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Abstract

Microrobotic systems have the potential to provide precise manipulation on

cellular level for diagnostics, drug delivery and surgical interventions. These

systems vary from tethered to untethered microrobots with sizes below a mi-

crometer to a few microns. However, their main disadvantage is that they do

not have the same capabilities in terms of degrees-of-freedom, sensing and

control as macroscale robotic systems. In particular, their lack of on-board

sensing for pose or force feedback, their control methods and interface for

automated or manual user control are limited as well as their geometry has

few degrees-of-freedom making three-dimensional manipulation more chal-

lenging. This PhD project is on the development of a micromanipulation

framework that can be used for single cell analysis using the Optical Twee-

zers as well as a combination of optical trapping and magnetic actuation

for reconfigurable microassembly. The focus is on untethered microrobots

with sizes up to a few tens of microns that can be used in enclosed envi-

ronments for ex vivo and in vitro medical applications. The work presented

investigates the following aspects of microrobots for single cell analysis: i)

The microfabrication procedure and design considerations that are taken into

account in order to fabricate components for three-dimensional micromanip-

ulation and microassembly, ii) vision-based methods to provide 6-degree-of-

freedom position and orientation feedback which is essential for closed-loop

control, iii) manual and shared control manipulation methodologies that take

into account the user input for multiple microrobot or three-dimensional

microstructure manipulation and iv) a methodology for reconfigurable mi-

croassembly combining the Optical Tweezers with magnetic actuation into a

hybrid method of actuation for microassembly.
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Chapter 1

Introduction

Minimally invasive surgery has shown many advantages compared to tra-

ditional surgical techniques, such as reduced blood loss and faster patient

recovery [1]. These improvements along with advances in robotics have led

to the development of medical systems for minimally invasive surgical inter-

ventions. In contrast to industrial robotic systems, medical robots operate

with high precision in confined anatomical spaces and highly dynamic envi-

ronments. Currently available platforms, mainly of master-slave architecture

such as the da VinciR© Surgical system, provide tools that allow greater dex-

terity in manipulation, a three-dimensional (3D) view of the anatomy and

master control interfaces that improve ergonomics for the surgeon, compared

to traditional minimally invasive surgery. One of the main challenges in med-

ical robotics is miniaturization to further facilitate precision below the mil-

limeter scale. This challenge and potential capabilities become even greater

when systems move towards further miniaturization reaching the lower limits

of the microscale.

Microrobotic systems have been proposed as an emerging technology that

could revolutionize diagnosis, therapy and surgical interventions as they allow
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Macroscale robots Microrobots

Dominant forces Gravity and inertia Adhesion and surface
tension

Feedback methods Encoders, 2D and 3D
vision

2D microscope view

Degrees of Freedom Redundancy Insufficient for 3D ma-
nipulation

User Input Master-slave systems,
haptic devices

Video game con-
trollers, mouse input

Table 1.1: Differences between macro and microscale robotic systems

interventions at cellular level [2].

Microrobots can be divided into tethered and untethered microrobots de-

pending on the application and function they need to perform. Tethered mi-

crorobots are attached to a power source, an example of which are tethered

microgrippers [3]. In contrast, untethered microrobots are mobile and pow-

ered externally. Consequently, they are suitable for enclosed environments

where a mechanical connection to the microrobot cannot be established due

to workspace restrictions, such as in microfluidic chips or anatomical spaces.

Microrobot applications, due to their small scale, range from early disease di-

agnosis to precision microsurgery [4]. In particular, they have been proposed

for in vivo targeted drug delivery [5] and cellular level surgery [6]. They are

also a suitable tool for ex vivo applications aiming at early disease detec-

tion through cell biopsy. Optical Tweezers is one of the main microrobotic

system for characterizing mechanical properties of cells, usually combined

with fluorescence imaging and microfluidics [7, 8]. Another interesting area

of application is in vitro cell manipulation, such as tissue engineering and

cell assembly. Artificial tissue for tissue regeneration and graphing could be
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constructed by assembling cells in specific geometries outside of the body [9].

Cell assembly is also crucial as arranging cells in predefined geometries can

give insights in investigating cancer progression [10]. These procedures are

currently performed manually with simplistic tools, but precision and dexter-

ity would greatly benefit by the development of robotic systems that facilitate

these tasks. The aspiration is to develop microrobotic systems with compa-

rable capabilities in their design, sensing and control aspects as macroscale

medical robotic systems. Therefore, the focus of this thesis is to investigate

the development of microrobotic systems for closed environments with the

Optical Tweezers as their main source of actuation for ex vivo and in vitro

applications that could be potentially used in devices such as microfluidic

organs-on-chip for cell manipulation.
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1.1 Research Objectives

The aim of this thesis is to investigate and address some of the engineer-

ing challenges of developing a microrobotic system for ex vivo and in vitro

applications. The proposed methods are built around Optical Tweezers ma-

nipulation as they present fine precision and submicron spatial resolution

making them suitable for micromanipulation of microstructures with sizes

up to a few tens of microns. The challenges that are investigated in this

thesis are: i) Fabricating 3D microrobots for micromanipulation, ii) how to

sense microrobot position and orientation using the camera feedback, iii) de-

veloping a shared control strategy for bimanual optical micromanipulation of

multiple or 3D microrobots and iv) combining optical and magnetic actuation

for microassembly.

Microrobot fabrication for optical and hybrid optical and magnetic

micromanipulation

Optical Tweezer’s main limitations are that trapping relies on cell properties

and, most importantly, cause photodamage to cells when directly grasped by

the optical trap [11]. Additionally, a conventional Optical Tweezers setup is

capable only of two-dimensional (2D) manipulation. These limitations could

potential be addressed by fabricating or assembling 3D optically transparent

microrobots than can be used to grasp microstructures or cells indirectly.

Sensing microrobot’s position and orientation

Macro and microscale medical systems share a common constraint, that they

are limited in their sensing aspect. This is due to scaling of the technology

in the microscale and clinical restrictions in macroscale, such as sensor ster-

4



ilization in surgical tools. Ex vivo and in vitro microrobotic experimental

setups however have a camera, as macroscale robot systems provide an en-

doscopic view. Therefore, such microrobot setups rely on the camera view

as their main sensing modality. Taking advantage of the fact that there is

direct line of sight to the microrobot workspace, the camera feedback can be

used to implement computer vision algorithms for 3D microrobot pose esti-

mation. This would lead to providing a form of pose feedback for improved

user perception and development of closed-loop control techniques.

Microrobot bimanual optical manipulation

While Optical Tweezers are capable of multiple microrobot manipulation by

generating patterns of multiple optical traps, they currently provided limiting

control interfaces. Current control interfaces of available micromanipulator

systems allow user input through 2D mouse position or video game con-

trollers. Consequently, bimanual task execution is challenging and requires

increased user effort due to the limitations of the input devices. Therefore,

one of the research objectives of this thesis is to investigate how bimanual

control of mutliple microrobots can be achieved integrating human sensory

information, such as the operator’s gaze information, and haptic guidance.

Hybrid optical and magnetic microrobot manipulation for micro-

assembly

Optical Tweezers can realize multiple microrobot manipulation using multi-

ple optical traps, a property which is important for microassembly. It is of

interest, therefore, to investigate how reversible microassembly could be per-

formed in situ integrating magnetic actuation to be used for microassembly.

Having these components integrated in one framework would lead to the
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Figure 1.1: A conceptual experimental setup of an Optical Tweezers system
as a master-slave robotic platform for cell manipulation. The slave com-
ponent consists of the Optical Tweezers with an integrated magnetic setup
placed on the piezo stage (right). Enclosed experimental environments, such
as a microfluidic chip or a biological sample can be place on the sample holder
for testing. The sample can be imaged through the microscope-camera sys-
tem and is displayed to the operator. The master component consists of a
pair of haptic devices and other devices that process the operator’s sensory
information, such as an eye-tracker (left).

development of a microrobotic system that allows 3D manipulation of mi-

crorobots with 3D visual-based microrobot position feedback combining two

methods of external actuation which are suitable for micromanipulation in

closed environments. From this point of view, such microrobot systems can

be seen as master-slave robotic systems, similarly to medical robotics plat-

forms. An indicative depiction of these components as a master-slave system

can be seen in Figure 1.1. In this case, the integrated Optical Tweezers with

magnetic actuation can be considered the slave component while the master

side consists of a pair of haptic devices and additional devices such as the

eye-tracker that is used to integrate human sensory information in the control

loop.
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1.2 Thesis Overview

The outline of this thesis is structured as follows:

Chapter 2 gives an overview of the current state-of-the-art of microrobotic

systems for ex vivo and in vitro applications, followed by a review of their en-

gineering aspects on microrobot fabrication, microrobot visual tracking and

control strategies for optical micromanipulation. Last, an overview and the

current state of microassembly techniques is given.

Chapter 3 describes the microfabrication procedure that is followed to fab-

ricate optically transparent and hybrid optical and magnetic microrobots.

The microstructures were characterized to assess the impact of parameters,

such as the printing power, on feature resolution. Two detachment methods

are presented assessing their effectiveness for batch microrobot detachment.

Chapter 4 investigates microrobot pose estimation using the microscope-

camera feedback. Two methods for depth estimation of transparent micro-

robots using image sharpness measurements and model-based tracking are

initially investigated. Following an assesment of these two methods, a depth

estimation method is presented based on supervised learning for optically

transparent microrobots of known geometry. This methodology uses Convo-

lutional Neural Networks (CNNs) combined with a Long Short-Term Memory

(LSTM) cell for depth regression. Estimating microrobot orientation is also

investigated, proposing a template-based method. A vision-based method

combining depth and 3D orientation using CNNs is proposed in a unified

model. The model is trained and validated using microscope images and

ground truth data generated from 3D-printed microrobots imaged in an Op-
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tical Tweezers setup and compared to previously proposed neural network

architectures.

Chapter 5 investigates micromanipulation of optical transparent micro-

robots. Section 5.1 demonstrates how 3D multiple component optical micro-

robots can be used as grasping mechanisms for micromanipulation. Section

5.2 presents a gaze contingent control framework for optical micromanip-

ulation. The framework comprises a strategy to recognize the operator’s

intentions in order to interactively place and reconfigure the optical traps

using the operator’s eye fixation point and haptic constraints generated from

the user’s eye gaze to assist positioning of the assembled microstructures.

A set of experiments is performed in order to assess task completion using

the proposed control framework and the standard Optical Tweezers control

mode.

Chapter 6 proposes a microassembly technique that relies on hybrid op-

tical and magnetic actuation. This method is based on creating mechanisms

in situ using the magnetic attractive force as the assembly mechanism. The

fundamental structural elements used for assembly can by actuated simul-

taneously by the Optical Tweezers and the magnetic field. The magnetic

field if used to induce the attractive force between the components while the

Optical Tweezers is used for actuation. It is demonstrated that the assembly

can be reversible. An estimation of the force required for component disas-

sembly is experimentally calculated.
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The key contribution of the thesis are:

• Fabricating hybrid optical and magnetic microrobots that can be actu-

ated simultaneously by the Optical Tweezers and the magnetic field.

• Developing a vision-based strategy for three-dimensional pose estima-

tion of 3D-printed microrobots using state-of-the-art computer vision

methods. A labelled dataset of microscope images of microrobots of

different geometries was also generated in an Optical Tweezers setup.

• Proposing a control strategy for bimanual manipulation of multiple mi-

crorobots using the operator’s sensory information to facilitate control

of multiple or 3D microrobots.

• Introducing a setup that integrates Optical Tweezers and magnetic

actuation and a methodology for reconfigurable microassembly based

on optical and magnetic actuation. A design of hybrid optically and

magnetically actuated microrobots is also proposed to create in situ

multiple component 3D microassemblies in enclosed environments.
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Chapter 2

Literature Review

2.1 Robotic Systems in the Microscale

The use of microrobots for manipulation on cellular level has a range of

application in medical research, in diagnostics and potentially in minimally

invasive surgery. For these applications, the precision and manipulation ca-

pabilities of the system are critical and require sensing and user interfacing

that allow the user to interact with cells in 3D. In order to have a system

with manipulation capabilities comparable to macroscale robotic systems,

the components that need to be developed are the following: i) the design of

3D microrobots that allow 6-degree-of-freedom (DoF) manipulation, ii) the

3D visual feedback that provides the operator with a better understanding

of the object pose in the 3D space and which is also necessary for closed-loop

control, iii) the control software that allows 3D object manipulation account-

ing for the unknown to the user dynamics and iv) developing a setup that

provides 3D actuation to facilitate tasks such as microassembly. Microrobotic

platform that are used for cell manipulation and as sensing mechanisms are

the Optical Tweezers, the magnetic tweezers, atomic force microscopy probes
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and mechanical micromanipulators (Figure 2.1). The choice on the system

depends on their spatial resolution and exerted force range as well as their

footprint [12]. Table 2.1 gives the spatial resolution and force range for each

of these systems. Mechanical micromanipulator systems can exert larger

forces, however, due to their footprint and that they are attached to a power

source, they cannot be placed in enclosed environments, such as microfluidic

chips. Optical Tweezers are capable of actuating microrobots externally in

a closed workspace with high precision due to their spatial resolution. For

cell sizes is up to a few tens of microns, they could potentially be a suitable

solution for 3D micromanipulation at this scale for single cell analysis and

cell biopsies.

The following review investigates the state-of-the-art in these four aspects

of microrobotic systems. The investigation in this thesis is done from a sys-

tem and engineering point of view, rather than investigating the materials

and biological aspects of microrobotic systems. The conducted review dis-

cusses the fabrication techniques, the computer vision aspect of the systems

and how the microscope-camera system is used for position feedback, the

control methods of the microrobotic systems previously developed for cell

manipulation and last how microassembly is performed. Systems on specific

application scenarios are also presented in order to illustrate their functional-

ity and the research issues that are emerging from the potential medical use.

The majority of the research which is presented is on the Optical Tweezers.

The following of the review describes the main application of Optical Tweez-

ers for single cell analysis followed by a brief review of fabricated designs of

microrobots. The next section presents the current progress on computer

vision techniques for pose estimation in macroscale robotics and as well as

in microrobotics followed by a review of manipulation methods on Optical
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Figure 2.1: Some of the microrobotic systems for cell manipulation. (a)
Optical Tweezers (b) Magnetic tweezers (c) Atomic force microscopy probe
(c) Mechanical micromanipulator with force sensor on tip c©2007 IEEE [2]

Tweezers and microassembly techniques.

2.2 Applications

Single cell analysis has attracted increased interest in medicine and biological

sciences. This subject studies the properties of cells or investigates their

growth either of individual or a group of cells. This section of the literature

review is focused on the engineering challenges that are present in single cell

analysis. The main applications of single cell analysis which are discussed in

the next paragraphs are cell manipulation, cell characterization and 3D cell

assembly [13].

13



Optical
Tweezers

Magnetic
tweezers

Atomic
force mi-
croscopy

Mechanical
micro manip-
ulators

Spatial
Resolution
[nm]

0.1-2 5-10 0.5-1 3.5 - 5

Force
Range

0.1 - 100 pN 10−3-100
pN

10-10−4

pN
1 N (holding
force)

Limitations Photodamage,
Sample heat-
ing

Force hys-
teresis

Large,
high stiff-
ness probe

Large foot-
print for
enclosed
environments

Table 2.1: Overview of micromanipulation systems for cell manipulation

2.2.1 Cell Manipulation

The majority of applications concerns individual cell positioning either in a

manual or an automated manner [14]. The advantage of optical non-contact

manipulation is that adhesion forces between the micromanipulator and the

object are absent, object grasping and release are reversible. Due to the lim-

ited force exerted by the laser beam, Optical Tweezers are constrained to the

manipulation of small objects which is however sufficient for cell-level ma-

nipulation. A detailed description of relevant research on cell manipulation

using the Optical Tweezers is presented in Section 2.5.

2.2.2 Cell Characterization

Cell characterization aims to identify the mechanical properties of cells.

Properties such as the elasticity and deformation can distinguish healthy from

cancerous cells and also reveal information about disease progression [15].

In [16], the stiffness of human red blood cells is investigated by deforming

the cell using the Optical Tweezers. Mechanical properties identification is
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(a) Cell characterization (b) Microfluidic chip

Figure 2.2: (a) A schematic of two microbeads attached to a red blood
cell to characterize its mechanical properties (b) A schematic of microfluidic
channels using Optical Tweezers for cell sorting

also performed using robotic techniques, such as path planning and image

processing, to enhance the manipulation capabilities of the system [17]. The

cell is manipulated indirectly by two microbeads acting as handles in order

to avoid photo and thermal damage of the red blood cell. A schematic of a

similar configuration is shown in Figure 2.2a.

2.2.3 Microfluidic Organs-on-chip

Microfluidic organs-on-chip are a recently emerged paradigm in cell culture.

These devices allow control of multiple chambers that contain a single or

multiple types of cells in order to simulate cell interactions in living tissue

and organs [18]. Microfluidic organs-on-chip are also capable of simulating

functions such as perfusion. The aim of such devices is to generate a mini-

mal amount of functioning tissue rather than full organs. Their development

arose due to limitations of classic cell cultures which constrain organisation of

cells and do not allow the study of specific effects of drugs on cell structures.

Prior advances to organs-on-chip are 3D cell structures, such as organoids.

Organoids are self-assembled cell microstructures, usually derived from stem
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cells, which exhibit some of the functionality of target organs [19]. How-

ever, in order to simulate organ functionality accurately, it is necessary to

recreate tissue-tissue interfaces and cell exposure to mechanical cues, such

as fluid shear stress and tension. The lack of vascularisation of this tissue

is also limiting their usage. Microfluidic organs-on-chip can address some

of these issues. In particular, they can re-enact flows of the vascular sys-

tem and membranes can be placed inside the microchannels connecting the

chambers to simulate the relevant interfaces between cell types. For ex-

ample, functional lung membrane has provided with models of multi-phase

gas exchange in vitro [20]. Microfluidic organs-on-chip have been fabricated

from various materials such as glass and elastomers, an example of which

is polydimethylsiloxane (PDMS). As PDMS is an optically clear material,

microfluidic organs-on-chip fabricated from it are suitable for real-time opti-

cal imaging of cell interactions with their environment. All the above allow

in vitro analysis of living cell structures in an isolated functional scenario.

Therefore, microfluidic organs-on-chip can allow for real-time study of tissue

development, response to targeted drug delivery or 3D cell characterization.

Optical Tweezers are a suitable actuation method for cell or micro-object

in enclosed environments, such as microfluidic chips as the optical microma-

nipulator does not require to be physically placed into the micro-channels

(contrary to mechanical micromanipulators). Therefore, Optical Tweezers

have the potential to offer new ways to interact with complex organ-on-chip

system. Optical Tweezers have been utilized as an actuation method for cell

sorting in microfluidic environments [21–23]. During this procedure, cells are

directed according to their type in a specific chamber of the microfluidic chip

for cell culture purposes. In [24], optical traps are used as a switching mech-

anism to separate different groups of cells and direct them into the respective
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chambers. Other work has utilized optical traps as actuators to generate an

automated flow path for cell sorting by rotating a pair of microspheres [25]. A

system for cell characterization on a microfluidic environment has been also

proposed measuring the optical force applied on the cells [26]. A schematic of

a microfluidic chip with optical traps used to direct cells is shown in Figure

2.2b.

2.3 Microrobot Fabrication

In order to perform the above tasks, 3D microrobots need to be fabricated.

Similarly to other aspects of microrobotics systems, macroscale robot fab-

rication techniques do not scale down and are not directly transferable to

microscale fabrication. In particular, they are not suitable for microrobot

fabrication as they rely on techniques and tools, such as mills and laser cut-

ters, which can not be used in the microscale and do not have the required

precision and minimum resolution. Alternatively, microrobot fabrication has

been relying on micromachining and methods that are relevant to micro-

electro-mechanical systems fabrication. Microfabrication methods can be

categorized into 2D/2.5D and 3D fabrication methods. A brief description

of the main methodologies is given in the following section.

2.3.1 2D/2D.5 Fabrication Methods

Two-dimensional fabrication methods have been well-established and devel-

oped due to their applications in the semi-conductor industry for sensor and

electric circuit fabrication. These methods are considered 2D as they gener-

ate a surface by depositing layers of materials to construct a specific planar

geometry. The materials which are used in this process include metals, sil-
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Figure 2.3: 3D-printed microrobots used as grasping mechanisms inside an
Optical Tweezers setup c©2016 IEEE [29]

icon and photoresists. For microrobot fabrication, the SU-8 photoresist is

a widely used material for the generation of optically transparent planar

microgrippers [27]. Alternative, metals such as iron and nickel have been

used to fabricate planar magnetic microrobots. Multi-material layer depo-

sition with embedded hydrogels allows to make 3D magnetically actuated

microstructures from 2D layers using conventional 2D photolithography [28].

Two-dimensional lithography can be followed by an additional step that al-

lows etching part of the material in order to create some 3D features on the

planar geometry. This can be achieved using a focused ion beam or by electri-

cal discharge machining. The combination of 2D lithography with etching is

referred to as 2.5D fabrication. However, this method of creating 3D features

is of low accuracy and time consuming.

2.3.2 3D Fabrication Methods

Advances in microfabrication technology have led to the development of

methods that allow the fabrication of 3D microstructures. This is due to

the introduction of the two-photon polymerization technique. This method

was initially introduced in 1997 by Maruo et. al [30] and is now used by

commercially available systems, such as the Nanoscribe 3D-printer. Two-
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photon polymerization is a process in which a monomer is polymerized under

the irradiation of a laser beam. Most common substrates on which the mi-

crostructures are printed are glass and silicon wafers. Commercially available

photoresists such as Nanoscribe’s IP resists, are widely used but also costum-

made resists with additional functionality have been developed [31]. Initially,

two-photon polymerization was employed for the fabrication of microscale op-

tical elements, such as optical gratings [32]. However, the method’s potential

to realize 3D arbitrarily-shaped geometries, found immediate application in

microrobotics as soon as commercial systems using this technology became

available. Two-photon polymerization has allowed the fabrication of 3D ar-

bitrarily shaped microrobots giving the potential of adding more degrees

of freedom to the design. As the 3D-printed microstructures are optically

transparent, they are suitable for actuation using the Optical Tweezers. Mi-

crostructures have been developed to be used as micromachines [33], tools

in optical manipulation for manual [29] and automated control [34] poten-

tially for cell manipulation within enclosed environments, such as microfluidic

chips.

2.3.3 Functionalization Methods

As mentioned, conventional resists have the property of being optically trans-

parent, however they lack of additional functionality. To this end, functional-

ization of the material has been proposed. The main motivation for material

functionalization for microrobots is for actuation, such as magnetic or light

actuation [35], to reduce adhesion forces or to facilitate chemical bonding

for microassembly [36]. Metal deposition has been used to coat the polymer

surface with metals, such as nickel or titanium, in order to create magneti-

cally actuated untethered microrobots [37]. The deposition layers can include
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single or multiple materials [38]. Multiple component magnetic microrobots

have been also fabricated using this two-step procedure of 3D-printing and

metal deposition [39]. Other applications include the fabrication of scaf-

folds for 3D cell cultures, in which 3D-printed scaffolds are deposited with a

metal layer in order to be actuated by the magnetic field [40]. Alternative

approaches, modify or embed particles in the photoresist to induce actua-

tion [41, 42]. Metal deposition has also been used in order to use heating of

the metal layer for a laser source to induce flows for microobject gripping [43].

2.4 Visual Tracking and 3D Pose Estimation

From the description of microrobot fabrication methods, it can be seen that

the created microrobots lack of on-board sensing with regards to their po-

sitioning within their workspace. This is one of the main of microrobotic

systems, unlike macroscale robot systems, which use encoders to provide

position feedback either in the joint space or in the task space. Therefore,

closed-loop control strategies, especially in the 3D space, are very limited.

Previously proposed closed-loop control methods are implemented for the

2D space. One solution to overcoming this issue is to use the microscope-

camera feedback as the main sensor for pose feedback. Hence, estimating

microrobot’s position and orientation from the microscope-camera feedback

could be a means of position sensing for control and improved perception

purposes. Previous research has utilized the camera view extensively to cal-

culate the 2D position of microrobots for 2D closed-loop control in various

setups, such as scanning electron microscopes, magnetic and Optical Tweez-

ers setups as well as in atomic force microscopy. Therefore, it is of interest to

develop methods that can estimate microrobot 3D position and orientation.
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In the following, a review of relevant methods for 3D object pose estima-

tion in macroscale systems is presented to serve as a reference of how and if

these techniques could be scaled down and adapted in microscale. Then, the

current state-of-the-art for depth and orientation estimation in microscale

systems is discussed.

2.4.1 Pose Estimation in the Macroscale

Estimating the 3D pose of objects has been investigated extensively in macro-

scale as it is essential for robotic manipulation and scene understanding.

In particular, visual servoing is essential in object localization for robotic

grasping [44] and improving localization of robotic arms when the visual

feedback is combined with encoder readings. The latter has been important

for tool tracking in minimally invasive surgery as the discrepancies from the

encoder readings have to be compensated for increased tool precision [45]

and for real-time intraoperative simultaneous display of multiple imaging

modalities [46].

Pose estimation methods can be categorized as: Feature-based, template-

based, neural networks and statistical methods. Feature-based methods

can use 2D to 3D known point correspondences for algorithms such as the

Perspective-n-Point algorithm [47]. In case of unknown correspondences,

algorithms such as the Iterative Closest Point, do not required knowing the

exact 2D to 3D point correspondences [48]. Template-based methods assume

that the geometrical model of the object is known and rely on generating im-

ages of known object poses and matching to the closest appearance [49]. In

the recent years, approaches using CNNs arose and are increasingly being

used also for pose estimation. Other approaches include combination of fea-

ture extraction using CNNs combined with inference models to estimate ob-
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ject pose [50]. Depth and orientation estimation have also been considered as

independent problems. A review on depth and orientation estimation meth-

ods is presented in the following section in order to assess how these methods

could be potentially applicable in microrobotic setups.

2.4.1.1 Depth Estimation

Classic reconstruction methods make use of multi-view epipolar geometry in

order to recover depth information in stereo reconstruction algorithms [51].

Such methods require views from multiple cameras and also rely on accurate

camera calibration. Other methods use defocus information, referred to as

depth from focus (or defocus) methods [52]. In particular, the focus infor-

mation from two images with different levels of focus can be used to estimate

the 3D position of an object [53]. Similar methods have been used for re-

moving blurriness due to camera motion [54] and also for automatic focusing

on microscopes [55]. These methods are applicable to single view images.

Recent approaches utilize supervised learning using labelled single images.

In particular, supervised learning uses a dataset of monocular images their

corresponding depth maps as labels, which can be acquired using depth cam-

eras [56]. Other depth estimation are used for scene reconstruction from a

moving camera using convex optimization [57] or by combining information

of multiple CNNs using Conditional Random Fields [58] and Point Spread

Function Convolutional Layers [59].

2.4.1.2 Orientation Estimation

Estimating object orientation has been investigated also as an independent

problem to depth estimation. Traditional methods include using state esti-

mation approaches such as using Extended Kalman Filtering with angular
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position measurements from robot sensors [60]. Template matching has also

been considered for object orientation estimation [61]. More recently, neural

networks have been employed for orientation estimation. In particular, a

method of estimating the relative orientation between two camera poses has

been proposed in [62]. Other methods attempt to incorporate learning of

a Riemmanian manifold in order to obtain more accurate orientation space

estimations using CNNs [63].

2.4.2 Pose Estimation in the Microscale

In the following, a presentation of the current state-of-the-art for microrobot

position and orientation estimation is given.

2.4.2.1 Depth Estimation

In microrobotic systems, proposed methods are dependent on the respective

system setup. Model-based approaches, using the microrobot’s geometrical

design for reference, estimate the microstructure’s pose for assistance in mi-

croassembly [64, 65]. Shape estimation for haptic feedback has also been

considered in [66]. A model-based optimization solution is proposed in [67]

for intraocular microrobot localization. In [68], the velocity of helical micro-

swimmers along the microscope z-axis is estimated for surface reconstruction

using prior calibration of the microrobot’s velocity along the z-axis. Depth

recovery has been investigated for setups inside a scanning electron micro-

scope [69]. Cui et al. [70] have proposed a method for estimating the 3D

position and the rotation on the x-y plane. In [71], estimation of multiple

depths for objects in different heights within the scene is performed using

the sharpness measurements locally in the image. Other applications in-

clude depth recovery of microgrippers and carbon nanotubes for automation
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purposes using variance-based sharpness calculations [72] and micropipette

depth tracking using particle filters for 3D reconstruction of microstructure

geometries [73].

2.4.2.2 Orientation Estimation

Orientation estimation in microscale systems has been investigated by Kudryavt-

sev et. al for experimental setups inside scanning electron microscopes

proposing a geometrical solution to estimate orientation [74].

2.4.2.3 Pose Estimation Challenges in the Microscale Compared

to the Macroscale

As seen from the overview of the work presented in the previous section,

feature-based stereo methods rely on the perspective camera projection model

to get the 3D position of a point from triangulation using different camera

views. This approach is not applicable in the microscale for two reasons: i)

the camera projection model is orthogonal and therefore depth information

is not observable and ii) most microrobot setups have only one camera view.

For these reasons and as most microrobot manipulation platforms have a

mounted microscope-camera system for observation, depth from focus meth-

ods and Neural Networks approaches are more suitable for pose estimation

in the microscale. Neural networks require a ground truth labelled dataset

so they are not applicable to all setup. However, for an Optical Tweezers

system with 3D-printed microrobots, a ground truth dataset can be gener-

ated for training and validation. To this end, the proposed methods in this

thesis use a depth from focus and a CNN approach.
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2.5 Manipulation and Control

The applications presented in the previous sections illustrate that precise 3D

manipulation is required. Manual control is challenging due to the scaling

effect in the microscale, the small number of DoF and lack of 3D position

feedback. To this end, automation of tasks and shared control schemes could

potentially improve accuracy and precision in cell manipulation. A number

of control and visual servoing techniques have been proposed for magnetic

and mechanical microrobots, Optical Tweezers and atomic force microscopy

probes [75]. As the focus in this thesis is Optical Tweezers actuation, an

introduction on their operation principle and control strategies is presented

in this section followed by a review on automation and manual techniques

as well as haptic feedback frameworks for cell manipulation using Optical

Tweezers.

2.5.1 Optical Tweezers

Optical Tweezers were firstly introduced by Arthur Ashkin in 1970 [76]. In

2018, he was awarded the Nobel Prize in Physics for introducing Optical

Tweezers and for their applications in biology, together with Gérard Mourou

and Donna Strickland who contributed further on the technology. Optical

Tweezers are a tightly focused laser beam which can attract objects with

sizes from a few nanometres up to a few tens of micrometers towards the

focus of the laser beam. Microobjects are attracted towards the focus when

gradient forces are dominant, while radiation pressure attracts it towards the

direction of the optical axis of the beam (Figure 2.4). There are several mod-

els that describe the force field generated by the laser beam of the Optical

Tweezers. The accuracy of the model depends on the size of the trapped
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Figure 2.4: A schematic of Optical Tweezers laser beam with a spherical
object attracted towards the focus of the laser

particle with respect to the wavelength of the laser beam of the Optical

Tweezers. If the size of the trapped object is much larger than the wave-

length of the laser beam, then the ray-optics model [77] describes the exerted

forces accurately. Otherwise, if the trapped object is much smaller than the

wavelength of the beam, then Maxwell’s electromagnetic equations describe

the Optical Tweezers force model. Closed-form analytical solutions can only

be obtained for very few geometries, such as spherical [78] and cylindrical

particles [79]. In other cases, the force field of non-spherical micro-structures

has been investigated using T-matrix calculations [80] or can be calculated

through numerical methods and computational models [81].

2.5.2 Optical Manipulation

The focus of the review on control strategies is on automation techniques

for non-contact manipulation of a single or multiple groups of cells using the

Optical Tweezers. The two main manipulation techniques that are devel-
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oped in the literature are direct and indirect object manipulation. Direct

manipulation refers to immediate trapping of the manipulated object by the

laser beam. Indirect manipulation uses an intermediate optically trapped

microstructure to manipulate the desired microbject.

2.5.2.1 Direct Manipulation

A number of frameworks have been proposed for automated cell transporta-

tion within a fluid medium by directly trapping the microparticle. The ob-

jective of achieving precise micromanipulation can be decomposed in the

following issues that have to be tackled: i) The object needs initially to be

stably trapped by the laser beam. ii) Following this, its position and orienta-

tion must be regulated in the 3D space taking into account the dynamics of

the object moving within the fluid medium. iii) It is also essential that the ob-

ject is transported along an obstacle-free path while the object is maintained

within the trapping radius of the laser beam. Some of the traditional robotic

techniques can be employed to some of the previously mentioned problems.

The proposed frameworks are implemented on conventional or Holographic

Optical Tweezers.

Classical control methods such as a proportional-derivative controller can

be used to regulate the microparticle position on the 2D image plane [82].

A simplified and commonly used mathematical description of the system dy-

namics assumes spherical objects and the optical trapping is described by

the ray-optics regime [83]. The model is a function of the viscous drag coef-

ficient and the trapping stiffness of the optical trap which are dependent on

the respective experimental setup. For systems described by the spring force

dynamic model, adaptive control techniques can be employed requiring no

prior system calibration [84]. Using this control technique, position regula-
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tion on the 2D plane can be achieve while the parameter estimator converges

to the actual values of the coefficients of viscous drag and trapping stiffness

when starting from an initial estimate. Adaptive control is also applied in

order to estimate the acceleration and velocity of the particle [85,86]. Three-

dimensional positioning and rotation presents additional challenges due to

the number of DoFs of the Optical Tweezers systems, the lack of position

feedback and the unknown trapping force behaviour for non-spherical struc-

tures. In the relevant research, control methods for 3-DoF rotation of spher-

ical objects have been reported on Holographic Optical Tweezers which have

more DoF than the conventional Optical Tweezers as they allow splitting of

the laser beam on multiple planes [87].

The ray-opitcs model in the previously mentioned work is relatively ac-

curate for microobjects with dimensions more than 10 µm. However, for

smaller objects the random perturbations due to Brownian motion are more

evident and have a noticeable effect on trapping and transportation. There-

fore, the spring force model can be extended by considering the random per-

turbation of the microobject due to Brownian motion as a stochastic model.

Kalman filtering has been used in order to estimate the tracked particles po-

sition [88]. An analytical expression connecting the trapping probability and

the maximum micro-object velocity is formally derived in [89] and is taken

into consideration in the nonlinear controller design.

Path planning techniques are also employed to assist cell transportation.

To take into account the dynamic changes of the environment, the random

motion of the obstacles can be described using stochastic modelling. In par-

ticular, in [90] a partially observable Markov process is used to model the

random motion. An alternative approach uses a constraint based switching

controller that achieve simultaneously obstacle avoidance and consistent ob-
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ject trapping during transportation based on geometrical modelling of each

scenario [91]. Traditional robotics approaches are also employed for obstacle

avoidance such as the A-star algorithm for path planning [92].

2.5.2.2 Indirect Manipulation

Despite the advantages of non-contact manipulation, optical trapping can

cause damage to the cells due to the induced laser power [11]. Therefore, it

is important to minimize cell exposure to the laser beam. To this end, meth-

ods for indirectly manipulating cells have been developed. Arai et al. have

proposed a methodology for Holographic Optical Tweezers to translate and

rotate a spherical object using two spherical beads in 3D [93]. Holographic

Optical Tweezers have been also used to manipulate lipid nanotubes using

optically trapped microspheres that adhere on the tube [94]. Another ap-

proach suggests non-spherical microtools fabricated using SU-8 for improved

dexterity in manual 2D cell manipulation [95].Stable grasping configurations

for object manipulation can also be generated by synthesizing 3D gripping

formations using multiple spherical microbeads [96]. The problem is formu-

lated as a constrained optimization problem that has to satisfy the 3D form

closure properties for stable grasping. Alternatively, the gripping configu-

ration of the microbeads can be formed as a region-control problem [97].

Other proposed control strategies use the concept of indirectly pushing the

microobject using microbeads rather than caging in order to further reduce

laser irradiation [98].

2.5.2.3 Multiple Object Manipulation

The problem of manipulating multiple objects using Optical Tweezers can

also be considered as a swarm, multi-agent robotic system due to multiple op-
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tical trap generation [99]. This approach is effective when multiple cells have

to be transferred in a specified formation. Chen et al. proposed a potential-

field based controller in order to move the microparticles automatically to a

desired position while preserving a fixed optical trap configuration [100]. A

swarm-inspired technique is employed in [101] to assist simultaneous position

control of a group of microobjects. Multiple groups of objects are manip-

ulated by controlling both the laser source locally and the piezo stage for

transportation outside of the image field of view in [102].

2.5.2.4 Haptic Feedback and Shared Control

Force feedback can further facilitate micromanipulation by conveying mi-

coscale force interactions to the operator and help the user overcome unfa-

miliar microscale force dynamics. This gives rise to two different approaches

that integrating haptic feedback and haptic guidance into the control frame-

work.

Haptic feedback aims at measuring the force interactions in the microworld,

either through vision feedback or force sensing depending on the setup, and

then render them to the user. One of the first systems coupling the macro

and microscale force interactions in Optical Tweezers was developed by Arai

et al. [103]. Similar frameworks have been presented for atomic force mi-

croscopy systems [104, 105]. Avoiding instabilities and ensuring a real-time

control cycle are the two main issues that have to be addressed when force

measurement is performed. In the case of Optical Tweezers, the exerted

forces on the microobjects are measured visually through image processing

techniques which also require prior parameter calibration [106]. An alterna-

tive event-based image processing technique to the frame-based approach is

proposed in [107] to minimize image processing delays and ensure smooth
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force rendering to the operator. Haptic feedback on atomic force microscopy

systems has also been exploited as a sensing means for microstructure shape

reconstruction [66].

Haptic guidance is based on virtual force which aim to assist the oper-

ator in completing a specific task. This concept is known as Active Con-

straints/Virtual Fixtures [108]. Despite the fact that automation can be a

solution for task completion, it excludes the operator from the control loop.

Therefore, it is desirable to combine the machine intelligence and the human

input in the control system. A potential field approach on Optical Tweezers

was developed in [109] in order to guide the operator during object trans-

portation while limiting the user dynamics by compensating the drag force.

A similar framework has been presented in [110] on an atomic force mi-

croscopy system using haptic guidance along an optimized obstacle-free path

during single object transportation. Compared to the actual force rendering

systems, virtual guidance frameworks present increased stability due to the

absence of high gains which are necessary for coupling between the micro

and macro world [111].

In this thesis, one of the research objectives is to develop a shared con-

trol interface for multiple microrobot and 3D microrobot manipulation inte-

grating haptic guidance and also human sensory information that facilitates

multiple microrobot manipulation.

2.5.3 Microassembly

One of the aims of developing accurate micromanipulation strategies is to use

microrobots as a means to perform assembly in the microscale. A motivation

for this is the assembly of devices when fabrication techniques cannot produce

specific devices. Moreover, it can facilitate in situ assembly when direct
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delivery of microrobots to specific areas is challenging. These devices could

then be used for cell manipulation. Microassembly can be performed by an

operator with some parts of the tasks performed automatically or it can take

place spontaneously, in the case of self-assembly.

2.5.3.1 Robotic Microassembly

One method of assembly is by using a robotic micromanipulation system.

In [112], 3D magnetically driven intraocular microrobots are assembled from

planar nickel-coated components which are bonded with ultraviolet-cured

glue. Different types of microgrippers have been proposed in order to facili-

tate assembly. These can employ either a passive or active form of actuation.

Passive and compliant microgrippers have been proposed for micromanipu-

lation [3] and microassembly [113]. Active forms of actuation include piezo

and shape memory alloy grippers. In [114], a microassembly platform is pro-

posed consisting of a two-fingered piezo gripper with a silicon end-effector

that is capable of handling objects with sizes of a few tens of microns. The

goal of this platform is to assemble micro-components that can be used in

larger component assemblies. Shape memory alloy microgrippers have also

been proposed for microcomponent assembly and for assembling scaffold for

tissue engineering [115]. Alternative methods of gripping include strategies

such as using optically controlled microbubbles for microassembly [116].

The accuracy and precision of assembly can be improved by automating

parts of the assembly procedure. A closed-loop approach using model-based

visual position feeback for micro-electro-mechanical systems microassembly is

presented in [117]. Sensing of the position of piezo actuated cantilevers used

for microassembly is considered in [118], which is then used in closed-loop

control. More than one microrobots can be used in control strategies, such as
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caging, in which the grasped micro-object is surrounded by the microrobots

that are considered as multiple end-effectors [119]. Other approaches include

shared-control user interfaces to assist microassembly [120].

2.5.3.2 Self-assembly and Reconfigurable Microassembly

As can been seen from the processes described for robotic microassembly,

most of the techniques are manual. However, manual assembly is time con-

suming and therefore not suitable for batch microassembly. Moreover, it

requires dexterity and precision and the operator must take into account

microscale dynamics. To this end, more versatile techniques emerged such

as self-assembly and reconfigurable microassembly. Self-assembly refers to

assembling components into larger 3D microstructures using dominant mi-

croscale forces or external force fields. External assembly mechanisms include

magnetic or electrostatic actuation [121]. For any of the proposed techniques,

although they allow self-assembly from multiple components, they do not al-

low disassembly due to the bonding methods used which are not reversible as

in [121]. Reconfigurable microassembly facilitates component restructuring

to create different geometrical patterns in order to adapt the functionality

of the robot to multiple tasks. For example, reconfigurable systems in the

millimeter scale have been proposed consisting of up to 20 individual com-

ponents that can be reconfigured for rolling and climbing [122]. Diller et.

al use external magnetic fields and electrostatic forces as the assembly force

and anchoring mechanism respectively [123]. In particular, the magnetic at-

tractive force is generating by an external field to create attraction between

rectangular components that have an embedded permanent magnet in their

core surrounded by an insulating material to reduce the magnetic force be-

tween the components allowing reconfiguration. The individual components
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used in the presented techniques are sized at around 500 µm.

Optical Tweezers have also been used as a microassembly platform. Com-

ponents can be self-assembled and bound together using biomolecules which

are coated on the top of the structures [36,94] or they can be assembled using

the laser beam for in situ polymerization [124]. However, this method makes

assembly permanent and not reconfigurable. Reconfigurable microassebly

has been proposed to assemble scaffolds for tissue engineering inside an Op-

tical Tweezers setup [125]. The components, with sizes from 5 to 10 µm,

are 3D-printed using two-photon polymerization and assembled using the

Optical Tweezers and they can be reconfigured as the components are com-

plementary to each other and can be manually disassembled.

In this thesis, reconfigurable microassembly is investigated using a combi-

nation of optical and magnetic actuation to assembly microcomponents into

larger assemblies.
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Chapter 3

Microrobot Fabrication

This chapter presents the fabrication procedure of optical and hybrid optical

and magnetic microrobots used for indirect microobject manipulation and

for reconfigurable microassembly. One of the issues investigated is how more

degrees-of-freedom can be incorporated into the fabricated microrobots. This

can be addressed either by 3D-printing the microstructure in a single step

or by assembly individual components to create an optically transparent ar-

ticulated microrobot. Both approaches are investigated. In addition, it is

desirable to use a combination of the Optical Tweezers and the magnetic

field for micromanipulation and microassembly. This chapter describes how

3D optically driven microrobots are fabricated using the two-photon poly-

merization technique. A characterization of the effect of the printing power

is presented to investigate the impact of the printing power in the feature res-

olution of the printed structures. The fabrication procedure of microrobots

which are actuated both by the Optical Tweezers and the magnetic field is

also presented by selectively coating parts of the 3D-printed microstructures

Contents from this chapter have been published in: Laser-Printing and 3D
Optical-Control of Untethered Microrobots, E. Avci, M. Grammatikopoulou, and
G-Z. Yang., Advanced Optical Materials, 2017
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Figure 3.1: Two-photon polymerization principle

with a nickel layer.

3.1 Two-photon Polymerization

Two-photon polymerization technology is based on two-photon absorption,

where an atom absorbs two photons in order to move to a higher energy state

(Figure 3.1). This excitation leads to resist polymerization at the focus of the

laser. This method of polymerization came to improve the spatial resolution

of one-photon absorption for polymerization where the absorption of a single

photon of higher energy is needed for the transition to a higher energy state.

Two-photon absorption can be achieved by near-infrared femtosecond lasers

in contrast to one-photon absorption which is achieved by visible ultraviolet

light. The spatial resolution that is achieved in two-photon polymerization

is approximately 100 nm. Commercially available systems use two-photon

polymerization for 3D-printing microstructures, such as Nanoscribe, which

is also the system that has been used in this research.
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(a) Upwards (Conventional) (b) Downwards (Dip-In)

Figure 3.2: Printing configurations

3.2 Optical Microrobot Fabrication

Taking advantage of the capabilities of two-photon polymerization in mi-

crofabrication, any computer-generated geometrical design can be realized

for microrobot design. As the actuation system that is used is the Opti-

cal Tweezers, it is required that optically transparent objects are fabricated.

Commercially available photoresists have properties that allow optical trap-

ping and are the ones that were used for the fabrication of the microrobots

presented in this thesis. The resists which were used are the negative tone

IP-L 780 and IP-Dip Nanoscribe photoresists. IP-L is used to achieve the

highest resolution that Nanoscribe is capable of and is of low viscosity. IP-

Dip is of higher viscosity than IP-L and is used for Dip-In Lithography. The

characteristics of each resist are shown in Table 3.1. Each resist is de-

signed to be used with a specific printing configuration as shown in Figure

3.2. The conventional upwards configuration (Figure 3.2a) is suitable for

printing small-sized structures with IP-L 780 for designs that do not require

material support. This is because the IP-L 780 resist has very low viscos-

ity and is not able to provide support to the microstructure and, therefore,
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Figure 3.3: Rendering of the geometrical model of the two-component rota-
tional joint (left) and of the cylindrical microstructure with cover (right)

Photoresist IP-L 780 IP-Dip

Refractive index 1.48 1.52
Developer PGMEA/IPA PGMEA/IPA
Exposure 780 nm 780 nm

Table 3.1: Nanoscribe’s IP photoresist characteristics

can result to parts of the microstructure collapsing. In addition, the laser is

irradiating through polymerized parts of the structure which can affect the

spatial resolution of the features of the microstructure. On the other hand,

IP-Dip is used the Dip-In configuration in which case the printing direction

is downwards. Therefore, printing through the polymerized part of the resist

is avoided. In addition, as IP-Dip is more viscous than IP-L, it can pro-

vide material support for example in the case of microstructures with hollow

parts.

For the Nanoscribe 3D-printer, the detection of the interface between the

glass slide and IP-L can be realized automatically. This is particularly useful

for batch printing of microstructure arrays as the interface is found for every
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new microstructure. This is important as each microstructure starts to be

printed at the same distance from glass slide surface. On the contrary, this

cannot be realized automatically for IP-Dip on glass substrate and has to be

performed automatically. In the case of IP-Dip, the resist should be placed

on indium tin oxide glasses for automatic interface detection by the software.

However, indium tin oxide glass slides are thicker than the conventional glass

slides which makes them unsuitable to be imaged in an Optical Tweezers

setup as the Optical Tweezers objective lens has a very small field of view

and makes it impossible to focus through a thick glass slide. Alternatively,

some sacrificial height needs to be added on the microstructure on the design

step so that the part of interest of the microstructure is always printed above

the glass surface.

One of the main advantages of the described system is that they are

capable of batch fabrication. Therefore, every design that is investigated is

printed in large arrays that makes testing and characterization easier. This

makes it possible to assess the repeatability of the fabrication of each design.

It also very importantly provides a method of having redundancy in the

number of available microstructures for testing in case some of them are

damaged or lost.

3.2.1 Microrobot Design Considerations

As the two-photon polymerization technology has the potential of fabricat-

ing 3D microrobots with suitable refractive index for optical manipulation,

the next consideration is how to incorporate multiple degrees-of-freedom in

the design. It is also significant to ensure the mobility of the microstructure

which can be hindered by adhesion forces. This is particularly challenging

as one of the characteristics of Nanoscribe photoresist is that they are de-
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Figure 3.4: Batch fabrication of microstructures. Array of cylindrical micro-
robots with rectangular covers (left) and an array of rotational joint micro-
robots (right)

signed so that the material adheres strongly on glass. There are several ap-

proaches in fabricating 3D microrobots which can achieve non-planar motion.

One approach is to fabricate the individual components that comprise this

mechanism and then assemble them mechanically, usually manually, using

mechanical micromanipulators. This approach require a method of attach-

ing the components to each other, usually through chemical bonding [36].

Moreover, manual assembly requires dexterous and high precision manipula-

tion and is time consuming, and almost impossible, for batch fabrication and

assembly of mechanisms. In the following, two methods are investigated: i)

printing of a microstucture with multiple components as a single structure

and ii) combining optical and magnetic actuation to assemble a kinematic

chain. Before explaining how hybrid optical and magnetic microrobots are

fabricated, it is described how the printing laser power affects the resolution

of the features the fabricated microstructures and how optical microrobots

are fabricated.
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(a) 20 %

(b) 25%

(c) 30%

Figure 3.5: Effect of printing power on feature resolution (20 %- 30%)

3.2.2 Printing Power Effect on Feature Resolution

An array of microstructures is printed with different printing powers to assess

its effect on the microstructures (Figure 3.4). The array was printed using

the IP-Dip resist in the Dip-in configuration. The printing power effect is

investigated on the design of a multiple component rotational joint for out-
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(a) 50%

(b) 55%

Figure 3.6: Effect of printing power on feature resolution (50 %- 55%)

of-plane rotation. A rendering of the Computer-aided design (CAD) model

is shown in Figure 3.3. The features of interest are the gaps that appear

in the designs, as indicated by the dimensions of Figure 3.3. The distance

between the components is essential as it also affects the contact area between

them. This consequently affects adhesion between the components which is a

determining factor of the mobility of the microrobot. In order to observe the

microstructures in higher detail, the array of the rotational joint structure

was coated by a layer of silver using thermal evaporation deposition.

An array of the rotational joint microrobot was printed with different

laser powers. The power is referred by the scaling factor of the maximum

power that the laser is capable of. The range of power scaling which is used

is between 20 % to 55 %. From Figure 3.5a, it can be seen that for low laser
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powers, in this case up to 20 %, the material presents low stiffness and is

more flexible. However, the rotating part of the microstructure cannot be

supported by the base of the joint and the top part is collapsing. Figure

3.5b shows that for a 5 % increase, higher polymer stiffness can be achieved

with satisfactory feature resolution (Figure 3.5b-middle and right). It is also

worth noting that as the rotating part is collapsed on the base but is also

supported by it, the rotating component has not been printed merged with

the base of the joint. In contrast, it is observed that for a further 5% increase

of the laser power, the features of the rotating part and the base of the joint

start to merge and, therefore, the rotating part is printed on an upright

position (Figure 3.5c). For power scalings larger than 50%, the laser is also

overheating the resist causing bubbling (Figure 3.6). It can also been seen

from Figures 3.5c (right) and 3.5a and b (right) that the higher the laser

power, the lower the feature resolution is.

It is worth noting that the minimum resolution that can be achieved also

depends on the expiration date of the resist. It has been experimentally

observed that the older the resist, the lower power is needed to polymerize

it. Hence, the feature resolution degrades over time for older resists. How-

ever, the overall trend of the impact of laser power on printing resolution

can be generalized with slight adjustments on the power scaling parameter

depending on the system, the laser calibration and the resist.

3.3 Hybrid Optical and Magnetic Microrobot

Fabrication

The above procedure is for the fabrication of polymer components which can

be manipulated by the Optical Tweezers due to the transparency and the
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(a) 3D view (b) Top view

Figure 3.7: Rendering of the geometrical model of the cylindrical microrobot
with spherical handle and spherical tips

(a) 3D view (b) Top view

Figure 3.8: Rendering of the geometrical model of the cylindrical microrobot
with one spherical handles and rectangular tips

refractive index of the resist. In order to create microstructures that are

also responsive to the magnetic field, the surface needs to be coated with a

magnetic material. However, it is also important that optical trapping can

be simultaneously achieved. The motivation for creating hybrid actuated

microstructures is so that the individual components are assembled using

the magnetic force and actuated by the optical force as described in Chapter

6. The fabrication procedure to achieve selective metal deposition for hybrid

optical and magnetic actuation is described in the following section.
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3.3.1 Masking for Selective Metal Deposition

In order to fabricate microrobots which can be actuated both by the Optical

Tweezers and the magnetic field, the polymer surface needs to be deposited

with a ferromagnetic material selectively in specific areas. The aim is to

allow optical trapping of a spherical handle in the middle of the cylinder,

while the remaining part of the cylinder and its tips can be magnetized. The

motivation is that other microstructures, that can also be magnetized, are

attracted to it in order to form an assembled kinematic chain. Therefore,

only specific areas of the microstructure have to be deposited with metal

while the spherical handle remains optically transparent. To achieve this, a

mask is printed above selected areas of the structure which is used to cover

the surfaces that need to be grasped by the laser. A similar approach for

selective metal deposition has been used in [43]. The virtual geometrical

model of the microstructures with the corresponding masks and dimensions

are shown in Figure 3.9. A 3D-printed pair of microstructures is also shown

in Figure 3.10. After printing, the array of microstructures are deposited

with a 100 nm layer of nickel using the sputtering method. The masks are

removed after the metal deposition during the detachment procedure of the

microstructures from the glass substrate.

3.4 Microrobot Detachment

After fabrication, the microstructures need to be removed from the glass and

transported to the workspace of interest, which in this work is a closed space

filled with a liquid medium such as deinonized water. The microstructures

can be removed from the glass slide individually using micromanipulators or

by sonication, which is a batch detachment method.
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Figure 3.9: Rendering of the geometrical model of the microstructures with
masks for metal deposition

The detachment procedure using mechanical micromanipulators is the fol-

lowing: The glass slide, on which the microstructures are printed, is placed

inside the SEM (Tescan, Czech Republic). The chamber contains a set of up

to four micromanipulators (MM3A, Kleindiek Nanotechnik, Germany). Each

microstructure is detached individually. The advantage of this approach is

that mechanical micromanipulators render relatively large forces, therefore

they can overcome the adhesion between the base of the microstructure and

the glass substrate. However, this method has a low success rate as the de-

tached microstructure falls again on the substrate and hence can adhere o

the glass substrate. It is also time consuming for detachment of large batches

of microstructures. An alternative method of microrobot detachment is son-

ication. This methods relies on applying ultrasonic sound waves on particles

to induce motion. The advantage of this method is that it is suitable for

batch microrobot detachment, however the detached microrobots need to be

retrieved and transferred to the workspace of interest. The retrieval step be-
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Figure 3.10: Cylindrical microrobots with rectangular (left) and spherical
(right) tips with covers on top of spherical handle

Figure 3.11: Partially detached microrobot (only rotating part) (a) and fully
detached microrobot (b) using sonication

comes less challenging if the microrobots are confined in a small workspace

and detached directly in it. Therefore, the sample with the 3D-printed micro-

robot is directly placed inside the sonication bath and is later placed inside

the Optical Tweezers, enclosing all detached microrobots in a defined and

relatively small workspace. The duration of sonication is usually between 5

to 10 seconds. The detached microrobots are suspended within the liquid

48



(a) CAD model rendering (b) Image from Optical Tweezers camera
feedback

Figure 3.12: Geometrical model rendering and microscope image in an Op-
tical Tweezers setup of hybrid optical and magnetic microrobots

and are less likely to be attached again on the glass substrate. The duration

determines whether the microstructure is partially or fully detached from the

glass. A microstructure is partially removed when the mobile components

are detached from each other while the base of the microstructure remains

attached on the glass substrate. An example of fully and partially detached

microrobot, where only the rotating part is detached, are shown in Figure

3.11. In the case of hybrid optical and magnetic microrobots, the mask

for deposition is also detached. An indicative image of two hybrid optical

and magnetic microstructures acquired from the camera-microscope system

inside an Optical Tweezers setup is shown in Figure 3.12.

3.5 Conclusions

This chapter presents the fabrication method of optical and hybrid optical

and magnetic microrobots. The main design consideration is how to create

3D multiple component microrobots. Two methods are proposed: The first

is one-step 3D printing of a multiple component optically transparent mecha-
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nism. The impact of the printing power in feature resolution is also assessed.

It is shown that higher laser powers degrade feature resolution and as a result

obstructs printing a multiple component mechanisms as their features merge.

The second method to create articulated mechanisms is to assemble them us-

ing individual components that are simultaneously actuated by the Optical

Tweezers and the magnetic field. The methodology of fabricating hybrid

optical and magnetic microrobots was described followed by a description of

the detachment method used in the experiments. It is stated that individual

detachment using a set of mechanical micromanipulators has a lower success

rate and than sonication, which is also more suitable for batch microrobot

detachment.
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Chapter 4

Three-Dimensional Pose

Estimation of Optically

Transparent Microrobots

This chapter investigates depth and orientation estimation of 3D-printed

microrobots inside an Optical Tweezers setup. Section 4.1 describes the

problem definition and the geometry of the projection model of the camera-

microscope model of an Optical Tweezers imaging system. The detection of

the 2D position of the microrobot is described in Section 4.2. In Section 4.3,

two methods of depth estimation are presented; i) using the overall sharp-

ness of the image frame which corresponds to features in multiples depths

Contents from this chapter have been published in: Depth estimation of optically
transparent laser-driven microrobots, M. Grammatikopoulou, L. Zhang and G. Yang,
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
c©2017 IEEE, Depth Estimation of Optically Transparent Microrobots Using
Convolutional and Recurrent Neural Networks, M. Grammatikopoulou, L. Zhang
and G-Z. Yang, In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) c©2018 IEEE and Three-Dimensional Pose Estimation of Optically
Transparent Microrobots, M. Grammatikopoulou and G-Z. Yang, In: IEEE Robotics
and Automation Letters 2019 (RA-L) c©2019 IEEE
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from within the object and ii) utilizing the local sharpness around distinct

features for single depth recovery at specific regions of the object. The first

method aims to provide an overall measurement for the z-displacement of the

object, while the second takes into account local changes of sharpness which

might be attributed to object 3D rotation rather than displacement along

the microscope z-axis. The motivation for the global and the local approach

stems from the fact that the overall sharpness measure can not infer directly

the depth of a 3D microstructure in case of simultaneous 3D translation and

rotation. The proposed methodologies are validated through experimental

results which are compared with ground truth data. Section 4.4 investigates

depth estimation of optically transparent microrobots of an arbitrary geome-

try using a learned regression model which is independent of the microrobot’s

orientation and is robust to different illumination levels. The method relies

on a ground truth dataset generated from recorded experimental data used

to train and validate the proposed CNN-LSTM model for regression. The

proposed model decouples the 3D orientation and translational motion varia-

tions of the microrobot. In Section 4.5, orientation estimation is investigated

both as separate problem using an optimization-based, a template-based ap-

proach and also as part of pose estimation using CNNs. Section 4.6 proposes

a methodology for estimating the depth and 3D orientation of a microrobot

of known geometrical model in an Optical Tweezers setup. This frameworks

attempts to predict the 6-DoF pose of 3D geometries. A supervised learning

method using CNNs is employed to estimate the depth of the microrobot

and its relative orientation between two image frames. The trained model

is validated using microscope ground truth trajectories of three different mi-

crorobot designs.
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4.1 Problem Definition

This section describes the problem of pose estimation in microrobotic systems

compared to macroscale and presents the projection model of such systems.

4.1.1 Pose Estimation Problem in Microrobotics

The conventional Optical Tweezers setup has a single camera, hence stereo

methods for 3D reconstructions are not applicable to this and many other mi-

crorobotic setups. The camera projection model is also different to macroscale

camera systems which are described by the perspective projection model.

The microscope-camera model of an Optical Tweezers system is described

by the orthographic projection model, in which all rays are parallel to the

optical axis and in which the distance along the z-axis between the centre of

projection and the projection plane is too large. This results in unobservable

motion along the z-axis (Figure 4.1a) while the limited working distance of

the microscope lens results in parts of the microrobot being defocused during

3D motion rather than scaling as it happens in the large-scale (Figure 4.1b).

4.1.2 Microscope-Camera Model

Let po = [px py pz]
T ∈ R3 and Ro = Rx(ax)Ry(ay)Rz(az) ∈ R3x3 be the

position and the orientation of the object frame {o} placed at the centre

of mass of the microrobot with respect to a fixed co-ordinate frame, with

Ri(ai) ∈ R3x3 the rotation matrix through an angle ai about the axis i with

i = {x, y, z} and Ro the rotation matrix of the frame {o} describing the

orientation of the microrobot relative to the fixed frame. The above con-

figuration is imaged through a microscope-camera system described by the
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Figure 4.1: The projection model that describes the microscope-camera sys-
tem (a). The three-dimensional motion results in out-of-focus point on the
image (b). An example set of images shows a microrobot as projected on
the image plane in different depths along the z-axis, which gives a focused
(c-middle) and defocused (c-left and right) images.

orthographic projection model. The projection pc ∈ R2 of a point p ∈ R3

on the image plane is described as follows:

pc = KP (Rp + t), P =

1 0 0

0 1 0

 (4.1)

where K ∈ R2x2 the matrix of the intrinsic parameters of the model, P the

orthographic projection matrix given by (4.1) and R ∈ R3x3, t ∈ R2 the

extrinsic parameters obtained by the registration of the 3D model of the

microrobot with the image frame.
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Figure 4.2: An indicative image frame with the registered projection of the
geometrical model (left). A rendering of the geometrical model (bottom
right) and the image frame with which the CAD model is registered (top
right)

4.1.3 Image-Geometrical Model Registration

As the geometrical model of the microrobot is known, it is used to register the

microrobot with the image frame during initialization. The corresponding

points between the projection of the microrobot on the image plane and

the 2D projection of 3D points geometrical model of the microrobot are

manually selected for the initial pose. The 2D projection of the 3D points

of the geometrical model are registered with the microscope image depicting

the initial pose of the microrobot. Once their projection is registered, the

extrinsic parameters R, t are then estimated as follows, in order to obtain

an absolute estimation of the orientation with respect to a fixed co-ordinate
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frame:

R, t = arg min‖pci −K P (R pMi + t)‖2 (4.2)

s.t RT R = I3×3

where pMi ∈ R3 the ith vertex of the point cloud of the geometrical model

and pci ∈ R2 its projection on the image plane. An indicative registered

frame with the CAD model of the microrobot is shown in Figure 4.2.

4.2 Microrobot 2D Position Detection

The 2D position of the microrobot is detected as follows: First, edge de-

tection is used followed by discarding small unconnected edges that consist

of a number of pixels below a specific threshold. The remaining edges are

thickened in order to obtain a closed external contour. Last, as the contour

might still not be closed, the convex hull of the detected thickened edges is

obtained for the centre calculation. Using the convex hull of the edges might

result to a less accurate object contour but is more robust in obtaining a

closed area for 2D position calculation.

4.3 Microrobot Depth Estimation using Sharp-

ness Measurements

This section describes two strategies for recovering z-translation using sharp-

ness measurements. The first method gives a depth estimation that describes

the overall object displacement. The second method attempts to estimate a

local sharpness model for single object features. In the following, the term
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global sharpness model refers to the function that maps a sharpness value

to the corresponding object z position relative to the focus plane approxi-

mated by a sum of Gaussian curves. The term local sharpness denotes the

approximation of the mapping function that relates a single sharpness value

to the corresponding depth of an individual object feature by one Gaussian

curve. The motivation for developing these two methods is that the first

method does not tackle the problem of interfering object features at differ-

ent depths that are visible due to transparency. In addition, a holistic focus

measurement cannot distinguish whether changes in the sharpness are cause

by displacement along the z-axis or by 3D object rotation, as this motion

also results to parts of the object being focused or defocused.

4.3.1 Depth Reconstruction using Global Sharpness

Model Approximation

This method aims to reconstruct the overall displacement of the object by

using a global representation of the sharpness model. This method uses the

full image that includes the object without occlusions for sharpness calcu-

lation. In order to estimate the translation along the z-axis of the object,

the mapping between the sharpness measurements for each image frame and

the corresponding z-position of the object must be established. The focus

measurement φ that is used in this case is the Gaussian Derivative [126]:

φ =
∑

(I ∗Gx)
2 + (I ∗Gy)

2, (4.3)

G(x, y) =
1

2πσ2
e

(
−
x2 + y2

2σ2

)
(4.4)

Gx =
∂G(x, y)

∂x
, Gy

∂G(x, y)

∂y
(4.5)
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4.3.1.1 Global Sharpness Model Calibration

Prior to estimating the trajectory along the z-axis, a calibration routine

has to be performed to establish the mapping between sharpness and the

displacement along z. An indicative set of calibration data is shown in Figure

4.3, which include the depth measurements, the image sequence and the

corresponding sharpness values for each frame. The calibration trajectory

corresponds to scanning the microstructure along its height on an upwards

and a downwards trajectory. The calibration data is used to approximate

the sharpness model as a function φ(ztotal) of the overall object displacement

ztotal by fitting a sum of N Gaussian curves (Figure 4.4 - top)

φ(ztotal) =
N∑
i=1

αie
−

(ztotal − bi)2

ci2 (4.6)

where αi the maximum amplitude of the ith Gaussian term, bi the depth at

which the sharpness is maximum and ci the standard deviation.

4.3.1.2 Global Depth Reconstruction

The global sharpness approximation as a function of the depth cannot be

used directly to reconstruct the z-displacement as the Gaussian functions

are not invertible. In particular, it can be seen that two different depths

can correspond to the same sharpness value (Figure 4.4). For this reason,

the sinusoidal calibration trajectory can be divided in two sections to which

a sum of one-sided Gaussian curves can be fitted (Fig 4.4 -(top) left and

right of dashed line). The corresponding inverted functions zi = f−1(φ) are

depicted in Figure 4.4 (bottom) (here i = 1, 2). The switching between the

curves z1 and z2 (Figure 4.4 - left and right of dashed line) is determined
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Figure 4.3: Sharpness measurement and ground truth trajectory used in
calibration for mapping function approximation

by some conditions. In particular, these switching conditions are defined

by the sign of the rate of change of the focus measurement ∆φ, the sign

of the update rate of the estimated depth ∆z and the range at which the

estimated depth belongs to. Continuous switching can be ensured since a

continuous z-trajectory is assumed and high alterations of the depth cannot

be performed.
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Figure 4.4: Global sharpness model approximation from calibration (top).
Inverse sharpness models (bottom)

4.3.2 Depth Estimation using Local Sharpness Model

Approximation

The previous approach is sufficient for depth reconstruction when the sharp-

ness functions has a dominant peak that can describe the object displacement

along the z-axis. Due to object transparency, the features below or above

the focus plane contribute to the total sharpness measurement when using

as input to the calculations the whole image frame. This is also indicated by

the fact that the sharpness measure for the whole image is approximated by

a sum of Gaussian terms. This implies that the contribution of the dominant

features of the microstructure to the single sharpness measurement can cor-
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Figure 4.5: Local sharpness model approximations using one Gaussian curve
(left). The windows and the corresponding local object pose are also shown.
The sharpness values as calculated for each of the selected features (right)

respond to different depths. In addition, during 3D rotation, different parts

of the object become defocused, resulting to changes in the overall sharpness

measurement. Hence, the overall sharpness measure cannot identify whether

defocusing occurs only locally at the object due to rotation or if it is uniform

due to translation along the z-axis.

In order to get the corresponding depth of single features, smaller windows

around single features of the object are obtained. The centres of the local

windows are obtained by the projection of the registered 3D points of the

CAD model on the image frame. The initial 3D orientation of the object

is estimated as presented in 4.1.3. Estimating the orientation and the 2D

position of the object is necessary to obtain a window that contains only the

feature of interest.

4.3.2.1 Local Sharpness Model Calibration

Similarly to the global sharpness method, a calibration routine is performed

in order to establish the mapping between the sharpness and the depth of a

single feature without interference by neighbouring features. It is shown that

when the window is sufficiently small and contains single depth features, the
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sharpness model can be approximated with one Gaussian curve (Figure 4.5).

The features which are selected for the calibration are the corners of the teeth

of the microgears. A square window of 15x15 pixels, which corresponds to

1.1 µ m2, around the feature was created assuming that the interference from

the neighbouring features is minimized (Figure 4.5). It can be seen that there

is a minor overlap between the corner and the edge features of the micro-

gear teeth. However, the overlapping is sufficiently small so that the local

sharpness can be approximated by a single Gaussian term. The focus measure

which is used in this case is the Gray-Level Normalized Variance [127]. The

reason for using a different focus measure in this case is because a normalized

measure is needed in order to have the same reference among all the fitted

functions. In addition, the Gaussian Derivative is less sensitive to individual

smaller peaks caused by the interfering object features.

4.3.2.2 Optimization-based Local Depth Reconstruction

After the local sharpness models are established, the local depth ẑ is deter-

mined by minimizing the distance between the measured sharpness on the

local window φm and the expected sharpness value from the derived Gaussian

curve:

ẑ = argmin

∥∥∥∥φm − αie−
(ẑ − bi)2

ci2
∥∥∥∥ (4.7)

By using this optimization method, the individual curves don’t need to be

inverted. Moreover, by expanding the window more features are included

and the right hand side of the equation can be expressed as a sum of Gaus-

sians, using the functions defined for the known features in the calibration

procedure.
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Figure 4.6: The Optical Tweezers experimental setup. The 3D-printed mi-
crorobot array was translated using the piezo stage and was imaged through
the camera-microscope system.

4.3.3 Experimental Setup

The components of the hardware experimental setup include an acoustic-

opto deflector Optical Tweezers (Elliot Scientific, UK) and an integrated 3D

micromanipulation piezo stage which is used to simulate the object trajecto-

ries. A Charged-coupled Device (CCD) camera (Basler AG, Germany) and

an immersion oil lens optical microscope (Nikon Ti) with 100x magnification

are used to capture the live feed during the experiment. The experimental
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setup is shown in Figure 4.6.

4.3.4 Microrobot Fabrication

The designs used in the experiments are 3D-printed gear-shaped microstruc-

tures. The height of the structure is 11.2 µm. The microstructures were

printed using the Nanonsribe 3D-printer (Nanoscribe, Germany) and the IP-

L photoresist. The printing power was set to 25 %. The structures were

printed on a glass substrate, placed in deionized water and kept fixed on the

glass substrate.

4.3.5 Experimental Results

The proposed methodologies are evaluated and compared to the ground truth

data. The object motion is generated by translating the piezo stage along

the z-axis and keeping the camera position fixed. The piezo stage trajectory

is used as the ground truth data for the experimental validation.

4.3.5.1 Depth Reconstruction using Global Sharpness Approxi-

mation Model

The depth of the 3D-printed microstructure is estimated by using the cali-

brated sharpness approximation model in a new image sequence. The new

image sequense is generated by translating the stage by a different trajectory

than the calibration one. In this case, a triangular trajectory was chosen

but alternative motions could also be performed. The focus measurement of

the new sequence is calculated and the resulting sharpness for each frame is

shown in Figure 4.7. The calculated sharpness values are used to estimate

the depth according to the switching conditions and the calibrated Gaussian
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Figure 4.7: Global sharpness measurement using the Gaussian Derivative
and the corresponding images from the performed experiment
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Figure 4.8: The estimated trajectory (blue) and the ground truth trajectory
of the piezo stage (red)

model as described in section 4.3.1. As shown in Figure 4.8, the estimated

depth trajectory follows the stage trajectory that is used as the ground truth.
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Figure 4.9: An example of local feature depth estimation using the optimiza-
tion based approach. A set of local windows located at a corner feature (top)
are used to calculate the sharpness (middle) of the windows. The estimated
and stage relative depth (bottom) shows that the proposed method can be
used to estimate local depth information as long as the changes of sharpness
can be detected.

4.3.5.2 Depth Reconstruction using Local Sharpness Approxima-

tion Model

To confirm that the proposed method can estimate the relative depth of

the local features on the microstructure, the translational stage is moved by
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following a sine wave trajectory. For each local feature, a depth relative to

the initial position is estimated by using the calibrated parameters of the 1D

Gaussian model. As shown in Figure 4.9 (top), a set of local windows are

cropped around the corner features in the sequence of image frames of the

performed experiment. The estimated relative depth follows the reference

stage movement as long as the sharpness of the window changes. If the

sharpness value does not change, which indicates the focus plane does not

intersect with the microstructure, the proposed method assumes that the

object is static. This could also be attributed to limitations of the used

optimization method, which was the Quasi-Newton optimization algorithm.

When the focus plane intersects the microstructure again (i.e. part of the

object is in focus), the relative depth of the feature can be estimated, as

shown in Figure 4.9. It is worth noting that the reconstruction error is

similar for all three phases as the object trajectory is periodic.

It is worth noting that the calculated sharpness measures for each indi-

vidual feature can also reveal information about the object orientation. In

particular, Figure 4.5 (right) depicts the selected features as projected on the

image and their corresponding sharpness values. It is shown that the features

on the right of the gear-shaped microrobot are at lower depths compared to

the features on the left. This can also be visually verified since the right

features are more blurry than the ones on the right. This information can

be fused with the results from a 3D orientation estimation method to ac-

count for misalignments in the orientation or detect the out of focus parts of

the microstructure. Therefore, the local depth estimation can be related the

relative z-displacements of the object features to the estimated orientation.
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4.4 Microrobot Depth Estimation using Con-

volutional Neural Networks and Recur-

rent Neural Networks

The previous methodologies rely on the calibration routine performed be-

fore estimation. The estimated sharpness model corresponds to a specific

microrobot orientation. Therefore, each model is valid when the microrobot

is only translating and not rotating. In addition, the sharpness model re-

lies on the illumination level of the images obtained during the calibration

procedure. To tackle these problem, more high-dimensional features are nec-

essary for depth estimation. CNNs have the advantage of being able to learn

high-dimensional data-specific feature maps. To this end, a learning depth

regression model is proposed that uses microrobot-specific information from

monocular microscope image sequences that show simultaneous microrobot

3D translation and rotation. The aim of the proposed methodology is to es-

timate the motion of the microrobot along the z-axis independently of i) the

microrobot’s 3D orientation, ii) the image illumination levels using machine

learning to derive a regression model that describes the mapping between

the current image frame and the corresponding depth. For 3D-printed mi-

crorobots of known geometries, a dataset can be generated consisting of a set

of microscope images and the corresponding 3D positions and orientations of

the microrobot. The labelled data is used to train a model that predicts the

position of the microrobot along the z-axis using as input the current image

frame obtained by the microscope-camera system.
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4.4.1 Dataset Generation

A ground truth dataset of microscope images of microrobots of known 3D po-

sitions and 3D orientations is generated by 3D-printing multiple microrobots

in different orientations. The dataset contains sequential and non-sequential

orientations for training. The non-sequential data contain orientation dis-

placements up to 5 degrees about each axis while the sampled continuous

rotations include orientation differences up to 20 degress for the gear-shaped

microrobot and up to 10 for the cylindrical microrobot dataset. For the

non-sequential data, in order to generate a representative dataset that spans

sufficiently the configuration space of the microrobot, the 3D orientations are

drawn randomly from a uniform distribution:

p(x) =


1
b−a if a ≤ x ≤ b

0 otherwise

(4.8)

where x = ax, ay, az with ax, ay, az the rotation angles about the x, y and

z axis of the fixed frame with a = 0o, b = 360o. Hence, the 3D orienta-

tion of each microrobot is equal to R = Rotx(ax)Roty(ay)Rotz(az) where

Rotx(ax), Roty(ay), Rotz(az) the rotation matrices about the x, y, z axis of

a fixed frame respectively. In addition, a set of videos of a 360o rotation

about the x-axis performed in steps of 4o and a rotation of 360o about the

y-axis in steps of 10o and a fixed rotation of 5o about the z-axis were ac-

quired. These configurations were chosen so that sequences of frames that

correspond to discretized 360o rotations of the object around different axis

are also included.

The microrobots are 3D-printed in specific orientations using the Nano-

scribe 3D-printer (Nanoscribe, Germany). The IP-L photoresist was used for
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Figure 4.10: Indicative frames from the generated datasets. Three geometries
are used for training and validation: The first is a gear-shaped microrobot,
the second a cylindrical microrobot with three spherical handles and the third
one a helical microrobot.

printing the microrobot arrays following the conventional upwards printing

configuration. Three microrobot designs are considered as depicted in Fig-

ure 4.10. The first one is a gear-shaped microstructure (Figure 4.10-top), the

second geometrical model is a cylinder with three spherical handles (Figure

4.10-middle) which is one of the two component designs of the hybrid optical

and magnetic microrobot presented in Chapters 3 and 6, and the third one

is a helical microrobot (Figure 4.10-bottom).
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4.4.1.1 Data Collection

The printed microrobots are kept fixed on the glass slide and placed on the

piezo stage to generate the ground truth trajectories. For each orientation

φi = [αxi αyi αzi]
T ∈ R3, the microrobots are translated using the piezo stage

along the z-axis to generate the trajectory. Our assumption is that keeping

the microrobots fixed on the glass substrate and moving the glass slide with

the stage produces an image which is equivalent to keeping the stage fixed

and having the microrobots moving freely within the fluid medium as this

is the only way of producing ground truth trajectories where the depth and

orientation of the microrobots are known. Different levels of illumination are

used during image acquisition to make the learned model robust to changes

in illumination. Each recorded trajectory consists of 250 image frames that

correspond to one orientation and multiple depth values as the microrobot is

translated along the z-axis in either a sinusoidal or triangular trajectory. The

gear-shaped microrobot dataset consists of 167 discrete orientations while the

cylindrical and helical microrobot datasets of 178. As each orientation cor-

responds to 250 image frames and depth values, the gear-shaped and the

cylindrical robot datasets consist of 41750 and 44000 unique image frames

with ground truth depth and 3D orientation values respectively. Some ex-

ample image frames with the corresponding CAD designs of the microrobots

are shown in Figure 4.10. For each orientation, the microrobot is translated

along a known trajectory on the z-axis by controlling the piezo stage of the

microrobotic platform. The range of the motion of the piezo stage is 16.5

µm. This range was chosen as it scans sufficiently the 3D dimensions of the

selected designs shown in Fig 4.10. This range minimized the acquisition

of frames in which the microrobot is not visible, which is along the small-

est dimension of the structure. On the other hand, some configurations are
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at the limits of range of motion. The illumination levels vary across the

captured videos for increased robustness. The first frame of each recorded

video corresponds to the position where the microrobot is fully focused, i.e

0 displacement along the z-axis with respect to the focus plane.

4.4.1.2 Data Pre-processing

After the data is collected, each image frame is cropped around the 2D posi-

tion of the microrobot to contain only the microrobot in the field of view. The

original image dimensions are 648 x 488. The 2D detection of the microrobot

is performed as in Section 4.2. A further scaling down to 70% of the cropped

image is then performed. This is to increase the speed of calculations and

the size of data that need to be processed but without removing necessary

information for model training. In addition, the images are zero-padded to

avoid missing information by applying the convolutional filters on the edges

of the image. The depth values are also normalized so that the zero dis-

placement corresponds to the image frame in which the microrobot is most

in focus. The dimension of the processed image frame that is given as input

to the network is 240x224. The pairs of images for the training set are given

as input to the network in a non-sequential order. For the test set, images

are ordered in sequences in which the microrobots are in similar depths but

in different neighbouring orientations in order to simulate the estimation of a

continuous sampled rotation with ground truth data (Figure 4.18 - absolute

orientation).

4.4.2 Depth Estimation Network Architecture

The network architecture comprises five convolutional layers combined with

a recurrent layer, in particular an LSTM cell. Each convolutional layer is
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Figure 4.11: Example learned feature maps generated from the first, second
and third pair of convolutional and max-pooling layers of the trained network
for a given input image. A colormap is used to outline the different intensities
within each map.

followed by a max-pooling layer. The convolutional layers are necessary so

that the network learns data-specific features which are correlated to the ge-

ometry of the microrobot. In comparison to the sharpness measurement used

as features in Section 4.3, the learned feature maps describe a more gener-

alized mapping between the current image and the corresponding depth. In

particular, features such as image sharpness, depend on the respective 3D ori-

entation of the microrobot and on the image illumination level. The derived

feature maps are downsampled by the max-pooling layers. An indicative set

of feature maps from the first three convolutional and max-pooling layers of

this implementation is shown in Figure 4.11.

Following the convolutional and max-pooling layers, a recurrent layer is

used to regress the depth of the microrobot. More specifically, an LSTM cell

calculates the output of the regression model. The LSTM cell is preferred

to dense layers as it keeps a short-term memory of the previously estimated

values minimizing discontinuities in the prediction of continuous trajectories

for real-time depth estimation. The cost function c(ẑi, zi) is defined as the

mean squared error between the output layer values and the corresponding
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Figure 4.12: An overview of the proposed architecture. The network consists
of five convolutional layers for feature extraction and one LSTM cell which
estimates the depth of the microrobot.

Layer Parameters

Convolutional 1 Kernel: 2× 2, Stride: 1, Filters: 16
Max-pooling 1 Kernel: 2× 2
Convolutional 2 Kernel: 2× 2, Stride: 1, Filters: 16
Max-pooling 2 Kernel: 2× 2
Convolutional 3 Kernel: 2× 2, Stride: 1, Filters: 32
Max-pooling 3 Kernel: 2× 2
Convolutional 4 Kernel: 2× 2, Stride: 1, Filters: 32
Max-pooling 4 Kernel: 2× 2
Convolutional 5 Kernel: 2× 2, Stride: 1, Filters: 64
Max-pooling 5 Kernel: 2× 2
LSTM cell 1 Units: 50

Table 4.1: Depth estimation model parameters

ground truth depth:

c(ẑi, zi) =
1

N

N∑
i=1

(ẑi − zi)2 (4.9)
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where ẑi, zi the predicted and ground truth depths respectively for the ith

sample and N the number of training samples. The optimizer which is used

is the Adam Optimizer with learning rate equal to 0.001 while the training set

is divided into batches of 20 samples. Each convolutional layer is followed by

an exponential linear unit activation function while the LSTM cell is followed

by a linear activation function. The number and sequence of layers and the

network parameters are given in Table 4.1.

4.4.3 Experimental Setup

The experimental setup consists of an Optical Tweezers (Elliot Scientific,

UK) with a mounted XYZ-Axis Nanopositioner (Mad City Labs Inc.). The

microrobots are imaged through a high-speed CCD camera (Basler AG, Ger-

many) and an oil immersion lens microscope (Nikon Ti) with 100x magnifica-

tion. The hardware setup is depicted in Figure 4.6. The regression model is

implemented in Python using TensorFlow. A workstation with an NVIDIA

GeForce GTX Titan X graphics card, an Intel Xeon CPU (3.4 GHz) and

62.8 GB of RAM was used for the training of the network. The size of the

training set is 5.8 GB and the training time was 3 hours and 22 min.

4.4.4 Experimental Results

The design that is used for depth estimation is a gear-shaped microstructure.

The geometrical model and the dimensions of the microrobot are shown in

Figure 4.10 (top). The array of microrobots was fabricated using Nano-

scribe 3D-Printer and the IP-L Photoresist (Nanoscribe, Germany). The

laser power was set to 22 % . The printing duration for each microrobot

is 20 seconds and each recorded microrobot trajectory has a duration of

8.3 seconds. These times indicate that generating the presented dataset of
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microscope images and ground truth trajectories for a specific geometrical

model is not restrictively time consuming. The dataset can be extended if

additional data is neeeded. Furthermore, the dataset for each geometry has

to be generated once for each similar imaging setup. The choice of gener-

ating a relatively small-sized dataset for learning is to determine what is

the minimum amount of data needed for model training without increasing

unnecessarily the overhead of the microfabrication and data generation pro-

cedures. The microrobot design was selected to demonstrate the tracking of

a complex geometry with features visible from within the structure. In an

Optical Tweezers setup, the transparency of 3D-printed microrobots is visible

and, although it could be overcome by fabricating opaque microstructures,

this alteration would significantly impact the trapping force. This particu-

lar design could be used for actuation within a microfluidic chip or for cell

manipulation. Alternative designs could be used depending on the task and

the application.

4.4.4.1 Validation of Microrobot Depth Estimation using the CNN-

LSTM Model

In contrast to the training set, the validation set images are not shuffled and

are given as input in a sequence of continuous positions in order to assess

the prediction of continuous trajectories. The order in which the test set

images are given as input to the model can be inferred from the ground

truth trajectories shown in Figure 4.13 (top). The trajectories are either

sinusoidal, triangular or saw-tooth waves but alternative trajectories could

be performed. Each peak corresponds to a separate trajectory and a different

microrobot 3D orientation, as shown in Fig 4.14. Figure 4.15 depicts the

result of estimating a sinusoidal and a triangular trajectory along the z-axis
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Figure 4.13: The validation results showing the sequence in which the data
is given as input to the network (top). A histogram of the error distribution
shows the range of error between the prediction and the ground truth for the
test set (bottom).

for microrobots of different orientation using the pre-trained regression model

presented in Section 4.4.2.

Metric Value

Median error [µm] 0.501
Mean error [µm] 0.708
Minimum error [µm] 0.0001
Maximum error [µm] 3.45

Table 4.2: Metrics for validation of microrobot depth estimation
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Figure 4.14: A more detailed overview of the predicted trajectories. The
figures depict the prediction (blue) in comparison to the ground truth depth
(red). The dashed lines separate the trajectories that correspond to different
microrobot 3D orientations as stated in the figure.
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(a) Sinusoidal trajectory
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(b) Triangular trajectory

Figure 4.15: Trajectory reconstructions of microrobots with different orien-
tations following the same trajectory

4.4.4.2 Results and Discussion

The depth values estimated by the proposed trained CNN-LSTM network

are depicted in Figure 4.14 for a more detailed overview. The metrics used
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to assess the accuracy of the predictions are shown in Table 4.2. The mean

error is 0.708 µm, which indicates that in average the model demonstrates

submicron accuracy. In order to asses the effect of outlier error values to the

mean value, the median error is also calculated which is equal to 0.501 µm.

The calculated median error is equal to 3 % of the overall range of the motion

(16.4 µm) (Table 4.2). It is also worth noting that the the error ranges from

3 to 3.45 µm (maximum error - Table 4.2) for 24 images out of 4360 as it can

be seen in Figure 4.13 (bottom). Finally, for 88 % of the predicted values

the error is below 1.64 µm which is equal to 10 % of the range of motion.

The histogram of the error distribution for the test set is shown in Figure

4.13 (bottom).

The presented metrics show that the trained model can reconstruct the

continuous trajectories that belong to the test set although the frames during

training were randomly re-ordered. In Figure 4.15, the same trajectory is fol-

lowed by microrobots with different 3D orientations. Figure 4.15 shows that

an indicative sinusoidal and triangular set of trajectories can be estimated

for the given test set images. Figure 4.15b indicates that the error range

is varying between the reconstructions. This could be attributed to the fact

that similar images might have already been used during training resulting to

a more accurate prediction. This error could be reduced by adding more data

to the training and testing set. The microrobot’s pose at the top, bottom

and middle of the trajectory are also shown in Figure 4.15.

As mentioned, the motivation for training the network with a small-sized

dataset is to determine whether a regression model can be trained without

generating a large number of training and testing data, making the proposed

method more applicable for real-time estimation and to reduce overhead

in computation and dataset generation. Since the CAD model of the mi-
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crostructure is available, the dataset can be extended for further training.

4.5 Microrobot Orientation Estimation

In this section, a model-based orientation estimation method is described.

The optimization-based orientation estimation method presented in Section

4.1.3 requires known point correspondences. As it is restrictive to assume ac-

curate knowledge of point correspondences in every image frame, a template-

based method is also proposed which is based on matching the appearance

of the image frame to the best match from a number of generated templated

of possible orientations.

4.5.1 3D Model-based Orientation Estimation

The 3D orientation of the microstructure is estimated using online model-

based templates. The motivation for using model-based template matching

rather than the optimization problem defined in Section 4.1.3 is that the

feature correspondences need to be tracked in every subsequent frame. This

is not feasible when the object is rotating in the 3D space since the initial

correspondences might be occluded and also not be clearly visible due to

image blurriness. The templates are generated from a number of possible

relative rotations by an angle step ∆θ with respect to the current orientation

of the microstructure. The generated templates are matched with the filled

extracted object contour on the current image frame. Kalman filtering is

also performed for more consistent orientation estimation.
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4.5.1.1 Orientation Estimation with Online Template Generation

The optimization approach of Section 4.1.3 needs robust tracking of the cor-

responding points at each subsequent frame. It also requires that the cor-

responding features are always visible. Therefore, template matching is em-

ployed in this stage using online generated templates derived relatively to the

previously estimated object orientation. The templates are generated from a

series of all possible orientation changes, i.e all possible rotations around the

axis of the global frame, by a small angle step ∆θ, including the last esti-

mated orientation. The possible micro-gear orientations are projected on the

image plane to create the library of the templates. The number of generated

templates is constant for every iteration. The similarity measure which is

used for the matching is the normalized cross-correlation which is equal to:

γ =

∑
x,y

(I(x, y)− Īu,v)(tm(x− u, y − v)− t̄m)(∑
x,y

(I(x, y)− Īu,v)2
∑
x,y

(tm(x− u, y − v)− t̄m)2
)0.5 (4.10)

where I the processed current image, t̄m the mean of the template and Īu,v

the mean of the region within the template. The recovered rotation from an

indicative motion sequence is shown in demonstrated in the experiments of

Section 5.2.

4.6 Microrobot Pose Estimation

The previously presented template-based orientation estimation method re-

lies on online template generation, which can be time consuming for real-time

estimation. In addition, as only a finite number of templates can be gener-

ated from discrete and fixed angle steps, an error will always exist between
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the template pose and the actual microrobot pose. Moreover, it is desirable

that depth and orientation are combined into a unified framework. This sec-

tion presents a methodology for estimating the depth and 3D orientation of a

microrobot of known geometrical model in an Optical Tweezers setup using

supervised learning in a unified framework. Estimating the orientation is a

more complex problem than depth estimation. The orientation space has a

higher dimension and is not a Euclidean space but a Riemmanian manifold.

Therefore, estimating a pose globally from a single image is a challenging

problem. A global search of the whole orientation space is difficult due to

ambiguities and due to the existence of multiple solutions. However, in this

method, relative differences are estimated localizing the search in the mathe-

matical space and, hence, not facing ambiguity issues. This is more intuitive

as continuous trajectories are estimated and, therefore, the consecutive ori-

entations are close. For this reason, the Euler angle representation is chosen

to describe the orientation. In the following, the network architecture is pre-

sented followed by a description of the experimental setup and the validation

results.

4.6.1 Depth and Relative Orientation Estimation

The z co-ordinate and the 3D relative orientation of the object are calcu-

lated using a CNN model. The absolute 3D orientation of the microrobot is

obtained by registering the virtual geometrical model with the initial micro-

robot pose as described in Section 4.1.3. It assumed that the microrobot is

registered in the beginning of every estimation process to obtain the absolute

orientation.
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Figure 4.16: The proposed network architecture. The model consists of
a network for relative orientation estimation and one for depth estimation
using as input two image frames.

4.6.2 Pose Estimation Network Architecture

The model comprises two networks: one for relative orientation estimation

and one for depth estimation (Figure 4.16). The network for the relative

orientation between the poses receives as input a pair of images, i.e the

current and previous video frame Imcurr and Imprev, and a single image for

depth estimation which is the current video frame Imcurr. The label used for

training for each pair of images is their relative rotation angles about the

axis x,y and z-axis:

∆φi = φcurr − φprev = [∆αx ∆αy ∆αz]
T ∈ R3 (4.11)

where ∆αi = αicurr−αiprev with i = {x, y, z}. The depth estimation compo-

nent receives the image Imcurr as input and the corresponding z co-ordinate.

The model parameters are given in Table 4.3. The activation function for all
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Depth Estimation Network Parameters

Layer Parameters

Convolutional 1 Kernel: 2x2, Stride:1, Filters: 8

Max-pooling 1 Kernel: 2x2

Convolutional 2 Kernel: 2x2, Stride:1, Filters: 32

Max-pooling 2 Kernel: 2x2

Convolutional 3 Kernel: 2x2, Stride:1, Filters: 64

Max-pooling 3 Kernel: 2x2

Fully Connected 1 Neurons: 150

Fully Connected 2 Neurons: 50

Output Neurons: 1

Relative Orientation Estimation Network Parameters

Layer Parameters

Convolutional 10 Kernel: 2x2, Stride:1, Filters: 4

Convolutional 11 Kernel: 2x2, Stride:1, Filters: 4

Convolutional 12 Kernel: 2x2, Stride:1, Filters: 8

Max-pooling 1 Kernel: 2x2

Convolutional 20 Kernel: 2x2, Stride:1, Filters: 8

Convolutional 21 Kernel: 2x2, Stride:1, Filters: 16

Max-pooling 2 Kernel: 2x2

Convolutional 30 Kernel: 2x2, Stride:1, Filters: 16

Convolutional 31 Kernel: 2x2, Stride:1, Filters: 32

Max-pooling 3 Kernel: 2x2

Fully Connected 1 Neurons: 150

Output Neurons: 3

Table 4.3: Pose estimation network parameters

the convolutional and dense layers is the rectified linear unit function, except

for the last dense layer of each network which is a linear activation function.
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The two networks are trained simultaneously using the Adam Optimizer and

the following cost function:

c =
1

N

( N∑
i=0

‖zi − ẑi‖2 +
N∑
i=0

‖∆φi −∆φ̂i‖2
)

(4.12)

where zi and ẑi ∈ R are the ground truth and estimated values of the z co-

ordinate respectively, ∆φi = [∆αx ∆αy ∆αz]
T and ∆φ̂i = [∆α̂x ∆α̂y ∆α̂z]

T

∈ R3 the ground truth and estimated relative rotation angles about the axis

x, y and z respectively between the two poses that correspond to the input

image frames and N the total number of samples with i = {0, .., N}. The

estimated depth values are further filtered using a median filter.

4.6.3 Experimental Setup

The experimental setup is depicted in Figure 4.6. The setup consists of

an Optical Tweezers system (Elliot Scientific, UK) with a mounted 3D piezo

stage (Mad City Labs Inc). The microrobots are observed through a microscope-

camera system of a CCD Camera (Basler AG, Germany) and an 100x magni-

fication oil immersion objective lens (Nikon Ti) with 1.45 Numerical Aperture

(NA) and 0.13 mm Working Distance (WD). For the pose estimation compo-

nent, the model was implemented in Python using TensorFlow. The model

was trained on a workstation with an Intel Core i9-7940X CPU (3.1 GHz),

a GeForce GTX Titax Xp GPU (NVidia Corporation) and 64 GB of RAM.

4.6.4 Experimental Results

The network was trained for each geometry separately using 10500 for the

gear-shaped microrobot, 11700 pairs of images for cylindrical and 11700 pairs

of images for the helical microrobot. The depth estimation network uses only
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Mean Median Mean Median Mean Median

αx [deg] 7.58 5.8 5.08 3.65 4.36 2.16
αy [deg] 10.53 6.77 5.48 3.53 3.57 2.3
αz [deg] 4.78 3.32 7.38 4.99 8.86 4.63
z [µm] 1.73 1.14 0.81 0.63 0.78 0.6
z (filtered) [µm] 1.53 0.95 0.61 0.504 0.599 0.47

Table 4.4: Metrics for gear-shaped (left), cylindrical (middle) and helical
microrobot (right) datasets

the current image frame for training and hence 10500, 11700 and 11700 single

images for each dataset respectively.

4.6.4.1 Test Set Validation

As mentioned, the dataset contains images of three different designs of micro-

robots. As mentioned in order to test the model on continuous trajectories,

the images which are in similar depths but in different discrete orientations

are given as input to the networks as a sequence. Figure 4.18, 4.19 and

4.20 depict the validation results for absolute orientation and depth for the

gear-shaped, cylindrical and helical microrobot datasets respectively. Each

peak of the orientation graphs corresponds to a separate trajectory with a

new initial pose. The initial pose for each trajectory can be obtained by

registering the geometrical model of the microrobot with the image frame

as described in Section 4.1.3. The results for the absolute orientations are

derived by adding the relative orientations estimated by the model to the

initial pose as obtained after the registration procedure. The estimated rel-

ative orientations for the cylindrical microrobot dataset is shown in Figure

4.17.
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Figure 4.17: Estimated and ground truth of the relative orientations for the
cylindrical microrobot dataset

4.6.4.2 Results and Discussion

The metrics that are used to describe the validation results are the mean

and median error between the ground truth and estimated values of the
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Figure 4.18: Estimated and ground truth values of the absolute orientations
and depth for the gear-shaped microrobot

absolute orientation angles about the x,y and z-axis in degrees and depth

and the corresponding ground truth values. The mean orientation error of

the rotation angles about the x,y and z axis and depth values for the gear-

shaped, cylindrical and helical microrobots are given in Table 4.4.

The estimated orientations for the gear-shaped microrobot dataset present

larger errors in smaller relative orientations than for the cylindrical and he-

lical microrobot dataset. This is visible by the estimated angles around the

zero values (Figure 4.18- az and Figure 4.19-ay and 4.20-ay). This is partly

because the cylindrical and helical microrobot datasets contain more pairs

of image frames in which the relative rotation is smaller. This error could

be potentially improved by extending the dataset to include more angle vari-
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Figure 4.19: Estimated and ground truth values of the absolute orientations
and depth for the cylindrical microrobot

ations. However, we present the results with the existing angle variations

and dataset size for each set of images, in order to assess the impact of the

range variation and dataset size on the estimation. In addition, the dataset

is medium-sized and adding more images for each geometry would improve

accuracy if the selected poses span the configuration space sufficiently. The

reason for generating a medium-sized dataset is to find a size for the dataset

that allows for the method to be applicable and implemented easily in case of

different geometries since its applicability would be limited if it requires very

large datasets. Moreover, the geometry has an influence on the accuracy, as

the derived features from the training of the convolutional layers give geom-

etry specific features maps. Another source of error is that, as this method
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Figure 4.20: Estimated and ground truth values of the absolute orientations
and depth for the helical microrobot

calculates relative orientations in order to obtain the absolute orientation of

the microrobot, the absolute estimation drifts as the error is accumulated.

This could be improved by updating the registration after a number of frames

in order to get a new absolute orientation estimation, by using algorithms

such as feature matching. The results present the errors of the filtered and

unfiltered estimated depths. Filtering was preferred rather than training

a more complex model as using a median filter is also fast and applicable

in real-time detection. In addition, filtering refines the estimations without

having to train the networks for the orientation and depth estimation sepa-

rately with different numbers of data. As mentioned, the input to the overall

network is the current and previous image frame. However, the model does
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not require two consecutive frames as input allowing missed frames during

real-time image acquisition. It is also worth noting that the estimation is

performed on image frames with a single geometry in the view. This could

be extended to multiple geometries by adding a prior classification step to

perform image segmentation around each geometry. As the geometries that

need to be detected are known in advance, the image can be segmented and

then give the respective segmented images as input to the respective trained

model. Last, the depth estimation component could be improved to include

the estimation of sequential data by replacing the fully connected layers with

LSTM cells, similarly to Section 4.4.

4.6.4.3 Comparison with VGG16 Feature Extraction Model Pre-

trained on ImageNet

The proposed model is compared to the VGG16 model [128] in order to

further assess its performance using as test set the cylindrical microrobot

dataset. As the VGG16 model is designed for image classification, we only

keep the feature extraction part of the network as defined in [128] and we

use the same architecture of fully connected layers for depth and relative

orientation estimation as presented in Section 4.6.2 and specified in Table

4.3, on top of the pre-trained feature extraction component. The weights

which are used for the feature extraction component of the VGG16 model

are the ones obtained after training with the ImageNet dataset [129]. The

motivation of using the VGG16 model is to use for the comparison a network

which has a similar size to the proposed one. In addition, the weights of

the pre-trained VGG16 model on ImageNet are used in order to compare

the proposed feature extraction using our smaller task-specific dataset of

grayscale images to a feature extraction component which was trained using
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Figure 4.21: Estimated and ground truth values of the absolute orientations
and depth for the cylindrical microrobot using the proposed and VGG16-
ImageNet pre-trained networks

Mean Median Mean Median

αx [deg] 5.08 3.65 7.13 1.93
αy [deg] 5.48 3.53 6.53 4.89
αz [deg] 7.38 4.99 22.76 17.71
z [µm] 0.81 0.63 0.62 0.65
z (filtered) [µm] 0.61 0.504 0.62 0.65

Table 4.5: Metrics for proposed (left) and VGG16 pre-trained on ImageNet
(right) models for the cylindrical microrobot dataset

a generic RGB very large dataset. The regression model is trained using

the cylindrical microrobot dataser while the ImageNet weights for feature

extraction are frozen.
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Figure 4.22: Estimated and ground truth values of the relative orientations
for the cylindrical microrobot using the proposed and VGG16-ImageNet pre-
trained networks

4.6.4.4 Results and Discussion

The comparative results are given in Table 4.5. The mean and median errors

for the estimated absolute orientations are overall slightly higher for the pre-
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Figure 4.23: Estimated and ground truth values of the relative orienta-
tions about the x-axis for the cylindrical microrobot using the proposed and
VGG16-ImageNet pre-trained networks

trained VGG16 model than for the proposed model, except for the median

orientation error along the x-axis which is smaller. The relative orientation

curves show that the proposed model gives larger errors in estimating small

relative orientation differences than the VGG16 network (Figure 4.23-top)

while on the other hand can estimate larger differences more accurately (Fig-

ure 4.23-bottom) compared to the VGG16 output. Due to this fact, as it can

be seen in the absolute orientation curves, for some of the peaks of the tra-

jectories, larger orientation errors are calculated for the VGG16 pre-trained

network (Figure 4.21-green) in comparison to the estimations from the pro-

posed model (Figure 4.21-blue). For the depth estimation component, the

estimation values for the proposed depth estimation model are more noisy

than the VGG16 pre-trained model, however the VGG16 pre-trained model
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has a bias towards lower values and does not estimated the higher values and

gives a higher position error when estimating higher depth values (Figure

4.21).

4.7 Conclusions

This chapter investigated the issue of microrobot pose estimation using monoc-

ular microscope images in an Optical Tweezers setup. Two depth estimation

methods for transparent, laser-driven microrobots were proposed using image

sharpness measurements. A global and a local method of depth estimation

of the transparent microstructure were described. These methods aim to

derive an estimation for the sharpness model with respect to the overall

z-translation of the object and depth changes of individual features of the

microstructure. The calibration methods presented for both methodologies

are object and lighting condition specific and need to be performed prior to

the depth estimation routine. The combination of these two methods aims

at distinguishing the cause of image sharpness variations. These variations

can be attributed either to object translation along the microscope z-axis

detected by the global approach or to 3D rotation detected by the local ap-

proach. Hence, the local method is capable of identifying which parts of the

microstructure are in and out of focus in combination with the 3D estimated

orientation. The global sharpness can be approximated by a sum of Gaussian

curves for interfering features at different depths due to transparency. The

local sharpness model is approximated by one Gaussian curve for distinct

object features. The local method can reveal information about the object

orientation and can be potentially combined with the model-based approach

to estimate 3D orientation. By combining the two methods, the framework
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can account either for errors that occur from the template matching or the

local depth estimation.

Section 4.4 presented a supervised learning approach for depth estima-

tion of optically transparent microrobots using gray-scale monocular images

generated in an Optical Tweezers setup. The motivation to use a state-of-

the-art machine learning method is to learn a regression model for depth

estimation using microrobot specific information from monocular image se-

quences that show simultaneous microrobot 3D translation and rotation. A

neural network with five convolutional layers for data-specific feature ex-

traction followed by an LSTM cell is used for depth regression. The model

was trained and tested using experimentally acquired images with ground

truth data trajectories acquired in an Optical Tweezers setup. The dataset

was generated from microscope images of 3D-printed microrobots translated

along the z-axis in discrete orientations drawn from a random uniform dis-

tribution and in orientations that correspond to discretized 360o rotations

in order to span the configuration space sufficiently. The validation results

showed that the implemented trained model can estimate continuous trajec-

tories with submicron accuracy for the specific test set. The trained model

is specific to the design of the microrobot which is subject to tracking. How-

ever, the object-specific dataset needs to be generated once and can be used

for developing a pre-trained model for Optical Tweezers setups with the same

imaging system.

Section 4.6 presented a methodology for 6-DoF pose estimation of opti-

cally transparent microrobots in an Optical Tweezers setup. The method

uses supervised learning with CNNs to estimate the relative 3D orientation

between the current and previous image frame and the corresponding depth

for the current frame using single images. The 2D position is obtained using
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an edge detection-based method which is also necessary for pre-processing

the input images to the network. The absolute 3D orientation of the micro-

robot is obtained by registering the virtual geometrical model with the image

frame prior to estimation. The model was trained simultaneously for relative

orientation and depth estimation using microscope image data of 3D-printed

microrobots generated in an Optical Tweezers setup. The datasets contain

data of three geometrical models on which the networks were trained and

validated. It is noted that the accuracy of the relative estimation compo-

nent depends on the range of relative differences in the orientation that are

contained in the training set, hence, the training data needs to contain both

small and large variations in relative orientations in order to estimate both

sequential and non-sequential data. Other sources of occurring inaccuracies

are that the learned feature maps depend on the geometrical model and that

the absolute orientations are obtained by relative measurements and there-

fore there is an accumulative error. Last, the dataset could be extended for

improved accuracy but we choose a medium-sized dataset so that the appli-

cability of the method is not limited. The proposed model was compared to

a VGG16 feature extaction component pre-trained on ImageNet modified for

pose estimation regression. The comparison demonstrated that the proposed

model can give more noisy estimations on small orientation differences but

also more accurate estimations towards higher relative orientation differences.

The depth estimation component could be improved to include time-series

estimation by replacing the fully connected layers with LSTMs as in Section

4.4. Future improvements would be to extend the method to simultaneous

pose estimation of multiple geometrical designs and to cell manipulation and

to consider occluded or overlapping microrobots.

99



Chapter 5

Optical Manipulation of

Microrobots

This chapter presents how manipulation of 3D optical microrobots is achieved

in an open-loop and shared control manner. In particular, Section 5.1 demon-

strates how the microrobots presented in Section 3.2.2 are used for indirect

optical manipulation of microobjects and potentially for cells. In Section

5.2, a control strategy that utilizes user’s gaze information is developed for

simultaneous multiple microrobot manipulation integrating haptic guidance.

Hand-eye coordination can be facilitated by using the concept of perceptual

docking [130]. This concept incorporates human sensory information, such as

the eye gaze, to the human-machine interface to assist the operator in task ex-

ecution. Such interfaces have been developed for macroscale surgical robotic

systems. Microrobotic systems could benefit from similar implementations

that assist hand-eye coordination in multiple microrobot or 3D microrobot

manipulation, especially in platforms such as the Optical Tweezers which

Contents from this chapter have been published in: Gaze contingent control for
optical micromanipulation, M. Grammatikopoulou and G-Z. Yang, In: 2017 IEEE
International Conference on Robotics and Automation (ICRA) c©2017 IEEE
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allow multiple object manipulation by generating a pattern of optical traps.

The incorporation of a haptic guidance interface in the microscale could also

be beneficial since it enhances ergonomics for ease of manipulation. As eye

gaze provides very fast saccadic movements, this information is be used for

object targetting and optical trap placement that is performed seamlessly

without interrupting the manipulation task by identifying regions of interest

to the operator. The framework aims to assist the operator seamlessly in

hand-eye coordination. The effectiveness of the developed control scheme is

evaluated through two sets of experiments; in multiple object manipulation

using 2D visual servoing and in 3D structure manipulation. The results of

these experiments demonstrate that the execution time and the manipulation

flexibility are improved when using the gaze controller.

5.1 Indirect Manipulation using Laser-driven

Microrobots

Previous research has proposed methods on manipulating microobjects, such

as microspheres, or cells using microrobots as grasping mechanisms [131]. In

this section, indirect manipulation of a microsphere is demonstrated using

two of the rotational joints of Section 3.3 for grasping. The performed exper-

iment aims at demonstrating how indirect manipulation of microstructures,

and potentially cells, with size up to a few tens of µm, can be achieved using

mechanisms that are capable out-of-plane motion.
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Figure 5.1: A view of two rotational joints used for indirect grasping inside
an Optical Tweezers setup (left). The two microrobots grasping an 8 µm
microsphere (right)

5.1.1 Experimental Setup and Discussion

An array of rotational joint microrobots and 8 µm microspheres is fabricated

as described in Section 3.2. The microstructures are detached from the glass

substrate using the sonication method as explained in Section 3.4. The glass

slide containing the microrobots and the microspheres is placed inside the

Optical Tweezers (Elliot Scientific, UK). The aim is use two rotational joint

microrobots as grasping mechanisms to displace a microsphere along the z-

axis. A fully and a partially detached rotational joint microrobot are used for

manipulation in order to demonstrate out-of-plane motion of a microsphere

(Figure 5.1). The laser power of the optical trap was set to 0.2 W. Figure

5.2 shows the displacement of the microsphere using two microrobots for

grasping. A single laser trap is used to induce the optical force which is

pushing the rotational part of the joint downwards. Due to the geometry of

the rotational part, it is pushed downwards rather than trapped by the optical

trap. A sequence of a microsphere grasped by the two microrobots and moved
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t = 0 s t = 0.5 s t = 0.8 s

Figure 5.2: Downwards displacement of microsphere using single optical trap
actuation of the fully detached rotational joint

t = 0.8 s t = 1 s t = 1.5 s

Figure 5.3: Upwards displacement of microsphere using single optical trap
actuation of the fully detached rotational joint

downwards is shown in Figure 5.2. As the mobile part of the joint is pushed

rather than grasped, the laser trap is switched on and off in order to move the

microsphere downwards. When the optical trap is off, then the rotating part

and the microsphere move upwards (Figure 5.3). It is worth noting that the

microsphere appeared to be slipping at some instances while been grasped

by the two microrobots. This could be because of insufficient grasping force

applied by the two microrobots on the microsphere. A solution to this is to

grasp the microrobots with multiple optical traps so that the normal grasping
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force on the microsphere is increased. By increasing the normal grasping

force applied to the object, sliding of the object with respect to the grasping

surfaces could be avoided. This however requires adding more handles to

the microstructure to enhance the microrobot’s manipulation capabilities.

In addition, sliding could be avoiding if the rotating parts of the microrobots

had deformable rather than rigid surfaces to grasp the microobject. This

would also increase the tangential to the microobject grasping force, and

hence, the overall grasping force.

5.2 Gaze Contingent Control for Optical Mi-

cromanipulation

The previous experiment highlighted the need of using multiple optical traps

for manipulation, especially for manipulation of multiple microrobots and

3D microrobots. To this end, a human-robot interaction interface integrat-

ing the user’s gaze information is developed to facilitate micromanipulation

tasks. The work presented in this section describes: i) How object trapping

and transportation are realized when taking into account the user’s inten-

tions during manipulation. This is performed transparently by processing

the natural gaze of the user. In particular, the gaze information is combined

with visual tracking to assist trapping and pattern reconfiguration without

interrupting the executed task or compromising the number of objects to be

manipulated and ii) how the operator can activate haptic guidance generated

by the eye fixation point to position the assembled parts. The system aims to

assist the operator seamlessly in hand-eye coordination. The effectiveness of

the developed control scheme was evaluated through two sets of experiments;

in multiple object manipulation using 2D visual tracking and in 3D structure
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manipulation. In the first set of experiments, the gaze controller is compared

to the standard Optical Tweezers user interface. The results of these experi-

ments demonstrate that the execution time and the manipulation flexibility

are improved when using the gaze controller. The second experiment shows

how 3D control can be performed using gaze assistance.

5.2.1 System Overview

The operator controls the laser traps via two haptic devices. The microscope-

camera feed is displayed to the user with the optical trap positions overlaid

on the image. The software controller operates in different states according

to the phase of the task. Seamless state switching is realized based on the

operator’s intention and human sensory input. The user initially controls one

laser point with each of the haptic devices and can add more laser traps on

demand during the manipulation task. Hence, the operator can manipulate

multiple spots with each one of the haptic devices. The laser positions are

added according to the eye gaze input and the visual tracking either directly

on the identified objects or on the eye fixation point on the respective frame.

The positions of the added optical traps can be later adjusted using the eye

tracking data. The user can selectively activate a guidance force that helps

in microparts positioning.

5.2.2 Gaze Contingent Controller

The aim of the presented control scheme is to enhance the operator’s dexterity

in tasks that require handling of multiple microparts or complex structures

in a dynamic environment.

105



Figure 5.4: The system hardware components: The haptic devices, the eye
tracking device, the computer screen displaying the live camera feed and the
Optical Tweezers (from left to right).

5.2.2.1 Eye Gaze Data Processing

The operator’s eye gaze is tracked by the device using infra-red video with a

measurement rate of 60 Hz. Eye gaze processing is performed continuously

in a separate thread regardless of gaze data utilization. A buffer of previous

values is kept while the noisy values are discarded. Noisy values include

measurements that correspond to the operator blinking or detection of only

one eye. The 2D eye gaze is filtered with a low pass filter. The camera

provides an 648 x 488 image with each pixel corresponding to 0.074 µm,

therefore the visible workspace is 48 x 36 µm. The view covers partially the

computer screen and the Graphical User Interface. Hence, only the filtered
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(a) The camera feed as viewed by the user (b) The detected objects (red) and object tem-
plate

Figure 5.5: The original and processed camera feeds

data points which are within this region of the screen are used in the software

controller. In case the user eye gaze is outside of this region, the latest

position within the camera image which is kept in the buffer is used in the

calculations. Consequently, the operator does not need to continuously look

at the camera feed.

5.2.2.2 Intention Recognition and Gaze Control

The software controller has three different states: i) Trap pattern generation

for object trapping; ii) optical trap repositioning and iii) haptic guidance for

object placement. A new optical trap is added or re-positioned only after

user request allowing the primary control to the operator at all times. The

processed eye gaze information is used to determine the intentions of the

operator and can be identified by addressing the following three questions.

If the user is exploring or has focused on a specific region of the workspace:

This user activity is determined by calculating the Candidate Target Posi-

tion (CTP) which gives an indication of the respective region of interest. To

obtain the CTP, the standard deviation of the buffer filtered gaze positions
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is calculated. The mean value of the sample is set as the CTP if the standard

deviation is sufficiently small. The threshold varies according to the desired

precision. A threshold of 20 pixels that corresponds to eye gaze being fo-

cused at a region with radius of 1.48 µm of the actual workspace was used

in the presented setup. This threshold was selected experimentally because

it allows consistent targeting of the microspheres. Meanwhile, it is not ob-

structive to the natural gaze of the user since it does not require the gaze to

be focused at a very restricted workspace. It is also worth noting that the

standard deviation of the eye gaze data depends on the velocity of the object

that the user is trying to follow. For instance, for small particles where the

Brownian motion is considerable, the standard deviation will be larger than

in the case of a more static object. Hence, the tolerance threshold is adjusted

accordingly. The number of past fixation points also determines the update

rate of the CTP. In this implementation, a buffer of 50 previous positions

was used because it was compliant with the natural gaze in most experiments

and was sufficient to identify the regions of interest. In particular, 50 pre-

vious positions with an update rate of 60 Hz corresponds to identifying the

region of interest within a time period of 0.83 s. Hence, this update rate can

provide a consistent position when the user has focused on a specific region

for more than 0.83 s allowing to follow both the exploration phase and the

target selection phase. However, for different users and desired precision, the

parameter can be adjusted accordingly.

Where the new optical trap should be placed: The new optical traps are

added on demand using the eye tracking data and the output of the visual

tracking algorithm. The trap can be either placed directly on the detected

object which is closest to the operator’s fixation point or on the last identified

CTP in case there is no object in the area around the CTP. In the first case,
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the user does not need to physically move the trap to the desired object.

It also facilitates more consistent object handling when larger 3D structures

are manipulated in terms of adjusting the object position and orientation.

Generating a trap on a CTP aims to compensate for visual tracking inconsis-

tencies when the objects are not detected and also add a trap at a different

position on the object rather than its contour centroid. Once the laser trap is

added, it maintains its relative position to the previously added laser traps.

In order to assist the user in translating the points simultaneously in a

more intuitive manner, the centre of the convex hull of the generated laser

trap pattern is translated by the haptic device. Let pki, i = 1, .., k and

k = L,R be a trap that belongs to the left (k = L) and right (k = R) group

of points respectively where Nk the total number of traps of the kth pattern.

By the terms left and right group we refer to the number of points that are

manipulated by the left and right haptic device respectively. Therefore, the

centre ck of the convex hull Ck of each pattern is given by:

ck =

∑
xi

NCk

, xi ∈ Ck, i = 1, ..., NCk
(5.1)

Ck =

{ Nk∑
j=1

αjpkj

∣∣∣∣(∀i : αj ≥ 0) ∧
Nk∑
j=1

αj = 1

}
(5.2)

with pki, ck,xi ∈ R2.

How to rearrange the optical trap configuration while maintaining the

grasp by the remaining traps: During object transportation, the relative po-

sition among the traps of a pattern remains fixed. However, the position of

an individual trap may be adjusted in order to rearrange the trapped objects

or to change the pose of a 3D object. The trap reconfiguration is realized

as follows; The desired laser trap is selected as the closest trap to the CTP

and cannot be deselected until the trap reconfiguration is terminated. This
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Figure 5.6: Geometrical model of the microstructure used in the second
experiment

serves the purpose of allowing the user to explore the adjacent region and

not requiring the gaze to continuously follow the selected trap. Since the

operator is manipulating a set of traps with the haptic devices, the motion of

one of the haptic devices has to be decoupled from this pattern and coupled

to the trap to be repositioned. Hence, during the optical trap reconfigura-

tion, the pattern that belongs to the respective haptic device maintains its

position and the second haptic device controls the target trap. At the end of

the reconfiguration state, the second haptic device is coupled again with the

respective laser point pattern.

5.2.2.3 Gaze Contingent Guidance Constraints

In order to assist the user in placing the assembled microparts with respect

to the pattern’s centre, a guidance force is activated on demand to guide the

operator to the desired position. The target position pd is defined as the CTP

and is not updated until this position is reached. This is to avoid instabilities

in the force profile caused by rapid switching when target positions are close.
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Figure 5.7: Registered projection of geometrical model (left) and initial pose
with respect to global frame (right)

The guidance force, as defined in [132], is given by:

Fp =

0 if d ≥ dmax

fA n if dmax > d > dhigh

(5.3)

where

fA = k0 ‖pt‖2 (‖pt‖ − dmax)2 ek1 ‖pt‖ (5.4)

pt = pd − ck (5.5)

n =
pt

‖pt‖
(5.6)

with k0, k1 two scalar values, pd the target position, dmax the distance be-

tween ck and the target pd at which the guidance force starts to increase,

dhigh the distance between ck and the target pd at which the maximum force

is rendered and n the direction towards the target.
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(second assembly)
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Figure 5.8: The operator view during the performed experiments (left). The
processed image feed displaying the detected microspheres (red) and the
candidate target position as calculated from the operator’s gaze (right)

5.2.3 2D Position Detection

5.2.3.1 Template Matching for Spherical Object Tracking

Real-time image processing is performed in order to obtain the 2D position

of the microstructures within the visible workspace. For spherical objects, a

template matching algorithm is used for object detection since they main-

tain a relatively constant appearance in all orientations. The user can define

the template according to the object that needs to be tracked. In the per-

formed experiments the processing time varies from 1 to 3 ms. In Fig 5.5,

the live camera feed is shown as displayed to user (Figure 5.5 (left)). The

detected microspheres (size of 1 µm) are shown in Figure 5.5 (right). The

minimum matching score is set accordingly in order to identify objects which

are moving sufficiently close to the focus plane. However, these features

can be adjusted by defining an alternative matching template and similarity

score. This method of detection is more robust to noise in the case of small

spherical objects where Brownian motion is evident, although it is not par-

ticularly effective for overlapping objects. An alternative tracking strategy is
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implemented for larger non-spherical objects which have different appearance

depending on their orientation in the 3D space.

5.2.3.2 Non-spherical Object Tracking

The object boundary is obtained by the following sequence. First, canny

edge detection is performed followed by discarding all objects with a small

number of pixels in order to reject noise. Then, the boundary is thickened so

that a closed boundary is obtained. For convex-shaped objects, the convex

hull of the edges is considered as the boundary to ensure closed contours

for increased detection robustness. This is sufficient for applications where

a closed boundary is more important than an accurate contour around the

object. Contour filling and image segmentation is performed to locate the

object of interest. The filled contour is used for template matching in 3D

orientation estimation, as described in the next section.

5.2.4 Experimental Setup

The system consists of a master and a slave component (Figure 5.4). The

master component includes two haptic devices (Geomagic, USA) and an eye

tracking device (Tobii Technologies AB, Sweden) that tracks the operator’s

eye gaze. The haptic devices control the position of the laser traps while the

data from the eye tracker is used to determine the user’s intentions and define

the operating states of the software controller as described in Section 5.2.2.2.

The slave part is the Optical Tweezers (Elliot Scientific, UK). The Optical

Tweezers system consists of a 1070 nm fiber laser with variable output power

(Ytterbium Fiber Laser, IPG Photonics, USA), an optical microscope with an

oil immersion objective lens (Nikon Ti) and a high frame rate CCD camera

(Basler AG, Germany). The laser traps are placed within the workspace
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by direct laser actuation while multiple traps are generated through time

multiplexing.

5.2.4.1 Microrobot Fabrication

The object used in the conducted experiment is a gear-shaped microrobot

with radius of 8 µm and height of 9.6 µm. The CAD model with the respec-

tive dimensions are shown in Figure 5.6. An array of microstructures were

printed on the glass substrate using the Nanoscribe 3D-printer (Nanoscribe,

Germany) and IP-L photoresist (Nanoscribe, Germany). A set of mechanical

micromanipulators (Imina Technologies, Switzerland) was used to detach the

printed microstructures from the glass surface. The detached objects were

placed in a solution of deionized water.

5.2.5 Experimental Results

Two sets of experiments are presented demonstrating the functionality of

the proposed framework. The first set of experiments compares the perfor-

mance of the gaze contingent controller to the standard Optical Tweezers

control interface. The second experiment demonstrates non-spherical object

manipulation using the gaze contingent framework in conjunction with the

template-based method for 3D orientation estimation of Section 4.5.1 to re-

cover the orientation of the microstructure.

5.2.5.1 Gaze Contingent Controller Performance Assessment in

Microassembly with 2D Visual Tracking

The effectiveness of the gaze control scheme was evaluated through a set of

user experiments comparing the execution time, the manipulation flexibility

and repeatability of the task when the gaze controller and the standard user
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interface for the Optical Tweezers are used. The standard user interface

uses the mouse as an input device and does not allow the formation and

transportation of an arbitrary object configuration. The task was to assemble

7 microspheres in a specific configuration and then move the assembly at

a different position. The desired assembly positions were overlaid on the

displayed image (Figure 5.8). The purpose of the task was to demonstrate

how multiple small sized microstructures can be assembled in an arbitrary

configuration using the gaze controller. The laser power was set to 0.2 W.

The task was repeated 10 times with the gaze contingent control scheme

and 10 times with the mouse interface. The user was familiar with both
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Metric Gaze Manual p-value

First assembly [s] 49.8 67.7 < 0.001
Second assembly [s] 13.8 63.3 < 0.001
Total time [s] 63.6 131 < 0.001
Distance over time [mm s] 4.19 4.75 0.118

Table 5.1: Mean values and p-values of metrics for microassembly user ex-
periment

modes of operation prior to performing the experiment. The 20 experiments

were performed interchangeably; once with the gaze controller and once with

the mouse control so that the two consequent attempts are performed under

comparable experimental conditions. The guidance force was activated at a

distance dmax = 6 µm from the CTP with maximum force rendered at dhigh =

3 µm. The distances were chosen so that guidance is activated sufficiently

close to the CTP. The maximum guidance force was set to 0.8 N to provide

soft haptic guidance. Guidance was only activated for the second stage of

the experiment.

5.2.5.2 Results and Discussion

The aim of the repeated experiment is to demonstrate that the execution

time of the individual assemblies and overall task as well as the total trav-

elled distance of the laser traps are consistently reduced when using the eye

tracking interface. Therefore, the metrics that are used for performance as-

sessment are the time to perform the first assembly, the time for the second

assembly (reposition the assembly or repeat the assembly at the desired po-

sition), the total execution time of the task and the cumulative distance over

time, i.e. the sum of all integrals of the distance covered by each laser trap

with respect to time. The means and p-values of the metrics are given in
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Table 5.1. The p-values were calculated using the Two-sample t-test. The

results demonstrate that the execution time is significantly reduced in both

subtasks and overall task (Figure 5.9 - 5.11) while the distance over time

metric also shows reduced travelled distance throughout the repeated exper-

iments (Figure 5.12). The reduced travelled distance suggests that placing

the trap directly on the desired object improves the manipulation efficiency

compared to the manual case where the trap is placed arbitrarily and has to

be physically moved towards the target object. In addition, the synergy of

eye tracking and visual tracking compensates for inconsistent object tracking

due to the Brownian motion since at that case the trap will be place on the

CTP. Similarly, visual tracking allows the user to interact seamlessly since

the optical trap is positioned on the tracked object which is closer to the

CTP, disregarding the need of unnatural user interaction with the system.

5.2.5.3 Manipulation of a 3D Microrobot and Template-based

Orientation Estimation

In the second experiment, a gear-shaped microrobot is manipulated using

the gaze contingent controller. The laser power was set to 400 mW dur-

ing the experiment. An increase of the laser power is required compared to

the previous experiment due to the larger dimensions of the microstructure.

The task was to demonstrate how 3D rotation can be performed using the

gaze controller while the achieved pose is estimated for each trapping con-

figuration. The proposed orientation estimation algorithm complements the

gaze controller by assisting the user’s perception in understanding the force

dynamics and kinematic properties of the object. It can be seen that the

relative trap positioning affects the object orientation due to its geometry.

These orientation are not evident when manipulating spherical objects hence
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Figure 5.13: (a) Initial orientation of microrobot with respect to global frame
as viewed from the XY plane (b) Final orientation of microrobot with respect
to global frame as viewed from the XY plane (c) Trajectory of x-axis of
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Figure 5.14: Rotation angles of the z,y and x axis of the object frame (θz, θy
and θx) with respect to global frame

it is not necessary to recover the sphere’s orientation.
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5.2.5.4 Results and Discussion

The results show the estimated orientation when the microstructure is rotat-

ing simultaneously about all three axis. The total time that was required for

the object to rotate was 16.6 s. The initial orientation R̂o and translation t̂o

given by equation (4.2) are equal to:

R̂o =


−0.9849 −0.1377 0.1055

0.1554 −0.9706 0.1838

0.0771 0.1975 0.9773

 , t̂o =


0.4183

0.4051

0

 (5.7)

and the trajectory can be seen in Figure 5.14. The initial and final orien-

tation of the microrobot as well as the recovered orientation trajectory are

shown in Figure 5.13. Figure 5.13c-e depict the individual trajectories of the

x,y and z axis of the object frame during the performed experiment. The

object coordinate frame origin is attached to centre of mass of the object.

The consequent orientations depicted in this figure are downsampled for il-

lustration purposes. The proposed algorithm does not depend on feature

tracking and the geometry of the structure. It also provides a good estimate

in case the 3D-printed object is different from the CAD model (Figure 5.13).

5.3 Conclusions

This chapter discussed optical micromanipulation of microrobots for indirect

and shared control manipulation. Section 5.1 demonstrated how indirect ma-

nipulation of microobjects can be performed using 3D multiple component

microrobots as grasping mechanisms. It was demonstrated that the multi-

ple component mechanism could induce out-of-plane motion to the grasped

object. Sliding of the microobject while been grasped was observed. Sliding
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could potentially be avoided by increasing the grasping force applied to the

object. This could be achieved by adding more grasping handles to the mul-

tiple component mechanism allowing for it to be grasped by multiple optical

traps more stably and transfer that force to the object, or making the grasp-

ing surfaces more deformable rather than rigid. This experiment highlighted

the fact that multiple optical traps are needed in order to manipulate 3D

geometries stably. Section 5.2 proposed a gaze contingent control framework

for optical micromanipulation of multiple and 3D microrobots. The devel-

oped controller allows the operator to add and reposition the optical traps

interactively using the eye gaze combined with real time 2D visual tracking.

The synergy of the eye gaze and visual tracking aims to identify the objects

of interest, to compensate for object tracking inconsistencies and to provide

seamless in micromanipulation without interrupting task execution. Haptic

guidance is provided to the user to achieve more consistent object trans-

portation. The capabilities of the proposed design are assessed through two

sets of experiments; one in multiple microsphere 2D manipulation and a sec-

ond one in 3D object manipulation. The user experiments for the first task

shows that task execution is faster and hand-eye coordination is improved in

comparison to the standard control Optical Tweezers mode.
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Chapter 6

Hybrid Optical and Magnetic

Microrobots for Reconfigurable

Microassembly

This chapter presents a system of hybrid optical and magnetic microrobots

for reconfigurable microassembly. It describes the assembly of microrobots

in a kinematic chain of spherical joints using the magnetic field inside an Op-

tical Tweezers setup with a customized integrated magnetic coil setup. This

setup allows simultaneous microrobot actuation using the Optical Tweezers

and the magnetic field. The aim of the proposed methodology is to exploit

the fine resolution and precision of Optical Tweezers in position regulation

while using the attractive magnetic force between the components to form

the assembly. This approach allows in situ and reconfigurable microassembly

of three-dimensional mechanisms instead of fabricating and delivering spe-

cific microrobot designs prior to manipulation. The magnetic field is used to

magnetize the components and generate the attractive force that maintains

the assembly of the components. It is demonstrated that the forces applied

122



by the Optical Tweezers are sufficient to disassemble the components without

decreasing or disabling the magnetic field, hence while the individual com-

ponents maintain their magnetization. It is also shown that the attachment

and detachment of the components can be reversible. An estimation for the

range of the assembly displacement force and the component detachment

force, derived from the performed experiments are also discussed.

The structure of this chapter is the following: Section 6.1 states the mo-

tivation for the proposed approach followed by the description of the design

of the basic structural components in Section 6.2. The stages that comprise

the microassembly and disassembly strategy using hybrid optical and mag-

netic actuation are described in Section 6.3. A model describing the system

dynamics is presented in Section 6.4 while the system identification meth-

ods used to estimate the system’s parameters are presented in Section 6.5.

The experimental setup of the Optical Tweezers with the integrated mag-

netic coils is presented in Section 6.6. An experimental demonstration of the

microassembly and disassembly strategy with force measurements using the

derived system dynamics is presented in 6.7 while the results are discussed

in Section 6.8.

6.1 Reconfigurable Microassembly

The concept is to assemble a kinematic chain using the magnetic field from

fabricated components of basic geometries that represent the links of the

chain. The motivation is that the magnetic force would be sufficient to hold

the assembly together and that the adhesion contact force is sufficiently small

so that 3D rotation of the link would not be obstructed by adhesion. Ideally,

the contact force should generate rolling motion between the component so
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(a) Cylinder with spherical
handles and tips

(b) Cylinder with spherical
handles and rectangular tips

Figure 6.1: Rendering of the CAD models of assembly components

that the assembly is stable and representing a kinematic chain of rigid bodies.

In addition, using the magnetic force as the assembly force would allow for

disassembly and reconfigurable kinematic chains. The individual components

which are used for the assembly are described in the following section.

6.2 Component Design and Fabrication

Each assembly consists of two fundamental structural components. The first

one is a cylindrical microstructure with a spherical handle and spherical tips

while the second is a cylindrical microstructure with a spherical handle and

two rectangles at each tip of the cylinder. The designs and their correspond-

ing dimensions are given in Figure 6.1a and 6.1b. For both geometries, the

middle sphere is used as a handle for the optical trap (Figure 6.1). The metal

deposited tips are used for other components to be attached on. For the first

or last link of the assembly, as only one tip is used as part of the spherical

joint, the second tip could be used for actuation by the optical trap to induce

a vertical force along the z-axis by pushing the metal-coated tip downwards.

For the second geometry (Figure 6.1b), the rectangular tips are used only

as part of the spherical joint using the flat surfaces of the rectangles as at-

tachment surfaces. As mentioned, the trapping force is used to grasp and
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position the components while the magnetic field is used to magnetize the

nickel layer and induce the magnetic force which assembles the two compo-

nents in a spherical revolute joint. The components are fabricated following

the procedure presented in Section 3.3. Both geometries of microstructures

are printed in an array with the masks to achieve selective metal deposition.

The sputtering method is used to deposit a 100 nm layer of nickel on the

microstructure array. The microstructures and the masks are detached from

the glass substrate using sonication for batch detachment.

6.3 Microassembly Stages and Strategy

This section describes the steps of reconfigurable microassembly using hy-

brid optical and magnetic microrobots. The stages are: i) assembling two

components together by bringing them close using the Optical Tweezers and

activating the magnetic field to magnetize the ferromagnetic surfaces and ii)

disassembling two components while the magnetic field is still active. The

main functions of the assembly, which are translation of the kinematic chain

and joint rotation, are also described. The sequence of all the above stages

is described as follows: i) Assembly of the kinematic chain, ii) displacement

of the assembly and joint rotation in 2D and 3D and iii) joint disassembly

under active magnetic field.

6.3.1 Assembly of Spherical Joint using the Magnetic

Field

The ferromagnetic surface on the microrobot needs to be magnetized in order

to align the components and induce the attractive force between them. The

magnetization is induced by an homogenous magnetic field created by an
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(a) (b)

Figure 6.2: Components before and after they are assembled under the mag-
netic field

(a) (b)

Figure 6.3: 3D and 2D views of assembled kinematic chain under the mag-
netic field

Helmholtz coils configuration with an intensity of 10 mT. During assembly,

the magnetic field is on and the optical trap is disabled. This is because

the trapping force can be larger than the magnetic force depending on the

laser power, hence obstructing component assembly. Figure 6.2 depicts a

schematic of an example configuration of an assembly consisting of two cylin-

drical links with spherical tips and a link with rectangular tips. Figures 6.2a

and 6.2b show a component configuration before and after the assembly un-

der the magnetic field. The components need to be at a maximum distance

of approximately 1 µm so that the two components can be attracted to each

other. This distance was visually measured in the performed experiments.
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6.3.2 Displacement of Assembly and Joint Rotation

under the Magnetic Field using the Optical Tweez-

ers

After the assembly has been formed, both the Optical Tweezers and the

magnetic field are active. In the following analysis, it is assumed that the

assembly is grasped by one optical trap, but more optical traps could be con-

sidered. The assembly of the components is maintained due to the magnetic

forces between the components. For the links that act as the end-effectors

of the assembly, the surface of the nickel-coated spherical tip can be used to

induce a vertical force caused by the laser for out-of-plane displacement.

6.3.3 Disassembly of Spherical Joint under the Mag-

netic Field using the Optical Tweezers

The main feature of the proposed strategy is the possibility of reversible and

reconfigurable assembly. In order to reconfigure the assembly and disassem-

ble the components, the trapping force must overcome the contact force.

This is performed while the magnetic field is on and the magnetization of

the components is maintained. This is necessary so that partial reconfigu-

ration of the assembly is possible and also to assess that the disassembly is

reversible under the influence of the magnetic field and after the components

come into contact. The kinematic chain can be completely disassembled by

deactivating the magnetic field.
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6.4 System Dynamics

This section presents the force modelling for different stages of the assem-

bly. The main force components that describe the system dynamics are the

trapping force, the fluid drag force, the thermal random force and the con-

tact force which consists of the magnetic, adhesion and frictional force. This

model is later used to measure the contact force between components for

disassembly and for the displacement of a kinematic chain. The following

section discuss each of the force components.

6.4.1 Optical Trapping Force

As mentioned in Section 2.5.1, the force model that describes the trapping

force can be derived either by the ray-optics model or the electromagnetic

model depending on the size of the trapped object and the wavelength of the

laser. In the current model based on the geometry of the microstructures

and the amplitude of the used laser power, it is assumed that the trapping

radius R of the laser beam is small enough so that the laser beam interacts

only with the spherical handle and not with the cylindrical part of the mi-

crostructure. Hence, the trapping force can be described by the spring model

as the microrobots are grasped by the spherical handles. The spring model

for the trapping force is given as follows:

Ftrap =

k (u− q), if ‖u− q‖ < R.

0, otherwise.

(6.1)

where k = [kx ky]
T the trapping stiffness along the x and y axis, u ∈ R2 the

position of the laser trap and q ∈ R2 the position of the spherical handle

which is also assumed to be the centre of mass of the microstructure.
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6.4.2 Viscous Drag

The force balance of a body moving in a fluid is given by the Navier-Stokes

equation:

−∇Pf + µ∇2v + ρ g = ρ
Dv

Dt
(6.2)

where Pf is the pressure of the fluid, µ the fluid viscosity, v the fluid velocity,

g the gravitational acceleration and Dv
Dt

the material derivative of the fluid

velocity. The above equation assumes that the fluid is continuous, incom-

pressible, a Newtonian medium and does not account for Brownian motion.

Equation (6.2) can be equivalently expressed as:

−∇P∗f +∇2v = Re
Dv

Dt
(6.3)

Re =
ρv∞Lc
µ

(6.4)

where v∞ the characteristic fluid velocity and Lc the characteristic length,

which describes the dimension of the object in the fluid. The fraction Re

given in equation (6.4) is the Reynolds number and can be interpreted as

the ratio of inertial to viscous forces. Therefore, it represents the relative

significance of inertial and viscous forces. Low Reynolds number (Re << 1)

indicate that viscous forces dominate over gravity and inertial forces. For

low Reynolds numbers, equation (6.3) can be written as:

∇Pf = ∇2v (6.5)

which is also known as Stokes or creeping flow. This motion is equivalent to

very slow motion in a high viscosity medium in the microscale.

As stated in [133], the viscous drag on any non-spherical shape in the
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microscale can be approximated by the drag force exerted on sphere of an

equivalent radius. Using the Khan-Richardson approximation of the drag

force on a sphere [134], the drag force and Reynolds number can be expressed

as follows:

Fdrag =
1

2
πR2‖v‖2CD

v

‖v‖
(6.6)

CD = (1.84Re−0.31 + 0.293Re0.006)3.45 (6.7)

Re =
ρ‖v‖R
µ

(6.8)

for low to medium Reynolds numbers, Re ∈ (0, 105), where CD the drag

coefficient of the sphere. The expression for the drag force can be further

simplified for the case of low Reynolds numbers as in [135]:

Fdrag = −6πµRv (6.9)

CD = 6πµR (6.10)

with CD the drag coefficient of a sphere. In the general case, the drag force

in low Reynolds numbers is given by:

Fdrag = −CD q̇ (6.11)

where CD = [CDx CDy] the drag coefficient along the x and y-axis, and

q̇ = v = dq
dt

. In this work, the viscous drag force is modelled as in (6.11)

with CD treated as a vector in the general case of a non-spherical microobject

rather than assigning an equivalent radius to get the drag coefficient and is

estimated experimentally as described in Section 6.5.2.
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6.4.3 Thermal Force

For micron-sized particles moving in a fluid with similar density as the parti-

cle, there is an additional component of motion due to collisions of the atoms

of the fluid with the particle. This motion is called Brownian motion and

is a combination of frictional and random forces. The size of the particles

immersed in the fluid are usually between 1 nm to less than 10 µm. For a

freely moving particle in the fluid, its motion is described by the Langevin

equation [136]:

m q̈ = −CDq̇ + FL (6.12)

where m the mass of the particle, q̈ the particle’s acceleration, CD the drag

coefficient as described in Section 6.4.2, q̇ the particle’s velocity and FL the

random thermal force. The random force FL is a stochastic variable which

is described by a Gaussian distribution. The general solution of equation

(6.12) is given by:

q̇ = q̇0 e
−t/τB +

1

m

∫ t

0

e−(t−s)τBFL(s) (6.13)

where q̇0 the initial velocity of the particle at t = 0 and τB = m
CD

the

relaxation time. Using the general solution, the average kinetic energy of the

particle, in this case the microstructure, can be obtained from:

< K >=<
1

2
mq̇2 > (6.14)

The average kinetic energy of the microstructure in thermal equilibrium due

to the Brownian motion is used further in Section 6.5.1 for the calibration

routine to obtain the stiffness of the optical trap.
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6.4.4 Magnetic Force

The magnetic field can be generated by permanent magnets or magnetic coils.

Permanent magnets can create large fields without the need of electric current

but they require motion of the magnets around the microrobot workspace.

In addition, the magnetic field can only be turned off by moving the magnet

far from the microrobot workspace [137]. Alternatively, electromagnetic coils

can be used in order to generate a magnetic field which can produce a varying

magnetic field, which is either static or rotating. The strength of the magnetic

field is assumed to be proportional to the electric current which is generating

it. The magnetic force fm and torque τm with a magnetic moment mb are

given by:

fm = mb (∇ B) (6.15)

τm = mb × B (6.16)

where B the magnetic flux density. The magnetization |M| induced to the

microrobots depends on the amplitude of the magnetic field strength H:

|M| = χ|H| (6.17)

where χ the magnetic susceptibility of the material. The relation between

the magnetic flux density, the magnetic field strength and the magnetization

is given by:

B = µ0 (H + M) (6.18)

In the proposed methodology, a static homogenous magnetic field is used to

magnetize the ferromagnetic layer of the microrobot and create an attractive
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force between the components sufficiently close to facilitate the assembly of

the kinematic chain. It is worth noting that the gradient created by the

magnetic setup is used only for assembly and not for displacement of the

microrobots. The magnetic field is generated by a setup of magnetic coils

paired in Helmholtz configuration as presented in [37] and is further described

in the presentation of the experimental setup.

6.4.5 Contact Force

As mentioned, once the static magnetic field is on and the two components

are sufficiently close, then the two components come to contact. Therefore,

an additional force which is the contact force arises between two surfaces.

In the macroscale, there are several models to describe contact, such as a

rigid and frictionless point contact, rigid point contact with friction or soft

and deformable contact [138]. In an assembled kinematic chain, there is a

sphere to plane contact which can be modelled as a rigid point contact with

friction [138]:

FC =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


fc, fc ∈ FCc (6.19)

FCc = {f ∈ R3 :

√
f1

2 + f2
2 ≤ µf , f3 ≥ 0} (6.20)

where µf the friction coefficient which depends on the materials of the sur-

faces in contact.
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In the presented system, the contact force between the two components

is the result of the attractive magnetic force and the adhesion force. Hence,

the contact force Fc exerted by one component to the other is equal to:

Fc = Fm + Fa (6.21)

where Fm the magnetic force for each component and Fa the adhesion force.

These force components are briefly described in the following.

6.4.5.1 Magnetic Force

The magnetic force that each of the component experiences within the gen-

erated magnetic field is equal to:

Fm =

∫ V

fm dV (6.22)

where fm as defined in equation (6.15) and V the volume of the magnetic

dipole.

6.4.5.2 Adhesion Force

Surface forces, which are electrostatic, Van der Waals forces and capillary

forces, have a significant effect when two surfaces are in contact in the mi-

croscale. These forces result to microrobots getting attached on the contact

surface. The force Fa needed to separate the two components and overcome

the combined effect of these forces is called adhesion force. It depends on

the material of the surfaces in contact and on the medium in which the mi-

crorobots are in. Electrostatic forces can be either attractive or repulsive [2].

The Van der Waals forces also have a significant effect when dimensions scale

down. In particular, the Van der Waals force FVDW, which are intermolec-
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ular forces, between a sphere and a half-space can be modelled as [2]:

FVDW =
H r

8πd2
(6.23)

where H the Hamaker constant, r the radius of the sphere and d the distance

between the sphere and the half-space.

6.4.6 Dynamic Model Assumptions

The following assumptions are taken into account for the derivation of the

dynamic model.

1. The fluid medium in which the microrobots are moving is water, and

therefore is continuous, incompressible and a Newtonian medium. Hence,

the Navier-Stokes equation, given in (6.2), holds for the described ex-

perimental environment.

2. The Reynolds number, given by equation (6.4), for a microstructure

moving in water is equal to:

Re = 4.49 10−4 (6.24)

for ρ = 997 kg/m3 which is the water density, µ = 8.9 10−4 Pas which

is the water viscosity at 25 oC, u∞ = 20 µ/s the maximum velocity

of a microstructure moving in water and L = 20 µm the maximum

dimension of the microrobot. Therefore, the assumption of Stokes flow

of equations (6.5) and (6.11) hold for the presented system.

3. For low Reynolds numbers, the inertial forces are negligible, and con-

sequently it is assumed that m q̈ ≈ 0, where m the mass of the mi-

crostructure and q̈ ∈ R2 the microstructure acceleration.
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4. It is assumed for simplification that equation (6.11) gives the drag

force for an individual component of the assembly. In the force model

derived for the kinematic chain, it is assumed that the total drag force

can be obtained as a sum of the drag force experience by each individual

link. This implies that the drag force is considered to be linear, which

is generally not the case. In particular, the flow distribution of one

component affects the flow distribution that is experienced by a second

component that is attached to the first one and could alternatively be

estimated as in [139].

5. The Brownian motion is only observable by the CCD camera when

the microstructures are static, i.e. not moved by the optical trap.

Therefore, FL ≈ 0, except for the cases where the microstructures are

trapped by an optical trap but are kept fixed at a specific position. This

case stands for the trapping stiffness calibration procedure described

in Section 6.5.1.

6. It is assumed that the assembly is grasped by one optical trap but the

modelling can be extended to multiple traps.

7. It is considered that the trapping radius of the laser is sufficiently small

so that the trapping force is exerted only on the spherical handle and

not on the cylinder. This implies that the trapping force can be mod-

elled by the spring model.

The above assumptions are taken into account in order to derive a mathe-

matical expression for the dynamics of an individual structural component

or a kinematic chain moving in the water under the influence of an optical

trap and the magnetic force.
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6.4.7 Dynamics of Individual Components before As-

sembly

Consider a microstructure grasped by an optical trap from the spherical

handle. Prior to contact and under the influence of the optical trap, the

dynamic equation of a trapped component is as follows:

m q̈ = Ftrap + Fdrag + FL (6.25)

where m the mass of the microstructure, q̈ ∈ R2 the microstructure accel-

eration, Ftrap ∈ R2 the trapping force as in equation (6.1), Fdrag ∈ R2

the drag force as in equation (6.11) and FL ∈ R2 the random thermal force.

Using assumptions 3 (m q̈ ≈ 0) and 5 (FL ≈ 0) of Section 6.4.6 into equation

(6.25), it can be written as:

Ftrap + Fdrag = 0 (6.26)

6.4.8 Dynamics of Assembled Kinematic Chain

Consider the assembly of N microstructures as described in Section 6.2 as a

kinematic chain of rigid bodies where each microstructure represents one link.

The dynamic equation of the ith microstructure grasped by an optical trap in

a fluid medium in contact with other magnetically assembled microstructures

is modelled as follows:

mi q̈i = Ftrapi
+ Fdragi

+ FLi
+

k∑
j=1

FCj
(6.27)

where mi the mass of the ith microstructure, q̈i ∈ R2 the microstruc-

ture acceleration, Ftrapi
∈ R2 the trapping force induced by a single trap,
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Fdragi
∈ R2 the resulting drag force, FLi

∈ R2 the random thermal force

and FCi
∈ R2 the contact force on the jth contact point of the microstruc-

ture with k = 1, 2 as each microstructure has two tips which are available for

attachment, and therefore maximum two contact points. Using assumptions

3 (mi q̈i ≈ 0) and 5 (FLi
≈ 0) of Section 6.4.6 into equation (6.27), it yields:

Ftrapi
+ Fdragi

+
k∑
j=1

FCj
= 0 (6.28)

Similarly, the dynamic equation of a microstructure which is not trapped by

an trapping force (Ftrapi
= 0) and is in contact with other microstructures

under the assumptions 3 and 5, is given by:

Fdragi
+

k∑
j=1

FCi
= 0 (6.29)

6.4.8.1 Displacement Force

Consider the system of N assembled microstructures in a kinematic chain as

modelled in Section 6.4.8. As mentioned in assumption 6 of Section 6.4.6, it

is considered that the assembly is grasped by a single optical trap from one

of the spherical handles. Under assumption 4 (that the drag force is linear),

the displacement force that is required to move the kinematic chain is equal

to:

Fdp = Ftrap +
N∑
i=1

Fdragi (6.30)

where Ftrap the trapping force exerted on the grasped microstructure and

Fdragi the drag force exerted on the ith component of the assembly with

i = 1, .., N . The above equation assumes that there is no sliding or relative
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motion between the contact surfaces. In case of sliding, equation (6.30)

can be extended by an additional term describing the sliding friction force

between each contact as follows:

F = Ftrap +
N∑
i=1

Fdragi +
N−1∑
i=1

Fsf i (6.31)

where Fsf i the sliding friction force of the ith contact between two compo-

nents. From equation (6.30) for an assembly of two components, the dis-

placement force is equal to:

Fdp = Ftrap1 + Fdrag1 + Fdrag2 (6.32)

6.4.8.2 Disassembly Force

The disassembly force refers to the force that is needed to separate two

microstructures which are in contact under the influence of the magnetic

field. The disassembly is performed by grasping and moving away one of the

microstructures while the second microstructure moves freely in the medium,

i.e. it is not grasped by an optical trap. From equation (6.28), for a kinematic

chain of two microstructures, where there is only one contact point, the

disassembly force Fd between two components is equal to the contact force:

Fd = Fc = Ftrap + Fdrag (6.33)

where Ftrap and Fdrag the optical and the drag force exerted on the dis-

assembled microstructure. Some additional assumptions are made for the

disassembly force model:

• It is assumed that the disassembled microstructure does not have a

second microstructure attached to it on its second tip. Therefore, it is
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assumed that there is only one contact point. However, the model can

be extended to two contact points.

• As the contact force is difficult to be accurately calculated from its

individual force components Fm and Fa, as described from the analysis

in Section 6.4.5, it is calculated indirectly from equation 6.33.

6.5 System Identification

In order to calculate the forces as presented, the system’s parameters, the

trapping stiffness k and the drag coefficient CD need to be identified. The

calibration methods that were used in the experiments to estimate the trap-

ping stiffness and the drag coefficient along the x and y-axis are described in

the following section.

6.5.1 Trapping Stiffness Estimation

There are several methods that allow the estimation of the stiffness of a laser

trap using position measurements [140]. The position measurements can

be obtained either by using a CCD camera or a Quadrant Photodetector.

Active calibration methods require translating the microstructure using the

piezo stage while the microstructure is trapped. This method calculates

the trapping stiffness from the dynamic equation of a trapped microsphere

using the measured positions of the microsphere. This method assumes that

the particle is spherical and therefore the viscous drag coefficient can be

calculated using equation (6.10). Passive calibration methods do not require

translation of the stage, but instead they rely on observing the Brownian

motion of a trapped microstructure and estimate the trapping stiffness using

either the power spectral density, the equipartition theorem or the Boltzmann
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Statistics Method. The power spectral density method requires high position

samplings with frequencies from 10 up to 50 kHz, hence it is not suitable for

position sampling using the CCD camera. Compared to this method, the

equipartition theorem method and the Boltzmann statistics method can also

be performed when the positions are sampled by a CCD camera. These two

methods do not require prior knowledge of the trap coefficient and do not

assume that the trapped microobject is a sphere. For these reasons, and

also because the Boltzmann statistics method is more robust to noise than

the equipartition theorem method, the estimation of the trapping stiffness is

performed using that method which is described in the following section.

6.5.1.1 Boltzmann Statistics Calibration Method

The trapping stiffness is estimated using the Boltzmann Statistics Method

which estimates the trapping stiffness using the microrobot position measure-

ments as sampled by a CCD camera. This method uses observations from

the Brownian motion of a trapped microrobot. According to the Boltzmann

statistics approach, the probability distribution of the positions of a micro-

robot due to Brownian motion is a Gaussian distribution. The probability

density of the positions of a microrobot as a function of the potential energy

of the optical trap in thermal equilibrium is given by [141]:

p(qi)dx = pm e−E(qi)/kBT (6.34)

where pm the probability of the mean position of the microrobots, E(x) the

potential energy of the optical trap, kB the Boltzmann constant and T the

temperature of the medium in which the microrobot is suspended in and qi

the 1-D position of the microrobot with i = x, y. Solving equation (6.34) for
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E(qi), it yields:

E(qi) = −kBT ln(p(qi)) + kBT ln(pm) (6.35)

The energy is also equal to the kinetic energy of the trapped particle which

is equal to:

E(qi) =
1

2
kiqi

2 (6.36)

where ki the trapping stiffness along the ith axis with i = x, y. Therefore,

the trapping stiffness can be obtained by fitting a parabolic function as in

equation (6.36) to the values as calculated from (6.35).

6.5.2 Drag Coefficient Estimation

The drag coefficient CD is estimated using an active displacement method

that takes into account the estimated trapping stiffness as calculated from the

method described in Section 6.5.1.1. In this case, the microrobot is trapped

by the laser beam which is kept fixed while the piezo stage is moved. The drag

coefficient is calculated using the relative displacement of the microrobot and

the laser trap within the fluid medium for the estimated trapping stiffness of

the previous section. From the equations (6.1), (6.11) and (6.25), and under

the assumptions 3 and 5 of Section 6.4.6, it is obtained:

CD q̇ = k(q− u) (6.37)

Assuming that the trapping stiffness and the relative position of the micro-

robot and the laser beam are known, the drag coefficient can be estimated

using linear regression on the above equation.
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6.6 Experimental Setup

Figure 6.4: The experimental setup comprises an Optical Tweezers with an
integrated set of magnetic coils placed fitted on the sample holder on the
piezo stage.

The setup consists of an Optical Tweezers (Elliot Scientific, UK) and a

3D-printed device that integrates the magnetic coils with the Optical Tweez-

ers fitted on the piezo stage as shown in Figure 6.4. The device integrates

three magnetic coils for 3D magnetic actuation. The dimensions and the

design of the magnetic coils are as presented in [37] and given in Table 6.1.

The coils are paired in an Helmholtz configuration and are used to create

a static homogenous magnetic field. The microstructures are fabricated as

described in Section 3.3. The glass slide with the nickel-coated microrobots,

that are covered with the 3D-printed mask, is placed on a coverslip on top

of an imaging spacer containing DI water between the two glasses (Figure
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Figure 6.5: Schematic of the side view of the experimental configuration
of the samples placed inside the coils and on the Optical Tweezers (left).
Top view of the coils placed on the piezo stage with a glass slide containing
microrobots (right).

Coil 1st 2nd 3rd

Coil radius [mm] 50 37 38
Number of turns per coil 260 100 110
Maximum magnetic power at the centre [mT] 10 10 10

Table 6.1: Magnetic coil setup parameters

6.5-left). The sample is placed inside a sonicator bath in order to remove

the masks and also detach the microrobots from the glass slide. This proce-

dure avoids transferring the detached microrobots between workspaces as the

sample can be placed directly inside the sample holder as shown in Figure

6.5.
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6.7 Experimental Results

6.7.1 Reconfigurable Microassembly

The assembly process was performed experimentally in order to assess the

repeatability and reversibility of the proposed method. Distributions for the

estimated forces for the displacement of the microassembly and the disas-

sembly are also calculated. In the following, an indicative experiment is

presented which demonstrates the assembly and disassembly of a three-link

kinematic chain consisting of a link with rectangular tips and two links with

spherical tips. It is also essential to have an estimation of the range of the

forces that are required to manipulate and reconfigure the assembly. As there

the only feedback is the visual feedback from the camera, the forces are esti-

mated visually from the 2D position measurements of the CCD camera. The

forces that are characterized are the force required to move the assembly

and the force needed to disassemble the spherical joint, which quantifies the

contact force between the contact surfaces to reconfigure the assembly. As

mentioned, it is a combination of magnetic, adhesion and frictional forces

between the contact surfaces. A number of experiments were performed for

a two-link assembly to experimentally calculate the distribution of the force

required to move an assembly as well as the distribution for the disassembly

force for the spherical joint.

6.7.1.1 Assembly of Spherical Joint using the Magnetic Field

The microstructures to be assembled were placed close to each other using the

optical trap before the magnetic field is activated. Once the components were

brought to close proximity, the Optical Tweezers were deactivated. A static

homogenous magnetic field is used in order to magnetize the microstructures
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(a) t=0 s (Magnet on, laser off) (b) t=3 s (Magnet on, laser off)

Figure 6.6: Assembly of spherical joint

and induce the attractive force between them. The distance between the

components, as it can also be seen from Figure 6.6a, is approximately 1 µm.

During this stage, the optical trap is switched off, so that the trapping force

does not overcome the magnetic force and obstruct the assembly. An indica-

tive set of images shown three microstructures before and after assembly is

shown in Figure 6.6.

6.7.1.2 Displacement of Assembly and Joint Rotation under the

Magnetic Field using the Optical Tweezers

At this stage, the magnetic field remains on to maintain the attraction be-

tween the microstructure, while the assembly is grasped by one optical trap.

A kinematic chain translated along the xy-plane using a single optical trap

is shown in Figure 6.7. The tip of the microstructure which is attached at

the end of the kinematic chain can be used as an end-effector tip for 3D

manipulation. This link can be grasped by the spherical handle for planar

displacement and rotation. It can also be displaced vertical by inducing a

vertical force from the optical trap on the metal layer. This can be achieved

by applying an instantaneous laser pulse to the spherical tip. The vertical
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(a) t=0 s (Magnet on, laser on) (b) t=2 s (Magnet on, laser on)

Figure 6.7: Displacement of assembly along the y-axis

(a) t=0 s (Magnet on, laser on) (b) t=1 s (Magnet on, laser on)

Figure 6.8: Out-of-plane displacement of end-effector from vertical force in-
duced but the laser

motion of the attached microstructure is shown in Figure 6.8.

6.7.1.3 Disassembly of Spherical Joint under the Magnetic Field

using the Optical Tweezers

In order to reconfigure the assembly, it is important that the trapping force

is sufficient to disassemble two microstructures without switching off the

magnetic field. By maintaining the magnetic field, partial reconfiguration

and disassembly of specific microstructures can be achieved. It is also es-

sential that this motion is repeatable and that the disassembly of the same
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(a) t=0 s (Magnet on, laser on) (b) t=1 s (Magnet on, laser on)

Figure 6.9: Disassembly of spherical joint using the Optical Tweezers under
the magnetic field

(a) t=0 s (Magnet off, laser on) (b) t=1 s (Magnet off, laser on)

Figure 6.10: Disassembly of the kinematic chain after deactivation of the
magnetic field

two microstructures can be performed multiple times. In Figure 6.9, it is

demonstrated how a microstructure with spherical tips is removed from the

kinematic chain using one optical trap and under static magnetic field. The

components are all released from the assembly after the magnetic field is

switched off. It is shown in Figure 6.10 that the middle component is re-

moved from the other two microstructures as the magnetic attractive force

between the microstructures is off.
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Figure 6.11: Global frame of reference {G} and microrobot co-ordinate frame
{M}

6.7.2 System Identification

In order to estimate the displacement and disassembly forces, an estimation of

the values for the trapping stiffness and drag coefficients needs to be obtained.

These values are estimated using the methods and modelling described in

Sections 6.5.1 and 6.5.2.

6.7.2.1 Trapping Stiffness Estimation

To perform the trapping stiffness calibration using the Boltzmann statistics

method as described, five sets of experiments were recorded in which the

cylindrical microrobot with spherical handles was trapped using five different

values of laser powers ranging from 0.1 W to 0.5 W. This range was chosen

as most of the experiments were performed using laser powers in this range.

The configuration of the co-ordinate frames is shown in Figure 6.11. In each

experiment, the CCD camera was used to record the Brownian motion of the

microrobot while trapped by the spherical handle. Each video was processed

to obtain the 2D position of the spherical handle while the duration of each

recording was from 8 to 13 seconds. The calculated positions were normalized
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Figure 6.12: Relative displacement of the microrobot with respect to the
mean displacement along the x-axis from Brownian motion for different laser
powers

around the mean displacement value. The normalized positions are shown

in Figures 6.12 and 6.13. A Gaussian distribution for set of positions was

calculated as shown in Figures 6.14 and 6.15. Given these distributions, the

values:

y(qi) = − ln(p(qi)) + ln(pm) (6.38)

are calculated for each distribution. The above equation stems from (6.35)

in which the term kBT is omitted due to scaling issues. A parabolic function

y(qi) = α qi
2 is then fitted to each set of calculated values as depicted in Fig-

ures 6.16 and 6.17. The trapping stiffness ki is obtained from the estimated
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Figure 6.13: Relative displacement of the microrobot with respect to the
mean displacement along the y-axis from Brownian motion for different laser
powers

parameter α as follows:

ki =
a

2kBT
, i = x, y (6.39)

The temperature is considered to be T = 298.15 K at 0.1 W. It is consid-

ered that the temperature increases by 0.8 K for every laser power increase

of 0.1 W. For Figures 6.18-right and 6.19-right, it is observed that the

displacements have a decreasing standard deviation as the laser power is

increasing, although some noise can be observed disturbing the descending

slope of the curve. It can be seen that the estimated stiffness values along

the y-axis (Figure 6.19-left) are more noisy than the corresponding values
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Figure 6.14: Probability distribution for Brownian motion displacements for
different laser powers (x-axis)

for the x-axis (Figure 6.18-left). This because the y direction corresponds to

the longest dimension of the cylinder. This error is likely to be introduced

because the y-axis of the cylinder is not perfectly aligned with the horizontal

direction of the global frame of reference {G} (Figure 6.11), hence there is a

larger deviation. This is in contrast to the x dimension of the cylinder, which

is smaller and there is no misalignment to the x-axis of the co-ordinate frame.

The overall estimation could be improved by obtaining position data using

the Quadrant Photodetector sensor rather than the CCD camera which has

a lower sampling rate.
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Figure 6.15: Probability distribution for Brownian motion displacements for
different laser powers (y-axis)

6.7.2.2 Drag Coefficient Estimation

Two sets of experiments were recorded in order to perform the calibration

procedure for the drag coefficient. The stiffness value as obtained from the

previous calibration procedure is used in order to estimate the drag coeffi-

cient. In this experiment, a microrobot was trapped by the laser and was

translated by moving the piezo stage while the laser beam was kept at a fixed

position, as shown in Figure 6.20. The laser power was set to 0.2 W. The mi-

crorobot displacements and the laser position are shown in Figure 6.21. For

known trapping stiffness, microrobot velocity and relative laser and micro-

robot displacements, the drag coefficient is obtained using equation (6.37).

The estimated drag coefficients CDx and CDy for the x and y-axis re-
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Figure 6.16: Parabolic function fitting for different laser powers (x-axis)

Drag Coefficient

CDx [pN s
µm

] 0.0253

CDy [pN s
µm

] 0.0073

Table 6.2: Drag force calibration parameters

spectively are given in Table 6.2. From Table 6.2, it can be seen that the

drag coefficient along the y-dimension of the microrobot, which is the long

dimension of the microrobot (along the cylinder) and that corresponds to the

x direction of the global frame is larger that along it’s x dimension. This is

because the cross-sectional area of along the ly-dimension is smaller than on

the x-dimension. From Table 6.2, it can be seen that the drag coefficient CDx

with respect to the x-direction of the global frame, which corresponds to the
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Figure 6.17: Parabolic function fitting for different laser powers (y-axis)

long dimension of the microrobot (along the cylinder and y-dimension with

respect of the microrobot frame of reference - Figure 6.20) is larger than CDy.

This is because the cross-sectional area of the cylinder (the y-dimension is

smaller) than of the x-dimension.

6.7.3 Force Estimation

After obtaining the estimated values for the trapping stiffness and drag coef-

ficients, an estimation can be obtained for the displacement force required to

displace the assembly and the force required to separate two assembled com-

ponents. A number of experimental sets were performed in which assemblies

of two components were attempted to be separated. The dataset includes
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Figure 6.18: Trapping stiffness and position standard deviation as function
of laser power (x-axis)
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Figure 6.19: Trapping stiffness and position standard deviation as function
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(a) x-axis calibration (b) y-axis calibration

Figure 6.20: Indicative image frames from the drag coefficient calibration
experiments
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Figure 6.21: Optical trap and microrobot positions along the x and y-axis
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Figure 6.22: Microrobot velocity along the x and y-axis for the drag coeffi-
cient calibration experiments
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Figure 6.23: Drag force exerted on the microrobot along the x and y-axis for
the drag coefficient calibration experiments
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12 performed disassembly motion sequences and 7 displacement motion se-

quences. In order to assess the repeatability of the disassembly motion, the

same motion was performed 4 times in order to compare the estimated force

values. The metrics that are calculated for each experiment are the mean,

standard deviation and median of the trapping force, drag force and the total

force.

6.7.3.1 Displacement Force

As mentioned, 7 sets of experiments were performed in which the assembly

is transported from one point to another. The assemblies consist of two

components, one cylindrical microrobot with spherical and handles and one

with rectangular handles. The displacement force is estimated according to

the modelling presented in Section 6.4.8.1. From equation (6.32):

Fdp = Ftrap1
+ Fdrag1

+ Fdrag2
(6.40)

for i = 1 corresponding to the component that is trapped by the laser and

i = 2 the second attached link to the first one. The mean values, standard

deviation and median of the norm of trapping force, drag force and total force

needed for displacement, for each experiment are shown in Figures 6.24, 6.25

and 6.26 respectively. The median values for each experimental set for the

trapping force, drag force and total force for displacement are given in Table

6.3. The laser power was set to 0.3 W for all experiments.

6.7.3.2 Disassembly Force

It is also essential to estimate the force which is needed to detach two com-

ponents under the magnetic field, as this is crucial in order to be able to
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Figure 6.24: Trapping force for assembly displacement for each experiment

Experiment Trapping
Force
[pN ]

Drag
Force
[pN ]

Total
Force
[pN ]

Laser
Power
[W]

Velocity

[µm/s]

1 23.7884 0.4958 23.2859 0.3 0.148

2 27.4518 0.3412 27.5811 0.3 0.44

3 89.6610 0.5659 89.5659 0.3 0.209

4 52.3875 0.4635 52.6136 0.3 0.2

5 57.2077 0.5188 57.1157 0.3 0.21

6 41.4242 0.3412 41.1623 0.3 0.34

7 74.8630 0.2557 74.9533 0.3 0.22

Table 6.3: Median of force and velocity norms for and corresponding laser
power displacement force

reconfigure the assembled microstructures. In the following, we present the

estimated force values for 12 different experiments during which disassembly

is performed. In order to assess the repeatability and reversibility of this

motion, we repeat the same motion 4 times on the same experiment and es-

timate the force in order to get a distribution of the estimated force needed

to detach the same two components. The disassembly force is estimated as
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Figure 6.25: Drag force for assembly displacement for each experiment

given by equation 6.33:

Fd = Ftrap + Fdrag (6.41)

The mean, standard deviation and median of the trapping force, drag force

and disassembly force for each of the 12 experiments are given in Figures 6.27,

6.28 and 6.29 respectively. Similarly, the metric for the repeated motion in a

single experiment are depicted in Figures 6.30, 6.31 and 6.32 for the trapping

force, the drag force and the total disassembly force respectively. The median

values for the experimental set of the repeated motion and for all experiments

are given in Tables 6.4 and 6.5 respectively.

6.8 Results and Discussion

From Table 6.3, it can be seen that the total displacement force ranges from

23.2 to 89.5 pN . The deviation could be attributed to the different mi-

crostructures used for assembly in every experimental set as they were cre-

ated from different fabrication processes. In addition, the distance of the
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Figure 6.26: Total displacement force for each experiment

Experiment Trapping
Force
[pN ]

Drag
Force
[pN ]

Total
Force
[pN ]

Laser
Power
[W]

1 106.5254 0.2331 106.4799 0.4

2 87.9737 0.1460 87.6310 0.4

3 93.7203 0.1166 93.7203 0.4

4 101.0024 0.4662 100.6640 0.4

5 34.4308 0.2247 34.3230 0.3

6 32.5960 0.0622 32.6104 0.4

7 44.5317 0.1123 44.5317 0.4

8 135.6516 0.2247 135.4279 0.4

9 70.6367 0.1166 70.4255 0.3

10 58.6491 0.1123 58.5331 0.4

11 74.9763 0.1166 74.6601 0.4
12 68.0466 0.1765 67.8857 0.4

Table 6.4: Median of force norms and corresponding laser power for joint
disassembly (all experiments)

assembly to the glass slide also affects the resistance that could be experi-

enced to move the assembly. An error could also have been introduced to

the position calculations as it is visually-based and the acquisition and im-
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Figure 6.27: Trapping force for disassembly for each experiment
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Figure 6.28: Drag force for disassembly for each experiment
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Figure 6.29: Total force for disassembly for each experiment
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Figure 6.30: Trapping force for disassembly for repeated disassembly on same
experiment
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Figure 6.31: Drag force for disassembly for repeated disassembly on same
experiment
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Figure 6.32: Total force for disassembly for repeated disassembly on same
experiment
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Experiment Trapping
force [pN ]

Drag
Force
[pN ]

Total
Force
[pN ]

Laser
Power
[W]

1 70.6367 0.1166 70.4255 0.3

2 58.6491 0.1123 58.5331 0.4

3 74.9763 0.1166 74.6601 0.4

4 68.0466 0.1765 67.8857 0.4

Table 6.5: Median of force norms and corresponding laser power for repeated
joint disassembly motion

age processing can introduce noise. The laser positions that are used in the

calculations are also obtained through image processing as the laser source

and the camera have different sampling rates.

For the disassembly force, the median values of all recorded experiments

range from 32.6 to 135.4 pN (Table 6.4). The same error in the position

processing could have been introduced in the calculation of the disassembly

force as for the displacement force. It is worth noting that, as the disassembly

occurs at a brief time instant, it is difficult to accurately segment this part of

the experiment from the video without including image frames from slightly

before and after the assembly. Therefore, the median values include force

values from time instances before and after the assembly. The segmented

videos which are processed have durations from 1 to 1.5 seconds. From

Table 6.4, it can also be seen that the drag force values are low as there is

very little motion of the microrobot compared to the fluid. This shows that

the drag force could be neglected in force model of eq. (6.41). Moreover, as

the drag force is very low, the assumption for linearity does not introduce

large errors for the specific experiment. Another source of value deviation

is that the disassembly is performed on different pairs of microstructures.

This implies that the material properties might vary and consequently result
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to different adhesion and magnetization between the microstructures. The

variation in magnetization can result to differences to the attractive force

between the components. The impact of the variance in magnetization and

adhesion, which in turn define the amplitude of the contact force, can be

seen more clearly from the results of the repeated motion on the same pair

of microstructures (Table 6.5). In this case, the magnetization and adhesion

is the same for every reported value as the experimental environment and

microrobots are the same. The median disassembly force values for the 4

experimental sets given in Table 6.5 present a smaller deviation.

The nickel layer deposited on the microstructures for all sets of experi-

ments is approximately 100 nm. It is worth noting that the reported value

from the software of the deposition system for the layer thickness presents

a deviation from the real value (experimentally observed to be up to 20

nm), and that could also attribute to the deviation in the magnetization and

contact force. Increasing the thickness of the nickel layer would result to in-

creased attractive forces between the components and, therefore, more stable

assemblies. However, a thicker layer would interfere with the optical trap at

the interface of the metal layer and the polymer part where the spherical han-

dle is. In case of interference, grasping of the microstructure is compromised

as the microstructure is pushed rather than grasped. Inadvertent heating can

also be caused inducing flows and moving the assemblies. An increase on the

layer thickness, while avoiding interference with the optical trap, could be

compensated by increasing the length of the cylinder. However, this would

lead to the assembly of heavier kinematic chain with less DoF as this would

limit the number of microstructures that can be linked in a kinematic chain.

Last, as mentioned in assumption 3 of Section 6.4.6, the total drag force

experienced by the assembly is calculated as the sum of the drag force exerted
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on each of the components. A more accurate approximation of the drag

force and the drag coefficient could be obtained through a fluid dynamics

simulation.

6.9 Conclusions

This chapter presented a methodology for reconfigurable microassembly us-

ing hybrid optical and magnetic microrobots. The proposed method uses

Optical Tweezers to position the assembled microrobots while utilizes the

magnetic field to magnetize the microrobots and induce a magnetic attrac-

tive force between the microstructures. An experimental setup is proposed

integrating a set of three magnetic coils with the Optical Tweezers for simul-

taneous optical and magnetic actuation. The microrobots are 3D-printed

with a mask for selective metal deposition which is later removed during the

microrobot detachment process. The dynamics of the systems along with two

system identification algorithms for trapping stiffness and drag force calibra-

tion were also presented. An experimental demonstration of the assembly and

disassembly process is described. Tthe displacement and disassembly forces

were experimentally estimated based on an set of microassembly experiments

providing a range for the force values. Sources of error in estimation are: the

different experimental conditions and set of microrobots used every experi-

ment, the variance in magnetization of the microrobots and the assumption

made in the force modelling. Future improvements would be to add more

degrees of freedom to the individual microassembly components. For ex-

ample, more optical handles could be added for improved manipulation or

their geometry could be extended to 3D designs with surfaces for component

attachment to more 3D planes.
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Chapter 7

Conclusions

Micromanipulation systems are an emerging technology that could transform

biology and medicine. Due to their fine resolution and size, their applica-

tions span from diagnosis to therapy and surgical interventions. Currently,

cell manipulation is performed using primitive tools, such as micropipettes.

However, recent advances in microfabrication have sparked the development

of 3D microtools and microrobots. Meanwhile, data-driven decision making

algorithms became prominent, something that was triggered by an increase

in hardware computing power and large-scale data analysis. Therefore, such

innovations can now allow the development of externally powered 3D micro-

robots for cell biopsies and cell manipulation used in enclosed environments,

such as microfluidic chips, enhanced with state-of-the-art software solutions

for microrobot 3D detection and manipulation using the direct line of sight

for the camera. This thesis focused on the development of a micromanip-

ulation system based on Optical Tweezers manipulation using 3D-printed

microrobots, either purely optical or hybrid optical and magnetic, for micro-

manipulation and microassembly. Several methods for 3D microrobot pose

estimation were presented. Optical Tweezers and magnetic actuation were
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also combined in a unified setup integrated with the Optical Tweezers to

introduce a reversible microassembly method of microrobot assemblies.

Chapter 2 presented an overview of the current state-of-the-art on micro-

manipulation systems on the aspects of microrobot design and fabrication

techniques, pose estimation and manipulation. From this review, it could

be identified multiple component articulated microrobots could be proposed

as a manipulation mechanism in the microscale. Moreover, pose estimation

techniques in the microscale have been primarily based on traditional com-

puter vision techniques mostly for 2D position and orientation estimation.

Micromanipulation interfaces could also benefit from facilitating bimanual

control of multiple microrobots which is challenging to do so using a video

game controller or a mouse.

Chapter 3 introduced the fabrication method of multiple component opti-

cal microrobots and hybrid optically and magnetically actuated microrobots

to be used for reconfigurable microassembly. Optical multiple component

microrobots are fabricated through one-step printing. It was demonstrated

that low printing powers results to higher feature resolution. Hybrid optical

and magnetic microrobots are fabricated through a two-step procedure con-

sisting of printing and metal deposition. In order to achieve selective metal

deposition for simultaneous optical and magnetic actuation, a mask which is

later removed is printed in order to cover specific microrobot surfaces that

serve as grasping handles for the Optical Tweezers. The single step method

allows fabrication of more complex geometries, however they are purely ac-

tuated by the Optical Tweezers and the design should take into account the

minimum spacing between the components resulting to backlash. Hybrid op-

tical and magnetic microrobots can be created from basic geometries and can

allow simultaneous optical and magnetic actuation through selective metal
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deposition. The assembly procedure was described later on in Chapter 6.

Chapter 4 investigated the problem of three-dimensional microrobot pose

estimation in an Optical Tweezers setup. Taking advantage of the camera in

the setup, that the geometrical model of the microrobot is known and that

the selected fabrication method allows batch microrobot printing in known

configurations, a large dataset was generated to be used as ground truth

for network training and validation. The first approach utilized sharpness

information to relate the blurriness of the image, either as a whole or in

specific regions of it, to the corresponding depth. However, this method is

not robust to simultaneous microrobot translation and rotation as it can-

not decouple these two motions using sharpness as a single feature. The

CNN-LSTM method for depth estimation that was presented could estimate

the corresponding depth for a microrobot independently of their orientation.

The pose of the microrobot was estimated using CNNs for depth and relative

orientation estimation of the microrobot using as input the current and previ-

ous frame. The validation results showed that there is a drift in the absolute

orientation value as the estimations are relative and, therefore, that could be

solved by updating the registration using a feature matching method. The

main motivation of estimating microrobot pose is to provide a 3D position

and orientation feedback of a 3D-printed microrobot in an enclosed environ-

ment such as the Optical Tweezers that could be potentially used as pose

feedback for closed-loop control.

Having investigated some aspects on fabrication and microrobot 3D de-

tection, the next step is microrobot manipulation. Chapter 5 demonstrated

how indirect manipulation could be performed using 3D multiple component

microrobots as grasping mechanisms. This approach addresses the problem

of causing photodamage to cells by avoiding direct grasping with the laser
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while simultaneously allows out-of-plane object rotation. Optical manipula-

tion of the utilized mechanisms could be improved by including geometrical

figures that allow more stable grasping of the mechanism by the laser. The

performed experiment also highlighted the fact that multiple optical traps

are necessary for more dexterous microrobot manipulation. To this end, the

next investigation focused on the development of a manipulation interface

that integrates human sensory information to facilitate multiple microrobot

manipulation. The comparative user results showed that object targeting was

performed in a faster manner due to the seamless processing of the informa-

tion from the gaze of the operator. The proposed manipulation interface

could facilitate multiple microrobot manipulation in microassembly.

As mentioned, Optical Tweezers have many advantages that would ben-

efit procedures such as microassembly. Microassembly methods proposed for

the Optical Tweezers are mainly permanent as the components are chemically

bonded. Alternatively, they can be assembled using 3D-printed components

based on geometries that clamp together mechanically. Taking advantage of

their fine spatial resolution that is significant for microassembly, a novel mi-

croassembly method was proposed integrating magnetic actuation with the

Optical Tweezers. The motivation is to allow reversible and reconfigurable in

situ microassembly using the magnetic force as the connecting force between

the components. It was demonstrated that when the components are placed

at a distance of approximately 1 µm, then they can be assembled when the

magnetic field is activated and that they can be disassembled using the Opti-

cal Tweezers without deactivating the magnetic field. The force estimations

for translation and disassembly appeared to be ranging from approximately

30 to 130 pN . The discrepancies could be attributed to the fact that the mea-

surements were performed on different components hence the adhesion force
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differs. It was shown that when the assembly is performed on the same pair

of components then the variations are smaller and the standard deviation of

the force values was approximately 10 pN .

The aspiration is to include all of the developed components into one

unified framework that would serve as a robotic master-slave system, sim-

ilarly to macroscale surgical robot platforms, for ex vivo and in vitro cell

manipulation.
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[74] A. V. Kudryavtsev, S. Dembélé, and N. Piat, “Full 3d rotation estima-

tion in scanning electron microscope,” in 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,

pp. 1134–1139.

[75] A. G. Banerjee and S. K. Gupta, “Research in automated planning

and control for micromanipulation,” IEEE Transactions on Automa-

tion Science and Engineering, vol. 10, no. 3, pp. 485–495, 2013.

[76] A. Ashkin, “Acceleration and trapping of particles by radiation pres-

sure,” Physical review letters, vol. 24, no. 4, p. 156, 1970.

[77] ——, “Forces of a single-beam gradient laser trap on a dielectric sphere

in the ray optics regime,” Biophysical journal, vol. 61, no. 2, pp. 569–

582, 1992.

[78] R. Gauthier and S. Wallace, “Optical levitation of spheres: analyti-

cal development and numerical computations of the force equations,”

JOSA B, vol. 12, no. 9, pp. 1680–1686, 1995.

[79] R. Gauthier, “Theoretical investigation of the optical trapping force

and torque on cylindrical micro-objects,” JOSA B, vol. 14, no. 12, pp.

3323–3333, 1997.

188



[80] D. Phillips, M. Padgett, S. Hanna, Y.-L. Ho, D. Carberry, M. Miles,

and S. Simpson, “Shape-induced force fields in optical trapping,” Na-

ture Photonics, vol. 8, no. 5, p. 400, 2014.

[81] T. Nieminen, H. Rubinsztein-Dunlop, and N. Heckenberg, “Calculation

and optical measurement of laser trapping forces on non-spherical par-

ticles,” Journal of Quantitative Spectroscopy and Radiative Transfer,

vol. 70, no. 4-6, pp. 627–637, 2001.
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