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Abstract

The remote manual teleoperation of an unmanned aerial vehicle (UAV) by a human operator

creates a human-in-the loop system that is of great concern. In a remote teleoperation task, a human

pilot must make control decisions based upon sensory information provided by the governed system.

Often, this information consists of limited visual feedback provided by onboard cameras that do not

provide an operator with an accurate portrayal of their immediate surroundings compromising the

safety of the mobile robot. Due to this shortfall, haptic force feedback is often provided to the

human in an effort to increase their perceptual awareness of the surrounding world.

To investigate the effects of this additional sensory information provided to the human op-

erator, we consider two haptic force feedback strategies. They were designed to provide either an

attractive force to influence control behavior towards a reference trajectory along a flight path, or a

repulsive force directing operators away from obstacles to prevent collision. Subject tests were con-

ducted where human operators manually operated a remote UAV through a corridor environment

under the conditions of the two strategies. For comparison, the conditions of no haptic feedback and

the liner combination of both attractive and repulsive strategies were included in the study. Experi-

mental results dictate that haptic force feedback in general (including both attractive and repulsive

force feedback) improves the average distance from surrounding obstacles up to 21%. Further statis-

tical comparison of repulsive and attractive feedback modalities reveal that even though a repulsive

strategy is based directly on obstacles, an attractive strategy towards a reference trajectory is more

suitable across all performance metrics.

To further examine the effects of haptic aides in a UAV teleoperation task, the behavior of

the human system as part of the control loop was also investigated. Through a novel device placed
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on the end effector of the haptic device, human-haptic interaction forces were captured and further

analyzed. With this information, system identification techniques were carried out to determine the

plausibility of deriving a human control model for the system. By defining lateral motion as a one-

dimensional compensatory tracking task the results show that general human control behavior can

be identified where lead compensation in invoked to counteract second-order UAV dynamics.
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Chapter 1

Introduction

The rise in commercially available unmanned aerial vehicles (UAV), has prompted wide in-

terest in their applicational use. Until recent years, these robots have been limited to militaristic tasks

and have proven as an acceptable alternative to direct human involvement [1]. With this increased

availability, their roles in both recreational and industrial applications have expanded tremendously

[2]. Although small UAVs have limited abilities due to their lack of onboard manipulators, their

ability to traverse harsh terrains as well as cramped and cluttered environments make them better

suited for certain applications over ground based mobile robots [3][4]. They serve as an ideal tool

for general survey and surveillance tasks over ground based mobile robots through their increased

maneuverability and vertical workspace. Through remote teleoperation, UAV’s can additionally be

placed in environments that do not warrant human presence and improve human safety.

One major drawback of remote teleoperation is a limited perception of the extended envi-

ronment due to visual constraints. To achieve improved safety for the mobile robot during a flight

task, the operator must be provided with information about the flight environment beyond the visual

feedback provided by onboard cameras [5]. In an effort to provide this information to the opera-

tor, specific algorithms and strategies are implemented to construct haptic cues based upon several

environmental and UAV state parameters.

Numerous feedback structures have been introduced throughout literature that have proven

to enhance flight performance. They have done so by focusing on collision avoidance [6] and/or op-
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timal trajectory adherence [7]. Collision avoidance provides the operator with a repulsive force that

opposes motion in the direction of an obstacle. Trajectory adherence provides instead an attractive

force that attempts to guide the vehicle towards a reference trajectory.

While both collision avoidance and trajectory adherence feedback strategies have shown an

increase in flight performance, they have consistently proven themselves superior over non-haptic

flight alone. Currently, there exists no extensive literature for the comparison of these paradigms

with respect to each other. One of the aims of this work is to examine the relative performance of

these paradigms to propose the most suitable model for human-operated UAV flight.

Additionally, in order to further improve human performance in remote teleoperation flight

tasks, information on human control is necessary [8]. With the addition of haptic force feedback,

performance may improve but with degradation of user comfort in the form of increased workload.

Proper haptic tuning is therefore paramount to improve human acceptance of the additional sen-

sory information so that workload is reduced without sacrificing human control authority to simply

improve performance [9]. For this reason, a method for human control system identification is a

necessity.

1.1 Background on UAV Haptic Feedback

Remote haptic teleoperation of mobile robots typically consists of three essential blocks: an

operator interfacing a haptic device (Master), a ground station providing bilateral communication

(Channel) and a mobile robot (Slave) [10] [11]. Using this system for manual teleoperation, there

currently exists three groups of haptic cues that are typically used as force feedback (FFB) sources in

conventional teleoperation systems. The first is based upon the mismatch between the commanded

input from the master and the output of the slave (master-slave tracking error). The second is a

force rendered according to the external environment with respect to the slave and the third is a

combination of the first two [12]. This study will focus on the second case according to the idea of

artificial force fields (AFF).

The design of AFFs are based heavily on the principal that obstacles exert a virtual repul-
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sive haptic cue while targets or goals provide a virtual attractive haptic cue [13]. The majority of

work with AFF feedback algorithms utilize a three degree-of-freedom (DoF) haptic device to con-

trol a UAV in Euclidean space and therefore a vector approach is used to calculate a haptic force.

Vectors are produced based upon two main variables in a UAV flight task. The first is the current

state of the vehicle including the current position, orientation and velocity. The second is the ex-

ternal environment surrounding the mobile robot such as obstacles. Repulsive collision avoidance

algorithms use the distance between the UAV and an obstacle and/or the current velocity to produce

a haptic force vector [14]. For these, a vector pointing from each obstacle to the vehicle is produced

with a magnitude associated to its distance or chance of collision. After each obstacle has been

provided with a vector, their components are added together to create an overall haptic force sent to

the master device. In [13, 15, 16], the magnitude of each vector is found by combining the obstacles

distance with the vehicles velocity and maximum deceleration. In [17] the authors also account for

the velocity of dynamic obstacles. While the respective velocity of the vehicle and obstacles can

contribute in collision avoidance, other papers such as [18], derive the haptic force from simply the

distance to an obstacle.

A feedback scheme providing collision avoidance based on obstacles themselves would be

a logical choice for cluttered environments. However, if the vehicle is in an environment with a

large number of obstacles there can arise an issue due to the constant changing of obstacles in the

robot workspace and provide the operator with an unwarranted jerking response from the haptic

device making teleoperation difficult. Also, obstacles can be located in a geometric pattern (such

as a corner) that, when combined, can cancel and provide an incorrect haptic force to the operator.

For this case a trajectory adherence feedback scheme may be more appropriate to provide a smooth

response to the operator.

For attractive path following feedback algorithms, the same vector approach can be used to

guide a UAV back to a planned trajectory. In this case the planned trajectory can be thought of as

a target point for the UAV to maneuver to [7]. While these two feedback paradigms differentiate in

their function of repulsion and attraction, their force magnitudes are also inversely related. Repul-

sive forces increase as the relational distance decreases while the attractive forces increase as the
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relational distance increases.

1.2 Human System Identification

To better understand the human role in UAV manual control and the effects that haptic feed-

back has on their control behavior, system identification is a necessity [19] [20]. This is important

as human dynamic characteristics directly influence the performance of the human-robot system

under manual control because they are defined as a part of the overall system [21].

The human operator is an example of a nonlinear biologically dynamic system but can

be approximated as a quasi-linear time-invariant model along with an associated remnant signal ac-

counting for nonlinear behavior [22]. In a manual-control tasks a human operator bases their control

actions upon perceptual information provided by the governed system. One of the earliest studies

into human control that has encapsulated the dynamic relationship between that of a human operator

and controlled element is the pilot crossover model of McRuer et al. [23]. The theories of the afore-

mentioned detail that a human operator is consistent in how they alter their behavior based upon the

dynamics of the system they are controlling [24]. Therefore, as the human control is specific to the

system they are controlling, it is equally important that identification should be conducted directly

on the system that they are using [25]. More detail on the specifics of the crossover model will be

discussed in subsequent chapters of this work.

According to [26], the human can be split into an internal subsystem using both feedforward

and feedback action based upon the signal presented to the human. They state that a feedforward

action is implemented when predictable target signals are presented while feedback control is de-

pendent on the tracking error signal alone. In [27], the authors outline that human control strategies

can be categorized into three types based upon human perception of the task. The first is compen-

satory control. Compensatory control is where the human only has a perceived or provided tracking

error available to them and they rely heavily on the feedback control loop providing this informa-

tion. In pursuit control or also known as preview, the operator uses past experiences or knowledge to

predict future outcomes. Pursuit tracking is often associated with an additional feedforward action
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evoked by the operator due to their prediction of where a target position should be. Lastly, precog-

nitive control is where a human operator would have complete knowledge about system dynamics

and future outcomes. From this, the human control model can be analyzed as a single block of a

feedback control loop or the sum of several internal blocks contributing to control actions.

Through literature review, almost all past research on related human system identification

has been done in a simulated setting with a simple tracking task. The tracking task involves a visual

moving target signal on a screen that the human attempts to follow through the use of an input device

controlling a virtual robot to minimize tracking error. Where the studies differ is in the method

by which the target signal is presented. For some [28][29][30][31], the reference signal is only

presented to the operator at the current moment in time modeling compensatory control. In others

[31][32], a preview of the reference signal is presented to study pursuit control. To the author’s

knowledge, none of the the simulated system identification pertained to UAV flight, therefore the

control of a remote UAV can most closely be related to that of piloting an aircraft where much study

has been conducted. In [33], the pilot control of an aircraft is defined as a compensatory control

task as the human operator only visualizes the tracking error of pitch dynamics. For this and several

similar studies [34][32][26], the human is presented with a screen representing the pitch error with

or without a horizon where the dynamics of the system are closely modeled to that of an actual

airplane or helicopter system.

1.3 Overview

The works presented here have all contributed to human performance in a manual control

task. The summation of the presented research on haptic force feedback and human control system

identification can lead to proper design of a remote teleoperation flight task of a UAV with sup-

portive haptic force feedback. Based upon literature review, many real life experiments have been

conducted for UAV collision avoidance but as of yet no non-simulation human identification has

been compiled. More specifically, full scale human pilot models for control of quadrotor UAV’s

has yet to be conceived. The purpose of this study is an attempt to bridge this gap and prove the
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plausibility of human system identification for real tests in a two-dimensional environment so that

full dynamics of the true system can be captured.

To examine the differences in repulsive and attractive haptic force feedback (FFB) as well as

to examine human control behavior under their influence, a course was created for a human operator

to remotely control a quadrotor UAV under the direction of the presented modalities to objectively

compare the performance of each. Chapter 2 describes the system dynamics of a UAV interfaced

by a haptic device. It also includes a description of the algorithms chosen to produce haptic force

feedback. Chapter 3 details how to accurately estimate a human pilot model. Chapter 4 describes

in detail the physical set up of the experimental system including the design of a sensor array to

measure human interaction forces as well as the procedure of the experiments. Chapter 5 shows

the performance results of both a simulation and full-scale test. Chapter 6 details the results of

human pilot model identification. Finally conclusions regarding the work as a whole are presented

in Chapter 7.
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Chapter 2

UAV Haptic Force Feedback

2.1 UAV Dynamics

This study considers the use of a UAV quadrotor capable of hover and near-hover flight

with an associated body frame, B, that is related to the inertial frame, W, by the rotational matrix

defined as RW
B . Here, [~Xr, ~̇Xr, ~̈Xr] ∈W are the UAV position, velocity and acceleration respectively

with ω ∈ B the angular velocity. Let M and I represent the total mass of the UAV and the inertia

of the body respectively. Assuming the UAV as a rigid body its dynamics are obtained using the

Newton-Euler formalism [35] as

M~̈Xr = RW
B F (2.1)

ṘW
B = RW

B ω× (2.2)

Iω̇ =−ω× Iω +Γ (2.3)

where ω× represents a skew-symmetric matrix such that ω×~̇xr = ω ×~̇xr. The terms Γ, and F ∈ B

are the external torque and force inputs respectively.
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2.2 Haptic Device

A haptic device with 3-DoF to send rate control commands (velocity) to the UAV was

utilized. The position of the end effector ~q = (q1,q2,q3)
T ∈ R3 in reference to a zero point in its

workspace provides these inputs to the system. The haptic device is a fully actuated system modeled

by the Euler-Lagrange equation

m(q)q̈+C(q, q̇)q̇+G(q) = Fh +Uh (2.4)

where m(q) is the mass matrix of the device, D(q)> 0 is the damping matrix, C(q, q̇) is the Coriolis

matrix and G(q) is the gravitational force. The term Uh is the external force provided by the human

operator and Fh is the FFB from the device.

2.3 Haptic Feedback

This section presents three FFB algorithms to achieve desired goals of repulsive obstacle

avoidance, attractive trajectory adherence and a linear combination of both. The FFB algorithms

resemble components of the one proposed in [7] but with adaptation to this particular case of study

where the attractive and repulsive forces are resolved independently without the use of a timing law

and trajectory regeneration is neglected.

2.3.1 Repulsive Haptic Feedback for Obstacle Avoidance

For the obstacle based repulsive FFB a total force vector is calculated using contributions

of each obstacle in the local UAV workspace. This force vector is normalized as a factor of the

maximum force that the haptic device can provide. For example, if the UAV hits an obstacle, the

haptic device would be providing the maximum force while no obstacles in the local workspace

would provide no force. Let ~fo,i ∈ R, i = 1,2, ...,n defined by the function: ~fo,i = gr(~Xr,~Xo,i) be the

force vector for n obstacles located within the local UAV workspace. Here, gr is a function of two

parameters: ~Xr ∈W, representing position of the UAV and ~Xo,i ∈W the position of the ith obstacle.

8



Respectively, ~Xr = (xr,yr,zr), ~Xoi = (xoi,yoi,zoi). For each obstacle, a weighting factor, λ (di), is

calculated with di = ||~Xr−~Xo,i||− ruav being the Euclidean distance between the obstacle and UAV

with radius, ruav. Defining rw as the radius of the UAV workspace, the weighting factor is found

according to

λ (di) =


e(−di/r2

w) if di ≤ rw

0 if di > rw

, i = 1,2, ...n (2.5)

Using the associated unit vector d̂i, a new unit vector pointing from the obstacle to the UAV in the

body frame, B, is computed as δ̂i = RB
W · d̂i. Each individual obstacle force vector is now calculated

according to

~fi = λ (di) · δ̂i (2.6)

Combining n obstacles yields an overall repulsive force vector, ~Fr.

~Fr =


0 if n = 0

~fi if n = 1

∑
n
i=1

~fi

∑
n
i=1 λ (di)

if n > 1

(2.7)

Finally, the repulsive FFB is sent to the haptic controller in the H frame is according to

~Fh = kmax(RH
B ·~Fr) (2.8)

where kmax is a positive scaling factor representing the maximum force of the haptic device.

2.3.2 Attractive Haptic Feedback for Trajectory Adherence

For attractive FFB, the current position of the UAV, ~Xr, is paired with the position of a point

on a predefined trajectory. Let S(x,y,z) ∈ R represent an optimal trajectory for the UAV to fly. This

trajectory is produced using a 4th order b-spline consisting of control points located at the midpoint

between adjacent obstacles along the corridor path [36]. To compute an attractive force to this path,
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Figure 2.1: Weighting functions for attractive and repulsive force rendering.

define ~Fa ∈ R to be the force vector associated with pulling the UAV back towards the preferred

path. The force function is: ~Fa = ga(~Xa,~Xr) where ga is a function of two parameters: ~Xr ∈W

defined above and ~Xa ∈W, the position of a point on the reference trajectory. More specifically,

~Xa = (xa,ya,za). Unlike the repulsive force above, where multiple obstacles are found in the UAV’s

workspace, this approach contains only one point and must have a different weighting function.

However, to be consistent for the purposes of comparison between the two paradigms a weighting

function with an inverse shape was selected. For the attractive case, da = ||~Xr−~Xa|| represents the

Euclidean distance between the UAV and reference point. The lack of compensation for the radius

of the UAV here is because the current state of the robot is measured at the UAV center of mass

(COM). Elaborating, the position of the UAV and an obstacle cannot be the same as a collision

would have occurred at a distance of ruav from the COM. For the attractive case however, the UAV

COM is desired to coincide with a virtual reference point and compensation is unnecessary. The

attractive sigmoidal weighting function is prescribed as

~Fa =


1 if da > rw[

da
1+da

+ da
rw(1+da)

]
· δ̂a if da ≤ rw

(2.9)

where δ̂a is the unit vector pointed from the UAV to the reference point translated to the B frame as

δ̂a = RB
W · d̂a. The second term in equation (2.9) scales the value so that the maximum haptic force
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is provided when the trajectory is on the edge of the local UAV workspace. To remain consistent

with the repulsive based feedback paradigm, the force sent to the haptic controller is scaled and

translated to the H frame

~Fh = kmax(RH
B ·~Fa) (2.10)

2.3.3 Combined Attractive and Repulsive Haptic Feedback

The third FFB mode is a linear combination of both the repulsive and attractive FFB algo-

rithms. Each component of the overall haptic cue is calculated the same as the previous cases and

combined according to

~Fh = kmax[α ·~Fa +(1−α)~Fr] , 0≤ α ≤ 1 (2.11)

where α is a scaling term to appropriate the influences of each type of FFB vector. This scaling

term is set to 0.5 to allow equal influence of attractive and repulsive FFB. The equal appropriation

of each scheme is used to shed some light on contributions from each FFB modality. It is important

to note that this singular parameter value creates an entirely different FFB scheme. Choice of the

α parameter may contribute to a more appropriate or degraded FFB scheme but is used solely for

comparative purposes here and adjustment of this parameter will be used in future studies.

2.3.4 Feedback Overview

For brevity, the notation of attractive, repulsive, combined and no force feed back schemes,

will be referred to as AF, RF, AF+RF, and NF respectively. For all three cases the FFB algorithms

attempt to keep the UAV in the center of the corridor away from obstacles. While they all provide

the least amount of FFB in the center of the path, differences can be seen in figure 2.2 which depicts

the flight course used. For RF, shown in figure 2.2a, the magnitude of the haptic feedback has

geometric constraints. This is most apparent near the corners of the flight course. By using a vector

approach there is a cancellation that provides an overall force vector that is not truly representative

of the surrounding environment. Analogously for AF, shown in figure 2.2b, this issue is resolved
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due to the force vector being isolated to a single geometric point. Another noticeable difference

can be seen between RF and AF by observing the gradient profile of each. For RF there are sharp

changes in the force magnitudes along the flight course. This is due to the change in the number of

obstacles and their respective position in the local robot workspace. This suggests that the human

operator will be provided with sharp changes in feedback cues during the experiment and will have

a negative effect on their perception. For AF, there is an smooth change in the force magnitude over

the flight course. This suggests that operating with AF will provide much smoother haptic cues to

the operator.

12



Y (m)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X
 (

m
)

-0.5

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) RF

Y (m)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X
 (

m
)

-0.5

0

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) AF

Y (m)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X
 (

m
)

-0.5

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

1.2

(c) RF+AF

Figure 2.2: Gradient of force magnitudes along flight course.
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Chapter 3

UAV Pilot Model Identification

This chapter explores a method by which accurate reconstruction of signals obtained during

experimentation can be used to model lateral control efforts as a 1D tracking task. The simplest

control model containing the human block is the black box architecture of the compensatory model

depicted in figure 3.1 [37]. Compensatory behavior models the perception of instantaneous tracking

error relying on the current state of the controlled element.

H G

Visual Feedback

RobotHuman

e(t)

+ _

u(t) y(t)r(t)

Figure 3.1: Control diagram for compensatory tracking

For identification of a human control model, compensatory behavior is considered due to

the unpredictable nature of a reference signal. In a remote teleoperation task, the operator is only

privy to visual information presented on a display yielding an associated human perceived error.

Precognitive control can be excluded as the task is done remotely. Additionally, the choice of pure

compensatory control over predictive models is based on the movement of the reference frame

presented to the human where the error signal and reference signal would be the same. When haptic
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force feedback is implemented into the system, the human operator receives additional sensory

information transforming the control structure to that of figure 3.2.

UAV

Environment

Haptic

Device

Visual Feedback

e(t)

+ +

+ +

_ _

u(t) q(t)
y(t)

r(t)

Haptic ForceHuman

Admittance

H
vis

Figure 3.2: Control diagram including haptic aid.

With the introduction of haptic feedback into the system the human can be described as

a two-input, single-output system. However, in [21], the authors state that a human cannot both

receive force as an input and equally output an operational force. The additional input signal is

then the neuromuscular response to the position of the haptic device. In [38], it is suggested that

the human perceives haptic force feedback as a positional deflection of the control device having an

effect on the human neuromuscular system. The neuromuscular system is further explained as the

inverse of the arm admittance defined by the dynamic relationship between force and position [22].

The human control force is then a combination of the internal neuromuscular response and visual

feedback represented by the HV IS block shown in figure 3.2.

3.1 Crossover Model

According to theories first described by McRuer [39], a human has the ability to internally

adapt their control dynamics depending on the characteristics of the controlled element. Essentially,

the human as a controller attempts to linearize the system within a limited frequency range centered

around what is known as the crossover frequency ωc. This crossover frequency is better defined

as the frequency at which the open-loop transfer function from the error signal to system output is
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unity. Accordingly, the open-loop transfer function defined, HGol( jω), describes the lump human-

plant dynamics near the crossover frequency, with time delay τν .

HGol( jω) = H( jω)G( jω) =
ωc

jω
e− jωτν (3.1)

Here, H( jω), and G( jω) represent the human and controlled element respectively. The represen-

tation in equation (3.1) is known as the crossover model. According to this model, the open-loop

transfer function will converge to that of a single integrator near ωc. Once identified, the associ-

ated controlled element dynamics reveal characteristics of the human controller equalization. This

model can further be extended to higher frequencies through the inclusion of the human neuromus-

cular system (NMS) often represented as:

Hnms =
ω2

nms

( jω)2 +2ζnmsωnms jω +ω2
nms

(3.2)

where ωnms, and ζnms are the natural frequency and damping ratio respectively. The extended model

suggests that a human operator will adopt lag compensation for a controlled element consisting

of gain dynamics with lag time constant τlag. If the controlled element is explained by single-

integrator dynamics, the human operator will adopt gain dynamics. For a controlled element of

double-integrator dynamics the human operator will adopt lead compensation with associated lead

time constant τlead . A summary of suggested human describing functions according to controlled

element dynamics can be found in table 3.1. The first column shows a controlled element described

by gain, single-integrator, and double-integrator dynamics with gain Kp. The second column shows

the associated human describing function with gain Kh.

Controlled Element Human Describing Function
Kp Khe−τν jωHnms/(τlag jω +1)
Kp/ jω Khe−τν jωHnms

Kp/( jω)2 Khe−τν jωHnms(τlead jω +1)

Table 3.1: Extended Crossover Model

The working principals of this section were adopted to this particular study to identify
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human control with results presented in Chapter 6.

3.2 Operator Identification

For this study, a system with the architecture of figure 3.1 is considered for the non-haptic

case while the architecture of figure 3.2 is considered for FFB schemes. The human component of

the system is treated as a black-box model that describes the process of transferring input signals of

visual error and haptic stimuli into force/position output signals fed back into the system. During

experimentation, data was collected for the state of the UAV, human force, commands sent to the

UAV and the feedback force provided by the haptic device. Using this data, signals were constructed

to represent a reference point, and path error during flight. As the human operator controls the UAV

without a direct line of sight, they must rely on the visual cues reported to them on the display in

front of them. As the visual signal is projected onto a two-dimensional screen, depth perception is

not quantifiable. Further reduction of flight into the horizontal plane allows for the current system

identification to be reduced to that of a 1D tracking task of lateral motion.

Center of Screen

Center of Path

Error

Figure 3.3: Human perception of error

One issue between identification of simulated tracking tasks and actual studies is the direct

knowledge of error signals presented to the operator. To define an error signal that serves as input

into the human block of the system consider figure 3.3. With vertical motion restricted, the operators

perception of error is assumed to be interpreted as the deviation from the center of the current display

screen to a target point in their field of view shown in figure 3.3. Corresponding control actions are
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then an attempt to steer the UAV along the center of the track. The error signal e(t) is then defined

as the difference of the system output y(t) (current position of the UAV, Xr(t)), and the reference

signal r(t) (current center of the virtual track) translated into the body frame.

e(t) = y(t)− r(t) (3.3)

Having defined the error signal, the open-loop response of the overall system can be esti-

mated from the closed-loop signals using spectral analysis. Defining Ŝry( jω) and Ŝre( jω) as the

cross spectral-densities between the reference signal, r(t), the system output y(t) and error e(t).

ĤG( jω) =
Ŝry( jω)

Ŝre( jω)
(3.4)

The analysis of ĤG( jω) will determine the validity of the crossover model if single integrator

dynamics are present near the crossover frequency. Once the crossover model has been validated,

similar spectral analysis can be used to estimate the human response function. According to the

architecture of figures 3.1 and 3.2, the human output can be described by equation (3.5). The use of

H( jω) in equation (3.5) represents the human block as a combination of both the visual response

as well as the neuromuscular response as it is not possible to accurately measure the admittance

separately [22]. However, the effects of the neuromuscular response should still be captured as the

measured human force will contain this information.

U( jω) = H( jω)E( jω) = H( jω)R( jω)−H( jω)Y ( jω) (3.5)

The Solving for H( jω) and reducing to ratios of the reference signal yields:

H( jω) =
U( jω)

R( jω)−Y ( jω)
=

U( jω)/R( jω)

(R( jω)−Y ( jω))/R( jω)
=

U( jω)/R( jω)

E( jω)/R( jω)
(3.6)
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Therefore the estimated human response in the frequency domain is attained by

Ĥ( jω) =
Ŝru( jω)

Ŝre( jω)
(3.7)

where Ŝru( jω) is the cross spectral density of the reference signal and human force. For identifica-

tion, the results of equation (3.4) and equation (3.7) along with controlled element dynamics will

be used in Chapter 6 to first validate the use of the crossover model. After validation, controlled

element dynamics can be used to help explain the results of equation (3.7).
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Chapter 4

Experimental Design

To assess human behavior in a manual control flight task with haptic force feedback a

test was designed where human subjects could remotely teleoperate a UAV along a course using a

combination of visual and haptic aids.

Figure 4.1: Remote workspace providing only visual and haptic interfaces.

4.1 Physical Set Up

The chosen UAV was the Parrot AR.Drone 2.0 quad-rotor fitted with four pairs of active

led markers. These markers were tracked in the 3D environment by a Phase Space tracking system

including eight Impulse X2 cameras and a workstation. The human operator interfaces the system
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by sitting at a work station containing a computer screen that provides the visual image captured

by the forward facing camera on the UAV shown in figure 4.1. The human operator then manually

controls the UAV through a 3-DoF Novint Falcon haptic feedback device. The experiment was

implemented using a desktop computer running linux operating system using the Robotic Operating

System (ROS)1 as a middleware software updating at a rate of 20 Hz.

To represent an obstacle laden environment, a flight course shown in figure 4.2 was designed

that simulates a corridor for a UAV to maneuver through that contains two right turns. The course

consisted of 26 vertical poles spaced evenly throughout the maximum space provided by the tracking

system covering a 4 m by 2.5 m rectangle. The use of vertical poles allowed ample visibility of the

tracking system while also being constrictive enough to resemble walls. Each pole represented an

obstacle for haptic force rendering and also serves as geometric constraints for reference trajectory

generation.

Figure 4.2: UAV flight track

1http://ros.org
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4.2 Human Force Sensor

In order to attain the physical force output by the human, a device was made to measure

axial forces and attached to the haptic device end effector. The bottom, top and front views of the

created sensor array can be viewed in figure 4.3. The force measurement device consisted of an

inner and outer hull that was 3D printed containing space for four resistive force sensors between

the hulls. The inner hull was fixed to the end effector to provide a rigid surface for the sensors. The

outer hull was free to move while maintaining a small internal force to keep the sensors properly

placed. The force signals were measured by 8” FlexiForce 0-25 lb. Resistive Force Sensors made

by Tekscan and fed through an analog to digital converter from Phidgets at a rate of 20 Hz. The

sensors were placed in pairs representing the positive and negative horizontal planer positions of

the end effector denoted as X+ X−, Y+, Y−. The paired positions of the sensors provided accurate

force sensing in both respective directions of movement along the lateral and longitudinal directions

of motion. For simplicity, the notation of the end effector reference frame will assume the same as

the UAV body. For example, if the human operator pushed to the left, there would be an increase

in the output of Y− and a decrease in the output of Y+. Similarly, if the operator pushed forward

on the end effector, there would be an increase in the output of X− and a decrease in the output of

X+. The opposite is true for motion to the right and backward. As each participant held the device

differently, calibration data was taken at the beginning of each trial. For this, participants moved

the end effector to a position in each cardinal direction and paused to allow for data collection. The

resulting force measured in the XY-plane can be represented as a linear combination of contributions

from each sensor in the array as a function of time. This linear combination can then be equated to

the measured internal force from the haptic device as

Flat(t) =C1,latX+(t)+C2,latX−(t)+C3,latY+(t)+C4,latY−(t)+C5,lat (4.1)

Flong(t) =C1,longX+(t)+C2,longX−(t)+C3,longY+(t)+C4,longY−(t)+C5,long (4.2)
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Force Sensors

(a) Bottom View

Y+ Y-
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Figure 4.3: Force sensor array to record human-haptic interaction forces.
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where Flat(t) and Flong(t) represent the axial force produced by the haptic device and Ci,lat , Ci,long,

i = 1, ...,5 are unknown constant coefficients of the linear model. In matrix form the general equa-

tion for both equations (4.1,4.2) where l ∈ [lateral, longitudinal] can be represented as:



Fl(t1)

Fl(t2)
...

Fl(tn)


=



X+(t1) X−(t1) Y+(t1) Y−(t1) 1

X+(t2) X−(t2) Y+(t2) Y−(t2) 1
...

...
...

...
...

X+(tn) X−(tn) Y+(tn) Y−(tn) 1





C1,l

C2,l

C3,l

C4,l

C5,l


(4.3)

more generally,

Fl = XCl (4.4)

To solve for the unknown coefficients the general solution to the normal equations can be used in

equation (4.5).

Cl = (XT X)−1XT Fl (4.5)

Table 4.1 shows the average coefficient values found from equation (4.5) corresponding to equations

(4.1) and (4.2). The presented values show that the influence of each force sensor was weighted

appropriately for longitudinal and lateral directions. Note that the coefficient C5,l is a remnant fitting

parameter not associated with any particular sensor but instead corrects for initial sensor values.

Orientation Coefficient Lateral Longitudinal
X− C1,l -0.0374 0.2609
Y+ C2,l -0.4988 -0.1316
X+ C3,l 0.1745 -0.4629
Y− C4,l 0.6871 -0.1354

- C5,l -2.0952 0.5317

Table 4.1: Average constant coefficients

By substituting the coefficients found in equation (4.5) into equations (4.1) and (4.2), the

static model of human input force is achieved and denoted Fs
lat(t), Fs

long(t). However, during flight,

dynamic effects must be compensated for. To correct for the dynamic case and to correctly assign
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the correct direction of the human input force, the overall human force, Uh,l is a combination of the

haptic force and the static human force. The dynamic human forces, Uh,lat(t) and Uh,long(t) at time

t, can be found by

Uh,lat(t) =−
(
|Fs

lat(t)|− |Flat(t)|
)

sgn
(

Flat(t)
)

(4.6)

Uh,long(t) =−
(
|Fs

long(t)|− |Flong(t)|
)

sgn
(

Flong(t)
)

(4.7)

An example of the calibrated human force can be found in figure 4.4. The plot shown

was calibrated using the same data from both the internal force of the haptic device and the sensor

array. The results show that the directional human-haptic forces can be resolved into lateral and

longitudinal directions appropriately.
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Figure 4.4: Calibrated human-haptic force
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4.3 Procedure

Subjects were seated at a work station provided with a computer screen and haptic device.

They were first instructed on how to operate the haptic device in reference to the UAV motion. Each

subject was allotted a five minute period to practice flying with no FFB in a course that mirrored the

testing course so that they did not learn how to fly a specific course. After the training period, partic-

ipants were instructed that their task was to fly the UAV through the course as safely and efficiently

as possible. They then piloted the UAV four times using the combination of visual feedback from

the forward facing camera and each FFB mode. The four trials consisted of no FFB (NF), repulsive

FFB (RF), attractive FFB (AF) and the combination (RF+AF). Each participant was provided with

the FFB modes in different orders to control the learning effect. After the completion of each trial,

subjects were given a performance and TLX survey.
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Chapter 5

Performance Results

This chapter outlines the results pertaining to objective performance and subjective work-

load metrics as they pertain to two separate experiments. The first was implemented in a simulated

environment using Gazebo1. The simulated environment was modeled mimicking the physical lab

and A.R. Drone quad-rotor in both dimension and dynamic characteristics. The second was a full

scale experiment carried out in the physical lab. The simulation and full scale studies consisted of

17 and 28 participants respectively. Participant demographics can be found in appendix A. For both

experiments, the haptic scaling factor Kmax was set to 4, while the UAV workspace, rw, and width

ruav were set to 0.5 m and 0.25 m respectively.

5.1 Flight Performance Metrics

To qualitatively compare FFB modes, a set of metrics are needed in order to measure flight

performance. These proposed metrics seek to measure the ability of a teleoperator to navigate the

UAV through the course both safely and efficiently. During the experiment, data was collected for

the position and orientation of the UAV while performing the assigned flight task. For accuracy in

comparison the data was filtered to only include flight after crossing a virtual starting line and finish

line. This data was then used to calculate the following flight performance metrics.

1http://gazebosim.org
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Path Error (PE) is defined as the root mean square error (RMS) in the distance the UAV

center of mass is from the center of the course. Obstacle Distance (OD) is calculated as the RMS

distance the UAV center of mass is from an obstacle during flight task. The inclusion of both a

path error and obstacle distance measure is to discredit the bias of the designed function between

AF and RF. Completion Time (T) is the measurement of the length of time it took to complete the

flight task. Finally, Path Length (PL) is the measurement of the total length of the UAV flight path

between cutoff points.

5.2 Operator Workload Metrics

While performance metrics describe how well the flight task is performed, the implementa-

tion of FFB could have an adverse effect on how much effort is required by the pilot [40]. To assess

this, two workload metrics were designed to measure operator workload for the task. The first is a

subjective operator workload that is evaluated by NASA TLX2 after each experiment. The second

is a measure of operator’s preference towards each FFB mode assessed via a post-test questionnaire

with a 1-7 scale where 7 represented the highest preference.

5.3 Simulation Study

A simulation study was first conducted to achieve preliminary results of the feedback

paradigm comparison. The main results of the experiment will be summarized here according to

the metrics outlined above. During testing, four collisions with obstacles occurred from separate

participants. Each FFB mode accounted for a single collision event and thus is not an appropriate

metric for this study.

The results of all participants including the min, max, mean and std. dev. of each per-

formance metric can be found in table 5.1. For clearer comparison figure 5.1 provides a histogram

showing the average performance values side by side with the y-axis oriented to show favorable val-

ues on top. The average values for all tests are shown as a solid line while the dotted line represents

2http://humansystems.arc.nasa.gov/groups/tlx/

28



Path Error (cm) Min Max Mean Std
NF 13.98 31.25 21.26 5.41
RF 8.45 22.55 15.13 4.54
AF 7.24 28.47 15.55 6.26

RF+AF 8.24 25.29 16.78 5.18
OB Error (cm) Min Max Mean Std

NF 18.31 41.38 29.53 6.36
RF 26.16 46.53 36.53 6.66
AF 20.52 44.44 35.73 6.57

RF+AF 23.63 44.52 34.01 6.56
Time (sec) Min Max Mean Std

NF 7.60 35.60 15.40 6.50
RF 9.15 22.60 15.93 3.86
AF 9.45 29.30 17.26 4.66

RF+AF 9.00 24.55 15.90 3.80
Path Length (m) Min Max Mean Std

NF 4.15 6.65 4.93 0.69
RF 4.49 6.94 5.40 0.75
AF 4.22 7.73 5.55 0.89

RF+AF 4.27 6.79 5.34 0.78

Table 5.1: Performance metrics for simulated study

the PL of the reference trajectory. It can be seen that the AF and RF values are very close for each

of the performance metrics. The case of NF shows a considerable disadvantage according to PE and

OD with an advantage in PL and T. The PL and T metrics should be considered as a secondary mea-

sure for flight performance and only used to distinguish between cases where PE and OD are close.

For example, a pilot can fly faster with a shorter distance but be dangerous in their maneuvers. This

provides confirmation that there is a measurable improvement in flight performance though the use

of haptic FFB with a 24-34% decrease in PE and a 14-21% increase of OD at the expense of only

an increase of 8-11% and 3-11% in PL and T.

When comparing the results of RF and AF the percent difference for PE, OD, PL, and T

was 2.78, 2.22, 2.78 and 8.04 respectively with RF favored in all cases. The corresponding results

of an ANOVA test with repeated measures reveal that there is no statistical significance between

RF and AF according to performance. However, after further examination of the forces provided

through FFB, there is a noticeable difference between RF and AF. The average resultant force of RF
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Figure 5.1: Means of performance metrics with higher vertical values representing more favorable
values for NF (yellow), RF (red), AF (blue) and RF+AF (green).

and AF was 1.66N and 1.42N respectively. This represents a 15.5%(p < 0.05) higher average force

when flying in RF mode.

Figure 5.2 illustrates an example of the forces provided to the operator for RF, AF and

RF+AF, with the left column showing the force magnitude as a distribution over the haptic device

workspace and the right column showing the total force over time. Looking at the distributions it

can seen that AF provides a more confined force distribution over RF and RF+AF. In figures 5.2b

and 5.2f large rapid variations in force highlight the issues suggested in the introduction for obstacle

avoidance FFB where the force provided to the operator is unstable due to the variability of obstacles

in the local UAV workspace. In figure 5.2d some oscillatory effects from changing the closest point
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Figure 5.2: (a,c,e) Haptic force distribution represented in haptic device workspace; (b,d,f) Total
haptic force over time with the horizontal line representing the average force.
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on the reference trajectory are present, but this is only evident at lower forces with small variability

and does not have an adverse effect on the smoothness of force over the entire flight path. These

force results suggest the greatest differentiation between the case of RF and AF. While RF and AF

produce the same performance, AF does so with a smoother FFB profile at lower force magnitudes.

For the case of RF+AF the average resultant force of 1.59N falls between RF and AF as a

result of equal input from repulsive and attractive forces provided by equation 2.11. In figure 5.2f

the force varies dramatically with sharp changes in maximum and minimum magnitude. This can

be explained by the superposition of the RF and AF components. As the UAV deviates from the

reference trajectory toward an obstacle it increases the force in both respects.

The results of the six workload metrics of the NASA TLX survey are shown in figures 5.3a-

5.3g. Despite noticeable differences in effort and frustration between RF and AF the results did not

show any statistically relevant effects for these measures.
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Figure 5.3: Medians and interquartile ranges of subjective metrics with outliers (+). PQ represents
performance questionnaire and HA represents haptic acceptance.

It is important to note that the medians of frustration for RF, AF, and RF+AF in figure 5.3g
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are consistent with the results above with respect to average force.

The performance questionnaire shown in figure 5.3h contained questions that repeated those

of the TLX survey and confirm the TLX results. The responses in the questionnaire that pertained

to control of the haptic device represented in figure 5.3h show that the addition of FFB did lower

the operators preference for control but only by a small percentage. The results of the simulation

study suggest that the performance and workload of both RF and AF feedback structures are similar.

However, the difference in force profiles suggest that there should be a difference in either perfor-

mance or workload metrics. To capture all dynamics of UAV flight and human workload perception,

actual flight tests were implemented in an effort to expand simulation results.

5.4 Real Study

After the analysis of the simulation study a full scale study with actual UAV flight was

conducted. The results of more test subjects and a tangible UAV with full flight dynamics should

yield more realistic results. The main results of the experiment will be summarized here according

to the metrics outlined above. After collection of data, samples that exhibited missing data in the

form of packet drop from the tracking system or other recording fallacies were discarded to attain

accurate results.

The results of all participants including the min, max, mean and std. dev. of each per-

formance metric can be found in table 5.2. Again, for clearer comparison figure 5.4 provides a

histogram showing the average performance values side by side with the y-axis oriented to show

favorable values on top. The average values for all tests are shown as a solid line while the dotted

line represents the PL of the reference trajectory.

By looking at the histogram, it can be seen that the case of AF yields the best results across

all performance metrics. Behind AF, the case of RF+AF yields the second best results for these

metrics. The metrics PE and OD found NF to yield the worst results while RF was found to have

the worst results for PL and T. These findings are strengthened by the fact that the RF+AF results

fall between the AF and RF values.
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Path Error (cm) Min Max Mean Std
NF 18.43 46.58 33.85 8.20
RF 19.59 48.39 30.79 7.49
AF 15.69 35.16 26.35 5.29

RF+AF 14.29 49.79 28.86 8.76
OB Error (cm) Min Max Mean Std

NF 19.99 40.74 30.87 5.22
RF 20.68 40.15 32.13 4.80
AF 25.97 42.80 34.85 4.51

RF+AF 23.75 42.81 33.57 4.51
Time (sec) Min Max Mean Std

NF 6.60 36.70 15.25 7.37
RF 7.90 35.75 16.97 8.39
AF 7.15 25.95 12.35 5.73

RF+AF 5.85 37.65 14.53 7.90
Path Length (m) Min Max Mean Std

NF 4.97 9.96 6.98 1.52
RF 5.40 12.80 7.27 1.82
AF 4.83 10.32 6.71 1.57

RF+AF 4.20 13.91 6.75 2.15

Table 5.2: Performance metrics of real study

Based upon the results of an ANOVA test with repeated measures and Bonferroni correc-

tion between each test condition, AF produced a 24.9%(p < 0.05) and 12%(p < 0.05) increase in

metrics PE and OD over NF. Also, AF had a 15.53%(p < 0.05) increase in PE over RF. For the

PL metric the closest value for significance was an 8%(p=0.20) increase of AF over RF. Over all,

there was an increase of 9.5− 24.9%, 4.0− 12.1% increase in PE and OD respectively for tests

with haptic feedback over no haptic feedback that can conclude an increase in performance through

the use of haptic cues. The differentiation between simulation and actual flight performance results

reveal more than the effects of sample size. The simulation study represents a perfect control sce-

nario where the virtual UAV reacts perfectly to control inputs. The actual flight results capture the

full dynamics of the UAV that cannot be modeled in simulation. Due to the real flight capturing

full dynamics of the UAV in an actual control setting, the results can be deemed more reliable and

illustrate the importance of real experimentation.

The results of the six workload metrics of the NASA TLX survey are shown in figures
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Figure 5.4: Means of performance metrics for real flight. NF (yellow), RF (red), AF (blue) and
RF+AF (green).

5.5a-5.5g. Again using an ANOVA test with repeated measures and Bonferroni correction between

each test condition again found no significant differences in human workload or human perception

of performance. In fact, the only corresponding p-values that were not 1.00 were between RF and

AF from the performance questionnaire with a p-value of p = 0.290. This suggests that the human

perception of haptic feedback force when properly tuned is minimal as suggested [29] and [21].

However, it is important to note that the medians for all workload metrics follow the same trend as

the performance metrics with AF showing the lowest workload , RF having the highest workload

and RF+AF falling in the middle.

Side by side comparisons of the simulation and real study for workload metrics further con-

tribute to an argument for full scale tests. The workload results for the real study are more contained

with median values that are concentric about the 50% level. The more concise quartile ranges can

be explained through sample size but there was an increase in workload across all measures. While

none of these show maximum work load levels, the increase from the simulation to real study can

only be explained by the inclusion of the actual UAV. It can be argued that humans show more con-

cern for an actual device over a virtual object and their level of focus increased in real tests. Also,

it is impossible to capture full dynamics of a UAV in simulation and therefore the operators had to
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work harder to compensate for these effects.
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Chapter 6

Human Identification Results

The open-loop transfer function estimate ĤG( jω) shows the behavior of the human-machine

system from the visual error presented to the operator to the position of the mobile robot. This in-

cludes the dynamics of the visual feedback, haptic device, haptic feedback, and mobile robot. Figure

6.1 shows the mean open-loop response of the lump system in the frequency domain for all feedback

cases.
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Figure 6.1: Estimated open-loop frequency response functions for all feedback conditions.
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Based upon the widely accepted theories of McRuer, a human operator will alter their dy-

namics based upon the system that they control to achieve a lump pilot-vehicle model that can be

approximated by a single integrator near the crossover frequency ωc [41]. The slope of -1 for all

four FFB schemes in figure 6.1 indicates that the open-loop estimates do exhibit single integrator

behavior near the crossover frequency. This result validates that the crossover model holds and can

be used to infer human behavior as a compensatory tracking task. Figure 6.2 presents the means and

confidence regions of estimated crossover frequencies found through model fitting in Matlab. The

difference in mean crossover frequency for RF is also highlighted by the apparent shift to the right

present in figure 6.1. While this overall mean proved more compliant, further examination provided

that there was no significance of the RF mean over other crossover estimates.
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Figure 6.2: Means and 95% confidence intervals of the crossover frequency values.

Having determined that the human operator does change their behavior in order for the lump

human-plant dynamics of a single integrator around the crossover frequency, the human model can

be assessed based upon the dynamics of the mobile robot. To find UAV dynamics a post hoc test

was performed. Controlled input commands over several ranges were sent to the UAV and its state

was recorded. The resulting magnitude frequency response of the UAV is shown in figure 6.3. The

bold dashed line at frequencies below 1 Hz has the corresponding transfer function of a pure double
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integrator. The dash-dot line in figure 6.3 represents the single integrator in the form of equation

(3.1) in the range of the estimated crossover frequencies. Referring back to Chapter 3, namely table

3.1 the human pilot generally equalizes a system with double integrator dynamics with a high lead

term.
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Figure 6.3: Mean UAV frequency response

Figure 6.4 shows the mean frequency response of human operators defined by equation

(3.7). As suggested the human response exhibits behavior consistent with expected equalization

behavior in all cases. The decrease in the amplitude at high frequencies for all FFB cases indicates

neuromuscular system dynamics. For all cases shown in figure 6.4, there appears to be a drastic

change near the crossover frequency range of 0.3-0.5 Hz. This increase from gain behavior suggests

lead action in the form of (1+ τlead( jω)). The flattening and eventual decrease at higher frequen-

cies exhibit second order lag dynamics consistent with that of the human neuromuscular system.

Therefore human behavior for controlling the lateral dynamics of a UAV in a remote teleoperation

task takes the form of

H( jω) = Khe−τν jωHnms(1+ τlead jω) (6.1)

which is consistent with previous literature as discussed in Chapter 3.
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Figure 6.4: Mean human response estimates

As figure 6.4 suggests, the comparison of FFB schemes in the frequency domain is not

feasible due to the resolution of the recorded data and differences between each specific participant.

Recall, that the visual signal defined in Chapter 3 has room for error and contributes to this resolution

deficiency. From this result, an improvement in performance for AF can only be explained by a

change in the human visual response which is currently difficult to measure with absolute accuracy.

Due to the similarity of all cases and neuromuscular effects being present at higher frequencies,

results suggest that human control efforts are heavily dependent upon visual feedback. Due to

resolution restraints, parameterization of human control efforts remain an open issue that can be

clarified in future works. The most important result of this study however is that a human control

model is in fact attainable with the current system setup and confirms that the crossover model holds

when applied here.
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Chapter 7

Conclusions and Discussion

With the continued involvement of human controllers in a control loop, information about

how they react to the system is important. Through identification procedures, filters and adjustments

can be added to the system in order to improve the performance of both the human and controlled

element without degrading the human authority of the system. In this work the addition of haptic

force feedback to improve flight performance was discussed. Namely the comparison of attractive

and repulsive feedback models. Results found that an attractive force feedback scheme outperforms

repulsive schemes in all performance measures. This result is strengthened by the performance

results of the combination of both modalities falling between their respective results. The direct in-

crease in human workload metrics between simulated and actual studies suggest that human control

efforts should only be measured in real situations as the presence of all dynamics are present.

With actual experimentation, there are certain assumptions about human perception that

must be made. Exploration of a method by which to define a humans perception of error was pre-

sented and validated through the crossover model. Results show that a human pilot of a remote UAV

does invoke lead action to compensate for the second order dynamics of the piloted UAV near the

crossover frequency while neuromuscular action takes over at higher frequencies. As significant dif-

ferences between force feedback cases were negligible in system identification, the work presented

here should serve as groundwork for further advancement into the identification of human control

models for remote teleoperation of quadrotor unmanned aerial vehicles both with and without sup-
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ported haptic force feedback. To better assess human control actions, future studies with increased

space limitations allowing for longer flights with more configured parameters can lead to improved

system identification.
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Appendices
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Appendix A Participant Demographics

The simulation study subjects consisted of 17 individuals that were willing participants

offered no compensation. From a demographic questionnaire, 12 subjects were male and 5 female.

The ages of participants consisted of 2 for 18-21, 4 were 22-24, 6 for 25-28 and 5 were over the age

of 29. Among them 14 were students in engineering, 2 work in administration and 2 were students

in another field. All but 5 participants listed themselves as active video game players and only 5

reported experience operating a UAV.

The full scale study consisted of 28 subjects under the same conditions of the simulation

study where 20 were male and 8 were female. Their respective age ranges contained 2 for 18-21, 8

for 22-24, 8 for 25-28 and 10 over the age of 29. Among them 13 were students in an engineering

field, 8 identified as other, 4 work in information technology, 2 were students in another field and

1 was a pilot. For video game usage, 12 reported that they do not play, 11 play occasionally, 4

play weekly and 1 plays daily. For joystick experience, 14 reported little or no experience, 12 had

some experience and 2 are experienced using a joystick to control an object. Finally, all but 8 of the

subjects reported no experience operating unmanned aerial vehicles.
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