9,410 research outputs found

    Photoelastic Stress Analysis

    Get PDF

    A compact targeted drug delivery mechanism for a next generation wireless capsule endoscope

    Get PDF
    This paper reports a novel medication release and delivery mechanism as part of a next generation wireless capsule endoscope (WCE) for targeted drug delivery. This subsystem occupies a volume of only 17.9mm3 for the purpose of delivering a 1 ml payload to a target site of interest in the small intestinal tract. An in-depth analysis of the method employed to release and deliver the medication is described and a series of experiments is presented which validates the drug delivery system. The results show that a variable pitch conical compression spring manufactured from stainless steel can deliver 0.59 N when it is fully compressed and that this would be sufficient force to deliver the onboard medication

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Ultra-violet lithography of thick photoresist for the applications in BioMEMS and micro optics

    Get PDF
    UV lithography of thick photoresist is widely used in microelectromechanical systems (MEMS) and micro-optoelectromechanical systems (MOEMS). SU-8 is a typical negative tone thick photoresist for micro systems, and can be used for both structural material and pattern transfer. This dissertation presents an effort to comprehensively study these important subjects. The first part, and the most fundamental part of this dissertation concentrated on the numerical analysis and experimental study of the wavelength dependent absorbance of SU-8 and the diffraction effects on the sidewall profiles of the microstructures made using UV lithography of SU-8. This study has laid the foundation for all the designs and analysis for the BioMEMS and Micro-optic components and systems using UV lithography of SU-8 in the following chapters of the dissertation. After a full discussion of UV lithography of SU-8, the applications of SU-8 in BioMEMS and micro optics were presented in the following areas: 1) design, analysis, and molding fabrication of biodegradable PLGA microstructures for implanted drug delivery application; 2) design, fabrication, and test of a novel three-dimensional micro mixer/reactor based on arrays of spatially impinging micro-jets; 3) design, analysis, fabrication, and test of a novel new type of truly three-dimensional hydro-focusing unit for flow cytometry applications based on SU-8; 4) Study on a new technology to fabricate out-of-plane pre-aligned microlens and microlens array, and the application of the microlens in a fiber bundle coupler. Finally, a new negative tone thick photoresist based on the composition of EPON resins 165 and 154 were introduced. The synthesis, physical properties, and UV-lithography properties of this new photoresist have been completed. The experimental results have proved it can be a better alternative to SU-8 and can be used in various MEMS and MOEMS applications. Most of the contents have been published or accepted for publications in technical journals or international conferences. Two US patent applications are pending and two more disclosures have been filed for the new technologies presented in this dissertation. There are obviously more work to be done in this promising area and these are presented in the section for future work

    Micro/Nano Manufacturing

    Get PDF
    Micro- and nano-scale manufacturing has been the subject of ever more research and industrial focus over the past 10 years. Traditional lithography-based technology forms the basis of micro-electro-mechanical systems (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro-scale dimensions and accuracies. Furthermore, these fundamentally different technology platforms are currently combined in order to exploit the strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via injection molding. Manufacturing processes at the micro-scale are the key-enabling technologies to bridge the gap between the nano- and the macro-worlds to increase the accuracy of micro/nano-precision production technologies, and to integrate different dimensional scales in mass-manufacturing processes. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments in micro- and nano-scale manufacturing, i.e., on novel process chains including process optimization, quality assurance approaches and metrology

    Design and Analysis of a Mechanical Driveline with Generator for an Atmospheric Energy Harvester

    Get PDF
    The advent of renewable energy as a primary power source for microelectronic devices has motivated research within the energy harvesting community over the past decade. Compact, self-contained, portable energy harvesters can be applied to wireless sensor networks, Internet of Things (IoT) smart appliances, and a multitude of standalone equipment; replacing batteries and improving the operational life of such systems. Atmospheric changes influenced by cyclical temporal variations offer an abundance of harvestable thermal energy. However, the low conversion efficiency of a common thermoelectric device does not tend to be practical for microcircuit operations. One solution may lie in a novel electromechanical power transformer integrated with a thermodynamic based phase change material to create a temperature/pressure energy harvester. The performance of the proposed harvester will be investigated using both numerical and experimental techniques to offer insight into its functionality and power generation capabilities. The atmospheric energy harvester consists of a ethyl chloride filled mechanical bellows attached to an end plate and constrained by a stiff spring and four guide rails that allow translational motion. The electromechanical power transformer consists of a compound gear train driven by the bellows end plate, a ratchet-controlled coil spring to store energy, and a DC micro generator. Nonlinear mathematical models have been developed for this multi-domain dynamic system using fundamental engineering principles. The initial analyses predicted 9.6 mW electric power generation over a 24 hour period for ±1°C temperature variations about a nominal 22°C temperature. Transfer functions were identified from the lumped parameter models and the transient behavior of the coupled thermal-electromechanical system has been studied. A prototype experimental system was fabricated and laboratory tested to study the overall performance and validate the mathematical models for the integrated energy harvester system. The experimental results agree with the numerical analyses in behavioral characteristics. Further, the power generation capacity of 30 mW for a representative electrical resistance load and emulated rack input which correspond to 50 cyclic bidirectional temperature variations (~175 hours of field operation) validated the simulation models. This research study provides insight into the challenges of designing an electromechanical power transformer to complement an atmospheric energy harvester system. The mathematical models estimated the behavior and performance of the integrated harvester system and establishes a foundation for future optimization studies. The opportunity to power microelectronic devices in the milliwatt range for burst electric operation or with the use of supercapacitors/batteries enables global remote operation of smart appliances. This system can assist in reducing/eliminating the need for batteries and improving the operational life of a variety of autonomous equipment. Future research areas have been identified to improve the overall system capabilities and implement the harvester device for real-world applications

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Compliant aerial manipulation.

    Get PDF
    The aerial manipulation is a research field which proposes the integration of robotic manipulators in aerial platforms, typically multirotors – widely known as “drones” – or autonomous helicopters. The development of this technology is motivated by the convenience to reduce the time, cost and risk associated to the execution of certain operations or tasks in high altitude areas or difficult access workspaces. Some illustrative application examples are the detection and insulation of leaks in pipe structures in chemical plants, repairing the corrosion in the blades of wind turbines, the maintenance of power lines, or the installation and retrieval of sensor devices in polluted areas. Although nowadays it is possible to find a wide variety of commercial multirotor platforms with payloads from a few gramps up to several kilograms, and flight times around thirty minutes, the development of an aerial manipulator is still a technological challenge due to the strong requirements relative to the design of the manipulator in terms of very low weight, low inertia, dexterity, mechanical robustness and control. The main contribution of this thesis is the design, development and experimental validation of several prototypes of lightweight (<2 kg) and compliant manipulators to be integrated in multirotor platforms, including human-size dual arm systems, compliant joint arms equipped with human-like finger modules for grasping, and long reach aerial manipulators. Since it is expected that the aerial manipulator is capable to execute inspection and maintenance tasks in a similar way a human operator would do, this thesis proposes a bioinspired design approach, trying to replicate the human arm in terms of size, kinematics, mass distribution, and compliance. This last feature is actually one of the key concepts developed and exploited in this work. Introducing a flexible element such as springs or elastomers between the servos and the links extends the capabilities of the manipulator, allowing the estimation and control of the torque/force, the detection of impacts and overloads, or the localization of obstacles by contact. It also improves safety and efficiency of the manipulator, especially during the operation on flight or in grabbing situations, where the impacts and contact forces may damage the manipulator or destabilize the aerial platform. Unlike most industrial manipulators, where force-torque control is possible at control rates above 1 kHz, the servo actuators typically employed in the development of aerial manipulators present important technological limitations: no torque feedback nor control, only position (and in some models, speed) references, low update rates (<100 Hz), and communication delays. However, these devices are still the best solution due to their high torque to weight ratio, low cost, compact design, and easy assembly and integration. In order to cope with these limitations, the compliant joint arms presented here estimate and control the wrenches from the deflection of the spring-lever transmission mechanism introduced in the joints, measured at joint level with encoders or potentiometers, or in the Cartesian space employing vision sensors. Note that in the developed prototypes, the maximum joint deflection is around 25 degrees, which corresponds to a deviation in the position of the end effector around 20 cm for a human-size arm. The capabilities and functionalities of the manipulators have been evaluated in fixed base test-bench firstly, and then in outdoor flight tests, integrating the arms in different commercial hexarotor platforms. Frequency characterization, position/force/impedance control, bimanual grasping, arm teleoperation, payload mass estimation, or contact-based obstacle localization are some of the experiments presented in this thesis that validate the developed prototypes.La manipulación aérea es un campo de investigación que propone la integración de manipuladores robóticos in plataformas aéreas, típicamente multirotores – comúnmente conocidos como “drones” – o helicópteros autónomos. El desarrollo de esta tecnología está motivada por la conveniencia de reducir el tiempo, coste y riesgo asociado a la ejecución de ciertas operaciones o tareas en áreas de gran altura o espacios de trabajo de difícil acceso. Algunos ejemplos ilustrativos de aplicaciones son la detección y aislamiento de fugas en estructura de tuberías en plantas químicas, la reparación de la corrosión en las palas de aerogeneradores, el mantenimiento de líneas eléctricas, o la instalación y recuperación de sensores en zonas contaminadas. Aunque hoy en día es posible encontrar una amplia variedad de plataformas multirotor comerciales con cargas de pago desde unos pocos gramos hasta varios kilogramos, y tiempo de vuelo entorno a treinta minutos, el desarrollo de los manipuladores aéreos es todavía un desafío tecnológico debido a los exigentes requisitos relativos al diseño del manipulador en términos de muy bajo peso, baja inercia, destreza, robustez mecánica y control. La contribución principal de esta tesis es el diseño, desarrollo y validación experimental de varios prototipos de manipuladores de bajo peso (<2 kg) con capacidad de acomodación (“compliant”) para su integración en plataformas aéreas multirotor, incluyendo sistemas bi-brazo de tamaño humano, brazos robóticos de articulaciones flexibles con dedos antropomórficos para agarre, y manipuladores aéreos de largo alcance. Puesto que se prevé que el manipulador aéreo sea capaz de ejecutar tareas de inspección y mantenimiento de forma similar a como lo haría un operador humano, esta tesis propone un enfoque de diseño bio-inspirado, tratando de replicar el brazo humano en cuanto a tamaño, cinemática, distribución de masas y flexibilidad. Esta característica es de hecho uno de los conceptos clave desarrollados y utilizados en este trabajo. Al introducir un elemento elástico como los muelles o elastómeros entre el los actuadores y los enlaces se aumenta las capacidades del manipulador, permitiendo la estimación y control de las fuerzas y pares, la detección de impactos y sobrecargas, o la localización de obstáculos por contacto. Además mejora la seguridad y eficiencia del manipulador, especialmente durante las operaciones en vuelo, donde los impactos y fuerzas de contacto pueden dañar el manipulador o desestabilizar la plataforma aérea. A diferencia de la mayoría de manipuladores industriales, donde el control de fuerzas y pares es posible a tasas por encima de 1 kHz, los servo motores típicamente utilizados en el desarrollo de manipuladores aéreos presentan importantes limitaciones tecnológicas: no hay realimentación ni control de torque, sólo admiten referencias de posición (o bien de velocidad), y presentan retrasos de comunicación. Sin embargo, estos dispositivos son todavía la mejor solución debido al alto ratio de torque a peso, por su bajo peso, diseño compacto y facilidad de ensamblado e integración. Para suplir estas limitaciones, los brazos robóticos flexibles presentados aquí permiten estimar y controlar las fuerzas a partir de la deflexión del mecanismo de muelle-palanca introducido en las articulaciones, medida a nivel articular mediante potenciómetros o codificadores, o en espacio Cartesiano mediante sensores de visión. Tómese como referencia que en los prototipos desarrollados la máxima deflexión articular es de unos 25 grados, lo que corresponde a una desviación de posición en torno a 20 cm en el efector final para un brazo de tamaño humano. Las capacidades y funcionalidades de estos manipuladores se han evaluado en base fija primero, y luego en vuelos en exteriores, integrando los brazos en diferentes plataformas hexartor comerciales. Caracterización frecuencial, control de posición/fuerza/impedancia, agarre bimanual, teleoperación de brazos, estimación de carga, o la localización de obstáculos mediante contacto son algunos de los experimentos presentados en esta tesis para validar los prototipos desarrollados por el auto

    Experimental Validation of Fly-Wheel Passive Launch and On-Orbit Vibration Isolation System by Using a Superelastic SMA Mesh Washer Isolator

    Get PDF
    On-board appendages with mechanical moving parts for satellites produce undesirable micro-jitters during their on-orbit operation. These micro-jitters may seriously affect the image quality from high-resolution observation satellites. A new application form of a passive vibration isolation system was proposed and investigated using a pseudoelastic SMA mesh washer. This system guarantees vibration isolation performance in a launch environment while effectively isolating the micro-disturbances from the on-orbit operation of jitter source. The main feature of the isolator proposed in this study is the use of a ring-type mesh washer as the main axis to support the micro-jitter source. This feature contrasts with conventional applications of the mesh washers where vibration damping is effective only in the thickness direction of the mesh washer. In this study, the basic characteristics of the SMA mesh washer isolator in each axis were measured in static tests. The effectiveness of the design for the new application form of the SMA mesh washer proposed in this study was demonstrated through both launch environment vibration test at qualification level and micro-jitter measurement test which corresponds to on-orbit condition
    corecore