131 research outputs found

    A numerical study of viscous vortex rings using a spectral method

    Get PDF
    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass

    Glosarium Matematika

    Get PDF

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    An Energy Formulation of Surface Tension or Willmore Force For Two-Phase Flow

    Get PDF
    The motion of a biological cell in liquid is a rich subject for modeling. In the early 1970’s, it was realized by Canham that biological vesicles with lipid bilayer membranes reach a steady state shape that minimizes bending. Helfrich soon after mathematically quantified the related bending energy and showed that the shapes from minimizing this bending energy match the types of shapes observed in nature. The resulting Canham-Helfrich energy, consisting of bending energy and a constant surface area and volume constraint, is a major component of any model of cellular motility. To this end, we consider the cellular vesicle to be a closed interface between two fluids and we present a finite element model for a two-phase flow coupling the minimization of some given energy defined on the interface to the incompressible flow of the two fluids, which is then advected according to the resulting velocity field. We provide a general framework for incorporating the energies on the interface and then focus on three applications of energy on the interface: the first is surface tension minimizing the surface area energy, the second minimizes the bending energy without explicit surface area or volume constraints, the third minimizes the Canham-Helfrich energy including the constraints. We present a semi-implicit model for bending energy which uses an implicit levelset formulation for the interface and couples the forces from the interface to the two phase incompressible Navier-Stokes system through the use of an approximate Dirac delta function defined on a band around the interface. By using energies to describe the motion, our model is immediately provided with a sense of energy stability. We provide various numerical simulations and validations of flow under these three energies in two and three dimensions. Our simulations confirm that enforcing the volume constraint in the incompressible flow is vital to achieve the desired steady state shapes

    Spectral elements for guided waves. Formulation, Dispersion Analysis and Simulation Results

    Get PDF
    Résumé : La surveillance de l’intégrité des structures (Structural Health Monitoring - SHM) est une nouvelle technologie, et comme toute nouvelle avancée technologique, elle n’a pas encore réalisé son plein potentiel. Le SHM s’appuie sur des avancées dans plusieurs disciplines, dont l’évaluation non-desctructive, les matériaux intelligents, et les capteurs et actionneurs intégrés. Une des disciplines qui permet son déploiement est la simulation numérique. Le SHM englobe une variété de techniques basées sur la génération d’ondes vibratoires et d’ondes ultrasonores guidées. L’utilisation d’ondes guidées offre en particulier une vaste gamme d’avantages. Le défi majeur associé à la pleine utilisation de la simulation numérique dans la conception d’un système SHM basé sur l’utilisation d’ondes guidées réside dans les ressources de calcul requises pour une simulation précise. La principale raison pour ces exigences est la dispersion induite par la discrétisation numérique, tel qu’indiqué dans la littérature. La méthodes des éléments spectraux (SEM) est une variante de la p-version de la méthode des éléments finis (FEM) qui offre certains outils pour solutionner le problème des erreurs de dispersion, mais la littérature souffre toujours d’une lacune dans l’étude systématique des erreurs de dispersion numérique et de sa dépendance sur les paramètres de simulation. Le présent ouvrage tente de combler cette lacune pour les théories d’ingénierie en vibrations. Il présente d’abord le développement de la formulation des éléments spectraux pour différentes théories d’ingénierie pertinentes pour la propagation des ondes vibratoires dans différents types de structures, comme des tiges et des plaques. Puis, une nouvelle technique pour le calcul des erreurs de dispersion numériques est présentée et appliquée systématiquement dans le but d’évaluer la dispersion numérique induite en termes d’erreurs dans les vitesses de propagation. Cette technique est utilisable pour les différentes formes de propagation des ondes vibratoires dans les éléments structuraux visés dans la présente thèse afin d’évaluer quantitativement les exigences de précision en termes de paramètres de maillage. Les ondes de Lamb constituent un cas particulier de la déformation plane des ondes élastiques, en raison de la présence des doubles frontières à traction libre qui couplent les ondes longitudinales et de cisaillement et qui conduisent à une infinité de modes propagatifs qui sont dispersifs par nature. La simulation des ondes de Lamb n’a pas fait l’objet d’analyse systématique de la dispersion numérique dans la littérature autant pour la SEM que la FEM. Nous rapportons ici pour la première fois les résultats de l’analyse de dispersion numérique pour la propagation des ondes Lamb. Pour toutes les analyses de dispersion numérique présentées ici, l’analyse a été effectuée à˘ala fois dans le domaine fréquentiel et dans le domaine temporel. En se basant sur la nouvelle compréhension des effets de discrétisation numérique de la propagation des ondes guidées, nous étudions l’application de la SEM à la simulation numérique pour des applications de conception en SHM. Pour ce faire, l’excitation piézoélectrique est développée, et une nouvelle technique de condensation statique est développée et mise en œuvre pour les équations de la matrice semi-discrète, qui élimine le besoin de solution itérative, ainsi surnommée fortement couplée ou entièrement couplée. Cet élément piézoélectrique précis est ensuite utilisé pour étudier en détails les subtilités de la conception d’un système SHM en mettant l’accent sur la propagation des ondes de Lamb. Afin d’éviter la contamination des résultats par les réflexions sur les bords une nouvelle forme particulière d’élément absorbant a été développée et mise en œuvre. Les résultats de simulation dans le domaine fréquentiel jettent un éclairage nouveau sur les limites des modèles théoriques actuels pour l’excitation des ondes de Lamb par piézoélectriques. L’excitation par un élément piézoélectrique couplé est ensuite entièrement simulée dans le domaine temporel, et les résultats de simulation sont validés par deux cas de mesures expérimentales ainsi que par la simulation classique avec des éléments finis en utilisant le logiciel commercial ANSYS. // Abstract : Structural health monitoring (SHM) is a novel technology, and like any new technological advancement it has yet not realized its full potential. It builds on advancements in several disciplines including nondestructive evaluation, smart materials, and embedded sensors and actuators. One of the enabling disciplines is the numerical simulation. SHM encompasses a variety of techniques, vibration based, impedance and guided ultrasonic waves. Guided waves offers a wide repertoire of advantages. The major challenge facing the full utilization of the numerical simulation in designing a viable guided waves based SHM System is the formidable computational requirements for accurate simulation. The main reason for these requirements is the dispersion induced by numerical discretization as explained in the literature review. The spectral element (SEM) is a variant of the p-version finite element (FEM) that offers certain remedies to the numerical dispersion errors problem, yet it lacks a systematic study of the numerical dispersion errors and its dependence on the meshing parameters. The present work attempts to fill that gap for engineering theories. It starts by developing the formulation of the spectral element for different relevant engineering theories for guided waves propagation in various structural elements, like rods and plates. Then, extending the utility of a novel technique for computing the numerical dispersion errors, we systematically apply it in order to evaluate the numerically induced dispersion in terms of errors in the propagation speeds. This technique is employed for the various forms of guided waves propagation in structural elements covered in the present thesis in order to quantitatively assess the accuracy requirements in terms of the meshing parameters. The Lamb guided waves constitute a special case of the plane strain elastic waves, that is due to the presence of the double traction free boundaries, couple in the section plane and this coupling leads to an infinitude of propagating modes that are dispersive in nature. Lamb waves simulation have not been a subject of numerical dispersion analysis in the open literature neither for SEM nor FEM for that matter. We report here for the first time the numerical dispersion analysis results for Lamb waves propagation. For all the numerical dispersion analysis presented here, the analysis was done for both the frequency domain and time domain analysis. Based on the established understanding of the numerical discretization effects on the guided waves propagation, we utilize this knowledge to study the application of SEM to SHM simulations. In order to do so the piezoelectric excitation is developed, and a new static condensation technique is developed for the semidiscrete matrix equations, that eliminate the need for iterative solution, thus dubbed strongly coupled or fully coupled implementation. This accurate piezoelectric element are then used to study in details the intricacies of the design of an SHM system with specific emphasis on the Lamb waves propagation. In order to avoid the contamination of the results by the reflections from the edges a new special form of absorbing boundary was developed and implemented. The Simulation results in the frequency domain illuminated the limitations of the current theoretical models for piezoelectric excitation of Lamb waves. The piezoelectric excitation of a fully coupled element is then simulated in the time domain, and the results of simulation was verified against two cases of experimental measurements as well as conventional finite element simulation using the commercial software ANSYS

    Fermentation Kinetics for the Production of Ethanol by Immobilized Yeast Cells (Biomass).

    Get PDF
    Using immobilized microorganisms for ethanol fermentation from biomass has attracted much interest in recent years. Such a system offers unique advantages over traditional fermentation processes, e.g. higher productivities, higher ethanol tolerance, and continuous operation. The goals of this research were as follows: (1) to study the growth behavior of immobilized yeast cells and diffusion characteristics of the support, (2) to develop immobilization technology and improve the physical properties of the support, (3) to develop a generally applicable parameter estimation method for the complex reaction kinetics of immobilized biocatalysts, and (4) to determine ethanol fermentation kinetics using immobilized yeast cells. In intial studies on the immobilization of yeast cells on agar, the formation of an active layer on and near the surface of the support was observed. The thickness of this layer was found to be constant regardless of the size or shape of the support. It was also independent of substrate concentration. Both the growth of cells and the production of carbon dioxide reduced the diffusional resistance of the gel, an indication that the gel network underwent significant structural changes. A new method was developed for treating agar or carrageenan gel with polyacrylamide to form a more rigid support. The size and shape of the gel beads were unaffected by this treatment, but the physical strength was much improved. The productivities achieved for ethanol production were as high as or higher than those reported in the literature. A method was also developed for estimating intrinsic kinetic parameters for reaction systems of immobilized cells and enzymes under the influence of internal and external diffusion resistances. The technique was found generally applicable to any reaction system which follows either Michaelis-Menten kinetics with product and/or substrate inhibition, or any exponential reaction rate expression. The method employs orthogonal collocation into which Powell\u27s nonliner least square minimization algorithm is incorporated. Finally, the above method for kinetic parameter estimation was successfully applied to ethanol fermentation. Statistical analysis showed that Monod\u27s model, both with substrate and product inhibition, and with product inhibition alone, fitted the experimental data

    Uncertainty Quantification with Applications to Engineering Problems

    Get PDF

    Modeling flocculation and deflocculation processes of cohesive sediments

    Get PDF
    The transport and fate of cohesive sediments are responsible for many engineering, environmental, economic and policy issues that relate to, for example, siltation and dredging in navigation channels, water quality, water turbidity, pollutant transports, and biological ecosystem responses. Our current understanding, however, is insufficient to conduct accurate quantitative predictions of these processes. This is because the cohesive particles in natural waters will flocculate, which determines the settling, and thus the deposition behaviors. The simulation of flocculation processes is a primary challenge since the time variation of Floc Size Distribution (FSD) is controlled by a partial differential equation that also contains the integration of FSD itself. Previous models either address less characteristic sizes, which produce biased FSDs, or are incapable of modeling a relative large study domain in order to better express the FSDs with more size groups. In this study, a cohesive sediment flocculation model developed based on the framework of Population Balance Model (PBM) is solved by the Quadrature Method of Moments (QMOM). This PBM�QMOM flocculation model has reasonably compromised by both the model robustness and model efficiency. The former lies in the capability of describing the time evolution of the FSDs with a maximum of eight size classes, and the latter is reflected in its efficiency to solve PBM with transport terms and the potential to be coupled in a flow-mud estuary model. The model predictions are compared to both the analytical (or trusted class method) results for general PBMs (i.e., beyond the scope of specific research field), and the published experimental results of kaolinite suspension and colloidal montmorillonite. After that, an experimental activity has been carried out to develop a Sony NEX-5R camera system (with extension tubes and close-up) to automatically acquire floc images under various controlled environments, and to use MATLAB software to process the FSDs. This process is validated by the results of two set of sample particles. The validated camera system is first applied in a five liter mixing chamber to investigate the effects of salinity and selected organic matters on kaolinite flocculation. Then, the camera system is improved and assembled in a waterproof house for underwater use to provide data for a conceptual one-dimensional application in a relatively large turbulence tank. The flow field of the tank is measured by an acoustic Doppler velocimetry. The flocculation processes in the mixing chamber or cylindrical tank are modeled by PBM�QMOM and validated by camera statistical FSDs. While chemical and biological effects are not explicitly included in PBM�QMOM (implicitly included in fitting parameters) at this time to address the basic mechanisms of flocculation, these effects can be further extended when the process itself is better understood through other laboratory experiments or field measurements

    Study of optimal design of 3D mechanical metamaterials

    Get PDF
    This thesis aims to develop and extend numerical methods for solving the elastic problem in 2D to a 3D solution. The primary objective is to investigate and identify the modifications and extensions necessary to adapt existing techniques used in 2D to a 3D framework. The focus is on developing a robust and efficient numerical method that accurately models the behavior of elastic materials in three dimensions. The study encompasses several objectives to achieve a comprehensive understanding of 3D material design and topology optimization in the context of mechanical metamaterials. Firstly, an introduction to topology optimization is provided, including the formulation and regularization of the problem, and an explanation of density-based and the Level Set method. The thesis further investigates the SWAN repository’s code, an object-oriented Matlab software, assessing its applicability for conducting simulations. The thesis explores the optimization of both normal materials and metamaterials microstructures. For normal materials, a comparison is made between different optimization approaches, specifically the MMA optimizer utilizing a densitybased method and the Null Space optimizer employing a level set-based method. Additionally, the impact of varying final volume fractions on the optimization outcomes is studied. This investigation provides valuable insights into the influence of different parameter variations on the resulting microstructures and optimization performance. Furthermore, the study focuses on metamaterials microstructures and explores their optimization using the Null Space optimizer, and different α and β values are employed to examine their effects on the final design. The optimization process is also conducted for different final volume fractions to evaluate the influence of volume fraction on metamaterial performance. This study on material design and topology optimization has yielded several important conclusions: the simulations showcased the relationship between dimensionality and convergence speed, with 2D simulations demonstrating faster convergence compared to 3D simulations; analysis of parameters such as the cost function and the number of iterations has been conducted comparing different optimizers, it has been highlighted the challenges and unique considerations involved in optimizing metamaterials; and, overall, the research has contributed to the understanding of optimization processes and the generation of innovative material configurations

    Robust aircraft trajectory optimization under meteorological uncertainty

    Get PDF
    Mención Internacional en el título de doctorThe Air Traffic Management (ATM) system in the busiest airspaces in the world is currently being overhauled to deal with multiple capacity, socioeconomic, and environmental challenges. One major pillar of this process is the shift towards a concept of operations centered on aircraft trajectories (called Trajectory-Based Operations or TBO in Europe) instead of rigid airspace structures. However, its successful implementation (and, thus, the realization of the associated improvements in ATM performance) rests on appropriate understanding and management of uncertainty. Due to its complex socio-technical structure, the design and operations of the ATM system are heavily impacted by uncertainty, proceeding from multiple sources and propagating through the interconnections between its subsystems. One major source of ATM uncertainty is weather. Due to its nonlinear and chaotic nature, a number of meteorological phenomena of interest cannot be forecasted with complete accuracy at arbitrary lead times, which leads to uncertainty or disruption in individual air and ground operations that propagates to all ATM processes. Therefore, in order to achieve the goals of SESAR and similar programs, it is necessary to deal with meteorological uncertainty at multiple scales, from the trajectory prediction and planning processes to flow and traffic management operations. This thesis addresses the problem of single-aircraft flight planning considering two important sources of meteorological uncertainty: wind prediction error and convective activity. As the actual wind field deviates from its forecast, the actual trajectory will diverge in time from the planned trajectory, generating uncertainty in arrival times, sector entry and exit times, and fuel burn. Convective activity also impacts trajectory predictability, as it leads pilots to deviate from their planned route, creating challenging situations for controllers. In this work, we aim to develop algorithms and methods for aircraft trajectory optimization that are able to integrate information about the uncertainty in these meteorological phenomena into the flight planning process at both pre-tactical (before departure) and tactical horizons (while the aircraft is airborne), in order to generate more efficient and predictable trajectories. To that end, we frame flight planning as an optimal control problem, modeling the motion of the aircraft with a point-mass model and the BADA performance model. Optimal control methods represent a flexible and general approach that has a long history of success in the aerospace field. As a numerical scheme, we use direct methods, which can deal with nonlinear systems of moderate and high-dimensional state spaces in a computationally manageable way. Nevertheless, while this framework is well-developed in the context of deterministic problems, the techniques for the solution of practical optimal control problems under uncertainty are not as mature, and the methods proposed in the literature are not applicable to the flight planning problem as it is now understood. The first contribution of this thesis addresses this challenge by introducing a framework for the solution of general nonlinear optimal control problems under parametric uncertainty. It is based on an ensemble trajectory scheme, where the trajectories of the system under multiple scenarios are considered simultaneously within the same dynamical system and the uncertain optimal control problem is turned into a large conventional optimal control problem that can be then solved by standard, well-studied direct methods in optimal control. We then employ this approach to solve the robust flight plan optimization problem at the planning horizon. In order to model uncertainty in the wind and estimating the probability of convective conditions, we employ Ensemble Prediction System (EPS) forecasts, which are composed by multiple predictions instead of a single deterministic one. The resulting method can be used to optimize flight plans for maximum expected efficiency according to the cost structure of the airline; additionally, predictability and exposure to convection can be incorporated as additional objectives. The inherent tradeoffs between these objectives can be assessed with this methodology. The second part of this thesis presents a solution for the rerouting of aircraft in uncertain convective weather scenarios at the tactical horizon. The uncertain motion of convective weather cells is represented with a stochastic model that has been developed from the output of a deterministic satellite-based nowcast product, Rapidly Developing Thunderstorms (RDT). A numerical optimal control framework, based on the pointmass model with the addition of turn dynamics, is employed for optimizing efficiency and predictability of the proposed trajectories in the presence of uncertainty about the future evolution of the storm. Finally, the optimization process is initialized by a randomized heuristic procedure that generates multiple starting points. The combined framework is able to explore and as exploit the space of solution trajectories in order to provide the pilot or the air traffic controller with a set of different suggested avoidance trajectories, as well as information about their expected cost and risk. The proposed methods are tested on example scenarios based on real data, showing how different user priorities lead to different flight plans and what tradeoffs are then present. These examples demonstrate that the solutions described in this thesis are adequate for the problems that have been formulated. In this way, the flight planning process can be enhanced to increase the efficiency and predictability of individual aircraft trajectories, which would lead to higher predictability levels of the ATM system and thus improvements in multiple performance indicators.El sistema de gestión del tráfico aéreo (Air Traffic Management, ATM) en los espacios aéreos más congestionados del mundo está siendo reformado para lidiar con múltiples desafíos socioeconómicos, medioambientales y de capacidad. Un pilar de este proceso es el gradual reemplazo de las estructuras rígidas de navegación, basadas en aerovías y waypoints, hacia las operaciones basadas en trayectorias. No obstante, la implementación exitosa de este concepto y la realización de las ganancias esperadas en rendimiento ATM requiere entender y gestionar apropiadamente la incertidumbre. Debido a su compleja estructura socio-técnica, el diseño y operaciones del sistema ATM se encuentran marcadamente influidos por la incertidumbre, que procede de múltiples fuentes y se propaga por las interacciones entre subsistemas y operadores humanos. Uno de los principales focos de incertidumbre en ATM es la meteorología. Debido a su naturaleza no-linear y caótica, muchos fenómenos de interés no pueden ser pronosticados con completa precisión en cualquier horizonte temporal, lo que crea disrupción en las operaciones en aire y tierra que se propaga a otros procesos de ATM. Por lo tanto, para lograr los objetivos de SESAR e iniciativas análogas, es imprescindible tener en cuenta la incertidumbre en múltiples escalas espaciotemporales, desde la predicción de trayectorias hasta la planificación de flujos y tráfico. Esta tesis aborda el problema de la planificación de vuelo de aeronaves individuales considerando dos fuentes importantes de incertidumbre meteorológica: el error en la predicción del viento y la actividad convectiva. Conforme la realización del viento se desvía de su previsión, la trayectoria real se desviará temporalmente de la planificada, lo que implica incertidumbre en tiempos de llegada a sectores y aeropuertos y en consumo de combustible. La actividad convectiva también tiene un impacto en la predictibilidad de las trayectorias, puesto que obliga a los pilotos a desviarse de sus planes de vuelo para evitarla, cambiado así la situación de tráfico. En este trabajo, buscamos desarrollar métodos y algoritmos para la optimización de trayectorias que puedan integrar información sobre la incertidumbre en estos fenómenos meteorológicos en el proceso de diseño de planes de vuelo en horizontes de planificación (antes del despegue) y tácticos (durante el vuelo), con el objetivo de generar trayectorias más eficientes y predecibles. Con este fin, formulamos la planificación de vuelo como un problema de control óptimo, modelando la dinámica del avión con un modelo de masa puntual y el modelo de rendimiento BADA. El control óptimo es un marco flexible y general con un largo historial de éxito en el campo de la ingeniería aeroespacial. Como método numérico, empleamos métodos directos, que son capaces de manejar sistemas dinámicos de alta dimensión con costes computacionales moderados. No obstante, si bien esta metodología es madura en contextos deterministas, la solución de problemas prácticas de control óptimo bajo incertidumbre en la literatura no está tan desarrollada, y los métodos propuestos en la literatura no son aplicables al problema de interés. La primera contribución de esta tesis hace frente a este reto mediante la introducción de un marco numérico para la resolución de problemas generales de control óptimo no-lineal bajo incertidumbre paramétrica. El núcleo de este método es un esquema de conjunto de trayectorias, en el que las trayectorias del sistema dinámico bajo múltiples escenarios son consideradas de forma simultánea, y el problema de control óptimo bajo incertidumbre es así transformado en un problema convencional que puede ser tratado mediante métodos existentes en control óptimo. A continuación, empleamos este método para resolver el problema de la planificación de vuelo robusta. La incertidumbre en el viento y la probabilidad de ocurrencia de condiciones convectivas son modeladas mediante el uso de previsiones de conjunto o ensemble, compuestas por múltiples predicciones en lugar de una única previsión determinista. Este método puede ser empleado para maximizar la eficiencia esperada de los planes de vuelo de acuerdo a la estructura de costes de la aerolínea; además, la predictibilidad de la trayectoria y la exposición a la convección pueden ser incorporadas como objetivos adicionales. El trade-off entre estos objetivos puede ser evaluado mediante la metodología propuesta. La segunda parte de la tesis presenta una solución para reconducir aviones en escenarios tormentosos en un horizonte táctico. La evolución de las células convectivas es representada con un modelo estocástico basado en las proyecciones de Rapidly Developing Thunderstorms (RDT), un sistema determinista basado en imágenes de satélite. Este modelo es empleado por un método de control óptimo numérico, basado en un modelo de masa puntual en el que se modela la dinámica de viraje, con el objetivo de maximizar la eficiencia y predictibilidad de la trayectoria en presencia de incertidumbre sobre la evolución futura de las tormentas. Finalmente, el proceso de optimizatión es inicializado por un método heurístico aleatorizado que genera múltiples puntos de inicio para las iteraciones del optimizador. Esta combinación permite explorar y explotar el espacio de trayectorias solución para proporcionar al piloto o al controlador un conjunto de trayectorias propuestas, así como información útil sobre su coste y el riesgo asociado. Los métodos propuestos son probados en escenarios de ejemplo basados en datos reales, ilustrando las diferentes opciones disponibles de acuerdo a las prioridades del planificador y demostrando que las soluciones descritas en esta tesis son adecuadas para los problemas que se han formulado. De este modo, es posible enriquecer el proceso de planificación de vuelo para incrementar la eficiencia y predictibilidad de las trayectorias individuales, lo que contribuiría a mejoras en el rendimiento del sistema ATM.These works have been financially supported by Universidad Carlos III de Madrid through a PIF scholarship; by Eurocontrol, through the HALA! Research Network grant 10-220210-C2; by the Spanish Ministry of Economy and Competitiveness (MINECO)'s R&D program, through the OptMet project (TRA2014-58413-C2-2-R); and by the European Commission's SESAR Horizon 2020 program, through the TBO-Met project (grant number 699294).Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Jaén; la Universidad de Zaragoza; la Universidad Nacional de Educación a Distancia; la Universidad Politécnica de Madrid y la Universidad Rovira iPresidente: Damián Rivas Rivas.- Secretario: Xavier Prats Menéndez.- Vocal: Benavar Sridha
    • …
    corecore