307 research outputs found

    Master of Science

    Get PDF
    thesisThis thesis provides details on the development of automatic collision avoidance for manually tele-operated unmanned aerial vehicles. We note that large portions of this work are also reprinted with permission, from 2014 IEEE International Conference on Robotics and Automation, \Automatic Collision Avoidance for Manually Tele-operated Unmanned Aerial Vehicles", by J. Israelsen, M. Beall, D. Bareiss, D. Stuart, E. Keeney, and J. van den Berg c 2014 IEEE. We provide a method to aid the operator of unmanned aerial vehicles. We do this by automatically performing collision avoidance with obstacles in the environment. Our method allows the operator to focus on the overall motion of the vehicle rather than requiring the operator to perform collision avoidance. Where other currently existing systems override the controls of the operator only as a last resort, our approach was developed such that the operator can rely on the automatic collision avoidance for maneuverability. Given the current operator control input, our approach continually determines the future path of the vehicle. If along the future path a collision is predicted, then our algorithm will minimally override the operator's control such that the vehicle will not collide with the obstacles in the environment. Such an approach ensures the safety of the operator's controls while simultaneously maintaining the original intent of the operator. We successfully implemented this approach in a simulated environment, as well as on a physical quadrotor system in a laboratory environment. Our experiments show that, even when intentionally trying to do so, the operator failed to crash the vehicle into environment obstacles

    Continuous Autonomous UAV Inspection for FPSO vessels

    Get PDF
    This Master's thesis represents the preliminary design study and proposes the unmanned aerial vehicle (UAV) -based inspection framework, comprising several multirotors with automatic charging and deployment for 24/7 integrity inspection tasks. This project has three main topics. First one describes the operational environment and existing regulations that cover use of UAVs. It forms the basis for proposal of the relevant use-case scenarios. Third part comprises two chapters, where design of concept and framework is being based on the previous factors. It shows that before implementation of fully autonomous inspection system, there is a need to cover both regulatory and technical gaps. It can be explained by the fact that there does not exist any autonomous inspection system today. Thus, this project can be seen as a base for future development of the UAV-based inspection system, as it focuses on creation of a general framework

    Haptic Feedback Effects on Human Control of a UAV in a Remote Teleoperation Flight Task

    Get PDF
    The remote manual teleoperation of an unmanned aerial vehicle (UAV) by a human operator creates a human-in-the loop system that is of great concern. In a remote teleoperation task, a human pilot must make control decisions based upon sensory information provided by the governed system. Often, this information consists of limited visual feedback provided by onboard cameras that do not provide an operator with an accurate portrayal of their immediate surroundings compromising the safety of the mobile robot. Due to this shortfall, haptic force feedback is often provided to the human in an effort to increase their perceptual awareness of the surrounding world. To investigate the effects of this additional sensory information provided to the human op-erator, we consider two haptic force feedback strategies. They were designed to provide either an attractive force to influence control behavior towards a reference trajectory along a flight path, or a repulsive force directing operators away from obstacles to prevent collision. Subject tests were con-ducted where human operators manually operated a remote UAV through a corridor environment under the conditions of the two strategies. For comparison, the conditions of no haptic feedback and the liner combination of both attractive and repulsive strategies were included in the study. Experi-mental results dictate that haptic force feedback in general (including both attractive and repulsive force feedback) improves the average distance from surrounding obstacles up to 21%. Further statis-tical comparison of repulsive and attractive feedback modalities reveal that even though a repulsive strategy is based directly on obstacles, an attractive strategy towards a reference trajectory is more suitable across all performance metrics. To further examine the effects of haptic aides in a UAV teleoperation task, the behavior of the human system as part of the control loop was also investigated. Through a novel device placed on the end effector of the haptic device, human-haptic interaction forces were captured and further analyzed. With this information, system identification techniques were carried out to determine the plausibility of deriving a human control model for the system. By defining lateral motion as a one-dimensional compensatory tracking task the results show that general human control behavior can be identified where lead compensation in invoked to counteract second-order UAV dynamics

    In-Flight Collision Avoidance Controller Based Only on OS4 Embedded Sensors

    Get PDF
    The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.Brazilian Agency: CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior)Brazilian Agency: CNPq (National Council for Scientific and Technological Development

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Motion Planning

    Get PDF
    Motion planning is a fundamental function in robotics and numerous intelligent machines. The global concept of planning involves multiple capabilities, such as path generation, dynamic planning, optimization, tracking, and control. This book has organized different planning topics into three general perspectives that are classified by the type of robotic applications. The chapters are a selection of recent developments in a) planning and tracking methods for unmanned aerial vehicles, b) heuristically based methods for navigation planning and routes optimization, and c) control techniques developed for path planning of autonomous wheeled platforms

    confined spaces industrial inspection with micro aerial vehicles and laser range finder localization

    Get PDF
    This work addresses the problem of semi-automatic inspection and navigation in confined environments. A system that overcomes many challenges at the state of the art is presented. It comprises a mu..
    corecore