4,581 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Exploring graph coloring heuristics for optical networks planning

    Get PDF
    Optical networks are essential in today’s global communications, and the study of planning tools that efficiently allocate network resources is crucial to network providers. The assignment of wavelengths, alongside routing, are critical functions in all optical network planning tools. This dissertation focuses on the study of wavelength assignment algorithms based on Graph Coloring techniques. In this dissertation, we analyse the performance of the usual Greedy heuristic, a well-known Graph Coloring heuristic applied to optical network planning, as well as the Degree of Saturation (DSATUR) and Recursive Largest First (RLF) heuristics, in several real net- work scenarios. These last two heuristics, to the best of our knowledge, have not yet been applied in the context of optical networks. Extensive simulations have been performed, using real network topologies, such as COST 239, and CONUS networks, considering a full mesh logical topology, and we conclude that DSATUR and RLF heuristics can out-perform Greedy heuristic in network scenarios where there are several network clusters interconnected by only one or two links. In these cases, the RLF and DSATUR heuristics provide less 9 and 5 wavelengths respectively than the Greedy heuristic. Despite generating fewer wavelengths, we have verified that these heuristics need a higher computing time than the Greedy heuristic. Besides these heuristics, the traditional First Fit and Most-Used heuristics were also studied, and lead to performance similar to the Greedy heuristics.As redes óticas são essenciais nas comunicações globais atuais e, o estudo de ferramentas de planeamento que utilizem eficientemente os recursos da rede são cruciais aos operadores de rede. A atribuição de comprimentos de onda, juntamente com o encaminhamento, são funções críticas em todas as ferramentas de planeamento de redes óticas. Esta dissertação foca-se no estudo de algoritmos de atribuição de comprimentos de onda baseados em técnicas de Coloração de Grafos. Na presente dissertação analisamos o desempenho da heuríıstica Greedy, uma heurística de Coloração de Grafos tipicamente aplicada ao planeamento de redes óticas, assim como as heurísticas Degree of Saturation (DSATUR) and Recursive Largest First (RLF), em diversos cenários de redes reais. Estas duas últimas heurísticas, tanto quanto sabemos, ainda não foram aplicadas no contexto de redes óticas. Foram realizadas inúmeras simulações, utilizando topologias de redes reais, como as redes COST 239, e CONUS considerando uma topologia lógica em malha completa e concluímos que as heurísticas DSATUR e RLF podem superar a heurística Greedy em cenários de rede onde existem vários clusters de rede interligados por apenas uma ou duas ligações. Nestas redes, as heurísticas RLF e DSATUR, proporcionam menos 9 e 5 comprimentos de onda, respetivamente, do que a heurística Greedy. Apesar de gerarem menos comprimentos de onda, verificamos que estas heurísticas necessitam de um tempo de computação superior ao da heurística Greedy. Além de terem sido estudadas estas heurísticas, também foram estudadas as heurísticas tradicionais First Fit e Most-Used e concluímos que têm um desempenho semelhante à heurística Greedy

    Graph coloring heuristics for optical networks planning

    Get PDF
    This work focuses on the study of wavelength assignment algorithms based on Graph Coloring techniques. We analyze the performance of the Greedy heuristic, a well-known Graph Coloring heuristic, as well as the Degree of Saturation (DSATUR) and the Recursive Largest First (RLF) heuristics, for planning optical networks. These last two heuristics, to the best of our knowledge, have not yet been applied in the context of optical networks. Extensive simulations have been performed, using real network topologies under a static traffic scenario and we have concluded that the DSATUR and RLF heuristics can outperform the Greedy heuristic in network scenarios where there are several network clusters interconnected by only one or two links. In these cases, the RLF and DSATUR heuristics can provide less 9 and 5 wavelengths, respectively, than the Greedy heuristic, in networks with 34 nodes.info:eu-repo/semantics/acceptedVersio

    On capacity planning for the GMPLS network control plane

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11107-007-0107-9This paper presents capacity planning rules for the control plane of all-optical networks featuring GMPLS and RSVP-TE as a connection setup protocol. As per RSVP standard, a refresh message mechanism is incorporated to RSVP such that the state is periodically refreshed on a link per link basis. We provide analytical expressions for the bandwidth and buffer sizes to be provided such that no flows are torn down due to lack of refresh messages. Our findings show that small buffers (several KBytes) suffice to sustain the signaling load for as much as 400 RSVP flows per link, with the simplest RSVP refresh mechanism (neither using link bundling nor acknowledgments). On the other hand, we also find the packet drop probability per link for a given network topology for the case that the flow survival probability is larger than a given threshold. We provide numerical examples based on the COST 239 european network topology and real RSVP traffic traces from early-commercial switching equipment.This work was funded by EU Project NOBEL (FP6-506760), Project CELTIC-FIRM and the Spanish MEC (project CAPITAL subproject code: TEC2004- 05622-C04-04 and project PINTA

    Auto-bandwidth control in dynamically reconfigured hybrid-SDN MPLS networks

    Get PDF
    The proposition of this work is based on the steady evolution of bandwidth demanding technology, which currently and more so in future, requires operators to use expensive infrastructure capability smartly to maximise its use in a very competitive environment. In this thesis, a traffic engineering control loop is proposed that dynamically adjusts the bandwidth and route of flows of Multi-Protocol Label Switching (MPLS) tunnels in response to changes in traffic demand. Available bandwidth is shifted to where the demand is, and where the demand requirement has dropped, unused allocated bandwidth is returned to the network. An MPLS network enhanced with Software-defined Networking (SDN) features is implemented. The technology known as hybrid SDN combines the programmability features of SDN with the robust MPLS label switched path features along with traffic engineering enhancements introduced by routing protocols such as Border Gateway Patrol-Traffic Engineering (BGP-TE) and Open Shortest Path First-Traffic Engineering (OSPF-TE). The implemented mixed-integer linear programming formulation using the minimisation of maximum link utilisation and minimum link cost objective functions, combined with the programmability of the hybrid SDN network allows for source to destination demand fluctuations. A key driver to this research is the programmability of the MPLS network, enhanced by the contributions that the SDN controller technology introduced. The centralised view of the network provides the network state information needed to drive the mathematical modelling of the network. The path computation element further enables control of the label switched path's bandwidths, which is adjusted based on current demand and optimisation method used. The hose model is used to specify a range of traffic conditions. The most important benefit of the hose model is the flexibility that is allowed in how the traffic matrix can change if the aggregate traffic demand does not exceed the hose maximum bandwidth specification. To this end, reserved hose bandwidth can now be released to the core network to service demands from other sites

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    Research of the optical communications groups at University of Aveiro and Institute of Telecommunications - Aveiro Pole

    Get PDF
    This paper summarizes the research activities of the optical communications group at University of Aveiro and Institute of Telecommunications – Aveiro pole. Several activities like clock recovery systems, both electrical and all optical, electrical equalizers for very high bit rate DST systems, post-detection filters for multigigabit optical receivers, soliton systems, simulation work on WDM, DST, EDFA and short pulse generation for high bit rate systems are presented
    • …
    corecore