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Abstract

This work addresses the problem of semi-automatic inspection and navigation in confined environments. A system that

overcomes many challenges at the state of the art is presented. It comprises a multirotor able to inspect an industrial

combustion chamber thus working in a GPS-denied environment with poor lighting conditions, in the presence of

magnetic and communication disturbances, iron dust and repetitive patterns on the structure walls. The presented

system is able to pass through narrow entrances but still capable of acquiring high resolution images and to allow

operators to perform inspection of the structures. Starting from the captured data, the system is able to provide a 3D

reconstruction of the inspected environment for offline analysis.
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Introduction

Maintenance is an important aspect that requires peri-

odic control of equipment, systems, machineries and

infrastructures. It is defined by the European standard

(prEN 13306, 1998) as “Combination of all technical,

administrative and managerial actions during the life

cycle of an item intended to retain it in, or restore it

to, a state in which it can perform a required function”.

Depending on the objective of the maintenance activities,

such a process can be distinguished into five main cate-

gories: preventive maintenance; predictive maintenance;

corrective maintenance; zero-hours maintenance and

periodic maintenance. Common goal of all these proce-

dures is to avoid unexpected failure/inefficiency. Indeed,

an effective maintenance program is fundamental to

improve equipment life and possibly avoid unplanned

maintenance activities. Unfortunately, any maintenance

program is in general time consuming and costly. In the

industrial field for example, maintenance process could

require plant downtime and service interruptions.
Periodic visual inspection is in general the first step

performed in any industrial maintenance program to

detect typical defective in the materials status such as,
among others, corrosion in iron and steel components,
cracks in building walls and chimneys, etc. These
inspections are typically done by experienced surveyors
employing eyesight or special contactless measurement
devices like for instance thermal/multispectral camera
if required.

Although simple in principle, such operations are
complex and time consuming since surveyors need
some facilities (e.g. scaffolding) that allow him/her to
be at a close distance from the inspected structure.
Furthermore, such inspections are carried out numer-
ous times in hazardous environments or in confined
spaces, where the access is usually difficult and the
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working condition turns out to be extreme for a
human being.

Taking into account the former considerations, it is
evident that the introduction of any automation into
the inspection process can improve a lot the safety of
the operator and hopefully it can speed up the failure
reaction chain. According to the International
Federation of Robotics (IFR) “A service robot is a
robot which operates semi-or fully autonomously to
perform services useful to the well-being of humans
and equipment, excluding manufacturing operations”.
Service robots in general, assist human being
performing repetitive jobs in dirty, distant or danger-
ous environment.

Typical examples here are climbing robots used to
inspect walls1or metallic structure.2 However, in the
last decade, the interest of the European Community
on the Aerial service robots research field has grown a
lot.3–5 The aim here is to use Aerial Vehicles in real
applicative scenario to support or replace human oper-
ators in all those activities that are either repetitive or
dangerous for the human beings. More recently, the
research community moves towards applications
where the aerial vehicles are used as systems to interact
with the environment and collaborate with other units
to accomplish robotic tasks such as assembling or
manipulating an object.6,7

Satler et al.8 presented a system for remote visual
inspection of indoor environment employing a micro
aerial vehicle (MAV) endowed with embedded comput-
ing power. Initial tests were performed on an indoor
office environment. The device has been proposed as
operator replacement for a first and safe inspection
process in order to detect surface damages and/or
decide if additional intervention is required.

In a later work,9 we extended the indoor inspection
task with the ability to explore multiple floors buildings
introducing a floor recognition and level merging
algorithm.

In this work, we extend the previous systems
introducing solutions to allow a complete industrial
inspection task in a confined yet dangerous space. The
scenario taken as reference is a non-structured industrial
boiler, which is basically composed by a big combustion
chamber covered by pipes that has to be verified by the
maintenance process. The system here presented is able
to locate itself and navigate efficiently in the environ-
ment in order to complete an industrial maintenance
task in such kind of scenarios. A collision avoidance
procedure allows the system to correct desired trajectory
while avoiding collision with the external structures or
objects moving in the environment.

The rest of the paper is organized as follows.
The next section presents related works at the state of
the art in the fields of industrial inspection and robot

localization. Then the following section introduces a

reference scenario that has been used to define project

requirements and to demonstrate the capabilities of the

developed system. In the subsequent section, the hard-

ware and software components of the overall system

are presented. This is followed by a section which dis-

cusses about developed control system algorithms for

the localization and mapping of the robot in the envi-

ronment. Then, the user teleoperation interface and the

automatic MAV navigation module are discussed.

Then, we present some post processing technique to

obtain inspection information that can be analyzed off-

line. The preliminary evaluation flight test performed

inside an industrial combustion chamber is presented.

In the last section, the main conclusions are drawn.

Related work

MAVs have become increasingly popular for autono-

mous navigation in unstructured environment thanks

to their agility and fast dynamics compared with

ground robots. There are several works focused on

inspection tasks developed in the recent years; early

works appeared in the literature were based on visual

inspection without any contact with the environment,

while recently works founded by EU projects proposed

contact-based approaches.6,10

In Luque-Vega et al.,11 a quadrotor is used for high

voltage power line inspection. The system payload is

composed of a thermal infrared and a color camera for

the inspection purpose and a GPS, IMU and altimeter

for navigation capability. The vision algorithms, how-

ever, run on a remote ground control station in order

to detect real-time anomaly/defect alarms.
In Bonnin-Pascual et al.,12 an MAV is used to visu-

ally inspect vessels in order to detect cracks and corro-

sion in the metallic structures. The solution is based on

supervisory autonomy, i.e. the surveyor controls the

inspection process teleoperating the vehicle which in

turn is provided with on-board algorithms to ease the

navigation and control from unexperienced people.
In Gohl et al.,13 a first attempt driving an MAV in

underground mine field is presented. The system is

based on a hexacopter endowed with Skybotix visual-

inertial sensor and 2D laser scanner used to collect data

during a manual flight. A 3D environment reconstruc-

tion is then performed off-line evaluating the quality of

the acquired data as well as of the localization process.
In Nikolic et al.,14an MAV endowed with an inte-

grated visual-inertial SLAM sensor is employed for

industrial boiler inspection. This work uses a front

looking stereo camera and an IMU to estimate the

vehicle pose and navigate inside the industrial boiler

following a reference trajectory.
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In addition to the aforementioned applications, such
devices have proven their flexibility in many other fields
including but not limited to agriculture,.15 search and
rescue,16 exploration and mapping,9 dam inspection,
early fire detection and forest protection, traffic moni-
toring, aerial photography, surveillance and reconnais-
sance, chemical spraying and entertainment industry
and filming. A detailed analysis for civil application
has been provided in Sarris and Atlas.17

Each system mainly differs for the platform auton-
omy level, i.e. how much computation is empowered to
the ground control station supporting the vehicle, the
sensor payload and the assumptions about the environ-
ment knowledge, i.e. structured/unstructured or
known/unknown. Typical navigation sensor suites are
based on GPS, laser scanner, infrared or ultrasound
sensors and more recently on camera. This latter solu-
tion represents the richest data supplier combined with
low weight and low prices (compared to lasers) at the
cost of increased computational cost required to run
vision algorithms.

Simultaneous localization and mapping (SLAM)18

algorithm is a fundamental component constantly pre-
sent on each platform used in real application domain.
Graph-based methods19 or probabilistic methods20

have been proposed by the research community in the
last three decades. Recent works on SLAM on the
other hand, referred as visual-SLAM or vision-based
navigation in the literature, are based alternatively on
features tracking using either a mono or stereo frontal
camera,21,22 or a ground-looking camera23 and on
direct methods.24

Although promising and accurate, the outcome and
the robustness of all vision-based methods strongly
depend on two assumptions: (i) enough lighting condi-
tions and (ii) environment texture richness. While the
former assumption can be met using custom designed
lighting systems, the latter is likely to fail in real
scenarios that are generally characterized by repetitive
elements or that are poor in texture features.

Power plant boiler inspection

The proposed solution has been designed considering
as reference task the inspection of the interior part of a
thermal power plant boiler.

The boiler is classified as confined space and it basi-
cally consists in a big combustion chamber completely
covered by pipes transporting water for the steam pro-
duction. Later on, the “wet steam” passes through the
superheater, the reheater and the economizer to
improve the energy exchange efficiency.

Maintenance task is typically divided into daily,
weekly, monthly, semi-annual and annual tasks.
Portholes along the whole structure are used during

frequent and elementary inspections, e.g. daily,
weekly, to access corresponding points of interest.
Semi-annual and annual maintenance routine on the
other hand, is performed entering into the boiler
from the bottom part.

In the latter case, it is required to stop the steam
production process in advance, wait the required time
to decrease the temperature and then wash the combus-
tion chamber. When the environmental condition is
feasible for a human being, the bottom part of the
boiler (64 � 64 cm entrance) is used to access the inte-
rior and hence start setting up scaffolding structure to
get close to the structure to inspect. Obviously, this is a
long process and demanding for the worker first and
the surveyor later.

The employment of an MAV allows to localize loses
which in turn will speed up the intervention time. Such
devices provide easy and fast ways to detect surface
damages allowing to study the most convenient inter-
vention strategy, to prepare all the materials and to
schedule the maintenance intervention in advance.
Finally, yet importantly, the employment of such a tech-
nology will improve the surveyor working conditions.

The target of the inspection is the combustion
chamber, which is composed by a parallelepiped of
7.6 � 11�21 m, see Figure 1. The other parts of the
boiler have too many obstacle and few free-spaces for
an MAV safe flight.

Requirements

The system requirements have been drawn taking into
account both the operators experience and preliminary
real field tests.

Considering the goal of the proposed system, i.e.
provide a mean for tele-visual inspection, the preferred
vehicle flight characteristics are: the vertical take-off
and landing (VTOL) capability; the possibility to per-
form stationary flights and low-speed movements with-
out compromising the flight stability; allow indoor
flight as well as provide robustness to accidental con-
tact with the structure being considered within the
inspection process. These requirements rapidly discard
fixed-wing platforms since they do not allow VTOL
capability and require a minimum velocity to guarantee
vehicle lift. The indoor flight requirements discard
vehicles powered by combustion engines which, more-
over, are not suitable to flight in most of the confined
spaces characterized by fire and explosion risks. All
these aspects focus the search on electrically powered
MAVs in the form factor of quadrotor or hexarotor
that can be designed with ducted fan in order to guar-
antee robustness for unwanted environmental collision.
Moreover, the ducted fan vehicles reduce hovering
power consumption.25
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Regarding the sensor payload, it is worth noting that

most inspection tasks are usually performed in GPS-

denied environment which on the other hand cannot

be structured since this activity is in general practically

not feasible or it will vanish the benefit introduced by the

aerial service robots usage. For this reason, the aerial

platform has to estimate its own state relying only on

embedded sensors and on-board computation resources.
From the end-user point of view, the proposed

system has to be as user friendly as possible and in

theory it should allow unexperienced pilots to fly the

system in complex and cluttered environment. To this

end, the system has to provide the pilot with assistive

control features able to implement shared control capa-

bility, e.g. follow a line or move towards a point of

interest. However, one of the main requests from the

operators is to let the human in control of the inspec-

tion avoiding to completely automate the task.

The main rationale under this request is the possibility

to exploit the cognitive capability of the human being

and in particular, the experience gained over the years
by the surveyor that will guide the inspection process
focusing on critical points.

Challenges

Given the partial or total enclosure of confined spaces,
GPS technology cannot be reliably used, and this
requires solving the localization problem employing
other sensing technologies. GPS-denied environment
has been addressed in the past relying on vision-based
localization.26

Many times, industrial settings are surrounded by
metallic structure or elements and these could interfere
with electromagnetic signals and sensors. In particular,
within the boiler scenario, the presence of pipes, tubes
and similar elements greatly reduce the quality and the
bandwidth of wireless communication and the reliabil-
ity of compass in IMU sensor used to stabilize the
vehicle. The former constraint does not allow to close
the control loop externally exploiting high-power

Figure 1. Section of the boiler chamber and details of the pipe structures. (a) Entrance of the chamber (funnel-shaped portion).
(b) Pipes wall.
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computing unit. Hence, on-board computation
requires automatic behaviors to overcome rapidly col-
lisions and flight stability issues. Thus, the need of effi-
cient algorithms runs with good performances on
embedded hardware without consuming much battery
power.

In addition, the boiler scenario presents (i) variable air
pressures that limits the use of barometric sensors to esti-
mate for instance the altitude of the robot, (ii) the presence
of dust (iron dust in the case of combustion chambers)
could generates visual occlusions, visual feature outliers
and also interfere with the electronic equipment, (iii)
lack of light which reduces vision algorithms performance
requiring a custom designed illumination system.

Finally, yet importantly, typical industrial settings
present repetitive textures and elements that affect cor-
rect data association of visual features in algorithms at
the state of the art.

This work presents a system that overcomes all the
challenges and limitations discussed above employing
specific solutions to each problem. We have chosen a
foldable MAV as hardware platform but with good pay-
load capabilities, that make use of laser sensors for local-
ization and navigation that are not affected by visual
artifacts as could be the case for classical camera systems.
The MAV is equipped with an illumination source, high-
resolution cameras for inspection analysis and all the
control algorithms runs on an embedded ARM-based
control board. To obtain real-time performances on an
embedded computing platform, a custom performant
SLAM algorithm has been developed.27 To estimate alti-
tude inside confined chambers, two sets of sensors have
been used, ultrasonic for proximity sensing and camera
based for long range sensing. The communication
between the MAV and the ground station is reduced to
small footprint high-level control packets for inspection
guidance. Moreover, the system here presented was
designed to work in unstructured environments. This
means that the proposed system does not require a spe-
cific environment nor external sensing unit (like markers
for instance) to accomplish inspection tasks.

System description

The proposed system is composed of two elements.
The first element is constituted by a portable computer
used as operator control unit (OCU) in order to give
high level teleoperation commands to guide the inspec-
tion task (see ‘Teleoperation interface’ section).
The second element is an MAV equipped with an
embedded processing board and a suite of navigation
and inspection sensors. According to the previously
discussed requirements, the selected vehicle is a
ducted fan quadrotor designed by Cyber Technology
(CyberQuad MAXI). It is a quadrotor equipped with

four brushless motors suitable to be used in critical
environments (presence of flammable gases) since
they do not produce sparks. The device has highly
optimized ducted fans, allowing the platforms to be
less than half the size of a helicopter rotor, with the
same lifting efficiency. The protection allows easily
flight through doorways, down hallways and through
tight spaces without risking a rotor strike. The MAV
dimension is 69 � 56�20 cm.

The CyberQuad MAXI is provided with the Navy
control and Flight control from MikroKopter which
embeds a fast motor controller and an IMU composed
by three single axis gyro on all three axes
(ADXRS610), three-axis accelerometer (LIS344ALH),
barometric pressure sensor (MPX4115A) and a com-
pass (HMC5843). The installed custom payload is com-
posed by the following elements. A front mounted
Sony camera (HDV-CX350VE) allows visibility over
large elevation ranges and it is used by the remote oper-
ator for inspection purpose. In fact, the camera output is
streamed throughout the Wifi link by means of a USB
grabber (EasyCap DC60). The camera is mounted on a
pan-tilt base which automatically stabilizes the pan with
respect to the horizontal direction and allows the user to
adjust the tilt towards the desired direction. Moreover,
the optical camera zoom (12�) is remotely controlled by
the operator as well. Near the camera, a custom illumi-
nation system has been designed by means of several
LEDs which assure the adequate amount of light for
the inspection task. Two sonars (XLMaxSonarEZ4),
one on the top and one on the bottom of the device,
are used to detect upper and lower obstacles as well as to
measure distances from the ceiling and the ground
during the automatic ascending inspection flight and
the takeoff and landing procedure, respectively.

In the case of high elevation industrial environ-
ments, the sonars are replaced by long-range distance
measuring camera sensors (Leddar M16) without the
need of modifying the algorithmic structure of the
system. For the localization purpose, the environmen-
tal mapping and the fusion algorithms, able to improve
the attitude estimation, a Hokuyo laser (UTM-30LX)
has been mounted on the top of the device. All these
components have been powered and interfaced with a
Pandaboard by means of a custom electronic board
which provides the required voltage regulation as well
as the levels transition. The Pandaboard is the comput-
ing unit of the system and it is also responsible for the
external communication with the OCU ground station.
Table 1 summarizes major design information.

The PandaBoard is a low-power, low-cost single-
board development platform based on the Texas
Instruments OMAP4430 which features a dual-core 1
GHz ARM CortexA9 MPCore CPU, a 304 MHz
PowerVR SGX540 GPU, IVA3 multimedia hardware
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accelerator with a programmable DSP, and 1 GB of
DDR2 SDRAM. The connectivity is provided by wired
10/100 Ethernet as well as wireless Ethernet and
Bluetooth. It also has two USB host ports and one
USB OnThe-Go port, supporting USB 2.0. In our
system, the device runs Ubuntu Linux distribution.

Framework architecture

The system can be operated with high level commands
by an operator for inspection purposes or alternatively,
by an automatic navigation component that uses a har-
monic potential field (HPF). To maintain a stable flight
during the inspection task, the system acquires infor-
mation from the environment by means of a laser range
finder (LRF) and two distance measuring sensors. This
information is processed by an SLAM component that
feeds the current position and the asset of the MAV to
the navigation and the low-level control components.
In parallel, a collision avoidance element, independent
from the SLAM algorithm, is responsible for avoiding
collisions with external objects. The underlying compo-
nents of the software system are depicted in Figure 2.

The sensor acquisition and the algorithm computa-
tion are performed by the embedded computing system,
i.e. the PandaBoard. The next sections will introduce
and discuss each module component in detail.

Control algorithms

This section introduces the MAV dynamic model
employed to design the low-level control algorithms,
the global and relative reference frames for the equa-
tions of motion, the algorithm responsible for the local-
ization, mapping and feature extraction procedures and

finally the velocity estimation and collision avoidance

algorithms.

Dynamic model and low-level control

The dynamic model used for the analysis and develop-

ment of the control algorithms is a simplified model

based on the work by Martinez.28 Considering the

world and the robot reference frames as in Figure 3,

if we define with Ff, Fb, Fl, Fr the trust forces exerted by

the front, back, left and right rotors blades, we can

write the simplified dynamical model as

Ft ¼ Ff þ Fb þ Fl þ Fr

Fh ¼ Ff � Fb

F/ ¼ Fl þ Fr

Fw ¼ �Ff � Fb þ Fl þ Fr

€x ¼ Ftðsinwsin/þ coswsinhcos/Þ � k1 _x

m

€y ¼ Ftðsinwsinhcoswþ coswsin/Þ � k2 _y

m

€z ¼ Ftcoshcos/� k3 _z

m
� g

€h ¼ ðFh � k5 _hÞl
Iy

€/ ¼ ðF/ � k4 _/Þl
Ix

€w ¼ ðFw � k6 _wÞl
Iz

Table 1. Characteristics of the proposed MAV system.

Dimensions 690� 560� 200 mm

Payload 0.8 kg

Maximal speed 10 m.s�1

Operating life 15 min

Embedded sensors 2 Ultrasound sensors

or 2 Leddar Cameras

1 2D laser scanner

Maximum range: 30 m

Wide angle: 270�

Angular resolution: 0.25�

1 IMU:

3 axis accelerometer

3 axis gyro

barometric sensor

compass sensor

1920� 1080 camera with optical

zoom (12�)
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where Ix, Iy and Iz are the inertia moments with respect

to the x,y and z axes, h,/ and w are the pitch, roll and

yaw angles, ki¼1;2;3;...;6 are aerodynamic drag coeffi-

cients and g is the gravity vector.
Transfer functions for the roll, pitch and yaw

responses, taking into account also the embedded

flight control board response, have been modeled with

a Box–Jenkins model29 resulting in first-order systems.
The low-level control has been implemented decou-

pling the x and y axes motion. For the pitch and

roll angles, the control systems are composed by two

feedback loops. The outer loop is responsible for the

regulation of the maximum velocity of the vehicle as a

function of the distance from the reference input, while

the inner loop regulates the asset angle (pitch or roll)

taking as reference the velocity computed from the

outer loop. For the yaw rate, the control system is

composed by a single loop that regulates the angular

velocity of the vehicle to follow a reference angle. Each

control loop has been implemented with PID regula-

tors. In particular, the low-level control of the pitch

angle takes into account also the presence of a bias

that is present in the real system and changes at each

switching on/off of the vehicle. Without a manual com-

pensation of the bias, the low-level control provides a

compensation strategy in the first few seconds after

takeoff.

SLAM

The proposed system localizes itself in the environment

by means of two independent SLAM algorithms which

will be discussed within the following sections. The first

SLAM algorithm is used to estimate the pose of the

MAV on a plane, while the second SLAM algorithm is

used to estimate the altitude of the MAV. Fusing both

the information, the complete 3D pose of the multi-

rotor can be obtained.

Rao–Backwellized particle filter. The Rao–Backwellized

particle filter (RBPF)30 is a Bayesian filter method,

which approximates the posterior probability by a set

of sample particles drawn from the posterior. In such a

framework, each particle represents a robot path and a

Figure 3. MAV reference frame (body frame) on the left and World reference frame (absolute frame) on the right. The reference
frames follow the right hand convention.
MAV: micro aerial vehicle.

Figure 2. Software components relationship diagram.
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map. The key idea of RBPF is to decompose the joint

posterior probability into a posterior probability of the

mapM and a posterior probability of the trajectory X. In

particular, the solution implements the Montemerlo’s

factorization31 resulting in

pðXt;MjZt;Ut;DtÞ ¼

pðXtjZt;Ut;DtÞ
YN
n¼1

pðmnjXt;Zt;Ut;DtÞ

where t represents the time instant,M is composed of N

features {m1, m2, . . ., mN}. Zt is the measurements set

at time t, Ut is the control sequence of the robot and Dt

is the data association. Thanks to this factorization, it

is possible to estimate the N features independently by

means of low-dimensional extended Kalman filters

(EKFs).
Hence, the posterior probability of the trajectory is

computed by a particle filter and then the map is

updated according to the current measurements and

the trajectory posterior contribution.

Map representation. As mentioned before, the map M is

defined as a collection of features or landmark points.

Considering that the majority of indoor environments

are typically enclosed and divided by walls or elements

that could be assimilated to walls, the SLAM algorithm

presented in the next section uses as map features a spe-

cial set of parameters that are used to define walls.

Nevertheless, in the case of confined spaces where

the environment is enclosed by curved surfaces, it is pos-

sible to substitute the feature representation and make

use of the optimized embedded SLAM algorithm as well.
Using the Hessian representation (Figure 4), the wall

coordinates are given by the triplet ðr; a; vÞ:

• r ¼ jjOP*jj is the distance from O to the closest point

P* in the wall.
• a represents the counter-clockwise angle between

the versor i of the x axis and the outward normal

n of the wall. a belongs to the interval ½0; 2p½ and is

computed using the function acos2 defined below

where the function det computes the determinant

of two vectors

a ¼ acos2ði; nÞ ¼
2p� acosði; nÞ; if detði; nÞ < 0

acosði; nÞ; if detði; nÞ � 0

(

• v ¼ �O P*n
jOP*j states if the frame O is front of the wall

(v ¼ 1) or behind it (v ¼ �1)

Embedded SLAM algorithm

The SLAM algorithm here presented is used to deter-

mine the robot pose on a plane ðx; y; wÞT, and

estimate features locations on such plane (Figure 5).

The algorithm makes the assumption that the MAV

flies maintaining an asset which could be approximated

parallel to the ground reference frame. This assumption

is easily fulfilled when the platform moves at low speed

and thus avoiding aggressive maneuvers. Thanks to this

assumption, it is possible to recover the robot pose in a

plane employing an LRF sensor. The device altitude on

the other hand, has to be obtained separately.
Fusing the particle filter robot pose estimation on a

2D map with an estimation filter of the altitude

(‘Altitude estimation’ section), the complete pose esti-

mation can be obtained.
The developed algorithm27 consists of eight main

steps listed in Algorithm 1, each k particle in the

Particle set is described by its pose xkt and its own

Figure 4. Hessian representation of wall coordinates with
respect to the frame O

Figure 5. Schematic view of MAV inspection operation with
laser and altitude sensors for SLAM purposes. Here the wall
made of tubes resembles the interior of an industrial combustion
chamber.
MAV: micro aerial vehicle; SLAM: simultaneous localization and
mapping.
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map with Nk features represented by the mean and

covariance pair: ðfkn;t ;Fk
n;t). Each jth feature of the

kth particle has a corresponding visibility counter:

ikj;tused to discard unreliable features. In essence, the

kth particle is described as follow

xkt�1; ð f k1;ðt�1Þ;F
k
1;t�1; i

k
1;t�1Þ; . . . ; ð f k

Nk
t�1

;t�1
;Fk

Nk
t�1

;t�1
; ik

Nk
t�1

Þ
n o

Each algorithm cycle starts from the state obtained

from the previous step and incorporates the input ut
and the measurement vector Z containing the features

extracted at time step t.
In the following sections, the algorithm key points

are discussed.

Pose prediction. To predict the MAV pose, data avail-

able from the embedded IMU are integrated in an

odometry model. Without considering thermal drift

terms, we can write the relationship between raw
IMU readings and true signals as

aMeasured ¼ aIMU þ RIMU
w

0

0

�g

266664
377775þ ba þNð0; raÞ

xMeasured ¼ xIMU þ bg þNð0; rgÞ

where xMeasured 2 R
3 and aMeasured 2 R

3 indicate the
measured angular rate and acceleration, xIMU 2 R

3

and aIMU 2 R
3 are the true signals; ba 2 R

3 and bg
2 R

3 are slowly varying bias terms for the accelerometer
and gyroscope, g is the gravity acceleration constant.
Zero means Gaussians model the measurement noises.
The rotation matrix RIMU

w 2 SOð3Þ is used to transform
from world coordinates to IMU frame coordinates.

It is possible to write the accelerations in the world

frame following the matrix transformation32

ax

ay

az

2664
3775 ¼ Rw

IMUaIMU þ
0

0

�g

2664
3775

Rw
IMU ¼

chcw s/shcw� c/sw c/shcwþ s/sw

chsw s/shswþ c/cw c/shsw� s/cw

�sh s/ch c/ch

2664
3775

In the previous equation, c and s state for the cosine

and the sine function, respectively, and /; h; w are the

roll, pitch and yaw angle obtained from the gyro

sensor.
We can thus write the prediction for the kth

particle as

blkt ¼
xkt

ykt

wk
t

2664
3775 ¼ bgðxkt�1; utÞ ¼

xkt�1 þ vx
k
t�1dtþ

axdt
2

2

ykt�1 þ vkyt�1dtþ aydt
2

2

_wdt

26666664

37777775

where _w is the yaw rate given by the gyro sensor

ðxIMUÞ; vx and vy are components of the velocity

vector estimated in ‘Velocity estimation’ section.
The covariance of the robot pose is set equal to the

covariance of the Gaussian white noise that models the

measurement error of the IMU sensor.

Feature extraction. Having at disposal an embedded

computing unit, and considering the need to process

a large amount of laser range data, an abstraction

layer has been developed. This layer represents a virtu-

al sensor that produces high level data starting from

raw laser range readings. This high-level data are usu-

ally called features or landmarks in mapping literature.

As discussed above, the Hessian representation of walls

has been selected as appropriate feature for confined

space inspection purpose. To be able to detect features,

our implementation starts from the Split and Merge

algorithm33 that is a fast and performant solution to

the problem. With respect to the original implementa-

tion, we introduce filtering kernels to obtain a more

reliable and precise measurement. In particular, five

filters have been designed and are applied at the

output of the Split and Merge algorithm:

Algorithm 1. Overview of the Embedded SLAM algorithm

FastSLAM_CGS (Particles)

1. for each particle in Particles do

2. Predict pose

3. Assign covariance pose

4. Find data association

5. Update pose

6. Sample the particle pose

7. Update particle features

8. Remove dubious features

9. end for

10. Resample(Particles)

11. Return Particles
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• Cut segment’s edges. This filter is introduced to

remove artifacts in the neighborhood of edges. It

removes a certain number of points from the begin-

ning and from the end of every set of points

obtained from the split and merge algorithm.
• Remove too scattered segments. If the return laser

signal is not correctly received, some measurements

are scattered. In the case that there are too many

holes in the obtained segment, the segment is filtered

out because not reliable.
• Point of view filter. This filter removes segments

observed from an adverse point of view, which is

when the points are on a surface far away from
the source or with a big incident angle.

• Merge non-consecutive segments. This is used to filter

redundant measures. If an obstacle interrupts a wall,

the algorithm obtains two features with the same

Hessian coordinates: one for the points preceding

the obstacle and one for the followers. With this
filter, the two features are fused together.

• Remove too short segments. Features composed by a

small number of points are considered unreliable

and filtered out.

The correspondences between the detected features

and the already known landmarks are found using

maximum likelihood (line 4 of SLAM algorithm over-

view). If the obtained likelihood is under a certain

threshold p0, the current detected feature is considered

as a new landmark.
Figure 6 shows the outcome of the proposed

algorithm compared with the standard Split and

Merge algorithm. The result of the standard

approach is depicted in blue, whereas the refined

outcome after passing the filtering stage is depicted

in red. The algorithm reconstructs four segments

whose details are shown in the right part of

the figure.
It is worth to point out that the detected features are

compute with respect to the MAV reference frame. If

global mapping is required, a transformation into the

global map reference frame is required.
Finally, note that the threshold p0 as well as the

ones used in the filtering process is chosen by experi-

ence in a trial and error phase.

Measurement model. Prediction target response for

planes34 is used to predict the LRF measurement. We

consider the feature fn modelled by the Hessian triplet

ðrn; an; vnÞ and the MAV pose x ¼ ðxt; yt; wtÞT.
The measurement prediction bz is computed as

follow

bz ¼
brba

" #
¼ hðfn; xtÞ ¼

vnðrn � xtcosðanÞ � ytsinðanÞÞ
an � wt

" #

the Jacobian of the measurement prediction with

respect to the landmarks is computed differentiating h

with respect to the map features as follow

HF ¼ rFhðfn; xtÞ ¼
vn vnðxtsinðanÞ � ytcosðanÞÞ
0 1

" #

Figure 6. Output of the split and merge algorithm with custom filtering.

216 International Journal of Micro Air Vehicles 10(2)



On the other hand, the Jacobian Hx of the measure-

ment prediction with respect to the pose is computed

differentiating h with respect to the state vector as follows

Hx ¼ rxhðfn; xtÞ ¼
�vncosðanÞ �vnsinðanÞ 0

0 0 �1

" #

Resampling phase. The importance resampling step is

performed with a classic low variance sampler.20

Before such a step, the unreliable particles features

are removed by means of a visibility counter and a

threshold. If a measurement is not associated with

any feature in the particle map, it is considered as a

new landmark and its visibility counter is initialized

such as ikj ¼ 2.
On the other hand, when a feature is associated to a

detected landmark, its counter is incremented keeping

it alive (ikj ¼ ik�1
j þ 2).

In order to remove unreliable features, at each cycle,

every visible particle has its counter decremented.

When the particle visibility counter goes under a cer-

tain threshold, the feature is considered unreliable and

removed.

Velocity estimation

To reduce the computational time of the implemented

SLAM algorithm, the vehicle velocity estimation is per-

formed by an EKF. In this way, the estimation is per-

formed once using the output of the SLAM algorithm

and not inside each particle, thus reducing the particles

dimensions and the computational time. The dynamic

equations involved in the prediction step are the

following

�gt ¼

xt ¼ xt�1 þ _x
ðbÞ
t�1 � cosðht�1Þ � _y

ðbÞ
t�1 � sinðht�1Þ

h i
� dtþNð0; rxÞ

yt ¼ yt�1 þ _x
ðbÞ
t�1 � sinðht�1Þ � _y

ðbÞ
t�1 � cosðht�1Þ

h i
� dtþNð0; ryÞ

ht ¼ ht�1 þNð0; rhÞ
_xt ¼ _xt�1 þNð0; r _xÞ
_yt ¼ _yt�1 þNð0; r _yÞ

8>>>>>>>>><>>>>>>>>>:
While the position is expressed with respect to the

global reference frame, the velocity is computed with

respect to the vehicle body frame fbg.
The correction step uses as sensor the output of the

SLAMCGS algorithm and adds a Gaussian noise

N 0;Qtð Þ to model the measurement error.

Collision avoidance

For safety purposes, the system has been equipped with

an algorithm estimating the distance of the MAV from

the obstacles. This module is independent from the

localization module and it computes both the objects

distance and approaching speed exploiting the laser

sensor. In particular, the sensor span (270 degrees)

has been divided in six regions (45� each) in which

the minimum distance measure qt is selected.
The approaching speed (vq) is estimated by means of

an EKF filter. From this information, the algorithm

computes the time to collision (TTC). The TTC is an

estimate on the time in seconds before a probable

impact considering a constant velocity profile of the

MAV. Based on the TTC, the system is able to alert

the operator or respond in order to prevent collisions.

The prediction step of the EKF is given by

~gt ¼
qt ¼ qt�1 þ vqt�1 � dtþNð0; rqÞ

vqt ¼ vqt�1 þNð0; rvqÞ

(

The sensor used in the correction step is the obstacle

sensor that provides the minimum distance from each

obstacle (q) in each sector. A Gaussian noise

Nð0;QtÞ is added to model the measurement errors.
Considering the state vector of the EKF filter, for

each sector i, the estimated TTC is given by

TTCi ¼ � qi
vqi

Based on this value, it is possible to decide if the

MAV is in safety or if there is a possible danger and

the system should intervene to prevent collisions with

the environment.
Considering Figure 7, if TTCi is greater than a cer-

tain threshold TTCMax, the MAV is considered safe in

that sector, if TTCi < TTCMax, a thrust factor is com-

puted in the range ai 2 ð0;ThrustODÞ. For each sector

the direction of the thrust vectors is computed as

shown in Figure 7. Once obtained all the thrust factors

ai, the total thrust vector is given as v
!

TOT ¼ v1
! � a1 þ

v2
! � a2 þ v3

! � a3 þ v4
! � a1 þ v5

! � a5 þ v6
! � a6:

Depending on the chosen setup, if the system is in con-

trol, a thrust force is applied in the direction of the

thrust vector in order to prevent collisions with the

environment, alternatively if the operator is in control,

the system fires an alarm on the operator GUI.

Altitude estimation

As pointed out in the challenges description, the baromet-

ric sensor readings are affected by the temperature
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gradient of the environment. This, in turn, results in a
low-precision accuracy estimation of the altitude.
Moreover, estimating the altitude by means of a
Kalman Filter and a downward looking sensor is not
robust since the drone can fly over obstacles or even a
non-flat ground.

For this reason, in the proposed system, the drone
height is computed from upwards and downwards look-
ing sensors data using an SLAM algorithm consisting of
Kalman filters. The altitude estimation method firstly
designed for an indoor multi-floor building exploration,9

adds upwards looking sensor data to the formulation by
Gronska et al.35 As anticipated in the hardware descrip-
tion (‘System description’ section), the system can be
equipped alternatively with sonars sensors or with long
range camera sensors. The camera sensors option allows
greater range of distance measurement and is composed
by an embedded module containing both a camera and
an LED emitter. The Leddar M16 sensor does not pro-
vide punctual information but measures distances of
objects within 16 sectors of 2.8� aperture from the
camera viewpoint. We can consider both sensors equiv-
alent from an algorithmic point of view.

The first step of the algorithm is to compute the
drone height and vertical velocity according to the
model prediction, as detailed below

bxt ¼ bzt
cvz;t

24 35 ¼ A
zt�1

vz;t�1

24 35þ Baz

withA ¼
1 dt

0 1

24 35; B ¼
0:5dt2

dt

24 35
bRt ¼ ARt�1A

T þ R withR ¼
r2z rzvz

rzvz rv2z

24 35

Then, the ground and ceiling elevation beneath and
above the drone are predicted according to the mea-
surement prediction

bht ¼ bhgroundbhceiling
24 35 ¼

bzt � zdownwardsbzt þ zupwards

" #
The next step is to find the matches with the already

known levels close to the robot current pose (the set of
corresponding levels C). Once obtained the matches,
those are merged into a single level elevation. Each
level is represented in the levels map L by its own
pose ðxl; yl; llÞT and uncertainty rl.

To merge N levels from C, one can prove that it can
be achieved using the next equation

ðl1:N; r21:NÞT ¼ mergeLevelsðCÞ

¼
XN

k¼1
lk
YN

j¼1;j 6¼k
r2jXN

k¼1

YN

j¼1;j 6¼k
r2j

;

YN

k¼1
r2kXN

k¼1

YM

j¼1;j6¼k
r2j

0@ 1AT

After merging the levels elevations, the drone alti-
tude and the current levels elevations beneath and
above the drone are updated as follows.

Qt ¼ rlaser þ rground

K ¼ cP
tD

TðDcP
tD

T þQÞ�1

withD ¼ ½1 0�

xt ¼
zt

vz;t

" #
¼ bxt þ Kðlground þ zdownwards �DbxtÞ

Rt ¼ ðI2 � KDÞbRt

Figure 7. Time to collision graph and thrust vectors.
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bht ¼ bhgroundbhceiling
24 35 ¼

zt � zdownwards

zt þ zupwards

" #

Updating the drone altitude and levels from the ceil-

ing measurement, implies to modify the above equation

such as

xt ¼ bxt þ Kðlceiling � zupwards �DbxtÞ
Once updating the drone altitude, the elevation

levels are updated using for each one a Kalman filter.

Then, the new levels are inserted into the levels map L.
Eventually, the final step of the algorithm aims to

merge closest levels. It only considers the levels close to

the current drone pose. Afterward, within this subset,

the algorithm compares the difference between the

levels elevation, if it is under a certain threshold d2,
merges them according to mergeLevelsðCÞ.

Navigation

Once the localization problem has been solved, the

environment navigation and thus the inspection proce-

dure can be addressed. Two navigation modalities have

been proposed: (i) teleoperation modality – the operator

drives the system with high-level commands using the

custom designed OCU; (ii) autonomous modality – the

MAV navigates autonomously the surroundings using

a HPF in order to have a full coverage of the environ-

ment to be inspected.
Both the approaches are introduced in the following

paragraphs.

Teleoperation interface

To provide high-level teleoperation functionalities for

personnel without expertise in drone flight, the system

is equipped with an OCU that allows the user to guide

the inspection task via a simple interface. In particular,

the operator can use a joystick to command the direc-

tion of motion of the MAV and a display shows both

the captured video stream, the reconstruction of the

local map and, if selected, internal algorithm parame-

ters (see Figure 8).
The OCU has been designed in order to allow the

operator to perform the inspection from a remote and

safe location. The OCU is composed by a Notebook

which runs the developed graphical user interface

(GUI) and a joystick which is used by the operator to

move the camera point of view as well as to set the

desired device pose and to control the remote function-

alities (like for instance starting/stopping video record-

ing, modify the camera zoom, or select inspection

points of interest). By means of the joystick, the oper-

ator can also move a virtual point which is then fol-

lowed by the vehicle control system satisfying

additional safety constraints (obstacles avoidance and

device autonomy). The GUI has been realized by a

Cþþ based Qt (Digia) application and it is composed

by two main windows that can be arranged on the

screen in a custom way. On the right side of the win-

dows, all the information related to the vehicle, like for

instance the estimated position and velocity, are shown.

The current map and the measured features with

respect to the device position are also presented in a

polar view. The two windows have been specifically

designed for the two operators that in general perform

the inspection. One is in charge for the visual

Figure 8. Operator control unit displaying frontal camera views with current laser scan and MAV asset parameters of the internal
SLAM control as well as estimated features and collision distances.
MAV: micro aerial vehicle; SLAM: simultaneous localization and mapping.
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inspection, whereas the other controls or supervises the
MAV navigation aspects.

Virtual potential function for autonomous exploration

To allow some degrees of autonomy during the
environment exploration and to leverage the operator
effort during the inspection task, the system imple-
ments a potential field based path planning algorithm,
firstly introduced in Khatib.36

Among the possible approaches in literature, in
frontier-based exploration37 methods, the frontiers rep-
resent the borders between the known free space and the
unknown environment. These are computed using algo-
rithms that are similar to edge detectors. Eventually, the
robot moves towards the nearest frontier following the
shortest path that avoids obstacles computed with a
best-first search algorithm.38 In Kim and Eustice39 the
robots perform a default policy exploration based on the
Boustrophedon motion40,41 and revisits the interesting
areas based on their visual saliency following a path
defined again by a best-first search algorithm. In Shen
et al.,42 virtual gas molecules are used to detect unknown
areas, these particles move toward free and unknown
space with a Brownian motion, colliding with already
known obstacles. Once detected, the robot moves
towards the navigation goals. Finally, in Silva et al.,43

a potential field is incrementally computed using har-
monic functions where unknown areas have an attrac-
tive potential, whereas obstacles have a repulsive
potential. Therefore, the robot is attracted towards the
nearest unexplored space.

The approach presented in Silva et al.43 has been
selected as exploration policy for its efficiency, easy
implementation and above all because it avoids
the use of best-first algorithm which can be
time-consuming if the goal is far from the robot.
The algorithm employs harmonic functions44 to solve
the local minima issue.45

Our approach (shown in Algorithm 2) differs from
the work by Silva et al. substituting the histogramic
in-motion mapping (HIMM) 46with an occupancy
grid environment map computed as in Pepe et al.9

The basic idea of the occupancy grid algorithm is to
compute the posterior probability of the map only
knowing the observation data and the previously esti-
mated robot path. The space is partitioned into small
grid cells where each cell ok has an occupancy proba-
bility pðokÞ which takes a value between 0 (free) and 1
(occupied). Due to performance constraints, the map
posterior is approximated by computing the posterior
for each discrete cell within the partitioned space O,
and has been proved in Thrun et al.20 that its occupan-
cy probability can be computed recursively using
Bayes rules..

Starting from the estimated environment map, the
potential field is updated within a sliding window, cen-
tered on the MAV. This means that cells which belong
to the circle of a certain radius R centered on the robot
pose have their potential updated. The ones with a high
occupancy probability (above a certain threshold) are
considered as obstacles and therefore their potential is
set equal to 1. The free cells are updated according to
the Gauss–Seidel method while taking into account
cells at the borders. This procedure is repeated until a
certain accuracy is obtained.

At the beginning of the exploration, all cells have
their potential set equal to 0, and therefore unknown
areas are cells which have never been updated inside

Algorithm 2. Harmonic Potential Field Based Exploration

HPF_Exploration(Xt ,O,U)

//Xt the robot pose, O the occupancy grid, U the potential

field grid

1. //1.Update the sliding window potential field until

reaching the desired accuracy

2. while ϵmax > ϵ0 do

3. for each cell i in Φ do

4. / xt; ytð Þ ¼ 1 //Set the current robot cell potential

value

5. if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt � xið Þ2 þ yt � yið Þ2

q
< R do //check if the cell

belongs to the sliding window

6. /old ¼ /ðxi;yiÞ
7. if p okz1:k; x1:kð Þ > pobstacles do
8. / xi; yið Þ ¼ 1 //Set the obstacles potential value

9. else

10. / xi; yið Þ ¼ Gauss Seidelðxi; yi;ΦÞ
11. end if

12. ϵ ¼ j /k x;yð Þ�/old
/old

j
13. if ϵ > ϵmax do

14. ϵmax ¼ ϵ
15. end if

16. end if

17. end for

18. end while

19. //2. Compute the numerical gradient on the current

robot cell ðxt; ytÞ
20. Gx ¼ ∂/

∂x ðxt; ytÞ≈ 1
2
ð/ xt þ 1; ytð Þ � / xt � 1; ytð ÞÞ

21. Gy ¼ ∂/
∂y ðxt; ytÞ≈ 1

2
ð/ xt; yt þ 1ð Þ � / xt; yt � 1ð ÞÞ

22. //3 .Compute the new reference position

XR ¼ ðxR; yR;URÞ
23. xR ¼ xt þ �Gx

√ ðG2
xþG2

yÞ

24. yR ¼ yt þ �Gy

√ ðG2
xþG2

yÞ

25. wR ¼ atan2ð �Gyffiffiffiffiffiffiffiffiffiffiffi
G2

xþG2
y

p ; �Gxffiffiffiffiffiffiffiffiffiffiffi
G2

xþG2
y

p Þ
26. return XR, U
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the sliding window, they represent navigation goals and
the robot is attracted to them. As suggested in Shade
and Newman,47 the potential value of the cell contain-
ing the robot is set equal to 1 (line 4).

Once reaching the desired accuracy, the negative
gradient is numerically computed. Eventually, in
order to follow an optimal path towards the goal posi-
tion (unknown space), a gradient descent method as
described in Gupta et al.48 has been adopted.

Post processing and structure

reconstruction

The elements and features to inspect can be various
depending on the environment itself. For this reason,
we did not focus on the inspection features that can be
assessed by qualified personnel through visual inspec-
tion. Having at disposal all the information of the map-
ping and localization algorithm is however possible to
generate offline a 3D model of the explored environ-
ment for detailed analysis. It is in fact possible to asso-
ciate frames captured by the frontal camera with the
reconstructed positions of the MAV, and thus generate
a 3D Mosaic of images, or better to employ an offline
optimization technique known in literature as structure
from motion (SfM)49 and create a complete 3D recon-
struction of the environment. An example of recon-
struction of a sector of pipe wall captured inside an
industrial boiler is shown in Figure 9.

Test flight in an industrial combustion

chamber

Several test flights have been carried out inside indus-
trial combustion chambers to verify the robustness of

the system. In this section, a preliminary test flight is
presented and discussed. The goal of the preliminary
demonstration flight was to prove the effectiveness of
the semi-autonomous aerial vehicle in the execution of
an inspection task concerning a combustion chamber’s
conditions. The main sensor used to conduct the
inspection was a camera in the visible light spectrum.

In details, the task consisted in a visual analysis of a
boiler’s internal wall and of the burners’ rows that are
located on the internal edges of the chamber.

The chamber was already prepared by means of an
internal scaffolding to provide a takeoff platform for
the vehicle. This platform should have been placed
immediately above the funnel-shaped portion of the
chamber; instead, the scaffolding was installed
around 5 m below the hopper.

Before the actual flight, proper communication
between the vehicle and the OCU has been verified.
A brief test flight has been conducted to verify overall
system correct functioning. Unfortunately, random
interruption in the WiFi communication channel,
likely due to the metallic structure of the combustion
chamber has been noticed.

For the demonstration, a task sequence following
the takeoff of the vehicle has been planned:

(1) An ascent phase to reach the hopper limit fol-
lowed by an approach phase to the left edge of the
chamber. (2) A following turn of the vehicle’s camera
(front of the vehicle) toward the burners and subse-
quent ascent of the vehicle up to 30 m (altitude
reported by the vehicle’s altimeter). (3) A second turn
of the vehicle in order to have the vehicle’s camera
orthogonal with respect to the chamber’s wall, to get
best viewing condition and a descent to the hopper
limit. (4) Horizontal movement on the right for some

Figure 9. Estimated trajectory during an inspection and SfM reconstruction example of a sector of the environment from 50 frames.
SfM: structure from motion.
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meters to scan another section of the chamber’s wall.

(5) These steps are repeated in order to cover all the

wall surface. (6) If possible (enough remaining battery

charge), scan of another burners row. (7) Coming back

of the vehicle to the takeoff position and landing.
The takeoff maneuver has been carried out very

carefully because of the unexpected dangerous presence

of a banister. Anyway, the takeoff proceeded smoothly,

thanks to the robustness of the localization algorithm.
After some seconds from the takeoff, necessary for

the vehicle self-stabilization and dynamic parameters

identification, the task advanced according to the

task plan, so the vehicle has been controlled by the

vehicle operator, using the OCU’s keyboard, and

brought near to the selected chamber’s burners row.

Once reached the planned position, the vehicle opera-

tor started to make the vehicle move as shown in

Figure 10 following the scheduled sequence. It should

be noticed that, during the flight, many random inter-

ruptions of the WiFi link have been encountered.

However, these temporary lacks of communication

did not compromise the overall good result of the

task, but they diminished the total amount of time

available for the actual inspection.

Conclusion

The manuscript introduces the problem of semi-

automatic inspection and navigation in confined envi-

ronments with a special focus on demanding environ-

ments like industrial combustion chambers. A system

that overcomes many challenges imposed by such a

problematic environment is presented. The presented

system is composed of a multirotor flying robot and a

control ground station and allows a human expert to

easily inspect an industrial facility. The main problems

for such inspection task have been introduced in detail

at the beginning of the manuscript. The proposed solu-

tion system is described both for what concerns the

hardware selection and the algorithmic and control

strategies. Some of the presented software components

have been previously introduced by the authors and

tested in indoor office environments. The same algo-

rithms displayed equivalent efficiency in the industrial

environment presented here. Thanks to the choice of a

laser sensor for the navigation and localization part

and of a small computational footprint SLAM algo-

rithm, the system resulted robust to communication

losses, air flow disturbances and presence of undesired

obstacles inside the combustion chambers. The pre-

sented system allows non-expert MAV pilots to navi-

gate an aerial vehicle inside an unstructured confined

space and visually inspect the structural condition of

the environment. While this is not the intended usage,

starting from the captured data, the system is also able

to provide a 3D reconstruction of the inspected envi-

ronment for offline analysis. To increase the flight time

and lower the overall inspection time, strategies should

be investigated in the future in order to reduce energy

consumption by means of reducing the MAV payload

or introducing techniques to recover energy from the

environment.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

ORCID iD

Paolo Tripicchio http://orcid.org/0000-0003-3225-2782

Massimo Satler http://orcid.org/0000-0001-6731-3114

Carlo Alberto Avizzano http://orcid.org/0000-0001-5802-

541X

Figure 10. Test flight in an industrial combustion chamber. The
intended sequence phases are shown. After take-off, phase (1) is
an approach to the left edge of the chamber. (2) MAV turn and
ascension up to 30 m. (3) MAV turn and descent. (4) Lateral
movement. (5) The sequence of action repeats until the entire
wall is inspected.
MAV: micro aerial vehicle

222 International Journal of Micro Air Vehicles 10(2)

http://orcid.org/0000-0003-3225-2782
http://orcid.org/0000-0003-3225-2782
http://orcid.org/0000-0001-6731-3114
http://orcid.org/0000-0001-6731-3114
http://orcid.org/0000-0001-5802-541X
http://orcid.org/0000-0001-5802-541X
http://orcid.org/0000-0001-5802-541X


References

1. Longo D and Muscato G. The Alicia 3 climbing robot: a

three-module robot for automatic wall inspection. IEEE

Robot Automat Mag 2006; 13: 42–50.
2. Eich M and V€ogele T. Design and control of a light-

weight magnetic climbing robot for vessel inspection.

In: 19th Mediterranean conference on IEEE control auto-

mation (MED), 20-23 June 2011, Corf�u, Greece 2011.
3. Marconi L, Basile F, Caprari G, et al. Aerial service

robotics: the AIrobots perspective. In: 2nd international

conference on applied robotics for the power industry

(CARPI), 11-13 Sept. 2012, Zurich, Switzerland 2012.
4. ARCAS - Aerial Robotics Cooperative Assembly System,

FP7-ICT project 287617, web-site: http://www.arcas-

project.eu/, 2011.

5. De Cubber G, Doroftei D, Serrano D, et al. Ourevitch.

The EU-ICARUS project: developing assistive robotic

tools for search and rescue operations. In: IEEE interna-

tional symposium on safety, security, and rescue robotics

(SSRR), 21-26 Oct. 2013, Linkoping, Sweden, 2013.
6. Albers A, Trautmann S, Howard T, et al. Semi-

autonomous flying robot for physical interaction with

environment. In: IEEE conference on robotics automation

and mechatronics (RAM), 28-30 June 2010, Singapore,

2010.
7. Michael N, Fink J and Kumar V. Cooperative manipu-

lation and transportation with aerial robots. Autonomous

Robots 2011; 30: 73–86.
8. Satler M, Unetti M, Giordani N, et al. Towards an

autonomous flying robot for inspections in open and con-

strained spaces. In: 11th international multi-conference on

systems, signals & devices (SSD), 11-14 Feb. 2014,

Barcelona, Spain, 2014.
9. Pepe G, Satler M and Tripicchio P. Autonomous explo-

ration of indoor environments with a micro-aerial vehicle.

In: Workshop on research, education and development of

unmanned aerial systems (RED-UAS), 23-25 Nov. 2015,

Cancun, Mexico, 2015.
10. Bartelds T, Capra A, Hamaza S, et al. Compliant aerial

manipulators: toward a new generation of aerial

robotic workers. IEEE Robot Automat Lett 2016; 1:

477–483.
11. Luque-Vega LF, Castillo-Toledo B, Loukianov A, et al.

Power line inspection via an unmanned aerial system

based on the quadrotor helicopter. In: 17th IEEE confer-

ence on Mediterranean electrotechnical (MELECON),

13-16 April 2014, Beirut, Lebanon , 2014.
12. Bonnin-Pascual F, Ortiz A, Garcia-Fidalgo E, et al. A

micro-aerial platform for vessel visual inspection based

on supervised autonomy. In: IEEE/RSJ international

conference on intelligent robots and systems (IROS), 28

Sept.-2 Oct. 2015, Hamburg, Germany, 2015.
13. Gohl P, Burri M, Omari S, et al. Towards autonomous

mine inspection. In: 3rd international conference on applied

robotics for the power industry (CARPI), 14-16 Oct. 2014,

Foz do Iguassu, Brazil, 2014.
14. Nikolic J, Burri M ,Rehder J, et al. A UAV system for

inspection of industrial facilities. In: IEEE aerospace con-

ference, 2-9 March 2013, Big Sky, MT, USA, 2013.

15. Tripicchio P, Satler M, Dabisias G ,et al. Towards smart

farming and sustainable agriculture with drones. In:

International conference on intelligent environments (IE),

15-17 July 2015, Prague, Czech Republic, 2015.
16. Sun J, Li B, Jiang Y, et al. A camera-based target detec-

tion and positioning UAV system for search and rescue

(SAR) purposes. Sensors 2016; 16: 1778.
17. Sarris Z and Atlas S. Survey of UAV applications in civil

markets. In: Proceedings of the 9th Mediterranean confer-

ence on control and automation, June 27-29, Dubrovnik,

Croatia, 2001.
18. Durrant-Whyte H and Bailey T. Simultaneous localiza-

tion and mapping: part I. IEEE Robot Automat Mag

2006; 13: 99–110.
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