7,294 research outputs found

    Improving diagnostic procedures for epilepsy through automated recording and analysis of patients’ history

    Get PDF
    Transient loss of consciousness (TLOC) is a time-limited state of profound cognitive impairment characterised by amnesia, abnormal motor control, loss of responsiveness, a short duration and complete recovery. Most instances of TLOC are caused by one of three health conditions: epilepsy, functional (dissociative) seizures (FDS), or syncope. There is often a delay before the correct diagnosis is made and 10-20% of individuals initially receive an incorrect diagnosis. Clinical decision tools based on the endorsement of TLOC symptom lists have been limited to distinguishing between two causes of TLOC. The Initial Paroxysmal Event Profile (iPEP) has shown promise but was demonstrated to have greater accuracy in distinguishing between syncope and epilepsy or FDS than between epilepsy and FDS. The objective of this thesis was to investigate whether interactional, linguistic, and communicative differences in how people with epilepsy and people with FDS describe their experiences of TLOC can improve the predictive performance of the iPEP. An online web application was designed that collected information about TLOC symptoms and medical history from patients and witnesses using a binary questionnaire and verbal interaction with a virtual agent. We explored potential methods of automatically detecting these communicative differences, whether the differences were present during an interaction with a VA, to what extent these automatically detectable communicative differences improve the performance of the iPEP, and the acceptability of the application from the perspective of patients and witnesses. The two feature sets that were applied to previous doctor-patient interactions, features designed to measure formulation effort or detect semantic differences between the two groups, were able to predict the diagnosis with an accuracy of 71% and 81%, respectively. Individuals with epilepsy or FDS provided descriptions of TLOC to the VA that were qualitatively like those observed in previous research. Both feature sets were effective predictors of the diagnosis when applied to the web application recordings (85.7% and 85.7%). Overall, the accuracy of machine learning models trained for the threeway classification between epilepsy, FDS, and syncope using the iPEP responses from patients that were collected through the web application was worse than the performance observed in previous research (65.8% vs 78.3%), but the performance was increased by the inclusion of features extracted from the spoken descriptions on TLOC (85.5%). Finally, most participants who provided feedback reported that the online application was acceptable. These findings suggest that it is feasible to differentiate between people with epilepsy and people with FDS using an automated analysis of spoken seizure descriptions. Furthermore, incorporating these features into a clinical decision tool for TLOC can improve the predictive performance by improving the differential diagnosis between these two health conditions. Future research should use the feedback to improve the design of the application and increase perceived acceptability of the approach

    EnTri: Ensemble Learning with Tri-level Representations for Explainable Scene Recognition

    Full text link
    Scene recognition based on deep-learning has made significant progress, but there are still limitations in its performance due to challenges posed by inter-class similarities and intra-class dissimilarities. Furthermore, prior research has primarily focused on improving classification accuracy, yet it has given less attention to achieving interpretable, precise scene classification. Therefore, we are motivated to propose EnTri, an ensemble scene recognition framework that employs ensemble learning using a hierarchy of visual features. EnTri represents features at three distinct levels of detail: pixel-level, semantic segmentation-level, and object class and frequency level. By incorporating distinct feature encoding schemes of differing complexity and leveraging ensemble strategies, our approach aims to improve classification accuracy while enhancing transparency and interpretability via visual and textual explanations. To achieve interpretability, we devised an extension algorithm that generates both visual and textual explanations highlighting various properties of a given scene that contribute to the final prediction of its category. This includes information about objects, statistics, spatial layout, and textural details. Through experiments on benchmark scene classification datasets, EnTri has demonstrated superiority in terms of recognition accuracy, achieving competitive performance compared to state-of-the-art approaches, with an accuracy of 87.69%, 75.56%, and 99.17% on the MIT67, SUN397, and UIUC8 datasets, respectively.Comment: Submitted to Pattern Recognition journa

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    DASS Good: Explainable Data Mining of Spatial Cohort Data

    Full text link
    Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.Comment: 10 pages, 9 figure

    Central-provincial Politics and Industrial Policy-making in the Electric Power Sector in China

    Get PDF
    In addition to the studies that provide meaningful insights into the complexity of technical and economic issues, increasing studies have focused on the political process of market transition in network industries such as the electric power sector. This dissertation studies the central–provincial interactions in industrial policy-making and implementation, and attempts to evaluate the roles of Chinese provinces in the market reform process of the electric power sector. Market reforms of this sector are used as an illustrative case because the new round of market reforms had achieved some significant breakthroughs in areas such as pricing reform and wholesale market trading. Other policy measures, such as the liberalization of the distribution market and cross-regional market-building, are still at a nascent stage and have only scored moderate progress. It is important to investigate why some policy areas make greater progress in market reforms than others. It is also interesting to examine the impacts of Chinese central-provincial politics on producing the different market reform outcomes. Guangdong and Xinjiang are two provinces being analyzed in this dissertation. The progress of market reforms in these two provinces showed similarities although the provinces are very different in terms of local conditions such as the stages of their economic development and energy structures. The actual reform can be understood as the outcomes of certain modes of interactions between the central and provincial actors in the context of their particular capabilities and preferences in different policy areas. This dissertation argues that market reform is more successful in policy areas where the central and provincial authorities are able to engage mainly in integrative negotiations than in areas where they engage mainly in distributive negotiations

    Exploring Potential Domains of Agroecological Transformation in the United States

    Get PDF
    There is now substantial evidence that agroecology constitutes a necessary pathway towards socially just and ecologically resilient agrifood systems. In the United States, however, agroecology remains relegated to the margins of research and policy spaces. This dissertation explores three potential domains of agroecological transformation in the US. Domains of transformation are sites of contestation in which agroecology interfaces with the industrial agrifood system; these material and conceptual spaces may point to important pathways for scaling agroecology. To explore this concept, I examine formal agroecology education (Chapter 1), extension services and statewide discourses around soil health (Chapter 2), and models of farmland access not based on private property (Chapter 3). While these constitute three distinct topics, I seek to demonstrate that they are linked by similar forces that enable and constrain the extent to which these domains can be sites of agroecological transformation. First, I use case study methodology to explore the evolution of an advanced undergraduate agroecology course at the University of Vermont. I examine how course content and pedagogy align with a transformative framing of agroecology as inherently transdisciplinary, participatory, action-oriented, and political. I find that student-centered pedagogies and experiential education on farms successfully promote transformative learning whereby students shift their understanding of agrifood systems and their role(s) within them. In my second chapter, I zoom out to consider soil health discourses amongst farmers and extension professionals in Vermont. Using co-created mental models and participatory analysis, I find that a singular notion of soil health based on biological, chemical, and physical properties fails to capture the diverse ways in which farmers and extension professionals understand soil health. I advocate for a principles-based approach to soil health that includes social factors and may provide a valuable heuristic for mobilizing knowledge towards agroecology transition pathways. My third chapter, conducted in collaboration with the national non-profit organization Agrarian Trust, considers equitable farmland access. Through semi-structured interviews with 13 farmers and growers across the US, I explore both farmer motivations for engaging with alternative land access models (ALAMs) and the potential role(s) these models may play within broader transformation processes. I argue that ALAMs constitute material and conceptual ‘third spaces’ within which the private property regime is challenged and new identities and language around land ownership can emerge; as such, ALAMs may facilitate a (re)imagining of land-based social-ecological relationships. I conclude the dissertation by identifying conceptual and practical linkages across the domains explored in Chapters 1-3. I pay particular attention to processes that challenge neoliberal logics, enact plural ways of knowing, and prefigure just futures. In considering these concepts, I apply an expansive notion of pedagogy to explore how processes of teaching and (un)learning can contribute to cultivating foundational capacities for transition processes
    • 

    corecore