the Caperon-Meyer 

model is better than the Droop model in terms of determining the biomass growth rate, it 

requires the estimation of an extra parameter (Kc) that increases the complexity of the model 

(Lee et al., 2015). 
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 Table 2-4 Single substrate microalgal growth kinetic models.  

Models Equations 
Considered 
Variables 

Strains References 

Monod 𝜇 = 𝜇𝑚𝑎𝑥

𝑆

𝑆 + 𝐾𝑆
 

N 

C. reinhardtii UTEX 
2337 

(Eriksen et al., 2006) 

G. folifera (D'Elia and DeBoer, 
1978) 

N. baileyi (D'Elia and DeBoer, 
1978) 

Tetraselmis sp. (Molina et al., 1991) 

P 
Chlorella sp. (Wang et al., 2014b) 

Micractinium sp. (Wang et al., 2014b) 

C 
C. reinhardtii  (Chen and Johns, 

1994) 

I 

P. cruentum (Sada et al., 1989) 

R. rubrum (Klasson et al., 1993) 

P. tricornutum (Bitaubé Pérez et al., 
2008) 

C. vulgaris (Sasi et al., 2011) 

C. pyrenoidosa (Martínez Sancho et al., 
1997) 

Andrew 

𝜇

= 𝜇𝑚𝑎𝑥

𝑆

𝑆 + 𝐾𝑆 +
𝑆2

𝐾𝑖

 

C 

C. reinhardtii CS-51 (Chen and Johns, 
1994) 

S. platensis UTEX 
1926 

(Zhang et al., 1999b) 

I 
S. platensis UTEX 
1926 

(Zhang et al., 1999b) 

pH C. vulgaris (Mayo, 1997) 

Martinez-
Sancho 

 
𝜇

=
𝜇𝑚1𝑆 + 𝜇𝑚2𝐾𝑠

𝐾𝑠 + 𝑆
 

P 

S. obliquus 

(Martínez Sancho et al., 
1997) 

Droop 

 
𝜇

= 𝜇𝑚𝑎𝑥(1 −
𝑞𝑆0

𝑞𝑠
) 

N 

I.aff. galbana (Mairet et al., 2011b) 

Achnanthes sp. 

(Kwon et al., 2013) 

Amphora sp. 

Navicula sp. 

Nitzschia sp. 

P 

Achnanthes sp. 

Amphora sp. 

Navicula sp. 

Nitzschia sp. 

Tetraselmis 
subcordiformis 

(Nan and Dong, 2004) 

Nitzschia sp. (Yamamoto et al., 
2012) 

Scenedesmus sp. 
(Grover, 1991) 

Chlorella sp. 

U. pertusa (Nan and Dong, 2004) 

Caperon-
Meyer 

𝜇

= 𝜇𝑚𝑎𝑥(
𝑞 − 𝑞𝑆0

𝐾𝑞,𝑠 + 𝑞 − 𝑞𝑆0

) 

N 

T. pseudonana 
CCMP 1335 

(Davidson and Gurney, 
1999) 

H. carterae 
(Chatonella sp.) 
HA1V 

A. minutum AL2V 

P 
S. quadricauda (Yao et al., 2011) 

S. quadricauda (John and Flynn, 2000) 
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2.5.2.2. Multiple substrate growth kinetic models 

Microalgae growth and lipid accumulation can be simultaneously and antagonistically influenced 

by one or more nutrients (N, P), the substrate (C) and environmental factors (light intensity, 

temperature) (Chen and Johns, 1994, Converti et al., 2009, Breuer et al., 2015, Lee et al., 

2015). In order to provide more accurate estimations of microalgae growth along with a better 

understating of the growth dynamics, the co-limitation concept has been applied in the 

development of mathematical models. The main assumption behind this concept is that the 

biomass growth is controlled by the multiple nutrients and the light, as well as the interactions 

between them. The co-limitation models can be grouped into two categories, the threshold and 

the multiplicative models. 

The threshold models assume that the biomass growth is only controlled by the growth 

parameter with the concentration of the limited nutrient, and therefore, the final kinetic model 

takes the form of a single substrate growth model similar to the growth kinetic models 

considering a single parameter. However, the threshold models are based on the co-limitation 

concept, as all possible resources were taken into account while constructing the kinetic model. 

The most commonly used models are tabulated in Table 2-5. They describe the effect of two 

parameters on biomass growth in combination with the Droop equation. 
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Table 2-5 Microalgal growth kinetic threshold models. 

Equations Organisms Parameters References 

 𝝁 = 𝝁𝒎𝒂𝒙,𝒊𝒎𝒊𝒏 (𝟏 −
𝑸𝒎𝒊𝒏.𝒊

𝑵

𝑸𝒊
𝑵 ) , (𝟏 −

𝑸𝒎𝒊𝒏.𝒊
𝑷

𝑸𝒊
𝑷 ) , (𝟏 −

𝑸𝒎𝒊𝒏.𝒊
𝑭𝒆

𝑸𝒊
𝑭𝒆 ) ,

𝑺𝒊

𝒌𝒊
𝑺𝒊+𝑺𝒊

;
𝟏

∑ 𝜶𝒊
𝒏
𝒊=𝟏 𝜷𝒊+𝜶𝒃𝒈

𝟏

𝒁𝒎𝒊𝒙
𝑳𝒐𝒈 [

𝑰𝒊𝒏+𝒌𝒊
𝑰

𝑰+𝒌𝒊
𝑰 ] Coccolithophores N,P,Si, Fe,I (Litchman et al., 2006) 

 𝝁 = 𝝁∞𝒎𝒊𝒏 (𝟏 −
𝑸𝒎𝒊𝒏,𝟏

𝑸𝟏
, 𝟏 −

𝑸𝒎𝒊𝒏,𝟐

𝑸𝟐
) 𝑩 − 𝒎𝑩 Scenedesmus sp Double Substrate (Klausmeier et al., 2004) 

𝝁 = 𝝁𝒎𝒂𝒙𝒎𝒊𝒏 (
𝟏 −

𝒒𝑵𝒐

𝒒𝑵

𝟏 −
𝒒𝑵𝒐

𝒒𝑵𝒆𝒙𝒑

,
𝟏 −

𝒒𝑷𝒐

𝒒𝑷

𝟏 −
𝒒𝑷𝒐

𝒒𝑷𝒆𝒙𝒑

) S. minutum N, P (Bougaran et al., 2010) 

  

𝝁 = 𝝁𝒎𝒂𝒙

𝑺𝟏

𝑲𝟏

𝟏 +
𝑺𝟏

𝑲𝟏

    
𝑺𝟏

𝑲𝟏

<
𝑺𝟐

𝑲𝟐

𝝁 = 𝝁𝒎𝒂𝒙

𝑺𝟐

𝑲𝟐

𝟏 +
𝑺𝟐

𝑲𝟐

    
𝑺𝟐

𝑲𝟐

<
𝑺𝟏

𝑲𝟏

 
Various species N, C (Bader, 1978) 

𝝁 = 𝝁𝒎𝒂𝒙𝒎𝒊𝒏 (
𝑷

𝑲𝑷 + 𝑷
,

𝑪

𝑲𝑪 + 𝑪
) C. acidophila CO2,P (Spijkerman et al., 2011) 
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The multiplicative models assume that all the growth parameters contribute to microalgae 

growth equally. Such models were commonly utilised to describe simultaneous co-limitation of 

N, P, I and C on the growth of biomass (Solimeno et al., 2015, Franz et al., 2012). As it can be 

seen in Table 2-6, the Monod is the most common model that has been employed to express 

the contribution of each parameter to the growth rate (Zhang et al., 1998, Shi et al., 2000). 

These types of models take into account multiple co-limitations and they are based on internal 

nutrient concentrations, external nutrient concentrations or the combination of both. Although 

this type of models provide more accurate estimations of biomass growth and also a better 

understanding of the co-limitation of nutrients, their complexity and the high number of 

parameters need to be estimated require high computational effort.  

Although the presented single substrate modelling approaches are deemed good enough to 

predict biomass growth and lipid accumulation, they fail to account for the co-limitation of both 

growth media composition and environmental factors such as carbon source, nutrient 

availability, light intensity and temperature. Consequently, multiplicative kinetic modelling 

approach has been considered in this study to account for the equal contribution of multiple 

growth-limiting factors.    
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 Table 2-6 Microalgal growth kinetic multiplicative models. 

Equations Organisms Parameters References 

  

𝝁 = 𝑨𝒆−𝑬/𝑹𝑻 (
𝑺

𝑲𝒔(𝑻) + 𝑺
) 

Various species T + S  
(Goldman and 
Carpenter, 1974) 

 𝝁 = 𝝁𝒎𝒂𝒙

𝒒𝑷−𝒒𝑷𝟎

𝑲𝑷+(𝒒𝑷−𝒒𝑷𝟎
)

𝒒𝑵−𝒒𝑵𝟎

𝑲𝑷+(𝒒𝑵−𝒒𝑵𝟎
)
 Scenedesmus sp N+P (Rhee, 1978) 

 𝝁 = 𝝁𝒎𝒂𝒙𝒇𝑻,𝑭𝑺(𝑻)𝜼𝑷𝑺(𝑰, 𝑺𝑶𝟐)
𝑺𝑪𝑶𝟐+𝑺𝑯𝑪𝑶𝟑

𝑲𝑪,𝑨𝒍𝒈+𝑺𝑪𝑶𝟐+𝑺𝑯𝑪𝑶𝟑+
𝑺𝑪𝑶𝟐

𝟐

𝑰𝑪𝑶𝟐,𝑨𝒍𝒈

𝑺𝑵𝑯𝟑+𝑺𝑵𝑯𝟒

𝑲𝑵,𝑨𝒍𝒈+𝑺𝑵𝑯𝟑+𝑺𝑵𝑯𝟒
 

Scenedemus sp.  S+N+I+T 
(Solimeno et al., 
2015) 

 𝝁 =
𝝁𝒎𝒂𝒙

𝟏+
𝑯+

𝑲𝑯
+

𝑲𝑶𝑯
𝑯+

𝑪𝑮𝒍𝒚

𝑪𝑮𝒍𝒚+𝑲𝑺
(𝟏 −

𝑪𝑯𝑨𝒄

𝑪𝑯𝑨𝒄
∗ ) (𝟏 −

𝑪𝑯𝑩𝒖

𝑪𝑯𝑩𝒖
∗ ) (𝟏 −

𝑪𝑬𝒕𝑶𝑯

𝑪𝑬𝒕𝑶𝑯
∗ ) (𝟏 −

𝑪𝑷𝑫

𝑪𝑷𝑫
∗ ) (𝟏 −

𝑪𝑮𝒍𝒚

𝑪𝑮𝒍𝒚
∗ ) C. butyricum 

Multiple product 
inhibition and pH 

(Zeng et al., 1994) 

𝝁 = 𝝁𝒎𝒂𝒙

𝑺

𝑺 + 𝑲𝑺

𝑵

𝑵 + 𝑲𝑵

 C. protothecoides S+N (Shi et al., 2000) 

𝝁 = 𝝁𝒎𝒂𝒙

𝑪𝑺

𝑲𝑺 + 𝑪𝑺 +
𝑪𝑺

𝟐

𝑲𝑺

𝑰

𝑲𝑿𝑰 + 𝑰
(𝟏 −

𝑪𝑿

𝑪𝑿𝒎

) (𝟏 −
𝑪𝑷

𝑪𝑷𝒎

) 
S. platensis 

S+I+P+Cell 
Concentration 

(Zhang et al., 1998) 

 𝝁 = 𝝁𝒎𝒂𝒙 (𝟏 −
𝒒𝒐

𝒒
) (

𝑺

𝑲𝑺+𝑰
) (

𝑰

𝑲𝑰+𝑰+
𝑰𝟐

𝑲𝑰𝒊

)  C. protothecoides N+S+I (Yoo et al., 2014) 

 
  

𝝁 = 𝝁𝒎𝒂𝒙𝑴𝒊𝒏[𝒇𝟏(𝑵), 𝒇𝟐(𝑰)]𝒇𝟑(𝒑𝑯)𝒇𝟒(𝑻) 
Chlamydomonas 
sp. and Euglena sp  

(N, I)+pH+T 
(Beran and Kargi, 
2005) 

 𝝁 = 𝝁𝒎𝒂𝒙
𝟏

𝑲𝒉𝟏+
𝑲𝒉𝟐
𝑯+ +

𝑯+

𝑲𝒉𝟑

𝑺

𝑲𝑺+𝑺+
𝑺𝟐

𝑲𝒊

 C. reinhardtii S+N 
(Zhang et al., 
1999a) 

 𝝁 = 𝝁𝒎𝒂𝒙
𝑷𝑷𝑭𝑫

𝑲𝑷𝑷𝑭𝑫+𝑷𝑷𝑭𝑫

𝑪𝑪𝑶𝟐

𝑪𝑪𝑶𝟐
+𝑲𝑪𝑶𝟐

𝑪𝒏𝒖𝒊

𝑪𝒏𝒖+𝑲𝒏𝒖
 C. reinhardtii I+C+N (Franz et al., 2012) 
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2.5.2.3. Modelling effect of temperature and light distribution   

As it was discussed in section 2.3.2, the light source and its magnitude and also temperature 

play a crucial role in both enhancing microalgal biomass growth rate and lipid production rate. 

Therefore, it is essential to understand the time-dependent dynamics of both light distribution 

and temperature fluctuations in order for the optimization microalgal biomass and lipid 

production. Arrhenius equation is widely employed to describe the effect of temperature on the 

specific rate constant of chemical reactions: 

 𝑑𝑙𝑛𝐾

𝑑𝑇
=

𝐸

𝑅𝑇2
 Eq. 1  

However, the expression does not describe the effect of temperature in field of microbial growth. 

Ratkowsky et al. (1982) proposed a modified version of Arrhenius equation in which the reaction 

rate constant, K, is replaced with the specific growth rate constant, 𝜇,: 

 
𝜇 = 𝐴0 ∙ 𝑒𝑥𝑝 (−

𝐸

𝑅𝑇
) Eq. 2  

Alternatively, in order to account for effect of temperature on the deactivation of microbial 

growth,  Roels (1983) also proposed a improved version of the Arrhenius equation: 

 

𝜇(𝐼) = 𝜇𝑚,0(𝐼)
𝑒𝑥𝑝 (−

𝐸𝑎

𝑘𝑇
)

1 + 𝐾 ∙ 𝑒𝑥𝑝 (−
𝐸𝑎

′

𝑘𝑇
)

 Eq. 3  

The effect of temperature has also been considered through use of an empirical temperature-

limited model, called Cardinal temperature model with inflexion (CTMI) in which the growth rate 

is function of minimum, maximum and optimal temperatures:  

  ∅(𝑇)

= [
(𝑇 − 𝑇𝑚𝑎𝑥)(𝑇 − 𝑇𝑚𝑖𝑛)2

(𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛)[(𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑜𝑝𝑡) − (𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡 + 𝑇𝑚𝑖𝑛 − 2𝑇)]
] 

Eq. 

4  
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Although both the Arrhenius equation and the CTMI has four parameters that need to be 

estimated, the Arrhenius expression is commonly employed in the field of microbial growth and 

it is easy find the relevant data in the literature. Consequently, in this Thesis, the Arrhenius 

formula was used to describe both the activation and deactivation effect of temperature. 

The effect of light distribution on microbial growth is commonly expressed with the Beer-lambert 

law: 

   𝐼(𝑙, 𝑋) = 𝐼0 exp(−𝜎𝑋𝑙) Eq. 5  

As it can be seen from the expression, the law assumes that the light irradiance at the external 

surface of an algal system declines as the light travels through the culture broth due to growing 

biomass. The Beer-lambert law can be applied when culture is well-mixed to ensure the cells do 

not scatter the light and system is isotropic.  

Béchet et al. (2013) proposed alternative expressions which account for light scattering:   

   
𝐼(𝑙) = 𝐼0 exp (−

𝑘1𝑋𝑙

𝑘2 + 𝑋
) Eq. 6  

   
𝐼(𝑙) = 𝐼0 exp (−

𝑘1𝑋

𝑘2 + 𝑋
𝑙) Eq. 7  

   𝐼(𝑙) = 𝐼0 exp(−(𝑘1 + 𝑘2𝑋𝑃)𝑋𝑙) Eq. 8  

We assume that all our cultures are well-mixed and since this expression includes two 

parameters that need to be estimated while Beer-lambert law only include one, we utilized Beer-

lambert formula to account for the effect of light intensity on both microalgae growth and lipid 

accumulation. A more detailed and comprehensive explanation for modelling effect of 

temperature and light irradiance can be found in Béchet et al. (2013). 
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2.5.3. Parameter estimation and optimization of the process  

In order to ensure the best fit of the model to experimental results, estimation of kinetic 

parameters of dynamic models, which cannot be determined directly, is essential. Parameter 

estimation can be done through two different methodologies: (i) by globally minimizing an 

objective function which measures the quality of the fit and (ii) by optimizing a cost function such 

as maximum likelihood. The first parameter estimation methodology, minimizing an objective 

function, is widely employed in the field of microbial growth (Bitaubé Pérez et al., 2008, Vlysidis 

et al., 2011, Adesanya et al., 2014, Figueroa-Torres et al., 2017), and therefore it was selected 

and implemented throughout this Thesis. 

Genetic algorithm (GA) and simulated annealing (SA) are global optimization methods that have 

been commonly employed to solve optimization problems. GA is an adaptive search method 

that is designed to find near-optimal solutions of large-scale optimization problems with multiple 

local maxima while SA algorithm is a general purpose optimization technique. 

Simulated annealing and sequential quadratic programming (SQP) (Fmincon in MATLAB) 

optimization methodologies have been extensively employed throughout this Thesis (Chapters 

3-5). Simulated annealing, a stochastic optimization algorithm, originally develop by (Kirkpatrick 

et al., 1983)  to define global optimum of a given problem in large parameter subspace. The 

methodology is based physical annealing of metals which is in molten state at high 

temperatures and it reaches different states of minimum energy when cooled down. Depending 

on the cooling temperature, the metal can take two forms: (i) crystalline structure when cooled 

down slowly and (ii) metastable state with higher energy compare to crystalline structure when 

cooled down quickly. In an optimization problem, the crystalline structure represents the global 

optimum while metastable states represent local optima (Kirkpatrick et al., 1983). The 

controlling parameters for the simulated annealing algorithm that need to carefully selected are 

starting temperature, acceptance and convergence criterion, cooling rate and the number of 

iterations applied for every temperature step. 

Initially, a feasible set of initial parameters, starting temperature and cooling rate needs to be 

selected. Subsequently, the simulation sets new set of parameters value with random moves 

which modify the initial guess and the value of the objective function is then calculated and 
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comparison is made compare to previous parameter values. If the new set of parameters meets 

the acceptance criterion, the old set is replaced the old set and a new iteration starts until 

reaching convergence criterion.  

In this work, a feasible set of initial parameters are selected and the objective function is 

calculated based on this initial guesses. Annealing temperature was set 100 ºC and cooling rate 

was set 1%. Bounds of the parameters were set according experimental behaviour of the 

process and existing literature.  The entire simulated annealing procedure was repeated several 

times starting from different initial conditions increase chance of defining a set of solution at or 

very close to the global optimum.  The SA pseudo-code (Şendrescu and Selişteanu, 2015) is as 

follows: 

 1. generate initial solution θi  

2. initialize Imax and T  

3. for k=1 to Imax do  

4. while stopping criteria not met do  

5. compute θK ϵ N(θi) (neighbour to current solution) 

 6. compute Δj = J(θK ) - J(θi) and generate r (random number)  

7. if Δj<0 or r<exp(-Δj/T) then θi = θK 

8. end while 

9. Reduce T 

10. end for 

The results from the simulated annealing was then fed to a deterministic optimization algorithm 

(Fmincon in MATLAB) to check if the solutions from the simulated annealing could be improved. 

The coupled simulated annealing and SQP algorithm was then utilized to define optimal growth 

conditions for maximum biomass and lipid productivities. Similar to the parameter estimation 

methodology, a set of initial concentration was set and bounds were set according to 
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experimental behaviour of the process. The coupled algorithm was run several times to improve 

chance of obtaining global optimum.  
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Chapter 3 

Production of Lipid-Based Fuels and Chemicals from 

Microalgae: An Integrated Experimental and Model-based 

Optimization Study 

3.1. Preface 

Microalgal oil bodies contain cytosolic and/or plastidic lipid bodies in the form of neutral lipid 

Triacylglycerol (TAG). These lipid bodies can be used directly or can be processed into 

biolubricants, surfactants, nutritional lipids like omega-3 fatty acids, and more importantly for this 

work, liquid fuels and gas. Abiotic stress such as the deprivation of nutrients nitrogen (N) and 

phosphorus (P), and stress caused by light intensity and temperature have been employed to 

trigger accumulation of algal lipid bodies (Yeesang and Cheirsilp, 2011, Spijkerman et al., 2011, 

Ruangsomboon, 2012, Yoshimura et al., 2013). Although abiotic stress has been exploited 

experimentally, computational exploration of stresses is yet to be employed. 

As reviewed in chapter 2, the aim of kinetic models is to precisely represent the interactions 

between growth-limiting factors as well as cellular components. Kinetic models allow a deeper 

understanding of the cell behaviour, biomass growth, lipid accumulation, and provide useful 

knowledge for the robust design, control and scale-up of microalgal oil production, which can 

help to bring this important technology closer to commercialisation and industrial applicability.  

In this regard, integrated computational and experimental approaches are valuable tools to get 

insights on biomass growth, lipid accumulation and interactions between growth limiting factors. 

Additionally, a carefully constructed and experimentally validated kinetic model, which is 

predictive over a wide range of experimental conditions, can then be used in an optimization 

study to maximise cellular productivities such as biomass and lipid productivity. For this reason, 

integrated experimental and theoretical studies to model and experimentally validate changes in 

microalgal cell compositions are an important tool to predict improvements to oil productivity.  
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Single substrate and multiple substrate models are widely employed to express the effects of 

one or multiple growth limiting factors, respectively, on biomass growth and lipid accumulation 

(Kwon et al., 2013, Bitaubé Pérez et al., 2008, Bougaran et al., 2010, Yoo et al., 2014). 

Although the aforementioned models are good enough to predict simultaneous and antagonistic 

effects of growth media composition and environmental factors they are not able to precisely 

predict both biomass growth and lipid accumulation individually due to the assumption made in 

these modelling studies, the biomass growth and lipid accumulation are considered as a single 

variable. 

In order to ultimately achieve a positive energy balance for a cost-efficient and sustainable 

scaled-up biodiesel production, the objective of the work described in this chapter is to: 1) 

experimentally quantify the impact of varying starting substrate (acetate) and nutrient (N) 

composition of the growth medium on the system behaviour and 2) based on the experimental 

observations to develop a kinetic model which considers biomass growth and lipid accumulation 

as two individual variables to take advantage of abiotic stress towards maximizing lipid 

accumulation.. 

Experiments have shown that both microalgae growth and lipid accumulation production can be 

simultaneously and antagonistically affected by two or more nutrients and environmental 

variables, such as carbon and nutrient concentrations, light intensity and pH. Based on 

experimental observations and existing literature (Lee et al., 2015, Flynn, 2003), a detailed 

kinetic model has been constructed considering the effects of four different growth-promoting 

resources: acetate (carbon substrate), nitrogen, light intensity and pH to describe both 

microalgal biomass growth and lipid accumulation. 

The results and discussion of this study are presented in the paper that follows, where the effect 

of varying nitrogen and acetate (carbon source) concentrations on biomass growth and lipid 

accumulation is evaluated in detail along with the development of the kinetic modelling 

framework. In order to take advantage of abiotic stress biomass growth and lipid accumulation, 

are considered as two separate state variables. The parameter estimation problem was solved 

using an in-house developed stochastic optimisation algorithm (Simulated Annealing), coupled 

with a non-linear programming (NLP)–based deterministic optimization algorithm. The 

procedure of estimation of kinetic parameter values is also explained along with the optimisation 
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study to obtain maximum lipid productivity. K.T. and J.K.P. contemplated and supervised the 

research, I.S.F. helped with the fitting and optimization coding in MATLAB and M.B. designed 

the research plans, performed the research, analysed data and wrote the manuscripts. 
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Production of Lipid-Based Fuels and Chemicals 

from Microalgae: An Integrated Experimental  

and Model-based Optimization Study 

M. Bekirogullaria,b, I.S. Fragkopoulosa, J.K. Pittmanb, C. Theodoropoulosa* 

a
School of Chemical Engineering and Analytical Science, University of Manchester,  

Manchester M13 9PL, UK. 

b
Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK. 

Abstract  

Cultivation of microalgae is a promising long-term, sustainable candidate for biomass and oil for 

the production of fuel, food, nutraceuticals and other added-value products. Attention has been 

drawn to the use of computational and experimental validation studies aiming at the 

optimisation and the control of microalgal oil productivity either through the improvement of the 

growth mechanism or through the application of metabolic engineering methods to microalgae. 

Optimisation of such a system can be achieved through the evaluation of organic carbon 

sources, nutrients and water supply, leading to high oil yield. The main objective of this work is 

to develop a novel integrated experimental and computational approach, utilising a microalgal 

strain grown at bench-scale, with the aim to systematically identify the conditions that optimise 

growth and lipid production, in order to ultimately develop a cost-effective process to improve 

the system economic viability and overall sustainability. To achieve this, a detailed model has 

been constructed through a multi-parameter quantification methodology taking into account 

photo-heterotrophic biomass growth. The corresponding growth rate is based on carbon 

substrate concentration, nitrogen and light availability. The developed model also considers the 

pH of the medium. Parameter estimation was undertaken using the proposed model in 

conjunction with an extensive number of experimental data taken at a range of operating 

conditions. The model was validated and utilised to determine the optimal operating conditions 

for bench-scale batch lipid oil production. 

                                                           
*
 Corresponding author, k.theodoropoulos@manchester.ac.uk  
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Nomenclature 

𝑇𝐴𝐺 Triacylglycerol 

𝑇𝐴𝑃 Tris-acetate-phosphate 

𝐷𝐶𝑊 Dry cell weight 

𝑁 Nitrogen 

𝑃 Phosphorus 

𝑆 Substrate 

𝐼 Light intensity 

𝐿 Lipid 

𝑋 Oil-free biomass 

𝐴𝐴 Acetic acid 

𝐺𝐴 Glycolic acid 

𝐹𝐴 Formic acid 

𝜇 Specific growth rate 

𝜇𝑚𝑎𝑥 Maximum specific growth rate of biomass 

𝐾𝑆 Substrate saturation constant 

𝐾𝑖S Substrate inhibition constant 

𝜇𝑋 Specific growth rate of oil-free biomass 

𝜇𝑋𝑚𝑎𝑥 Maximum specific growth rate of oil-free biomass 

𝐾𝑋𝑆 Acetate saturation constant 

𝐾𝑖XS Acetate inhibition constant 

𝐾𝑋𝑁 Nitrogen saturation constant 

𝐾𝑖XN Nitrogen inhibition constant 

𝑞𝐿 Specific growth rate of lipid 

𝑞𝐿𝑚𝑎𝑥 Maximum specific growth rate of lipid 

𝐾𝐿𝑆 Acetate saturation constant 

𝐾𝑖LS Substrate inhibition constant 

𝐾𝑖𝑁𝐿 Nitrogen inhibition constant 

𝑌𝑋
𝑆⁄  Yield coefficient for oil-free biomass production with respect to substrate 
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𝑌𝑋
𝑁⁄  Yield coefficient for oil-free biomass production with respect to N 

𝐾𝐻 pH rate constant 

𝑌𝐿
𝑆⁄  Yield coefficient for lipid production with respect to substrate 

𝐾𝑋𝐼 Light saturation constant 

𝐾𝑖𝑋𝐼 Light inhibition constant 

𝐾𝐿𝐼 Light saturation constant 

𝐾𝑖𝐿𝐼 Light inhibition constant 

𝜎 Molar extinction coefficient 

𝑘1 Parameter of the mathematical model 

𝐾𝐺𝐴𝑆 Acetate saturation constant 

𝐾𝐺𝐴𝑁 Nitrogen saturation constant 

𝐾𝑖𝐺𝐴𝑁 Nitrogen inhibition constant 

𝑘2 Parameter of the mathematical model 

𝐾𝐹𝐴𝑆 Acetate saturation constant 

𝐾𝐹𝐴𝑁 Nitrogen saturation constant 
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1. Introduction 

Fossil fuels provide a non-renewable form of energy that is also finite (Brennan and Owende, 

2010, Hoel and Kverndokk, 1996). The use of non-renewable resources negatively impacts on 

the environment since it leads to the production of harmful greenhouse gas (GHG) emissions 

(Chiari and Zecca, 2011). On the contrary, renewable forms of energy sources such as solar 

and wind energy as well as biomass, are environmentally sustainable (Efroymson and Dale, 

2015). Various biomass sources such as energy crops, animal fat, agricultural residues and 

fungal or bacterial microbes have been used for the commercial production of biofuels (Ahmad 

et al., 2011). Biodiesel production is a well-established platform (Demirbas and Fatih Demirbas, 

2011), with soybeans, canola oil, palm oil, corn oil, animal fat and waste cooking oil, the most 

common commercial sources.  

Microalgal oil consists of the neutral lipid Triacylglycerol (TAG), which is stored in cytosolic 

and/or plastidic lipid bodies (Chisti, 2007). The accumulation of such lipid bodies can be 

enhanced by abiotic stress, including deprivation of nutrients like nitrogen (N) and phosphorus 

(P), and factors such as light intensity and temperature stress (Bajhaiya et al., 2016, Converti et 

al., 2009). Depending on the fatty acid characteristics, the oil can be utilised directly or it can be 

processed into biolubricants, surfactants, nutritional lipids like omega-3 fatty acids, and 

importantly, into liquid fuels and gas. The use of microalgal oil for biodiesel production has not 

yet been exploited commercially as the current price of production is still too high compared to 

fossil fuel diesel. Approximately 60-75% of the total cost of microalgal biodiesel comes from 

microalgae cultivation, mainly due to the high cost of the carbon source, the fertilizer 

requirements and the high cultivation facility costs relative to often low oil productivity (Driver et 

al., 2014). 

However, production of biofuels from microalgal oil bears several advantages both in terms of 

environmental impact and of sustainability. The main ones are the rapid growth rate of 

microalgae and high oil productivity per area of land used (Georgianna and Mayfield, 2012), the 

reduction of GHG emissions due to the avoidance of fossil fuel combustion and to the use and 

fixation of available inorganic (CO2) and/or waste organic carbon (e.g. waste glycerol), the use 

of less resources (freshwater and nutrient fertiliser), particularly for marine or wastewater 

cultivated microalgae (Pittman et al., 2011), and no competition for agricultural land and simple 
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growing needs (light, N, P, potassium (K) and CO2) (Dragone et al., 2010, Borowitzka, 1999). 

Although microalgal oil has an immense potential in biotechnological applications, metabolic 

productivity needs to be enhanced to realise economic viability. Strain development by genetic 

manipulation, mutagenesis or natural selection is one approach that is being actively evaluated 

(Goncalves et al., 2015). Alternatively, cultivation conditions and metabolic productivity can be 

optimised based on an integrated combination of mathematical modelling and growth 

experiments at different scales.  

A critical component of sustainable microalgae-derived biofuel productivity is the balance 

between biomass growth and lipid accumulation, whereby conditions of extreme nutrient 

starvation that drive substantial cellular lipid accumulation can also significantly inhibit cell 

growth, and thus net volumetric lipid productivity is low (Griffiths and Harrison, 2009). For this 

reason, integrated experimental and theoretical studies to model and experimentally validate 

changes in microalgal metabolism and metabolite yield are an important tool to predict 

improvements to oil productivity (Béchet et al., 2013, Jørgensen, 1976, Bernard et al., 2016). 

The combination of predictive models and experiments allows the development of a framework 

that will reveal the relationship between microlgal growth and lipid accumulation which can be 

used to optimise the balance of biomass and oil productivity from algal strains, in order to 

ultimately achieve a positive energy balance for a cost-efficient and sustainable scaled-up 

biodiesel production. 

Experimental studies have shown that both microalgae growth and lipid production can be 

simultaneously and antagonistically affected by two or more nutrients and environmental 

variables, such as carbon and nutrient concentrations, light intensity, pH and temperature (Chen 

and Johns, 1994, Converti et al., 2009, Breuer et al., 2015). However, the majority of the 

previously developed kinetic models are expressed either as a function of a single nutrient or 

environmental variable concentration, or as a function of multiple nutrient concentrations. 

Monod (1949) formulated a kinetic model, the so-called Monod model, to analyse the effect of a 

single nutrient limitation on biomass growth, while the inhibition effects of the nutrient and of 

other growth parameters were not considered. Andrews (1968) constructed an improved 

version of the Monod model to take into account both the single nutrient limitation and the 

nutrient inhibition effects, but this study did not take into consideration the inhibition effect of the 

other growth parameters. Such models have been extensively employed to analyse the effect of 
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a single nutrient. The effect of light was analysed by Grima et al. (1994), the effects of one 

substrate (S) and of pH were investigated by Zhang et al. (1999), and the effect of temperature 

was explored by Bernard and Rémond (2012). 

The effect of multiple nutrient concentrations can be examined through the use of two other 

frameworks; the threshold and the multiplicative models (Lee et al., 2015). The threshold model 

considers that the growth is only affected by the growth parameter with the lowest 

concentration, and therefore, the model takes the form of a single substrate growth model. On 

the contrary, the multiplicative model takes into account two or more growth parameters that 

contribute to microalgae growth equally. The threshold model was employed by Spijkerman et 

al. (2011) for the investigation of the effects of substrate and of P concentration, while the 

multiplicative model was used by Bernard (2011) for the analysis of the effects of light intensity 

and of N concentration. Although the aforementioned models are deemed to be accurate 

enough to predict the effects of the nutrients, they are not able to predict the simultaneous 

effects of other factors such as nutrient factors and environmental factors with the same 

accuracy. Moreover, although the control of microalgal growth and lipid accumulation by 

multiple factors (such as multiple limiting nutrients) has been investigated on a theoretical basis, 

the published data are limited and they do not allow conclusions on the kinetic relationship 

between microalgal growth and lipid accumulation with respect to the concentrations of the 

limiting nutrients (Kovárová-Kovar and Egli, 1998). 

Here, we present a comprehensive multiplicative kinetic model to describe microalgal growth 

and the relevant lipid oil production under photo-heterotrophic conditions. The formulated model 

takes into account the effects of four different growth-promoting resources: acetate (organic 

carbon substrate for the heterotrophic component of growth), nitrogen, light intensity and pH. 

The model simulates all of the effects simultaneously and it is capable of predicting the 

microalgal biomass growth and the lipid accumulation with high accuracy. To efficiently estimate 

the kinetic parameters that are crucial for accurate system simulations and to validate the 

developed model, experiments were performed using the well-studied chlorophyte microalgal 

species Chlamydomonas reinhardtii (Bajhaiya et al., 2016, Miller et al., 2010, Siaut et al., 2011). 

We demonstrate that such an integrated experimental-computational framework can be used to 

provide insights on biomass growth and lipid metabolism, and eventually to enable robust 

system design and scale-up. 
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2. Materials and Methods 

2.1. Strain and Culture Conditions 

Chlamydomonas reinhardtii (CCAP 11/32C) was used here as the experimental microalgal 

strain, obtained from the Culture Collection of Algae and Protozoa, UK. The strain was 

cultivated under photo-heterotrophic conditions in batch cultures (Bajhaiya et al., 2016). 

Preculture of the strain was carried out in an environmentally-controlled incubation room at 

25ºC, using 250 mL conical flasks containing 150 mL of Tris-acetate-phosphate (TAP) medium 

(Harris, 1989) (TAP constituents are given in Table S1) on an orbital shaker at 120 rpm for 7-10 

days. A 4ft long 20W high power led T8 tube light was used for illumination at a constant 

125 µEm−2s−1 light intensity. Once sufficient cell density was reached, an algal inoculum of 1 mL 

was added to the experimental culture vessels, Small Anaerobic Reactors (SARs, 500 mL), 

containing 500 mL of modified TAP culture medium (described below) at the same temperature 

and light conditions as preculturing. The initial cell density of 0.024×10
6
 cells per mL was 

identical for all the treatments. The number of cells was determined through the measurement 

of living cells using a Nexcelom Cellometer T4 (Nexcelom Biosciences). 20 µL of the sample 

was injected into the cellometer counting chamber and the chamber was then inserted into the 

aparatus. Once the sample was placed, the following specifications were defined: cell diameter 

min 1.0 micron and max 1000micron, roundness 0.30 and contrast enhancement 0.30. 

Subsequently, the lens was focused in order to count all the cells. The acetate (referred to as 

substrate, S) and N (as NH4Cl) concentration in standard TAP medium was 1.05 g L
-1

 and 0.098 

g L
-1

, respectively. The TAP culture media was also modified to contain different concentrations 

of N and acetate in order to induce N or acetate starvation and excess, respectively. Overall, we 

used six different acetate concentrations: 0 g L
-1

, 0.42 g L
-1

,1.05 g L
-1

, 2.1 g L
-1

, 3.15 g L
-1

 and 

4.2 g L
-1

; and seven different N concentrations: 0.0049 g L
-1

, 0.0098 g L
-1

,0.049 g L
-1

, 0.098 g L
-

1
, 0.196 g L

-1
, 0.98 g L

-1
 and 1.96 g L

-1
. When the concentrations of N were manipulated, the 

concentration of acetate was kept constant at, 1.05 g L
-1

, and when the concentration of acetate 

were manipulated, the concentration of N was kept constant at 0.098 g L
-1

. The initial pH value 

of all media was set at pH=7. 
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C. reinhardtii growth was determined at set time points by biomass measurement. The biomass 

concentration was measured in terms of dry cell weight (DCW) concentration. DCW was 

measured by centrifuging 500 mL cultures for 3 min at 3000 g in an Eppendorf Centrifuge 5424. 

The obtained pellet was then washed with cold distilled water. The washed pellet was 

centrifuged again for 3 min at 3000 g and weighed on a fine balance (Sartorius - M-Pact AX224, 

Germany) to determine the wet biomass. Subsequently, the wet biomass was dried overnight at 

70ºC to determine the dry biomass weight. The pH of the samples was analysed through the 

use of a bench type pH meter (Denver UltraBasic Benchtop Meters, USA). The supernatant and 

the biomass of the samples were kept stored at -20ºC for quantification of specific metabolites. 

All data was statistically analyzed by one-way ANOVA using Tukey post-hoc test performed 

using Prism v.6.04 (GraphPad).   

 

2.2. Metabolite Analysis  

HPLC Analysis of Organic Acids: The concentrations of organic acids produced and/or 

consumed were quantified using a High Performance/Pressure Liquid Chromatographer (HPLC) 

equipped with a Hi- Plex 8 μm 300x7.7 mm column. Glacial acetic acid (AA) as well as glycolic 

acid (GA) and formic acid (FA), were included as standards, as these were either growth media 

substrate (AA) or secreted microalgal by-products of the cultivation as also corroborated by 

(Allen, 1956). Sulphuric acid solution (0.05% v/v) was used as a mobile phase. The flow rate of 

the system was set at 0.6 mL min
-1

, with a pressure value around 45 bars and a temperature of 

50ºC, while the detection wavelength was fixed at 210 nm. Filtration through 0.45 μm filter 

membranes was undertaken for the sample preparation. 

TOC/TN Analyser: The total dissolved N concentration in the growth media was quantified by 

the use of a Total Organic Carbon / Total Nitrogen analyser (TOC/TN) (TOC-VCSH/TNM-1 

Shimadzu). Ammonium chloride (NH4Cl), added to the growth media as a nutrient, was used to 

prepare standard solutions. Three different ammonia (NH3) sources can be found in TAP media; 

Ethylenediaminetetraacetic acid (EDTA), Tris-hydroxymethyl-aminomethane (TRIS) and NH4Cl, 

which is the form assimilated by the microalgae for biomass growth. In order to quantify the 

NH4Cl-originated N, the samples were initially analysed to determine the total N concentration in 

the media. Then, 100 L of supernatant first diluted to 1 mL and then mixed with 200 L of 
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NaOH, and placed into hot water to enable the evaporation of the formed NH3 (produced from 

NH4Cl through NH4
+
). Finally, the samples were analysed again to determine the total N left in 

the media. The difference between the two aforementioned measurements equals to the 

amount of N originated by NH4Cl. 

Soxhlet Solvent Extraction using Soxtec: The lipid concentration was quantified by extracting 

the lipid using the Soxtec 1043 automated solvent extraction system. The freeze-dried algal 

biomass was homogenised through a double cycle of liquid N2 immersion and pulverisation in a 

mortar with pestle. The pulverized biomass were then placed into cellulose extraction thimbles 

and located in the Soxtec unit. The procedure followed to quantify the lipid concentration was 

boiling for 2 h, rinsing for 40 min and solvent recovery for 20 min. The extraction temperature for 

the selected solvent, Hexane (ACS spectrophotometric grade, ≥98.5%, Sigma Aldrich, Dorset, 

UK), was 155 ºC (McNichol et al., 2012). Following the oil extraction performed through the use 

of Soxtec 1043, the extracted lipids were dried at 100 ºC for 1 h, were placed in a vacuum 

applied desiccator for 1 h, and were weighed to define the lipid concentration gravimetrically.  

3. Mathematical Modelling 

3.1. Growth kinetics 

 

A number of experiments we conducted in our laboratory, demonstrated that high substrate 

concentrations act as system inhibitors, and they can significantly reduce the biomass growth 

and the lipid accumulation rates (Bekirogullari et al., 2015). To account for substrate inhibition 

on the transient cell behaviour, a modified Monod equation, the Haldane equation, is 

extensively applied (Andrews, 1968, Economou et al., 2011, Ogbonna et al., 1995): 

 
𝜇 = 𝜇𝑚𝑎𝑥 ∙

𝑆

𝑆 + 𝐾𝑠 +
𝑆2

𝐾𝑖𝑆

 
Eq. 1  

Here 𝜇 is the specific growth rate, 𝜇𝑚𝑎𝑥 the maximum specific growth rate, 𝑆 the substrate 

concentration, 𝐾𝑠 the substrate saturation constant, and 𝐾𝑖𝑆 the substrate inhibition constant. 

The depletion of N is known to increase the oil accumulation while it inhibits biomass growth 

(James et al., 2011, Tevatia et al., 2012). Additionally, light intensity plays a crucial role on 

microalgae growth and lipid accumulation (Grima et al., 1994, Jeon et al., 2005). Therefore, the 
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Haldane equation (expressed by Eq.1) needs to be enhanced to account for the additional 

effects of N concentration and of light intensity.  

Due to the contrasting effect of N on biomass concentration and on lipid accumulation, two 

different expressions for the N effect as a substrate, similar to the ones presented by Economou 

et al. (2011), were employed here to describe the specific (oil-free) biomass growth and the lipid 

accumulation rate. Furthermore, the Aiba model (Aiba, 1982, Zhang et al., 2015) was taken into 

consideration for the simulation of the effect of light intensity as a pseudo-substrate. 

Thus, the specific oil-free biomass growth rate, 𝜇𝑋, is described by a pseudo-triple substrate 

expression as: 

 
𝜇𝑋 = 𝜇𝑋𝑚𝑎𝑥 ∙

𝑆

𝑆 + 𝐾𝑋𝑆 +
𝑆2

𝐾𝑖𝑋𝑆

∙
𝑁

𝑁 + 𝐾𝑋𝑁 +
𝑁2

𝐾𝑖𝑋𝑁

∙
𝐼(𝑙)

𝐼(𝑙) + 𝐾𝑋𝐼 +
𝐼(𝑙)2

𝐾𝑖𝑋𝐼

 

Eq. 2 

where  𝜇𝑋𝑚𝑎𝑥  is the maximum specific growth rate of oil-free biomass on acetate substrate 

(denoted as substrate onwards), depending on the concentration of nitrogen, 𝑁, and on the local 

light intensity, 𝐼(𝑙). Here, 𝐾𝑋𝑆, 𝐾𝑋𝑁 and  𝐾𝑋𝐼 are the saturation constants and 𝐾𝑖𝑋𝑆 , 𝐾𝑖𝑋𝑁 and 𝐾𝑖𝑋𝐼 

the inhibition constants for oil-free biomass growth based on substrate, nitrogen concentration 

and light intensity, respectively. The local light intensity 𝐼(𝑙) is expressed by the Beer-Lambert 

equation (Béchet et al., 2013): 

 𝐼(𝑙) = 𝐼0. exp(−𝜎𝑋𝑙) Eq. 3 

where 𝑙 is the distance between the local position and the external surface of the system, I0 the 

incident light intensity, σ the molar extinction coefficient and X the oil-free biomass 

concentration (Béchet et al., 2013). 

The specific lipid accumulation rate, 𝜇𝐿, is expressed as:  

 
𝜇𝐿 = 𝑞𝐿𝑚𝑎𝑥 ∙

𝑆

𝑆 + 𝐾𝐿𝑆 +
𝑆2

𝐾𝑖𝐿𝑆

∙
𝐾𝑖𝑁𝐿

𝑁 + 𝐾𝑖𝑁𝐿

∙
𝐼(𝑙)

𝐼(𝑙) + 𝐾𝐿𝐼 +
𝐼(𝑙)2

𝐾𝑖𝐿𝐼

 
Eq. 4 

where 𝑞𝐿𝑚𝑎𝑥 is the maximum lipid specific growth rate, 𝐾𝐿𝑆  and 𝐾𝐿𝐼 the saturation constants 

and, 𝐾𝑖𝐿𝑆   and 𝐾𝑖𝐿𝐼 the inhibition constants for lipid accumulation based on substrate 

concentration  and light intensity, respectively; 𝐾𝑖𝑁𝐿 is an inhibition constant used here to 

describe the lipid production dependent on nitrogen  concentration. 
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3.2. Rate equations 

The dynamic model developed in this work consists of a set of ordinary differential equations 

(ODEs) employed for the simultaneous simulation of microalgal growth, lipid accumulation, 

substrate and nitrogen consumption, by-product formation and pH change rates. 

The microalgal (oil-free biomass) growth rate is expressed as: 

 𝑑𝑋

𝑑𝑡
= 𝜇𝑋. 𝑋 Eq. 5 

The lipid accumulation (lipid production) rate is described by: 

 𝑑𝐿

𝑑𝑡
= 𝜇𝐿 . 𝑋 Eq. 6 

The substrate consumption rate can be calculated through a mass conservation equation 

(Vlysidis et al., 2011): 

 𝑑𝑆

𝑑𝑡
= − 

1

𝑌𝑋
𝑆

∙
𝑑𝑋

𝑑𝑡
−

1

𝑌𝐿
𝑆

∙
𝑑𝐿

𝑑𝑡
 Eq. 7 

where 𝑌𝑋

𝑆

 is the yield coefficient for oil-free biomass production with respect to substrate and 𝑌𝐿

𝑆

 

is the yield coefficient for lipid production with respect to substrate. 

The N consumption rate is given by (Zhang et al., 1999): 

 𝑑𝑁

𝑑𝑡
= −

1

𝑌𝑋
𝑁

∙
𝑑𝑋

𝑑𝑡
 Eq. 8 

where 𝑌𝑋

𝑁

 is the yield coefficient for oil-free biomass production with respect to N. 

For byproduct formation, only two acids are taken into account in our model: glycolic acid (GA) 

and formic acid (FA). The formation rates of GA and FA can be described by a multiplicative 

model, including the effects of acetate and N as follows:  

 

𝑑𝑃𝐺𝐴

𝑑𝑡
= 𝑘1 ∙

𝑆

𝑆 + 𝐾𝐺𝐴𝑆

∙
𝑁

𝑁 + 𝐾𝐺𝐴𝑁 +
𝑁2

𝐾𝑖𝐺𝐴𝑁

 
Eq. 9 

 

𝑑𝑃𝐹𝐴

𝑑𝑡
= 𝑘2 ∙

𝑆

𝑆 + 𝐾𝐹𝐴𝑆

∙
𝑁

𝑁 + 𝐾𝐹𝐴𝑁

       
Eq. 10 
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Here 𝑘1 and 𝑘2 are kinetic constants, 𝐾𝐺𝐴𝑆 , 𝐾𝐹𝐴𝑆   are substrate and 𝐾𝐺𝐴𝑁 , 𝐾𝐹𝐴𝑁 nitrogen 

saturation constants; KiGAN is the nitrogen inhibition constant. 

It should be noted here that oxalic acid production was also observed experimentally. The 

concentration of the oxalic acid (OA) for all the N and acetate treatments remains essentially 

constant at 0.015 g/L throughout the growth process, which signifies that OA is not a product of 

the metabolism. Hence its formation was not included in the kinetic model.    

 

The pH change rate of the microalgae cultivation system is proportional to the substrate 

consumption rate and is expressed by (Zhang et al., 1999): 

 𝑑𝐻

𝑑𝑡
= −𝐾ℎ ∙

𝑑𝑆

𝑑𝑡
 Eq. 11 

where 𝐻 describes the process pH, and 𝐾ℎ is a constant. Hence our model consists of 7 ODEs, 

corresponding to 7 state variables describing the dynamic evolution of biomass and lipids as 

well as that of the substrate, nutrients, pH and byproducts. The model includes 25 parameters, 

outlined in Table 1 and estimated through the procedure discussed in section 4.2 below.  

3.3. Parameter Estimation 

To the best of our knowledge, this study is the first attempt to model microalgae growth and lipid 

accumulation by taking into account the simultaneous effect of three growth-promoting 

resources (N, S, I), and thus, the reaction kinetics for such a system are not available in the 

literature. For this reason, we undertook a parameter estimation study using the constructed 

ODE-based system (Eq. 5 to 11) in conjunction with high fidelity in-house produced 

experimental data. Two of the experiments discussed above were used (2.1 g L
-1

 acetate, 0.098 

g L
-1

 N –experiment 1-, and 1.05 g L
-1

 acetate, 0.049 g L
-1

 N –experiment 2-with 1 mg L
-1

 

biomass, and pH 7, and with starting by-product concentrations all at 0 g L
-1

) The parameter 

estimation is set up as a non-linear weighted least squares method (Vlysidis et al., 2011):  

𝑍(𝑘𝑘) = min ∑ ∑ ∑ 𝑊𝑘,𝑙,𝑚(𝐶𝑘,𝑙,𝑚
𝑝𝑟𝑒𝑑

(𝑘𝑘) − 𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

)
2

𝑛𝑚

𝑚=1

𝑛𝑙

𝑙=1

𝑛𝑘

𝑘=1

 Eq. 12 

Here kk is the vector of the 25 model parameters, nk is the number of experiments (nk=2), nl is 

the number of state variables (nl =7), nm is the number of experimental measurements in time 
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(nm=7), and Wk,l,m are the weights used to effectively normalise the computed errors, 

=(𝐶𝑘,𝑙,𝑚
𝑝𝑟𝑒𝑑

(𝑘𝑘) − 𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

). Here the weights were set to Wk,l,m = 1/𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

, where 𝐶𝑘,𝑙,𝑚
𝑝𝑟𝑒𝑑

 are the 

predicted state variables (computed by Eq. 5 to 11) and 𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

 the experimentally obtained ones. 

The estimation problem was solved using an in-house developed stochastic algorithm, based 

on Simulated Annealing (SA) (Vlysidis et al, 2011), with multiple restarts in order to increase the 

chances of obtaining solutions in the neighbourhood of the global optimum. A refining step 

using a deterministic method, Sequential Quadratic Programming (SQP) implemented through 

the “fmincon” function in MATLAB, was subsequently carried out using as initial guess the result 

from SA. 

The initial values of the state variables used in the ODEs were set to the initial concentration 

values of each experiment. Multiple optimization runs have been used to ensure that the local 

minima were avoided. The values of the parameters as well as their standard deviation 

estimated using the above procedure are shown in Table 1. The system dynamics obtained 

using our model were compared to the experimental results described above, including biomass 

and lipid growth, pH changes and formation of organic acids, GA and FA. The resulting model 

shows very good agreement with the experimental data for all state variables, as can be seen in 

Figure 1. 
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Table 1: Estimated kinetic parameters along with bounds available in the literature. 

Parameter Value (Units) Standard 

Deviation 

(σ) 

Variance to 

mean ratio 

𝝈𝟐

𝝁
 

Reference 

value 

Species Sources 

𝝁𝑿𝒎𝒂𝒙 0.227 ℎ−1 0.005 0.021 0.2274 C.Reinhardtii (Fouchard et al., 

2009) 

𝑲𝑿𝑺 0.050 g S 𝐿−1 0.000 0.010 0.028

− 2.295  

C.Reinhardtii (Chen and Johns, 

1994, Zhang et al., 

1999) 

𝑲𝒊𝐗𝐒  9.923 g S 𝐿−1 

  
0.130 0.013 0.1557

− 1.76 

C.Reinhardtii (Zhang et al., 1999, 

Chen and Johns, 

1996) 

𝑲𝑿𝑵 0.065 g N 𝐿−1 0.000 0.007 this study   

𝑲𝒊𝐗𝐍 0.500 g N 𝐿−1 0.001 0.002 this study   

𝒒𝑳𝒎𝒂𝒙 0.121 𝑔 𝐿 𝑔 𝑋−1ℎ−1 0.002 0.013 this study   

𝑲𝑳𝑺 6.554 g S 𝐿−1 0.063 0.010 this study   

𝑲𝒊𝐋𝐒 0.110 g S 𝐿−1 0.002 0.014 this study   

𝑲𝒊𝑵𝑳 380.023 g N 𝐿−1 3.154 0.008 this study   

𝒀𝑿
𝑺⁄  1.470 g X g S−1 0.010 0.007 0.7104

− 15.6  

C.Reinhardtii (Zhang et al., 1999, 

Chen and Johns, 

1996) 

𝒀𝑿
𝑵⁄  6.883 g X g N−1 0.183 0.027 18.9  (Economou et al., 

2011) 

𝑲𝑯 0.879 L 𝑔 𝑆−1 0.018 0.020 0.8759 C.Reinhardtii (Zhang et al., 1999) 

𝒀𝑳
𝑺⁄  0.064 g X g S−1 0.005 0.074 0.24 C.Protothecoide (O’Grady and 

Morgan, 2010) 

𝑲𝑿𝑰 19.519 µ E 𝑚−2𝑠−1 0.731 0.037 81.38 C.Reinhardtii (Fouchard et al., 

2009) 

𝑲𝒊𝑿𝑰 2053.924 µ E 𝑚−2𝑠−1 33.755 0.016 2500 C.Reinhardtii (Fouchard et al., 

2009) 

𝑲𝑳𝑰 15.023 µ E 𝑚−2𝑠−1 0.461 0.031 this study   

𝑲𝒊𝑳𝑰 2152.918 µ E 𝑚−2𝑠−1 43.688 0.020 this study   

𝝈 34.104 𝑔 𝑋−1𝐿 𝑚−1  1.221 0.0036 this study   

𝒌𝟏 0.329   0.013 0.040 this study   

𝑲𝑮𝑨𝑺 1.456 g S−1𝐿−1  0.031 0.021 this study   

𝑲𝑮𝑨𝑵 12.976 g N−1𝐿−1  0.189 0.015 this study   
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𝑲𝒊𝑮𝑨𝑵 2.533 g N−1𝐿−1  0.040 0.016 this study   

𝒌𝟐 1.4055  0.008 0.006 this study   

𝑲𝑭𝑨𝑺 12.976 g S−1𝐿−1  0.450 0.035 this study   

𝑲𝑭𝑨𝑵 2.533 g N−1𝐿−1 0.059 0.023 this study   
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Fig. 1. Fitting of model predictions (lines) to experimental data (symbols with error bars) for: (a) 

biomass, (b) lipid concentration, (c) substrate (acetate) consumption, (d) N consumption, (e) pH 

change, (f) oxalic acid production, (g) glycolic acid production and (h) formic acid production, 

using 2.1 g L
-1

 acetate and 0.098 g L
-1

 N. 

  



80 
 

4. Results and Discussion 

An experimental study was carried out to quantify the effect of varying starting substrate 

(acetate) and nutrient (N) composition of the growth medium on the system behaviour. A 

parameter estimation study was then performed using the constructed mathematical model, to 

compute parameter values that are of crucial importance for accurate system simulations. The 

model was subsequently validated against experimental data at different operating conditions, 

and was then used in optimisation studies to determine optimal operating conditions.  

 

4.1. Experimental Results 

Measurements of microalgal growth, as determined by biomass concentration, and lipid 

accumulation (Fig. 2 and Fig. S1) were taken alongside measurements of growth media pH 

change and organic acid concentrations, for the six different acetate concentrations and the 

seven different N concentrations mentioned in section 2.1, in order to examine the effect of the 

change in nutrient and substrate concentration on the overall biomass and lipid concentrations. 

For the acetate-absent and acetate-deficient (0 g L
-1

 and 0.42 g L
-1

) as well as the acetate-

excess (4.2 g L
-1

) media, dry biomass was below detectable levels for the first 120 h due to slow 

growth rate (Fig. S1a). Thus lipid concentration was also undetectable (Fig. S1b). Cells grown in 

the other acetate concentrations (1.05 g L
-1

, 2.1 g L
-1

 and 3.15 g L
-1

) grew rapidly with 

equivalent growth profiles. Compared to the 1.05 g L
-1

 acetate treatment, biomass concentration 

decreased significantly (p < 0.0001, one-way ANOVA) both for the acetate excess (4.2 g L
-1

) 

treatment, by approximately 50%, and for the acetate-deficient (0.42 g L
-1

)
 
and absent (0 g L

-1
)
 

treatments, by approximately 80% (Fig. 2a). In contrast, biomass concentration was essentially 

the same for the 1.05 g L
-1

, 2.1 g L
-1

 and 3.15 g L
-1

 acetate treatments. Many chlorophyte 

microalgae species such as C. reinhardtii are able to efficiently grow heterotrophically and this 

is increasingly being considered as a more commercially viable method of high-productive 

cultivation (Lowrey et al., 2016). While organic carbon addition such as acetate can indeed 

increase biomass concentration, as we show here, the inhibition of growth by excessive 

concentrations of acetate may either be due to acetate toxicity or a saturation of acetate 

assimilation and metabolism, coupled to the acetate-induced inhibition of photosynthesis 

(Johnson and Alric, 2013, Chapman et al., 2015). Acetate is metabolised via the glyoxylate 
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cycle, but can also be converted into acetyl-CoA in an ATP-dependent mechanism and then 

used as a substrate for fatty acid synthesis and then TAG metabolism (Johnson and Alric, 

2013). Increase in lipid concentration as acetate concentration increases might therefore be 

predicted and indeed this has been previously observed in C. reinhardtii under both N sufficient 

and N limited conditions (Ramanan et al., 2013). However, we found that the proportion of lipid 

accumulation within the cell on a total dry weight basis was essentially identical for all acetate 

treatments (approximately 10% lipid), and therefore the difference in volumetric lipid 

concentration between the treatments (Fig. 2b) was almost entirely due to the difference in 

biomass. This therefore suggests that under these N sufficient (0.098 g L
-1

 N) conditions, 

assimilated acetate is being used predominantly for cell growth. It is also worth noting that the 

study of Ramanan et al. (2013) evaluated acetate addition in a mutant strain of C. reinhardtii 

that was unable to produce starch, whereas in wild type strains acetate addition has been 

suggested to drive carbon allocation preferentially towards starch accumulation rather than lipid 

(Chapman et al., 2015). 
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Fig. 2. The effect of carbon substrate (acetate) (a, b) and nutrient (nitrogen, N) (c, d) 

concentrations on dry weight biomass concentration (a, c) and total lipid concentration (b, d) 

after photo-heterotrophic growth for 8 d. The starting N concentration for the acetate range 

treatment experiments was 0.098 g L
-1

 and the starting acetate concentration for the N range 

treatment experiments was 1.05 g L
-1

. All data are mean ± SE values of 2-3 biological 

replicates. Treatments that do not share lowercase letters are significantly different (p < 0.05), 

as determined by one-way ANOVA. The percentage lipid value as a proportion of dry weight 

biomass is indicated above each bar in panels b and d. 
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For the N deficient (0.0049 g L
-1

 and 0.0098 g L
-1

) and N excess (0.98 g L
-1

 and 1.96 g L
-1

) 

media, dry biomass concentration (and therefore lipid concentration) was again below level of 

detection for the first 120 h due to slow growth rate (Fig. S1c and d). As expected for an 

essential nutrient, and in agreement with previous studies, N limitation significantly inhibited 

growth compared to the 0.098 g L
-1

 N replete treatment (p < 0.0001 for 0.0049 g L
-1

 and 0.0098 

g L
-1 

N; p = 0.0009 for 0.049 g L
-1

 N, one-way ANOVA), with the lowest biomass concentration 

(0.149 g L
-1

) seen for the 0.0049 g L
-1

 N concentration (Fig. 2c). However, the highest N 

concentrations (0.98 g L
-1

 and 1.96 g L
-1

) also significantly inhibited growth (p < 0.0001, one-

way ANOVA), possibly due to partial toxicity when ammonium concentration is too high (Fig. 

2c). As anticipated, N limitation led to an increase in lipid accumulation compared to the higher 

N concentrations, with the 0.049, 0.0098 and 0.0049 g L
-1

 N treatments inducing cellular (per 

dry weight) lipid content values of 15.6%, 21.8% and 26%, respectively, compared to 9 to 10% 

lipid content in the N replete (0.098 g L
-1

) cells. This is in agreement with many previous N 

limitation studies where substantial lipid induction can be observed as N availability becomes 

starved (Bajhaiya et al., 2016). N excess did not inhibit cellular lipid accumulation but on a 

volumetric basis, lipid concentration was lowest with 0.98 g L
-1

 and 1.96 g L
-1 

N (0.261 g L
-1

, 

0.221 g L
-1 

respectively) and highest with 0.049 g L
-1

 and 0.098 g L
-1

 N (0.3645 g L
-1

, 0.5335 g L
-

1 
respectively )  (Fig. 1d), with the low lipid yield at the highest N concentrations explained by the 

reduced biomass at these concentrations (Fig. 1c).  

4.2. Model Validation 

We have subsequently carried out a validation study for our constructed model to assess its 

predictive capabilities. In Figure 3, the model predictions for the experimental results, obtained 

at base line conditions (1.5735 g L
-1

 acetate, 0.0735 g L
-1

 N, 1 mg L
-1

 biomass, and pH 7, and 

with starting organic acid (GA and FA) by-product concentrations all at 0 g L
-1

) are presented. 

The system was operated at room temperature T = 25ºC and the light illumination (I0) is 

considered constant and equal to 125 µEm−2s−1 . The model was capable of predicting the 

experimentally obtained concentrations of biomass, lipid, acetate, N, and the pH change with 

high precision as well as the concentrations of organic acid by-products with reasonable 

accuracy (Error = 2.9819). Thus, the detailed multiplicative model proposed in this study can be 

used for precise prediction of the dynamic behavior of bench-scale batch experiments.  
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Fig. 3. Validation of model predictions (lines) by experimental data (symbols with error bars) for: 

(a) biomass, (b) lipid concentration, (c) substrate (acetate) consumption, (d) N consumption, (e) 

pH change, (f) oxalic acid production, (g) glycolic acid production and (h) formic acid production, 

using 1.575 g L
-1

 acetate and 0.0735 g L
-1

 N. 
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4.3.  Process Optimization 

The validated model was further exploited in an optimization study to determine the optimal 

operating conditions for such bench-scale systems. Here, the optimization problem was set up 

to calculate the maximum lipid and biomass productivities: 

 Objective = max(𝐽𝐿 + 𝐽𝑋) Eq. 13 

subject to the governing system equations (Eq. 5 to 11). The productivities are defined as: 

 
𝐽𝐿 =

𝐿 − 𝐿0

𝑡𝑝 − 𝑡𝑝0

 Eq. 14 

 

 
𝐽𝑋 =

𝑋 − 𝑋0

𝑡𝑝 − 𝑡𝑝0

 Eq. 15 

where 𝐽𝐿 is the productivity of lipid (𝑚g 𝐿−1𝑠−1), 𝐽𝑋 is the productivity of biomass (𝑚g 𝐿−1𝑠−1), 𝐿 

is the final lipid concentration (𝑚g Lipid 𝐿−1) calculated by Eq.6, 𝐿0 is the initial lipid 

concentration  (𝑚g Lipid 𝐿−1), 𝑡𝑝 is the process time (h), 𝑋 is the final biomass concentration 

(𝑚g Biomass  𝐿−1) calculated by Eq.5 and 𝑋0 is the initial biomass concentration 

(𝑚g Biomass  𝐿−1).  

The substrate, nitrogen and inoculum initial concentrations were the degrees of freedom in the 

optimization process. The computed optimum is tabulated in Table 2. Optimum lipid productivity 

is achieved using initial concentrations of acetate, N and inoculum equal to 2.1906 g L
-1

, 0.0742 

g L
-1

 and 0.005 g L
-1

, respectively. This represents a 32.85% increase in the lipid oil productivity 

compared to the base case, which illustrates the effectiveness of computer-based optimisation 

for such systems. The optimization results were experimentally validated. The computed optimal 

dynamics along with the corresponding experimental results obtained at the optimal operating 

conditions are presented in Figure 4. The agreement between the computed and experimental 

results is very good (error = 2.6249), which illustrates the usefulness of our model for optimal 

design of experiments, minimizing the need of time-consuming and potentially expensive trial-

and-error runs (Adesanya et al., 2014, Fouchard et al., 2009, Lee et al., 2015).  
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Table 2: Optimal system initial conditions and resulted productivity and yield measures. 

Initial Conditions Base Case 

Runs 

Optimisation 

Runs 

Biomass 

Concentration 
0.001 g 𝐿−1 0.005 g 𝐿−1 

Acetate 

Concentration 
2.1 g 𝐿−1 2.1906 g 𝐿−1 

Nitrogen 

Concentration 
0.098 g 𝐿−1 0.0742g 𝐿−1 

Resulted 

Measures 

Base Case 

Results 

Optimized Results Change Experimental 

Results 

Lipid 

Concentration 
62.4 mg 𝐿−1 82.9 mg 𝐿−1 +20.5 mg 𝐿−1 84.7 mg 𝐿−1 

Lipid Productivity 7.8 mg 𝐿−1 𝑑−1 10.3625mg 𝐿−1 𝑑−1 +32.85% 10.5875 mg 𝐿−1 𝑑−1 

Biomass 

Concentration 
586.8 mg 𝐿−1 498.4 mg 𝐿−1 −88.4 mg 𝐿−1 458.6 mg 𝐿−1 

Biomass 

Productivity 
73.85 mg 𝐿−1 𝑑−1 62.3 mg 𝐿−1 𝑑−1 −15.65% 57.325 mg 𝐿−1 𝑑−1 
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Fig. 4. Optimization of model predictions (lines) by experimental data (symbols with error bars) 

for: (a) biomass, (b) lipid concentration, (c) substrate (acetate) consumption, (d) N consumption, 

(e) pH change, (f) oxalic acid production, (g) glycolic acid production and (h) formic acid 

production, using 2.1906 g L
-1

 acetate and 0.0742 g/L N. 
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5. Conclusions  

Few studies have attempted to model microalgal biomass growth and lipid accumulation but 

none of these previously developed models have considered the simultaneous and antagonistic 

effect of nutrient starvation, substrate concentration and light intensity on the rate of lipid 

production and rate of biomass growth. Consequently, these models do not allow the accurate 

analysis of the culture system behavior under different operating conditions. A multi-parameter 

model was developed in this study to predict the dynamic behaviour of all 7 system state 

variables accurately, by considering the effect of three different culture variables (S, N, I). 

Experimental studies were conducted for the investigation of the effect of varying on biomass 

growth and on lipid accumulation rates, and used in conjunction with the constructed model for 

the estimation of kinetic parameters that are essential for accurate system simulations. The 

model was validated for a different set of initial concentrations. Optimization of the process was 

carried out to determine the optimal system operating conditions and it was found that a 32.85% 

increase in the lipid oil productivity was achieved using 2.1906 g L
-1

 acetate, 0.0742 g L
-1

 N and 

0.005 g L
-1

 starting biomass inoculum.  This illustrates the usefulness not only of computer-

based optimisation studies for the improvement of microalgal-based production, but also of 

carefully constructed predictive models for the accurate simulation of these systems. Such 

predictive models can be exploited for the robust design, control and scale-up of microalgal oil 

production, which can help to bring this important technology closer to commercialization and 

industrial applicability. 

 

Acknowledgements 

MB would like to acknowledge the financial support of Republic of Turkey Ministry of National 

Education. ISF wishes to acknowledge the Engineering and Physical Sciences Research 

Council for its financial support through his EPSRC doctoral prize fellowship 2014. 

  



89 
 

References 

Adesanya, V. O., Davey, M. P., Scott, S. A. & Smith, A. G. 2014. Kinetic modelling of growth 
and storage molecule production in microalgae under mixotrophic and autotrophic 
conditions. Bioresource Technology, 157, 293-304. 

Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C. & Lim, J. K. 2011. Microalgae as a sustainable 
energy source for biodiesel production: A review. Renewable and Sustainable Energy 
Reviews, 15, 584-593. 

Aiba, S. 1982. Growth kinetics of photosynthetic microorganisms. Microbial Reactions. Berlin, 
Heidelberg: Springer Berlin Heidelberg. 

Andrews, J. F. 1968. A mathematical model for the continuous culture of microorganisms 
utilizing inhibitory substrates. Biotechnology and Bioengineering, 10, 707-723. 

Bajhaiya, A. K., Dean, A. P., Driver, T., Trivedi, D. K., Rattray, N. J. W., Allwood, J. W., 
Goodacre, R. & Pittman, J. K. 2016. High-throughput metabolic screening of microalgae 
genetic variation in response to nutrient limitation. Metabolomics, 12, 1-14. 

Béchet, Q., Shilton, A. & Guieysse, B. 2013. Modeling the effects of light and temperature on 
algae growth: State of the art and critical assessment for productivity prediction during 
outdoor cultivation. Biotechnology Advances, 31, 1648-1663. 

Bekirogullari, M., Pittman, J. & Theodoropoulos, C. 2015. Integrated Computational and 
Experimental Studies of Microalgal Production of Fuels and Chemicals. In: Krist V. 
Gernaey, J. K. H. & Rafiqul, G. (eds.) Computer Aided Chemical Engineering. Elsevier. 

Bernard, O. 2011. Hurdles and challenges for modelling and control of microalgae for CO2 
mitigation and biofuel production. Journal of Process Control, 21, 1378-1389. 

Bernard, O., Mairet, F. & Chachuat, B. 2016. Modelling of Microalgae Culture Systems with 
Applications to Control and Optimization. In: Posten, C. & Feng Chen, S. (eds.) 
Microalgae Biotechnology. Cham: Springer International Publishing. 

Bernard, O. & Rémond, B. 2012. Validation of a simple model accounting for light and 
temperature effect on microalgal growth. Bioresource Technology, 123, 520-527. 

Borowitzka, M. A. 1999. Commercial production of microalgae: ponds, tanks, tubes and 
fermenters. Journal of Biotechnology, 70, 313-321. 

Brennan, L. & Owende, P. 2010. Biofuels from microalgae—A review of technologies for 
production, processing, and extractions of biofuels and co-products. Renewable and 
Sustainable Energy Reviews, 14, 557-577. 



90 
 

Breuer, G., Lamers, P. P., Janssen, M., Wijffels, R. H. & Martens, D. E. 2015. Opportunities to 
improve the areal oil productivity of microalgae. Bioresource Technology, 186, 294-302. 

Chapman, S. P., Paget, C. M., Johnson, G. N. & Schwartz, J.-M. 2015. Flux balance analysis 
reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic 
pathways in Chlamydomonas reinhardtii. Frontiers in Plant Science, 6, 474. 

Chen, F. & Johns, M. R. 1994. Substrate inhibition of Chlamydomonas reinhardtii by acetate in 
heterotrophic culture. Process Biochemistry, 29, 245-252. 

Chen, F. & Johns, M. R. 1996. Heterotrophic growth of Chlamydomonas reinhardtii on acetate 
in chemostat culture. Process Biochemistry, 31, 601-604. 

Chiari, L. & Zecca, A. 2011. Constraints of fossil fuels depletion on global warming projections. 
Energy Policy, 39, 5026-5034. 

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances, 25, 294-306. 

Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. 2009. Effect of 
temperature and nitrogen concentration on the growth and lipid content of 
Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical 
Engineering and Processing: Process Intensification, 48, 1146-1151. 

Demirbas, A. & Fatih Demirbas, M. 2011. Importance of algae oil as a source of biodiesel. 
Energy Conversion and Management, 52, 163-170. 

Dragone, G., Fernandes, B. D., Vicente, A. A. & Teixeira, J. A. 2010. Third generation biofuels 
from microalgae. 

Driver, T., Bajhaiya, A. & Pittman, J. K. 2014. Potential of Bioenergy Production from 
Microalgae. Current Sustainable/Renewable Energy Reports, 1, 94-103. 

Economou, C. N., Aggelis, G., Pavlou, S. & Vayenas, D. V. 2011. Modeling of single-cell oil 
production under nitrogen-limited and substrate inhibition conditions. Biotechnology and 
Bioengineering, 108, 1049-1055. 

Efroymson, R. A. & Dale, V. H. 2015. Environmental indicators for sustainable production of 
algal biofuels. Ecological Indicators, 49, 1-13. 

Fouchard, S., Pruvost, J., Degrenne, B., Titica, M. & Legrand, J. 2009. Kinetic modeling of light 
limitation and sulfur deprivation effects in the induction of hydrogen production with 
Chlamydomonas reinhardtii: Part I. Model development and parameter identification. 
Biotechnology and Bioengineering, 102, 232-245. 

Georgianna, D. R. & Mayfield, S. P. 2012. Exploiting diversity and synthetic biology for the 
production of algal biofuels. Nature, 488, 329-335. 



91 
 

Goncalves, E. C., Wilkie, A. C., Kirst, M. & Rathinasabapathi, B. 2015. Metabolic regulation of 
triacylglycerol accumulation in the green algae: identification of potential targets for 
engineering to improve oil yield. Plant Biotechnology Journal, n/a-n/a. 

Griffiths, M. J. & Harrison, S. T. L. 2009. Lipid productivity as a key characteristic for choosing 
algal species for biodiesel production. Journal of Applied Phycology, 21, 493-507. 

Grima, E. M., Camacho, F. G., Pérez, J. a. S., Sevilla, J. M. F., Fernández, F. G. A. & Gómez, 
A. C. 1994. A mathematical model of microalgal growth in light-limited chemostat 
culture. Journal of Chemical Technology & Biotechnology, 61, 167-173. 

Harris, E. H. 1989. The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and 
Laboratory Use, San Diego, Academic Press, Inc. 

Hoel, M. & Kverndokk, S. 1996. Depletion of fossil fuels and the impacts of global warming. 
Resource and Energy Economics, 18, 115-136. 

James, G. O., Hocart, C. H., Hillier, W., Chen, H., Kordbacheh, F., Price, G. D. & Djordjevic, M. 
A. 2011. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. 
Bioresource Technology, 102, 3343-3351. 

Jeon, Y.-C., Cho, C.-W. & Yun, Y.-S. 2005. Measurement of microalgal photosynthetic activity 
depending on light intensity and quality. Biochemical Engineering Journal, 27, 127-131. 

Johnson, X. & Alric, J. 2013. Central Carbon Metabolism and Electron Transport in 
Chlamydomonas reinhardtii: Metabolic Constraints for Carbon Partitioning between Oil 
and Starch. Eukaryotic cell, 12, 776-793. 

Jørgensen, S. E. 1976. A eutrophication model for a lake. Ecological Modelling, 2, 147-165. 

Kovárová-Kovar, K. & Egli, T. 1998. Growth Kinetics of Suspended Microbial Cells: From 
Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics. Microbiology and 
Molecular Biology Reviews, 62, 646-666. 

Lee, E., Jalalizadeh, M. & Zhang, Q. 2015. Growth kinetic models for microalgae cultivation: A 
review. Algal Research, 12, 497-512. 

Lowrey, J., Armenta, R. E. & Brooks, M. S. 2016. Nutrient and media recycling in heterotrophic 
microalgae cultures. Applied Microbiology and Biotechnology, 100, 1061-1075. 

Miller, R., Wu, G., Deshpande, R. R., Vieler, A., Gärtner, K., Li, X., Moellering, E. R., Zäuner, S., 
Cornish, A. J. & Liu, B. 2010. Changes in transcript abundance in Chlamydomonas 
reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant 
physiology, 154, 1737-1752. 

Monod, J. 1949. The Growth of Bacterial Cultures. Annual Review of Microbiology, 3, 371-394. 



92 
 

O’grady, J. & Morgan, J. A. 2010. Heterotrophic growth and lipid production of Chlorella 
protothecoides on glycerol. Bioprocess and Biosystems Engineering, 34, 121-125. 

Ogbonna, J. C., Yada, H. & Tanaka, H. 1995. Kinetic study on light-limited batch cultivation of 
photosynthetic cells. Journal of Fermentation and Bioengineering, 80, 259-264. 

Pittman, J. K., Dean, A. P. & Osundeko, O. 2011. The potential of sustainable algal biofuel 
production using wastewater resources. Bioresource Technology, 102, 17-25. 

Ramanan, R., Kim, B.-H., Cho, D.-H., Ko, S.-R., Oh, H.-M. & Kim, H.-S. 2013. Lipid droplet 
synthesis is limited by acetate availability in starchless mutant of Chlamydomonas 
reinhardtii. FEBS Letters, 587, 370-377. 

Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., 
Triantaphylidès, C., Li-Beisson, Y. & Peltier, G. 2011. Oil accumulation in the model 
green alga Chlamydomonas reinhardtii: characterization, variability between common 
laboratory strains and relationship with starch reserves. BMC Biotechnology, 11, 1-15. 

Spijkerman, E., De Castro, F. & Gaedke, U. 2011. Independent Colimitation for Carbon Dioxide 
and Inorganic Phosphorus. PLoS ONE, 6, e28219. 

Tevatia, R., Demirel, Y. & Blum, P. 2012. Kinetic modeling of photoautotropic growth and 
neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas 
reinhardtii. Bioresource Technology, 119, 419-424. 

Vlysidis, A., Binns, M., Webb, C. & Theodoropoulos, C. 2011. Glycerol utilisation for the 
production of chemicals: Conversion to succinic acid, a combined experimental and 
computational study. Biochemical Engineering Journal, 58–59, 1-11. 

Zhang, D., Dechatiwongse, P., Del Rio-Chanona, E. A., Maitland, G. C., Hellgardt, K. & 
Vassiliadis, V. S. 2015. Modelling of light and temperature influences on cyanobacterial 
growth and biohydrogen production. Algal Research, 9, 263-274. 

Zhang, X.-W., Chen, F. & Johns, M. R. 1999. Kinetic models for heterotrophic growth of 
Chlamydomonas reinhardtii in batch and fed-batch cultures. Process Biochemistry, 35, 
385-389. 

 



93 
 

Supplementary Table: 

Table S1: Concentration of each constituent in the TAP medium. 

Constituent mg L
-1

 Constituent mg L
-1

 

𝑵𝑯𝟒𝑪𝒍 187.5 𝐌𝐧𝐂𝐥𝟐 ∙ 𝟒𝐇𝟐𝐎 5.06 

𝑴𝒈𝑺𝟎𝟒 ∙ 𝟕𝐇𝟐𝐎 50 𝐂𝐨𝐂𝐥𝟐 ∙ 𝟔𝐇𝟐𝐎 1.61 

𝑪𝒂𝑪𝒍𝟐 ∙ 𝟐𝐇𝟐𝐎 2.5 𝐂𝐮𝐒𝐎𝟒 ∙ 𝟓𝐇𝟐𝐎 1.57 

𝑲𝟐𝑯𝑷𝑶𝟒 0.108 (𝐍𝐇𝟒)𝟔 ∙ 𝐌𝐨𝟕𝐎𝟐𝟒 ∙ 𝟒𝐇𝟐𝐎 1.10 

𝑲𝑯𝟐𝑷𝑶𝟒 0.054 𝐅𝐞𝐒𝐎𝟒 ∙ 𝟒𝐇𝟐𝐎 4.99 

𝑬𝑫𝑻𝑨, 𝒅𝒊𝒔𝒐𝒅𝒊𝒖𝒎 𝒔𝒂𝒍𝒕 50 𝑮𝒍𝒂𝒄𝒊𝒂𝒍 𝒂𝒄𝒆𝒕𝒊𝒄 𝒂𝒄𝒊𝒅 1050 

𝐙𝐧𝐒𝐎𝟒 ∙ 𝟕𝐇𝟐𝐎 22 𝑻𝒓𝒊𝒔 2420 

𝑯𝟑𝐁𝐎𝟑 11.4   
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Supplementary Figure: 

 

Fig. S1. The effect of carbon substrate (acetate) (a, b) and nutrient (nitrogen, N) (c, d) 

concentrations on dry weight biomass concentration (a, c) and total lipid concentration (b, d) 

over time during photo-heterotrophic growth for 8 d. The starting N concentration for the acetate 

range treatment experiments was 0.098 g L
-1

 and the starting acetate concentration for the N 

range treatment experiments was 1.05 g L
-1

. All data are mean ± SE values of 2-3 biological 

replicates. 
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Supplementary Information 

Appendix A: Fitting of model predictions to experimental data given 

as experiment 2 in section 3.3. parameter estimation 

 

Fig. A.1 Fitting of model predictions (lines) to experimental data (symbols with error bars) for: 

(a) biomass, (b) lipid concentration, (c) substrate (acetate) consumption, (d) N consumption, 

(e) pH change, (f) oxalic acid production, (g) glycolic acid production and (h) formic acid 

production, using 1.05 g L-1 acetate and 0.049 g L-1 N. 
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Appendix B: Upper and lower bounds of the estimated parameters used in 

section 3.3 parameters estimation problem 

Table B.1 Upper and lower bounds of the estimated parameters 

Parameters Lower bounds Upper bounds Parameters 
Lower 

bounds 
Upper 

bounds 

𝝁𝑿𝒎𝒂𝒙 0.2 0.25 𝑲𝑿𝑰 10 100 

𝑲𝑿𝑺 0.02 2 𝑲𝒊𝑿𝑰 2000 2500 

𝑲𝒊𝐗𝐒 5 15 𝑲𝑳𝑰 10 50 

𝑲𝑿𝑵 0.05 0.075 𝑲𝒊𝑳𝑰 2000 2500 

𝑲𝒊𝐗𝐍 0.03 0.06 𝝈 10 50 

𝒒𝑳𝒎𝒂𝒙 0.1 0.2 𝒌𝟏 0.2 0.5 

𝑲𝑳𝑺 5 10 𝑲𝑮𝑨𝑺 1 2 

𝑲𝒊𝐋𝐒 0.075 0.15 𝑲𝑮𝑨𝑵 5 25 

𝑲𝒊𝑵𝑳 350 600 𝑲𝒊𝑮𝑨𝑵 0.5 5 

𝒀𝑿
𝑺⁄

 
0.7 15 𝒌𝟐 1 2 

𝒀𝑿
𝑵⁄

 
5 10 𝑲𝑭𝑨𝑺 10 20 

𝑲𝑯 0.075 1 𝑲𝑭𝑨𝑵 1 5 

𝒀𝑳
𝑺⁄
 

0.05 0.1    
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Appendix C: Upper and lower bounds of the estimated optimal growth 

conditions used in section 4.3 process optimization problem 

The decision variables in the optimization problem were initial biomass concentration  

(𝑋0), substrate (acetate) (𝑆0) and nitrogen (𝑁0) concentrations. The upper and lower bounds of 

the optimization problem were set according to experimental behaviour of system.  

Table C.1 Upper and lower bounds of the decision variables used in optimization problem 

Parameters Lower bounds Upper bounds 

𝑿𝟎 0.001 0.01 

𝑺𝟎 0.1 3.15 

𝑵𝟎 0.01 1 
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Appendix D: The basic assumptions for the general case of the model are: 

 Microalgal growth takes place in a homogeneous reactor. Biomass is cultivated in a 

well-mixed environment containing acetate as substrate. 

 The microalgal biomass growth depends on acetate and nitrogen concentrations and 

light intensity. 

 Lipid production starts when nitrogen limitation occurs and carbon is in excess. 

 Acetate is utilized for both biomass and lipid synthesis. 

 Nitrogen is only consumed for fat-free biomass synthesis. 
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Appendix E. Sensitivity analysis 

 

A sensitivity analysis was carried out for the kinetic model proposed in this work 

which consists of 25 parameters. The analysis was performed by calculating the 

sensitivity (Eq. (A.1)), for all 7 dynamic variables with respect to each parameter 

at eight different cultivation times (t=25h, 50h, 75h, 85h, 125h, 150h, 175h and 

190h). 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

= 𝑎𝑏𝑠 (
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡, 𝑃 + 𝛥𝑃) − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡, 𝑃 − ∆𝑃)

2 ∗ ∆𝑃
) 

Eq. 

A.1 

Sensitivity of the parameters was computed with a %10 change (∆𝑃) in 

parameters values. The sensitivity analysis results of 25 kinetic parameters are 

presented in Table E.1. The threshold for sensitivity was set to 0.01, meaning 

parameters with sensitivities lower than 0.01 were considered not-sensitive and 

sensitivities higher than 0.01 deemed to be sensitive and they are highlighted.  

Table E.1. Sensitivity analysis results of the proposed model kinetic parameters. 

 

   Sensitivity 

Parameter Value Variable 25h 50h 75h 85h 125h 150h 175h 190h 

𝝁𝒙𝒎𝒂𝒙 0.2272 X 6.16E-02 8.56E-01 3.05E+00 2.80E+00 1.31E+00 9.58E-01 7.61E-01 6.76E-01 
  L 1.92E-03 3.64E-02 1.67E-01 1.57E-01 6.36E-03 4.89E-02 8.52E-02 1.01E-01 
  AA 7.19E-02 1.15E+00 4.69E+00 4.37E+00 9.90E-01 1.14E-01 8.16E-01 1.12E+00 
  N 8.96E-03 1.24E-01 4.43E-01 4.06E-01 1.90E-01 1.39E-01 1.11E-01 9.82E-02 
  pH 6.32E-02 1.01E+00 4.12E+00 3.84E+00 8.70E-01 1.00E-01 7.17E-01 9.89E-01 
  GA 6.24E-04 1.10E-02 4.81E-02 5.25E-02 2.71E-02 1.14E-02 4.44E-04 6.12E-03 
  FA 3.12E-03 5.42E-02 2.21E-01 2.32E-01 1.07E-01 4.51E-02 3.68E-03 1.49E-02 

𝑲𝑿𝑺 0.0503 X 5.35E-03 7.47E-02 2.89E-01 2.65E-01 1.45E-01 1.21E-01 1.06E-01 1.02E-01 
  L 1.66E-04 3.18E-03 1.54E-02 1.39E-02 2.22E-03 8.60E-03 1.35E-02 1.57E-02 
  AA 6.24E-03 1.01E-01 4.38E-01 3.97E-01 6.37E-02 5.22E-02 1.38E-01 1.76E-01 
  N 7.78E-04 1.08E-02 4.19E-02 3.85E-02 2.10E-02 1.76E-02 1.55E-02 1.48E-02 
  pH 5.49E-03 8.83E-02 3.85E-01 3.49E-01 5.60E-02 4.59E-02 1.21E-01 1.55E-01 
  GA 5.42E-05 9.60E-04 4.40E-03 4.73E-03 2.05E-03 2.62E-04 1.31E-03 2.09E-03 
  FA 2.71E-04 4.74E-03 2.02E-02 2.08E-02 7.98E-03 1.25E-03 4.20E-03 6.69E-03 

𝑲𝒊𝑿𝑺 9.923 X 2.40E-04 3.29E-03 1.20E-02 1.05E-02 4.27E-03 2.99E-03 2.19E-03 1.89E-03 
  L 7.47E-06 1.41E-04 6.75E-04 6.16E-04 6.69E-05 1.03E-04 2.13E-04 2.57E-04 
  AA 2.80E-04 4.45E-03 1.87E-02 1.68E-02 3.95E-03 4.20E-04 1.85E-03 2.73E-03 
  N 3.49E-05 4.78E-04 1.74E-03 1.52E-03 6.21E-04 4.34E-04 3.18E-04 2.75E-04 
  pH 2.46E-04 3.91E-03 1.65E-02 1.47E-02 3.48E-03 3.69E-04 1.62E-03 2.40E-03 
  GA 2.43E-06 4.27E-05 1.91E-04 2.05E-04 1.09E-04 5.77E-05 1.98E-05 4.03E-06 
  FA 1.22E-05 2.11E-04 8.80E-04 9.04E-04 4.28E-04 2.26E-04 8.96E-05 3.80E-05 

𝑲𝑿𝑵 0.0648 X 7.68E-02 1.08E+00 4.17E+00 3.85E+00 2.10E+00 1.70E+00 1.45E+00 1.34E+00 
  L 2.39E-03 4.56E-02 2.21E-01 1.98E-01 3.57E-02 1.28E-01 1.95E-01 2.25E-01 
  AA 8.96E-02 1.45E+00 6.29E+00 5.72E+00 8.73E-01 8.44E-01 2.06E+00 2.60E+00 
  N 1.12E-02 1.56E-01 6.06E-01 5.59E-01 3.06E-01 2.47E-01 2.11E-01 1.95E-01 
  pH 7.88E-02 1.27E+00 5.53E+00 5.02E+00 7.67E-01 7.42E-01 1.81E+00 2.29E+00 
  GA 7.78E-04 1.38E-02 6.31E-02 6.80E-02 2.89E-02 3.30E-03 1.80E-02 2.85E-02 
  FA 3.89E-03 6.81E-02 2.90E-01 2.99E-01 1.13E-01 1.63E-02 5.67E-02 9.05E-02 

𝑲𝒊𝑿𝑵 0.5004 X 2.93E-03 3.98E-02 1.37E-01 1.16E-01 4.04E-02 2.61E-02 1.78E-02 1.48E-02 
  L 9.11E-05 1.71E-03 8.02E-03 7.38E-03 1.80E-03 2.75E-04 6.63E-04 1.01E-03 
  AA 3.42E-03 5.38E-02 2.19E-01 1.94E-01 5.56E-02 2.21E-02 1.72E-03 5.71E-03 
  N 4.25E-04 5.78E-03 2.00E-02 1.68E-02 5.88E-03 3.79E-03 2.58E-03 2.16E-03 
  pH 3.00E-03 4.73E-02 1.92E-01 1.71E-01 4.89E-02 1.94E-02 1.51E-03 5.02E-03 
  GA 2.97E-05 5.18E-04 2.27E-03 2.42E-03 1.40E-03 8.98E-04 5.46E-04 4.08E-04 
  FA 1.49E-04 2.56E-03 1.04E-02 1.07E-02 5.49E-03 3.46E-03 2.13E-03 1.65E-03 

𝒒𝑳𝒎𝒂𝒙 0.1205 X 1.44E-05 1.14E-03 2.01E-02 2.87E-02 3.41E-02 3.25E-02 2.66E-02 2.35E-02 
  L 2.69E-03 2.29E-02 1.31E-01 1.97E-01 3.93E-01 4.69E-01 5.25E-01 5.50E-01 
  AA 4.21E-02 3.59E-01 2.06E+00 3.11E+00 6.16E+00 7.37E+00 8.23E+00 8.62E+00 
  N 2.09E-06 1.66E-04 2.92E-03 4.18E-03 4.95E-03 4.72E-03 3.86E-03 3.41E-03 
  pH 3.70E-02 3.16E-01 1.81E+00 2.73E+00 5.42E+00 6.47E+00 7.23E+00 7.57E+00 
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  GA 3.40E-07 2.20E-05 8.94E-04 2.47E-03 1.71E-02 2.96E-02 4.29E-02 5.08E-02 
  FA 4.11E-06 2.75E-04 9.07E-03 2.26E-02 1.24E-01 1.98E-01 2.70E-01 3.09E-01 

𝑲𝑳𝑺 6.5544 X 3.57E-08 2.86E-06 5.48E-05 8.30E-05 1.18E-04 1.24E-04 1.06E-04 9.63E-05 
  L 6.68E-06 5.84E-05 3.85E-04 6.33E-04 1.62E-03 2.16E-03 2.64E-03 2.90E-03 
  AA 1.05E-04 9.16E-04 6.06E-03 9.96E-03 2.54E-02 3.38E-02 4.14E-02 4.55E-02 
  N 5.19E-09 4.16E-07 7.96E-06 1.21E-05 1.72E-05 1.81E-05 1.54E-05 1.40E-05 
  pH 9.19E-05 8.05E-04 5.32E-03 8.75E-03 2.23E-02 2.97E-02 3.64E-02 4.00E-02 
  GA 8.43E-10 5.58E-08 2.51E-06 7.40E-06 6.20E-05 1.16E-04 1.80E-04 2.20E-04 
  FA 1.02E-08 6.96E-07 2.53E-05 6.72E-05 4.45E-04 7.67E-04 1.11E-03 1.31E-03 

𝑲𝒊𝑳𝑺 0.1099 X 1.30E-05 1.02E-03 1.78E-02 2.51E-02 2.86E-02 2.66E-02 2.16E-02 1.90E-02 
  L 2.43E-03 2.05E-02 1.14E-01 1.68E-01 3.12E-01 3.59E-01 3.89E-01 3.99E-01 
  AA 3.80E-02 3.22E-01 1.79E+00 2.65E+00 4.90E+00 5.64E+00 6.09E+00 6.26E+00 
  N 1.89E-06 1.49E-04 2.59E-03 3.65E-03 4.15E-03 3.86E-03 3.14E-03 2.76E-03 
  pH 3.34E-02 2.83E-01 1.58E+00 2.33E+00 4.30E+00 4.96E+00 5.36E+00 5.50E+00 
  GA 3.07E-07 1.97E-05 7.85E-04 2.14E-03 1.41E-02 2.39E-02 3.38E-02 3.96E-02 
  FA 3.70E-06 2.47E-04 7.98E-03 1.97E-02 1.03E-01 1.61E-01 2.14E-01 2.44E-01 

𝑲𝒊𝑵𝑳 380.023 X 1.19E-12 9.23E-11 1.49E-09 2.00E-09 2.01E-09 1.72E-09 1.40E-09 1.20E-09 
  L 2.21E-10 1.82E-09 8.82E-09 1.21E-08 1.88E-08 2.04E-08 2.12E-08 2.14E-08 
  AA 3.46E-09 2.86E-08 1.39E-07 1.91E-07 2.95E-07 3.21E-07 3.33E-07 3.35E-07 
  N 1.73E-13 1.34E-11 2.16E-10 2.91E-10 2.92E-10 2.50E-10 2.03E-10 1.74E-10 
  pH 3.04E-09 2.51E-08 1.22E-07 1.68E-07 2.59E-07 2.82E-07 2.92E-07 2.95E-07 
  GA 2.79E-14 1.76E-12 6.35E-11 1.64E-10 9.39E-10 1.51E-09 2.07E-09 2.39E-09 
  FA 3.38E-13 2.21E-11 6.50E-10 1.52E-09 6.91E-09 1.03E-08 1.33E-08 1.49E-08 

𝒀𝑿
𝑺⁄
 1.4700 X 9.57E-07 7.48E-05 1.23E-03 1.67E-03 1.68E-03 1.50E-03 1.19E-03 1.03E-03 

  L 1.67E-07 1.25E-05 3.35E-04 6.61E-04 1.74E-03 2.02E-03 1.97E-03 1.80E-03 
  AA 2.79E-03 2.33E-02 1.17E-01 1.63E-01 2.60E-01 2.85E-01 2.99E-01 3.02E-01 
  N 1.39E-07 1.09E-05 1.79E-04 2.43E-04 2.44E-04 2.17E-04 1.72E-04 1.50E-04 
  pH 2.46E-03 2.05E-02 1.03E-01 1.43E-01 2.28E-01 2.51E-01 2.62E-01 2.66E-01 
  GA 2.26E-08 1.43E-06 5.31E-05 1.39E-04 8.14E-04 1.32E-03 1.82E-03 2.11E-03 
  FA 2.73E-07 1.80E-05 5.42E-04 1.28E-03 5.97E-03 8.97E-03 1.17E-02 1.31E-02 

𝒀𝑿
𝑵⁄
 6.8829 X 1.56E-06 1.34E-04 3.48E-03 6.40E-03 1.76E-02 2.40E-02 3.00E-02 3.34E-02 

  L 3.17E-08 3.42E-06 6.34E-05 2.30E-05 1.07E-03 2.11E-03 3.26E-03 3.97E-03 
  AA 1.56E-06 1.45E-04 3.36E-03 4.71E-03 4.75E-03 1.67E-02 3.06E-02 3.94E-02 
  N 1.27E-04 1.03E-03 4.55E-03 5.96E-03 7.93E-03 7.95E-03 7.70E-03 7.48E-03 
  pH 1.37E-06 1.27E-04 2.95E-03 4.14E-03 4.18E-03 1.46E-02 2.69E-02 3.47E-02 
  GA 7.89E-08 5.84E-06 1.73E-04 4.05E-04 2.05E-03 3.25E-03 4.42E-03 5.07E-03 
  FA 3.85E-07 2.83E-05 8.00E-04 1.82E-03 8.56E-03 1.32E-02 1.75E-02 1.98E-02 

𝑲𝑯 0.8789 X 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
  L 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
  AA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
  N 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
  pH 9.13E-03 7.64E-02 3.98E-01 5.71E-01 1.01E+00 1.17E+00 1.30E+00 1.37E+00 
  GA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
  FA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝒀𝑳
𝑺⁄
 0.0639 X 2.74E-05 2.17E-03 3.83E-02 5.48E-02 6.48E-02 6.14E-02 4.99E-02 4.36E-02 

  L 4.80E-06 3.63E-04 1.06E-02 2.20E-02 6.67E-02 7.94E-02 7.64E-02 6.67E-02 
  AA 8.02E-02 6.84E-01 3.93E+00 5.93E+00 1.18E+01 1.40E+01 1.57E+01 1.64E+01 
  N 3.99E-06 3.15E-04 5.57E-03 7.96E-03 9.42E-03 8.93E-03 7.24E-03 6.34E-03 
  pH 7.05E-02 6.01E-01 3.45E+00 5.21E+00 1.03E+01 1.23E+01 1.38E+01 1.44E+01 
  GA 6.48E-07 4.19E-05 1.71E-03 4.72E-03 3.28E-02 5.68E-02 8.22E-02 9.73E-02 
  AA 7.82E-06 5.24E-04 1.73E-02 4.31E-02 2.37E-01 3.78E-01 5.14E-01 5.89E-01 

𝑲𝑿𝑰 19.519 X 9.33E-05 1.40E-03 7.45E-03 8.26E-03 6.61E-03 5.78E-03 5.11E-03 4.79E-03 
  L 2.88E-06 5.75E-05 3.15E-04 2.62E-04 3.90E-04 6.98E-04 9.29E-04 1.03E-03 
  AA 1.09E-04 1.85E-03 9.99E-03 9.72E-03 1.61E-03 6.98E-03 1.10E-02 1.29E-02 
  N 1.36E-05 2.03E-04 1.08E-03 1.20E-03 9.60E-04 8.40E-04 7.42E-04 6.95E-04 
  pH 9.55E-05 1.63E-03 8.78E-03 8.54E-03 1.42E-03 6.14E-03 9.71E-03 1.14E-02 
  GA 9.40E-07 1.74E-05 9.12E-05 1.01E-04 3.68E-06 7.28E-05 1.40E-04 1.74E-04 
  FA 4.71E-06 8.58E-05 4.18E-04 4.43E-04 1.18E-05 2.60E-04 4.78E-04 5.80E-04 

𝑲𝒊𝑿𝑰 2053.92 X 3.31E-07 4.22E-06 1.23E-05 9.74E-06 3.04E-06 1.90E-06 1.27E-06 1.05E-06 
  L 1.04E-08 1.87E-07 8.10E-07 7.58E-07 3.32E-07 2.24E-07 1.57E-07 1.31E-07 
  AA 3.87E-07 5.80E-06 2.10E-05 1.85E-05 7.27E-06 4.80E-06 3.32E-06 2.76E-06 
  N 4.81E-08 6.13E-07 1.79E-06 1.42E-06 4.41E-07 2.76E-07 1.85E-07 1.53E-07 
  pH 3.41E-07 5.10E-06 1.85E-05 1.63E-05 6.39E-06 4.22E-06 2.92E-06 2.43E-06 
  GA 3.38E-09 5.67E-08 2.28E-07 2.40E-07 1.51E-07 1.09E-07 7.81E-08 6.54E-08 
  FA 1.69E-08 2.80E-07 1.05E-06 1.06E-06 5.94E-07 4.10E-07 2.85E-07 2.37E-07 

𝑲𝑳𝑰 15.0228 X 1.20E-08 1.05E-06 3.03E-05 5.65E-05 1.08E-04 1.30E-04 1.05E-04 9.82E-05 
  L 2.27E-06 2.31E-05 2.83E-04 5.77E-04 1.78E-03 2.33E-03 2.75E-03 2.96E-03 
  AA 3.56E-05 3.62E-04 4.45E-03 9.07E-03 2.79E-02 3.66E-02 4.32E-02 4.63E-02 
  N 1.75E-09 1.52E-07 4.41E-06 8.21E-06 1.57E-05 1.88E-05 1.52E-05 1.43E-05 
  pH 3.13E-05 3.18E-04 3.91E-03 7.97E-03 2.46E-02 3.21E-02 3.79E-02 4.07E-02 
  GA 2.85E-10 2.13E-08 1.58E-06 5.73E-06 6.37E-05 1.23E-04 1.91E-04 2.32E-04 
  FA 3.44E-09 2.62E-07 1.55E-05 5.08E-05 4.51E-04 8.02E-04 1.17E-03 1.37E-03 

𝑲𝒊𝑳𝑰 2152.92 X 3.92E-11 2.81E-09 3.21E-08 3.73E-08 2.87E-08 1.79E-08 1.68E-08 1.25E-08 
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  L 7.24E-09 5.09E-08 1.34E-07 1.47E-07 1.63E-07 1.65E-07 1.65E-07 1.64E-07 
  AA 1.13E-07 7.98E-07 2.12E-06 2.33E-06 2.57E-06 2.60E-06 2.60E-06 2.57E-06 
  N 5.69E-12 4.08E-10 4.66E-09 5.42E-09 4.16E-09 2.60E-09 2.45E-09 1.82E-09 
  pH 9.96E-08 7.01E-07 1.86E-06 2.05E-06 2.26E-06 2.28E-06 2.28E-06 2.26E-06 
  GA 9.21E-13 5.11E-11 1.15E-09 2.45E-09 1.01E-08 1.51E-08 1.95E-08 2.20E-08 
  FA 1.11E-11 6.50E-10 1.23E-08 2.37E-08 7.70E-08 1.06E-07 1.30E-07 1.42E-07 

𝝈 34.1036 X 8.56E-07 7.01E-05 2.97E-03 5.73E-03 1.04E-02 1.07E-02 1.05E-02 1.02E-02 
  L 3.83E-08 3.43E-06 2.00E-04 4.73E-04 1.56E-03 2.09E-03 2.53E-03 2.75E-03 
  AA 1.18E-06 1.01E-04 5.16E-03 1.13E-02 3.15E-02 4.00E-02 4.67E-02 5.00E-02 
  N 1.24E-07 1.02E-05 4.32E-04 8.33E-04 1.51E-03 1.56E-03 1.53E-03 1.49E-03 
  pH 1.04E-06 8.90E-05 4.53E-03 9.92E-03 2.77E-02 3.51E-02 4.10E-02 4.39E-02 
  GA 6.49E-09 5.12E-07 1.38E-05 1.71E-05 1.61E-04 3.69E-04 5.96E-04 7.32E-04 
  FA 3.25E-08 2.52E-06 5.89E-05 5.57E-05 8.50E-04 1.77E-03 2.72E-03 3.26E-03 

𝒌𝟏 0.3285 X 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.78E-11 6.65E-10 5.98E-11 6.48E-11 
  L 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.69E-11 1.06E-11 1.43E-11 4.54E-12 
  AA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.82E-10 1.94E-10 2.24E-10 4.55E-13 
  N 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.29E-11 8.82E-11 9.65E-12 5.98E-12 
  pH 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.38E-10 4.32E-10 6.69E-11 8.95E-11 
  GA 3.24E-04 2.64E-03 1.33E-02 1.97E-02 4.15E-02 5.07E-02 5.75E-02 6.08E-02 
  FA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.01E-11 1.13E-11 1.01E-11 2.07E-12 

𝑲𝑮𝑨𝑺 1.4555 X 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.73E-06 6.24E-07 1.77E-06 1.65E-07 
  L 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.99E-07 2.00E-08 1.87E-07 2.25E-08 
  AA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.21E-06 1.12E-07 4.13E-06 4.64E-07 
  N 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.42E-07 9.07E-08 2.57E-07 2.40E-08 
  pH 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.34E-06 9.83E-08 3.63E-06 4.07E-07 
  GA 3.00E-05 2.47E-04 1.30E-03 2.00E-03 4.61E-03 5.84E-03 6.81E-03 7.29E-03 
  FA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.73E-07 1.69E-08 3.49E-07 2.70E-08 

𝑲𝑮𝑨𝑵 12.976 X 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.27E-08 2.03E-09 5.59E-09 5.04E-10 
  L 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.01E-09 6.04E-11 5.89E-10 6.79E-11 
  AA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.45E-08 4.21E-10 1.30E-08 1.40E-09 
  N 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.85E-09 2.94E-10 8.12E-10 7.32E-11 
  pH 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.16E-08 3.72E-10 1.14E-08 1.23E-09 
  GA 8.23E-06 6.70E-05 3.37E-04 5.02E-04 1.06E-03 1.29E-03 1.47E-03 1.55E-03 
  FA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.26E-09 4.46E-11 1.10E-09 7.82E-11 

𝑲𝒊𝑮𝑨𝑵 2.5328 X 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.77E-09 7.52E-10 2.11E-09 1.94E-10 
  L 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.80E-10 8.62E-12 2.23E-10 2.65E-11 
  AA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.21E-09 5.68E-10 4.95E-09 5.55E-10 
  N 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.93E-10 1.16E-10 3.07E-10 2.89E-11 
  pH 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.08E-09 5.14E-10 4.34E-09 4.84E-10 
  GA 1.22E-08 9.33E-08 3.44E-07 4.27E-07 5.50E-07 5.69E-07 5.77E-07 5.79E-07 
  FA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.61E-10 3.10E-11 4.16E-10 3.10E-11 

𝒌𝟐 1.4055 X 0.00E+00 2.22E-06 1.21E-05 6.36E-06 1.78E-05 8.62E-06 9.49E-06 1.35E-06 
  L 0.00E+00 1.19E-07 9.49E-07 8.98E-07 1.18E-06 4.19E-07 8.84E-07 2.19E-07 
  AA 0.00E+00 3.38E-06 2.31E-05 1.84E-05 3.06E-05 1.24E-05 2.03E-05 4.34E-06 
  N 0.00E+00 3.23E-07 1.76E-06 9.24E-07 2.59E-06 1.25E-06 1.38E-06 1.97E-07 
  pH 0.00E+00 2.97E-06 2.03E-05 1.62E-05 2.69E-05 1.09E-05 1.78E-05 3.82E-06 
  GA 0.00E+00 3.91E-08 2.28E-07 2.72E-07 1.89E-07 8.94E-08 4.02E-07 1.13E-07 
  FA 3.80E-04 3.07E-03 1.50E-02 2.18E-02 4.31E-02 5.13E-02 5.71E-02 5.98E-02 

𝑲𝑭𝑨𝑺 12.976 X 0.00E+00 2.07E-07 1.11E-06 5.83E-07 1.65E-06 7.93E-07 8.71E-07 1.23E-07 
  L 0.00E+00 1.11E-08 8.71E-08 8.24E-08 1.09E-07 3.86E-08 8.13E-08 1.98E-08 
  AA 0.00E+00 3.15E-07 2.12E-06 1.69E-06 2.83E-06 1.14E-06 1.86E-06 3.94E-07 
  N 0.00E+00 3.00E-08 1.61E-07 8.46E-08 2.39E-07 1.15E-07 1.27E-07 1.79E-08 
  pH 0.00E+00 2.77E-07 1.86E-06 1.48E-06 2.48E-06 1.00E-06 1.64E-06 3.46E-07 
  GA 0.00E+00 3.64E-09 2.10E-08 2.49E-08 1.75E-08 8.30E-09 3.70E-08 1.03E-08 
  FA 3.57E-05 2.90E-04 1.42E-03 2.09E-03 4.20E-03 5.04E-03 5.63E-03 5.91E-03 

𝑲𝑭𝑨𝑵 2.5328 X 0.00E+00 1.35E-06 7.33E-06 3.86E-06 1.07E-05 5.22E-06 5.74E-06 8.28E-07 
  L 0.00E+00 7.28E-08 5.75E-07 5.44E-07 7.11E-07 2.53E-07 5.35E-07 1.34E-07 
  AA 0.00E+00 2.06E-06 1.40E-05 1.11E-05 1.84E-05 7.51E-06 1.23E-05 2.66E-06 
  N 0.00E+00 1.97E-07 1.06E-06 5.60E-07 1.56E-06 7.58E-07 8.35E-07 1.20E-07 
  pH 0.00E+00 1.81E-06 1.23E-05 9.79E-06 1.62E-05 6.60E-06 1.08E-05 2.34E-06 
  GA 0.00E+00 2.38E-08 1.38E-07 1.64E-07 1.13E-07 5.37E-08 2.43E-07 6.93E-08 
  FA 2.05E-04 1.66E-03 8.12E-03 1.19E-02 2.36E-02 2.82E-02 3.14E-02 3.29E-02 
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Chapter 4 

Kinetic Modelling of Microalgal Cultivation for Optimised 

Biofuel Production under Multiple Environmental Factors  

4.1. Preface 

Integrated experimental and computational studies of microalgal biomass growth and lipid 

accumulation bring numerous advantages and applications such as understanding the 

interactions between the cellular components such as lipid, starch and protein and improving 

process productivities through the optimisation of the growth media composition and the 

environmental factors. 

The kinetic modelling of the microalgal growth process allows us to compute optimal cultivation 

strategies through the manipulation of the growth media composition and environmental factors 

to achieve higher lipid and biomass productivities. In order to develop a detailed kinetic model 

for microalgae growth process, all the growth-limiting parameters need to be considered and the 

effect of their variations needs to be studied through a combination of experiments and 

computations. 

Microalgal growth is affected by both the growth media composition (carbon substrate and 

nutrients) and the environmental factors (light and temperature). As shown in Chapter 3, the 

addition of carbon substrate can increase biomass concentration while excess carbon addition 

can inhibit growth. On the other hand, N limitation led to an increase in lipid accumulation while 

excess of N did not inhibit cellular lipid accumulation but biomass concentration. Variations of 

these two growth media were tested experimentally and a kinetic model was then developed 

considering the effect of both carbon substrate and nitrogen under constant light illumination. 

Furthermore, experiments with light intensity and temperature variations showed that these 

environmental factors also have big influence on biomass growth and lipid accumulation. 

The model developed in Chapter 3 was used to establish an optimal strategy for lipid 

accumulation in terms of the substrate and nitrogen concentration variations. Here, this model is 

expanded in order to develop an improved strategy taking into account light and temperature 
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variations as well. To accomplish this, experiments with seven different light intensities and 

temperatures were carried out and resulting biomass growth and lipid accumulation were 

analysed along with the substrate and nitrogen consumption. Based on the experimental 

observations and existing literature, a comprehensive quadruple substrate kinetic model was 

developed considering the simultaneous and antagonistic effects of carbon, nitrogen, 

temperature and light intensity. 

The results and discussion of this study are presented in the paper that follows where the effect 

of temperature and light intensity variations on biomass growth and lipid accumulation are 

assessed and discussed in detail. Additionally, the development of the kinetic modelling 

framework is discussed. The details of the kinetic parameter values estimation and the 

optimisation study towards maximization of lipid accumulation are also explained. 

K.T. and J.K.P. contemplated and supervised the research and M.B. designed the research 

plans, performed the research, analysed data and wrote the manuscripts.  
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Cultivation for Optimised Biofuel Production under Multiple Environmental Factors. Submitted to 
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Kinetic Modelling of Microalgal Cultivation for 

Optimised Biofuel Production under Multiple 

Environmental Factors  

M. Bekirogullaria , J.K. Pittmanb, C. Theodoropoulosa,* 

a
School of Chemical Engineering and Analytical Science, Biochemical and Bioprocess 

Engineering Group, University of Manchester, M13 9PL, UK 

b
School of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK 

Abstract 

Background: Microalgae-derived biofuels have the potential to make a sustainable contribution 

to global fuel supply, due to reduced greenhouse gas emissions and lack of conflict with food 

production. However, the near-term economic viability of algal-derived biofuels remains a major 

concern. Enhancing cultivation methods in order to increase microalgae productivity has been 

given serious consideration in order to reduce the cost of algal biofuel production. It has been 

shown that it is more economically beneficial to target enhancements in lipid content by 

manipulating cultivation media conditions and environmental factors, rather than biomass 

growth rate.  

Results: The present study aims to develop a novel kinetic model that will consider four major 

growth parameters: carbon substrate, nitrogen concentration, light intensity and temperature, in 

order to develop a cost-effective process to improve the economic viability of the system and its 

overall sustainability. To accomplish this, a detailed kinetic model has been constructed through 

a multi-parameter quantification methodology in conjunction with experiments taking into 

account photo-heterotrophic biomass growth. The growth rate of the proposed model is based 

on carbon and nitrogen concentration, light intensity and temperature. Parameters of the 

proposed model were estimated through an extensive number of experimental data from 

microalgae laboratory and bench-scale cultures. Consequently, predictive capabilities of the 

model were assessed and the validated model was utilised to determine the optimal operating 

                                                      
Corresponding author: k.theodoropoulos@manchester.ac.uk 

jon.pit tman@manchester.ac.uk, mesut.bekirogullari@manchester.ac.uk  

mailto:k.theodoropoulos@manchester.ac.uk
mailto:jon.pittman@manchester.ac.uk
mailto:mesut.bekirogullari@manchester.ac.uk


106 

 

conditions for bench-scale batch lipid production. The computed optimal conditions were 

experimentally tested demonstrating excellent agreement with the optimisation results. 

Conclusions: Such comprehensive predictive kinetic modelling approaches can be exploited 

for the robust design, control and optimization of microalgal oil production as well as for process 

scale-up, which can help to reduce overall operating cost and bring this important technology 

one step closer to commercialization and industrialization.   

 

Keywords 

Chlamydomonas reinhardtii, Biofuels, Dynamic kinetic modelling, Microalgal lipid, Cultivation 

optimization, Variable light intensity and temperature. 

 

Nomenclature 

𝑇𝐴𝐺 Triacylglycerol 

𝑇𝐴𝑃 Tris-acetate-phosphate 

𝐷𝐶𝑊 Dry cell weight 

𝑁 Nitrogen 

𝑆 Substrate 

𝐼 Light intensity 

𝐼0 Local light intensity 

𝐿 Lipid 

𝑋 Oil-free biomass 

𝑇 Incubation temperature 

𝑇0 Reference temperature 

𝐴𝐴 Acetic acid 

𝜇 Specific growth rate 

𝜇𝑚𝑎𝑥 Maximum specific growth rate of biomass 

𝐾𝑆 Substrate saturation constant 

𝐾𝑖S Substrate inhibition constant 

𝜇𝑋 Specific growth rate of oil-free biomass 

𝜇𝑋𝑚𝑎𝑥 Maximum specific growth rate of oil-free biomass 

𝐾𝑋𝑆 Acetate saturation constant 
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𝐾𝑖XS Acetate inhibition constant 

𝐾𝑋𝑁 Nitrogen saturation constant 

𝐾𝑖XN Nitrogen inhibition constant 

𝑞𝐿 Specific growth rate of lipid 

𝑞𝐿𝑚𝑎𝑥 Maximum specific growth rate of lipid 

𝐾𝐿𝑆 Acetate saturation constant 

𝐾𝑖LS Substrate inhibition constant 

𝐾𝑖𝑁𝐿 Nitrogen inhibition constant 

𝑌𝑋
𝑆⁄  Yield coefficient for oil-free biomass production with respect to substrate 

𝑌𝑋
𝑁⁄  Yield coefficient for oil-free biomass production with respect to N 

𝐾𝐻 pH rate constant 

𝑌𝐿
𝑆⁄  Yield coefficient for lipid production with respect to substrate 

𝐾𝑋𝐼 Light saturation constant 

𝐾𝑖𝑋𝐼 Light inhibition constant 

𝐾𝐿𝐼 Light saturation constant 

𝐾𝑖𝐿𝐼 Light inhibition constant 

𝜎 Molar extinction coefficient 

𝑙 The distance between the local position and the external surface of the system 

𝐴0𝑋
 Frequency factors 

𝐵0𝑋
 Frequency factors 

𝐸𝑎𝑋
 Activation energy of oil-free biomass growth 

𝐸𝑏𝑋
 Activation energy of oil-free biomass degradation 

𝐴0𝐿
 Frequency factors 

𝐵0𝐿
 Frequency factors 

𝐸𝑎𝐿
 Activation energy of oil production 

𝐸𝑏𝐿
 Activation energy of oil degradation 

1. Introduction 

The growing energy demand and concerns about climate change have led to an increased 

utilization of renewable resources, particularly biomass, for the sustainable production of fuels 
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and chemicals. In this regard, microalgae have been proposed as an alternative renewable 

source for the production of fuel, chemicals and added-value products due to their outstanding 

characteristics: mainly producing high volume of oils and rapid growth rate compare to other 

terrestrial plants [1, 2]. Microalgal oil consists of glycerolipid triacylglycerol (TAG) that can be 

converted into biodiesel, or used for the synthesis of other bioproducts or for other added-value 

products such as nutraceuticals. With high oil and biomass productivities, algae can produce a 

considerably higher concentration of oil and biomass per acre than other terrestrial biomass [3]. 

Microalgal metabolic activities are highly versatile and flexible, which make many of them 

adaptable to different cultivation conditions [4]. This potential of microalgae can be utilized to 

control and maximise the production of a targeted compound within microalgae cells. The 

chemical composition of photoheterotrophic microalgae is affected by a number of factors such 

as organic and/or inorganic carbon substrate, essential nutrient availability, temperature and 

light intensity [5, 6]. If an organic carbon substrate is used, its cost accounts for up to 50% of the 

total media cost used for the photoheterotrophic algae cultivation [7, 8]. As biodiesel is a low-

value product, the production cost of its feedstock needs to be reduced to make it cost-

competitive and sustainable [9]. 

In both natural and modified systems, the microalgae culture can be exposed to various 

environmental factors such as organic carbon and nutrient concentrations, light intensity, pH 

and temperature that can simultaneously and antagonistically affect both the biomass 

production and the lipid accumulation [6, 10, 11]. Thus, in order to produce oil-rich microalgal 

bodies, abiotic stress including nitrogen and phosphorus deprivation as well as high light 

intensity and temperature stress can be applied [12-16].  

Integrated experimental-computational frameworks that have the ability to predict biomass 

growth and lipid accumulation under different growing conditions will help to optimize the 

process performance, operating conditions and scale-up of cultivation systems for 

commercialization and industrial applicability [17-19]. Droop, Monod and Andrew models have 

been extensively applied to predict biomass growth rate as a function of a single substrate or 

nutrient concentration such as phosphorus [20], nitrogen [21], carbon [10] or light [22]. Some 

researchers have also considered the simultaneous effect of multiple substrate and 

environmental factors, such as temperature and carbon [23], nitrogen and phosphorus [24], 

CO2, nitrogen, light and temperature [25], or carbon and nitrogen [26]. However, kinetic 

modelling and experimental validation of simultaneous co-limitation of growth media elements 
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(nitrogen and acetate) and environmental factors (light and temperature) has not been 

considered yet. Additionally, while lipid accumulation has been considered to be proportional to 

biomass growth, we have recently shown the effects of abiotic stress towards enhancement of 

lipid productivity through a new kinetic model considering biomass growth and lipid 

accumulation as two different dynamic variables [18]. The model took into account the effect of 

acetate (as an organic carbon substrate) and nitrogen (as a replete or limiting nutrient) variation 

under constant light illumination on microalgal biomass growth and lipid production, and allowed 

the optimization of the process for maximum lipid productivity [18]. Nevertheless, it has been 

observed that other environmental factors, such as light and temperature, will have a positive or 

negative effect on microalgal growth and lipid accumulation [27-29]. However, there is currently 

no kinetic model available to describe both biomass growth and lipid accumulation dynamics 

simultaneously as a function of carbon substrate (C), nutrient (N), light (I) and temperature (T) 

under photo-heterotrophic growth conditions.   

Here we present a kinetic model describing in detail biomass growth and lipid accumulation in 

the model green microalga Chlamydomonas reinhardtii, and including the simultaneous effect of 

four limiting factors, C, N, I and T, under photo-heterotrophic growth conditions. The predictive 

ability of the developed photoheterotrophic model for biomass growth rate and lipid 

accumulation was tested over a range of growth conditions and environmental conditions. The 

validated model was then used to compute optimal initial conditions for maximum lipid 

accumulation, producing excellent results. The integrated experimental-computational 

framework that we present here can be used to confidently predict biomass growth and lipid 

accumulation, and ultimately to enable robust system design and scale-up.  

 

2. Materials and Methods 

2.1. Microorganism and Culture Conditions 

Chlamydomonas reinhardtii (CCAP 11/32C), obtained from the Culture Collection of Algae and 

Protozoa, UK, was used here as the experimental microalgal strain. The strain was maintained 

under photo-heterotrophic conditions in batch cultures as described previously [5]. Prior to 

bench-scale batch experiments, preculture of the strain was carried out in an environmentally-

controlled incubation room at 25ºC, using 250 mL Erlenmeyer flasks containing 150 mL of Tris-
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acetate-phosphate (TAP) medium [30]. The inoculum was then placed on an orbital shaker at 

120 rpm for 7-10 days and constant light illumination was provided by a 4ft long 20W high 

power led T8 tube light, 125 μEm
-2

 s
-1

 light intensity. After achieving the sufficient cell density (7-

10 days), experiments were carried out in experimental culture vessels, Small Anaerobic 

Reactors (SARs, 500 mL), containing 500 mL of sterile TAP culture medium and 1 mL of algal 

inoculum. The initial concentration of inoculum, 0.001 g/mL, was identical for all the treatments. 

Initial concentration was determined through the measurement of dry cell weight (DCW) by 

centrifuging 1 mL inoculum culture for 3 min at 3000 g in an Eppendorf Centrifuge 5424. The 

obtained wet pellet was then washed with cold distilled water. The washed pellet was 

centrifuged again for 3 min at 3000 g and weighed on a fine balance (Sartorius - M-Pact AX224, 

Germany) to determine the wet biomass. Subsequently, the wet biomass was dried overnight at 

70 ºC to determine the DCW. 

The initial environmental factor values were 125  μEm
-2

 s
-1

  and 25 ºC for the light intensity and 

temperature, respectively. The light intensity and temperature were varied in order to analyse 

the effect of light intensity and temperature variations on biomass growth and lipid 

accumulation. Overall, seven light intensities were analysed: 0 μEm
-2

 s
-1

, 5 μEm
-2

 s
-1

, 45 μEm
-2

 

s
-1

, 105 μEm
-2

 s
-1

, 125 μEm
-2

 s
-1

, 135  μEm
-2

 s
-1

 and 155  μEm
-2

 s
-1

; and seven temperatures; 5 

ºC, 10 ºC, 15 ºC, 20 ºC, 25 ºC, 30 ºC and 35 ºC. All culture vessels were placed into the growth 

chamber (Fitotron
®
 SGC 120 Plant Growth Chamber) one day before inoculation to allow the 

culture vessels to reach the set temperature. Constant light illumination in the growth chamber 

was provided by 4ft long standard white fluorescent tubes. When light intensity was 

manipulated, the temperature was kept constant at 25 ºC, and when temperature was 

manipulated the light intensity was kept constant at 125 μEm
-2

 s
-1. At the start of treatments the 

pH value was set at pH=7. The pH of the samples was analysed through the use of a bench 

type pH meter (Denver UltraBasic Benchtop Meters, USA). The supernatant and the biomass of 

the samples were kept stored at -20 ºC for quantification of specific metabolites. All data was 

statistically analysed by one-way ANOVA using Tukey post-hoc test performed using Prism 

v.6.04 (GraphPad). 
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2.2. Analytical Methods 

Biomass concentration, lipid accumulation in dried biomass, acetate and total nitrogen 

concentration (linked to NH4Cl concentration), as well as pH of the growth media were 

measured and quantified over time during the experiments. The supernatant samples were 

filtered through 0.45 µm nitrocellulose membranes (Millipore Ltd.) and then diluted appropriately 

with HPLC grade water. The concentration of acetate consumed was quantified using a High 

Performance/Pressure Liquid Chromatographer (HPLC) equipped with a Hi- Plex 8 μm 300x7.7 

mm column. Here the mobile phase was sulphuric acid solution (0.05% v/v) and the flow rate of 

the system was 0.6 mL min
-1

. The total nitrogen concentration was quantified by the use of a 

Total Organic Carbon / Total Nitrogen analyser (TOC/TN) (TOC-VCSH/TNM-1 Shimadzu). The 

quantification of lipid concentration was performed by extracting the lipid from dried biomass 

using the SOXTEC 1043 automated solvent extraction system. Hexane was used as organic 

solvent. After extraction, the hexane was removed by evaporation and the accumulated lipid 

was determined gravimetrically. The detailed procedure for the use of HPLC, TOC-TN and 

SOXTEC 1043 has been described previously [18].  

3. Mathematical Model Construction 

3.1. Growth kinetics 

We have previously demonstrated [18] that excess carbon supply in the form of acetate can be 

inhibitory as seen by dramatically reduced biomass growth and lipid production. We have also 

shown that reduced N supply can enhance lipid accumulation while inhibiting biomass growth. 

Therefore, two different kinetic equations were used to describe specific (oil-free) biomass 

growth rate (Eq. 1) and lipid production rate (Eq. 2) involving the simultaneous effect of acetate 

substrate (denoted as substrate, 𝑆, onwards) nitrogen, 𝑁, and local light intensity illumination, 

𝐼(𝑙): 

 
𝜇𝑋 = 𝜇𝑋𝑚𝑎𝑥 ∙

𝑆

𝑆 + 𝐾𝑋𝑆 +
𝑆2

𝐾𝑖𝑋𝑆

∙
𝑁

𝑁 + 𝐾𝑋𝑁 +
𝑁2

𝐾𝑖𝑋𝑁

∙
𝐼(𝑙)

𝐼(𝑙) + 𝐾𝑋𝐼 +
𝐼(𝑙)2

𝐾𝑖𝑋𝐼

 

Eq. 1 
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𝜇𝐿 = 𝑞𝐿𝑚𝑎𝑥 ∙

𝑆

𝑆 + 𝐾𝐿𝑆 +
𝑆2

𝐾𝑖𝐿𝑆

∙
𝐾𝑖𝑁𝐿

𝑁 + 𝐾𝑖𝑁𝐿

∙
𝐼(𝑙)

𝐼(𝑙) + 𝐾𝐿𝐼 +
𝐼(𝑙)2

𝐾𝑖𝐿𝐼

 
Eq. 2 

 

Here  𝜇𝑋𝑚𝑎𝑥  is the maximum specific growth rate of oil-free biomass and 𝑞𝐿𝑚𝑎𝑥 the maximum 

lipid specific growth rate. 𝐾𝑋𝑆,  𝐾𝑋𝑁 , 𝐾𝑋𝐼 , 𝐾𝐿𝑆  and 𝐾𝐿𝐼 are the saturation constants and 

𝐾𝑖𝑋𝑆 , 𝐾𝑖𝑋𝑁 ,  𝐾𝑖𝑋𝐼 ,  𝐾𝑖𝐿𝑆, 𝐾𝑖𝐿𝐼  the inhibition constants for oil-free biomass growth based on 

substrate, nitrogen concentration and light intensity, respectively. 𝐾𝑖𝑁𝐿 is an inhibition constant 

used here to describe the lipid production dependent on nitrogen  concentration. 

The local light intensity 𝐼(𝑙) is expressed by the Beer-Lambert equation [27]: 

 𝐼(𝑙) = 𝐼0. exp(−𝜎𝑋𝑙) 
Eq. 3 

where 𝑙 is the distance between the local position and the external surface of the system 

(measured as 0.25 m), I0 the incident light intensity, σ the molar extinction coefficient and 𝑋 the 

oil-free biomass concentration [27]. 

The final biomass concentration of the acetate-absent treatment that was performed in [18] was 

almost zero which points out that the influence of CO2 is negligible and therefore it has been 

discounted in the final biomass growth and lipid accumulation expressions. The model in 

Bekirogullari et al. [18] was a function of substrate and nitrogen under constant incident light 

intensity, 𝐼0 as expressed by Eq. 1 and Eq. 2.  

In this work, the effect of temperature and of incident light intensity variations on biomass 

growth and lipid accumulation has been taken into consideration, hence accounting for 

environmental changes on microalgal cultivation processes. Hence, the triple substrate 

expressions (Eq. 1 and 2) have been modified into quadruple substrate expressions: 

    

 𝜇𝑋 = 𝜇𝑋𝑚𝑎𝑥 ∙ 𝑓(𝑆)𝑋 ∙ 𝑓(𝑁)𝑋 ∙ 𝑓(𝐼)𝑋 ∙ 𝑓(𝑇)𝑋 
Eq. 4 

 

 
𝜇𝐿 = 𝑞𝐿𝑚𝑎𝑥 ∙ 𝑓(𝑆)𝐿 ∙ 𝑓(𝑁)𝐿 ∙ 𝑓(𝐼)𝐿 ∙ 𝑓(𝑇)𝐿 Eq. 5 

The effect of temperature has been considered through two different expressions: (i) cardinal 

temperature model with inflexion (CTMI) and (ii) Arrhenius equation. Although both the 

Arrhenius equation and the CTMI has same number of parameters (four) that need to be 
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estimated, the Arrhenius expression is widely utilized in the field of microbial growth and it is 

easy find the relevant data in the literature. Therefore, the effect of temperature on (oil-free) 

biomass growth and lipid accumulation 𝑓(𝑇) is expressed by a modified version of the Arrhenius 

equation which accounts for both saturation and inhibition effect of temperature [31]: 

𝑓(𝑇)𝑋 = 𝐴0𝑋
exp [

−𝐸𝑎𝑋

𝑅
(

1

𝑇
−

1

𝑇0

)] − 𝐵0𝑋
exp [

−𝐸𝑏𝑋

𝑅
(

1

𝑇
−

1

𝑇0

)] (6) 

𝑓(𝑇)𝐿 = 𝐴0𝐿
exp [

−𝐸𝑎𝐿

𝑅
(

1

𝑇
−

1

𝑇0

)] − 𝐵0𝐿
exp [

−𝐸𝑏𝐿

𝑅
(

1

𝑇
−

1

𝑇0

)] (7) 

  

The first and the second parts of Eq. 6 and 7 represent the promotion and inhibition effects of 

temperature, respectively. 𝐸𝑎𝑋
, 𝐸𝑎𝐿

 and 𝐸𝑏𝑋
, 𝐸𝑏𝐿

 are the activation energies of growth and 

cellular degradation, respectively (kcal mol
-1

), R is the gas constant (kcal mol
-1

), 𝑇 the incubation 

temperature (K), 𝑇0 the reference temperature (𝐾), and  𝐴0𝑋
, 𝐴0𝐿

 and 𝐵0𝑋
, 𝐵0𝐿

 the corresponding 

frequency factors (h
-1

). 

3.2. Rate equations 

The kinetic model developed in this work consists of a set of ordinary differential equations 

(ODEs) employed for the simultaneous simulation of microalgal biomass growth, lipid 

production, substrate and nitrogen consumption and pH change rates. 

The microalgal (oil-free biomass) growth rate is described by: 

 𝑑𝑋

𝑑𝑡
= 𝜇𝑋. 𝑋 Eq. 7 

The lipid accumulation (lipid production) rate is given by: 

 𝑑𝐿

𝑑𝑡
= 𝜇𝐿 . 𝑋 Eq. 8 

The substrate consumption rate can be calculated through a mass conservation equation [18]: 

 𝑑𝑆

𝑑𝑡
= − 

1

𝑌𝑋
𝑆

∙
𝑑𝑋

𝑑𝑡
−

1

𝑌𝐿
𝑆

∙
𝑑𝐿

𝑑𝑡
 Eq. 9 

where 𝑌𝑋

𝑆

 is the yield coefficient for oil-free biomass production with respect to substrate and 𝑌𝐿

𝑆

 

the yield coefficient for lipid production with respect to substrate. 

The nitrogen consumption rate is given by [18]: 
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 𝑑𝑁

𝑑𝑡
= −

1

𝑌𝑋
𝑁

∙
𝑑𝑋

𝑑𝑡
 Eq. 10 

where 𝑌𝑋

𝑁

 is the yield coefficient for oil-free biomass production with respect to N. 

The pH change throughout the cultivation period of the microalgae cultivation system was 

observed to be proportional to the substrate consumption rate [32] and is described by: 

 𝑑𝐻

𝑑𝑡
= −𝐾ℎ ∙

𝑑𝑆

𝑑𝑡
 Eq. 11 

where 𝐻 is the pH of the medium, and 𝐾ℎ is a constant. Consequently, the developed model 

consists of 5 ODEs (Eq.7 to 11), with 5 state variables describing the dynamics of biomass 

growth, lipids accumulation, substrate and nitrogen consumption as well as pH change. The 

model contains 26 parameters (listed in Table 2, below), which have been estimated through 

the procedure discussed in section 3.3 below.  

3.3. Parameter Estimation  

As far as we know, this work is the first to develop a kinetic model for photoheterotrophic 

microalgae growth and lipid accumulation by considering the simultaneous effect of an organic 

carbon substrate (acetate), nitrogen, light intensity and temperature, and therefore, the kinetic 

parameter values for such a system are not available in the literature. Consequently, we carried 

out a parameter estimation study using the constructed model (Eq.7 to 11) in conjunction with 

in-house derived experimental data. Data fitting was performed using a non-linear weighted 

least squares method [33]: 

𝑍(𝑘𝑘) = min ∑ ∑ ∑ 𝑊𝑘,𝑙,𝑚(𝐶𝑘,𝑙,𝑚
𝑝𝑟𝑒𝑑

(𝑘𝑘) − 𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

)
2

𝑛𝑚

𝑚=1

𝑛𝑙

𝑙=1

𝑛𝑘

𝑘=1

 Eq. 14 

Here kk is the vector of the 26 model parameters, nk is the number of experiments (nk=2), nl is 

the number of state variables (nl =5), nm is the number of experimental measurements in time 

(nm=7), and Wk,l,m are the weights for each variable used to effectively normalise the computed 

errors, =(𝐶𝑘,𝑙,𝑚
𝑝𝑟𝑒𝑑

(𝑘𝑘) − 𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

), where 𝐶𝑘,𝑙,𝑚
𝑝𝑟𝑒𝑑

 are the predicted state variables and 𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

 the 

experimentally obtained ones. Here the weights were set to Wk,l,m = 1/𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

,. 
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The two set of experiments that have been used for the fitting problem are tabulated as 

Experiment 1 and Experiment 2 in Table 1. The initial concentrations of each experiment were 

used as the initial values of the state variables in the ODEs (Eq.7 to 11). The kinetic parameter 

values were restricted with an upper and lower bound, which were set according to the 

experimental behaviour of the system and values found in the literature. 

Table 1: Experiments used for the fitting and validation process 

Experiment Acetate (g L
-1

) Nitrogen (g L
-1

) Light (μEm
-2

 s
-1

) Temperature (
0
C) 

1 1.05 0.098 125 30 

2 1.05 0.098 105 25 

3 1.365 0.074 110 28 

 

The parameter estimation problem was solved using an in-house developed stochastic 

optimisation algorithm (Simulated Annealing) [33], coupled with a non-linear programming 

(NLP) –based deterministic optimization algorithm. In order to improve the chance of obtaining 

solutions in the neighbourhood of the global optimum, the simulated annealing algorithm was 

used with multiple restarts. The solution from the simulated annealing algorithm was then used 

as an initial guess to compute the final optimum using the MATLAB function fmincon. The 

optimisation procedure followed here has been described more in detail previously [18]. 

Here 10 stochastic optimization runs (restarts) have been used to ensure that the local minima 

were avoided. By using the procedure explained above, the values of the 26 parameters as well 

as their standard deviations were found and tabulated in Table 2. The values of the two 

constants, 𝑇0 and 𝑙 used in the simulations are also given in Table 2. The resulting time profiles 

of the 5 state variables, computed by the kinetic model, and comparisons against experimental 

datasets including biomass growth, lipid accumulation, acetate and nitrogen consumption, pH 

change of the system are discussed in section 4.2 below. 
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Table 2: Estimated kinetic parameters along with bounds available in the literature. 

Parameter Value (Units) Standard 
Deviation 

(σ) 

Reference 
value 

Species Reference 

𝜇𝑋𝑚𝑎𝑥 0.2226 h
-1

 0.008 0.227 C. reinhardtii [18] 

𝐾𝑋𝑆 0.060 g S L
-1

 0.003 0.05 C. reinhardtii [18] 

𝐾𝑖XS  11.9076 g S L
-1

 
  

0.063 9.923 C. reinhardtii [18] 

𝐾𝑋𝑁 0.078 g N L
-1

 0.001 0.065 C. reinhardtii [18] 

𝐾𝑖XN 0.700 g N L
-1

 0.003 0.5 C. reinhardtii [18] 

𝐾𝑋𝐼 6.010 μEm
-2

 s
-1

 0.012 this study   

𝐾𝑖𝑋𝐼 234 μEm
-2

 s
-1

 2.835 this study   

𝐴0𝑋
 0.6175 h

-1
 0.022 0.26 P. 

tricornutum 
[31] 

𝐸𝑎𝑋
 25.9243 kcal mol

-1
 0.283 28 P. 

tricornutum 
[31] 

𝐵0𝑋
 0.1101 h

-1
 0.004 0.18 P. 

tricornutum 
[31] 

𝐸𝑏𝑋
 48.0151 kcal mol

-1
 0.349 39 P. 

tricornutum 
[31] 

𝑞𝐿𝑚𝑎𝑥 0.1452 g L g X
-1

 h
-1 0.0002 0.121 C. reinhardtii [18] 

𝐾𝐿𝑆 5.2432 g S L
-1

 0.0033 6.554 C. reinhardtii [18] 

𝐾𝑖LS 0.1320 g S L
-1

 0.0011 0.110 C. reinhardtii [18] 

𝐾𝑖𝑁𝐿 442.14 g N L
-1

 8.468 380.02 C. reinhardtii [18] 

𝐾𝐿𝐼 5.221 μEm
-2

 s
-1

 0.196 this study   

𝐾𝑖𝐿𝐼 224 μEm
-2

 s
-1

 0.449 this study   

𝐴0𝐿
 0.7 h

-1
 0.022 this study   

𝐸𝑎𝐿
 20 kcal mol

-1
 0.013 this study   

𝐵0𝐿
 0.08 h

-1
 0.0017 this study   

𝐸𝑏𝐿
 32 kcal mol

-1
 0.146 this study   

𝑌𝑋
𝑆⁄  1.176 g X g S

-1
 0.002 1.470  C. reinhardtii [18] 

𝑌𝐿
𝑆⁄  0.0512 g X g S

-1
 0.002 0.064 C. reinhardtii [18] 
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𝑌𝑋
𝑁⁄  5.5064 g X g N

-1
 0.017 6.883 C. reinhardtii [18] 

𝐾𝐻 0.7032 L g S
-1

 0.018 0.879 C. reinhardtii [18] 

𝜎 10  g X
-1

 L m
-1

 0.641 this study   

𝑙 0.25  m     

𝑇0 293 K     
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4. Results and Discussion 

A set of experiments were conducted to analyse the effect of varying light intensity and 

temperature on biomass growth and lipid accumulation as well as acetate and nitrogen 

consumption and pH change. The constructed model was then used to compute kinetic 

parameter values, which are of crucial significance for precise system simulations, using the 

procedure described above.  Validation of the model with the computed kinetic parameters was 

subsequently performed using sets of experimental data produced at different operating 

conditions. The validated model was then used to compute optimal process operating 

conditions, for maximum lipid and biomass production. 

4.1. Experimental Results 

In order to analyse the impact of the light intensity and temperature on biomass growth and lipid 

accumulation and also to guide the model construction and validation process, we conducted a 

series of experiments using Small Anaerobic Reactors (SARs, 500ml). Biomass concentration, 

lipid accumulation, pH change of the growth media, and acetate and nitrogen concentrations in 

the growth media were measured over time for seven different light intensities and seven 

different temperature treatments mentioned in section 2.1. As can be seen in Fig. 1, most of the 

cultures from different light and temperature treatments reached stationary phase at about 

140h, but to make sure that stationary phase was achieved, the cultures were grown up to 

192h. The produced dynamic profiles were also used to aid the understanding of the effects of 

modifying light intensity and temperature on biomass growth and lipid production rates. 
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Fig. 1. Effect of light intensity (A, B) and temperature (C, D) on dry cell weight (A, C) and total 

lipid concentration (B, D) dynamics during photo-heterotrophic growth. Starting temperature for 

the light intensity variation treatment experiments was 25ºC and starting light intensity for the 

temperature variation treatment experiments was 125 μEm
-2

 s
-1

. All data are mean ± SE values 

of 2-3 biological replicates. 
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The experiments revealed that high light intensities act as system inhibitors, as they can 

dramatically reduce biomass growth and lipid accumulation rates (Fig. 1 and 2), which is in 

agreement with previous studies [27, 34]. In addition, there was no growth observed for the 

light-absent (0 μEm
-2

 s
-1

) media and hence, there was no lipid accumulated (Fig. 2B). For the 

two low light intensity treatments (5 μEm
-2

 s
-1

 and 45 μEm
-2

 s
-1), growth rate was slow, while for 

the other four treatments under increasingly higher light intensities (105 μEm
-2

 s
-1

, 125 μEm
-2

 s
-1

, 

135 μEm
-2

 s
-1 

and 155 μEm
-2

 s
-1

), cells grew increasingly faster with equivalent growth profiles. 

The growth profiles (Fig. 2) revealed that the biomass concentration increased significantly up 

to a maximum of 0.517 g L
-1

 as light intensity increased (to 125 μEm
-2

 s
-1

). Beyond this light 

intensity value, biomass concentration decreased. Compared to the 125 μEm
-2

 s
-1 light intensity 

treatment, biomass concentration decreased significantly (p < 0.0001, one-way ANOVA) both 

for the light-absent treatment (0 μEm
-2

 s
-1

) and light-deficient (5 μEm
-2

 s
-1

) treatment by 

approximately 100% and 92%, respectively (Fig. 1A and 2A). For the other light intensity 

treatments (45 μEm
-2

 s
-1

,105  μEm
-2

 s
-1

 and 155 μEm
-2

 s
-1

) biomass decreased by approximately 

38%, 25% and 40%, respectively as can be seen in Fig. 1B and 2B. The light intensity treatment 

with 135 μEm
-2

 s
-1

 did not show any significant difference compared to the 125 μEm
-2

 s
-1

 

treatment. The proportion of lipid production within the cell on a total dry cell weight basis for all 

six light intensity treatments was essentially identical (approximately 10-13%), and the 

difference in volumetric lipid concentration between the light intensity treatments (Fig. 2) was 

almost entirely due to the difference in biomass concentration. This finding suggests that under 

sufficient acetate (1.05 gL
-1

) and nitrogen (0.098 gL
-1

) conditions, light is being assimilated 

mainly for cell growth. While increasing light intensity can indeed increase the biomass 

concentration and lipid accumulation, as we show here, the inhibition at high light intensities 

may be either due to photo-oxidation or to reduction of the photosynthetic rate and thus of 

productivity. It should be noted that while all treatments included acetate, the increased light-

dependent growth at increasing light intensities and the inability to grow in the absence of light 

suggests that the cells do still require light and therefore the acetate can only limit, but cannot 

fully replace photosynthesis. The cells are therefore growing mixotrophically rather than 

heterotrophically. The effect of light intensity treatments on biomass concentration and lipid 

accumulation is in agreement with previously reported data for C. reinhardtii where a range of 

light intensity treatments (0 − 1200 μEm
-2

 s
-1

) were examined [35]. They found that the biomass 
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concentration increases as the light intensity increases until a point where photoinhibition starts 

and biomass concentration decreases. Similar observations were made for C. reinhardtii by 

Pottier et al. [36] and Janssen et al. [37]. The impact of light intensity variation treatments on 

biomass growth rate are also in good agreement with other previously published findings for 

other microalgae strains, such as Enteromorpha sp. [38], Botryococcus sp. [39] and B. braunii 

[40].  

 

 

Fig. 2. Effect of light intensity (A, B) and temperature (C, D) on dry cell weight (A, C) and total 

lipid concentration (B, D) dynamics during photo-heterotrophic growth. The starting temperature 

for the light intensity variation treatment experiments was 25ºC and the starting light intensity for 

the temperature variation treatment experiments was 125 μEm
-2

 s
-1

. All data are mean ± SE 

values of 2-3 biological replicates. Treatments that do not share lowercase letters are 

significantly different (p < 0.05), as determined by one-way ANOVA. The percentage lipid value 

as a proportion of dry weight biomass is indicated above each bar in panels B and D. 
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C. reinhardtii responded to increases in temperature with increased exponential growth rates 

until reaching the optimum temperature for growth (approx. 25 ºC). Increasing temperature 

beyond this point led to sharp declines in biomass growth and lipid accumulation, as can be 

seen in Fig. 1C,D and 2C,D. This temperature-dependent profiles are also in agreement with 

previous studies (Van Wagenen et al., 2012, James et al., 2011, Ota et al., 2015). For low 

temperature treatments (5ºC and 10ºC), biomass and lipid concentration were below detectable 

levels due to slow growth rate (Fig. 1C). For the moderate temperature treatments (15ºC and 

35ºC), biomass concentration and lipid accumulation decreased compared to the 25ºC 

treatment by approximately 86% and 83% (for biomass) and 75% and 80% (for lipid), 

respectively. For the other three temperature treatments (20ºC, 25ºC, and 30ºC) lipid 

accumulation growth profiles were essentially the same (Fig. 1C,D) and biomass concentration 

was also same for (20ºC, 25ºC) and significantly different compare to (30ºC) . Temperature 

affects the chemical composition of microalgae by impacting the rate of chemical reactions and 

the stability of cellular components. The net algae growth rates increase exponentially as the 

temperature increases until a certain point where strains reach their optimum temperature, after 

which loss of structural integrity leads to sharp declines in biomass growth rate. Increasing 

temperature beyond these points does not increase algal growth rates and causes damage to a 

wide range of proteins, molecules and the light receptors of the algae [41]. The impact of 

temperature variation treatments are in good agreement with previously published data by 

James et al. [42] for C. reinhardtii where 4 different temperatures were examined: 17 ºC, 25 ºC, 

32 ºC and 35 ºC. James et al. [42] found that biomass growth increases as temperature 

increases until the maximum tolerable temperature which was suggested to be between  35 ºC - 

38 ºC.  The optimal growth temperature in nitrogen sufficient media was reported to be 32 ºC.  

The effect of temperature variation treatments on biomass growth rate are also in good 

agreement with other previously reported findings for other microalgae strains, such as C. 

minutissima [43], C. vulgaris [44] and B. braunii [45]. 
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4.2. Model validation 

The constructed ODE-based kinetic model consists of 5 ordinary differential equations (Eq.7 to 

11) and 26 kinetic parameters. Values of the kinetic parameters were computed by following the 

methodology defined in section 3.3. As can be seen in Fig. 3 and Fig. 4, the resulting model is 

in excellent agreement with experimental data for all 5 state variables for experiment 1 and 

experiment 2 (Table 1).  

 

Fig. 3. Comparison of model predictions (lines) with experimental data from Experiment 1 

(symbols with error bars) for: (A) biomass, (B) lipid concentration, (C) substrate (acetate) 

consumption, (D) N consumption, (E) pH change. All data are mean ± SE values of 2-3 

biological replicates. 

  



124 

 

 

Fig. 4. Comparison of model predictions (lines) with experimental data from Experiment 2 

(symbols with error bars) for: (A) biomass, (B) lipid concentration, (C) substrate (acetate) 

consumption, (D) N consumption, (E) pH change. All data are mean ± SE values of 2-3 

biological replicates. 

In order to assess the predictive capability of the developed model, we carried out a validation 

study by using the conditions (initial acetate and nitrogen concentrations, temperature and light 

intensity) of Experiment 3 (also given in Table 1).  It should be noted that all Experiment 3 

conditions are different than the ones of Experiments 1 and 2 used for parameter fitting. Fig. 5 

depicts the resulting model predictions against the corresponding experimental results. As it can 

be seen, the kinetic model is able to predict the dynamics of the 5 experimentally obtained state 

variables (biomass growth, lipid accumulation, acetate and N consumption and pH change) with 

high accuracy. We can therefore conclude that the detailed interactive (multiplicative) model 

constructed here can be utilized for accurate prediction of the dynamic behavior of microalgal 
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batch experiments. Hence, it can be utilized as an optimization tool to compute optimal 

operating conditions for maximum biomass and lipid accumulation for microalgal cultivation 

systems operating in batch.  

 

Fig. 5. Comparison of model predictions (lines) with experimental data from Experiment 3 

(symbols with error bars) for: (A) biomass, (B) lipid concentration, (C) substrate (acetate) 

consumption, (D) N consumption, (E) pH change. All data are mean ± SE values of 2-3 

biological replicates. 
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4.3. Process optimization 

We employed our validated kinetic model in an optimization study to compute optimal operating 

light intensity and temperature using the optimal acetate and nitrogen concentrations (2.19 g L
-1

 

acetate and 0.074 g L
-1

 nitrogen) computed previously [18] for maximum biomass and lipid 

productivity. The objective was to maximise the sum of lipid, 𝐽𝐿 , and biomass, 𝐽𝑋,  productivities 

subject to the model equations (Eq. 7 to 11):  

 Objective = max(𝐽𝐿 + 𝐽𝑋) 
Eq. 15 

The productivities are defined as: 
 

 
𝐽𝐿 =

𝐿 − 𝐿0

𝑡𝑝 − 𝑡𝑝0

 Eq. 14 

 
𝐽𝑋 =

𝑋 − 𝑋0

𝑡𝑝 − 𝑡𝑝0

 Eq. 15 

 

Here 𝐽𝐿 is the lipid productivity (mg L
-1

 s
-1

), 𝐽𝑋 is the biomass productivity (mg L
-1

 s
-1

),, 𝐿 is the 

final lipid concentration (mg Lipid L
-1

) calculated by Eq.8, 𝐿0 is the initial lipid concentration  (mg 

Lipid L
-1

), 𝑡𝑝 is the process time (h), 𝑋 is the final biomass concentration (mg Biomass L
-1
) 

calculated by Eq.7 and 𝑋0 is the initial biomass concentration (mg Biomass L
-1

).  

The operating light intensity and temperature were degrees of freedom in the optimization 

process. The resulting optimal operating conditions for light intensity and temperature are 

130 μEm-2
 s

-1 and 24ºC, respectively (also tabulated in Table 3). The corresponding optimum 

lipid productivity is 0.0942 g L
-1

, which represents an increase of 50.9 % from the Base Case 

(see Table 3) and an increase of 13.6% compared to the optimal case computed in [18]. We 

subsequently validated experimentally the computed optimal operating conditions. The 

computed optimal time profiles along with the corresponding experimental results obtained at 

the same conditions are depicted in Fig. 6. The model predictions are in excellent agreement 

with the experimental results, which illustrates the usefulness of our kinetic model for the 

optimal design of experiments. 

  



127 

 

Table 3: Computed optimal conditions and maximum productivities. 

Initial 
Conditions 

Base case 
runs [18] 

Optimization 
runs [18] 

Optimization runs 

(This study) 

 

Biomass 
concentration 

0.001 g L
-1

 0.005 g L
-1

 0.005 g L
-1

  

Acetate 
concentration 

2.1  g L
-1

 2.19  𝑔 𝐿−1 2.19  g L
-1

  

Nitrogen 
concentration 

0.098 g L
-1

 0.074 g L
-1

 0.074 g L
-1

  

Light Intensity 125 μEm
-2

 
s

-1
 

125 μEm
-2

 s
-1

 130 μEm
-2

 s
-1

  

Temperature 25 ºC 25 ºC 24 ºC  

Resulted 
measurements 

Base case 
results [18] 

Optimization 
results [18] 
 

Experimental 
Results [18] 

Optimization 
results 
(This study) 

Experimental 
results 
(This study) 

Lipid 
concentration 

62.4 mg L
-1

 82.9 mg L
-1

 
84.7 mg 𝐿−1 

94.2  mg L
-1

 93.3  mg L
-1

 

Lipid 
productivity 

7.8  mg L
-1 

d
-1

 

10.362  mg L
-1 

d
-1

 
10.5875 mg 𝐿−1 𝑑−1 

11.775  mg L
-1 

d
-1

 

11.662  mg L
-1 

d
-1

 
Biomass 
concentration 

586.8  mg 

L
-1

 

498.4  mg L
-1

 
458.6 mg 𝐿−1 

399.8  mg L
-1

 415  mg L
-1

 

Biomass 
productivity 

73.85  mg 

L
-1 

d
-1

 

62.3  mg L
-1 

d
-1

 
57.325 mg 𝐿−1 𝑑−1 

49.975  mg L
-1 

d
-1

 

51.875  mg L
-1 

d
-1
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Fig. 6. Comparison of computed optimal system dynamics (lines) with experimental data 

(symbols with error bars) at the same conditions for: (A) biomass, (B) lipid concentration, (C) 

substrate (acetate) consumption, (D) N consumption, (E) pH change, using 2.19 g L
-1

 acetate 

and 0.074 g L
-1

 N. All data are mean ± SE values of 2-3 biological replicates. 

 

Coupled kinetic modelling and experimental design of microalgal cultivation is a powerful tool to 

predict the interactions between biomass growth, lipid accumulation and environmental growth-

limiting factors. A detailed, experimentally validated kinetic model can be used in optimization 

studies to compute optimal growth conditions that yield maximum biomass and lipid 

productivities. A few studies have attempted to develop a kinetic model for microalgal biomass 

growth [25, 46, 47] but not all of them consider the simultaneous and antagonistic effects of 

substrate concentration, nitrogen starvation, light intensity and temperature. Additionally, these 

studies did not consider lipid production as a different state variable to take advantage of 
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nutrient stress, which results in higher lipid accumulation. Solimeno et al. [25] developed a 

mechanistic model which considers inorganic carbon limitation, nitrogen availability, 

temperature and light intensity effects but the study only simulated biomass growth, considering 

that lipid accumulation is proportional to it, which does not allow optimization of biomass and 

lipid productivities individually. Consequently, previously developed kinetic models do not allow 

the accurate prediction of microalgal cultivation system dynamics under realistic operating 

conditions. The detailed model developed and validated in this study is a fully quadruple 

expression considering co-limitation of acetate (carbon substrate), nitrogen, light intensity and 

temperature. It also contains separate expressions for biomass growth and lipid accumulation, 

which allows the optimization of individual productivities to be carried out.  

Conclusions 

In order to understand the synergistic interactions between substrate, nutrients and 

environmental factors, we developed a comprehensive kinetic model considering the effect of 

four different culture variables (C, N, I, T) to accurately predict the dynamic behavior of 5 system 

state variables, with the aim to develop sustainable high productivity algae systems for the 

commercial biofuel production. We have conducted a range of experiments for different light 

intensities and temperatures to investigate the effect of environmental variables on both 

biomass growth and lipid accumulation. The kinetic parameters of the model were computed by 

fitting the model outputs to the produced experimental data. Model predictions were 

subsequently validated through comparisons to different sets of experiments. An optimization 

study was carried out to identify optimal light intensity and temperature conditions that result in 

maximum biomass and lipid productivities. It was found that the computed optimal lipid 

productivity increased by 50.9 % compared to a non-optimal base case, and by 13.6% and 

compared to a previously computed optimal case. This illustrates not only the usefulness of 

computer-based optimization studies for the improvement of microalgal-based lipid production, 

but also the effectiveness of carefully constructed kinetic models for the efficient operation and 

control of microalgae culture systems. Such predictive modelling approaches can be exploited 

for the robust design, control and optimization of microalgal oil accumulation as well as for 

process scale-up, which can help to reduce overall production costs and bring this important 

technology one step closer to commercialization and industrialization.   
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SUPPLEMENTARY INFORMATION 

Appendix A. Detailed explanation of light distribution in the reactor from the 

experimental data 

In the case of a planar geometry with a perpendicular light source to the reactor surface, Beer-

lambert approximation is commonly employed for the irradiance distribution in the reactor with 

an exponential decrease: 

 

 𝐼(𝑙) = 𝐼0. exp(−𝜉𝑙) Eq. A.1 

 Where light attenuation coefficient is related to biomass, chlorophyll and background turbidity; 

 𝜉 = (𝑎 + 𝑏0)𝑋 + 𝑐 
Eq. A.2 

The optical depth of the Beer-lambert law can be define as: 𝜆 = 𝜉𝑙, and it reflects how efficiently 

light energy is absorbed by the growth medium. 

 
𝜆 = 𝑙𝑛

𝐼0
𝐼(𝐿)

 Eq. A.3 

The average irradiance absorbed by culture medium can be expressed as: 

  

 

𝐼 ̅ =
𝐼0
𝐿
∫exp(−𝜉𝑙)𝑑𝑧

𝐿

0

=
𝐼0
𝜆
[1 − exp(−𝜆)] 

Eq. A.4 

Combination of two previous equations (Eq. A.3 and Eq. A.4) gives: 

 

 
𝐼 ̅

𝐼0
=

𝐼(𝐿)
𝐼0

− 1

𝑙𝑛 (
𝐼(𝐿)
𝐼0

)
 

Eq. A.5 

 

By using the latter expression and in-house produced experimental, the following graph has 

been generated to compare the average irradiance versus irradiance from Beer-Lambert 

approximation.  

 

Fig. A.1 Comparison of average irradiance versus irradiance from Beer-Lambert approximation 
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A sensitivity analysis was carried out for the kinetic model proposed in this work which consists 

of 26 parameters. The analysis was performed by calculating the sensitivity (Eq. (A.1)), for all 5 

dynamic variables with respect to each parameter at eight different cultivation times (t=25h, 50h, 

75h, 85h, 125h, 150h, 175h and 190h). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑎𝑏𝑠 (
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡, 𝑃 + 𝛥𝑃) − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡, 𝑃 − ∆𝑃)

2 ∗ ∆𝑃
) Eq. A.1 

Sensitivity of the parameters was computed with a %10 change (∆𝑃) in parameters values. The 

sensitivity analysis results of 26 kinetic parameters are presented in Table A.1. The threshold 

for sensitivity was set to 0.01, meaning parameters with sensitivities lower than 0.01 were 

considered not-sensitive and sensitivities higher than 0.01 deemed to be sensitive and they are 

highlighted.  

Table B.1. Sensitivity analysis results of the proposed model kinetic parameters. 

 

   Sensitivity 

Parameter Value Variable 25h 50h 75h 85h 125h 150h 175h 190h 

𝑲𝑿𝑰 6.01 X 0.0001 0.0009 0.0046 0.0061 0.0010 0.0010 0.0010 0.0010 
  L 0.0000 0.0001 0.0007 0.0014 0.0000 0.0000 0.0000 0.0000 
  AA 0.0002 0.0021 0.0167 0.0330 0.0000 0.0000 0.0000 0.0000 
  N 0.0000 0.0002 0.0008 0.0011 0.0002 0.0002 0.0002 0.0002 
  pH 0.0001 0.0015 0.0118 0.0232 0.0000 0.0000 0.0000 0.0000 

𝑲𝒊𝑿𝑰 234 X 0.0040 0.0041 0.0043 0.0045 0.0049 0.0045 0.0040 0.0040 
  L 0.0040 0.0040 0.0040 0.0040 0.0043 0.0042 0.0040 0.0040 
  AA 0.0040 0.0041 0.0047 0.0052 0.0110 0.0083 0.0040 0.0040 
  N 0.0040 0.0040 0.0041 0.0041 0.0042 0.0041 0.0040 0.0040 
  pH 0.0040 0.0041 0.0045 0.0049 0.0089 0.0070 0.0040 0.0040 

𝑲𝑳𝑰 5.221 X 0.0000 0.0000 0.0000 0.0001 0.0010 0.0010 0.0010 0.0010 
  L 0.0000 0.0000 0.0002 0.0006 0.0000 0.0000 0.0000 0.0000 
  AA 0.0001 0.0007 0.0047 0.0115 0.0000 0.0000 0.0000 0.0000 
  N 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0002 0.0002 
  pH 0.0001 0.0005 0.0033 0.0081 0.0000 0.0000 0.0000 0.0000 

𝑲𝒊𝑳𝑰 224 X 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 
  L 0.0090 0.0090 0.0090 0.0090 0.0091 0.0090 0.0090 0.0090 
  AA 0.0090 0.0091 0.0092 0.0093 0.0106 0.0091 0.0090 0.0090 
  N 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 
  pH 0.0090 0.0090 0.0091 0.0092 0.0101 0.0091 0.0090 0.0090 

𝝈 10 X 0.0000 0.0001 0.0016 0.0024 0.0001 0.0001 0.0001 0.0001 
  L 0.0000 0.0000 0.0003 0.0008 0.0000 0.0000 0.0000 0.0000 
  AA 0.0000 0.0005 0.0075 0.0179 0.0000 0.0000 0.0000 0.0000 
  N 0.0000 0.0000 0.0003 0.0004 0.0000 0.0000 0.0000 0.0000 
  pH 0.0000 0.0003 0.0053 0.0126 0.0000 0.0000 0.0000 0.0000 

𝑨𝟎𝑿 0.618 X 0.0531 0.4530 1.9295 2.0576 0.2701 0.2434 0.2434 0.2434 
  L 0.0029 0.0387 0.3324 0.5233 0.0062 0.0106 0.0106 0.0106 
  AA 0.1021 1.1406 8.1328 11.9709 0.1087 0.0001 0.0000 0.0000 
  N 0.0096 0.0823 0.3504 0.3737 0.0491 0.0442 0.0442 0.0442 
  pH 0.0718 0.8021 5.7190 8.4180 0.0764 0.0001 0.0000 0.0000 

𝑨𝟎𝑳 0.7 X 0.0000 0.0004 0.0074 0.0126 0.1254 0.1260 0.1260 0.1260 
  L 0.0018 0.0099 0.0526 0.1059 0.0057 0.0055 0.0055 0.0055 
  AA 0.0354 0.1943 1.0345 2.0797 0.0052 0.0000 0.0000 0.0000 
  N 0.0000 0.0001 0.0013 0.0023 0.0228 0.0229 0.0229 0.0229 
  pH 0.0249 0.1366 0.7275 1.4625 0.0037 0.0000 0.0000 0.0000 

𝝁𝑿𝒎𝒂𝒙 0.223 X 0.0745 0.6221 2.9382 3.4163 0.3326 0.3278 0.3278 0.3278 
  L 0.0041 0.0532 0.4553 0.8836 0.0133 0.0143 0.0143 0.0143 
  AA 0.1435 1.5682 11.3911 20.1636 0.0221 0.0000 0.0000 0.0000 
  N 0.0135 0.1130 0.5336 0.6204 0.0604 0.0595 0.0595 0.0595 
  pH 0.1009 1.1027 8.0102 14.1791 0.0156 0.0000 0.0000 0.0000 

𝑲𝑿𝑺 0.06 X 0.0063 0.0528 0.2745 0.3611 0.1901 0.1898 0.1898 0.1898 
  L 0.0003 0.0045 0.0394 0.0847 0.0082 0.0083 0.0083 0.0083 
  AA 0.0121 0.1325 1.0027 1.9611 0.0022 0.0000 0.0000 0.0000 
  N 0.0011 0.0096 0.0499 0.0656 0.0345 0.0345 0.0345 0.0345 
  pH 0.0085 0.0932 0.7051 1.3790 0.0015 0.0000 0.0000 0.0000 

𝑲𝒊𝑿𝑺 11.91 X 0.0002 0.0017 0.0081 0.0095 0.0004 0.0004 0.0004 0.0004 
  L 0.0000 0.0001 0.0012 0.0025 0.0000 0.0000 0.0000 0.0000 
  AA 0.0004 0.0044 0.0308 0.0570 0.0000 0.0000 0.0000 0.0000 
  N 0.0000 0.0003 0.0015 0.0017 0.0001 0.0001 0.0001 0.0001 
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  pH 0.0003 0.0031 0.0217 0.0401 0.0000 0.0000 0.0000 0.0000 

𝑲𝑿𝑵 0.078 X 0.1046 0.8825 4.4855 5.5402 0.6991 0.6952 0.6952 0.6952 
  L 0.0058 0.0749 0.6603 1.3742 0.0295 0.0303 0.0303 0.0303 
  AA 0.2017 2.2139 16.7097 31.5506 0.0183 0.0000 0.0000 0.0000 
  N 0.0190 0.1603 0.8146 1.0061 0.1270 0.1263 0.1263 0.1263 
  pH 0.1418 1.5568 11.7503 22.1864 0.0129 0.0000 0.0000 0.0000 

𝑲𝒊𝑿𝑵 0.7 X 0.0012 0.0093 0.0405 0.0454 0.0013 0.0013 0.0013 0.0013 
  L 0.0001 0.0008 0.0064 0.0127 0.0001 0.0001 0.0001 0.0001 
  AA 0.0022 0.0236 0.1593 0.2871 0.0001 0.0000 0.0000 0.0000 
  N 0.0002 0.0017 0.0074 0.0082 0.0002 0.0002 0.0002 0.0002 
  pH 0.0016 0.0166 0.1120 0.2019 0.0001 0.0000 0.0000 0.0000 

𝒒𝑳𝒎𝒂𝒙 0.145 X 0.0001 0.0017 0.0284 0.0503 0.4872 0.4894 0.4894 0.4894 
  L 0.0070 0.0384 0.2036 0.4104 0.0221 0.0213 0.0213 0.0213 
  AA 0.1368 0.7515 4.0011 8.0589 0.0172 0.0000 0.0000 0.0000 
  N 0.0000 0.0003 0.0052 0.0091 0.0885 0.0889 0.0889 0.0889 
  pH 0.0962 0.5284 2.8136 5.6671 0.0121 0.0000 0.0000 0.0000 

𝑲𝑳𝑺 5.243 X 0.0000 0.0000 0.0001 0.0002 0.0071 0.0072 0.0072 0.0072 
  L 0.0000 0.0001 0.0009 0.0025 0.0003 0.0003 0.0003 0.0003 
  AA 0.0005 0.0026 0.0178 0.0485 0.0003 0.0000 0.0000 0.0000 
  N 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013 0.0013 0.0013 
  pH 0.0003 0.0019 0.0125 0.0341 0.0002 0.0000 0.0000 0.0000 

𝑲𝒊𝑳𝑺 0.132 X 0.0000 0.0015 0.0253 0.0437 0.2302 0.2307 0.2307 0.2307 
  L 0.0064 0.0347 0.1754 0.3260 0.0102 0.0100 0.0100 0.0100 
  AA 0.1247 0.6796 3.4468 6.4044 0.0042 0.0000 0.0000 0.0000 
  N 0.0000 0.0003 0.0046 0.0079 0.0418 0.0419 0.0419 0.0419 
  pH 0.0877 0.4779 2.4238 4.5036 0.0029 0.0000 0.0000 0.0000 

𝑲𝒊𝑵𝑳 442.1 X 2.80E-
12 

9.05E-
11 

1.38E-
09 

2.25E-
09 

9.94E-
09 

9.96E-
09 

9.96E-
09 

9.96E-
09 

  L 3.85E-
10 

2.02E-
09 

8.67E-
09 

1.42E-
08 

4.42E-
10 

4.34E-
10 

4.34E-
10 

4.34E-
10 

  AA 7.53E-
09 

3.95E-
08 

1.71E-
07 

2.80E-
07 

1.81E-
10 

2.73E-
13 

1.01E-
14 

6.48E-
16 

  N 5.09E-
13 

1.64E-
11 

2.51E-
10 

4.09E-
10 

1.80E-
09 

1.81E-
09 

1.81E-
09 

1.81E-
09 

  pH 5.30E-
09 

2.78E-
08 

1.20E-
07 

1.97E-
07 

1.27E-
10 

1.59E-
13 

2.58E-
14 

3.33E-
14 

𝒀𝑿
𝑺⁄
 1.176 X 0.0000 0.0001 0.0012 0.0020 0.0108 0.0108 0.0108 0.0108 

  L 0.0000 0.0000 0.0008 0.0023 0.0141 0.0141 0.0141 0.0141 
  AA 0.0064 0.0340 0.1512 0.2517 0.0003 0.0000 0.0000 0.0000 
  N 0.0000 0.0000 0.0002 0.0004 0.0020 0.0020 0.0020 0.0020 
  pH 0.0045 0.0239 0.1063 0.1770 0.0002 0.0000 0.0000 0.0000 

𝒀𝑿
𝑵⁄
 5.506 X 0.0000 0.0004 0.0093 0.0267 0.0554 0.0554 0.0554 0.0554 

  L 0.0000 0.0000 0.0007 0.0029 0.0024 0.0024 0.0024 0.0024 
  AA 0.0000 0.0008 0.0223 0.0797 0.0004 0.0000 0.0000 0.0000 
  N 0.0003 0.0014 0.0044 0.0044 0.0028 0.0028 0.0028 0.0028 
  pH 0.0000 0.0005 0.0157 0.0560 0.0003 0.0000 0.0000 0.0000 

𝑲𝑯 0.703 X 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  L 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  AA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  pH 0.0272 0.1454 0.6780 1.2282 2.1905 2.1906 2.1906 2.1906 

𝒀𝑳
𝑺⁄
 0.051 X 0.0001 0.0048 0.0816 0.1392 1.4194 1.4251 1.4251 1.4251 

  L 0.0001 0.0022 0.0565 0.1751 1.7956 1.7978 1.7978 1.7978 
  AA 0.3918 2.1536 11.4873 23.1130 0.0429 0.0001 0.0000 0.0000 
  N 0.0000 0.0009 0.0148 0.0253 0.2578 0.2588 0.2588 0.2588 
  pH 0.2755 1.5144 8.0779 16.2531 0.0301 0.0001 0.0000 0.0000 

𝑬𝒂𝑿 25.92 X 0.0015 0.0135 0.0528 0.0532 0.0080 0.0067 0.0067 0.0067 
  L 0.0001 0.0012 0.0098 0.0135 0.0001 0.0003 0.0003 0.0003 
  AA 0.0029 0.0340 0.2373 0.3092 0.0052 0.0000 0.0000 0.0000 
  N 0.0003 0.0025 0.0096 0.0097 0.0015 0.0012 0.0012 0.0012 
  pH 0.0021 0.0239 0.1668 0.2174 0.0036 0.0000 0.0000 0.0000 

𝑬𝒂𝑳 20 X 0.0000 0.0000 0.0002 0.0004 0.0041 0.0041 0.0041 0.0041 
  L 0.0001 0.0003 0.0017 0.0034 0.0002 0.0002 0.0002 0.0002 
  AA 0.0011 0.0062 0.0332 0.0667 0.0001 0.0000 0.0000 0.0000 
  N 0.0000 0.0000 0.0000 0.0001 0.0007 0.0007 0.0007 0.0007 
  pH 0.0008 0.0044 0.0233 0.0469 0.0001 0.0000 0.0000 0.0000 

𝑩𝒐𝑿 0.11 X 0.1440 1.2025 5.6964 6.6471 0.6417 0.6331 0.6331 0.6331 
  L 0.0079 0.1029 0.8797 1.7184 0.0259 0.0276 0.0276 0.0276 
  AA 0.2776 3.0315 22.0260 39.2147 0.0401 0.0000 0.0000 0.0000 
  N 0.0262 0.2184 1.0345 1.2072 0.1165 0.1150 0.1150 0.1150 
  pH 0.1952 2.1317 15.4887 27.5758 0.0282 0.0000 0.0000 0.0000 

𝑬𝒃𝑿 48.02 X 0.0007 0.0060 0.0257 0.0285 0.0048 0.0037 0.0037 0.0037 
  L 0.0000 0.0005 0.0043 0.0070 0.0000 0.0002 0.0002 0.0002 
  AA 0.0014 0.0151 0.1061 0.1610 0.0046 0.0000 0.0000 0.0000 
  N 0.0001 0.0011 0.0047 0.0052 0.0009 0.0007 0.0007 0.0007 
  pH 0.0010 0.0106 0.0746 0.1132 0.0032 0.0000 0.0000 0.0000 
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𝑩𝒐𝑳 0.08 X 0.0000 0.0008 0.0127 0.0226 0.2197 0.2205 0.2205 0.2205 
  L 0.0031 0.0172 0.0911 0.1839 0.0099 0.0096 0.0096 0.0096 
  AA 0.0612 0.3361 1.7896 3.6102 0.0057 0.0000 0.0000 0.0000 
  N 0.0000 0.0001 0.0023 0.0041 0.0399 0.0401 0.0401 0.0401 
  pH 0.0430 0.2364 1.2584 2.5387 0.0040 0.0000 0.0000 0.0000 

𝑬𝒃𝑳 32 X 0.0000 0.0000 0.0000 0.0001 0.0008 0.0008 0.0008 0.0008 
  L 0.0000 0.0001 0.0003 0.0007 0.0000 0.0000 0.0000 0.0000 
  AA 0.0002 0.0012 0.0066 0.0132 0.0000 0.0000 0.0000 0.0000 
  N 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 
  pH 0.0002 0.0009 0.0046 0.0093 0.0000 0.0000 0.0000 0.0000 

 

 

  



 

139 

 

Appendix C. Plots of the evolution of the various f functions used in the 

proposed model 

 

 

Fig. C.1 Evolution of the various f functions used in the proposed model: (a) f(s)X, 

(b) f(s)L, (c) f(I)X, (d) f(I)L, (e) f(N)X and (f) f(N)L. 
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Appendix D. Comparison profiles of model results to experimental data 

 

Two additional set of data presented here to show predectiveness of the proposed model. 

 

Table D.1 Additional experiments used for the predectiveness of the proposed model. 

Experiment Acetate (g L
-1

) Nitrogen (g L
-1

) Light (μEm
-2

 s
-1

) Temperature (
0
C) 

1 1.05 0.098 125 25 

2 1.05 0.098 155 25 

 

 

 

Fig. D.1 Comparison of model predictions (lines) with experimental data from Experiment 1 

(symbols with error bars) for: (A) biomass, (B) lipid concentration, (C) substrate (acetate) 

consumption, (D) N consumption and (E) pH change. All data are mean ± SE values of 2-3 

biological replicates. 
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Fig. D.2 Comparison of model predictions (lines) with experimental data from Experiment 2 

(symbols with error bars) for: (A) biomass, (B) lipid concentration, (C) substrate (acetate) 

consumption, (D) N consumption and (E) pH change. All data are mean ± SE values of 2-3 

biological replicates. 
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Appendix E: Upper and lower bounds of the estimated parameters 

used in section 3.3 parameters estimation problem 

The parameters that are related to substrate and nitrogen have been taken from the first paper 

and in order to obtain a better fitting of the model to experimental data, the parameters were 

allowed to change within a range of ±10%. Hence, some of the parameters are slightly different 

(most within 1-2%) than the ones computed in the original paper. 

Table E.1 Upper and lower bounds of the estimated parameters 

Parameters Lower bounds Upper bounds Parameters Lower bounds Upper bounds 

𝑲𝑿𝑰 6 6.05 𝑲𝑳𝑺 5.2432 7.8648 

𝑲𝒊𝑿𝑰 220 240 𝑲𝒊𝑳𝑺 0.088 0.132 

𝑲𝑳𝑰 5 6 𝑲𝒊𝑵𝑳 304 456 

𝑲𝒊𝑳𝑰 220 240 𝒀𝑿
𝑺⁄
 1.176 1.764 

𝝈 8 11 𝒀𝑿
𝑵⁄

 5.5064 8.2596 

𝑨𝟎𝑿 0.6 0.7 𝑲𝑯 0.7032 1.0548 

𝑨𝟎𝑳 0.6 0.8 𝒀𝑳
𝑺⁄
 0.0512 0.0768 

𝝁𝑿𝒎𝒂𝒙 0.1816 0.2724 𝑬𝒂𝑿 25 26 

𝑲𝑿𝑺 0.03 0.06 𝑬𝒂𝑳 20 25 

𝑲𝒊𝑿𝑺 7.9384 11.9076 𝑩𝒐𝑿 0.1 0.13 

𝑲𝑿𝑵 0.052 0.078 𝑬𝒃𝑿 45 50 

𝑲𝒊𝑿𝑵 0.4 0.7 𝑩𝒐𝑳 0.08 0.1 

𝒒𝑳𝒎𝒂𝒙 0.0968 0.1452 𝑬𝒃𝑳 
30 

35 
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Appendix F: Upper and lower bounds of the estimated optimal 

growth conditions used in section 4.3 process optimization problem 

The decision variables in the optimization problem were light intensity (𝐼0) and inoculum 

temperature (𝑇). The upper and lower bounds of the optimization problem were set according to 

experimental behaviour of system.  

Table F.1 Upper and lower bounds of the decision variables used in optimization problem 

Parameters Lower bounds Upper bounds 

𝑰𝟎 
75 250 

𝑻 
293 303 
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Chapter 5 

Kinetic Modelling and Experimental Studies of 

Microalgal Lipids Production in Raceway Open Ponds 

 

5.1. Preface 

Microalgae can artificially grow in photobioreactors (PBRs) and open ponds (OP) where light is 

provided to a growth medium, which contains essential nutrients and organic and/or inorganic 

carbon source enabling/driving the photosynthesis process. In comparison with open ponds, 

PBRs can achieve higher biomass and lipid productivities, while contamination of monocultures 

is easily avoided. A number of PBR and open pond designs were reviewed in Chapter 2. As 

described in Chapter 2, although the PBRs provide a number of technical advantages, they 

suffer from significantly higher operating and capital costs than open ponds. Hence, the use of 

open ponds for large scale microalgal cultivation is still considered to be a more practical option. 

Despite the practicability of open ponds, their biodiesel production cost is still too high to 

compete with the conventional fossil diesel one. Consequently, it is essential to improve the 

biomass and the lipid productivity to make the use of this technology feasible and economically 

viable. 

As shown in the preceding chapters, kinetic modelling of microalgal cultivation has become a 

significant tool that can help towards the understanding of the mechanism of microalgal growth, 

the lipid accumulation and the utilization of essential nutrients, which can then be used to 

predict the process performance and optimise the operating conditions to achieve maximum 

biomass and lipid productivities. 

The aim of this chapter is to adapt the quadruple substrate kinetic model developed in chapter 4 

to be applied in large-scale raceway open ponds. The model developed in chapter 4 considered 

the photoheterotrophic growth of Chlamydomonas reinhardtii. In order to use the developed 

model, initially, experiments were conducted in 2 m
3
 raceway open ponds which contained 500 
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L of Tris-acetate-phosphate (TAP) medium (32cm height, 80cm width and 2m length). The 

media got contaminated immediately after the inoculation and this was thought to be due to the 

organic carbon source which is attractive to heterotrophic microorganisms.  

After establishing that we could not perform photoheterotrophic growth experiments with C. 

reinhardtii in open ponds, we decided to grow the strain photoautotrophically using a fertilizer 

medium consisting of diluted Wilko liquid tomato feed (100mgl
-1

 NH4-N, 55mgL
-1

 PO4
-3

-P). In 

order to achieve that, a lab-scale adaptation process was carried out prior to experimentation. 

The strain was adapted to photoautotrophic growth conditions by simultaneously increasing the 

fertilizer concentration in the growth medium and decreasing the TAP medium concentration.  

Photoautotrophic microalgal growth in open ponds is mainly affected by environmental factors 

(light intensity and temperature) and growth media composition (nitrogen and CO2). The 

detailed kinetic model that was developed in chapter 4, for photoheterotrophic growth of C. 

reinhardtii in bench-scale, was a function of carbon substrate and nitrogen concentration, light 

intensity and temperature. The growth of photoautotrophic algal cells is a result of 

photosynthesis which is affected by CO2 and nitrogen concentration, light intensity and 

temperature. During the cultivation period, no organic carbon was added or CO2 was pumped 

into the ponds and the algal broth utilised available atmospheric CO2. Therefore, the influence 

of carbon source was reduced in the final biomass growth and lipid accumulation kinetic 

expressions. The resulting model is a function of nitrogen concentration, light intensity and 

temperature. In Chapter 3, the effect of nitrogen on lipid accumulation was expressed by Monod 

type equation. Under continues light irradiance and available atmospheric CO2, the cells 

perform photosynthesis and produce biomass and lipids. However, there is a limit to lipid 

concentration within cells. In this chapter, the Monod function was replaced by Andrew equation 

to include nitrogen inhibition as there was not any other limiting variable for lipid accumulation.  

The results and discussion of this work are presented in the following paper, where the 

adaptation process for C. reinhardtii to grow photoautotrophically and the development of the 

kinetic modelling framework are explained in detail. 

Experimental observations such biomass growth, lipid accumulation as well as nutrient uptake 

and the differences between cultivation growth conditions (photoautotrophic and 
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photoheterotrophic) are assessed. Details about the estimation of kinetic parameter values and 

the optimisation study which results in the maximisation of lipid production are also explained.  

K.T. and J.K.P. contemplated and supervised the research and M.B. designed the research 

plans, performed the research, analysed data and wrote the manuscripts. 
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Bekirogullari, M., Pittman, J. K. & Theodoropoulos, C. 2017. Kinetic Modelling and Experimental 

Studies of Microalgal Lipids Production in Raceway Open Ponds. Submitted to Biotechnology 
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Abstract 

The use of microalgal lipids and carbohydrates as feedstock for biodiesel production has the 

potential to make a significant contribution to the world energy market, due to several 

outstanding characteristics inherent to microalgae. However, due to uncertainties and difficulties 

associated with the scale-up of the technology, the algal biofuel production cost is too high. In 

order to improve the economic viability of microalgal-based biofuels, attention has been drawn 

to investigate coupled kinetic models and experimental studies with the aim of optimization and 

control of microalgal biomass growth and lipid accumulation through the improvement of the 

growth mechanism. In this work, experiments with photoautotrophic growth of Chlamydomonas 

reinhardtii in a raceway open pond were performed with the aim to develop a kinetic model to 

predict and optimize biomass growth and lipid accumulation in the scaled-up microalgae 

cultivation process. We have previously developed and validated a quadruple substrate kinetic 

model (C, N, I, T) for bench-scale cultivation of photoheterotrophic growth of C. reinhardtii. 

Photoautotrophic microalgal growth in open ponds is mainly affected by environmental factors 

(light intensity and temperature) and growth media composition (nitrogen and CO2). During the 

cultivation period, no organic carbon was added or CO2 was pumped into the ponds and the 

algal broth utilised available atmospheric CO2. Therefore, the influence of carbon source was 

reduced in the final biomass growth and lipid accumulation kinetic expressions. The resulting 

kinetic model is a function of light intensity, temperature and nitrogen. The model was used in 

conjunction with the in-house produced experimental data performed in 2 m
3 

raceway open 



 

149 

 

ponds which contained 500 L fertilizer medium (32cm height, 80cm width and 2m length) to 

define kinetic parameters of the scaled-up level process and subsequently enable the 

optimisation of the microalgal growth process. Moreover, the model was validated against a 

different set of in-house obtained data and it was able to predict the microalgal biomass growth 

and lipid production, as well as the N consumption of the process in a satisfactory way. 

Simulations of the scaled-up level with the aid of a comprehensive modelling framework can 

enhance the competitiveness and sustainability of the microalgal biofuel industry and 

correspondingly enable the system industrial applicability and commercialization. Moreover, the 

numerical simulations of the microalgal biomass cultivation can help to evaluate the impacts of 

various changes to system conditions (nitrogen, light intensity and temperature) without 

excessive experimental trial and error.   

1. Introduction 

An alternative and sustainable fuel source is needed due to the worldwide increase in energy 

consumption and increase in atmospheric CO2 coupled with global warming (Jorquera et al., 

2010, Raupach et al., 2007). Microalgal biomass is one of the long-term promising sources of 

energy as it can be either directly utilized as biomass feedstock or it can be processed for a 

comparatively high oil content (Davis et al., 2011). With respect the latter, depending on the 

algal oil characteristics, the oil can be utilised directly into fuels or it can be upgraded into a wide 

selection of products of interest for different industrial sectors such as biolubricants, surfactants, 

and nutritional lipids like omega-3 fatty acids (Spolaore et al., 2006, Metting, 1996, Mata et al., 

2010).  

Microalgal growth is divided into three major classes: autotrophic, heterotrophic and 

mixotrophic. Autotrophic algae use natural or artificial light as the energy source and carbon 

dioxide as the carbon source to form biomass through photosynthesis, while heterotrophic algae 

utilize organic carbons such as sugars and organic acids as a carbon source derived from other 

biomass sources (Chen et al., 2011, Chen and Johns, 1996). On the other hand, mixotrophic 

algae use both organic compounds and CO2 as a carbon source to form biomass, where 

photosynthetic and respiratory metabolism operate simultaneously (Lee, 2007). In this work, we 

focused on the autotrophic algal growth as it is easy to maintain a monoculture and it directly 

utilizes available atmospheric CO2 .  
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Depending on the selected algal strain and its growth requirements such as ideal environmental 

conditions and availability of carbon source and nutrients, the selection of the culture system is 

also crucial. Frequently, optimizing microalgal cultivation conditions and reducing the operating 

cost are the main reason taken to choose a microalgae cultivation system. There are two main 

cultivation systems: open ponds (OPs) and highly-controlled closed culture systems called 

photobioreactors (PBRs) (Mata et al., 2010, Borowitzka, 1999). Open pond systems are easy to 

build and operate and therefore much less expensive. However, this type of cultivation is very 

inefficient due to low biomass growth and large land requirement compared to PBRs.  PBRs are 

flexible systems in which the growth conditions can be optimized with respect to the biological 

and physiological characteristics of the species (Mata et al., 2010).  Although PBRs are deemed 

to be better than the OPs in terms of contamination, space required, water losses and CO2 

losses (Pulz, 2001, Chisti, 2007, Richardson et al., 2012), in order to make an appropriate 

selection of the cultivation method, an economic comparison between different systems needs 

to be taken into consideration. A life cycle analysis carried out by Pulz (2001) showed that the 

maximum achievable biomass concentration for photoautotrophic growth of microalgae in PBRs 

is 2-8 g L
-1 

while it is only 0.1-0.2 g L
-1

 for OPs. A recent study on economic comparison study of 

OPs to PBRs showed that the capital and the annual operating expenses for PBRs are 2.6 and 

1.5 times higher than capital expenses and operating expenses for OPs, respectively 

(Richardson et al., 2012). Hence, despite the advantages that PBRs have over OPs, it is not 

likely that the PBRs will have substantial contribution in the near term on any product or process 

that can be attained in raceway open ponds.      

Although microalgal biomass is a superior long-term feedstock for biodiesel production and it 

has immense potential in biotechnological applications, the production cost is still too expensive 

to compete with the conventional fossil diesel production (Doshi et al., 2016) . In order to 

improve the competitiveness and sustainability of microalgal biodiesel industry, metabolic 

productivity needs to be enhanced by defining optimal growth conditions through the use of an 

integrated computational and experimental framework (Bekirogullari et al., 2017). Kinetic 

modelling is one of the commonly used computational tools to reveal the relationship between 

microalgal biomass growth and lipid production which can then be used for the optimization of 

biomass growth, lipid accumulation and scale-up of the microalgal cultivation process 

(Adesanya et al., 2014, Lee et al., 2015). 
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The black-box kinetic modelling frameworks can be categorized and organized into two main 

groups: non-interactive and interactive models. Non-interactive, so-called single substrate, 

models are widely utilized to predict biomass growth rate and they are expressed as a function 

of a single substrate or environmental variable such as the Monod, Haldane and Martinez-

Sancho models which depend on external nutrient concentrations and the Droop model which 

depends on internal nutrient concentration (Lee et al., 2015, Monod, 1949, Flynn, 2003, Droop, 

1968). Non-interactive models are generally applied for bench-scale heterotrophic microalgal 

biomass growth. However, this is usually not the case as microalgal biomass growth is co-

limited by multiple factors such as substrate and nutrient concentration, light intensity and 

temperature. In order to take into consideration the co-limitation of multiple factors, interactive, 

so-called multiple substrate, modelling frameworks have emerged. Interactive modelling 

approaches, despite their complexity, are often preferred to predict biomass growth rate as they 

take into account interactions between substrate, nutrients and environmental factors (Yoo et 

al., 2014, Bekirogullari et al., 2017, He et al., 2012, Franz et al., 2012). This modelling approach 

is mainly applied to predict heterotrophic, autotrophic and mixotrophic algal biomass growth in 

order to reveal the interactions between the co-limiting factors in OPs and PBRs. Despite their 

accuracy to predict biomass growth, the aforementioned models are not able to predict 

simultaneous effect of nutrients and environmental factors on both lipid accumulation and 

biomass growth as these models describe both the biomass growth and the lipid accumulation 

as one state variable. However, it is known that the lipid accumulation can be boosted by abiotic 

stress, including nutrient deprivation like starvation of nitrogen (N) and phosphorus (P), and 

factors such as light intensity (I) and temperature stress (T) (Bajhaiya et al., 2016, Converti et 

al., 2009, Bekirogullari et al., 2017). 

Several attempts have been made to model microalgal biomass growth in outdoor raceway 

open ponds. Huesemann et al. (2013) modelled the microalgal growth as a function of light in 

which the light distribution was considered through the Beer–Lambert law. The proposed model 

was capable of predicting the biomass growth successfully. However, in real outdoor cultivation 

of microalgae, light is not the only growth-limiting factor. Temperature and nutrient availability 

contribute significantly to biomass growth and lipid production.  James and Boriah (2010)and 

Malek et al. (2015) proposed two different expressions for microalgal biomass growth as a 

function of light intensity, temperature and nutrient availability and both models successfully 
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predicted biomass growth. However, these two models considered biomass growth and lipid 

accumulation as one state variable which does not allow optimizing productivities individually. 

On the other hand, several studies have attempted to use computational fluid dynamics (CFD) 

for characterising the hydrodynamics in microalgae culture systems, such as ANSYS Fluent 

based on existing CFD codes. This technique has been applied to simulate both closed PBRs, 

and raceway open ponds (Bernard et al., 2016). However, the application of CFD codes still 

needs to be established and validated experimentally. As described above, only a few studies 

have attempted to develop a kinetic model for microalgal biomass growth and lipid accumulation 

in open ponds but none of these studies have considered the biomass growth and lipid 

accumulation as two different state variables to take advantage of the promotion effect of N, 

light intensity and temperature towards lipid accumulation. 

This study is the first, to the best of our knowledge, to attempt to develop a kinetic model for 

photoautotrophic growth of microalgal (oil-free) biomass and of lipid accumulation by 

considering the simultaneous effects of three limiting growth parameters, N, light intensity and 

temperature. In this work, we present a detailed multiplicative kinetic model to investigate 

biomass growth and relevant lipid accumulation of a well-studied chlorophyte microalgal 

species, Chlamydomonas reinhardtii, under photo-autotrophic growth conditions in raceway 

open ponds. The model considers the simultaneous influence of three different growth-

promoting resources: N, light intensity and temperature. Experiments were carried out in 2 m
3
 

raceway open ponds containing 500 L of fertilizer medium (32cm height, 80cm width and 2m 

length) to accurately determine kinetic parameters of the model that are important for precise 

process simulations and validation of the model for the scaled-up level. The model was then 

used in conjunction with in-house produced experimental data to predict biomass growth and 

lipid accumulation and also to reveal the interactions between the limiting factors. A stochastic 

algorithm, based on Simulated Annealing (SA) and a deterministic MATLAB optimization 

function (fmincon) was employed to estimate the key parameters used in the large-scale 

raceway open pond. Moreover, the predictive capability of the constructed model was assessed 

with a different set of experiments, which was designed with reduced initial nitrogen 

concentration and different daily light intensities and temperature. 
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2. Materials and Methods 

2.1. Strain and culture conditions 

Experiments were conducted with a wild-type strain of C. reinhardtii (CCAP 11/32C), obtained 

from the Culture Collection of Algae and Protozoa, UK. The strain was initially maintained under 

batch mixotrophic conditions in Tris-acetate-phosphate (TAP) medium at a temperature of 25 °C 

and a light intensity of 125  μEm
-2

 s
-1

. Prior to experimentation, in order to grow the strain photo-

autotrophically in raceway open ponds, the strain was adapted for growth in a lower nutrient and 

organic carbon-free fertilizer medium consisting of diluted liquid tomato feed (Wilko) containing 

N and P to a final concentration of 100 mg L
-1

 NH4-N and 55 mg L
-1

 PO4-P, respectively. The 

adaptation process was performed by simultaneously increasing the fertilizer medium 

concentration in the growth medium while decreasing the TAP medium concentration. Prior to 

raceway open pond experimentation, an initial fertilizer-adapted algal inoculum was grown in an 

environmentally-controlled growth chamber at 25 °C and constant light illumination of 125  μEm
-

2
 s

-1
 using 250 mL conical flasks containing 150 mL of fertilizer medium on an orbital shaker at 

120 rpm until the late exponential phase (40-45 days). An algal inoculum of 1L was then added 

to two raceway open ponds (2 m
3
), located in a greenhouse, each containing 500 L of fertilizer 

medium (32cm height, 80cm width and 2m length). No artificial light was supplied and there was 

no temperature control in the greenhouse. The growth process was sustained for 45 days 

operating in batch mode and daily samples were collected to evaluate the biomass growth, lipid 

production, nitrogen consumption and pH change. The set of data was used in fitting was 

obtained in early autumn staring form 12
th
 of September and the validation data was obtained in 

late winter starting from 27
th
 of February. The daily temperature and local light intensity of the 

parameter fitting data was measured once a day (noon time) for 45 days and the mean values 

were found to be 289 K and 122 μEm
-2

 s
-1

, respectively. The daily temperature and local light 

intensity of the kinetic model validation data was also measured once a day (noon time) for 45 

days and the mean values were found to be 291 K and 158  μEm
-2

 s
-1

, respectively.
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2.2. Metabolite analysis 

2.2.1. Biomass growth 

 C.reinhardtii biomass growth was measured in terms of dry cell weight (DCW). The DCW of the 

samples was quantified by centrifuging 500 mL cultures for 3 min at 3000 g in an Eppendorf 

Centrifuge 5424. After separating the supernatant, the obtained wet biomass pellet was dried 

for 24h at 70 °C to determine the DCW. The DCW was determined gravimetrically by weighing 

the dry pellet on a fine balance (Sartorius - M-Pact AX224, Germany). The supernatant and the 

dry biomass of the samples were stored in 50 mL falcon tubes and they were kept stored at −20 

°C for quantification of specific metabolites nutrient consumption and lipid production, 

respectively. A bench type pH meter (Denver UltraBasic Benchtop Meters, USA) was used to 

analyse the pH of the samples. A light meter (Fisher Scientific Light Meter, Leicestershire, UK) 

was used to measure daily light illumination. 

2.2.2. Lipid Quantification 

Total cellular lipid concentration was determined by extracting the lipids using Soxtec 1043 

automated solvent unit as per the Soxhlet solvent extraction method (Bekirogullari et al., 2017). 

Prior to solvent extraction, disruption of the freeze-dried algal cells was performed through a 

double cycle of liquid nitrogen immersion and pulverization with mortar and pestle. The dried 

pulverized algal cells were then placed into cellulose extraction thimbles and loaded in the 

Soxtec equipment. Extraction of the lipids was carried out by boiling the pulverized algal cells 

for 2 hours at 160 °C using a suitable solvent (Hexane, ACS spectrophotometric grade, ≥98.5%, 

Sigma Aldrich, Dorset, UK) followed by rinsing for 40 min. After the extraction process, solvent 

recovery with evaporation was carried out for 20 min. Following the lipid extraction carried out 

through the use of Soxtec 1043, the extracted lipids were isolated and dried at 100 °C for 1 h, 

were placed in a vacuum applied desiccator for 1 h, and finally the algal lipids concentration 

was quantified gravimetrically. 

2.2.3. Total Nitrogen Quantification 

The total dissolved N concentration in the culture broth was determined using a Total Organic 

Carbon/Total N measuring unit (TOC/TN) (TOC-VCSH/TNM-1 Shimadzu) as per the total N 
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quantification method (Karamerou et al., 2017). Prior to dissolved nitrogen determination, a 

calibration curve was prepared using NH4Cl. All supernatant samples collected by centrifugation 

were diluted properly and injected into the analyser. Zero grade air was used as carrier gas to 

transport the samples to a combustion unit where nitrogen was catalytically transformed into NO 

and the flow rate of the carrier gas was set to 150 cm
3
 min

-1
. Subsequently, the formed NO 

concentration was measured through a chemiluminescence detector and was then converted 

into total nitrogen (g L
-1

) with the use of a previously created calibration curve. 

3. Kinetic Modelling 

3.1. Biomass Growth and Lipid Accumulation Kinetic 

Various kinetic models have been proposed to describe the algal biomass growth and to 

account for the interactions between the limiting factors (Aiba, 1982, Fouchard et al., 2009, 

Goldman and Carpenter, 1974, Franz et al., 2012, Adesanya et al., 2014). A detailed kinetic 

modelling framework was constructed by Bekirogullari et al. (2017) to describe heterotrophic 

biomass growth rate as a function of carbon substrate and N concentration and light intensity for 

bench scale microalgal growth:  

𝜇𝑋 = 𝜇𝑋𝑚𝑎𝑥 ∙ 𝑓(𝑆) ∙ 𝑓(𝑁) ∙ 𝑓(𝐼) (1) 

where 𝜇𝑋𝑚𝑎𝑥 is the maximum specific growth rate of biomass and 𝑓(𝑆), 𝑓(𝑁) and 𝑓(𝐼) represent 

the effect of substrate, N and light, respectively.  

The kinetic model of Bekirogullari et al. (2017) is adapted here to be utilized for the prediction of 

the dynamic behaviour of photoautotrophic algal biomass growth in large-scale raceway open 

pond systems. For photoautotrophic algal cells, the biomass growth is the result of 

photosynthesis. Consequently, the biomass growth rate is affected by CO2 and N concentration, 

light intensity and temperature. The algal broth in our experiments uses available atmospheric 

CO2 as we did not pump or add any additional carbon source. Therefore, the effect of CO2 

variation was discounted in the final biomass and lipid growth rate expressions. In this study, we 

have modified the ordinary differential equation- (ODE) based model to predict the microalgal 

biomass growth and lipid accumulation processes (Bekirogullari et al., 2017).  
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N depletion is known to boost lipid accumulation while it inhibits biomass growth (James et al., 

2011, Tevatia et al., 2012, Bekirogullari et al., 2017). In order to take advantage of N starvation 

over lipid accumulation, two different expressions were used for both oil-free biomass growth 

and lipid production. The specific growth rate of biomass and of lipids, 𝜇𝑋 and 𝜇𝐿 respectively, 

are described by a multiplicative form (pseudo-triple) of substrate expression as follows: 

𝜇𝑋(𝑁, 𝐼, 𝑇) = 𝜇𝑋𝑚𝑎𝑥 ∙ 𝑓(𝑁)𝑋 ∙ 𝑓(𝐼)𝑋 ∙ 𝑓(𝑇)𝑋 (2) 

𝜇𝐿(𝑁, 𝐼, 𝑇) = 𝑞𝐿𝑚𝑎𝑥 ∙ 𝑓(𝑁)𝐿 ∙ 𝑓(𝐼)𝐿 ∙ 𝑓(𝑇)𝐿 (3) 

where 𝜇𝑋𝑚𝑎𝑥 is the maximum specific growth rate of biomass, 𝑞𝐿𝑚𝑎𝑥 is the maximum specific 

growth rate of lipid, 𝑓(𝑁), 𝑓(𝐼) and 𝑓(𝑇) represent the effect of N, light and temperature, 

respectively. 

The Haldane equation was employed to express the influence of N on both biomass growth and 

lipid production as follows: 

𝑓(𝑁)𝑋 =
𝑁

𝑁 + 𝐾𝑋𝑁 +
𝑁2

𝐾𝑖𝑋𝑁

 
(4) 

𝑓(𝑁)𝐿 =
𝑁

𝑁 + 𝐾𝐿𝑁 +
𝑁2

𝐾𝑖𝐿𝑁

 
(5) 

where 𝑁 is the N concentration (𝑔 𝐿−1), 𝐾𝑋𝑁 and 𝐾𝐿𝑁 are the saturation constants (g L
-1

), and 

𝐾𝑖𝑋𝑁 and 𝐾𝑖𝐿𝑁 are the inhibition constants of N (g L
-1

). 

The Haldane equation was also used to describe the effect of light intensity on both biomass 

growth and lipid accumulation: 

𝑓(𝐼)𝑋 =
𝐼

𝐼 + 𝐾𝑋𝐼 +
𝐼2

𝐾𝑖𝑋𝐼

 
(6) 

𝑓(𝐼)𝐿 =
𝐼

𝐼 + 𝐾𝐿𝐼 +
𝐼2

𝐾𝑖𝐿𝐼

 
(7) 

where 𝐼 is the local light intensity (μEm
-2

 s
-1

), 𝐾𝐿𝐼 and 𝐾𝑋𝐼 are the saturation constants (μEm
-2

 s
-

1
), and 𝐾𝑖𝑋𝐼 and 𝐾𝑖𝐿𝐼 are the inhibition constants (μEm

-2
 s

-1
) of light intensity.  
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The light intensity distribution, 𝐼, is expressed by a widely used expression, the Beer-Lambert 

law, which assumes that the light illumination decreases from the external surface of the 

cultivation system as the light travels through culture system (Béchet et al., 2013); 

𝑓(𝐼) = 𝐼0𝑒𝑥𝑝(−σXl) (8) 

 where 𝑙 is the distance between the local light position and the external surface of the 

cultivation system (the value of 𝑙 is given in Table 2), 𝐼0 is the local light intensity (μEm
-2

 s
-1

) and 

σ is the molar extinction coefficient. 

To account for variations in the photoperiod of natural light (the modelled photoperiod of natural 

light is assumed to be 16 hours of light and 8 hours of dark cycles), we have attained the 

following quadratic expression for the photoperiodic light change (Fig. 1A): 

{
𝐼0 = −1101 ∙ 𝑐

2 + 733.5 ∙ 𝑐  𝑤ℎ𝑒𝑛    0 ≤ 𝑐 ≤ 0.66 
𝐼0 = 0                                             𝑤ℎ𝑒𝑛    0.66 ≤ 𝑐 ≤ 1

 (9) 

where C is the proportion of light/dark cycle (0 ≤ 𝑐 ≤ 1). 

 

Figure 1. Modelled photoperiodic (day/night cycle) local light intensity and periodic (day/night 

cycle) temperature change (lines) with measured experimental data (symbols) used for fitting of 

the model. 
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The constant coefficient values that have been used in the quadratic Eq.9 were obtained based 

on in-house produced data. The local light illumination was measured for 45 days and the mean 

value was found to be 122 μEm
-2

 s
-1

.  

General form a quadratic formula is: 𝑎𝑐2 + 𝑏 ∙ 𝑐 + 𝑑 = 0. 

{
 

 
𝑤ℎ𝑒𝑛 𝑐 = 0, 𝑑 = 0;

𝑤ℎ𝑒𝑛 𝑐 = 0.33;

𝑎 ∙ 0.332 + 𝑏 ∙ 0.33 = 122  ;  
2 ∙ 𝑎 ∙ 0.33 + 𝑏 = 0;

 (10) 

 

A modified version of the Arrhenius equation was used here to describe the influence of 

temperature on both biomass growth and lipid accumulation, which accounts for the saturation 

and inhibition effect of temperature (Bitaubé Pérez et al., 2008):   

𝑓(𝑇)𝑋 = 𝐴0𝑋 exp [
−𝐸𝑎𝑋
𝑅

(
1

𝑇
−
1

𝑇0
)] − 𝐵0𝑋exp [

−𝐸𝑏𝑋
𝑅

(
1

𝑇
−
1

𝑇0
)] (11) 

𝑓(𝑇)𝐿 = 𝐴0𝐿 exp [
−𝐸𝑎𝐿
𝑅

(
1

𝑇
−
1

𝑇0
)] − 𝐵0𝐿exp [

−𝐸𝑏𝐿
𝑅

(
1

𝑇
−
1

𝑇0
)] (12) 

Here the first and the second part of the expression represent the promotion and inhibition 

effect of temperature, respectively. 𝐸𝑎𝑋 , 𝐸𝑎𝐿 and 𝐸𝑏𝑋 , 𝐸𝑏𝐿 are the activation energies of growth 

and cellular degradation, respectively (kcal mol
-1

), R is the gas constant (kcal mol
-1

), 𝑇 the 

incubation temperature (K), 𝑇0 the reference temperature (𝐾), and  𝐴0𝑋 , 𝐴0𝐿 and 𝐵0𝑋 , 𝐵0𝐿 are the 

corresponding frequency factors (h
-1

). 

In order to account for the day/night periodic change of temperature (the modelled periodic 

change of temperature assumed to be ±4 K), we obtained the following quadratic formula (Fig. 

1B): 

{ 𝑇 = −36.036 ∙ 𝑐2 + 24 ∙ 𝑐 + 285     𝑤ℎ𝑒𝑛    0 ≤ 𝑐 ≤ 0.66 
𝑇 = 285                                                     𝑤ℎ𝑒𝑛    0.66 ≤ 𝑐 ≤ 1

 (13) 

where again 𝐶 is the proportion of light/dark cycle (0 ≤ 𝑐 ≤ 1). 

The method used in Eq.9 to determine values of the constants was also used here to define the 

values of the Eq.13 as shown below in Eq. 14. The daily temperature was measured for 45 days 

and the mean value was found to be 289 K. 
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{
 

 
𝑤ℎ𝑒𝑛 𝑐 = 0, 𝑑 = 285;

𝑤ℎ𝑒𝑛 𝑐 = 0.33;

𝑎 ∙ 0.332 + 𝑏 ∙ 0.33 + 285 = 289  ;  
2 ∙ 𝑎 ∙ 0.33 + 𝑏 = 0;

 (14) 

 

3.2. Rate Expressions 

The dynamic kinetic model constructed in this work consists of a set of ODEs employed to 

simulate algal biomass growth, lipid production and N consumption rates simultaneously. 

The oil-free biomass growth rate is described as: 

dX

dt
= μX ∙ X (15) 

The oil accumulation rate is expressed as: 

dL

dt
= μL ∙ X + m1 ∙ X (16) 

Here: m1 is the maintenance coefficient (g L g X
-1

) introduced to the lipid accumulation rate in 

order to account for lipid accumulation when nitrogen depletion takes place. 

The nitrogen consumption rate is represented as: 

dN

dt
= −

1

YX
N⁄

∙
dX

dt
− m2 ∙ X (17) 

where YX
N⁄
 is the yield coefficient for oil-free biomass production with respect to N, and m2 is the 

maintenance coefficient (g N g X
-1

) introduced to the nitrogen consumption rate for the biomass 

synthesis. 

Hence, the constructed model contains 3 ODEs (Eq.15 to 17), corresponding to 3 state 

variables describing the oil-free biomass growth and lipid production and N consumption of the 

process. The model contains 19 parameters (listed in Table 2, below), which have been 

estimated through the procedure discussed in section 3.3 below. 
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3.3. Parameter Estimation 

In this work, a multi-parameter kinetic model was developed for the photoautotrophic growth of 

microalgal (oil-free) biomass growth and lipid accumulation considering three growth-limiting 

factors nitrogen concentration, light intensity and temperature. However, due to lack of kinetic 

modelling of photoautotrophic growth of microalgal processes with respect to aforementioned 

growth-limiting factors, the values of the kinetic parameters for such a system are not available 

in the literature. Hence, we conducted a parameter estimation study subject to developed model 

(Eq.15 to 17) in conjunction with in-house produced experimental data. Data fitting was carried 

out by using a non-linear weighted least squares method (Bekirogullari et al., 2017): 

𝑍(𝑘𝑘) = min∑∑∑𝑊𝑘,𝑙,𝑚(𝐶𝑘,𝑙,𝑚
𝑝𝑟𝑒𝑑

(𝑘𝑘) − 𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

)
2

𝑛𝑚

𝑚=1

𝑛𝑙

𝑙=1

𝑛𝑘

𝑘=1

 Eq. 18 

where 𝑘𝑘 is the vector of the 19 kinetic parameters, 𝑛𝑘 the number of experiments (𝑛𝑘 = 1), 𝑛𝑙 

the number of state variables (𝑛𝑙 = 3), 𝑛𝑚 the number of experimental measurements in time 

(𝑛𝑚 = 45), and 𝑊𝑘,𝑙,𝑚 the weights the weights for each variable used to effectively normalise the 

computed errors. Here, 𝐶𝑘,𝑙,𝑚
𝑝𝑟𝑒𝑑

 are the predicted state variables (computed by Eq. 15 to 17) and 

𝐶𝑘,𝑙,𝑚
𝑒𝑥𝑝

 the experimental measured ones. The initial concentrations of each experiment were used 

as the initial conditions in the ODEs. The experiment that has been used for the fitting problem 

is tabulated as Experiment 1 in Table 1. 

Table 1: Experiments used for the fitting and validation process. 

Experiment Nitrogen 
(g L

-1
) 

Light 
intensity 
(day)  
(μEm

-2
s

-1
 ) 

Light 
intensity 
(Night) 
(μEm

-2
 s

-1
 ) 

 Temperature 
(day) (K) 

Temperature 
(Night) (K) 

 

1 0.108 122 0  289 285  

2 0.08 158 0  291 287  

 

An in-house developed stochastic optimization algorithm (SA) was linked to a deterministic 

MATLAB optimization function (fmincon) for the estimation of the key parameter values. The 

procedure that was followed here was described previously in detail (Bekirogullari et al., 2017). 
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Here 10 stochastic optimization restarts have been used to increase the probability of avoiding 

local minima. The values of the 19 parameters as well as their standard deviations were found 

by using the method explained above and tabulated in Table 2. The values of the two constants, 

𝑇0 and 𝑙 used in the simulations are also given in Table 2. The resulting time profiles of the 3 

state variables, computed by the constructed kinetic model, and comparisons against 

experimental datasets including biomass growth, lipid production and N consumption of the 

process are discussed in section 4.2 below. 

Table 2: Estimated kinetic parameters along with bounds available in the literature. 

Parameter Description Value Unit SD 

𝝁𝑿𝒎𝒂𝒙 Maximum specific growth rate of oil-free 
biomass 

0.1312 h
-1

 0.0008 

𝑲𝑿𝑵 Nitrogen saturation constant 0.4243 g N L
-1

 0.0018 

𝑲𝒊𝑿𝑵 Nitrogen inhibition constant 0.4758 g N L
-1

 0.0018 

𝑲𝑿𝑰 Light saturation constant 3.7017 μEm
-2

 s
-1

  0.0844 

𝑲𝒊𝑿𝑰 Light inhibition constant 153.5258 μEm
-2

 s
-1

  1.62788 
𝑨𝟎𝑿 Frequency factors 0.9889 h

-1
 0.0086 

𝑬𝒂𝑿 Activation energy of oil-free biomass growth 7.6018 kcal mol
-1 0.0378 

𝑩𝟎𝑿 Frequency factors 0.1659 h
-1

 0.0025 
𝑬𝒃𝑿 Activation energy of oil-free biomass 

degradation 
51.4027 kcal mol

-1 1.0593 

𝒒𝑳𝒎𝒂𝒙 Maximum specific growth rate of lipid 0.1202 g L g X
-1

 h
-1

 0.0015 

𝑲𝑳𝑵 Nitrogen saturation constant 0.1025 g N L
-1

 0.0012 
𝑲𝒊𝑳𝑵 Nitrogen inhibition constant 0.5996 g N L

-1
 0.0027 

𝑲𝑳𝑰 Light saturation constant 2.5538 μEm
-2

 s
-1

  0.0205 

𝑲𝒊𝑳𝑰 Light inhibition constant 92.0299 μEm
-2

 s
-1

  1.2863 
𝑨𝟎𝑳 Frequency factors 0.1107 h

-1
 0.0029 

𝑬𝒂𝑳 Activation energy of oil production 13.8844 kcal mol
-1 0.2307 

𝑩𝟎𝑳 Frequency factors 0.0219 h
-1

 0.0016 

𝑬𝒃𝑳 Activation energy of oil degradation 2.2478 kcal mol
-1 0.01369 

𝛔 Molar extinction coefficient 0.2095 g X
-1

 L m
-1

 0.0028 

𝒀𝑿
𝑵⁄

 Yield coefficient for oil-free biomass 
production with respect to N 

1.8288 g X g N
-1

 0.1623 

𝒎𝟏 Maintenance term 0.0001 g L g X
-1

 0 

𝒎𝟐 Maintenance term 0.0006 g N g X
-1

 0 

𝒍 The distance between the local position and 
the external surface of the system 

0.25 m  

𝑹 Gas constant 0.001986 kcal mol
-1  

𝑻𝟎 Reference Temperature 293 K  

 

4. Results and Discussion 

An experimental study was performed in 2 m
3
 raceway open pond to quantify the effect growth 

limiting factors, light intensity, temperature and N concentration on the microalgal growth and 

lipid productivity. A parameter estimation study was then undertaken subject to constructed 
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model to compute parameter values   that are essential for accurate process simulations. The 

developed model was subsequently validated and used in an optimization study to determine 

optimal operating conditions for maximum lipid productivity. 

4.1. Experimental Results 

C. reinhardtii biomass production, volumetric lipid yield and N consumption, as well as daily light 

intensity and temperature, were measured during a 45-day cultivation in 2 m
3
 raceway ponds. 

As seen in Figure 3 and 4, the cells were in lag phase for an average for 17 days and then the 

cells grew rapidly with equivalent growth profiles in the exponential phase until reaching the 

stationary phase on average for 40 days. To make sure that stationary phase concentrations 

were reached, the cultures were grown further up to 45 days.  

At the end of the cultivation period, the maximum achievable biomass concentration in the open 

ponds was 0.15 g L
-1

. The proportion of lipid accumulation within the cell on a total dry cell 

weight basis was between 10-15 % during the cultivation period and at the end of the cultivation 

period, the final lipid concentration was 0.023 g L
-1

 corresponding to 13.6 % of dry cell weight. 

The proportion of lipid production was essentially similar to the reported value for 

photoheterotrophic growth of C. reinhardtii in TAP media, 13,2%, and the difference in 

volumetric lipid concentration between fertilizer and TAP media growth was almost entirely due 

to the difference in biomass concentration (Bekirogullari et al., 2017). 

The pH of the growth medium increased from 6.68 to 7.07, which was due to carbon uptake- 

assimilation and fixation from atmospheric CO2.  In the open pond conditions the algae are 

exposed to available atmospheric concentrations of CO2. As the cells divide and grow, the rate 

of inorganic carbon uptake and fixation exceeds the rate of CO2 supply from the atmosphere 

and therefore, pCO2 of the medium decreases and the pH increases.  

4.2. Model Validation 

Values of the kinetic parameters were estimated using the procedure explained in section 3.3. 

As can be seen in Figure 3, the resulting model shows excellent agreement with the 

experimental data for all state variables.  
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Figure 3. Comparison of model predictions (lines) with experimental data from Experiment 1 

(symbols with error bars) for: (a) biomass concentration, (b) lipid concentration, (c) N 

consumption. All data are mean ± SE values of 2-3 biological replicates. 

A validation study was subsequently performed in order to assess the predictive capability of 

the developed model by using the conditions (initial N concentrations, temperature and light 

intensity) of Experiment 2 (also given in Table 1). It should be noted that all Experiment 2 

conditions are different than the ones used for parameter fitting. The local light intensity was 

measured for 45 days and the mean value was found to be 158 μEm
-2

 s
-1

. To account for 

day/night photoperiodic light cycle the following quadratic expression is used for validation data 

(Fig. 2A); 

{
𝐼0 = −1423 ∙ 𝑐2 + 948 ∙ 𝐶  𝑤ℎ𝑒𝑛    0 ≤ 𝑐 ≤ 0.66 
𝐼0 = 0                                             𝑤ℎ𝑒𝑛    0.66 ≤ 𝑐 ≤ 1

 (19) 
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Figure 2. Modelled photoperiodic (day/night cycle) local light intensity and periodic (day/night 

cycle) temperature change (lines) with measured experimental data (symbols) used for 

validation of the model. 

The temperature was measured for 45 days and the mean value was found to be 291 K. To 

account for day/night periodic change of temperature, the following quadratic expression is used 

for validation data (Fig. 2B); 

{ 𝑇 = −36.036 ∙ 𝑐2 + 24 ∙ 𝑐 + 287     𝑤ℎ𝑒𝑛    0 ≤ 𝑐 ≤ 0.66 
𝑇 = 287                                                     𝑤ℎ𝑒𝑛    0.66 ≤ 𝑐 ≤ 1

 (20) 

 

The kinetic model was capable of predicting the dynamics of the 3 experimentally obtained state 

variables (oil-free biomass growth, lipid accumulation and N consumption) with high precision 

as can be seen in Figure 4. We therefore can conclude that the detailed kinetic model 

developed in this study can be utilized for precise prediction of the dynamic behaviour of 

microalgal growth in large-scale raceway open ponds. Consequently, it can be used as an 

optimization tool to compute optimal operating conditions for maximum biomass growth and 

lipid production for microalgal cultivation systems. 
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Figure 4. Comparison of model predictions (lines) with experimental data from Experiment 2 

(symbols with error bars) for: (a) biomass concentration, (b) lipid concentration, (c) N 

consumption. All data are mean ± SE values of 2-3 biological replicates. 

5. Conclusions 

Several different kinetic modelling approaches have been suggested for photoautotrophic 

cultivation of microalgae in both open ponds and photobioreactors. Not all of these studies 

consider all growth-limiting factors. On the other hand, lipid accumulation either has not been 

modelled or has been considered to be proportional to the biomass growth, which does not 

allow accurate prediction and optimization of lipid accumulation. In this work, a detailed kinetic 

model in response to N, light intensity and temperature was developed to understand the 

synergistic interactions between nutrients and environmental factors and also to predict the 

microalgal biomass growth and lipid accumulation in raceway open ponds. Two different 

expressions were used for both biomass growth and lipid accumulation to take advantage of 

nutrient starvation towards maximal lipid accumulation. We have carried out a range of 

experiments for two different N concentrations where the environmental factors also (I, T) varied 

based on daily light and temperature conditions. The kinetic parameters of the constructed 

model were computed by fitting the model outputs to in-house produced experimental data. 

Model validation was subsequently carried out through comparisons to different sets of 
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experimental data. The developed kinetic model was able predict satisfactorily microalgal 

biomass growth and lipid production, as well as N consumption of the process. This illustrates 

the usefulness of the integrated computational and experimental frameworks for the 

optimization of microalgal-based lipid accumulation. Such carefully constructed comprehensive 

kinetic models can be exploited for the robust design, control and optimization of microalgal 

biomass and lipid accumulation processes, which can improve the viability and sustainability of 

this important technology. 
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Appendix A. Sensitivity analysis 

 

A sensitivity analysis was carried out for the kinetic model proposed in this work 

which consists of 22 parameters. The analysis was performed by calculating the 

sensitivity (Eq. (A.1)), for all 3 dynamic variables with respect to each parameter 

at eight different cultivation times (t=25h, 50h, 75h, 85h, 125h, 150h, 175h and 

190h). 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

= 𝑎𝑏𝑠 (
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡, 𝑃 + 𝛥𝑃) − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡, 𝑃 − ∆𝑃)

2 ∗ ∆𝑃
) 

Eq. 

A.1 

Sensitivity of the parameters was computed with a %10 change (∆𝑃) in 

parameters values. The sensitivity analysis results of 22 kinetic parameters are 

presented in Table A.1. The threshold for sensitivity was set to 0.01, meaning 

parameters with sensitivities lower than 0.01 were considered not-sensitive and 

sensitivities higher than 0.01 deemed to be sensitive and they are highlighted.  

Table A.1. Sensitivity analysis results of the proposed model kinetic parameters. 

 

   Sensitivity 

Parameter Value Variable 25h 50h 75h 85h 125h 150h 175h 190h 

𝝁𝒙𝒎𝒂𝒙 0.1312 X 1.12E-01 4.28E-01 1.24E+00 3.23E-01 1.14E-01 3.21E-01 3.92E-01 4.03E-01 
  L 4.13E-03 2.70E-02 9.56E-02 1.03E-01 1.96E-01 2.29E-01 2.25E-01 2.06E-01 
  N 6.41E-02 2.52E-01 8.04E-01 4.09E-01 1.75E-01 4.72E-02 1.38E-02 4.43E-02 

𝑲𝑿𝑵 0.4243 X 2.67E-02 1.01E-01 3.09E-01 8.09E-02 3.13E-02 8.59E-02 1.06E-01 1.08E-01 
  L 9.45E-04 6.03E-03 2.20E-02 2.95E-02 5.23E-02 5.96E-02 5.74E-02 5.07E-02 
  N 1.53E-02 5.93E-02 2.00E-01 1.02E-01 4.15E-02 7.86E-03 9.14E-03 1.65E-02 

𝑲𝒊𝑿𝑵 0.4758 X 2.21E-03 4.49E-03 1.03E-02 1.68E-03 1.69E-03 2.88E-03 3.11E-03 2.15E-03 
  L 1.68E-04 3.07E-04 1.08E-03 3.01E-04 1.12E-03 1.46E-03 1.57E-03 1.39E-03 
  N 1.27E-03 2.72E-03 6.94E-03 2.96E-03 1.11E-03 3.12E-04 3.43E-05 3.56E-04 

𝑲𝑿𝑰 3.7017 X 3.07E-04 6.75E-04 2.16E-03 4.58E-04 1.88E-04 6.04E-04 4.95E-04 5.32E-04 
  L 1.94E-05 3.09E-05 1.27E-04 2.31E-04 3.55E-04 4.22E-04 3.53E-04 3.10E-04 
  N 1.74E-04 4.03E-04 1.42E-03 6.46E-04 2.96E-04 4.04E-05 6.48E-05 1.09E-05 

𝑲𝒊𝑿𝑰 153.526 X 3.35E-05 1.19E-04 3.40E-04 8.69E-05 3.50E-05 9.22E-05 1.15E-04 1.19E-04 
  L 1.58E-06 7.61E-06 2.54E-05 2.99E-05 5.54E-05 6.43E-05 6.43E-05 5.89E-05 
  N 1.92E-05 7.02E-05 2.21E-04 1.12E-04 4.62E-05 1.08E-05 8.28E-06 1.73E-05 

𝒒𝑳𝒎𝒂𝒙 0.1202 X 4.41E-04 7.05E-03 1.08E-03 2.47E-03 4.05E-04 5.70E-04 1.93E-03 9.16E-04 
  L 1.13E-02 3.52E-02 1.30E-01 1.88E-01 1.79E-01 1.58E-01 1.33E-01 1.09E-01 
  N 2.62E-04 4.03E-03 2.22E-04 2.83E-03 1.76E-03 1.19E-03 4.35E-04 2.00E-03 

𝑲𝑳𝑵 0.1025 X 2.26E-03 5.96E-03 1.78E-04 8.51E-03 4.12E-03 2.60E-03 2.76E-03 1.46E-04 
  L 6.54E-03 1.99E-02 8.76E-02 1.47E-01 1.35E-01 1.08E-01 7.66E-02 4.42E-02 
  N 1.27E-03 3.49E-03 1.37E-03 4.85E-03 2.80E-03 2.13E-03 2.45E-03 8.32E-04 

𝑲𝑳𝑰 2.5538 X 4.31E-05 2.85E-04 1.03E-04 1.82E-04 8.44E-05 2.50E-04 7.98E-05 1.71E-04 
  L 1.40E-05 1.08E-05 2.37E-04 3.96E-04 3.55E-04 3.56E-04 2.16E-04 2.29E-04 
  N 2.36E-05 1.63E-04 3.53E-05 1.00E-04 5.48E-05 1.55E-04 2.43E-05 1.23E-04 

𝑲𝒊𝑳𝑰 92.0299 X 8.96E-07 1.79E-06 2.36E-05 1.04E-06 9.49E-07 7.91E-06 5.20E-06 7.78E-06 
  L 6.41E-06 2.01E-05 7.87E-05 1.07E-04 1.03E-04 8.89E-05 7.57E-05 6.15E-05 
  N 5.24E-07 1.06E-06 1.51E-05 2.31E-06 2.25E-06 1.80E-06 7.87E-07 2.69E-06 

𝒀𝑿
𝑵⁄

 1.8288 X 2.11E-05 1.61E-03 2.68E-02 6.00E-02 5.92E-02 5.11E-02 4.08E-02 3.13E-02 
  L 1.31E-05 1.51E-04 3.37E-03 9.46E-03 9.46E-03 7.72E-03 5.27E-03 2.99E-03 
  N 3.23E-03 8.56E-03 1.59E-02 3.15E-03 1.46E-03 3.66E-03 4.55E-03 5.22E-03 

𝝈 0.2095 X 7.16E-05 1.69E-03 7.45E-03 2.38E-03 1.55E-04 1.16E-03 1.71E-03 2.16E-03 
  L 2.65E-05 2.32E-04 1.33E-03 2.20E-05 5.05E-05 2.64E-04 3.14E-04 3.81E-04 
  N 2.18E-05 9.77E-04 4.73E-03 2.61E-03 1.44E-03 7.02E-04 3.05E-04 5.55E-05 

𝑨𝟎𝑿 0.9888 X 1.60E-02 5.91E-02 1.69E-01 4.39E-02 1.56E-02 4.45E-02 5.47E-02 5.57E-02 
  L 6.40E-04 3.68E-03 1.28E-02 1.45E-02 2.70E-02 3.16E-02 3.12E-02 2.83E-02 
  N 9.18E-03 3.49E-02 1.10E-01 5.61E-02 2.41E-02 6.35E-03 2.36E-03 6.26E-03 

𝑬𝒂𝑿 7.6018 X 4.66E-04 1.77E-03 5.50E-03 1.36E-03 5.52E-04 1.45E-03 1.71E-03 1.73E-03 
  L 1.42E-05 1.02E-04 4.22E-04 4.78E-04 8.78E-04 1.01E-03 9.88E-04 8.95E-04 
  N 2.66E-04 1.05E-03 3.57E-03 1.77E-03 7.36E-04 1.79E-04 6.27E-05 1.80E-04 

𝑩𝟎𝑿 0.1659 X 4.31E-03 1.62E-02 3.77E-02 6.25E-03 5.76E-03 8.84E-03 1.09E-02 1.33E-02 
  L 2.13E-04 1.23E-03 2.78E-03 4.30E-03 6.65E-03 6.59E-03 5.86E-03 5.67E-03 
  N 2.47E-03 9.52E-03 2.49E-02 1.07E-02 4.08E-03 1.92E-03 1.72E-04 1.91E-03 

𝑬𝒃𝑿 51.4027 X 1.93E-05 6.41E-05 2.03E-04 5.00E-05 1.52E-05 5.23E-05 7.19E-05 6.94E-05 
  L 7.04E-07 2.73E-06 1.33E-05 2.23E-05 3.53E-05 4.00E-05 4.17E-05 3.69E-05 
  N 1.11E-05 3.76E-05 1.30E-04 6.22E-05 2.72E-05 4.66E-06 1.01E-05 1.33E-05 
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𝑨𝟎𝑳 0.1106 X 6.37E-04 2.13E-03 1.42E-02 2.61E-03 2.76E-03 4.67E-03 9.77E-04 1.42E-03 
  L 1.72E-02 5.26E-02 1.94E-01 2.84E-01 2.72E-01 2.41E-01 2.02E-01 1.64E-01 
  N 3.64E-04 1.13E-03 8.70E-03 3.41E-03 4.95E-04 7.69E-04 2.24E-03 2.37E-03 

𝑬𝒂𝑳 13.8844 X 7.59E-06 3.89E-05 2.15E-04 3.40E-05 2.58E-05 5.75E-05 6.47E-05 9.33E-07 
  L 6.07E-05 1.80E-04 6.59E-04 1.02E-03 9.73E-04 8.69E-04 7.34E-04 5.84E-04 
  N 4.21E-06 2.17E-05 1.35E-04 5.82E-06 8.17E-06 1.18E-05 1.99E-05 1.40E-05 

𝑩𝟎𝑳 0.02194 X 1.02E-02 2.01E-03 7.70E-02 4.94E-03 1.86E-03 2.35E-02 7.53E-03 4.59E-03 
  L 2.42E-02 7.62E-02 2.73E-01 4.21E-01 4.00E-01 3.60E-01 3.01E-01 2.47E-01 
  N 5.75E-03 1.49E-03 4.46E-02 6.73E-04 2.14E-03 1.06E-02 2.23E-03 8.27E-04 

𝑬𝒃𝑳 2.2478 X 1.53E-06 3.51E-04 6.27E-04 4.05E-06 3.10E-05 1.23E-04 2.12E-05 1.01E-04 
  L 2.03E-05 9.56E-06 8.52E-05 2.99E-04 3.00E-04 2.24E-04 1.98E-04 1.90E-04 
  N 2.35E-06 2.00E-04 3.80E-04 4.44E-05 2.27E-05 1.06E-04 5.76E-05 1.36E-05 

𝑲𝒊𝑳𝑵 0.5996 X 6.23E-04 3.10E-04 3.13E-03 1.65E-03 2.51E-04 5.66E-04 1.42E-03 1.30E-03 
  L 9.68E-05 4.46E-04 6.60E-04 9.30E-04 1.47E-03 1.52E-03 1.74E-03 1.76E-03 
  N 3.52E-04 2.28E-04 1.94E-03 1.59E-03 5.81E-04 3.69E-04 1.56E-04 1.74E-04 

𝒎𝟏 0.0001 X 3.69E-01 8.03E+00 3.10E+01 9.37E+00 2.33E+00 1.16E+01 1.05E+01 7.74E+00 
  L 1.80E-02 1.11E+00 3.87E+00 4.37E+00 9.20E+00 1.38E+01 1.54E+01 1.62E+01 
  N 1.97E-01 4.56E+00 2.06E+01 1.11E+01 4.83E+00 6.62E-01 8.13E-01 2.46E-01 

𝒎𝟐 0.00061 X 1.93E-01 3.72E-01 1.89E+01 5.20E+01 7.09E+01 8.71E+01 9.87E+01 1.09E+02 
  L 3.12E-02 2.68E-02 2.64E+00 8.93E+00 1.34E+01 1.77E+01 2.11E+01 2.42E+01 
  N 1.29E+00 4.07E+00 8.16E+00 1.38E+01 1.48E+01 1.53E+01 1.64E+01 1.61E+01 
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Appendix B: Upper and lower bounds of the estimated parameters 

used in section 3.3 parameters estimation problem 

 

Table B.1 Upper and lower bounds of the estimated parameters 

Parameters Lower bounds Upper bounds Parameters Lower bounds Upper bounds 

𝝁𝒙𝒎𝒂𝒙 15 0.15 𝑨𝟎𝑿 0.4 0.6 

𝑲𝑿𝑵 0.1 0.3 𝑬𝒂𝑿 5 9 

𝑲𝒊𝑿𝑵 0.1 0.8 𝑩𝟎𝑿 0.1 0.2 

𝑲𝑿𝑰 1 8 𝑬𝒃𝑿 5 51 

𝑲𝒊𝑿𝑰 9 154 𝑨𝟎𝑳 0.1 0.2 

𝒒𝑳𝒎𝒂𝒙 1 0.5 𝑬𝒂𝑳 8 14 

𝑲𝑳𝑵 0.2 0.5 𝑩𝟎𝑳 0.002 0.005 

𝑲𝑳𝑰 15 6 𝑬𝒃𝑳 2 5 

𝑲𝒊𝑳𝑰 0.1 90 𝑲𝒊𝑳𝑵 0.4 0.5 

𝒀𝑿
𝑵⁄

 0.1 8 𝒎𝟏 0.0001 0.0002 

𝝈 1 0.8 𝒎𝟐 0.0001 0.0002 
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Chapter 6 

Conclusions and Future Work 

6.1. Conclusions 

Microalgae-based biofuel production has gained increasing attention as an alternative energy 

source due to its unique traits. However, the use of microalgal oil as an alternative feedstock for 

the production of biofuel has not yet been exploited commercially as the current price for its 

production is still too high compared to the fossil fuel diesel. The high cost of the growth media 

(carbon source and fertilizer requirements) and the high cultivation facility costs are responsible 

for approximately 60-75% of the total cost of microalgal biodiesel production. Despite the 

immense potential of microalgae in biotechnological applications, the metabolic productivities of 

microalgae need to be enhanced in order to enable economic viability of this technology. 

Nowadays, many tools are available for the improvement and control of the microalgae 

cultivation process such as genetic manipulations and mathematical modelling, with the aim to 

develop sustainable high productivity processes for commercial scale biofuel production. 

The chemical composition of microalgae is affected by a number of factors such as organic 

and/or inorganic carbon substrate, essential nutrient availability, temperature and light intensity. 

The interactions between microalgae and growth-limiting factors determine the cell composition. 

Abiotic stress such as carbon concentration, nutrients starvation like nitrogen (N) and factors 

such as light intensity and temperature stress have been employed to trigger accumulation of 

such lipid bodies. Although the effect of growth-limiting factors has been exploited 

experimentally, it needs to be integrated with computational studies in order to obtain high 

productivity algae systems with reasonable experimental effort, i.e. avoiding the costly 

excessive experimental trial and error. The kinetic modelling and simulation of microalgae 

growth considering the factors affecting positively or negatively the production of a product of 

interest provide the background for the successful optimization of the processes.  

As discussed in Chapter 1, the aim of this PhD study was to analyse the effect of growth media 

composition (nitrogen and acetate variations) and environmental factors on microalgae growth 
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with particular focus on lipid production. Ultimately, to develop a detailed kinetic model 

considering effect of growth-limiting factors in order to provide an understanding of microalgal 

growth and lipid production so that cultivation conditions can be optimized with a view of 

improving the sustainability and competitiveness of microalgal-based biofuels industry. 

In this regard, in Chapter 3, the effect of growth media composition with the variations of initial 

acetate and nitrogen concentrations was first analysed. It was found that the addition of organic 

carbon such as acetate increases biomass concentration until a certain concentration, while 

above this limit, excessive acetate concentrations began to inhibit the biomass growth. 

Additionally, the proportion of lipid accumulation within cell was found to be identical for all 

acetate treatments, and hence the difference in volumetric lipid concentration between the 

acetate treatments was almost entirely due to difference in biomass concentration. The 

experiments with the nitrogen concentration variations showed that under nitrogen starvation 

conditions substantial lipid induction can be observed.    

In Chapter 3, based on the experimental observations of growth media composition variations 

and existing literature, a semi-empirical model was developed taking into consideration the 

effect of three growth-limiting culture variables (C, N, I) so to precisely predict the dynamic 

behaviour of microalgal growth process operating in batch. The developed model was used in 

conjunction with in-house produced experimental data for the estimation of kinetic parameters. 

The model was then validated against a different set of data and used in an optimization study 

to compute optimal system operating conditions. It was found that a 30% increase in the lipid oil 

productivity can be achieved using 2.19 g L
-1

 acetate and 0.074 g L
-1

 N. The computed optimal 

results were validated experimentally. The lipid concentrations were measured 62.4 mg L
-1

 for 

the base case and 84.7 mg L
-1

 for the computed optimal conditions. 

The effect of the environmental factors (I and T variations) on biomass growth and lipid 

accumulation was also evaluated with seven different light intensities and temperatures. The 

light intensity variation treatment results suggest that the biomass concentration increases as 

the light intensity rises until a certain point where photoinhibition starts and consequently 

biomass concentration decreases. Similar observations were made for the temperature 

variation treatments where the cells responded to increases in temperature with increased 

exponential growth rates until reaching the optimum temperature for growth.  Increasing 
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temperature beyond this point led to sharp declines in biomass growth and lipid accumulation. 

The proportion of lipid production within the cells was found to be almost identical for all light 

intensity and temperature variation treatments, and thus the difference in volumetric lipid 

concentration between the light intensity and temperature variation treatments was almost 

entirely due to difference in biomass concentration. 

In order to take into account the positive or negative effect of environmental factors, the model 

developed in Chapter 3 was then expanded to cover the effect of light intensity and temperature 

variations. The biomass growth and lipid accumulation rates of the improved model were a 

function of four growth-limiting factors (carbon and nitrogen concentrations, light intensity and 

temperature). The model was validated and utilised in an optimisation study to determine the 

optimal light intensity and temperature for such a system. It was found that the lipid productivity 

can be increased by 50 % compared to a base case, and by 13 % compared to the previously 

optimal case. The computed optimal results were also validated experimentally. The lipid 

concentrations were measured 62.4 mg L
-1

 for the base case, 84.7 mg L
-1

 for the previously 

optimized conditions and 93.3 mg L
-1

 for the new computed optimal conditions. 

The applicability of the developed kinetic model to large-scale raceway open pond systems was 

then assessed. Experiments were carried out in 2 m
3
 with photoautotrophic growth of C. 

reinhardtii. As the microalgae strain uses available atmospheric CO2 to perform photosynthesis, 

the effect of carbon source on biomass growth and lipid production was removed from the 

model. The updated open pond model was a function of three growth-limiting factors: light 

intensity, temperature and nitrogen. The kinetic parameters of the model were re-estimated and 

the model was validated against a different set of data. The resulting model was able to predict 

the biomass growth and lipid accumulation with high precision. 

Due to the complexity of microalgal growth processes and the uncertainty in biological 

knowledge, e.g. intracellular interactions of metabolites, and kinetic parameters, only few 

studies have attempted to develop kinetic models for microalgal growth. However, not all of 

these studies considered the antagonistic and simultaneous effect of both growth media 

composition and environmental factors. For instance, Xin et al. (2010) considered the effect of 

phosphorus and nitrogen, He et al. (2012) inorganic carbon source and light intensity, Yoo et al. 

(2014) carbon substrate, nitrogen and light intensity and Solimeno et al. (2015) inorganic 
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carbon, nitrogen, light intensity and temperature. All these kinetic models were capable of 

predicting the dynamics of microalgal biomass growth. However, kinetic models should not only 

be able to reflect the dynamics of carbon assimilation towards biomass growth, but also the 

carbon partitioning between the internal carbohydrate and lipid pools.  

Most of the available kinetic models have been constructed with the exclusive goal of precisely 

predicting microalgal biomass growth in response to different nutrient and carbon substrate 

concentrations and/or environmental factors, which allows establishing suitable cultivation 

conditions for optimised biomass production. Enhanced optimisation strategies for microalgae-

driven fuel plants could additionally be established by considering algal growth dynamics along 

with the simultaneous formation of lipids, as well as their response to extracellular or 

intracellular growth-limiting factors. Until now, we have found four different kinetic modelling 

frameworks that has considered the lipid accumulation and biomass as different state variables 

in order to take advantage of nutrient starvation and consequently resulting in higher lipid 

productivities (Packer et al., 2011, Mairet et al., 2011, Adesanya et al., 2014, Baroukh et al., 

2013). 

The kinetic model that was developed here considers four growth-limiting factors and also 

simulates biomass growth and lipid accumulation as two different state variables to take 

advantage of abiotic stresses. In contrast to the kinetic models available in literature, 

extensively described in Chapter 2, our models allow for the prediction of biomass and lipid 

productivities separately (as in Chapters 3 to 5).  

This does not only demonstrate the usefulness of computer-based optimisation studies for the 

enhancement of microalgal-based lipid production, but also the effectiveness of carefully 

constructed kinetic models for the efficient operation and control of microalgae culture 

processes. Such predictive kinetic modelling frameworks can be exploited for the robust design, 

control and optimization of microalgal oil accumulation as well as for process scale-up, which 

can help to reduce the overall production costs and bring this important technology closer to 

commercialisation and industrialisation.   
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6.2. Future work 

The comprehensive kinetic modelling and simulation of the complex interactions between 

cellular components of microalgal cultivation processes are far from being completed at present. 

This thesis focuses on four growth-limiting factors (C, N, T, I) that could affect the cell 

composition. However, further studies are needed to reveal the relationship between cellular 

components with improved precision. 

As it has been explained briefly in Chapter 2, phosphorus starvation can also affect the 

production rate of cellular components. Experiments can be performed with different 

phosphorus concentrations to understand the effect of phosphorus on cell composition and 

depending on the change of production rate of product of interest, the effect of phosphorus can 

also be included in the model. 

The triple-substrate kinetic model used in Chapter 5 was a function nitrogen, light intensity and 

temperature. However, in outdoor microalgal cultivation processes, microalgae are exposed to 

available atmospheric CO2. Therefore, the dissolved CO2 concentration over the cultivation 

period can be monitored and the effect of carbon source can be included into the model as the 

one represented in Chapter 4. 

The kinetic model proposed in chapter 5 was designed for growth of microalgae in open ponds 

operating in batch cultures. The model can be utilized to optimize the process for maximal lipid 

accumulation with respect to nitrogen, light intensity and temperature. However, in outdoor 

cultivations the light intensity and temperature cannot be controlled. Therefore, the cultivation 

process can be transformed into fed-batch cultures and depending on the daily light intensity 

and temperature, the nitrogen concentration can optimized for optimized lipid and biomass 

productivity.    

Due to low available atmospheric CO2 concentration, the growth rate of microalgae in open 

ponds is low compared to lab-scale cultivation. Therefore, CO2 pumping can be provided into 

cultivation of microalgae in large-scale raceway open ponds to improve the growth rate of 

microalgae and the effect of CO2 pumping can be included in the kinetic model for better 

estimation of dynamics of the system. 
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Experiments with different microalgae strains under varying growth media compositions and 

environmental factors can be performed to check the validity of the developed models for other 

microalgae strains. Based on the experimental observations and process dynamics the model 

can be modified and utilized for other strains. 

C. reinhardtii was per-cultured under constant light intensity at 125 µmol m
-2

s
-1

 for the 

experiments. However, microalgae strains can acclimate due to variation in light spectra and 

their photosynthetic apparatus will be affected which will significantly change quantity and 

proportion of chlorophyll a and other major light absorbing accessory pigments. Therefore, the 

effect of different initial acclimation state can be further studied and included in the model for 

better predictions of the dynamics of microalgal biomass growth processes. 

Finally, in this Thesis, model-based optimization technique was utilized to optimize the process. 

In order to present the effectiveness of such optimization technique, different optimization 

techniques such as extremum seeking can be used and a comparison can be carried out 

between different techniques.   
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