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Abstract—This work focuses on the study of wavelength
assignment algorithms based on Graph Coloring techniques. We
analyze the performance of the Greedy heuristic, a well-known
Graph Coloring heuristic, as well as the Degree of Saturation
(DSATUR) and the Recursive Largest First (RLF) heuristics, for
planning optical networks. These last two heuristics, to the best of
our knowledge, have not yet been applied in the context of optical
networks. Extensive simulations have been performed, using real
network topologies under a static traffic scenario and we have
concluded that the DSATUR and RLF heuristics can outperform
the Greedy heuristic in network scenarios where there are several
network clusters interconnected by only one or two links. In these
cases, the RLF and DSATUR heuristics can provide less 9 and 5
wavelengths, respectively, than the Greedy heuristic, in networks
with 34 nodes.

Index Terms—DSATUR, Graph Coloring, Greedy, Optical
Networks, RLF, Wavelength Assignment.

I. INTRODUCTION

Optical networks are essential in today’s global commu-
nications, and the study of planning tools that efficiently
allocate network resources is crucial to network providers [1].
Routing and wavelength assignment are two vital functions for
allocating the network resources. The routing function consists
on finding the best optical path to be used by an optical
channel, and implies the selection of a set of links between
the source and destination nodes, whereas the wavelength
assignment function is responsible for choosing an appropriate
wavelength, from the whole wavelength division multiplexing
(WDM) signal, for routing the optical channel taking into
account the wavelength continuity and the distinct wavelength
constraint. These two functions are commonly designated as
the Routing and Wavelength Assignment (RWA) problem [1].

RWA can be seen as an optimization problem whose goal
is to minimize the number of wavelengths to be used in
a static network scenario. For a dynamic network scenario,
the goal of RWA is to minimize the wavelength blocking
probability, for a fixed number of wavelengths. Moreover, the
RWA problem can be solved as a whole or can be solved
by finding independent solutions for the routing and also for
the wavelength assignment (WA) problems. Usually this last
approach is applied to solve RWA problems. Additionally,
we can rely, for both problems, on exact solutions, based
on Integer Linear Programming (ILP) solutions, or heuristics
solutions, that can give approximate or even the exact solutions
with shorter computation times [2]. Some examples of the

heuristic algorithms typically used for the routing function are
the Dijkstra and Yen’s k-shortest path algorithms [3]. Also, the
most common algorithms used for the WA problem are the
First-Fit and Most-Used. Another type of algorithms that can
be used for the WA problem are the Graph Coloring algorithms
[4].

Graph Coloring algorithms can be applied in many different
areas, besides optical networking, like social networking,
chemistry, scheduling, satellite navigation, electrical engineer-
ing and computer networking [4]. The problem of Graph Col-
oring, in short, consists in coloring all the graph vertices with
the minimum number of colors so that no vertices connected
by an edge are given the same color. In this work, we explore
three Graph Coloring heuristics for solving the WA problem
in real network topologies assuming a static scenario and a
full mesh logical topology. In particular, we study the Greedy
algorithm, usually used in WA studies, as well as the Degree
of Saturation (DSATUR) and Recursive Largest First (RLF)
algorithms [4], [5]. These last two algorithms, to the best of
our knowledge, have not yet been applied to WA problems.
Besides analyzing and comparing the performance of these
Graph Coloring algorithms, using real network topologies,
such as COST 239 and CONUS networks, we also compared
their performance in terms of the number of wavelengths with
the traditional First-Fit and Most Used algorithms. Lastly, we
assess and compare the computation time between all the
studied algorithms for the various network topologies.

The reminder of the paper is organized as follows. In Sec-
tion II, the three Graph Coloring algorithms, Greedy, DSATUR
and RLF heuristics are explained and their pseudocode are
detailed. Also, a validation and a comparative performance
study between the algorithms is done in this section. In
Section III, the developed planning tool is explained and
the real network topologies studied are presented, together
with the main features of the network physical and logical
topologies. In Section IV, the results are discussed in terms
of the estimated number of wavelengths, as well as in terms
of computation time required by each one of the algorithms.
Finally, the conclusions are drawn in Section V.

II. GRAPH COLORING HEURISTICS

In this section, the pseudocodes of the three Graph Coloring
algorithms, Greedy, DSATUR and RLF, are explained. A



comparative performance study between these heuristics is
performed and validated.

A. Greedy Algorithm

The Greedy algorithm is perhaps the most used algorithm
for coloring graphs and consists in coloring the vertices of
the graph one by one according to an arbitrary order [4], for
example, placing the vertices in descending order of degree
(the degree is the number of incident edges at each vertex).
Then, the algorithm assigns each vertex to the first available
color. The pseudocode of this algorithm is given in Figure 1.

Fig. 1. Pseudocode of Greedy algorithm.

The pseudocode starts by creating the set X that has all the
vertices of the graph in a particular order, e.g., descending.
The pseudocode also defines the set S which represents the
list of colors associated with the vertices of X. Initially S
= S1, which means that S1 is the first available color to be
assigned to a vertex. As the algorithm takes a vertex from the
set X, it first tries to assign a color from the set S to that
vertex. In each iteration, the algorithm takes each vertex vi of
the set X, and checks if vi can be assigned to the color Sj , i.e.,
the algorithm checks if the color Sj was not assigned to an
adjacent vertex of vi (i.e. the vertices associated with color Sj

are an independent set of vi). If the condition is true, then the
color Sj is assigned to the vertex vi and the process moves on
to consider the next vertex. Otherwise, if the colors from the
set S can not be assigned to that vertex, the algorithm assigns a
new color to the vertex vi. Lines 7, 8 and 9 of the pseudocode
represent the creation of a new color and the assignment of
that color to vertex vi, as well as its addition to the set S. The
algorithm ends when all vertices of set X have been assigned
to a color.

B. DSATUR Algorithn

The DSATUR algorithm is very similar to the Greedy
algorithm, since it takes each vertex one by one according
to some ordering and then assigns the appropriate color to
the vertex. The difference between these two algorithms is on
the ordering in which the vertices are colored. In the Greedy
algorithm, the vertex ordering is decided before any coloring,
whereas, in the DSATUR algorithm, the choice of the next
vertex to be colored is decided heuristically based on the
characteristics of the current coloring of the graph [4]. In the

DSATUR algorithm, the choice of the next vertex to be colored
is based primarily on the saturation degree of the vertices.
The degree of saturation of an uncolored vertex is the number
of different colors existing in its adjacent vertices [4]. The
pseudocode of this algorithm is given in Figure 2.

Fig. 2. Pseudocode of DSATUR algorithm.

The pseudocode of the DSATUR algorithm (Fig. 2) is very
similar to the Greedy algorithm pseudocode (Fig. 1). The main
difference between these two algorithms lies in lines 2 and
11 of the pseudocode given in Fig. 2. In each iteration of
the algorithm, the next vertex to be colored is selected from
the set X (line 2) and a color from the set S is assigned to
that vertex, similar to the Greedy algorithm. However, in the
DSATUR algorithm, the next vertex to be colored is chosen
as the vertex in X that has the maximal saturation degree.
If there is more than one vertex with the maximal saturation
degree, the one with the highest degree is chosen from these
set of vertices. The first vertex chosen to be colored is the
vertex with the highest degree. Once the vertex is colored, it
is removed from the set X (line 11). The algorithm ends when
X=∅, which means that all vertices have been assigned to a
color of the set S.

C. RLF Algorithm

The RLF algorithm follows a slightly different strategy
regarding the Graph Coloring in comparison with the previous
algorithms, which have a similar procedure [4]. The RLF
algorithm consists in coloring a graph with one color at a
time, as opposed to one vertex at a time. At each step, the
algorithm applies heuristic methods to identify an independent
set of vertices in the graph (i.e. non-adjacent vertices), which
are then, associated with the same color. This independent set
of vertices is then removed from the graph, and the process is
repeated in the resulting smaller subgraphs. The pseudocode
of this algorithm is given in Figure 3.

The pseudocode begins by defining four sets. The set X
that contains the initially uncolored vertices, the set Z that
will aggregate throughout the algorithm the selected vertices
in each cycle to be later assigned to a color of the set S, the
set S that is responsible for assigning a color Sk to the vertices
of Z and the set Y that will contain the uncolored vertices that



cannot be feasible assigned to color Sk. At the beginning of
the pseudocode execution X=V, Z=∅, S= ∅ and Y= ∅.

Fig. 3. Pseudocode of RLF algorithm.

In each outer loop, a color is created. Lines 2-7 are respon-
sible for selecting the vertex to be colored. The pseudocode
begins by selecting a vertex v of X (line 4), which is added
to the set Z (line 5). All vertices adjacent to v, represented by
ΓX{v}, are then transferred to the set Y (line 6), since they
cannot be assigned the same color as v. Finally, on line 7,
both the vertex v and its adjacent vertices are removed from
the set X, since they are not considered candidates for the
assignment of the same color as v. As soon as X=∅, no more
vertices can be added to the current color. Therefore, in line 8,
all the vertices of the set of non-colored vertices Y are moved
to the set X, and then in line 9, the set Y is emptied.

In lines 10-12 the assignment of the color selected by the
outer loop, Sk, to all vertices that are in set Z and have no
color assigned is done. As soon as this color is assigned to
these vertices, the color is added to set S. Then, a new color
(line 13) is created and the algorithm repeats the loop again.
The algorithm ends when both sets X and Y are empty, which
means that all vertices have been colored and are in set S.

The process of selecting the next v ∈ X on line 4, follows
a similar rationale to the DSATUR algorithm. The first vertex
to be chosen for the assignment of each color is the vertex in
X that has the highest degree. The remaining vertices v to be
assigned to the same color are selected as the vertices in X
that have the highest degree in the subgraph defined by Y∪v.

D. Graph Coloring Heuristics Performance
After the implementation of these algorithms in the software

tool developed in this work, the performance of the algorithms
was analyzed with random generation of graphs. A random
graph, denoted by Gn,p, is a graph comprising n vertices,
where each pair of vertices is adjacent with probability p
[4]. In this work, the parameter p of graph Gn,p is obtained
through the average of the degrees of each vertex, given by,

p =

∑n
i=1

degreei
n−1

n
(1)

where degreei represents the degree of the vertex i. When
p=0, it means that all vertices are non-adjacent, and when
p=1, all vertices of the graph are adjacent.

Figure 4 shows the average number of colors as a function
of p obtained for n=100, for the Greedy, DSATUR and RLF
algorithms. In Figure 4, an upper bound is also represented,
which is defined as the highest degree of a vertex in the graph
to be colored plus one [1]. For each value of p, 50 random
graphs are generated. Then, an average is performed to obtain
the average number of colors generated by these 50 random
graphs realizations. In the Greedy algorithm, the vertices are
ordered considering the descending order of degree.

Fig. 4. Average number of colors produced by the Greedy (descending order),
DSATUR and RLF algorithms for a network with 100 vertices (n=100).

Observing Figure 4, we verify that for values of p close to
1, the number of colors predicted by the different algorithms
tends to become similar, reaching the maximum limit of colors
i.e., n=100 meaning that all vertices are adjacent to each other.
We also observe that, the Greedy algorithm is the algorithm
that produces the worst results, i.e., it needs to assign more
colors, while the RLF algorithm generates the best solutions
across the whole set, assigning a lower number of colors. The
DSATUR algorithm produces solutions with fewer colors than
the Greedy algorithm and slightly more colors than the RLF
algorithm. In Figure 4, it is also shown that the results obtained
with the upper bound are quite different from the ones obtained
with the three Graph Coloring algorithms studied. From the
simulations that we have performed for various values of n, we
observe that the higher the value of n, the nearer the number of
wavelengths estimated by the three Graph Coloring algorithms
tends to be.

Analyzing in more detail the solutions produced in Figure 4,
for p<=0.2, the Greedy algorithm achieves about 10.2 colors,
the DSATUR algorithm produces approximately 8.7 colors
and the RLF algorithm generates 8.04 colors. For p=0.5, the
Greedy algorithm produces around 20.5 colors, the DSATUR
algorithm generates about 18.7 colors and the RLF algorithm
generates only 17.5 colors. For this value of p, the upper bound
on the number of colors is as high as 60 (almost the triple
obtained with the analyzed algorithms), which reveals the poor
quality of the considered upper bound. These findings were



also obtained in [4], which allows validating our implementa-
tion of the three Graph Coloring algorithms that are going to
used in Section IV for planning real optical networks.

III. DEVELOPED PLANNING TOOL

In this section, we explain the main building blocks of our
planning tool with special focus on the implementation of the
Graph Coloring algorithms. Then, we present the networks
studied in this work, and characterize their physical topologies
features and also some of their logical topology features.

The main building blocks of our planning tool are repre-
sented in the flowchart of Figure 5. As shown in Figure 5, our
planning tool consists on 6 sub-problems:

Fig. 5. RWA sub-problems.

1) Physical Topology and Traffic Matrix: the network phys-
ical topology, as well as, the logical topology (charac-
terized by the traffic matrix) are defined.

2) Lightpath Routing: the lightpaths are routed over a phys-
ical topology using the Yen’s k-shortest path algorithm.

3) Traffic Routing: after the path is computed and selected,
the different traffic units are routed and assigned be-
tween the source and destination nodes through the
logical topology.

4) Path Ordering: before assigning the wavelengths to the
lightpaths obtained through the routing algorithm, it is
necessary to order these lightpaths. The criteria used to
order the paths can be shortest path first, longest path
first, and random path. Different metrics can be used to
establish the paths order, for example, the distance in
kilometers or the number of hops.

5) Wavelength Assignment: after the lightpaths are ordered,
the wavelengths are assigned accordingly to a given
algorithm. Graph Coloring heuristics such as Greedy,
DSATUR and RLF, are going to be used in the RWA
planning tool. For these heuristics, step 4 is not required.

Before using the Graph Coloring algorithms, the path graph
G(W,P) must be found. This graph is obtained from the graph
G(V,E) that represents the physical topology. The vertices of
G(W,P) are the optical paths W = (w1, w2, w3, . . . , wM ) and
P is the set of links between these vertices [1]. These links
are established between one or more vertices (i.e. paths) that
share one or more physical links. After obtaining the graph
G(W,P), the vertices can be colored considering the three
Graph Coloring algorithms studied in this work and explained
in Section II. The number of colors obtained corresponds to
number of wavelengths needed for solving the RWA problem.

The networks used in this work are: COST 239 [6], [7],
NSFNET [8], [9], UBN [10] two variations of the CONUS
network [11], [12], one with 30 nodes and other with 60 nodes
and two variations of a network generated by the GT-ITM tool
in [13], one with 27 nodes and other with 34 nodes.

The GT-ITM (Georgia Tech Internet Topology Modeler)
tool generates pseudo-random network topologies on which
researchers can perform their analyses [14]. The nodes of the
topologies generated are organized in clusters that interconnect
with each other by few interconnection links [14]. Figure 6
represents the network with 34 nodes generated by this tool.

Fig. 6. Physical topology of the network with 34 nodes generated by the
GT-ITM tool.

Some of the parameters of the physical topology of the real
networks studied in this work are given in Table I.

TABLE I
PHYSICAL TOPOLOGY PARAMETERS.

Network Node Link Average
Node Degree

Variance
Node Degree

COST 239 11 26 4.7 0.4
NSFNET 14 21 3.0 0.3

UBN 24 43 3.6 0.9
CONUS 30 30 36 2.4 0.4
CONUS 60 60 79 2.6 0.5
GT-ITM 27 27 36 2.7 2.0
GT-ITM 34 34 44 2.6 1.8

The average node degree presented in Table I is defined by
[15]:

d =

∑N
i=1 degreei

N
(2)

where N is the total number of the nodes of the network. The
variance node degree, in Table I, measures the regularity of



the network, i.e., how similar the nodes of the network are in
terms of the number of connections, and is defined as [15]:

σ2 =

∑N
i=1 (degreei − d)2

N − 1
(3)

When the variance node degree is zero, it means that all
network nodes have the same node degree and the same
number of incoming/outcoming connections, as it happens
for example in ring networks. As the value of the variance
increases, it means that the similarity of the network is
reduced.

In Table II, two parameters of the network logical topology
used in the context of the Graph Coloring algorithms, the total
number of paths of the graph G(W,P) and the parameter p
defined in equation (1) for several real networks are presented.

TABLE II
TOTAL NUMBER OF PATHS AND p PARAMETER.

Networks Total Paths p
COST 239 55 0.10
NSFNET 91 0.25

UBN 276 0.23
CONUS 30 435 0.38
CONUS 60 1770 0.32
GT-ITM 27 351 0.56
GT-ITM 34 561 0.59

From the analysis of Table II, we observe that the parameter
p from the path graph G(W,P) of the networks generated by
the GT-ITM tool is p = 0.56 with 27 nodes and p = 0.59
with 34 nodes. These networks are divided into 3 and 4
domains, with more than 7 nodes inside each domain, which
are interconnected with each other by two central nodes. This
centralization increases the number of paths that pass through
the physical links connected to the central node, increasing
the p parameter of the network compared to the remaining
real networks. As can be seen in Figure 4, when p is greater
than 0.5, the DSATUR and RLF algorithms tend to give even
better results than the Greedy algorithm in comparison with
p<=0.5.

IV. RESULTS AND DISCUSSION

In this section, we present the number of wavelengths
as well as the computation times obtained by the planning
tool developed for the real networks presented in Section
III. Besides the three Graph Coloring algorithms we also
considered the First Fit and Most Used algorithms. The results
presented in this section assume a full mesh logical topology
with one traffic unit in each path.

Tables III and IV present the total number of wavelengths
obtained by each of the Graph Coloring heuristics and the First
Fit and Most Used, for the real networks discussed in Section
III. Before applying these algorithms, the network demands
are sorted according to three different orderings: shortest path
first (SPF), longest path first (LPF) and random path (RP).
The values of the random path ordering strategy represent the
average obtained after 10 simulation runs.

By analyzing Tables III and IV, we verify that the results
obtained by the First Fit algorithm with the LPF ordering
strategy, are quite similar to the results achieved by the Graph
Coloring heuristics, in particular with the Greedy algorithm
with descending order of degree, where exactly the same
number of wavelengths is obtained for all studied networks.

TABLE III
NUMBER OF WAVELENGTHS OBTAINED BY FIRST FIT AND MOST USED

ALGORITHMS FOR THE NETWORKS DESCRIBED IN SECTION III.

Networks First Fit Most Used
SPF LPF RP SPF LPF RP

COST 239 8 8 8.2 9 8 8.3
NSFNET 24 24 24.0 25 24 24.2

UBN 70 64 66.0 71 64 66.7
CONUS 30 134 123 123.5 135 124 123.8
CONUS 60 550 543 543.5 551 543 543.7
GT-ITM 27 229 221 221.3 229 221 221.1
GT-ITM 34 356 347 347.1 356 347 347.2

TABLE IV
NUMBER OF WAVELENGTHS OBTAINED BY GREEDY, DSATUR AND RLF

ALGORITHMS FOR THE NETWORKS DESCRIBED IN SECTION III.

Networks Greedy DSATUR RLF
COST 239 8 8 8
NSFNET 24 24 24

UBN 64 64 64
CONUS 30 123 123 119
CONUS 60 543 543 543
GT-ITM 27 221 217 216
GT-ITM 34 347 342 338

Regarding the behavior of the three Graph Coloring algo-
rithms, we observe that the COST239, NSFNET and UBN
networks do not present any differences between the numbers
of wavelengths obtained. These results were expected, since
the parameter p of each of these networks is less or equal to
0.25, and as shown in Figure 4, the number of colors is quite
similar for networks with such p. The same conclusion can
be applied to the CONUS 60 network. This network, despite
having 1770 nodes, presents a low value of p for the number
of nodes it has (p=0.32). The CONUS 30 network presents
a slight difference in the number of wavelengths obtained by
the RLF algorithm (119 wavelengths), since it has a higher p
(p = 0.3792) and has a smaller number of vertices compared
to the CONUS 60 network. Therefore, for the CONUS 30
network, the RLF algorithm gives better results than the other
algorithms. The GT-ITM networks, having a p above 0.5,
show a clearer difference between the number of wavelengths
predicted by the algorithms. For these networks, the RLF
algorithm presents the best results reducing the number of
assigned wavelengths by 5 for the network with 27 nodes
and by 9 for the network with 34 nodes, in comparison with
the Greedy algorithm. In this case, the DSATUR also brings
advantages, since it assigns less 4 wavelengths than the Greedy
algorithm in the network with 27 nodes and less 5 wavelengths
in the network with 34 nodes. Therefore, the results for the GT-
ITM networks are in agreement with the conclusions taken in



Figure 4, which have shown that, when the p parameter varies
between 0.5 and 0.9, the variations between these three Graph
Coloring heuristics become more notorious.

Next, the computation time (in seconds) of each one of
the wavelength assignment algorithms studied is assessed. The
results are shown in Tables V and VI. All the results presented
in this work were obtained in a computer with an Intel(TM)
core i5 processor at 2.20 GHz and with 8 GB of RAM.

TABLE V
COMPUTATION TIME (IN SECONDS) CONSIDERING FIRST FIT AND MOST

USED ALGORITHMS.

Networks First Fit Most Used
SPF LPF RP SPF LPF RP

COST 239 3.9 3.8 3.2 4.0 3.5 3.2
NSFNET 4.7 4.3 3.9 4.9 4.7 3.9

UBN 8.6 7.2 6.5 8.2 7.2 6.5
CONUS 30 8.5 7.2 7.0 8.2 7.4 6.4
CONUS 60 33.3 32.5 31.5 28.9 30.2 30.7
GT-ITM 27 8.5 7.6 6.9 8.8 7.8 6.9
GT-ITM 34 9.2 8.1 7.8 9.6 8.4 8.0

TABLE VI
COMPUTATION TIME (IN SECONDS) CONSIDERING GREEDY, DSATUR

AND RLF ALGORITHMS.

Networks Greedy DSATUR RLF
COST 239 4.0 4.2 4.5
NSFNET 4.1 4.7 5.7

UBN 7.2 8.4 9.2
CONUS 30 14.2 16.5 17.5
CONUS 60 162.4 164.4 167.5
GT-ITM 27 8.9 10.7 11.2
GT-ITM 34 16.7 17.4 18.1

The computation time obtained by the First Fit and Most
Used algorithms are quite similar to the computation time of
the Greedy algorithm for networks up to 25 nodes. For net-
works above 25 nodes, the First Fit and Most Used algorithms
generate solutions quicker than the Greedy algorithm.

Comparing the three Graph Coloring heuristics, the Greedy
algorithm, despite producing more colors, generates solutions
in a shorter computation time. The RLF algorithm requires
more time to generate solutions, but it is the algorithm that
assigns fewer colors. The DSATUR algorithm has slightly
longer computation time than the Greedy algorithm.

V. CONCLUSIONS

In this work, we have implemented an optical network
planning tool that uses three Graph Coloring heuristics to
solve the WA problem, the Greedy, the DSATUR and the RLF
algorithms.

We have compared the performance of these three Graph
Coloring heuristics in some network topologies, COST 239,
NSFNET, UBN, CONUS 30, CONUS 60, GT-ITM 27 and GT-
ITM 34 in a static network scenario considering a full mesh
logical topology with one unit of traffic in each path.

We have concluded that the RLF algorithm produces the
best solutions, minimizing the number of wavelengths used

in the network. In addition, for a parameter p above 0.5, it
has also been proven that this algorithm and the DSATUR
algorithm are advantageous for WA in the planning of optical
networks, because they obtain better solutions, for the studied
networks, than the most usual wavelength assignment algo-
rithms, the First Fit and Most Used. One such example where
these improvements are evident is in networks whose physical
topology is based on several cluster of nodes interconnected by
central nodes using few links, e.g. as the networks generated
by the GT-ITM tool. For this type of networks, more specifi-
cally for a GT-ITM network with 34 nodes, the RLF algorithm
reduces the number of assigned wavelengths by 9 and the
DSATUR algorithm by 5 compared to the Greedy algorithm.
The disadvantage of these two Graph Coloring algorithms
is slightly higher computation time they require to return a
solution, in comparison to First Fit, Most Used and Greedy
algorithms.
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