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ABSTRACT 

The advent of renewable energy as a primary power source for microelectronic 

devices has motivated research within the energy harvesting community over the past 

decade. Compact, self-contained, portable energy harvesters can be applied to wireless 

sensor networks, Internet of Things (IoT) smart appliances, and a multitude of standalone 

equipment; replacing batteries and improving the operational life of such systems. 

Atmospheric changes influenced by cyclical temporal variations offer an abundance of 

harvestable thermal energy. However, the low conversion efficiency of a common 

thermoelectric device does not tend to be practical for microcircuit operations. One solution 

may lie in a novel electromechanical power transformer integrated with a thermodynamic 

based phase change material to create a temperature/pressure energy harvester. The 

performance of the proposed harvester will be investigated using both numerical and 

experimental techniques to offer insight into its functionality and power generation 

capabilities.   

The atmospheric energy harvester consists of a ethyl chloride filled mechanical 

bellows attached to an end plate and constrained by a stiff spring and four guide rails that 

allow translational motion. The electromechanical power transformer consists of a 

compound gear train driven by the bellows end plate, a ratchet-controlled coil spring to 

store energy, and a DC micro generator. Nonlinear mathematical models have been 

developed for this multi-domain dynamic system using fundamental engineering 

principles. The initial analyses predicted 9.6 mW electric power generation over a 24 hour 

period for ±1°C temperature variations about a nominal 22°C temperature. Transfer 
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functions were identified from the lumped parameter models and the transient behavior of 

the coupled thermal-electromechanical system has been studied. A prototype experimental 

system was fabricated and laboratory tested to study the overall performance and validate 

the mathematical models for the integrated energy harvester system. The experimental 

results agree with the numerical analyses in behavioral characteristics. Further, the power 

generation capacity of 30 mW for a representative electrical resistance load and emulated 

rack input which correspond to 50 cyclic bidirectional temperature variations (~175 hours 

of field operation) validated the simulation models.   

This research study provides insight into the challenges of designing an 

electromechanical power transformer to complement an atmospheric energy harvester 

system. The mathematical models estimated the behavior and performance of the 

integrated harvester system and establishes a foundation for future optimization studies. 

The opportunity to power microelectronic devices in the milliwatt range for burst electric 

operation or with the use of supercapacitors/batteries enables global remote operation of 

smart appliances. This system can assist in reducing/eliminating the need for batteries and 

improving the operational life of a variety of autonomous equipment. Future research areas 

have been identified to improve the overall system capabilities and implement the harvester 

device for real-world applications. 
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CHAPTER ONE 

BACKGROUND AND LITERATURE REVIEW 

Introduction 

The energy sector is an integral part of our everyday lives. World energy 

consumption is projected to rise 48% by 2040, which is majorly attributed to economic 

growth, rising population and developing infrastructures, transportation, and industrial 

demands [1]. A vast portion of the world energy demands are still met with nonrenewable 

energy sources such as fossil fuels, in spite of the growth in hydro, wind, solar and nuclear 

power. With rising environmental awareness on a global scale and concerns about energy 

security, implementation of stricter energy policies will likely reduce fossil fuel 

consumption by a considerable margin in the coming decades. International communities 

have agreed to develop dedicated green energy policies, provide better access to funding 

and higher cost-competitiveness for renewable energy technologies, as well as seek 

advancements in energy efficiency [2]. Therefore, to avoid energy shortfall while 

protecting the environment, the focus of the energy sector is shifting toward establishing 

renewable energy as the prominent source to satisfy customer energy demands.  

Renewable energy is obtained from natural sources including solar, thermal, wind, 

and hydro that are continually replenished. Renewable energy is typically unlimited, with 

minimal stress to the environment, but the power density may be lower than fossil fuels. 

Solar photovoltaics, wind turbines, and hydropower dominate the renewable energy section 

of the power sector, adding to the global renewable power capacity. The market projections 
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for the renewable energy sector, shown in Figure 1.1 indicate substantial growth in this 

sector in the coming decades. Renewable energy sources are an efficient and environment 

friendly alternate to fossils for mitigating global energy demands and it is important to 

foster growth and research in this field. 

Figure 1.1: World Renewable Energy Consumption (quadrillion British thermal units), 

World Net Electricity Power Generation by Energy Source (trillion kilo Watt hours) 

(Adapted from [1]) 

The development and wide spread adoption of low power microelectronics, 

wireless nodes, and autonomous systems in a variety of applications have spurred the 

growth of energy harvesting technologies as the most attractive power [3,4]. Energy 

harvesting is the process through which ambient energy is harnessed and converted into 

useable electric power. Commonly used energy harvesting technologies capture thermal, 

vibrational, optical, and dynamic energy, and convert them into electricity [5]. Energy 

harvester technologies fall under the renewable energy category and are predominantly 
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used for low power applications, which typically consist of micro electro-mechanical 

systems (MEMS) and mass produced electronics that are used in a wide spectrum of 

applications. The most restrictive element of microelectronics and devices implemented in 

remote applications are batteries, which impose high maintenance requirements and 

adversely affect the efficiency and operating lives of such equipment. Considering the 

several disadvantages associated with battery operated devices, energy harvesting 

technologies are increasingly replacing or supplementing batteries, catering to the power 

demands of microelectronics and smaller electrical devices [6]. Energy harvesters improve 

the power efficiencies of such devices, rendering them self-sufficient with reduced 

maintenance requirements. Energy storage is also an active research area in energy 

harvesting and is crucial to the development of devices using energy harvesters, to 

accommodate for storing any excess power that is generated and/or assist in the operation 

of certain energy harvesters that may not be capable of delivering sufficient power 

continuously. In general, research and development in energy harvesting technologies is 

crucial in its contribution to alleviate energy demands and environmental concerns. 

 

Literature Review 

 

To explore the current trends and technologies in energy harvesting with respect to 

low power applications, articles and previous studies are briefly reviewed in this section. 

There are several ambient energy sources available for energy harvesting. Major energy 

sources include solar, thermal, vibrational, dynamic, and hybrid energy.  
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Solar energy is currently utilized for both large scale applications and in 

microelectronic operation. There are two methods of utilizing solar energy—solar thermal 

generation (large scale) and photovoltaic energy harvesting (low power). Photovoltaic 

systems have proven to be very reliable energy harvesting technologies that are largely 

employed in microelectronics applications. In this type of harvesting the solar cells convert 

sunlight directly into electricity in accordance with the photovoltaic principle, with power 

densities typically ranging between 10 µW to 15 mW/cm3 [7]. Although it has been 

established as a major renewable energy contributor in the market, there has been constant 

progress in this field with respect to materials, cost-effectiveness, energy efficiencies, and 

technology over the last several decades [8-10]. On a global scale, solar energy is one of 

the most widely used renewable energy source, but has several limitations associated with 

it due to its dependencies on weather patterns, installation site and specific design factors 

(angle to sun, humidity, etc.), and associated energy storage capacity; and low conversion 

efficiencies, complex production methods, and limited life. 

Vibrational or electromechanical energy harvesters are mainly divided into 

piezoelectric, electrostatic and electromagnetic technologies. Piezoelectric harvesters 

generate electricity from mechanical stress to piezoelectric materials. Such harvesters are 

largely employed in a variety of microelectronics and there is active research in this field 

[11-14] due to its wide scope of applications including piezoelectric harvesting for Bio 

MEMS applications as shown by Ramsey and Clark [15] as well as wireless sensor nodes 

[16]. As piezoelectric harvesters mature as an attractive energy scavenging technology with 

the development of materials and designs [17-19], they incur several limitations including 
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low conversion efficiencies, limited operational frequencies, dependence on the input 

forces and orientation, extensive supplementary circuitry/storage and low power density in 

the range of microwatts across a smaller volume [20].     

Electrostatic harvesters operate on capacitive properties of dielectric materials. 

Mechanical vibration induces a structure deformation and is converted to electricity 

through the variation of capacitance. There are two main categories of electrostatic energy 

harvesters—electret-free and electret-based—where the main difference between the two 

types is the material and its response [21]. Advancements in MEMS technologies are used 

in enhancing the performance of electrostatic harvester systems.  Wang and Hansen [22] 

explored a variable gap MEMS electrostatic energy harvester with improved output at a 

broader frequency band. More recently, Tao et al. [23] proposed a performance 

improvement to electret-based harvesters using a sandwich-structured MEMS 

configuration. In comparison to piezoelectric and electromagnetic energy harvesters, 

electrostatic devices offer the advantages of lower costs and easier material accessibility. 

Electrostatic energy harvesters have several limitations such as low frequency bandwidth, 

material constraints, and integration, although their ability to withstand higher 

temperatures is an important advantage.     

Electromagnetic energy harvesters utilize the principles of magnetism to convert 

mechanical energy into electricity. Induced voltages in electromagnetic devices are -

impractical without supporting voltage amplifying circuitry [24].  A polymer beam 

structure attached to a PCB with multiple copper coils was developed by Yang et al. [25] 

and it was shown that such a harvester can be used over multiple vibrational frequencies 
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generating up to 3.2 µW of power. Gupta et al. [26] studied harvesting electromagnetic 

energy from stray AC power lines that could generate 1-2 mW of power with an efficient 

power conversion circuit. Due to the low power outputs and inefficient conversion of 

electromagnetic energy harvesters, a lot of development is still required to establish this 

technology as a dependable ambient energy scavenging device.   

 Thermal energy harvesters and thermoelectric devices are well established energy 

scavenging systems that are currently being implemented for a variety of applications 

ranging from simple consumer electronics to complex vehicle and industrial environments. 

Typical thermal energy harvesters utilize the Seebeck effect in which semiconductors act 

as the harvesting and power generation plant. Such harvesters are constrained largely by 

the requirements of large temperature gradients and exposed area, as well as complex 

design and production for practical uses [27]. Thermoelectric generators for large 

temperature gradients are widely implemented and there is active research to improve the 

conversion efficiency [28-30]. More recently there is also a lot of interest in the 

development of solar thermal energy coupled with photovoltaic thermoelectric generators 

[27] as well as pyroelectric generators in work similar to that done by Zhu et al. [31]. 

Thermal energy harvesters investigated for harvesting body heat and motion generate 

sufficient energy to operate wearable sensors, electronics, and medical equipment [32-34]. 

The major drawback of thermal energy harvesters is the low thermal to electric conversion 

efficiency irrespective of the operating principles. There are limited applications where 

such harvesters are practically utilized to scavenge natural or ambient temperature/pressure 

differences [35-38]. There is a lack of research in utilizing environmental 
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temperature/pressure variations from ambient energy and effectively converting them into 

usable electric power in spite of the potential for such devices.  

A summary of the power generation capacities of common energy harvesters is 

presented in Table 1.1, borrowing information from the comprehensive literature sources 

reviewed in this study. 

  

Energy Source Power Density/Performance 

Acoustic Noise 0.003 – 0.96 µW/cm3 

Ambient Light 0.1 – 100 W/cm2 

Ambient Pressure/Temperature 6 – 21  mJ 

Electromagnetic µW – 2 mW 

Electrostatic 90 pW – 25 mW 

Human Body 0.1 – 10 mW 

Piezoelectric 200 µW 

Radio Frequency 1 µW/cm2 

Solar 100 mW/cm2 

Thermal 60 µW/cm2 

 

Table 1.1: Performance of Energy Harvesters 
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Importance of Research 

 

The current global environmental concerns emphasize the need for 'green' energy 

technologies. Although a variety of harvesters (piezoelectric, thermoelectric, solar, etc.) 

are actively being used, the power generation capacities are considerably low for collecting 

and utilizing naturally occurring (or artificially generated) small environmental 

fluctuations. There are several disadvantages associated with current energy harvester 

technologies arising from material limitations, design constraints, operational ranges, and 

irregular source availability. Thermal energy may be considered an indefinitely available 

energy source given the daily heating and cooling cycle of the earth’s surface by the sun. 

This renders it as one of the most attractive options for energy harvesting. Therefore, it is 

important to alleviate the low conversion efficiencies of current temperature/pressure-

based harvester devices. Efficiently capturing and converting ambient temporal variations 

into useable energy has long been used in the Atmos clock, which is one of the earliest and 

most innovative practical applications of an ambient energy harvester. Borrowing from the 

operational concepts—vapor phase change pressure response and mechanical 

transmissions—from the Atmos clock, an electromechanical device integrated to a vapor 

based energy harvester has been innovated, studied, and tested for its functionality and 

power generation performance.     
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Research Goal and Hypothesis 

 

The fundamental goal of this research is to investigate the performance of an 

electromechanical power transformer unit attached to a Phase Change Material (PCM) 

based energy harvester to collect and convert small atmospheric variations (pressure and 

temperature) into useable electric power. Useable electric power was considered to be in 

the range of milliwatts for this study. Specific objectives of this study were to determine 

the design and development of the electromechanical assembly, establish mathematical 

models for the harvester device, and analyze the system behavior through dynamical 

simulations. Though this system has been developed targeted at implementing the proposed 

device to operate standalone microelectronics, this work is limited to development and 

analyses of the concept and establishing the electric power potential of the proposed device. 

The research hypothesis is that the proposed device can generate sufficient power to 

operate a microelectronic circuit or equivalent load.  

There are two main important aspects to note in this study. First, the ethyl chloride 

vapor filled bellows used as the energy harvester in this study is very capable of generating 

pressure outputs for very low ambient thermal changes sufficient enough to be captured 

and converted to useable electric power, given the very low power requirements of modern 

microelectronics. Although, for this research, ambient thermal fluctuations analogous to 

those expected in regions with high diurnal temperature variations have been used to 

investigate the power generation capacity of the harvester for a 24 hour harvesting period. 

Furthermore, the atmospheric pressure was assumed to be constant in this study and the 
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experimental prototypes have been scaled to accommodate testing in controlled laboratory 

environments to study the fundamental operation and power generation capabilities of the 

system. Therefore, the environment as well as the design variables are not necessarily 

optimal.   

 

Approach and Thesis Outline 

 

Numerical and experimental techniques have been used in this study to establish a 

basic understanding of the power transforming, harvester system. Borrowing inspiration 

from mechanical clock operation, mechanisms have been identified for the 

electromechanical power transformer unit to effectively utilize the bellows linear motion 

occurring from phase change of the ethyl chloride vapor in response to temperature 

differences. 

  Mathematical equations (ordinary differential equations and algebraic ideal gear 

relations) have been developed using classical dynamics and Laplace/continuous-time 

models have been used in simulation and analyses on Mathworks software 

MATLAB/Simulink. Transfer functions were developed from the dynamical equations and 

step response plots were studied to analyze the transient characteristics of the multi-domain 

system. 

A prototype of the power transformer unit was fabricated and scaled for easier 

benchtop experimental testing. Analogous actuation corresponding to the operating 

environment of the standalone system was identified and sensors were implemented to 
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record crucial parameters in tests. National Instruments equipment (NI SCB 68) and 

software (LabVIEW) were used for data control, data acquisition, and visualization.  The 

system was subject to multiple experimental cycles, experimental data was collected, and 

the performance of the system was studied.     

So far, Chapter 1 has provided an understanding of the background and motivations 

for this study, the goals and hypotheses for this research, and the approach used in solving 

the research problem. The subsequent sections of this thesis provides details involving the 

methods used in the study and test of the proposed harvester device.  

First, Chapter 2 discusses the development of the physical system and the 

associated mathematical models. Detailed discussions of the components in the 

electromechanical power transformer and three-dimensional Computer Aided Design (3D 

CAD) models are provided. Equivalent free body diagrams, operational schematics, and 

circuit diagrams are provided with detailed modeling of the dynamical system equations. 

With a defined set of design parameters, initial analysis results of the dynamical simulation 

are presented and the performance of the proposed harvester system is discussed. Based on 

the design and analysis, further investigations are proposed and the importance of the 

results of the research are discussed. 

The next step in the research was to develop an experimental system that can be 

tested and used to validate the numerical models. Chapter 3 discusses the development of 

the experimental subsystems for the device, focusing on a standalone electromechanical 

power transformer unit. A detailed test bench description used to study the experimental 
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prototype is provided including accompanying sensor circuitry, data acquisition, and 

control. 

Chapter 4 discusses control system designs for describing fundamental 

relationships among the multi-domain elements involving the harvester and corresponding 

transient behavioral analyses of the dynamic system. Energy flow in the system is also 

highlighted and brief explanations for the experimental systems and test bench are given. 

The experimental results from testing the standalone electromechanical unit is presented 

and the performance of the system is discussed. Finally, the potential of the overall system 

is considered with its limitations, and possible advances to the system are proposed.     

Chapter 5 concludes the study and its results. Recommendations for future work 

are suggested to automate the design as well as to improve the efficiency and application 

scope of the ambient energy harvester. 

The Appendix expands further on the detailed understanding of the approach, 

methods, software codes, and dynamical models used in the study. Descriptions of 

supporting equipment and supplementary information about the experimental system are 

provided. 
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CHAPTER TWO 

CONVERSION OF ATMOSPHERIC VARIATIONS INTO ELECTRIC POWER – 

DESIGN AND ANALYSIS OF AN ELECTRIC POWER GENERATOR SYSTEM 

 

Given its abundant availability, ambient thermal energy harvesting has the potential 

to power standalone microelectronic systems. The challenge in efficiently harvesting 

temperature and pressure variations is the low thermal to electric conversion ability of 

current harvesters. Most thermal harvesters require high temperature gradients. This paper 

presents the design, analysis, and implementation of an energy harvesting system that 

effectively harnesses naturally occurring temperature variations using ethyl chloride filled 

mechanical bellows. A mechanical drivetrain amplifies the bellows motion and a coil 

spring stores the potential energy. This energy is periodically released and converted into 

useable electric power by a DC generator. A series of mathematical models are developed 

and accompanying numerical analyses completed on the harvester system. For a low 

frequency sinusoidal temperature cycle of ±1°C about 22°C, 9.6 mW of electrical power 

was produced using a 1.5V micro DC generator for a 24 hour harvesting period. The power 

generation capacity of the proposed harvester is sufficient to indefinitely operate low power 

sensors and microelectronics in environments with small temperature gradients. 
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Introduction 

 

The process of harnessing or “capturing” energy from ambient sources that are 

natural or artificial, and converting it to useable electric power is referred to as energy 

harvesting. Strict environmental regulations and rising interest in power capability of 

electronic devices, wireless sensor networks and autonomous devices have created a rising 

market for energy harvesting technologies. Currently, mass manufactured energy 

harvesting devices are targeted to run a range of low-power and mid-power electronic 

equipment. Energy harvesting allows implementation of self-sustaining, portable smart 

devices that have increased life and minimal maintenance requirements [39]. These energy 

harvesters can facilitate the use of smart computers, low power sensors [40] and LED 

lighting systems in remote regions throughout the world with minimal battery storage 

requirements. Ideally energy harvesters are compact, miniature systems that can be 

integrated into devices without significant structure or space requirements. Advanced 

material technologies, micro-manufacturing and three dimensional (3D) printing have 

enabled the development of micro components that satisfy functional requirements, at 

lower costs. Energy storage techniques have also received considerable attention in 

offering dense power capacities for uninterrupted power when coupled with energy 

harvesting systems.  

Commonly used piezoelectric, electrostatic and electromagnetic harvesting devices 

have found applications in low-power personal devices. Similarly, ambient temperature 

variations can be harvested for electric power generation but at a lower frequency 
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consistent with natural cyclical behaviors. Thermal energy harvesters have the advantage 

of power scalability but the disadvantage of space requirements. Typical thermoelectric 

harvesters operate on the Seebeck effect and produce very small voltages [41]. Some 

thermoelectric harvesters studied for low-power autonomous electronics were observed to 

be inefficient in converting large temperature gradients into useable electric power [42]. 

One approach to increase the power output is to use vapor pressure changes to harvest 

atmospheric energy (pressure and temperature). The proposed design incorporates an 

intermediate mechanical drivetrain linked to a coiled spring storage system between a 

thermal driven bellows and an electric generator. J. L. Reutter patented a mechanism for 

converting temperature and pressure variations of a vapor into mechanical motion in 1928, 

which was implemented in the Atmos Clock, and J. Lebet [43] reviewed the development 

of the atmospheric clock. In 1934, the power generation capacities and performance of the 

clock designs were also extensively discussed [44]. Ali et al. [37] used an ethyl-chloride 

filled mechanical bellows with a return spring to harness atmospheric temperature 

variations. The resulting mechanical motion of the bellows, due to the thermodynamic 

behavior of the vapor, is slow and irregular since it follows the thermal variations. It was 

unable to effectively couple energy directly into a micro generator [45]. Therefore, the 

proposed system is connected to an energy storage device which is then interfaced to the 

micro generator for electric power production. The proposed energy harvester is versatile 

in that the electric generator has been decoupled from the energy harvester, to allow 

accumulation of mechanical energy from multiple atmosphere cycles and then released for 

a controlled burst of electrical power production. The research problem is to identify if 
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small temperature and pressure gradients can be harvested and efficiently used to power 

microelectronics through a coupled electric power generator set.    

The renewable energy device consists of an ethyl chloride filled mechanical 

bellows which is linked through a mechanical drivetrain to store energy from low 

frequency temperature variations in a coil spring over a defined time period. The 

mechanical drivetrain serves two purposes. First, the translational motion of the bellow’s 

end plate is converted into rotational motion that is accommodated by the storage element 

(e.g., coil spring) [36]. Second, the gear ratios amplify the displacement to maximize the 

potential energy stored given the large bellow’s force. The release of the stored potential 

energy in the spring winding is controlled and transferred to a DC generator to provide 

sufficient voltage and current for battery charging. A ‘hold and release’ ratchet mechanism 

periodically engages and disengages to isolate and engage the DC generator circuit and the 

storage component. The design of the drivetrain, spring and generator (refer to Figure 2.1), 

may be optimized into a compact and portable unit with size scalability to accommodate 

bellows of varying sizes.  

The feasibility of attaching an electric generator with an accompanying mechanical 

driveline, to the atmospheric sensitive bellows will be evaluated through studies based on 

dynamical models in MATLAB/Simulink. The remainder of this section describes the 

energy harvester system in terms of the mechanical bellows, drivetrain and coil spring 

assembly, and electrical generator, provides a comprehensive lumped parameter system 

mathematical model, and representative numerical results which is followed by the 

conclusion.  
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Figure 2.1: Self-contained Drivetrain, Coil Spring and DC Generator Assembly Model 

with Input Rack Displacement 

 

 

 

Design of Energy Harvester 

 

The concept of using an ethyl chloride filled mechanical bellows to harvest 

atmospheric temperature and pressure variations with conversion to useable mechanical 

energy was first implemented in Atmos Clocks. Ethyl chloride is a stable saturated gas that 

has a very low boiling point of 12.3°C and shows high pressure variations in phase change 

[46]. Similar to the functioning of the Atmos movement, the bellows is a hermetically 

sealed canister, which allows the vapor to expand and contract for minute variations in 

temperature, as low as 1°C.  

To maximize the motion capture when the bellows expands and contracts, a 

mechanical drivetrain is designed to convert the oscillatory translational displacement into 
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rotational motion to wind a coil spring. The compound gear train design features a rack 

and dual pinion gears. The coil spring is wound in the same direction regardless of the 

direction of the rack motion through the utilization of unidirectional (one-way) bearings. 

Lighter materials were chosen for the drivetrain components to reduce its inertia. The 

storage element (coil spring) stiffness was estimated based on available system torque.     

A.  Mechanical Bellows 

A pressure difference between the surrounding atmosphere and the ethyl chloride 

due to external temperature and pressure variations produces changes in bellows’ length 

[47]. The bellows system (shown in Figure 2.2) was attached within two plates; the motion 

of one of which was fixed while the other (end plate) was free to travel along guide rails. 

An external spring was inserted to maintain an equilibrium position and restore the end 

plate to its initial location. The end plate moves back and forth allowing for the expansion 

and contraction of the vapor in the bellows, providing the mechanical equivalent of the 

work done by the vapor due to the temperature change. The reader is referred to Ali et al. 

[37] for further details regarding the bellows design.  
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Figure 2.2: Atmospheric Driven Ethyl Chloride Filled Mechanical Bellows with End 

Plate Displacement to Move Attached Rack [37] 

 

B. Drivetrain and Coil Spring Assembly 

The mechanical drivetrain consists of six spur gears on parallel shafts connected to 

a torsional spring that acts as the energy storage system and drives the power generation 

unit. The storage unit consists of the torsional spring wound through a shaft or key, linked 

to a barrel gear. Figure 2.3 depicts all of the components in the drivetrain and spring 

assembly. The rack, attached to the bellows’ end plate, is subject to the external force from 

the bellows contraction and expansion. This bidirectional translational motion is converted 

to rotational motion of the two pinion gears (G1 and G2). The gears, G1, G2 and G4 are 

mounted on unidirectional bearings such that the overall motion transmitted across the 

drivetrain is only in the direction of the spring winding. The meshing of gears G3 and G4 
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enable the transmission of unidirectional rotation at mainspring shaft for the change in 

direction of the bellows motion.   

When the rack moves in the direction of torque transmission on shaft A, gear G3 on 

shaft B is in free spin while gear G4 remains disengaged. In the other direction, the gears 

on shaft B are engaged while gear G1 is in free spin. Concurrently, gear G3 engages gear 

G4 in the same direction as before (i.e. direction of the spring winding). The unidirectional 

bearing on gear G4 now engages shaft A to transmit motion to wind the spring. The ‘hold 

and release’ mechanism (pawl) holds gear G7 of the mainspring while it is being wound, 

preventing release of the stored energy till the desired time. Once sufficient amount of 

potential energy is stored, the release mechanism allows the gear G7 to rotate. Gear G7 then 

meshes with gear G8, which is linked to the generator shaft, to produce electric power via 

the DC generator. An additional unidirectional bearing on gear G8 can be used to prevent 

the backlash during spring release. By design, the motion of the rack is restricted by a stiff 

linear spring, kr. The rotation of the spring coil is restricted by its torsional spring constant, 

ks. The release mechanism can be solenoid operated or controlled manually.  

C. Electrical Generator 

 The linear micro generator or load device [48] inserted into this system, is rigidly 

attached to the shaft secured to gear G8. As the spring unwinds, the barrel gear G7 meshes 

with gear G8. A cylindrical shaft coupling transmits the rotational motion of gear G8 to the 

DC generator, exciting the coil set inside the generator. This coil rotates between permanent 

magnets inducing an electromagnetic force, hence producing a current in the load circuit. 
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The critical design parameters contributing to the power output magnitude from the 

electrical subsystem are the gear ratio, R78, and the generator constants, kb and kt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Mechanical Gear Train, Mainspring, and Electric Generator Schematic 

 

 

 

Mathematical Model 

 

  

A lumped parameter mathematical model can be derived to describe the dynamics 

of the energy harvester system. The process may be divided into three sections – 

thermodynamics, mechanical dynamics and electrical dynamics.  
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A. Thermodynamics – Bellows’ Force 

The displacement of the bellows’ end plate, and hence the rack, depends on the 

total force output from the bellows due to the changing vapor pressures as a function of 

temperature variations. The thermodynamic behavior of the bellows was modeled based 

on the following assumptions:   

 

A1: Ambient temperature variation was modelled as a sinusoidal wave whose amplitude 

and frequency may be experimentally defined. 

A2: No ethyl chloride leakage occurs from the bellows. 

A3: Frictional effects are minimal and may be lumped with viscous damping effects. 

A4: External and bellows springs exhibit linear behavior. 

A5: No heat loss exists between the bellows and the atmosphere (i.e., temperature inside 

and outside the bellows is equal). 

A6: Ethyl chloride is subject to sufficient pressure at initial charge for both liquid and 

gas to exist in the bellows [35]. 

A7: No trapped air exists inside the bellows from the initial fluid charge. 

 

The partial vapor pressure, Pec, of the ethyl chloride in the bellows is defined using 

Riedel’s equation [49] as 

                                         Pec = 𝑒(𝐴+
𝐵

𝑇
+𝐶𝑙𝑛𝑇+𝐷𝑇𝐸)

                                        (2.1) 
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where A, B, C, D, E are Riedel’s constants and T is the ambient temperature. When the 

liquid in the bellows has completely vaporized, the ethyl chloride exhibits ideal gas 

behavior and the gas pressure can be given by 

                              Pec = 
𝑛𝑅𝑇

𝑉𝑏
                                           (2.2) 

The parameter n denotes the number of moles of the gas, R is the universal gas constant, T 

is the temperature of the gas, and Vb is the volume of the bellows gas.  

If the surface area of the end plate of the bellows is given by Ap, then the driving 

force, Fec, exerted on the bellows end plate due to the ethyl chloride pressure becomes 

𝐹𝑒𝑐 = 𝐴𝑝𝑃𝑒𝑐                                                              (2.3) 

The force, Fatm, due to the atmospheric pressure, Patm, acting on the bellows surface 

area is given by 

𝐹𝑎𝑡𝑚 = 𝐴𝑝𝑃𝑎𝑡𝑚                                                     (2.4)  

B. Translational Dynamics of Bellows End Plate 

The bellows end plate motion occurs as a result of the bellows length variation due 

to changes in the vapor pressure. This dynamic behavior is dependent on the system forces 

as shown in Figure 2.4. The bellows’ structure also acts as a linear spring that exerts a 

force, Fbs, which can be expressed as 

                                𝐹𝑏𝑠 = 𝑘𝑏𝑠𝑥                                              (2.5) 
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One end of the bellows is fixed while the end plate is attached to an external spring. 

During the expansion and contraction of the bellows, the force exerted by the external 

restoring spring, Fes, acting against the end plate motion is given by 

 

                               𝐹𝑒𝑠 = 𝑘𝑒𝑠𝑥                                                      (2.6) 

The moving end plate encounters viscous damping force, Fd, due to the translational 

motion along the four structural supports so that 

𝐹𝑑 = 𝑐
𝑑𝑥

𝑑𝑡
                                                       (2.7) 

An external force, Fr, is exerted on the bellows end plate and modelled as a very 

stiff spring that allows the rack to move independent of the plate displacement. The 

dynamics of the end plate can then be described as a second-order mass-damper-spring 

system which produces a displacement, x, such that 

      𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑐
𝑑𝑥

𝑑𝑡
+ (𝑘𝑒𝑠 + 𝑘𝑏𝑠)𝑥 = 𝐴𝑝(𝑃𝑒𝑐 − 𝑃𝑎𝑡𝑚) − 𝐹𝑟        (2.8) 

      A small change in the ambient temperature will result in a vapor pressure change 

which is converted into a mechanical force and subsequent displacement by the bellows. 
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Figure 2.4: Forces Acting on the Bellows End Plate and Translational Rack 

 

C. Mechanical Dynamics of the Rack and Gear Train 

The rack can be modelled as a second order mass spring damper system that accepts 

the bellow force as the input while amplifying the resulting motion. The dynamic equations 

may be derived based on the following assumptions: 

 

A8: No mechanical losses occur at the interface between the rack and bellows end 

plate.  

A9: Drivetrain transmission losses are negligible. 

A10: Individual gears are ideal. 
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A11: Unidirectional bearings have zero slip and no transmission losses when engaged 

or under free spin. 

A12: Moments of inertia and accelerations of the rotational elements are negligible.  

A13: Coiled mainspring exhibit linear behavior. 

A14: Sign of rotational displacement and velocity are positive in bellows expansion and 

negative in contraction. 

 

The rack force, Fr, considers the stiffness of the connecting interface, kr, and the 

displacement difference between the rack and the bellows such that 

𝐹𝑟 =  𝑘𝑟(𝑥 − 𝑥𝑟)                              (2.9) 

Similarly, the viscous damping force, Fc, due to the motion of the rack within the machined 

groove in the plate can be expressed using the damping coefficient of the rack, cr, and rack 

speed such that 

𝐹𝑐 = 𝑐𝑟
𝑑𝑥𝑟

𝑑𝑡
                                            (2.10) 

Let the variable FGT denote the force acting on the rack due to the gear train. Therefore, 

using (2.9) and (2.10), the mechanical dynamics of the rack becomes 

𝑚𝑟
𝑑2𝑥𝑟

𝑑𝑡2 + 𝑐𝑟
𝑑𝑥𝑟

𝑑𝑡
+ 𝑘𝑟𝑥𝑟 + 𝐹𝐺𝑇 = 𝑘𝑟𝑥                     (2.11)   

The translational rack motion triggers the rotational displacement of the drivetrain 

elements. The angular displacement and torque of gears G1 and G2 are functions of the gear 

radii, rj, and rack displacement, xr. The rotational velocities and displacements of the pinion 

gears, ωj and θj, can be written as 
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               𝜔𝑗 =
1

𝑟𝑗
(

𝑑𝑥𝑟

𝑑𝑡
), 𝜃𝑗 = (

𝑥𝑟

𝑟𝑗
);  j=1, 2                               (2.12) 

 

          The force acting on the rack due to the gear train, FGT, may be expressed in terms of 

the gear torque, τj, and gear radius as 

                     FGT = {
  

τ1

r1
 ,

dxr

dt
≥ 0

 
τ2

r2
 ,

dxr

dt
< 0

                                               (2.13) 

 

    The algebraic drivetrain kinematics can be explicitly described by the gear ratio, Ri, 

which relates the angular velocities, gear radii, number of teeth, Ni, and torques as 

    𝑅𝑖 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜃𝑖𝑛

𝜃𝑜𝑢𝑡
=

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
=

𝑁𝑜𝑢𝑡

𝑁𝑖𝑛
=

𝜏𝑜𝑢𝑡

𝜏𝑖𝑛
                         (2.14)    

where in and out denote the generic input and output gears. 

         For the system drivetrain, the gear ratios involve different set of gears that transmit 

torques for the positive and negative motions of the rack. The two different paths through 

which the torque is transmitted, reflecting the expansion and contraction of the bellows, 

are shown below in Figure 2.5. 
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Figure 2.5: Elements of the Drive Train with Bellows Expansion and Contraction 

Pathways 

 

Bellows Expansion Mode ( 
𝑑𝑥𝑟
𝑑𝑡

 ≥ 0) 

             When the rack moves in the positive direction, Gear G1 transmits torque while 

Gear G2 is in free spin due to the placement and functionality of the one way bearings. The 

rack and pinion relationship driving the gear train can be expressed using (2.12) as 

                𝜔1 =
1

𝑟1
(

𝑑𝑥𝑟

𝑑𝑡
), 𝜃1 = (

𝑥𝑟

𝑟1
)                                  (2.15) 

where r1 is the radius of Gear 1. The unidirectional bearings on shaft A (refer to Figure 3) 

ensure that the torque transmission and rotational displacement of Gear 5 occurs in one 

direction, regardless of the direction of the rack motion. Gear G5 meshes with gear G6 on 

shaft C, which winds the torsional mainspring. Gear G4 remains disengaged during this 

motion due to the internal bearing (the unidirectional bearings allow motion transmission 

or free spin only when actuation is directly provided).  
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Gears 1, 4 and 5 are on the same shaft. Since the inertia and damping of all 

rotational elements are assumed to be negligible, the angular velocities and transmitted 

torques are similar, respectively, for a given axle or 

𝜔1 = 𝜔5 ; 𝜏1 =  𝜏5                                               (2.16)                                                   

             The input torque to the spring, τ6, and the amount the spring is wound, θ6, at Gear 

6 may be defined using the relationship between Gears 5 and 6 as 

                  𝑅56 =
𝑟6

𝑟5
=

𝑁6

𝑁5
=

𝜏6

𝜏5
=

𝜔5

𝜔6
                                         (2.17) 

             Using (2.16) and (2.17), the drivetrain relation between the rack input at gear G1 

and the angular displacement of gear G6, which determines the spring input becomes 

𝑅56 =
𝜏6

𝜏5
=

𝜏6

𝜏1
=

𝜔5

𝜔6
=

𝜔1

𝜔6
                                (2.18) 

Similarly, the rotational displacement of gear G6, θ6, can be written using (2.15) as 

𝜃6 =
1

𝑅56
𝜃1; 𝜃6 =

1

𝑟1𝑅56
𝑥𝑟                              (2.19) 

            The input torque to the mainspring, τ6, can be expressed using (2.18) as 

𝜏6 =  𝑅56𝜏1                                                     (2.20) 

Therefore, the force acting on the rack due to the gear train in the positive direction of the 

bellows motion becomes 

𝐹𝐺𝑇 =
1

𝑟1𝑅56
𝜏6; 

𝑑𝑥𝑟

𝑑𝑡
 ≥ 0                                (2.21) 
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Bellows Contraction Mode ( 
𝑑𝑥𝑟
𝑑𝑡

< 0) 

               In the negative direction of rack motion, gear G1 free spins on the shaft via the 

one way bearings. Gear G2 transmits power along shaft B and gear G3 meshes with gear 

G4 on shaft A. Torque is transmitted through Gears 2-6 to effectively continue winding the 

mainspring. The rotational displacement of gear G2 can be expressed using (2.12) as  

                𝜔2 =
1

𝑟2
(

𝑑𝑥𝑟

𝑑𝑡
), 𝜃2 = (

𝑥𝑟

𝑟2
)                                 (2.22) 

          The gears G2 and G3 are on the same shaft and therefore their torques and angular 

velocities may be given by 

𝜔2 = 𝜔3 ; 𝜏2 =  𝜏3                                              (2.23)                                                

From (2.14), the torque, τ4, of gear G4 in the negative direction of rack motion can be 

written in terms of the gear ratio, R34, as 

𝑅34 =
𝑟4

𝑟3
=

𝑁4

𝑁3
=

𝜏4

𝜏3
=

𝜔3

𝜔4
                                       (2.24) 

             Using the relationships in (2.16), (2.18) and (2.23), the gear ratio, R34, can be 

rewritten as 

𝑅56 =
𝜔3

𝜔4
=

𝜔2

𝜔5
=

1

𝑅56

𝜔2

𝜔6
                                 (2.25) 

           Therefore, the rotational displacement of gear G6, θ6, for a negative rack cycle 

can be expressed as 

𝜃6 =
1

𝑅34𝑅56
𝑥𝑟                                       (2.26) 
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        The unidirectional bearings on the shafts ensure that the torque is transmitted only 

in one direction, which implies that the rotational displacement at gear G6 is always in the 

direction of winding the spring as long as the ratchet is fixed. Using (2.19), (2.26) can be 

rewritten in terms of rack displacement as 

𝜃6 =
1

𝑟2𝑅34𝑅56
|𝑥𝑟|                                   (2.27) 

            The torque acting on the rack due to the gear train in the direction of negative rack 

motion is given by 

𝜏2 =  
1

𝑅34𝑅56
𝜏6                                              (2.28) 

        For contraction of the bellows, the drivetrain force acting on the rack due to the 

gear train becomes 

𝐹𝐺𝑇 =
−1

𝑟1𝑅34𝑅56
𝜏6; 

𝑑𝑥𝑟

𝑑𝑡
 < 0                          (2.29) 

General Case for Bellows Motion 

        The generalized equations governing the dynamics for the spring rotational input, 

θ6, and gear train force acting on the rack, FGT, can be summarized as 

            𝜃6 = {
   

1

𝑟1𝑅56
𝑥𝑟         ,

𝑑𝑥𝑟

𝑑𝑡
≥ 0

 
1

𝑟2𝑅34𝑅56
|𝑥𝑟|  ,

𝑑𝑥𝑟

𝑑𝑡
< 0

                                      (2.30) 

         

        𝐹𝐺𝑇 = {
   

1

𝑟1𝑅56
𝜏6      ,

𝑑𝑥𝑟

𝑑𝑡
≥ 0

 
−1

𝑟2𝑅34𝑅56
𝜏6  ,

𝑑𝑥𝑟

𝑑𝑡
< 0

                                     (2.31) 
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D. Spring Torque and Potential Energy 

        The translational displacement of the rack engages the drivetrain elements which 

produces a torque at the mainspring coil. The coil winding stores this torque as potential 

energy which is dependent on the displacement of this coil from an initial position. The 

spring torque can be generally expressed in terms of the spring rate, ks, and the rotational 

displacement at its input on shaft C or the rack displacement as 

𝜏6 = 𝑘𝑠𝜗6 =
𝑘𝑠

𝑟1𝑅∗𝑅56
|𝑥𝑟| ;  𝑅∗= {

   1      ,
𝑑𝑥𝑟

𝑑𝑡
≥ 0

 𝑅34  ,
𝑑𝑥𝑟

𝑑𝑡
< 0

                  (2.32) 

           This torque can be used to calculate the force acting on the rack through the gear 

train as 

𝐹𝐺𝑇 = 𝑠𝑔𝑛 (
𝑑𝑥𝑟

𝑑𝑡
)

𝑘𝑠

(𝑅∗𝑟1𝑅56)2
𝑥𝑟                                     (2.33) 

In most cases, the gear ratio, R34, can be taken as unity so that the R* term becomes one.  

         Lastly, the potential energy stored in the spring, Es, can now be expressed as 

                      𝐸𝑠 =
1

2
𝑘𝑠𝜃6

2                                                     (2.34) 

Pre-compression effects for the mainspring are not considered in this model. It is also 

assumed that the mainspring is wound completely and then released for all power 

generation cycles. 

E. Coiled Spring Release to Drive DC Generator 

         The spring dynamics at release are governed by the rotational displacement and 

torques related to the meshing of the gears, G7 and G8, as shown in Figure 2.3. If the spring 
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is wound and released at each power generation cycle, then the state of the ratchet 

mechanism may be defined by 

𝑟𝑎𝑡𝑐ℎ𝑒𝑡 = { 

 
𝑒𝑛𝑔𝑎𝑔𝑒; (𝜃6 −  𝜃7) <  𝜃𝑚𝑎𝑥 , ∀ 𝜔8 > 0 

𝑟𝑒𝑙𝑒𝑎𝑠𝑒; (𝜃6 −  𝜃7) ≥  𝜃𝑚𝑎𝑥 , 𝜔8 = 0    
                        (2.35) 

where 𝜔8 is the angular velocity of the generator shaft, and θmax is the maximum mainspring 

displacement.  

       The mainspring drive torque released to the generator shaft, τ7, is dependent on the 

spring constant, ks, and the difference between the rotational displacement of the barrel, θ7, 

and mainspring input shaft displacement, θ6, so that 

𝜏7 = {

 
            0           ; (𝜃6 − 𝜃7) <  𝜃𝑚𝑎𝑥  , ∀ 𝜔8 > 0 

 (𝜃6 − 𝜃7)𝑘𝑠 ; (𝜃6 − 𝜃7)  ≥ 𝜃𝑚𝑎𝑥  , 𝜔8 = 0    
                  (2.36) 

      The barrel gear, G7, meshes with gear G8 and the corresponding gear ratio, R78, is 

given by 

𝑅78 =
𝑟8

𝑟7
=

𝑁8

𝑁7
=

𝜏8

𝜏7
=

𝜔7

𝜔8
                                (2.37) 

Thus, the available torque, τ8, to drive the generator becomes 

    𝜏8 = 𝑅78𝜏7                                                     (2.38) 

F. DC Generator Dynamics 

              The DC generator input is supplied by the stored mainspring potential energy as 

shown in Figure 2.6. The generator’s mechanical dynamics is described using the 

equivalent inertia, Je, the equivalent viscous damping of the generator, ce, the torque, τ8, 

and the generator load torque, τG, such that 
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𝐽𝑒
𝑑2𝜃8

𝑑𝑡2 + 𝑐𝑒
𝑑𝜃8

𝑑𝑡
+ 𝜏𝐺 = 𝜏8                                                                    (2.39) 

The generator torque, τG, may be expressed as a function of the armature current, ia, and 

motor torque constant, kt, as 

    𝜏𝐺 = 𝑘𝑡𝑖𝑎                                                      (2.40) 

           The electrical behavior of the DC generator is affected by the inductance, La, total 

resistance, RG, and generator voltage constant, kb. The resulting equation is given by 

𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
+ 𝑅𝑎𝑖𝑎 + 𝑉𝐿 = 𝑘𝑏

𝑑𝜃8

𝑑𝑡
                                           (2.41) 

where VL is the voltage produced across the load. The generator’s the load resistance, RL, 

could ideally be made equal to the internal resistance or armature resistance of the 

generator, Ra, to obtain maximum power, or  

𝑅𝐿 = 𝑅𝑎                                                       (2.42) 

        The voltage measured across the load, VL, is given in terms of the current, ia, and 

the load resistance, RL, as 

𝑉𝐿 = 𝑅𝐿𝑖𝑎                                                      (2.43) 

         Finally, the power output from the generator depends on the current, ia, and the 

voltage, VL, so that 

𝑃 = 𝑉𝐿𝑖𝑎                                                       (2.44) 



 35 

 

 

 

 

 

 

 

Figure 2.6: DC Generator Electric Circuit 

 

 

It is evident that the main factors influencing the electric power output are the 

circuit resistance and the inductance, Ra and La, the gear ratio, R78, the coiled spring 

stiffness, ks, and the maximum spring displacement, θmax.  

 

Numerical Results 

 

The energy harvester mathematical model was implemented in 

MATLAB/Simulink to investigate the system dynamic behavior. To drive the system, a 

sinusoidal temperature profile was applied to the bellows’ ethyl chloride vapor. The 

resulting pressure changes were converted into a force that actuates the bellows expansion 

and contraction. The bellows end plate provides a bidirectional displacement to the rack. 

This displacement is converted into unidirectional rotational motion and supplied to the 

shaft that winds the coiled mainspring. The ratchet, or pawl, was designed to operate as 

defined in (2.35). When the pawl is disengaged, the potential energy in the coil spring is 

   



 36 

transferred to the DC generator as kinetic energy, to produce electric power. The simulation 

model parameters are summarized in Table 2.1. 

The dynamic behavior of the mechanical driven generation system was investigated 

through computer simulations. The input temperature profile features a ±1°C amplitude 

variation every 3.5 hours about a constant temperature of 22°C as viewed in Figure 2.7(a). 

The system was operated for 24 hours before the release mechanism was triggered to 

generate electricity. In actual operation, atmospheric temperature and pressure variations 

based on the geographic location will dictate the winding period. It is important to note that 

the ethyl chloride vapor pressure and bellows output force follow the temperature curve.  

A minimum and maximum force of 297 N and 277 N are transferred to the bellows 

end plate for the given temperature variations and bellows’ end plate area. The end plate 

displacement transferred to the rack produces a maximum rack displacement of 3.25 cm as 

shown in Figure 2.7(b). There is a very minute gear train force acting on the rack which is 

attributed to the resistive back torque from the spring winding. The angular rotation of the 

coil spring, θ6, increases and holds for each cycle as shown in Figure 2.8(a). The discrete 

steps correspond to the peaks in the temperature cycle until the release mechanism is 

engaged. For this study, the spring is wound more for one rack direction than the other, 

since R34 is greater than 1. Also, the given spring is considered to be fully wound at 2 turns 

for this study. At release, the power generation occurs at a higher frequency (e.g., within a 

span of 5 seconds). The torque input to the generator, shown in Figure 2.8(b), is typical 

mainspring behavior. A maximum of 2 Nmm drive torque is increased 5 folds by the 

internal gear ratio, Rj, between the generator shaft and the armature. The maximum current 
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and voltage produced in the generator are 44 mA and 0.22 V per Figure 2.9(a), with a 5Ω 

resistance load. For this design, the maximum power generated was 9.6mW as shown in 

Figure 2.9(b). The storage element design, load resistance, and the release intervals largely 

dictate the amount of power that can be generated.   

The numerical model in the present study indicates that sufficient electric power 

can be generated through the DC micro generator to operate low power sensors and 

electronics over a 24 hour harvesting period, assuming temperature variation between 21°C 

< Tamb < 23°C. Further investigations performed using optimal model parameters predict 

similar power generation over a 24 hour period for regions experiencing high diurnal 

temperature variations. The proposed ambient thermal energy harvester generates greater 

power than typical TEGs, and also eliminates the need for secondary power amplification 

units and external voltage supplies which are typical to currently employed thermoelectric 

devices [50]. 
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Table 2.1: System Design Parameter Values and Units 

  

SYMBOL VALUE UNITS SYMBOL VALUE UNITS 

A 44.67 - N1, N2        48         - 

Ap 2e-3 m2 N3, N4 30.90 - 

B -4026 - N5 20 - 

c 18 Ns/m N6 33 - 

C -3.37 - N7 72 - 

cr 2 Ns/m N8 144 - 

ce 3e-5 Ns/ rad Patm 1.10e5 Pa 

D 2.27e-17 - r1, r2 26.50 mm 

Db 2.50e-2 M r3, r4 32.40 mm 

E 6 - r5 11 mm 

Je 8.00e-5 kgm2/rad r6 16.50 mm 

kb 6.00e-3 V/rpm r7 38 mm 

kbs 120 N/m r8 42.80 mm 

kes 500 N/m R 8.31 J/Kmol 

kr 1500 N/m R34 3 - 

ks 9.75e-5 Nm/rad R56 1.65 - 

kt 6.00e-3 Nm/A R78 2 - 

La 3.00e-5 H Ra 1 Ω 

 

 m 2.00e-1 kg Rj 5 - 

 

 mr 2.00e-2 kg RL 5 Ω 

 

 n 2.80e-1 mol θmax 13 rad 
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(a) 

 

 

 

 

 
(b) 

 

 

Figure 2.7: Dynamic Response of Energy Harvester – (a) Ambient Temperature and (b) 

Rack Displacement 
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(a) 

 

 

 

 

  
(b) 

 

 

Figure 2.8: Dynamic Response of Energy Harvester –  (a) Spring Shaft Rotational 

Displacement and (b) Generator Torque Input for ‘Hold’ Duration of 24 Hours 
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(a) 

 

 

 

 

 

 
(b) 

 

 

Figure 2.9: Dynamic Response of Energy Harvester – (a) Generated Current and 

Corresponding Generator Shaft Rotation, and (b) Generated Power  
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Summary 

 

The proposed energy harvester is a self-contained device that operates on 

atmospheric temperature and pressure variations to produce “clean” electric power. 

Although the amount of power is relatively small, it is sufficient to run miniature electronic 

circuits. The integration of the mechanical drivetrain, storage spring, and DC generator 

with the thermodynamic driven bellows has been mathematically modelled and 

numerically simulated to explore the functionality of the system. Such a green energy 

device can be deployed in remote regions where considerable diurnal temperature 

variations exist, in industrial processes that generate low frequency, low temperature 

cyclical waste heat, and waste heat from engine operation [51]. The vapor in the bellows 

can be chosen to suit the available temperature profile, and the entire system (e.g., bellows, 

drivetrain, spring, and generator) can be scaled to operate within the desired application in 

a sustainable manner. 
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CHAPTER THREE 

DEVELOPMENT OF THE EXPERIMENTAL SYSTEM AND TEST BENCH 

DESCRIPTION 

 

The experimental harvester system was developed in three stages such that the 

individual components—the bellows system and the drivetrain-spring-generator 

assembly—can be tested separately. In previous research, a prototype bellows system was 

tested and its development has been discussed [37]. This study focuses more on the 

mathematical modeling of the multiple harvester domains for analyzing the behavior of the 

device through simulations, as well as experimentally testing a prototype drivetrain-spring-

generator assembly to verify efficient utilization of the bellows bidirectional motion in 

generating electric power. This section specifically discusses the development of the 

prototype drivetrain-spring-generator assembly with the accompanying ratchet 

mechanism. It is important to note the experimental systems of the harvester device have 

been scaled as required to be able to observe the system behavior and for easier testing in 

the laboratory environment. The experimental designs are not optimal models. 

 

Introduction 

 

The drivetrain-spring-generator assembly design is crucial to the device 

development since it is responsible for the manipulation and storage of the harvested 

ambient thermal energy, and for electric power production. The design process begins with 
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identifying a storage unit to collect sufficient amount of the low frequency harvested 

thermal energy and produce electric power across the DC machine. The intermediate 

mechanical system is also required to capture the bidirectional behavior of the bellows 

linear motion and effectively scale the large force provided by the vapor to be stored as 

potential energy at the storage element. A mechanism is needed to govern or control the 

collection and release of stored energy from the storage unit. The DC micro generator 

needed to be snugly mounted to hold the frame stationary through the entire duration of 

burst electric power production and handle the high torque input. It is important that this 

assembly be robust and stable through multiple harvesting and power generation cycles, 

since it serves the primary purpose of the entire device. The key idea in this research was 

to create a mechanical intermediate system between the harvesting and power generation 

unit to improve the thermal-electric power conversion efficiency of the ambient thermal 

harvester. The solutions developed in addressing the design requirements, detailed 

discussion of the mechanical intermediate system design, and the issues handled during 

production are discussed below.  

 

Experimental System Development 

 

The first step in the development of the power transformer was to identify a robust 

storage element that can collect the available potential energy and provide considerable 

power generation at release. This element needed to be incorporated with the DC machine 

and provide rotational motion at higher frequencies to actuate the generator armature and 
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produce useable electric power. Borrowing inspiration from older spring-driven clock 

movements, a mainspring contained inside a barrel was used as the energy storage unit. A 

mainspring is a metallic torsional spring that can store potential energy when wound into 

a spiral. The mainspring used in this study was housed inside a cylindrical drum or barrel 

with a geared rim called the going barrel, and one end of the spring was attached with the 

inner wall of the barrel while the other end hooked onto a central axle to the drum called 

the arbor. The mainspring had very small dimensions in thickness and width, lower 

stiffness rates but larger lengths to allow multiple 360° winding motions. The spring was 

wound by turning the arbor while holding the going barrel stationary and releasing it would 

convert the potential energy contained in the spring to kinetic energy of the barrel gear. It 

is important to note here that the spring should be wound to maximum allowed by design, 

and not full capacity since this could cause the spring to break or be displaced from the 

drum due to very high tension.  

The potential energy contained in winding can then be transferred to the DC 

generator shaft by employing a spur gear (gear G8) to mesh with the going barrel gear. 

Typically employed in watches, the entire assembly is very compact and also an efficient 

power source over several cycles. The experimental steel mainspring with a brass going 

barrel was borrowed from a vintage timepiece and is shown in Figure 3.1. The steel arbor 

contained a small gear which has not been utilized in this experiment—the coupling 

between the drivetrain shaft and the arbor was designed to directly lock the arbor and the 

small gear frame with the shaft containing the end gear in the drivetrain. The coupling is 

shown in Figure 3.2.   
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Figure 3.1: Experimental Spring 

 

 

 

Figure 3.2: Spring Shaft Coupling 

 

The next step in developing the assembly was to identify a system to convert the 

linear motion of the bellows end plate into rotational motion for a proposed energy storage 

component (the mainspring). A simple rack and pinion mechanism has been employed for 

this purpose (Figure 3.3). Another mechanism was required to utilize the bidirectional 
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bellows end plate motion through the rack and pinion. A compound gear train transmission 

with a single stainless steel rack and two pinion gears mounted on parallel brass shafts 

housing secondary acetal spur gears, and strategically placed one-way bearings were 

implemented. The one-way bearings used in the system (Figure 3.4) are such that motion 

is transmitted to the shafts only for external actuation of the gear inside which they are 

placed. Depending on which way the bearing face was inserted on the shaft, it transmitted 

motion for one direction and allowed the gear to disengage from the shaft (free spin) in the 

opposite direction.  

 

 

 

 

 

 

Figure 3.3: Rack and Pinion 

 

 

 

Figure 3.4: One-Way Bearing Fitted Inside Gear Hub 
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For the experimental system, holes were drilled into the gear to accommodate the 

bearings. Grooves were cut into the shafts and snap rings were fixed into it to eliminate 

unwanted lateral motion of the gears (Figure 3.5). A third shaft with a corresponding spur 

gear coupled to the mainspring key and wound it. Detailed functionality of the gears and 

bearings, and the transmission pathways have been discussed exclusively in the harvester 

design (Chapter 2). The shaft assemblies containing the gears, bearings, and retaining rings 

(Figure 3.6) were fitted into mounted pillow blocks with bearings (Figure 3.7) that allowed 

for the shaft rotation and held in place.  

 

 

Figure 3.5: Grooved Shaft Assembly with One-Way Bearing inside Gear with Set Screw  

 

 

Figure 3.6: Retaining Ring 
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Figure 3.7: Mounted Pillow Blocks with Bearings 

 

The entire drivetrain was mounted onto a 0.25” thick aluminium plate with cuts and 

holes made to accommodate all components and fixtures (Figure 3.8). A cut was made into 

the plate and fitted with a machined plastic insert that snugly accommodated the rack to 

slide back and forth while meshing with the pinion gears (Figure 3.9). This plastic insert 

was glued onto the aluminium plate surface using strong adhesives and its main purpose 

was to eliminate unwanted lateral rack motion. Gears and couplings were locked with the 

shafts using 2-56 set screws as required, and 5-40 cap screws locked the pillow blocks onto 

the plate (Figure 3.10). 
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Figure 3.8: Experimental Plate 

 

 

Figure 3.9: Plastic Insert and Rack 

 

 

Figure 3.10: Cap Screw and Set Screw 
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Design of a control mechanism for the mainspring winding and release was also 

borrowed from the ingenuity of ancient watch making. A custom designed vertically 

locking, ratchet mechanism with a meshing face to match the barrel gear teeth was 

developed as shown in Figure 3.11. The ratchet was held in place by a spring wire under 

tension to lock the barrel gear and this simple mechanism (Figure 3.12) was found to easily 

tolerate the experimental mainspring tension during winding. With the spring 

characteristics known, the spring hold and release have been manually controlled for the 

experimental tests.  

 

 

 
 

Figure 3.11: Ratchet 
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Figure 3.12: Spring Wire to Hold Ratchet 

 

The experimental DC generator is a Swiss made linear micro generator rated at 1.5 

V as shown in Figure 3.13. Wires extended from the back of the generator and could be 

connected to an external load. From load tests, it was observed that there was an internal 

gear ratio of 4.7:1 associated with the DC generator between the shaft and the armature. 

The shaft of the generator had a secondary gear and was offset from the housing’s center. 

An aluminium coupling similar to that of the mainspring arbor was made to interface the 

gear shaft with the brass shaft (driven by gear G8) delivering power as shown in Figure 

3.14. An aluminium mount was custom designed and fabricated for holding the DC 

generator as shown in Figure 3.15.   
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Figure 3.13: DC Generator Set (borrowed from eBay) 

 

 

 

Figure 3.14: Gear Shaft Coupling 
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Figure 3.15: Generator Mount/Housing 

 

The target was to identify a compact lightweight drivetrain-spring-generator design 

that can be easily tested in a laboratory environment. To achieve the lightweight design 

criteria, all the experimental drivetrain components were precision micro-manufactured 

units made of stainless steel, aluminium, brass, and plastics. All component functionalities 

were simultaneously tested throughout the development process and the final design was 

developed over a few iterations. The developed prototype assembly can be tested easily 

across an allowable range (i.e., without unseating the rack from the plastic insert or 

disengaging from the pinion gears using a simulated bidirectional linear motion of the 

bellows).     

 

Test Bench Description 

 

For testing and validating the electromechanical subsystem of the harvester, the 

bellows end plate motion that linearly actuates the rack had to be experimentally actuated. 



 55 

The most important variables that needed to be captured are the rack displacement, the 

speed of the generator shaft, and the generated voltage output from the DC generator. Other 

variables could be easily calculated by measuring these values and extensive sensing 

circuitry could thus be avoided. 

The bellows end plate displacement was emulated using a linear actuation unit that 

consisted of a DC motor, cam, spring, and linear piston running on a standard power supply 

as shown in Figure 3.16. The rotational motion of the DC motor was converted into linear 

actuation through the cam and the spring restricted overshooting of the piston. An interface 

was now required to merge the rack to the piston to utilize the latter’s motion. An 

aluminium interface was designed to lock the rack edge on one end and fasten to the piston 

on the other end as shown in Figure 3.17. The entire electromechanical assembly had to be 

raised to effectively connect with the actuation unit and four cylindrical pillars made out 

of hollow aluminium rods were used near the four edges of the base plate. The pillars were 

screwed into place through the base plate and actuator base using hex screws as shown in 

Figure 3.18. The two systems, actuator and prototype, were successfully merged together 

for testing (Figure 3.19). 
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Figure 3.16: Linear Actuation Unit 

 

 

 

Figure 3.17: Rack-Piston Interface 
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Figure 3.18: Pillars to Raise Electromechanical Assembly 

 

 

 

Figure 3.19: Test System 
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 The next step in the test development was to identify sensors to measure the 

required variables. A linear potentiometer was used to measure the rack displacement 

(Figure 3.20). A linear encoder circuit was built using IR LEDs and an operational 

amplifier (Figure 3.21). The voltage from the generator can be directly measured through 

an analog channel on a data acquisition device or using a voltmeter. National Instruments 

NI SCB 68 data acquisition board (Figure 3.22) and LabVIEW programming interface 

were used to collect measurements as well as to power the sensors.  

 

 

Figure 3.20: Linear Potentiometer 

 

 

Figure 3.21: Encoder Circuit 
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Figure 3.22: Data Acquisition and Control Board – NI SCB 68 

 

Voltage outputs from the LVDT and encoder circuit had to be converted into 

displacement and speed values, and other parameters needed to be calculated for validation 

of the numerical models. Therefore, post processing of the experimental results was done, 

and National Instruments LabVIEW and Mathworks MATLAB softwares have been used. 

The resulting values and graphs were then compared with the numerical analyses. The 

experimental process is discussed further and the results are presented in the following 

chapter. 
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CHAPTER FOUR 

LINEAR MODEL AND TEST OF AN ATMOSPHERIC ENERGY HARVESTER 

SYSTEM 

 

Energy harvesters are steadily gaining popularity as a power source for 

microelectronic circuits, particularly in wireless sensor nodes and autonomous devices. 

Energy harvesting from small temperature and/or pressure variations, coupled with an 

appropriate energy storage unit, can generate sufficient electric power to operate low power 

electronics. Ongoing research in this area seeks to improve the power capacity and 

conversion efficiencies of such systems. In this project, a phase change vapor based 

atmospheric energy harvester with an electromechanical power transformer has been 

developed. An ethyl chloride fluid system converts the pressure generated, in response to 

nominal environmental changes, into usable electric power through a mechanical driveline-

spring unit and attached DC generator. Published numerical results have indicated 9.6 mW 

power generation capacity over a 24 hour period for a low frequency sinusoidal 

temperature input with ±1°C variation at standard pressure (refer to Chapter 2). A prototype 

electromechanical unit was fabricated and experimentally tested; 30 mW electric power 

for a resistance load was recorded for an emulated input corresponding to 50 bidirectional 

cyclic atmospheric variations. Linearized models were derived to help evaluate the 

system’s transient characteristics and these results agreed favorably with the experimental 

system behavior.  
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Introduction 

 

Energy harvester systems capture ambient energy in the form of sunlight, vibration, 

heat, and biological sources, to name a few, to generate electric power [16]. Renewable 

energy technologies have received consideration in global markets that tend to be 

motivated by rising environmental consciousness and implementation of dedicated green 

energy policies by governing entities [2]. Scavenging energy from ambient sources remains 

an attractive research field with application to wireless sensor nodes, internet of things, and 

connected autonomous devices [52]. Investigators are striving to improve the operational 

efficiency of harvesters, and onboard energy storage continues to be an important aspect 

in the designs [53]. One of the most abundant renewable energy source is atmospheric 

energy (e.g., pressure and temperature variations). Efficiently harvesting and converting 

environmental variations into electricity has tremendous potential, especially in standalone 

operation of devices located in isolated or inaccessible regions. Thermal energy harvesting 

applications range from the aerospace industry to low power consumer electronics [54].  

Most thermoelectric devices, typically operating on the Seebeck effect, require 

large temperature gradients (ΔT ≥ 50°C) and electronic circuitry to generate practical 

amounts of power (≥ 0.1mW) [11]. The development of thermoelectric generators featuring 

significant thermal gradients ((ΔT ≥ 25°C)) have been widely reported [20,55,56]. Yildiz 

and Coogler [57] discussed thermocouple arrays that can generate electric power in the 

range of microwatts for ambient temperatures between 15 – 27°C. An interesting study by 

Leonov [32] regarding the integration of thermophiles into textiles observed that body heat 
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can be harnessed to generate milliwatt power over several months if worn for 10 hours per 

day. Phase change materials may also be used for thermal energy harvesting as well to 

improve thermal storage units [58-60]. The main drawback of harnessing atmospheric 

energy tends to be the low conversion efficiencies of current harvesters for small thermal 

gradients [61]. Given the potential of thermal harvesters, a need exists to improve the 

thermal-electrical conversion efficiency to advance the power generation capacities of such 

devices for microcircuit operation [6].  

The combinations of ambient pressure changes with low temperature gradients may 

improve the performance of thermal harvesters, especially in chemical based systems. One 

of the most brilliant employment of volatile vapors in harnessing and utilizing atmospheric 

variations may be observed in the Atmos clock operation. Studies by Martt [46] show that 

the mechanical motion of the clock is entirely powered by atmospheric energy, with 

temperature changes as low as 1°C, through the use of vapor-filled mechanical bellows. 

Inspired by the Atmos clock’s efficient and self-sustained operation, the dynamic behavior 

of the clock mechanisms have been reported [38,43]. Our article explores the power 

generation capabilities of an atmospheric harvester by adapting the concepts of vapor phase 

change and driveline mechanisms with a generator set for energy harvesting applications. 

A system is proposed to utilize the pressure response of ethyl chloride vapor to surrounding 

pressure and temperature changes, and drive a compact electromechanical device that 

collects, stores, and converts the harnessed atmospheric energy (refer to Figure 4.1).  

In the proposed renewable energy system, pressurized ethyl chloride fills the 

mechanical bellows to harness atmospheric variations as mechanical motion. A compound 
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drivetrain amplifies and stores this displacement in a coil spring that may be controllably 

released to operate a DC generator and generate electric power. Using experimental data 

collected by S. Patel et al. [36], the pressurized ethyl chloride operating conditions for 

energy harvesting were assumed to lie between -1 to 30°C. A series of nonlinear 

mathematical models have been previously developed to describe the different domains 

involved in the harvester device–thermal, mechanical, and electrical. Initial numerical 

analyses predicted 9.6 mW power generation over a 24 hour harvesting period for 

temperature variations between 21°C and 23°C [62]. The electrical output should be 

sufficient for burst power operation of micro networks or capacitor energy storage [63]. 

 

 

Figure 4.1: Energy Harvester Device Overview 

 

 

 

The research goal is to establish a fundamental understanding of the atmospheric 

energy harvester system by studying the transient behavior as well as validating its 

performance through experimental testing. The use of individual transfer function 
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relationships between sequential domains allow a pragmatic understanding of the device. 

A micro-scale portable device (refer to Figure 4.2) targeting power availability for low 

power electronics especially in locations with limited access to large scale power grids, has 

been designed and fabricated. Experimental tests were performed on the prototype system 

to validate its operation. The remainder of the section is organized as follows. First, the 

transfer function models are derived for the energy harvester. Then, the experimental 

hardware is discussed followed by the numerical and experimental results. The conclusion 

summarizes the work done in this research and Appendix A provides a summary of the 

governing system equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Microscale Atmospheric Energy Harvester Device Based on Linear 

Displacement Input 
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Atmospheric Energy Harvester System 

 

The atmospheric energy harvester consists of an ethyl chloride fluid filled 

mechanical bellows compressed by an external spring. Pressure variations occurring due 

to the ethyl chloride phase change in response to temperature/pressure variations are 

harnessed as mechanical motion at an attached end plate (refer to Figure 4.2). This plate 

drives a compound gear train that winds a coil spring contained within a geared 

drum/barrel. The stored potential energy in the spring is then converted into kinetic energy 

through the barrel and mechanically transferred to a DC generator shaft to generate electric 

power. The transfer functions describing the three domains (i.e., thermal, mechanical, and 

electrical) were identified from the dynamic equations [62] with the imposition of four 

assumptions: 

 

A1: Ethyl chloride vapor pressure may be approximated using the ambient 

temperature, T, in a first order polynomial curve fitting of Riedel’s equation within 

the bellows’ operating range. 

A2: Bellows end plate displacement, x, and the rack displacement, xr, are essentially 

equivalent. 

A3: Rotational displacement of the coil spring is always positive (unidirectional) in the 

drivetrain dynamics due to functionality of the unidirectional bearings. 

A4:  Barrel gear displacement, θ7, at ratchet release is identical to the wound spring 

shaft behavior, θ6.   
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A. Ethyl-Chloride Filled Mechanical Bellows 

The ethyl chloride filled mechanical bellows is an assembly containing a 

hermetically sealed coiled tube attached to a moveable end plate and constrained with a 

stiff steel spring (refer to Figure 4.2). The ethyl chloride chemical compound used in this 

system has a low boiling point of 12.3°C and typically exists as a gas at standard room 

temperature and pressure [64]. Under the pressurized charge, the ethyl chloride liquid-

vapor equilibrium is broken for nominal ambient temperature/pressure variations (ΔT = 

~0.25°C) and considerable vapor pressure is generated in the bellows tube from the phase 

change. The expansion and contraction of the bellows tube results in the end plate 

translational motion. 

To describe the thermodynamic behavior of the ethyl chloride inside the bellows 

tube, its vapor pressure was modeled using Riedel’s equation [49]. First order 

approximations of the Riedel pressure-temperature relationship were used in the model 

linearization. For the bellows end plate behavior, the mechanical dynamics were obtained 

using the applied vapor pressure as the input. The amount of ethyl chloride in the bellows, 

the initial charge, and the bellows volume were not used explicitly in this model. Instead 

lumped parameter approximations were considered. Using the vapor thermodynamics and 

the end plate mechanical dynamics, the relationship between the ambient temperature, T, 

and the bellows end plate displacement, x, may be described by the transfer function 

 

                                     
𝑥(𝑠)

𝑇(𝑠)
=  (

1

𝑚𝑠2 + 𝑐𝑠 + (𝑘𝑒𝑠+𝑘𝑏𝑠)
) (𝑎1𝐴𝑝)                              (4.1) 
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where a1 is a mathematical constant from first order polynomial curve fit of Riedel’s vapor 

pressure model. The variables Ap, c, kbs, kes, and m are the bellows system design 

parameters.    

 

B. Mechanical Drivetrain and Coiled Spring 

A compound drivetrain consisting of a rack and pinion accompanied by multiple 

stages of spur gears transform the mechanical motion from the bellows end plate 

displacement (refer to Figure 4.2). The low amplitude and frequency of the atmospheric 

variations resulting in the drivetrain displacement cannot be directly coupled to a DC 

generator and thus, the drivetrain motion is stored as potential energy in the windings of a 

‘mainspring’ until a sufficient amount is available as required by the given application. The 

torsional coil spring is contained within a geared drum, or barrel, which is wound through 

a key (i.e., mechanically coupled to the drivetrain). One-way bearings are utilized in the 

drivetrain to produce unidirectional rotational motion at the coil spring regardless of the 

bellows end plate motion direction. A ratchet mechanism constrains the geared barrel 

during spring winding to collect the input mechanical energy and disengages it (which 

releases the spring) after a defined interval, thus providing kinetic energy to the generator 

shaft.  

The gear train and spring mechanical dynamics dictate the behavior of this 

mechanical power transformer which interfaces the harvester and the power producing DC 

generator circuit. The transfer of motion from the bellows end plate to the spring may be 
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described by the ratio between the coil spring displacement, θ6, and the bellows end plate 

displacement, x, so that 

 

                         
𝜃6(𝑠)

𝑥(𝑠)
= (

𝑚𝑟𝑠2+𝑐𝑟𝑠+𝑘𝑟

𝐽1𝑠2+𝑏1𝑠+ (
𝑘𝑠

𝑟1𝑅∗𝑅56
)
); 𝑅∗ =  {

   1     , 𝑥̇ ≥ 0
 𝑅34  , 𝑥̇ < 0

                    (4.2) 

 

where 𝑥̇ is the velocity of the rack/bellows end plate and represents the direction of the 

temperature change. The constants cr, kr, mr, R
* and R56 are the drivetrain design variables, 

while b1, J1 and ks are the spring design parameters.   

 

C. DC Generator 

A DC generator converts the mechanical energy from the coil spring into electrical 

energy. The coil in the generator is excited by the generator shaft rotation, produced by the 

geared barrel at ratchet release, which generates a current in the output load circuit. The 

generated electric power is dependent on the output spring displacement, the generator 

dynamics and the applied load. The transfer function may be modeled as the ratio between 

the generated current, ia, and the rotational displacement of the coil spring in the barrel, θ6, 

so that 

        

                                               
𝑖𝑎(𝑠)

𝜃6(𝑠)
= (

𝑘𝑏𝑅𝑠𝑎

𝑅78
) (

1

𝐿𝑎𝑠+𝑅̃
)                                          (4.3) 

 

where R78 is the gear ratio between the barrel gear and the generator shaft gear. The other 

model constants are the power generation electrical system design parameters, kb, La, Rsa, 

and 𝑅̃. The electrical circuit can also be represented in the generator dynamics if properly 
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defined. The power generated across the electrical load will be directly proportional to the 

current and the voltage in the load circuit.   

   

D. Overall System Model  

The overall system consists of the atmospheric harvester attached to the 

electromechanical assembly as shown in Figure 4.2. The flow of energy between the 

different domains in the system is illustrated in Figure 4.3. The energy flow process is 

initiated by atmospheric variations which are converted into mechanical effort by the vapor 

in the bellows tube. This force results in linear displacement of the bellows end plate and 

thus, motion of the rack gear. The drivetrain converts this linear movement into torque to 

wind the coil spring while the ratchet holds the barrel stationary. At release, the barrel gear 

is disengaged, releasing the coil spring, to provide rotational motion to the generator shaft 

and generate electric power.  

The transfer function between each individual domains and the corresponding 

energy flow have been used in describing the overall system behavior. To obtain a 

comprehensive relationship, several assumptions (A.1 – A.4) have been imposed to 

account for the disconnections between the harvesting system and the storage system as 

well as the power generation unit and the mechanical power transformer. The fundamental 

quantities describing the overall system operation are the atmospheric temperature, T, and 

the current (or power) generated in the output load circuit, ia.  The relationship between the 

ambient temperature as an input and the electric current generated may be determined using 

equations (4.1) through (4.3), so that  
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𝑖𝑎(𝑠)

𝑇(𝑠)
= (

𝑖𝑎(𝑠)

𝜃6(𝑠)
) (

𝜃6(𝑠)

𝑥(𝑠)
) (

𝑥(𝑠)

𝑇(𝑠)
) = (

𝑎1𝐴𝑝𝑘𝑏𝑅𝑠𝑎𝛽

𝑅78
) ∗  

                   (
𝑚𝑟𝑠2+𝑐𝑟𝑠+𝑘𝑟

(𝐿𝑎𝑠+𝑅̃)(𝑚𝑠2 + 𝑐𝑠 + (𝑘𝑒𝑠+𝑘𝑏𝑠))(𝐽1𝑠2+𝑏1𝑠+ 
𝑘𝑠

𝑟1𝑅∗𝑅56
)
)               (4.4) 

 

where gain, β, compensates for the system uncertainties and nonlinearities between the 

energy harvester and power generator. The amount of stored energy, the generated power, 

and the duration of the ratchet “hold and release” cycle can be manipulated by varying the 

various design parameters described in (4.4). Identification of optimal design parameters 

and automation of the ratchet operation would render an efficient, autonomous atmospheric 

harvester device running on clean energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Energy Flow Diagram for the Atmospheric Energy Harvester 

 

 

 

 



 71 

Benchtop Experimental System 

 

An experimental prototype system has been fabricated to validate the mathematical 

model and evaluate the proposed design capabilities. Benchtop testing was performed in a 

controlled laboratory environment to facilitate repeatability. As the drivetrain-spring-

generator assembly may function independently from the mechanical bellows end plate, 

these elements were assembled into a single electromechanical subassembly as shown in 

Figure 4.4. The two experimental configurations consist of the thermodynamically driven 

ethyl chloride filled mechanical bellows and the driveline with generator set; the latter will 

be the study’s primary focus. For the experimental tests, data acquisition was performed 

using National Instruments hardware/software with attached sensors and actuators.  

 

 

 

 

 

 

 

 

 

Figure 4.4: Experimental Prototype of the Drivetrain and Spring Assembly, and DC 

Generator Set Assembled onto a 15cmx15cmx0.6cm Aluminium Plate 
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A. Ethyl Chloride Filled Mechanical Bellows  

The mechanical bellows comprises the ethyl chloride fluid contained within a 

flexible tube structure which allows it to respond to atmospheric variations. The saturated 

vapor at room temperature can be considered the energy harvester’s prime driver. For the 

experiment, the bellows was fabricated using a helical coiled bronze tube, an aluminium 

end plate, and a steel restraining spring. Pressurized ethyl chloride was injected into the 

tube at room temperature to realize a liquid-vapor equilibrium so that nominal changes in 

the ambient temperature/pressure will result in end plate displacement. The bellows was 

placed inside an acrylic chamber to isolate it from the surrounding environment (refer to 

Figure 4.5). Thermoelectric actuators were introduced to simulate ambient temperature 

changes. To monitor the system behavior, temperature, pressure, and position sensors were 

integrated into the plant. The thermodynamic behavior of the bellows was tested for ±2°C 

temperature variations about 23°C. The bellows’ end plate moved up to 4 cm resulting in 

an available potential energy of 6 J [37].  

In this study, the tests focused on validating the electromechanical assembly and 

identifying the device’s power generation capacity. The bellows system was replaced with 

an electric motor assembly featuring an attached cam resulting in translational 

displacement to emulate the end plate behavior in moving the rack (i.e., driveline input). 

Further testing may be performed in similar operating environments with the 

electromechanical assembly coupled to the bellows assembly to recreate the real time 

operation of the final harvester device. 
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Figure 4.5: Ethyl Chloride Filled Mechanical Bellows Assembly (20cmx25cmx20cm) 

which Generates End Plate Displacement 

 

B. Drivetrain, Spring Assembly and DC Generator Set 

The drivetrain-spring-generator was designed to be a scalable subsystem that stores 

the harvested energy and converts it into useable electric power. As previously described, 

a rack and pinion mechanism transforms the end plate’s translational displacement into 

angular displacement. The strategic placement of one-way bearings allowed unidirectional 

winding of the spring due to both bellows’ expansion and contraction. A lightweight design 

was achieved using micro-manufactured acetal gears, precision brass shafts, stainless steel 

bearings with plastic locks, and a stainless steel rack. The shaft ends were held in place 

using mounted pillow blocks with bearings. Grooves were cut into the shaft and snap rings 

were fitted onto them to prevent unwanted axial movement of the gears/shafts.  

The torsional coil spring consisted of spring steel, housed inside a barrel. One 

spring end attaches to the driveline output shaft, θ6, and the other was fixed to the inner 

surface of the barrel. The mechanical coupling between the key and the winding shaft used 
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a pillow block with inserted bearing for load support. A ratchet mechanism was custom 

made to mesh with the external teeth of the barrel to lock its motion in the winding cycle 

and retract easily for release. A 1.5 V DC micro-generator with an associated internal gear 

ratio was mechanically coupled to the output shaft containing a spur gear that interfaced 

with the barrel gear. A mount was custom made for the DC generator to hold the housing 

stationary. All the components were attached to an aluminium plate. The system 

parameters are listed in Table 4.1. 

The DC motor driven cam created bidirectional motion that emulated the bellows 

end plate displacement supplied to the rack. A linear potentiometer monitored the rack 

motion while a rotational encoder identified the motor speed. The release ratchet was 

manually controlled using a thin steel spring. Attached current and voltage sensors 

measured the electrical performance so that the generated power may be calculated. 

Multiple cycles of the rack input were considered so that the spring was sufficiently wound 

before being released to generate electric power. 

 

C. Integrated Harvester Device 

The power generating harvester mechanism will be a fusion of the thermodynamic 

bellows and the mechanical driveline sub-assembly. The overall system requires linking 

the bellows end plate and the rack gear. For final testing, the bellows system including the 

hermetically sealed acrylic chamber may be attached to the rack gear without 

compromising the integrity of the chamber. The ratchet mechanism may be automatically 

controlled to lock/release when the coil spring is fully wound.    
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Table 4.1:  Design Parameter Values in the Numerical and Experimental study 

 

 

Numerical and Experimental Results 

 

The transfer function models previously developed to describe the atmospheric 

harvester system with the attached electromechanical power generator were used to 

characterize the transient behavior via computer simulations. A transfer function approach 

requires linear system descriptions. Thus, the thermal, mechanical, and electrical dynamics 

have been linearized through approximations and reduced operating spaces. To validate 

Symbol Value Units Symbol Value Units 

a1 5088.00 Pa/K L 1079.50 mm 

Ap 5.00e-03 m2 La 

La 

 

5.50e-05 H 

b 5.97 mm m  2.20e-01 kg 

b1 1.00e-03 Ns/rad mr 2.00e-02 kg 

c 18.00 Ns/m r1 26.50 mm 

cr 2.00 Ns/m R34 1.00 - 

E 2.07e05 MPa R56 3.75 - 

J1 1.00e-05 kgm/rad R78 4.70e-01 - 

kb 5.20e-03 Vs/rad Rsa 4.70 - 

kbs 2.50e02 Nm/rad RL 100.00 Ω 

kes 9.00e02 N/m 𝑅̃ 101.00 Ω 

Ω 

 

 

kr 195.00 Nm/rad t 9.00e-02 mm 

ks 6.95e-05 Nm/rad θmax 31.41 rad 

kt 2.50e-02 Vm/rad    



 76 

these simplified governing equations, numerical and experimental results will be 

compared. The prototype electromechanical assembly was tested for a prescribed rack 

motion and the experimental generated electrical power was evaluated. A series of 

MATLAB models were created and the simplified mathematical models validated using 

test results from the laboratory bench.  

The simulation response for the individual domains, as well as the overall harvester 

system, are presented in Figures 4.6 and 4.7. As shown in Figure 4.6(a), for a unit step 

change in the ambient temperature, T, the bellows end plate displacement, x, has a short 

peak before settling within 0.1 seconds. The rotational displacement of the spring, θ6, for 

a unit change in the rack displacement showed similar behavior per Figure 4.6(b) due to 

the system stiffness. The system time constant, τ, was 25 ms. In the power generation cycle, 

after the coil was wound 5 complete turns to θmax (corresponding to 10π rad rotations of 

the shaft/spring, θ6), initially a step change in the rotational spring displacement input to 

the generator shaft produced a damped current, ia, which settled to 16 mA within 3 µs. An 

impulse response was considered to better emulate the burst input to the generator—the 

current responded to an impulse temperature input by slowly rising to 16.1 mA and 

dissipating within 0.15 s as displayed in Figure 4.7(a). Finally, the overall system response 

to an impulse temperature input, after 50 temperature cycles to θmax, indicates that the 

power, P, slowly rises to a maximum of 35 mW and dissipates to zero, with some backlash 

as expected from the sudden spring release (refer to Figure 4.7(b)). In practice, the power 

is dissipated across the given electrical load in similar bursts although a capacitor can help 
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manage this scenario and backlash is minimal from sufficient mechanical damping. 

Consequently, the power decays to zero once the stored spring energy decreases to zero.   

   

 

 
(a) 

 

     
(b) 

 

 

Figure 4.6: Numerical results – (a) Bellows End Plate Response, x, to a Step 

Temperature, T, and (b) Spring Rotational Displacement, θ6, for a Step Rack Linear 

Displacement, x, after θmax. 
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(a) 

 

 

    
   (b) 

 

Figure 4.7: Numerical results – (a) Generated Current, ia, versus Impulse Temperature 

Input, T, after θmax, and (b) Power Generation Response, P, to an Impulse Temperature 

Input, T, after θmax. 

 

 

 

To complement the numerical results, representative laboratory testing was 

performed. The experimental results obtained from testing the electromechanical assembly 
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for the supplied rack displacement cycle are presented in Figure 4.8. The thermal cycling 

of the bellows gas produced the original displacement; however, this has been emulated 

with a DC motor cam system for convenience. For 50 rack displacement cycles (refer to 

Figure 4.8(a)) with a maximum displacement of ±2 cm, the potential energy stored in the 

mainspring was 135 mJ. The rack displacements correspond to over 175 hours or 7 days 

of actual operation based on a ±1.5°C variation per hour. The ratchet was manually 

released. The generator shaft speed, as measured by an encoder, peaked at 250 rad/s before 

quickly decaying with a total of 12 complete rotations. The maximum generated voltage, 

VL, and current, ia, across a resistance, RL, of 100 Ω was 1.88 V and 16 mA, respectively. 

Therefore, the maximum power, P, generated at the DC unit from releasing the fully wound 

coil spring was determined to be 30 mW per Figure 4.8(b) (roughly filtered and polynomial 

fitted). As expected, the generator shaft speed, the output voltage, the output current, and 

the generated power were all observed to follow similar profiles.  

 

(a)                 (b) 

 

Figure 4.8: Experimental Results – (a) Rack Input Profile, x; and (b) Generated Electric 

Power, P.  
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An analysis of the numerical and experimental results indicate that milliwatt 

electric power can be regularly generated from atmospheric temperature/pressure 

variations using the proposed energy harvester. The computer simulations initially 

produced a current of 30 mA rather than the laboratory result of 16 mA; a gain, β, was 

introduced to compensate for the model uncertainties. The 5 mW (16.78%) difference 

between the experimental and simulated power may be attributed to the model 

simplification and database parameters. 

The performance of energy harvesters in transforming small ambient changes into 

electric power may be further enhanced by optimizing the mechanical drive train, energy 

storage unit, and generator set. For the power generated by the proposed system, a resistor-

capacitor network may be introduced to meet continuous power requirements in 

microelectronics such as low power sensors. There appears to be an abundance of 

applications using small atmospheric changes that can be captured by the contained vapor, 

and the potential future for this device in atmospheric energy utilization and waste energy 

recovery is promising. 
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Summary 

 

A robust electromechanical system with a phase change material based atmospheric 

harvester has been developed and tested using both numerical and experimental techniques. 

Linear transfer functions are proposed and analyzed to establish a fundamental 

understanding of the system behavior. Experimental tests on a prototype electromechanical 

device predict milliwatt power generation capabilities. It is evident from the concurring 

experimental and simulation data that sufficient electrical energy is generated from 

atmospheric scavenging to be stored in supercapacitors or utilized in burst electric 

operation for microelectronics. The open challenges of the system are the low frequency 

of the harvesting process and the eventual wear of mechanical components. The system 

can be made autonomous by controlling the ratchet release with the rack interface with the 

bellows end plate, and implemented as a self-sufficient atmospheric energy scavenging, 

power generation device for standalone applications requiring low average power.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

Thermal energy harvesting technologies have the potential to charge and/or replace 

batteries in electronic devices as well as recover waste heat. Although thermal energy 

harvesters such as thermoelectrics are widely implemented in applications having large 

thermal gradients, research is still under way to improve the thermal-electrical conversion 

efficiencies of these systems. Currently, the application spectrum utilizing energy 

harvesters for small ambient thermal/pressure variations is narrow due to the limitations of 

thermally responsive materials, insufficient research on pressure responsive devices, and 

their impractical power generation capacities. Extensive design considerations, increased 

production costs, and complex power management solutions are other major drawbacks of 

thermal energy harvester devices. Unlike other energy harvesting sources, thermal energy 

is not limited by frequency bandwidths or source availability, it is indefinitely accessible. 

Therefore, improving such energy harvesting technologies can be considered essential for 

generating growth in the renewable energy industry.       

The performance of pressure/temperature responsive materials in energy harvesters 

offer an alternative to thermal energy systems. An example of such an approach is the 

Atmos Clock, created by Jaeger-LeCoutlre, where the clock operation is efficiently 

powered by a vapor-based harvester scavenging low scale environmental variations. 

Atmospheric energy harvesting, where both pressure and temperature variations are 

harnessed, can provide electricity for low power electronics in applications ranging from 
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simple sensor circuits to charging hand held microprocessor devices. This type of a 

harvester can play a pivotal role in improving the cost and efficiency of remote electronic 

devices and wireless networks. Research in atmospheric energy harvesting technologies, 

with a focus on energy storage, can lead to the development of portable systems that 

efficiently power a wide range of electronics using renewable sources. Pressure and 

temperature based energy harvester systems may be advantageous in terms of source 

availability, power generation capacities, scalability, and implementation flexibility.  

Avoiding extensive power-consuming circuitry in the operation of thermal/pressure 

harvester devices is crucial to improving the thermal-electrical conversion efficiency of 

such systems given the limited harvested energy by current materials. Therefore, an almost 

exclusively mechanical system has been proposed, developed, and studied to harness/store 

and convert atmospheric energy to usable electrical power. This system combines phase 

change material (PCM) responses, gear and driveline transmission mechanisms, and 

energy storage capacity of springs with a DC generator to achieve an efficient 

thermal/pressure-electrical conversion system. Initial stages of work previously done for 

this research elaborated on the design, development and test of the phase change chemical 

based atmospheric harvester system – an ethyl chloride filled mechanical bellows acted 

upon by a spring. Controlled testing of a prototype bellows system identified the 

proportional relationship between ambient temperature variations and the end plate linear 

displacement. One objective has been to minimize friction losses in the mechanical system. 
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Mathematical Models and Analyses 

 

Using previous studies on the atmospheric energy harvester and the proposed 

energy availability for power generation, an electromechanical assembly has been 

innovated to efficiently convert the bellows end plate linear displacement into usable 

electric power. Mathematical models were identified for the integrated system (i.e., bellows 

interfaced connected to the electromechanical assembly by a stiff interface) and transfer 

functions derived from the dynamical equations to study the behavior and performance of 

individual sub-systems as well as the overall system. The mathematical models render a 

fundamental understanding and design for the proposed harvester device. The power 

production observed is a temporary burst that can be supplied to a storage device such as a 

supercapacitor. Initial numerical simulations suggested a 9.6 mW power generation 

capacity across a 5 Ω resistance load, assuming temperature variations between 21°C < 

Tamb < 23°C over a 24 hour period. Further investigations into critical design parameters 

for the electromechanical system rendered a more optimal model with a power generation 

capacity of 95 mW for similar temperature cycles.  

The transient behavior of the domains in response to the corresponding step inputs 

using transfer functions were obvious given the modularity of the system. The thermal 

domain proved comparatively harder to model and linearizing the Riedel vapor pressure 

equation to simplify the pressure-temperature relationship was necessary. A first order 

polynomial approximation has been used in linearizing the Riedel’s vapor pressure 

equation to simplify the transfer function relationships. Although, a second order 
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polynomial approximation of the Riedel model is an appropriate fit and provides more 

accurate system responses as well as better behavioral insights and control over the design, 

it is not presented. The mathematical representation of the system can be improved by 

identifying more accurate thermal models for the phase change material other than the 

Riedel model and better understand the system capabilities. Pressure studies can be 

conducted by varying the operational environment to further our understanding of the ethyl 

chloride vapor in atmospheric energy harvesting. Similarly, investigations into the 

dynamical models associated with the coil spring behavior, pre-compression effects of the 

springs, and non-ideal gear interactions may provide better insights into the behavior of the 

electromechanical system.  

While exploring the dynamic relations for this system to obtain the transfer function 

models, the disconnection between the different domains in the system are evident. The 

energy harvesting bellows system and the electromechanical assembly, separated by the 

bellows end plate-rack interface, can function independent of one another. The driveline-

spring system is also decoupled from the electrical unit (DC generator) through the ratchet 

and allowing control over the duration of the energy harvesting process, thus providing a 

greater range for implementation. In retrospect, the electromechanical system can possibly 

be implemented as a power transformer for other energy harvesting applications producing 

a linear displacement output. The DC generator can also be replaced to directly operate a 

mechanical system at the spring output, generating greater standalone application scope for 

the atmospheric energy harvester with only the mechanical unit. 

 



 86 

Experimental Results and Discussion 

 

The next step in this study was to validate the developed mathematical models and 

the proposed design for the electromechanical assembly. A prototype system was 

developed and fabricated for benchtop testing in a laboratory environment. The design for 

the drivetrain-spring-generator assembly with the ratchet was established over few 

iterations in trying to efficiently fit all components into a compact 6’’ x 6’’ plate. The 

required spring stiffness was approximated from torque results predicted by the numerical 

simulations, and iterated over two values with the accompanying ratchet face also being 

modified to mesh with the corresponding barrel gear. The final experimental system used 

in laboratory testing consistently generated electric power in the milliwatt region. A 

generated electrical power of 30 mW across a 100 Ω resistance was recorded using a 

storage element (i.e., coil spring) of 6.95e-03 Nmm/rad stiffness for the emulated rack input 

corresponding to 50 cyclic atmospheric variations. Representative results from numerical 

simulations favorably agree with the experimental results and are suggestive of efficient 

conversion of small atmospheric variations into useable electric power. 

The most important advantages of this system include scalability, portability, and 

higher power generation capacity with the exclusion of extensive power management 

solutions. The limitations include source irregularity, potentially harmful nature of the 

vapor as well as its operating limit, and possible increase in production costs with marginal 

decrease in the system size. Since the ethyl chloride vapor in the bellows is very sensitive 

to atmospheric variations, such a harvester system can be implemented in any natural 
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environment to harness ambient energy within the operating range of the vapor. For 

applications in the upper limit of the milliwatt power spectrum, a more logical 

implementation would be use the system in regions with high diurnal temperature 

variations (e.g., southwestern regions of the United States) or in artificial environments 

with similar thermal/pressure variations.  

 

Recommendations 

 

Future research areas have been identified based on conceptual and intuitive 

understanding of the system derived from the study. Certain motivating suggestions are 

listed below for further investigations:  

1. Device Automation: An effective mechanism connecting the rack to the end 

plate with an “engage and disengage” synchronized with the power production 

cycle (i.e. ratchet) can be identified. The ratchet “hold and release” cycle should 

also be automated. This can be achieved using mechanical timing elements 

(e.g., cams, gears) connecting both the rack and the ratchet 

individually/together, or by using electronically operated actuators (e.g., 

solenoid operated fluid power systems, springs, etc.).  

2. Identification of Optimal System Designs: A smaller, entirely micro-

manufactured or 3D printed compact prototype device can be developed and 

studied. The vapor in the atmospheric energy harvester can be substituted. The 

mechanical energy transformer unit can be replaced with different transmission 
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and/or storage mechanisms to better suit application constraints and 

requirements.   

3. Practical Implementation: The performance of an automated system can be 

tested for different applications (e.g., co-generation, wireless sensors nodes, 

capacitive charging, etc.) varying the temperature input/operation environment 

and harvesting period. Specific electrical loads can be investigated as well as 

on site testing to gather exclusive data. 

4. Reduction of System Friction: The critical components (and their operation) 

comprising the harvester system is mostly mechanical in nature—bellows tube 

expansion and contraction, end plate linear displacement/sliding on the bellows 

assembly frame, gear train transmissions, coil spring winding and unwinding, 

shaft rotations on bearings, and so on. Since the harvesting process is 

considerably slow, mechanical energy losses are not very large and have not 

been considered in the designs. It would be interesting to study the product life 

cycle over several runs and observe the frictional effects, spring slacking, load 

capacities, and other mechanical behavioral characteristics in the integrated 

harvester system. To increase the operational life of the harvester system, the 

mechanical interactions can be augmented by using friction reducing 

substances (e.g., advanced plastics), as well as by replacing the steel spring coil 

and the brass bellows tube with better materials having similar properties.       

5. Optimization of the DC Generator: The DC micro generator in the experimental 

system is not optimal. The electrical and mechanical properties were not 
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approximated from design methods or numerical simulations, but chosen 

intuitively to suit the compact assembly for easier experimentation. The 

application voltage, current, and power requirements as well as the spring 

design and its estimated torque output can be used to reverse engineer the 

properties of the DC generator for optimal power conversion. A DC generator 

can be fabricated specifically to suit the operation environment and be 

constrained in terms of space, type, rpm, and power requirements to obtain a 

better suited harvester system for any application.      
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Appendix A 

Derivation of Transfer Functions for Harvester System 

 

A transfer function is a mathematical relationship that describes the response of a 

system’s output to a supplied input. There are three main transfer function relationships 

that describe the power generation renewable energy device: 1) the mechanical response 

driven by the thermal domain, 2) the storage element behavior depending on the 

mechanical motion during the ratchet ‘hold’ period, and 3) the electrical output produced 

from the storage element input at ratchet release.   

 

A-1. Transfer Function I 

The mechanical output from the bellows (end plate displacement, x) for input 

ambient temperature change (T – T0) or ΔT, where T0 and T are the reference temperature 

and final temperature, respectively, is given by the end plate dynamics in response to the 

vapor pressure change in the bellows. 

Riedel’s equation relating vapor pressure, Pec, and temperature, T, is given by 

                                               𝑃𝑒𝑐 = 𝑒(𝐴+
𝐵

𝑇
+𝐶𝑙𝑛𝑇+𝐷𝑇𝐸)

                                          (A.1) 

where A, B, C, D, E are Riedel’s equation ‘curve fit’ constants for ethyl chloride that have 

been empirically determined. The expression (A.1) can be rewritten using the mathematical 

property of Euler’s number ‘e’ as 

                                               𝑃𝑒𝑐 = 𝑒𝐴𝑒
(

𝐵

𝑇
+𝐶𝑙𝑛𝑇+𝐷𝑇𝐸)

                                     (A.2) 
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                                              𝑃𝑒𝑐 = µ𝑒
(

𝐵

𝑇
+𝐶𝑙𝑛𝑇+𝐷𝑇𝐸)

                                         (A.3) 

where µ= eA is a constant multiplier independent of temperature.  

Linearizing  𝑒(
𝐵

𝑇
+𝐶𝑙𝑛𝑇+𝐷𝑇𝐸)

  using Taylor series expansion about the reference 

temperature, T0, results in 

                        𝑒(
𝐵

𝑇
+𝐶𝑙𝑛𝑇+𝐷𝑇𝐸)

 = 𝑓1(𝑇0)  + 𝑓2(𝑇0)(𝑇 −  𝑇0) + H.O.T                 (A.4) 

where f1 and f2 are functions of reference temperature T0. The notation H.O.T refers to 

higher order terms. From empirical calculations, it was noticed that eliminating the higher 

order terms do not have a significant impact in the approximation of the results and are 

thus not considered in the final representation of the linearized form, so that    

                                            𝑃𝑒𝑐 = µ[𝑓1(𝑇0)  + 𝑓2(𝑇0)(𝛥𝑇)]                                     (A.5) 

A simpler reduction of Riedel’s equation (A.1) can be obtained by using a 

polynomial curve fit over the bellows typical operating temperature range. Assuming that 

the bellows operates between 280 K< T < 310K, the curve fitting was performed using first 

order and second order polynomials. 
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(a) First Order Polynomial: Pec = a1T + a2                                                              (A.6) 

 

Figure A-1: First Order Polynomial Curve Fitting 

(Coefficients a1 = 5088, a2 = -1.353e06) 

 

(b) Second Order Polynomial: Pec = a1T
2 + a2T + a3                                              (A.7)  

 

Figure A-2: Second Order Polynomial Curve Fitting 

(Coefficients a1 = 69.08, a2 = -3.569e04, a3 = 4.66e06) 
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  The second order approximation can be seen to be more consistent with the Riedel 

equation model over the bellows operating temperature range but the first order 

approximation has been used in the calculations for the purpose of obtaining a more 

simplified expression to establish the basic concepts for this novel system.  

It can be noted that the main difference in the results of the two linearization 

techniques is that Taylor Series expansion can provide insight into the vapor pressure 

behavior in terms the temperature variation, ΔT, while the polynomial curve fit provides a 

current temperature to pressure relationship. 

The bellows end plate dynamics can be given by 

                                   m
𝑑2𝑥

𝑑𝑡2
 + c

𝑑𝑥

𝑑𝑡
 + (kes + kbs)x =  Ap(Pec  - Patm)                       (A.8) 

Replacing the variable Pec in (A.2) with expression (A.6) results in 

               𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ (𝑘𝑒𝑠 + 𝑘𝑏𝑠)𝑥 = 𝐴𝑝𝑎1𝑇 + 𝐴𝑝(𝑎2 − 𝑃𝑎𝑡𝑚)                    (A.9) 

Assuming that the (𝑎2 − 𝑃𝑎𝑡𝑚) can be written as a delta function and its 

contribution can be neglected, the transfer function representation of the above 

expression(s) in the Laplace domain is given by 

                  (𝑚𝑠2 + 𝑐𝑠 + (𝑘𝑒𝑠 + 𝑘𝑏𝑠))𝑥(𝑠) = (𝑎1𝐴𝑝)𝑇(𝑠) + 1              (A.10) 

Contribution of the delta function is neglected and the above equation(s) can be written as 

the transfer function 

                                         
𝑥(𝑠)

𝑇(𝑠)
=  (

1

𝑚𝑠2 + 𝑐𝑠 + (𝑘𝑒𝑠+𝑘𝑏𝑠)
) (𝑎1𝐴𝑝)                       (A.11) 
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A-2. Transfer Function II 

The output coil spring rotational displacement, θ6, through the drivetrain due to the 

input bellows end plate displacement, x, may be described by using a transfer function. The 

rack displacement and the bellows end pate displacement are assumed to be equal (i.e., 

there is no mechanical loss between the bellows system and the drivetrain assembly). The 

drivetrain dynamics are given by 

                                                             𝑚𝑟
𝑑2𝑥

𝑑𝑡2
 +  𝑐𝑟

𝑑𝑥

𝑑𝑡
 =  𝐹𝐺𝑇                                                (A.12) 

                                 𝐹𝐺𝑇 =
𝑘𝑠

(𝑅∗𝑟1𝑅56)
𝜃6 ; 𝑅∗ =  {

   1     , 𝑥̇ ≥ 0
 𝑅34  , 𝑥̇ < 0

                               (A.13) 

Replacing FGT in (A.12) with (A.13) provides 

                                                       𝑚𝑟
𝑑2𝑥

𝑑𝑡2
 +  𝑐𝑟

𝑑𝑥

𝑑𝑡
=  

𝑘𝑠

𝑅∗𝑟1𝑅56
𝜃6                                     (A.14) 

The representation of (A.14) in the Laplace domain is given by 

                                    (𝑚𝑠2  +  𝑐𝑠)𝑥(𝑠) =  (
𝑘𝑠

𝑅∗𝑟1𝑅56
) 𝜃6(𝑠)                             (A.15) 

Rewriting (A.15) as a ratio of the input to the output (transfer function 

representation) yields 

                                           
𝜃6(𝑠)

𝑥(𝑠)
= (

𝑟1𝑅∗𝑅56

𝑘𝑠
) (𝑠(𝑚𝑟𝑠 + 𝑐𝑟))                               (A.16) 

It can be observed that the above system is anti-causal (poles < zeroes) and only 

possible as a mathematical description and not in the physical system. This effect is 

attributed to the assumption of ideal gears in the compound gear train that drives the spring, 

which is not true in the physical system. Therefore, the stiffness rate, kr, rotational inertia, 
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J1, and damping, b1, are re-introduced into the dynamic descriptions for the gear train and 

spring to simulate the response, so that 

                                𝑚𝑟
𝑑2𝑥

𝑑𝑡2
+ 𝑐𝑟

𝑑𝑥

𝑑𝑡
+ 𝑘𝑟𝑥 = 𝐽1

𝑑2𝜃6

𝑑𝑡2
+ 𝑏1

𝑑𝜃6

𝑑𝑡
+

𝑘𝑠

𝑅∗𝑟1𝑅56
𝜃6             (A.17) 

This approach allows the transfer function to be expressed as 

                                              
𝜃6(𝑠)

𝑥(𝑠)
= (

𝑚𝑟𝑠2+𝑐𝑟𝑠+𝑘𝑟

𝐽1𝑠2+𝑏1𝑠+ (
𝑘𝑠

𝑟1𝑅∗𝑅56
)
)                                   (A.18) 

Finally, the poles arising from the inertia, J1, and damping, b1, are assumed to be 

very small and the response of the system is generated as shown in Figure A.6. 

 

A-3. Transfer Function III 

The output current generated in the circuit due to the coil displacement has a 

corresponding transfer function based on the input shaft rotation, θ7, and the generator 

output current, ia.   

The generator electrical dynamics is given by  

                                             La
𝑑𝑖𝑎

𝑑𝑡
 + Raia + RLia = kb

𝑑𝜃8

𝑑𝑡
                                       (A.19) 

The generator shaft is related to the barrel gear through gear ratio, R78, and is given by 

                                                R78 = 
𝑁8

𝑁7
 = 

𝑟8

𝑟7
 = 

𝜏8

𝜏7
 = 

𝜔7

𝜔8
                                             (A.20) 

Therefore, the Laplace representation of (A.19) becomes 

                                         (𝐿𝑎𝑠 + 𝑅̃)𝑖𝑎(𝑠) =  (
𝑘𝑏

𝑅78
) 𝜃7(𝑠)                                 (A.21) 

 Rewriting the θ7 in terms of θ6  
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𝑖𝑎(𝑠)

𝜃6(𝑠)
= (

𝑘𝑏

𝑅78
) (

1

𝐿𝑎𝑠+𝑅̃
)                                           (A.22) 

 

A-4. Transfer Function IV 

The overall system transfer function can be obtained by replacing x(s) in terms of 

ia(s) in (A.11) and manipulating the expressions (A.18) and (A.22) such that a transfer 

function relationship between and generated current, ia, and temperature, T, can be obtained 

as 

                                                
𝑖𝑎(𝑠)

𝑇(𝑠)
= (

𝑖𝑎(𝑠)

𝜃6(𝑠)
) (

𝜃6(𝑠)

𝑥(𝑠)
) (

𝑥(𝑠)

𝑇(𝑠)
)                                 (A.23) 

Through mathematical substitutions and simplifications, it can be shown that A.23 

becomes 

  
𝑖𝑎(𝑠)

𝑇(𝑠)
= ((

𝑘𝑏

𝑅78
) (

1

𝐿𝑎𝑠+𝑅̃
)) (

𝑚𝑟𝑠2+𝑐𝑟𝑠+𝑘𝑟

𝐽1𝑠2+𝑏1𝑠+ (
𝑘𝑠

𝑟1𝑅∗𝑅56
)
) ((

1

𝑚𝑠2 + 𝑐𝑠 + (𝑘𝑒𝑠+𝑘𝑏𝑠)
) (𝑎1𝐴𝑝)) (A.24) 

 

       
𝑖𝑎(𝑠)

𝑇(𝑠)
= (

𝑎1𝐴𝑝𝑘𝑏

𝑅78
) (

𝑚𝑟𝑠2+𝑐𝑟𝑠+𝑘𝑟

(𝐿𝑎𝑠+𝑅̃)(𝑚𝑠2 + 𝑐𝑠 + (𝑘𝑒𝑠+𝑘𝑏𝑠))(𝐽1𝑠2+𝑏1𝑠+ 
𝑘𝑠

𝑟1𝑅∗𝑅56
)
)        (A.25) 

 

(NOTE: Generator internal gear ratio can be added as a gain to the electrical generator 

dynamics if applicable to the system as seen in Chapter 4)  
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Appendix B 

MATLAB Programs 

 

 The dynamic model was recreated using the Mathworks software package 

MATLAB/Simulink. Three algorithms were used throughout the development of the 

harvester system – 1) Generation of model parameter values for Simulink Model and result 

collection, manipulation, and data visualization, 2) Riedel vapor pressure model 

linearization using 1° and 2° polynomial curve fit, and 3) Transfer function response 

models and visualization.   

  

B-1. Simulation Code with Sample Parameter Values 

clear all 
  
% Atmospheric Pressure and Temperature 
  P_atm = 1.013e-5; % Pa 
  temp = 1;         % C 
  T_amb = 295.15;   % K 
  
% Ethyl Chloride Properties and Riedel's Equation Constants 
  n = 0.28;         % mol 
  R = 8.314;        % mol/K 
  A = 44.67;        % Riedel's Constant 
  B = -4026;        % Riedel's Constant 

  C = -3.371;       % Riedel's Constant 
  D = 2.273e-17;    % Riedel's Constant 
  E = 6;            % Riedel's Constant 
    
% Bellows Design Parameters 
  A_p = 0.002;    % End Plate Area (m) 
  V_b = 8e-05;    % Volume (m^3) 
  m = 0.2;        % End Plate Mass (Kg) 
  c = 18;         % End Plate Viscous Damping (Ns/m) 
  k_b = 120;      % Bellows Spring Rate (N/m) 
  k_es = 500;     % External Spring Stiffness (N/m) 
  
% Bellows End Plate and Rack Gear Interconnect Stiffness (N/m) 
  k_r = 1500;  
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% Rack and Drivetrain Parameters 
  m_r = 0.02;     % Mass of Rack Gear (Kg) 
  c_r = 2;        % Viscous Damping of Rack (Ns/m) 
  r_1 = 26.5e-03; % Radius of Pinions (m) 
  
% Gear Ratios 
  R_34 = 3;  
  R_56 = 1.65; %3.75  
  R = 1/((r_1*R_34*R_56)); 
  
% Mainspring stiffness (Nm/rad) 
  k_s = 9.75e-05;  
  
% Gear Ratio: Mainspring Barrel to Generator Shaft Gear  
  R_78 = 2;  
  
% Generator Constants 
  Phi = 1.5;     % Rated Voltage (V) 
  k_t = 6e-03;   % Generator Torque Constant (Nm/A)   
  k_v = 6e-03;   % Generator Voltage Constant (Vrad/s) 
  L_g = 3e-05;   % Inductance (H) 
  J_e = 8e-05;   % Equivalent Inertia (Nm) 
  C_e = 3e-05;   % Rotational Damping (Ns/rad) 
  R_L = 5;       % Load Resistance (Ohms) 
  R_a = 1;       % Armature Resistance (Ohms) 
  R_sa = 5;      % Internal Gear Ratio of Generator  
   
% Hold Cycle Time 
  time = 15; 
   
% Command Line Simulation Call 
  options = simset('SrcWorkspace','current'); 
  Sim_Res = sim('EH_Dynamic_Simulations',[],options); 
  

  
% Outputs  
 % Temperature in Degree Celsius 
   T_C = T - 273.15;  
 % Bellows End Plate Displacement and Rack Displacement in cm 
   x_cm = x*100;  
   x_r_cm = x_r*100;  
 % Power Calculations   
   Power = i_a*v_l; 
 % Data Manipulation for Smaller Ranges 
   tau_8_mm = tau_8*1000; 
   Power_mW = Power*1000; 
   i_a_mA = i_a*1000;  
  

    
% Output Graphs 
 fig1 = figure(1); 
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  axis([0,12,21,23]) 
  plot(T_C) 
  %title('Ambient Temperature Profile') 
  xlabel('Time (hours)') 
  ylabel('Ambient Temperature, T (°C)') 
  
 fig2 = figure(2); 
  axis([0.05,1,-2.05,1.25]) 
  plot(x_r_cm) 
  %title('Resultant Rack Displacement') 
  xlabel('Time (hours)') 
  ylabel('Rack Displacement, x_{r} (cm)') 
  
 fig3 = figure(3); 
  axis([0,12,0,12.5]) 
  plot(theta_6) 
  %title('Input Mainspring Coil Deflection') 
  xlabel('Time (hours)') 
  ylabel('Spring Shaft Rotational Displacement, {\theta}_{6} (rads)') 
  

  
 fig4 = figure(4); 
  axis([23.99,25.5,0,2]) 
  plot(tau_8_mm) 
  %title('Generator Torque Input from Mainspring through Gear G_{8}') 
  xlabel('Time (seconds)') 
  ylabel('Generator Torque Input, {\tau}_{8} (Nmm)') 
  

  
 fig5= figure(5); 
  axis([24,29,0,10]) 
  plot(Power_mW) 
  %title('Generated Power at Output') 
  xlabel('Time (seconds)') 
  ylabel('Generated Power, P (mW)') 
  

  
 fig6 = figure(6); 
  line(i_a_mA.Time,i_a_mA.Data) 
  ax1 = gca;  
  ax1.XColor = 'k'; 
  ax1.YColor = 'k'; 
  axis([24,29,0,45]) 
  %title('Power Generation Circuit Values') 
  xlabel('Time (seconds)') 
  ylabel('Generated Current, i_{a} (mA)') 
  hold on 
  ax2 = axes('YAxisLocation','right','Color','none'); 
  line(theta_8.Time,theta_8.Data,'Parent',ax2,'Color','m') 
  axis([24,29,0,80]) 
  ylabel('Rotational Displacement of Generator Armature,{\theta}_{8} (rads)') 
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  saveas(fig1,'Temperature.jpeg'); 
  saveas(fig2,'Displacement.jpeg'); 
  saveas(fig3,'Spring Displacement.jpeg'); 
  saveas(fig4,'Release Torque.jpeg'); 
  saveas(fig5,'Power.jpeg'); 
  saveas(fig6,'Generator Current and Shaft Speed.jpeg'); 
   
  save('run.mat') 
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B-2. Code for Linear Approximations/Curve Fit for Riedel’s Vapor Pressure 

Equation  

clear all 
  
% Riedel's Vapor Pressure Equation Constants for Ethyl Chloride 
  A = 44.67; 
  B = -4026; 
  C = -3.371; 
  D = 2.273e-17; 
  E = 6; 
  
% Bellows (Assumed) Operating Temperature Range 
  T = 280.15:1:310.15; 
% Riedel's Vapor Pressure Equation 
  P_ec = exp(A + (B./T) + (C.*log(T)) + D.*(T.^E)); 
  
% Curve Fit to Obtain Linear/Algebraic Model 
 [P_ec_LA1,gof1] = fit(T',P_ec','poly1'); 
 [P_ec_LA2,gof2] = fit(T',P_ec','poly2'); 
  
% Output graphs 
  fig1 = figure(1); 
   plot(P_ec_LA1,T,P_ec) 
   title('Riedel Equation Curve Approximation - First Order Polynomial') 
   xlabel('Temperature, T (K)') 
   ylabel('Ethyl Chloridde Pressure, P (°C)') 
  
  fig2 = figure(2); 
   plot(P_ec_LA2,T,P_ec) 
   title('Riedel Equation Curve Approximation - Second Order Polynomial') 
   xlabel('Temperature, T (K)') 
   ylabel('Ethyl Chloridde Pressure, P (°C)') 
  
saveas(fig1,'First Order PolyFit.jpeg'); 
saveas(fig2,'Second Order PolyFit.jpeg'); 

save('LA_Riedel.mat'); 
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B-3. Code for Transfer Function Response with Sample Parameter Values  

 
clear all 

  

  P_atm = 1.013e-5;   % Atmospheric Pressure 

  beta_1 = 50; 

% First Order Polyfit COnstants 

  alpha = 5088;   

  beta = abs(-1.353e06 - P_atm);  

   

% Critical Design Variables 

  A_p = 0.005;        % End Plate Area(m^2) 

  m = 0.2;                % End Plate Mass(Kg) 

  c = 18;                  % End Plate Viscous Damping(Ns/m) 

  k_b = 250;            % Bellows Spring Rate(N/m) 

  k_es = 900;           % External Spring Stiffness (N/m) 

  k_r = 195;             % Bellows End Plate and Rack Gear Interconnect Stiffness (Nm/rad)     

  m_r = 0.02;           % Mass of Rack Gear (Kg) 

  c_r = 2;                  % Viscous Damping of Rack (Ns/m) 

  r_1 = 26.5e-03;     % Radius of Pinions (m) 

  R_34 = 1.00;         % Gear ratio between G3 and G4  

  R_56 = 3.75;         % Gear ratio between G5 and G6 

  %R = 1/((r_1*R_34*R_56)); 

  k_s = 6.95e-03;     % Coil Spring Stiffness (Nm/rad) 

  Theta_max = 31.41;  % Maximum Number of Coil Turns (rad) 

  R_78 = 0.47;         % Gear Ratio: Mainspring Barrel to Generator Shaft Gear   

  k_t = 2.5e-03;       % Generator Torque Constant(Nm/A)   

  k_v = 5.2e-03;      % Generator Volatge Constant(Vrad/s) 

  L_g = 5.5e-05;      % Inductance(H) 

  J_e = 8e-05;          % Equivalent Inertia(Nm) 

  C_e = 3e-05;         % Rotational Damping(Ns/rad) 

  R_L = 100;           % Load Resistance(Ohms) 

  R_a = 1;                % Armature Resistance(Ohms) 

  R_sa = 4.7;           % Internal Gear Ratio 

  

% Constants for Transfer Function 
  k_bar = k_es+k_b;                     % Equivalent Stiffness (N/m) 
  a1 = (k_s)/(r_1*R_34*R_56);   % Equivalent Stiffness Term (N/rad) 
  J_1 = 0.1e-04;                            % Spring Dynamics Inertia (Kgm/rad) 
  b_1 = 3e-04;                              % Spring Dynamics Damping (Ns/rad) 
  a2 = (k_v/R_78);                       % Generator Dynamics Constant (Vrad/s) 
  R_bar = (R_L + R_a);               % Equivalent Resistance (Ohms) 
   

% Temperature Response 
  num1 = A_p*alpha;         % Transfer Function Numerator 
  den1 = [m c k_bar];         % Transfer Function Denominator 
  G1 = tf(num1,den1);       % Transfer Function 
  % num1_1= A_p*beta; 

  % G5 = tf(num1_1,den1); 
  % G6 = G1 + G5; 
  % num3_1t = [A_p*beta*m (A_p*beta*c)]; 
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% Spring Response 

 num2 = [m_r c_r 0];              % Transfer Function Numerator 
 den2 = [J_1 b_1 a1];             % Transfer Function Denominator   

 G2 = 1e-03*tf(num2, den2); % Gain added to decrease x from m to cm 

     

% Generator Response 

  num3 = R_sa*a2;        % Transfer Function Numerator 

  den3 = [L_g R_bar];   % Transfer Function Denominator 

  G3 = tf(num3,den3);   % Transfer Function 

   

% System Response 

  G3_1 = Theta_max*G3;  

  G4 = G2.*G3_1;                     % Transfer Function Result from Spring to Generator      

  H = 0.533*G4.*G1;                % Transfer Function of System, i_a(s)/T(s)  
  P = beta_1*(R_bar*H).*H;     % Transfer Function of System, P(s)/T(s)  
 

 
% Figures 
  fig1 = stepplot(G1); 
  fig2 = stepplot(G2); 
  fig3 = stepplot(G3); 
  fig4 = stepplot(H); 
  setoptions(fig1,'Normalize','On') 
  setoptions(fig2,'Normalize','On') 
  setoptions(fig3,'Normalize','On') 
  setoptions(fig4,'Normalize','On') 
  setoptions(fig5,'Normalize','On') 
  saveas(fig1,'x_T','-djpeg'); 
  saveas(fig2,'Theta6_x','-djpeg'); 
  saveas(fig3,'Current_Theta6','-djpeg'); 
  saveas(fig4,'Current_T','-djpeg'); 
   
  save('response.mat') 
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Appendix C 

Simulink Model 

The dynamic equations for the harvester device were used in simulation to study 

the behavior of the individual system components – the ethyl chloride filled mechanical 

bellows, the rack-bellows end plate interface, and the electromechanical assembly. These 

dynamic models were built using continuous time blocks. The input temperature profile 

for this study was a low frequency sine wave about 22°C.  

Figure C-1: High Level Diagram of Harvester System with Power Transformer 
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Figure C-2: Second Level Diagram (Ethyl Chloride Filled Mechanical Bellows) 

Figure C-3: Second Level Diagram (Gear Train, Spring, and DC Generator Assembly) 

Figure C-4: Third Level Diagram (Ethyl Chloride Behavior) 
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Figure C-5: Low Level Diagram (Riedel Model) 

Figure C-6: Low Level Diagram (Bellows End Plate Dynamics) 
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Figure C-7: Low Level Diagram (Rack and Pinion Dynamics) 

Figure C-8: Low Level Diagram (Gear Train Dynamics) 
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Figure C-9: Low Level Diagram (Spring Dynamics) 

Figure C-10: Low Level Diagram (DC Generator Dynamics) 
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Appendix D 

CAD Images of Power Transformer Components 

The design for the power transformer components to build an experimental 

prototype was developed using Solidworks.  This section contains 3D descriptions of some 

of the important components, especially ones that were not immediately recognizable in 

the experimental setup in Chapter 3. 

D-1: Aluminium Plate (6’’ x 6’’ x 0.25’’) with Holes and Cuts to Accommodate Gears,

Spring, and Generator Mount 

D-2: Rack Gear
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D-3: Pinion Gear (48 Teeth) with Drilled Center to Accommodate One-Way Bearing

D-4: Secondary Gear (60 Teeth) on Shaft B with One-Way Bearing Placed Inside

D-5: Shafts of the Compound Gear Train (From Top Left: A, B and C)
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D-6: Mainspring Barrel and Key

D-7: Ratchet Assembly

D-8: DC Micro Generator
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Appendix E 

Development of Encoder Circuit to Measure Generator Shaft Speed 

The generator shaft speed was a crucial quantity needed to be measured and 

calculate other values in the power generation circuit for the experimental system. To 

measure the rotational speed, an encoder was built using a Sunkee IR LED Emitter-

Receiver pair, a Texas Instruments 747 Operational Amplifier, and Resistors (330 Ω, 1.5 

kΩ) as shown in Figure E-1. The circuit was constructed as shown in Figure E-2. A four 

quadrant rotary encoder disc with one transparent quadrant was built using projector sheets 

and attached to the generator shaft. The emitter and collector were placed on opposite sides 

of the disc and held in place using electrical tape. Figure E-3 shows the physical 

experimental sensor circuit and the encoder disc between the emitter and receiver. The 

transparent edge of the encoder disc is detected for each revolution of the generator shaft 

as a voltage change in the receiver output as shown in Figure E-4. Analog 5V supply pins 

from the NI SCB 68 board powered the LEDs and resistances, and the op-amp was powered 

by an external power supply of 9V. This simple circuit efficiently detected the rotational 

motion of the generator shaft for the experimental tests. 
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E-1: Rotary Encoder Experimental Circuit Key Components (Op-Amp and IR LED

Emitter-Receiver Pair) 

E-2: Encoder Circuit Diagram

E-3: Physical Encoder Circuit
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Appendix F 

LabVIEW Program for the Experimental DAQ and Control 

For the experimental system, sensors needed to be powered and data needed to be 

controlled and acquired. Post processing was required to visualize data for further 

understanding of the results. National Instruments software – LabVIEW – program (refer 

to Figure F-1 and F-2) was created to control the related I/O equipment, NI SCB 68 E series 

device which acquired sensory inputs, powered the sensors and controlled data in the 

experimental environment.  

Figure F-1: Block Diagram of Visual Interface (VI) for Data Acquisition 
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Figure F-2: Front Panel of Visual Interface for Data Monitoring 

Description of VI and Panel: 

The measurements recorded from the sensors were defined as tasks using the NI 

Measurement and Automation Explorer software that complements the NI SCB 68 DAQ 

allowing calibration, test, and visualization of the individual channels and their 

measurements. Parameters can be set for the data acquisition—desired channel 

(analog/digital), sampling frequencies, depending on the data points required (number of 
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sample) and time constraints (sampling rate) on each measurement; voltage/current upper 

and lower limits, scaling constants, type of input from channel, external resistance, etc.  

Once the data acquisition parameters have been set, the process needed to be 

automated for real time run and data collection. The VI blocks in LabVIEW allow loop 

functions (‘while’ loop controlled here by user through the run and stop options/buttons) 

that enable continuous real time data logging. When the loop is run, the data can be logged 

into a desired output format (excel, text, etc.) and can be manipulated and visualized 

outside the program. The continuous time loop was run manually for each measurement 

separately and Boolean control (1-start and 0-stop) was used since the ratchet operation 

was not automated in the experimental system and the DAQ Analog-to-Digital (ADC) is 

blocked for each individual measurement. Three different tasks were created to obtain the 

outputs from the potentiometer, encoder, and voltage sensor to measure rack displacement, 

generator shaft speed, and output current/power, respectively. The front panel for the 

program is typically used to allow user inputs, control, and data processing/understanding. 

In this experiment, to understand, verify, and visualize real time data, waveform charts 

were used with numeric tables that displayed changing values for the measurement being 

recorded.  

The code generation in the NI LabVIEW software is completely automated and the 

VI components used inherit all the required libraries to effectively run the program and 

automate/simplify the data acquisition process. The recorded data was converted to text 

files and imported into Microsoft Excel Spreadsheets/MATLAB to obtain graphical 

models and calculate critical parameters.   
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Appendix G 

Supplementary Graphs from Testing 

The encoder output voltage graph representing the number of complete revolutions 

of the generator shaft, the voltage and current graphs used in the power generation 

calculation in experimental testing are presented in this section. From the encoder output 

as shown in Figure G-1, the peaks correspond to complete revolutions of the generator 

shaft and the shaft speed can be measured.    

Figure G-1: Encoder Output Voltage (V) versus Time (s) 
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Figure G-2: Generated Voltage 

Figure G-3: Generated Current 
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Appendix H 

Numerical Analysis – Case Studies on Design Parameters 

Design parameters in in the electromechanical assembly design were varied and the 

resulting effect on the power generation capacities of the harvester system was studied. 

The original simulation parameters (Refer to Table 2.1) were used as a benchmark, and a 

design variable value was increased and decreased to observe its effects on power output. 

Some critical design values that largely influenced the power generation for a 24 hour 

harvesting period and a total temperature variation of 25°C are presented in this section. 

H-1. Drivetrain: Pinion Radius, r1, and Gear Ratio between Gears G5 and G6, R56 

Figure H-1: Effect of Pinion Radius, r1, on Generated Power, P 



121 

Figure H-2: Effect of Gear Ratio, R56, on Generated Power, P 

H-2. Spring: Coil Spring Stiffness, ks 

Figure H-3: Effect of Spring Coil Stiffness rate, ks, on Generated Power, P 
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H-3. Power Generation Unit: Gear Ratio between Going Barrel Gear and Gear G8,

R78, and Equivalent Generation Circuit Resistance, 𝑹̌ 

Figure H-4: Effect of Gear Ratio, R78, on Generated Power, P 

Figure H-5: Effect of Equivalent Generation Circuit Resistance, 𝑅̌ on Generated Power, P 
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H-4. Power Generation Capacity with (Optimal) Parameters Borrowed from Design

Case Studies 

Figure H-6: Power Generation Capacities using Superior Parameters from Design Case 

Studies and Varying Load Resistance, RL 
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Appendix I 

Bill of Materials 

The experimental prototype system parts are micro machined components made 

from lightweight materials. This section gives the parts list for the different components 

involved in the fabrication of the experimental electromechanical assembly and its 

accompanying test bench elements. 

Table I.1: Parts List for Fabrication of Drivetrain 

No. Part Supplier Part No. Description 

1. Rack Gear 

Stock Drive 

Products and 

Sterling 

Instrument 

A 1C 2-Y481 

Material: Steel 

Pitch: 48 

Pressure Angle: 20° 

Face Width: 0.125’’ 

Height: 0.125’’  

Length: 6’’  

Quantity: 1 
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2. 
Pinion 

G1, G2 

Stock Drive 

Products and 

Sterling 

Instrument 

A 1P 2-

Y48048A 

Material: Acetal 

Brass Inserts 

Hub: Pin Hub 

Radius: 1.043’’ 

Pitch: 48 

Pressure Angle: 20° 

Teeth: 48 

Bore Diameter: 0.125’’ 

Hub Diameter: 0.625’’ 

Face Width: 0.125’’  

Quantity: 2 

3. 
Gear 

G3, G4 

Stock Drive 

Products and 

Sterling 

Instrument 

A 1P 2-

Y48060A 

Material: Acetal 

Brass Inserts 

Hub: Pin Hub  

Radius: 1.276’’ 

Pitch: 48 

Pressure Angle: 20° 

Teeth: 60 

Bore Diameter: 0.125’’ 

Hub Diameter: 0.625’’ 

Face Width: 0.125’’  

Quantity: 2 
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4. Gear G5 

Stock Drive 

Products and 

Sterling 

Instrument 

A 1T 2-Y48020 

Material: Acetal 

Brass Inserts 

Hub: Pin Hub  

Radius: 0.450’’ 

Pitch: 48 

Pressure Angle: 20° 

Teeth: 20 

Bore Diameter: 0.125’’ 

Hub Diameter: 0.344’’ 

Face Width: 0.125’’  

Quantity: 2 

5. Gear G6 

Stock Drive 

Products and 

Sterling 

Instrument 

A 1P 2-

Y48075A 

Material: Acetal 

Brass Inserts 

Hub: Pin Hub 

Radius: 1.44’’ 

Pitch: 48 

Pressure Angle: 20° 

Teeth: 75 

Bore Diameter: 0.125’’ 

Hub Diameter: 0.750’’ 

Face Width: 0.125’’  

Quantity: 2 

6. Shaft 
McMaster-

Carr 
2575T1 

Material: Brass 

Diameter: 0.125’’ 

Length: 36’’ 

Quantity: 1 
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7. 

Mounted 

Pillow 

Block with 

Ball 

Bearing 

McMaster-

Carr 
8600N1 

Material: Aluminium, Steel 

Center Height: 0.375’’ 

Width: 0.2’’ 

Length: 1.43’’ 

Height: 0.75’’ 

Shaft Diameter: 0.125’’ 

Mounting Hole: 0.125’’ 

Quantity: 9 

8. 
One-Way 

Bearings 

Amazon 

Supply 

(Koyo) 

RC-02 

(B007EE46PA) 

Material: Plastic 

Width: 0.236’’  

Outer Diameter: 0.281’’ 

Bore Diameter: 0.125’’ 

Quantity: 3 

9. 
Cup-Point 

Set Screws 

McMaster-

Carr 
92311A078 

Material: 18-8 Stainless Steel 

Head type: Headless 

Thread Type: UNC, Class 3A 

Size: 2-56 

Length: 0.3125’’ 

Drive Size: 0.035’’ 

Quantity: 15 
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Table I.2: Part List and Description of Mainspring with Going Barrel 

Table I.3: Description of the DC Micro Generator 

No. Part Supplier Part No. Description 

1. Spring 

N/A N/A 

Material: Steel 

Thickness: 0.0035’’ 

Width: 0.235’’ 

Length: 42.5’’ 

Spring Rate: 6.95e-05 Nm/rad 

2. Barrel 

Drum Diameter: 2.15’’  

Barrel Gear Teeth: 102 

Barrel Gear Radius: 2.20’’ 

Barrel Gear Pitch: 72  

No. Part Supplier Part No. Description 

3. 

Mechanical 

eBay 
ESCAP SR 

581 A1 

Internal Gear Ratio: 4.7:1 

Shaft Outer Length: 0.125’’ 

Gear Pressure Angle: 20° 

Gear Teeth: 102 

Electrical 

Rated Voltage: 1.5 V 

Rated Current: 20 mA 

Torque Constant: 6e-03 Vm/rad 

Voltage Constant: 7.6e-03 

Vs/rad 

Internal Resistance: 1 Ω 
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Table I.4: Parts List for Encoder Circuit Components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. Part Supplier Part No. Description 

1. IR LEDs 
Amazon 

- SUNKEE 
B00XPSIT3O 

Type: Emitter-Collector   

Forward Voltage: 1.2-1.3V  

Wavelength: 940 nm 

Diameter: 0. 197’’ 

Quantity: 1 

2. Op-Amp 
Texas 

Instruments 
LM 741 

Power Rating: 80 - 150mW 

Supply Voltage: 22 

Input Voltage: 15 

Current: 1.7 - 2.8mA 

Quantity: 1 
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Table I.5: Parts List of Supplementary Items 

No. Part Supplier Part No. Description 

1. Gear  G8 

Stock Drive 

Products 

and Sterling 

Instrument 

S1063Z-

072A048 

Material: Aluminium 

Hub: Pin Hub  

Radius: 0.675’’ 

Pitch: 72 

Pressure Angle: 20° 

Teeth: 48 

Bore Diameter: 0.125’’ 

Hub Diameter: 0.312’’ 

Face Width: 0.125’’  

Quantity: 2 

2. 
Retaining 

Rings 

Amazon 

Supply 

SH-12St PA 

(B006209X24) 

Material: 1060-1090 Carbon 

Steel 

Phosphate Finish 

Outer Diameter: 0.135’’ 

Thickness: 0.010’’ 

Shaft Diameter: 0.125’’ 

Groove: 0.004’’ 

Groove Diameter: 0.117 

Quantity:30 
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3. Cap Screws 
Amazon 

Supply 
B005A0OENO 

Material: Alloy Steel 

Zinc Plated 

Thread Type: UNC, Class 2A,  

Fully Threaded 

Size: 5-40 

Length: 0.75’’ 

Head Diameter: 0.217’’ 

Head Height: 0.118’’ 

Quantity: 30 

4. Plate 
McMaster-

Carr 
9057K127 

Material: Aluminium 

Width: 6’’ 

Thickness: 0.125’’ 

Length: 12’’ 

Quantity: 1 

5. Insert Block 
McMaster-

Carr 
8741K32 

Material: Acetal 

Thickness: 1/4'' 

Width: 1/4'' 

Length: 1' 

Quantity: 1 

6. Adhesive 

McMaster-

Carr 

(Loctite) 

7560A54 
Acrylic structural adhesive 

Aerosol 7387 activator 

7. LED Amazon 
H&PC-54378 

B005ONQ41W 

Color: White 

Wattage: 1W 

Diameter: 0.197’’  

Forward Voltage: 3.3 V 

Current: 30 mA 
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Table I.6: Parts List for Machining Tools 

8. DAQ 
National 

Instruments 
776844-01 

NI SCB 68 

Noise Rejecting, Shielded I/O 

Connector Block 

0.125’’ Flathead Pins 

Power Supply: 5V – 30V 

No. Part Supplier Part No. Description 

1. 

Internal Lathe 

Tool for 

Retaining 

Rings 

McMaster-

Carr 
32335A82 

Material: Carbide 

Groove: 0.017'' 

Min Hole Diameter: 1/4'' 

Max Hole Depth: 0.63'' 

Offset: 0.05'' 

Shank Type: Round  

Shank Diameter: 1/4'' 

Length: 2-1/2'' 

Quantity: 2 



133 

2. End Mill 
McMaster-

Carr 
3049A46 

Material: High-Speed Steel 

Double Ended, Two Flute 

Center Cutting, Square End 

Mill Diameter: 0.281'' 

Shank Diameter: 0.375'' 

Cut Length: 0.563'' 

Length: 3.125'' 

Helix Angle: 30° 

Quantity: 1 

3. 

Through-Hole 

Threading 

Machine Tool 

Tap 

McMaster-

Carr 
2726A-38 

Double Flute 

Material: High-Speed Steel 

Titanium Nitride Coating 

Thread Size: 5-40 

Thread Length: 0.625'' 

Length: 1.06'' 

Drill Bit Size: 38 

Quantity: 2 
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